
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/320831661

A	hybrid	prevention	method	for	eavesdropping
attack	by	link	spoofing	in	software-defined
Internet	of	Things	controllers

Article		in		International	Journal	of	Distributed	Sensor	Networks	·	November	2017

DOI:	10.1177/1550147717739157

CITATIONS

0

READS

3

2	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Text	Classification	View	project

SDN	Security	View	project

Nguyen	Tri-Hai

Soongsil	University

9	PUBLICATIONS			1	CITATION			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Nguyen	Tri-Hai	on	03	November	2017.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/320831661_A_hybrid_prevention_method_for_eavesdropping_attack_by_link_spoofing_in_software-defined_Internet_of_Things_controllers?enrichId=rgreq-6a648957a0653f575659251151bdb848-XXX&enrichSource=Y292ZXJQYWdlOzMyMDgzMTY2MTtBUzo1NTY1OTQxMjQ5OTY2MDlAMTUwOTcxMzc4ODM5Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/320831661_A_hybrid_prevention_method_for_eavesdropping_attack_by_link_spoofing_in_software-defined_Internet_of_Things_controllers?enrichId=rgreq-6a648957a0653f575659251151bdb848-XXX&enrichSource=Y292ZXJQYWdlOzMyMDgzMTY2MTtBUzo1NTY1OTQxMjQ5OTY2MDlAMTUwOTcxMzc4ODM5Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Text-Classification-6?enrichId=rgreq-6a648957a0653f575659251151bdb848-XXX&enrichSource=Y292ZXJQYWdlOzMyMDgzMTY2MTtBUzo1NTY1OTQxMjQ5OTY2MDlAMTUwOTcxMzc4ODM5Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/SDN-Security-5?enrichId=rgreq-6a648957a0653f575659251151bdb848-XXX&enrichSource=Y292ZXJQYWdlOzMyMDgzMTY2MTtBUzo1NTY1OTQxMjQ5OTY2MDlAMTUwOTcxMzc4ODM5Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-6a648957a0653f575659251151bdb848-XXX&enrichSource=Y292ZXJQYWdlOzMyMDgzMTY2MTtBUzo1NTY1OTQxMjQ5OTY2MDlAMTUwOTcxMzc4ODM5Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nguyen_Tri-Hai?enrichId=rgreq-6a648957a0653f575659251151bdb848-XXX&enrichSource=Y292ZXJQYWdlOzMyMDgzMTY2MTtBUzo1NTY1OTQxMjQ5OTY2MDlAMTUwOTcxMzc4ODM5Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nguyen_Tri-Hai?enrichId=rgreq-6a648957a0653f575659251151bdb848-XXX&enrichSource=Y292ZXJQYWdlOzMyMDgzMTY2MTtBUzo1NTY1OTQxMjQ5OTY2MDlAMTUwOTcxMzc4ODM5Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Soongsil_University?enrichId=rgreq-6a648957a0653f575659251151bdb848-XXX&enrichSource=Y292ZXJQYWdlOzMyMDgzMTY2MTtBUzo1NTY1OTQxMjQ5OTY2MDlAMTUwOTcxMzc4ODM5Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nguyen_Tri-Hai?enrichId=rgreq-6a648957a0653f575659251151bdb848-XXX&enrichSource=Y292ZXJQYWdlOzMyMDgzMTY2MTtBUzo1NTY1OTQxMjQ5OTY2MDlAMTUwOTcxMzc4ODM5Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nguyen_Tri-Hai?enrichId=rgreq-6a648957a0653f575659251151bdb848-XXX&enrichSource=Y292ZXJQYWdlOzMyMDgzMTY2MTtBUzo1NTY1OTQxMjQ5OTY2MDlAMTUwOTcxMzc4ODM5Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Research Article

International Journal of Distributed
Sensor Networks
2017, Vol. 13(11)
� The Author(s) 2017
DOI: 10.1177/1550147717739157
journals.sagepub.com/home/ijdsn

A hybrid prevention method for
eavesdropping attack by link spoofing
in software-defined Internet of Things
controllers

Tri-Hai Nguyen1 and Myungsik Yoo1,2

Abstract
With the rapid growth of Internet of Things technologies, the management and control of Internet of Things networks
face remarkable challenges. As such, software-defined networking, which decouples the control layer from data layer,
results in various advantages. An association of software-defined networking and Internet of Things, which is referred to
as software-defined Internet of Things, provides a robust platform to improve the management and control abilities of
Internet of Things networks. However, these benefits have resulted in an increase in the number of malicious attacks on
logically centralized controllers. For that reason, we have performed a specific vulnerability analysis in the link service,
where the controller learns network topology through discovering every link between switches. In addition, we demon-
strate link spoofing attacks on the link service, and discuss a hybrid countermeasure to address this security problem.

Keywords
Software-defined Internet of Things, link service, eavesdropping, authentication, Link Layer Discovery Protocol latency

Date received: 16 May 2017; accepted: 3 October 2017

Handling Editor: An Liu

Introduction

The Internet of Things (IoT) comprises a network of
physical devices incorporated sensors and embedded
systems that interact with each other and connect to
the Internet.1 Many devices generate a huge amount of
data that require significant effort and processing to
convert it to valuable information. In addition, control-
ling a large volume of data requires new concepts in
managing IoT networks to improve the efficiency.2,3 As
the next generation of networking architectures,
software-defined networking (SDN) can help IoT tech-
nologies meet these demands by separating the control
layer from the data layer in the network resulting in
numerous benefits including centralized control,
abstracted network devices, and flexible, automated
reconfiguration of the network.4,5

The trend to integrate SDN with IoT, which is
referred to as software-defined Internet of Things

(SDIoT), has seen noticeable growth.6–10 However,
when the logic of the forwarding behavior of the net-
work is centralized in the controller, a single point of
failure may be caused.5 In the controller, the link ser-
vice is a fundamental and crucial service that deter-
mines the links between switches in the network.
However, it is found that the link service is vulnerable
to attacks because it accepts all Link Layer Discovery
Protocol (LLDP) packets, which are used to discover

1Department of ICMC Convergence Technology, Soongsil University,

Seoul, Republic of Korea
2School of Electronic Engineering, Soongsil University, Seoul, Republic of

Korea

Corresponding author:

Myungsik Yoo, School of Electronic Engineering, Soongsil University, 369,

Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea.

Email: myoo@ssu.ac.kr

Creative Commons CC-BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (http://www.uk.sagepub.com/aboutus/

openaccess.htm).

https://doi.dox.org/10.1177/1550147717739157
https://journals.sagepub.com/home/ijdsn


links among switches. Thus, an attacker can inject fake
LLDP packets or simply forward LLDP packets from
a target switch to another to make a fake link between
them. It affects to all topology-dependent services (e.g.
packet routing) and leads to a denial of service due to
link disruption and a novel eavesdropping attack,
which is presented in this article.

In brief, this work contains following major contri-
butions. First, a vulnerability assessment is performed
on the link service. It is found that the attacker can
launch a novel eavesdropping attack to overcome exist-
ing prevention methods. Second, a hybrid countermea-
sure is proposed and discussed. Finally, an experiment
is carried out to show the effectiveness of the proposed
method.

The rest of this article is organized as follows.
Section ‘‘Background’’ introduces the overview of
SDIoT and the link service in an SDIoT controller.
Section ‘‘Related work’’ provides an overview of related
work that is linked to attacks on the link service.
Section ‘‘Novel eavesdropping attack’’ presents a new
eavesdropping attack that can bypass the current secu-
rity mechanisms. Section ‘‘Hybrid prevention method’’
discusses the proposed defense method and evaluates
its detection performance. Finally, the summary is pre-
sented in section ‘‘Conclusion.’’

Background

In this section, we provide an overview of the SDIoT
and the link service in the SDIoT controller.

Software-defined Internet of Things

IoT and SDN are two modern paradigms that will dra-
matically shape future computer networks.3,5 Some
prior works have introduced an integrated SDN with
IoT, which has been referred to as SDIoT. Qin et al.6

proposed an extended Multinetwork INformation
Architecture (MINA) with a layered SDN controller
for IoT that can deal with network heterogeneity, the
difference in service quality, and so on. Jararweh et al.7

proposed an SDIoT controller that operates as an
orchestrating middleware between the data-as-a-service
layer and the physical layer, composed of controllers of
SDN, storage, security, and so on. Also, various use
cases have been presented and implemented, including
SDIoT for smart urban sensing,8 mobility management
in urban-scale,9 and end-to-end service network orches-
tration.10 Figure 1 shows the simplified view of the
SDIoT architecture, which is described as follows:

The application layer provides various IoT applica-
tions and services. The application layer communi-
cates with the control layer through northbound
application programming interface (APIs), and the

control layer provides an abstraction of the network
infrastructures for the application layer.
The control layer contains a centralized controller
(e.g. Floodlight,11 POX,12 and OpenDaylight13),
which logically maintains a global and dynamic net-
work view, takes requests from the application layer
via northbound APIs, and manages the network
infrastructure via southbound APIs, for example,
OpenFlow.14

The data layer consists of network infrastructures.
When a new packet goes through a switch, if it
matches an existing rule in Flow Tables of the
switch, the switch will handle the packet according
to the matching rule. Otherwise, the switch sends a
Packet-In message to the controller to require for
proper operation. The controller then provides a
Packet-Out message for the packet processing.

Link service in SDIoT controller

In contrast with a conventional network or IoT
schemes, the link service in an SDIoT network is spe-
cial due to its logically centralized controller. The link
service uses the LLDP15 to find the switch-to-switch
links in the network and provides such visibility infor-
mation to upper layer services and applications.
Figure 2 illustrates the basic link discovery procedure
between two switches as follows:

1. The controller sends a Packet-Out message to
switch 1 along with its LLDP packet.

2. Switch 1 broadcasts this LLDP packet to all its
active ports. Switch 2 receives the LLDP packet
via a port that connects to switch 1.

Figure 1. Overview of SDIoT architecture.

2 International Journal of Distributed Sensor Networks



3. Switch 2 sends the LLDP frame back to the
controller through a Packet-In message. When
the controller receives the Packet-In message, it
creates a link between the combination of the
port number (Port) and Datapath ID (DPID)
of switch 1 and Port/DPID of switch 2.

The procedure must be repeated to create a link from
the opposite direction. The process is periodically per-
formed for every switch in the network with a new dis-
covery cycle initiated at fixed intervals.

Related work

Due to a lack of integrity detection of the LLDP pack-
ets in the link service of the controller, an attacker can
create a fake link among two switches by a link spoof-
ing attack that is LLDP Spoofing attack or LLDP
Forwarding attack.16,17 An example is shown in
Figure 3.

In LLDP Spoofing attack, an attacker (host 1) gen-
erates a new LLDP packet or modifies the content of a
received LLDP packet, that is, the sender is port num-
ber 1 of switch 3 and the receiver is port number 1 of
switch 1, and sends it back to switch 1. The controller
receives the fake LLDP packet from switch 1 and
updates the link database based on the sender and
receiver information of the packet. As a result, a fake
link is created between switch 1 and switch 3.

In LLDP Forwarding attack, the attacker must con-
trol host 1 and host 3. As part of the normal link dis-
covery procedure, host 1 captures a LLDP packet that
the sender is port number 1 of switch 1 and then sends
this packet to its partner host 3 via a private connec-
tion. After that, host 3 forwards the received LLDP
packet to port number 1 of switch 3. The controller
receives and accepts the LLDP packet from switch 3
because this packet is valid. A spoofing link from switch
1 to switch 3 is successfully built.

To guard against these attacks, TopoGuard16

appends a static key-hash message authentication code

(HMAC)-based authenticator type, length, value (TLV)
into an LLDP packet and verifies it when getting the
LLDP packet in the controller. TopoGuard also assigns
the switch ports as SWITCH and HOST based on the
types of received packets and blocks the LLDP packets
from the HOST ports. Besides that, SPHINX17 main-
tains a flow graph, which provides a clean mechanism
to aid in the detection of various violations for the net-
work topology, but it is ineffective in large-scale and
dynamic networks. Furthermore, we find that when the
attacker suppresses all host-generated traffic and only
forwards LLDP packets to perform the link spoofing
attack, these schemes do not provide any notification of
the violation.

An attacker can create a fake link between two
switches by link spoofing attacks due to the lack of
LLDP packets verification schemes in the link service.
Once the topology information provided by this link
service is poisoned by the fake link, all dependent oper-
ations such as routing or forwarding applications are
malfunctioning. This can lead to denial of service due
to link disruption and eavesdropping attack. The prob-
lem of link disruption has been known and solved by
the aforementioned methods. However, the eavesdrop-
ping by LLDP Forwarding attack has not been men-
tioned in the literature, and thus, there is no existing
solution for it. The detail about the novel eavesdrop-
ping attack and the proposed countermeasure will be
explained in the following sections.

Novel eavesdropping attack

As far as we know, none of the current controllers con-
tain a security mechanism in the link service to

Figure 2. Link service and its basic operations in SDIoT
controller.

Figure 3. An example of a link spoofing attack between switch
1 and switch 3.

Nguyen and Yoo 3



comprehensively prevent the LLDP Forwarding attack.
Even the current mainstream controllers, such as
Floodlight, OpenDaylight, and POX, still have this
security issue. The existing link spoofing prevention
methods implemented in these controllers such as
TopoGuard and SPHINX cannot completely prevent
the LLDP Forwarding attack.

In this article, it is found that the LLDP Forwarding
attack can lead to a new kind of eavesdropping. The
novel eavesdropping attack is based on the fact that the
existing prevention methods are useless if the attacker
suppresses all host-generated traffic (e.g. address reso-
lution protocol (ARP), domain name system (DNS))
and only performs the LLDP Forwarding attack to
make a fake link in the network. The eavesdropping
attack scenario is depicted in Figure 4 with a linear net-
work topology. The middle attacker host (the attacker
in the figure) requires two network interface cards
(NICs) and sets up physical links (e.g. wired or wire-
less) between two switches, that is, switch 1 and switch
3, through these two NICs. To circumvent the detec-
tion of existing protection schemes, the attacker needs
to disable all host-generated traffic when forwarding
LLDP packets. As part of the normal LLDP broad-
cast, the attacker host receives a LLDP packet from
switch 1 by a NIC and then forwards it to switch 3 via
another NIC. In this step, the attacker can use a inter-
active packet crafting tool (e.g. tcpbridge18) to transfer
the LLDP packet from a NIC to another NIC in the
attacker’s host. When switch 3 receives the LLDP
packet, it then transfers the received LLDP packet to
the controller. The controller thinks that switch 1 con-
nects to switch 3 and then updates the link database.
An opposite link is created in a similar manner. In
other words, the attacker makes a fake link by control-
ling two NICs connected to two target switches to
transfer the LLDP packets between them. In addition,

the attacker can make a fake link using two hosts con-
nected to two switches to transfer the LLDP packets
between them via a private connection, for example, a
tunnel or a direct connection.

After installing a fake link, the attacker can launch
an eavesdropping attack between host 1 and host 3
because the fake link can interrupt the operation of the
shortest-path routing service in the controller, which
means this service will set up a direct traffic flow from
switch 1 to switch 3 via the fake link. Hence, when host
1 communicates with host 3, the attacker can capture
all network traffic, as shown in Figure 5, where an
attacker captures the traffic by h2-eth0 NIC between
host 1 (10.0.0.1) and host 3 (10.0.0.3).

In general network topology, the attacker can still
perform the link spoofing attacks using the similar
method if they can connect to two switches through
two NICs. For example, as shown in Figure 6, host 1
requires five hops (switches) (s1, s2, s3, s5, s6 or s1, s2,
s4, s5, s6) to reach host 5 or host 6. However, during a
link spoofing attack, host 2 (under attacker control)
will forward the LLDP packets to the partner host 4
(under attacker control) via a private connection (e.g. a
tunnel) to inform the controller that there is a direct
link between port number 1 of switch 2 and port num-
ber 1 of switch 5, and vice versa. The controller updates
its topology information and the fake link between
switch 2 and switch 5 is created. The traffic from host 1
can be sent to host 5 or host 6 through a new shortest
path included the fake link (s1, s2, s5, s6). As a result,
the attacker can eavesdrop or modify the traffic coming
to attackers’ NICs before it reaches the destination.
Thus, even for general network topology, the eaves-
dropping attack can occur in the same way as in simple
topology shown in Figure 4.

Hybrid prevention method

In this section, we propose a novel hybrid prevention
method to protect the link service against attacks.
Furthermore, an experiment is carried out to analyze
the effectiveness of the proposed method.

Figure 4. A novel eavesdropping attack.

Figure 5. A successful eavesdropping attack.

4 International Journal of Distributed Sensor Networks



Proposed method

Although the existing link spoofing prevention meth-
ods can guarantee the integrity of LLDP packets and
ensure the switch ports work correctly, the link service
is still vulnerable to eavesdropping attack caused by a
fake link as mentioned earlier. To overcome the draw-
backs of current solutions, we propose a hybrid coun-
termeasure that not only ensures the integrity of the
LLDP packets, but also detects and stops the fake link
launched by a powerful attacker through the combina-
tion of the following two schemes.

Semi-dynamic signature of the controller. As we mentioned
before, the link discovery procedure is periodically per-
formed. For each link discovery cycle, the secret key is
changed in the controller’s signature of the LLDP pack-
ets in proposed method. Hence, it is securer than using
a static key, and it is lighter than the dynamic solution
for which every LLDP packet has a unique secret key.
This effectively prevents an LLDP spoofing attack.

LLDP switch-to-switch (s2s) time. To detect a fake link
launched by the LLDP Forwarding attack, the counter-
measure also considers the LLDP switch-to-switch
(s2s) time, which is the transmission time of LLDP
packet between two neighbor switches. The LLDP s2s
time can be determined by subtracting the southbound
latency of the two switches from the LLDP latency.
The southbound latency of a switch is the time for the

LLDP to be transmitted between that switch and the
controller, while the LLDP latency is the round trip
time of the LLDP packet in a link discovery procedure.

In the case of normal links, the LLDP s2s time
equals to one-hop transmission time between two
switches. In the case of fake links, the LLDP s2s time
varies depending on the case of attack. In the first
attack case, the attacker uses a single host with two
NICs connected to two target switches to transfer
the LLDP packets between them. With this case, the
LLDP s2s time consists of the transmission time of the
LLDP packet from a switch to the attacker, the pro-
cessing time of the LLDP packet in the attacker’s host,
and the transmission time of the LLDP packet from
the attacker to the other switch. In the second attack
case, the attacker uses two hosts connected to two
switches to transfer the LLDP packets via a private
connection (e.g. a tunnel or a direct connection). With
this case, the LLDP s2s time consists of the processing
time of the packet in two attackers’ hosts and the trans-
mission time of the packet via at least three hops. In
either attack case, the LLDP packet needs to be trans-
mitted via more hops, which increases the LLDP s2s
time. However, it is the processing time of the LLDP
packet in the attackers’ host that significantly increases
the LLDP s2s time in case of fake links. Although the
processing time might vary depending on the manipula-
tion tools used by the attacker as shown in the experi-
ment, the processing time is always much longer than
the transmission time of the LLDP packet. Therefore,

Figure 6. An example of general network topology.

Nguyen and Yoo 5



the LLDP s2s time in case of fake links is always much
longer than that of normal links, which makes it possi-
ble to identify the fake links based on the LLDP s2s
time.

Figure 7 illustrates the entire operating process for a
new link service and Table 1 shows the algorithm of
proposed countermeasure for link spoofing attacks.
The controller adds an HMAC-based signature to
LLDP packets with a secret key, which is changed in
every link discovery round, and verifies the signature
when receiving the LLDP packets from switches. If the
signature is invalid, the controller simply blocks it.
Otherwise, LLDP s2s time is calculated by subtracting
the total southbound latency from the LLDP latency.
To find the LLDP latency, controller inserts a

timestamp in TLV of LLDP packet. Similarly, the con-
troller adds a timestamp in an EchoRequest and then
sends to switch. When the controller receives an
EchoResponse from the switch, the southbound latency
of this switch is calculated. As a result, if the LLDP s2s
time exceeds the threshold, we can regard the link as a
fake, and block it for a period of time. The threshold
can be set to a value that is greater than the maximum
LLDP s2s time of the normal links. To get the maxi-
mum LLDP s2s time, the network administrator can
run the link discovery cycle in a number of times and
get the maximum value of LLDP s2s time of the normal
links.

As we mentioned earlier, the eavesdropping attack
caused by the fake link can also be performed in the

Table 1. Pseudocode of the hybrid countermeasure for link spoofing attacks.

Algorithm: Semi-dynamic signature and LLDP s2s time-based Fake Links Detection

01. Input: LLDP packets with signature of controller in a Link Discovery Procedure, LLDP s2s time threshold;
02. Output: The list of fake links;
03. FakeLinks = {};
04. while in Link Discovery Procedure do
05. for each LLDP packet
06. if CheckSignature() == true:
07. continue;
08. else: skip this invalid LLDP packet;
09. UpdateLinks(); // Update all links of valid LLDP packets
10. ChangeSecretKey(); // Change the secret key of controller signature in each Link Discovery Procedure
11. for each link in Link Database
12. LLDPLatency = GetLLDPLatency();
13. SouthBoundLatency = GetSouthBoundLatency();
14. LLDP s2s = LLDPLatency - SouthBoundLatency;
15. if LLDP s2s . threshold:
16. FakeLinks += {switch source, switch destination} of the link
17. TerminateFakeLink(); // Stop this fake link
18. end;
19. return FakeLinks;

Figure 7. A hybrid countermeasure for link spoofing attacks.

6 International Journal of Distributed Sensor Networks



general network topology. However, with the proposed
countermeasure, the fake link can still be detected in
both attack cases even in the general network topology.

Evaluation

Our experiment is carried out using a Mininet emulator
tool,19 which can accurately emulate an SDN and
SDIoT network. The proposed countermeasure is
implemented on the Floodlight v1.211 controller by
editing the LinkDiscoveryManager module. In this
module, in order to implement the semi-dynamic signa-
ture of the controller as a TLV in LLDP packets, we
use SHA-256, that is a key-hash message authentication
(HMAC) method, along with the secret key that
changes in each link discovery procedure. The LLDP
s2s time-based fake link detection mechanism is also
executed in this module. We also use Open vSwitch,20 a
virtual switch with support for the OpenFlow protocol.
The experiment is run on a PC with an Intel Xeon CPU
E3-1230 V2 3.30 GHz with 16 GB RAM. For simpli-
city, we use the linear network topology shown in
Figure 4. We perform a link spoofing attack and get
the LLDP latency to calculate LLDP s2s time from the
response of the Floodlight controller by reviewing its
console output. There are two attack cases. In the first
case, the attacker uses two hosts connected to two
switches to perform the attack through three steps.
First, the attacker uses tcpdump21 to collect the LLDP
packet from a target switch through an attacker host.
Then, this packet is sent to the other attacker’s host.
Finally, the attacker uses tcpreplay22 to resend the
LLDP packet to another target switch. In the second
case, the attacker performs the attack via an attacker’s
host with two NICs connected to two switches. The
attacker uses tcpbridge18 to forward the packet between
two NICs, and thus, the packet can be transferred
between two target switches.

Figure 8 presents the successful launch of the
link spoofing attack in a Floodlight controller.

The solid frames indicate that non-existent bidirec-
tional links between port number 1 of switch 1
(DPID = 00:00:00:00:00:00:00:01, Port = 1) and port
number 1 of switch 3 (DPID = 00:00:00:00:00:00:00:
03, Port = 1) are accepted by the controller, and thus,
the link spoofing attack is successful. To simplify the
demonstration, we assume that the southbound latency
of every switch is equal. Therefore, instead of using the
LLDP s2s time to detect the fake link, we directly use
the LLDP latency. To determine the threshold of
LLDP latency, we have run the link discovery proce-
dure 50 times and determined that the maximum
LLDP latency of a normal link does not exceed
100 ms, which is the threshold in our experiments. As
shown in Table 2, the LLDP latency of the fake links
(i.e. 4227, 3340, 977, 975 ms) are much longer than that
of the normal links (i.e. 42, 27, 30, 21 ms). Specifically,
let us compare the LLDP latency in two cases of
attack. The LLDP latency of the fake link in the first
case (attack using two hosts) is much longer than that
of the second case (attack using a single host). This is
because the LLDP latency of the fake links depends on
both the number of attacking hosts and the processing
time of the manipulating tools used by the attacker. In
the first case, the LLDP packet was processed in two
hosts, which generally doubles the processing time of
the LLDP packet as compared to the second case
where the packet was processed in only one host.
Furthermore, in the first case, the manipulating tools
used by the attacker are tcpdump and tcpreplay while
tcpbridge is used in the second case. The tcpdump and
tcpreplay take longer processing time than tcpbridge.
Consequently, the LLDP latency of the fake link in the
first case is at least three times longer than that of the
second case. Therefore, the LLDP s2s time in either
case of attack is always much longer than that of nor-
mal links, which makes it possible to detect the fake
links based on the LLDP s2s time. Figure 8 also
demonstrates the successful malicious link identifica-
tion based on LLDP latency with a threshold of
100 ms. The dotted frames indicate that the fake links
between port number 1 of switch 1 and port number 1
of switch 3 in the network are detected right after they
have been discovered. The eavesdropping attack can be
blocked thanks to the fake link detection mechanism.

There are many packet crafting tools that are avail-
able publicly. However, in terms of packet capture and
replay, the tcpdump and tcpreplay are one of the most
common and powerful tools used by the attacker in
Linux-based environments. In the first attack case,
where the attacker captures the packets into a file from
a host and then replays it on the other host, the attacker
can use the alternative tools including Wireshark (wire-
shark.org), hping (hping.org), and Scapy (secdev.org/
projects/scapy/). However, like tcpdump and tcpreplay,
these tools leverage libpcap library (sourceforge.net/

Table 2. LLDP latency of the links.

Link (switch, port to switch, port) LLDP latency (ms)

sw1, 2 – . sw2, 2 42
sw2, 2 – . sw1, 2 27
sw2, 3 – . sw3, 2 30
sw3, 2 – . sw2, 3 21
sw1,1 – . sw3, 1 (2 hosts) 4227
sw3,1 – . sw1, 1 (2 hosts) 3340
sw1,1 – . sw3, 1 (1 host) 977
sw3,1 – . sw1, 1 (1 host) 975

LLDP: Link Layer Discovery Protocol.

The bold terms emphasizes the difference of latency between the

normal links and the fake links.

Nguyen and Yoo 7



projects/libpcap/) to capture and replay network traffic.
Hence, their performance and packet processing time
are almost the same with tcpdump and tcpreplay. In the
second attack case, where the attacker needs to bridge
network traffic across two NICs in an attacker’s host,
to the best of our knowledge, tcpbridge is the most suit-
able tool for this task. Furthermore, the additional
steps in packet processing of the tools always add the
latency in LLDP packets. Therefore, the proposed
countermeasure can distinguish between the fake links
and the normal links based on the LLDP latency
regardless of the attack tools.

Conclusion

Link service is one of the most important services in
SDIoT controller since it provides the information
about the links among switches. Without it, the hosts
cannot communicate to each other in the network.
However, it is found that the link service is also vul-
nerable to the link spoofing attacks including LLDP
spoofing and LLDP Forwarding attacks due to the
fact that anyone can manipulate the LLDP packets
used in the link service to create fake links. While
fake links created in LLDP spoofing attack leads to
denial of service due to link disruption, the fake links

created in LLDP Forwarding attack can lead to a
novel eavesdropping. This work proposes a hybrid
countermeasure to prevent link spoofing attacks in
SDIoT controller through two schemes. The first
scheme relies on adding the semi-dynamic signature
of the controller to LLDP packets to guarantee the
integrity of the LLDP packets. The second scheme
detects and blocks fake links by comparing the LLDP
s2s time to a predefined threshold. The experiment
demonstrates that the proposed hybrid countermea-
sure is feasible and efficient since it can prevent all
link spoofing attacks in real time.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This research was supported by the MSIT (Ministry

of Science and ICT), Korea, under the ITRC (Information
Technology Research Center) support program (IITP-2017-
2017-0-01633) supervised by the IITP (Institute for
Information & Communications Technology Promotion).

Figure 8. Successful fake link attack by the forwarding method (solid frame) and successful fake link detection (dotted frame).

8 International Journal of Distributed Sensor Networks



References

1. Evans D. The Internet of Things: how the next evolution

of the Internet is changing everything. White Paper, April
2011. San Jose, CA: Cisco.

2. Gubbi J, Buyya R, Marusic S, et al. Internet of Things
(IoT): a vision, architectural elements, and future direc-
tions. Future Gener Comput Syst 2013; 29(7): 1645–1660.

3. Al-Fuqaha A, Guizani M, Mohammadi M, et al. Inter-
net of things: a survey on enabling technologies, proto-
cols, and applications. IEEE Commun Surv Tuts 2015;
17(4): 2347–2376.

4. McKeown N. Software-defined networking. INFOCOM

Keynote Talk 2009; 17(2): 30–32.
5. Kreutz D, Ramos FMV, Verissimo PE, et al. Software-

defined networking: a comprehensive survey. P IEEE

2015; 103(1): 14–76.
6. Qin Z, Denker G, Giannelli C, et al. A software defined

networking architecture for the internet-of-things. In:

Proceedings of IEEE/IFIP network operations and man-

agement symposium, Krakow, 5–9 May 2014, pp.1–9.
New York: IEEE.

7. Jararweh Y, Al-Ayyoub M, Darabseh A, et al. SDIoT: a
software defined based internet of things framework. J
Ambient Intell Humaniz Comput 2015; 6(4): 453–461.

8. Liu J, Li Y, Chen M, et al. Software-defined internet of
things for smart urban sensing. IEEE Communications

Magazine 2015; 53(9): 55–63.
9. Wu D, Arkhipov DI, Asmare E, et al. UbiFlow: mobility

management in urban-scale software defined IoT. In:
Proceedings of IEEE conference on computer communica-

tions, Kowloon, Hong Kong, 26 April–1 May 2015,
pp.208–216. New York: IEEE.

10. Vilalta R, Mayoral A, Pubill D, et al. End-to-end SDN

orchestration of IoT services using an SDN/NFV-enabled

edge node. In: Proceedings of optical fiber communications

conference and exhibition, Anaheim, CA, 20–24 March

2016, pp.1–3. New York: IEEE.
11. Floodlight controller, http://www.projectfloodlight.org/
12. POX controller, https://github.com/noxrepo/pox
13. OpenDaylight controller, https://www.opendaylight.org/
14. McKeown N, Anderson T, Balakrishnan H, et al. Open-

Flow: enabling innovation in campus networks. ACM

SIGCOMM Comp Com 2008; 38(2): 69–74.
15. Congdon P. Link layer discovery protocol. RFC 2922,

2002, https://tools.ietf.org/html/rfc2922
16. Hong S, Xu L, Wang H, et al Poisoning network visibility

in software-defined networks: new attacks and counter-

measures. In: Proceedings of network and distributed sys-

tem security symposium, San Diego, CA, 8–11 February

2015. Reston, VA: Internet Society.

17. Dhawan M, Poddar R, Mahajan K, et al. SPHINX:

detecting security attacks in software-defined networks.

In: Proceedings of network and distributed system security

symposium, San Diego, CA, 8–11 February 2015. Reston,

VA: Internet Society.
18. tcpbridge, http://tcpreplay.synfin.net/tcpbridge.html
19. Lantz B, Heller B and McKeown N. A network in a lap-

top: rapid prototyping for software-defined networks. In:

Proceedings of the 9th ACM SIGCOMM workshop on hot

topics in networks, Monterey, CA, 20–21 October 2010,

p.19. New York: ACM.
20. Open vSwitch, http://openvswitch.org/
21. tcpdump, http://www.tcpdump.org
22. tcpreplay, https://github.com/appneta/tcpreplay

Nguyen and Yoo 9

View publication statsView publication stats

https://www.researchgate.net/publication/320831661

