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Abstract

The problem of traffic balancing in a data network environment is considered in relation to Network Powered by Com-
puting (NPC) - a new generation of computational infrastructure, where computational resources and data transmission
resources form a network - ”Network is a Computer”. The key contribution of this work is Multi-Agent Routing using
Hashing (MAROH) method that provides fast and fair bandwidth distribution inside an overlay network. The fast oper-
ation is guaranteed by multi-agent reinforcement learning methods, while the fair distribution is achieved by consistent
hashing scheme. The tandem of these approaches ensures efficient use of resources in the overlay network. This paper
presents MAROH detailed description and experimental results that demonstrate advantage over ECMP, convergence
rate and robustness of MAROH method.

Keywords: MARL, traffic engineering, NPC

1. Introduction

Recently, the landscape of computational infrastruc-
ture is in dramatic changes under the pressure of appli-
cation requirements [1, 3]. The suit of the properties of
modern applications can be summarized as follows: dis-
tributed, self-sufficient, work in real time, elastic, cross-
platform, actively interact and synchronize, and are easy
to update. The definitions of these terms are in [1]. For
further understanding, it is important to recognize that an
application is made up of interrelated components, which
we will refer to as application functions. The analysis of
requirements of modern application to the computational
infrastructure presented in [2, 3, 4] shows the trend of ubiq-
uitous application deployment. We are moving to the era
when data processing resources and data transmission re-
sources form a single space for computing - computational
infrastructure. In other words, the time has come for the
implementation of the slogan ”Network is a Computer”.
Further we will call such computational infrastructure Net-
work Powered by Computing (NPC). It is should be noted
that similar concept was proposed under the name Com-
puting Power Network [3].

Several versions of Functional Architecture for such
new generation of computational infrastructure were pro-
posed [3, 4]. Briefly NPC functional architecture can
be described as following. It consists of data process-
ing (DP) plane, data transmission (DT) plane, data pro-
cessing control (DPC) plane, data transmission control

∗Corresponding author

(DTC) plane, administration, orchestration and manage-
ment plane (AOM plane). DP plane covers all computa-
tional resources of NPC. DT plane is an overlay network
over underlying physical network. Actually data trans-
mission plane is data transmission network (DTN). DPC
plane is responsible for preparation of the application for
execution, planning the placement of application compo-
nents, calculation of the quality of service (QoS) require-
ments based on the service level agreement (SLA) specified
by the user, generation of DTN control plane instructions
for setting up overlay tunnels in accordance with the ap-
plication function interaction topology of the application.
DTC plane is responsible for control and monitoring of
DTN. AOM plane orchestrates interactions between appli-
cation components in accordance with application topol-
ogy, collects NPC resource consumption statistics by every
application component, secures management and admin-
istration of NPC.

In this architecture there is an important point, which
is weakly explored so far – the facility that is responsi-
ble for the integration of every data processing resource
(computational node - CN) with data transmission net-
work (DTN) and external sources of computational service
requests. Call this facility NPC router (NPCR). NPCR re-
places several devices at once - a task manager, a traffic
and task router, VPN-gateway, CPE, and supplies the fol-
lowing functionality:

• distribution of application functions (ApF)/ virtual
network functions (VNF) across computational nodes
(CN) of DP plane;

Preprint submitted to Elsevier May 22, 2023



• decision making: is it worth to execute the certain
ApF/VNF on the CN connected to this current NPCR
or not;

• forwarding ApF/VNF that was not accepted by the
current facility under some reason to other facilities
where their computational resources are much more
promising from the point of Application execution
efficiency as a whole;

• optimal data traffic routing as between ApF as be-
tween corresponding VNF;

• provision of the transport connection that meets the
required Service Level Agreement (SLA).

In those cases when the NPCR provides the input for ex-
ternal sources of data, applications, computational service
requests to the NPC resources, we will call such NPCR as
pole.

This paper has been dedicated only to one problem
from the list above – the optimal traffic routing in overlay
DTN of NPC. It should be noted that the solution pro-
posed here for optimal traffic engineering is also applicable
in traditional data network.

Recent surveys [5, 6] on load balancing methods showed
focus on Machine Learning (ML) methods, especially multi-
agent reinforcement learning (MARL). The scale and rate
of data traffic in our network do not let us get the proper
solution for speed and accuracy of traffic balancing by tra-
ditional centralized methods. That is why the research
keeps focus on ML. There are three approaches to MARL
optimization: centralized, decentralized with communica-
tion and fully decentralized. It is assumed in all these
approaches that agents construct their local state based
on the environment observations. However the agents be-
havior in these approaches are different:

• centralized approach: a single entity named control
center is responsible for the operation of every agent.
This center collects the local states from all agents
and defines the actions for every agentby solving an
optimization problem.

• decentralized approach with communication (or just
decentralized approach): assumes that the local state
of every agent can be broadcasted to all neighboring
agents. Then the agent by himself chooses an op-
timal action based on the knowledge of local and
neighboring agent states.

• the fully decentralized approach: do not suppose any
communication between agents. Decision should be
made based only on the history of the agent local
behavior observations.

The main problems of MA methods for traffic control
are poor scalability; there are no mathematical models
that guarantee convergence to the optimal solution; it is

difficult to mathematically frame the optimization func-
tional; the extent of deviation from the optimal solution is
unknown.

In this paper we focus on the decentralized approach
as NPCRs are able to communicate with each other and
there is no single control center in NPC. Based on exam-
ining of the works related to ML methods for load balanc-
ing a new method is proposed called MultiAgent Routing
with Hashing (MAROH) to surmount the problems listed
above. This method combines multi-agent reinforcement
learning and hashing algorithms to achieve fast and fair
bandwidth distribution.

The paper is organized as follows. In the section 2
we describe the traffic engineering optimization problem
related to NPC. The works that deal with ML methods
for load balancing are discussed in the section 3. The
proposed new method MAROH is presented in the section
4. The results of the experiments are presented in the
section 5.

2. Traffic Engineering Problem Statement

Let us formulate the load balancing problems in term of
NPC. As it was mentioned above new proposed MAROH
method is applicable to both NPC networks and tradi-
tional data networks. It suffices to imagine instead of
NPCR and an overlay channel, a network device such as
router/switch and an ordinary line, respectively. The no-
tations are used in the paper are shown in table 1.

Consider DT plane G = (N,E), represented by the di-
rected graph G, where N is a set of NPCR facilities and E
is a set of overlay channels, connecting NPCRs. According
to functional NPC architecture [1], NPCR monitors the
state of adjacent overlay channels: it collects bandwidth
capacity cu,v and occupied bandwidth bu,v for any pair of
neighboring NPCRs (u, v).

The set of flows generated by ApF/VNF interactions
is represented by the traffic matrix TM . Although we
use traffic matrix to describe load balancing problem, in-
dividual NPCRs only know about occupied bandwidth of
their adjacent overlay channels. Each flow is represented
by triplet < sf , df , rf >, where sf is a source NPCR, df
is a destination NPCR and rf is a flow rate. We consider
the discrete time model: at each time ti there are changes
in traffic matrix TM or in DT plane G.

Our goal is to develop a method that will provide a
balanced load of the channels on every network node, e.g.
NPCR. We define the balanced load as flow distribution
with optimization criterion: minimization of the function
Φ:

Φ =
1

|E|
Σ(u,v)∈E(

bu,v
cu,v
− µ′)2, (1)

where |E| is the number of overlay channels, µ′ is a mean

channel load equal to 1
|E|Σ(u,v)∈E

bu,v

cu,v
. In terms of MARL

optimization, Φ is a goal function.
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G = (N,E) directed graph, describing NPC
N NPCR entities
E overlay channels between NPCR
cu,v channel bandwidth capacity
bu,v occupied channel bandwidth

TM = {sf , df , rf} traffic matrix
sf source NPCR of flow f
df destination NPCR of flow f
rf rate of flow f
Φ goal function
µ′ mean channel load
ru,v channel weight

Table 1: Notations

Balanced channel load can be achieved in different ways:
packet balancing, flow balancing and flowlet balancing.
Here we will use the following way: on every ti every
NPCR egress port/channel will be assigned a certain weight
ru,v. Special hash-function will use these weights to choose
an outgoing channel for every flow. So the key problems
are how to calculate and how to assign weights ru,v to an
egress port and how to construct the proper hash-function.

Note, that elephant-flows and mice-flows cannot be dis-
tinguished by hash-function. In the paper we do not deal
with this problem. In case such distinction is necessary,
one should add an external mechanism of flow classifica-
tion into elephant and mice flows, and apply the proposed
method MAROH to each of the two sets separately. In
this way elephant flows will compete with elephant flows
for resources and mice flows will compete with mice flows.

Let us summarize the problem statement. Each NPCR
u ∈ N needs to choose channel weights ru,v based on infor-
mation about channel occupied bandwidth bu,v, collected
from neighbors. ru,v should be selected in such way that
function Φ from (1) reaches its minimum. We assume
that NPCRs periodically broadcast their local state to all
other NPCRs to evaluate Φ, like IGP routers maintain
Link State Database (LSDB).

3. Related Works

In this section, we will look at how we could choose ru,v
based on already known methods. Recently reinforcement
learning (RL) algorithms for traffic balancing in networks
are based on multi-agent reinforcement learning (MARL)
with decentralized network information to easily scale the
solution. This survey covers only the works that mostly fit
our problem statement. The key features of every observed
RL methods are collected in table 2. The distinguishing
points are: single or multiple agents, centralized or de-
centralized network state information, state, action and
reward spaces of an agent.

The main idea of AuTO method [7] is based on animals
Peripheral & Central Nervous Systems analogy. Deep Re-
inforcement Learning system design has two parts to solve

the scalability problem that many RL systems struggle
with. Peripheral Systems (PS) are located at end-host
devices of the network, collecting flow information to opti-
mize the flow balancing. The short flow traffic is optimized
locally to minimize delay for network information distri-
bution. Central System (CS) aggregates the information
from all the PS’s and processes the global traffic informa-
tion for long flows optimization. This makes AuTO an
end-to-end automatic traffic optimization system that col-
lects network information, learns from past decisions, and
performs actions to achieve operator-defined goals. The
usage of AuTO method implies the ability to recognize
short-term flows on PS. This is not an easy problem to
solve.

Multi-agent Actor-Critic Reinforcement Learning Based
In-network Load Balance [8] proposes a multi-agent actor-
critic reinforcement learning algorithm that uses ”central-
ized learning – distributed execution” (CL-DE) model.
This means that the forwarding elements like switches get
advice from a centralized network “critic” that helps them
get coordination in their acting by updating each agent’s
policy, while the agents take actions relying on local ob-
servations. The authors also introduce a Target Network
function that helps keep the Q-function (the action-value
function) more stable by learning on a fixed number of
timesteps, and Experience Replay that randomly trains
the policy on mini-batches of ”experiences” for the algo-
rithm to converge faster.

RILNET: A Reinforcement Learning Based Load Bal-
ancing Approach for Datacenter Networks [9]. DCN suf-
fers from various problems, for example, highly dynamic
workloads, congestions and topology asymmetry. ECMP,
as a traditional load balancing mechanism that is widely
used recently in DC, demonstrates a poor balance and
leads to overloads. Many load balancing schemes have
been proposed to surmount ECMP problems. However,
these traditional schemes usually balance a load based only
on knowledge about the network from a snapshot or a net-
work state taken within a short period of time. The cited
paper proposes an approach based on RL technique, called
RILNET (Reinforcement Learning NETworking), aimed
at load balancing for DCNs. RILNET adapts its oper-
ation for the current load by RL approach. To achieve
a higher granularity control, instead of per flow routing,
RILNET routes aggregated flows, which is a set of flows
that includes all flows going from one source boundary
switch to one destination boundary switch. Performance
of RILNET implementation was tested on flow and packet
level simulation. In both cases the results showed that
RILNET can balance the traffic load much more efficiently
than ECMP and DRILL (another load balancing technique
which employs per-packet decisions at each switch based
on local queue occupancies and randomized algorithms to
distribute load). RILNET is superior to DRILL in terms
of data loss and maximum connection latency. The main
RILNET disadvantages for our purpose are: Single-agent
RL method with Centralized way of obtaining data.

3



Paper Single/
multiple
agents

Centralized/
Decentralized

State space Action Space Reward

[7] +− centralized Two kinds of states for
short and long flows: the
set of all finished flows and
the set of all active flows
with finished flows respec-
tively

Two kinds of actions for
short and long flows: the
set of MLFQ threshold
values and the tuple (flow
priority, rate limit, flow
path)

ratio between goal
functions of two
consecutive time
steps

[8] + centralized - 10-episode history of link
utilization
- current utilization
- switch buffer state

fraction of flows sent on a
path

negative of the
maximum link
utilization

[9] − centralized snapshot of all throughput
between all pairs of edge
switches

routing proportions for all
pairs of edge nodes

variance vector
of rewards for all
paths between each
pair of edges

[10] − centralized traffic demand matrix the set of link weights of
all nodes

average delay of
packets within a
time slot

[11] − centralized traffic demand matrix link-weight setting that
implicitly determines the
shortest paths between
any source-destination
pair

negative variance of
network links uti-
lization

[13] + centralized
/decentralized

vector of the agent in re-
gion consisting of current
link utilization in region

T-agent: set of fractions
of traffic amount deliv-
ered from ingress nodes to
egress nodes on a certain
path
O-agent: set of splitting
ratios of the outgoing de-
mands from the ingress
nodes to the neighboring
regions on a certain path

T-agent: negative
of the maximum
edge cost of T-
agent’s region
O-Agent: negative
of the maximum
edge cost of T-
agent’s region

[12] + decentralized link hidden representa-
tion consisting of current
weight and link utilization
for each agent

modification of the weight
of agents’ associated links

difference of the
global maximum
link utilization be-
tween consecutive
steps

[14] + decentralized - destination of the cur-
rent packet
- extra information related
to agent
- information shared from
the neighbor nodes of
agent

choice of neighbor node to
deliver packet

sum of queueing
time and transmis-
sion time

[15] + decentralized - current node
- neighboring nodes of the
current node
- destination node of the
first packet in the current
node’s queue

sending packet to a neigh-
boring node according to
a greedy algorithm

negative sum of the
estimated queue de-
lay for the packet
in the next agent
and the transmis-
sion time between
the two routers

Table 2: RL methods in TE
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Cognitive Routing based on Deep Reinforcement Learn-
ing [10] relies on historical data analysis engine for optimal
routing decisions by considering the inference of network
quality state. The proposed Deep Reinforcement Learning
(DRL) Single-Agent system uses Traffic Matrices to show
the state of the whole system. The optimal policy is modi-
fied by using Deep Deterministic Policy Gradient (DDPG,
a model-free, off-policy, actor-critic algorithm) and Tem-
poral Difference (TD) Learning.

DeepRLB: A deep reinforcement learning-based load
balancing in DCN [11] is a DRL-based load balancing ap-
proach for SDN DCN, which uses the DDPG algorithm to
adaptively learn the link-weight values by observing the
traffic flow characteristics. It exploits the flow statistics
periodically collected by the controller polling or switch
pushing mechanisms. At the next step, the statistics man-
ager returns the acquired load balancing performance as a
reward to the actor-network. The agent appends the ob-
tained experiences at each step to the replay buffer, and
the parameters of actor and critic networks are updated as
soon as the buffer size exceeds the batch size. DeepRLB
dynamically updates its knowledge from the environment
(RL parameters) by repeating this process over the suc-
cessive traffic demands in an SDN-based DC to improve
the link-weight setting.

A Multi-agent Reinforcement Learning Perspective on
Distributed Traffic Engineering was proposed in [13] as
a data-driven framework for multi-region TE problems
which involves the use of multi-agent deep reinforcement
learning technique. There are two reinforcement learn-
ing agents that control the terminal traffic (T-agent) and
outgoing traffic (O-agent) in each region. These agents
collect local link utilization statistics each in their regions,
optimize local routing decisions, and observe the result-
ing congestion-related reward. The operation of the two
agents in every region adheres to the following scheme: the
T-agent observes local region network status and routes
terminal traffic for optimizing a local TE objective, while
the O-agent solicits reward feedback from neighboring re-
gions and routes outgoing traffic for optimizing a cooper-
ative TE objective. The agents are first trained offline on
test-bed simulating the network. During the online stage,
the system can continue to improve and make suboptimal
routing decisions quickly.

Machine Learning Ready for Traffic Engineering Opti-
mization from [12] has proposed a new distributed sys-
tem for TE, which uses the latest achievements in ML
techniques. The proposed system architecture combines
multi-agent reinforcement learning (MARL) method and
graph neural networks (GNN) to minimize congestions
in a network. The paper presents the empirical com-
paring the proposed MARL+GNN approach system with
DEFO (a centralized network optimizer that translates
high-level goals of operators into network configurations in
real-time), a network optimizer based on Constraint Pro-
gramming, which represents the state of the art in TE. Ex-
perimental results show that the proposed MARL+GNN

solution has demonstrated almost the same performance
as DEFO in a wide range of networks, including three real
network topologies. At the same time, MARL+GNN solu-
tion significantly reduces execution time (from a few min-
utes in DEFO to a few seconds in MARL+GNN). The
MARL+GNNmethod assumes a multi-agent approach with
a decentralized way of interaction between agents (each
agent is responsible for communication between network
nodes). This feature of the method meets the require-
ments of our problem.

Packet RoutingWith Fully Distributed Multiagent Deep
Reinforcement Learning method was proposed in [14].
This method was intended to solve one of the problems
of the RL algorithms: the dimension of the network state
space. The size of this space limits the possibilities for
comprehensive representation of this space. Consequently
its potential benefit is limited. This paper proposes a solu-
tion to this problem using a multi-agent DRL approach. In
the proposed solution, each agent uses a recurrent neural
network (RNN) with long short-term memory (LSTM).
Network training and decision making are decentralized.
The LSTM RNN extracts routing features from rich infor-
mation regarding backlogged packets and past actions, and
effectively approximates the value function of Q-learning.
Each switch can periodically communicate with its direct
neighbors, helping better define network states. The deep
RNN uses three fully connected layers and one LSTM
layer. The input of the neural network consists of Cur-
rent Destination, Action History, Future Destinations and
Max-Queue Node. LSTM maintains an internal state and
aggregates observations over time. Activation function
and optimization algorithm of the neural network are ReLU
and RMSProp, respectively.

Packet Routing with Graph Attention Multi-agent Re-
inforcement Learning method was published in [15]. The
paper presents a solution of TE problem for three differ-
ent cases: centralized, federated and cooperative learning.
Each router/node is considered a separate agent. A fea-
ture matrix (current node, neighboring node, or destina-
tion node) is transformed using a matrix of weights, atten-
tion coefficients, and LeackyReLu, which gives more ”sig-
nificant” features at the output. These features are needed
to calculate Q-value in a neural network (each agent has
its own, and the parameters are also different). As a re-
sult, it is shown that training without a central controller
(as in centralized and federated training) shows the best
results.

Output. We have considered various methods of RL
based on single-agent and multi-agent learning approaches
for network traffic TE. The main technique in RL meth-
ods was the Actor-Critic model. Training and evaluation
processes can be either centralized or decentralized. In the
centralized case the state of the whole network is supposed
to be known. This can induce a significant delay before the
balancing decision could be made. So, the decentralized
approach is preferable, but nodes in the network should be
able to exchange local information with each other to get

5



a consistent decentralized learning. None of the consid-
ered above methods provide the proper solutions for the
problems listed in section 1.

4. MAROH method for TE

Here the new proposed traffic balancing method will be
described. Repeat again that the goal of our method is to
combine multi-agent reinforcement learning with hashing
algorithms to provide a fair traffic allocation and maintain
efficient network resource utilization. For that purpose on
every ti each NPCR egress port/channel will be assigned
a certain weight, which will be used for allocation flows to
channels by special hash-function. So the key problems are
how to assign weights to egress ports and how to construct
the proper hash-function.

In our scheme we will consider more options than just
shortest paths to destination when choosing egress ports.
However doing this might cause a loop to appear in the
flow path. To avoid loops we have developed a special al-
gorithm called next hop selection (NHS). It restricts the
set of egress ports based on NPC topology subgraphs, ex-
plained in detail further.

To summarize the above, MAROH method consists of
three parts, illustrated on figure 1:

1. The set of next hops (egress ports) is calculated by
NHS algorithm in advance.

2. MARL algorithm calculates the weights for these
ports.

3. Hashing algorithms distribute flows between chan-
nels according to calculated weights.

The following subsections describe each part in details.

4.1. Next hop selection algorithm

The proposed algorithm consists of two parts: the aux-
iliary one where some data structures will be generated and
the main one where the next hop for every active flow on
each router will be identified. The auxiliary part consists
of the following steps:

1. Transform the original graph G to the undirected
graph U without parallel edges1 (if there is at least
one arc between vertices in G, then U will have only
one edge between the same pair of vertices).

2. Choose the root vertex r ∈ U (for example, the ver-
tex with the longest DFS path).

3. Obtain a directed acyclic graph DAG(U) from U by
DFS. Arcs in DAG(U) are directed from the vertex
with lower DFS number to the vertex with higher
DFS number.

1Everywhere below, the term edge will be used for undirected arcs
in the graph, and the term arc will be used only for directed one.

4. Construct a directed subgraph T1 of G: any arc in
T1 exists if and only if there is the arc with the
same direction between the same pair of vertices in
DAG(U).

5. Construct a directed subgraph T2 of G: any arc in
T2 exists if and only if there is the arc with the op-
posite direction between the same pair of vertices in
DAG(U).

Now consider the algorithm for next hop port selection
(see algorithm 1) for some vertex v from the original graph
G. Assume the packet was received from vertex p ∈ {G ∪
∅} and the packet destination is the vertex d ∈ G. The
symbol ∅ denotes the case when the packet first arrived
at the NPCR pole.

Algorithm 1 Next hop selection algorithm

1: next hops = {}
2: if p ̸= ∅ then
3: cg ← T1 if dfs(p) < dfs(v) else T2

4: rg ← T1 if dfs(p) > dfs(v) else T2

5: if v →cg d then
6: for each n ∈ NBcg(v) do
7: if n→cg d then
8: next hops+ = n
9: end if

10: end for
11: else if v →rg d then
12: for each n ∈ NBrg(v) do
13: if n→rg d then
14: next hops+ = n
15: end if
16: end for
17: else
18: for each n ∈ NBcg(v) do
19: if n→cg k and k →rg d then
20: next hops+ = n
21: end if
22: end for
23: end if
24: else
25: cg ← T1 if dfs(v) < dfs(d) else T2

26: rg ← T1 if dfs(v) > dfs(d) else T2

27: if v →cg d then
28: for each n ∈ NBcg(v) do
29: if n→cg d then
30: next hops+ = n
31: end if
32: end for
33: end if
34: for each n ∈ NBrg(v) do
35: if n→rg k and k →cg d then
36: next hops+ = n
37: end if
38: end for
39: end if
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Figure 1: MAROH general operation scheme: (a) NHS algorithm produces feasible set of egress ports; (b) MARL algorithms produces weights
for these ports; (c) hash-function distributes flows accordingly to these weights.

We used the following notations in algorithm 1:

• cg means current graph (either T1 or T2);

• rg means reversed graph (T2 or T1 respectively);

• v →G d means that vertex d is reachable from vertex
v in graph G;

• NBG(v) means the set of neighbors of vertex v in
graph G.

Lines 2-23 correspond to the case when the packet is
on the node within the path and lines 24-39 correspond to
the case when the packet is on the first node of the path.

Lines 5-10 correspond to the case when we can reach
our destination in the current subgraph (either T1 or T2).
Therefore we don’t need to switch to the other subgraph.
Thus it guarantees there will be no cycles on the path
because both T1 and T2 are DAG.

Lines 11-16 correspond to switching from one subgraph
to other, while lines 18-23 stand for the search of path to
the node, where we can switch between subgraphs. The
condition “is reachable” could be calculated beforehand
and can be limited by an additional parameter meaning
the maximum path length.

In a case, when v is the first vertex on the path, we try
to find the path in both subgraphs: lines 27-33 for search-
ing in the first subgraph and lines 34-38 for the second
one.

4.2. MARL algorithm

The proposed solution for traffic TE in NPC is an algo-
rithm that runs on each NPCR. By this algorithm we have
tried to combine two algorithms MARL and Graph Neural
Network (GNN) follow to work [12] in such way that it
will solve the problems mentioned in the introduction.

The general scheme of agent operation in the proposed
method is illustrated on figure 2. GNN represents data
network that transmits messages between network agents.
For ordinary TCP/IP network these messages will include
both the IGP (e.g. OSPF) messages with updated network
state and agent messages with its hidden state. For NPC
data plane the existed IGP protocols could be adapted.

We will start with special kind of GNN, named the
Message Passing Neural Network (MPNN). Then MARL

Figure 2: MAROH MARL operation scheme: (a) agent hidden state
initialization, (b) - (c) - message exchanges and hidden state update,
(d) MPNN evaluation of actions

framework will be described. After that the proposed al-
gorithm will be described in detail. Used notations are
given in table 3.

4.2.1. MPNN organization

Message Passing Neural Network (MPNN) [16] is de-
signed to learn the optimal message transmission between
agents in the network represented by undirected graph.
MPNN is based on an iterative message passing algorithm
that passes information between selected graph elements –
in our case we treat the agents as graph elements. Trans-
mitted messages update the agent’s state, which called
hidden state h0

v in MPNN. In our case the hidden state is
represented by occupied channel bandwidth bi,v, channel
capacity ci,v and current weights ru,v. The hidden state
can be initialized by random values or based on already
collected statistics.

In our implementation hidden states h0
v are represented

by 16 element vectors that include the information from
the neighbors. As the hidden state size is limited, trans-
mitted messages should be compressed and received mes-
sages should be aggregated. These operations are formal-
ized by message function m(·) and aggregation function
a(·).

It is assumed in MPNN approach that all agents ex-
change messages with their neighbors within the same time
slot. It takes several time slots to distribute information
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V set of agents
v specific agent in V
K number of exchanges in

MPNN
B(v) all nodes in neighborhood

of agent v
m(·) message function between

two nodes
a(·) aggregation function in

MPNN
u(·) update function applied to

each agent v
r(·) readout function of agent

hidden state
t Reinforcement Learning

step
st state at step t
at action at step t
rt reward at step t

γ ∈ [0, 1] discount reward factor
S state space
A action space

logit unnormalized log proba-
bility

ht
v hidden state of agent v at

step t
M t

v = a(m(ht
v, h

t
i)i∈B(v) combined messages of

MPNN
ht+1
v = u(ht

v,M
t
v) new hidden state at step

t+ 1
T the step number of the

episode end

Gt =
∑T

t=o γ
trt discounted cumulative re-

ward
π : S → A policy, the agent behavior

V πθ (s) = Eπθ
[Gt|st = s] state value function

Table 3: MARL notations

to more agents in the network At each k-th message ex-
change, each agent v receives through messages the current
hidden states of all nodes in its neighborhood B(v) and
processes them separately, applying the message function
m(·), together with its own internal state hk

v . The pro-
cessed messages are then combined by aggregation func-
tion a(·):

Mk
v = a({m(hk

v , h
k
i )}i∈B(v)) (2)

At the end of k-th message exchange, every agent v
applies an update function u(·) to the aggregated messages
Mk

v and its current hidden state hk
v . The output of u(·) is

a new hidden state for the next step (k + 1):

hk+1
v = u(hk

v ,M
k
v ) (3)

After a certain K message exchanges (configuration
parameter of MAROH method), a readout function r(·)

produces the final output of the MPNN using final node
states hK

v as input. This readout function will evaluate
the actions of weight changes.

Note that the MPNN model generates a single set of
message function, aggregation function, update function
and readout functions that are replicated in each NPCR.
This means that these functions must be versatile and flex-
ible enough to adapt their behavior to different scenar-
ios, so they are usually modeled as multi-layer perceptron,
with the sole exception of the aggregation function, which
is usually a piecewise summation. Neural networks are de-
scribed by weights θ = {θi}i∈m,a,u,r. So MPNN becomes
the net that consists of multi-layer perceptrons.

4.2.2. MARL framework

In the standard reinforcement learning setting, an agent
interacts with the environment in the following way: at
each step t, the agent selects an action at based on its cur-
rent state st, to which the environment responds with a
reward rt and then moves to the next state st+1.

This interaction is modeled as an episodic, time ho-
mogeneous Markov decision process (MDP) (S,A, r, P, γ).
S and A are state and action spaces, respectively. P is
the transition kernel: st+1 ∼ P (·|st, at). rt represents the
immediate reward provided by the environment after per-
forming an action when t is in state st. γ ∈ (0, 1] is the
discount factor used to compute the return Gt, defined as
the discounted-cumulative reward from a given time step t
to the end of episode T (a preset value for the time interval,

the number of time steps t): Gt =
∑T

t=0 γ
trt.

The agent’s behavior is defined by a policy π : S → A,
which maps each state to a probability distribution over
the action space. Then the agent’s RL goal is to find
the optimal policy under which for any considered state
s ∈ S the chosen action maximizes the expected return
Gt. The agent learns an explicit policy representation πθ

with parameter θ – the input of MARL framework, which
we calculate in MPNN model. In most cases, agents learn
also the approximation Vϕ(s) of the state value function
V πθ (s), defined as the expected discounted return from a
given state s by following policy πθ: V

πθ (s) = Eπθ
[Gt|st =

s]. MAROH method uses Actor-Critic policy gradient al-
gorithm, where actions are selected from a function that
evaluates the policy (i.e., the actor), and learning such a
policy is guided by the value function of the actions conse-
quences (i.e., the critic). Our solution is based on Proximal
Policy Optimization (PPO) [17], which offers a favorable
balance between reliability, sample complexity, and sim-
plicity.

Each agent is responsible for a single link configura-
tion, controlling the traffic only in one direction. State
is defined as link hidden representation consisting of cur-
rent weight ru,v and occupied channel bandwidth bu,v of
each agent. Action is defined as modification of the weight
of agents’ associated channel (increase the weight’s value
by one). And reward is defined as difference of the opti-
mization function Φ (1) between consecutive steps. The
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obtained weights will be used by hash-function to allocate
flows among channels.

Lines 4-8: denote the MPNN part, which produces up-
dated hidden states for the agents. Once agents generate
their final hidden representation, a readout function, fol-
lowing the MPNN design [16], is applied to obtain the
global policy πθ.

Line 9: for every possible action in agent’s action space,
it computes its logit – unnormalized log probability, based
on readout function of trained MPNN model. logit is
understood as ML term that means classification model
generates the vector of raw (non-normalized) predictions,
passed to a normalization function. Logits typically be-
come an input to the softmax function - normalized ex-
ponential function. Then a vector of (normalized) action
probabilities is generated by softmax function.

Algorithm 2 MARL-TE agent algorithm

Require: A graph G = (N,E) with a set of agents V ,
MPNN trained parameters (weights of neural network
nodes) θ = {θi}i∈m,a,u,r Initial graph configuration
X0

G (information about nodes and links with their at-
tributes), episode length T , number of message passing
steps K

1: Agents initialize their states s0v based on X0
G

2: for t← 0 to T do
3: h0

v ← (stv, 0, ..., 0)
4: for k ← 0 to K do
5: Agents share their current hidden state hk

v to
neighboring agents B(v)

6: Agents process the received messages: Mk
v ←

aθa({mθm(hk
v , h

k
µ)}µ∈B(v))

7: Agents update their hidden state hk+1
v ←

u(hk
v ,M

k
v )

8: end for
9: Agents compute their actions’ logits:
{logitv(a)}a∈Av

← rθr (h
K
v )

10: Agents receive the actions’ logits of the rest
of agents and compute the global policy πθ ←
CategoricalDist({{logitv(a)}a∈Av

}v∈V )
11: Using the same probabilistic seed, agents select an

action at ∈ Av′ , forv′ ∈ V , from policy πθ

12: Agent v′ executes action at
13: Agents update their states st+1

v

14: Evaluation of Φ = { 1
N

∑
u,v(

bu,v

cu,v
− µ′)2} function

15: end for
return Updated graph configuration X∗

G that op-
timizes some pre-defined objective (i.e., Φ function)

Line 10: a categorical distribution is a discrete prob-
ability distribution. It describes the probability that a
random variable will take on a value that belongs to one
of K categories, where each category has a probability as-
sociated with it. So at this step, we know all probabilities
to make different actions at in state st also known as policy
π. And categorical distribution of all these probabilities is

the global policy πθ.
Lines 11-12: to ensure that all agents sample the same

action along the message-passing process atv′ ∼ πθ(·|st), v′ ∈
V , they share a common seed before initiating this process.
Consequently, only the agent v′ whose action has been se-
lected does execute an action at each time-step t. Each
action changes the weight ru,v, that leads to the change in
the optimization function Φ.

Lines 12/13: the main task of agents is to set chan-
nel weights to balance the load, which is under control of
hashing algorithm. Agents update new state information
for next timesteps by channel monitoring in NPCR.

Line 14: on every time slot ti each NPCR calculates
the optimization function Φ (1).

Formally, the training goal of our RL’s algorithm is to
optimize the parameters {θ,Φ} so that:

• The previously described GNN-based actor πθ be-
comes a good estimator of the optimal global policy;

• The critic VΦ learns to approximate the state value
function.

The optimal global policy is sought in the global state
space, the union of the agent’s local states. In particular,
the training pipeline operation is following: an episode
of length T is generated by following the current pol-
icy πθ, while at the same time the critic’s value func-
tion VΦ evaluates each observed global state. Therefore
the episode defines a trajectory {st, at, rt, pt, Vt, st+1}T−1

t=0 ,
where pt = πθ(at|st) and Vt = VΦ(st). When the episode
ends, this trajectory is used to update the model parame-
ters by maximizing the global PPO objective LPPO(θ,Φ).

4.2.3. Hash-function

The mission of hash-function in MAROH method is to
distribute flow according to weights, provided by MARL.
Additionally we require that hash-function preserves egress
ports assigned to flows in most cases, even if the weights or
number of egress ports have changed. Such hash-function
called consistent. Egress port preservation helps to main-
tain stable state of congestion control algorithm for TCP
flows. Otherwise the flow route change may violate packet
arrival order, leading to the incorrect congestion recogni-
tion.

To provide consistent hashing for flow balancing we
chose DxHash hash-function [18]. DxHash uses the Pseudo-
Random Sequence to map the keys to the nodes. The im-
plementation of DxHash is based on the Pseudo-Random
Generator (PRG) and the Pseudo-Random Sequence (PRS).
PRG is a random function that has the property to always
return the same result for a fixed seed. And for different
seeds, the results are evenly distributed over the range.
Denote R(s) as the ideal PRG. PRS is generated by ap-
plying PRG a given number of times. R2(x) denotes the
superposition of R - R(R(x)). Thus, when the seed s and
the PRG R(x) are given, the PRS is {R(s), R2(s), ...,
Rn(s)}.
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Hash-function is determined by lookup and update op-
erations. The lookup operation for a given key in DxHash
is as follows. DxHash uses PRS iteratively to find appro-
priate egress ports in the set of all egress ports. Denote
by A the set of all egress ports, W to denote the set of
enabled ports, and F to denote the set of disabled ports,
A = W ∪ F . For a given key DxHash chooses port b as
the mapped port where b = Ri(key)mod|A| and i is the
minimum number that satisfies b ∈W .

There are two kinds of egress port update operations:
adding and removing. When a port becomes enabled, Dx-
Hash randomly allocates a failed port ID to the new one.
Then DxHash removes the port ID from the set of disabled
ports F and adds it into the working set W . When a port
becomes disabled, the corresponding port ID is removed
from the working set W and inserted into the set F . After
the working set is changed, the lookup result for related
keys is changed accordingly. When the number of the en-
abled ports is far less than the number of all ports |A|, for
example less than 1/4 of |A|, the port set decreases. First,
the ports, whose IDs are greater than (|A|)/2 are removed.
Then, the set of all ports A is halved, and the ports whose
IDs are greater than (|A|)/2 are removed from F .

Weighted DxHash introduces a weight for each port
and a hash-function denoted as H. Both the function and
the weight value belong to the interval of[0,1]. In Weighted
DxHash the conditions to map a key to a port are more
restrictive. Not only the i-th item in PRS is the enabled
port, but also the hashing value of the i-th item should
be smaller than the weight of the port. Denote the weight
of i-th port as A[i]. The weight of the disabled port is 0.
The port ID which k belongs to is the first item in the PRS
which satisfies: H(Ri(k)) < A[b], where b = Ri(k)mod|A|.

5. Experimental results

In our simulation experiments we have analyzed the
different ways of training the algorithm, evaluated how
GNN parameters affect the training process, estimated the
speed of convergence and the stability of the results when
changes in the topology happen.

We consider symmetric 16-node topology (Figure 3).
Due to lack of information about the link capacities, all of
them are set to 4 GBit/s.

Figure 3: Symmetric 16-node topology

In our simulation experiments for flow generation we
use traffic matrices, one per time slot [t0, ..., tL]. Recall
that traffic matrix TM entry TM [u, v] represents the to-
tal amount of traffic that should be transferred between of
nodes u and v. For TMs generation we use gravity model
[20] and its extension for sequence of traffic matrices in
[21]. The base value TM∗[u, v] is calculated proportional
to the outgoing capacities of the nodes and inversely pro-
portional to the shortest path length between the nodes.
We introduce coefficients umin and umax to generate the
subsequent values of TM [u, v] for each time slot by fol-
lowing uniform distribution U [umin ∗ TM∗[u, v], umax ∗
TM∗[u, v]]. Those coefficients can be used to change the
resulting average link load in the topology.

To generate the set of flows from obtained traffic ma-
trices we introduce the following parameters: fmax is the
maximum amount of flows between any pair of nodes,
dmin, dmax are the minimum and maximum flow dura-
tion, P is the length of a time slot. The set of flows for the
first time slot is obtained by randomly choosing numbers
nu,v ∈ [1, fmax] for u, v ∈ [1, N ] - this will be the num-
ber of flows between nodes u and v to be generated. For
each flow its duration is chosen from uniform distribution
U [dmin, dmax]. The bandwidths of the flows are chosen
by uniform sampling so that their bandwidths sum up to
TM [u, v]. For the following time slots we first examine if
the time slot length and the actual duration of any of the
flows from previous time slot allow them to transfer into
the next time slot. If ru,v is the amount of flows transferred
this way between nodes u and v, then nu,v is now ran-
domly chosen from the uniform distribution U [ru,v, fmax].
This way allows the flows to exist in the topology during
multiple time slots, which is essential for hash-function to
consistently balance them in the environment where hash
weights change dynamically.

To run the simulation experiments, we have imple-
mented the algorithm and a testbed in Python using ten-
sorflow library (version 2.11).

Every simulation experiment has the following steps:

1. Initialize hash weights to be equal to 1 for all links.

2. Get flows for current time slot from TM .

3. Run one iteration of the MARL algorithm to get new
hash weights.

4. With the hash weights from step 3, run hash function
to calculate currently occupied bandwidth on all the
links in the topology.

5. Calculate goal function value Φ (1).

6. If current time slot is not the last one, move to the
next time slot and go to step 2.

5.1. Algorithm convergence estimation

For algorithm convergence estimation we do not need
several traffic matrices. Just one will be enough (L =
1). Experiments with this setup let us conclude that the
algorithm achieves convergence and estimate how fast it
will get it. From practical standpoint, the results of such
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simulation can be useful if there is a way to predict the
flow distribution in the network for the next time slot.

One flow set was generated for each of the following
average network loads: 20%, 40% and 60%. Each flow
set had 50 traffic matrices, fmax = 2, dmin = 25s, dmax =
700s, p = 30s. The algorithm runs up to 4500 episodes.

Figure 4: Algorithm convergence for 20% average network load

Figure 5: Algorithm convergence for 40% average network load

The results are presented in Figures 4, 5 and 6 for,
respectively, 20%, 40% and 60% average network load. Ev-
ery point of data on the graph corresponds to a phi value
averaged from 50 episodes. The lack of convergence for
20% load can be explained by agent reward calculation
method. In these experiments reward for an action was
calculated as phi value difference from the old value to the
new value. In the 20% load dataset the phi values are too
small for algorithm to learn on. Another explanation is
the values might already be close to optimal values.

In the 40% load dataset the algorithm demonstrates
an improvement after 1500 episodes. The phi values after
1500 episodes are about 25% better than in the first 1500
episodes.

In the 60% load dataset the algorithm demonstrates al-
most 100% improvement after 500 episodes, and the results
finally stabilize after 3000 episodes. In can be concluded

Figure 6: Algorithm convergence for 60% network load

that the algorithm is most effectively used in high network
load scenarios.

5.2. Comparison of training methods

In this section we explore three methods to train and
to run the algorithm on datasets with multiple traffic ma-
trices: sequential, random, untrained.

Sequential method means that the algorithm is first
run on a training dataset. In this dataset traffic matrices
are processed in the same order they were generated: TM0

corresponds to time slot t0, TM1 corresponds to time slot
t1 and so on. The algorithm runs fixed amount of episodes
on each traffic matrix. The algorithm trained this way is
then run on evaluation dataset.

Random method also means that the algorithm is first
run on a training dataset, but opposite to the sequential
method, the traffic matrix order is randomly shuffled. The
algorithm runs only one episode on each traffic matrix, and
when it reaches the last traffic matrix, the traffic matrix
order is randomly shuffled again and the process repeats
again, until the algorithm reaches predefined number of
episodes. The algorithm trained this way is then run on
evaluation dataset.

Untrained method means that there was no initial train-
ing and the algorithm is run on evaluation dataset imme-
diately and trains on the fly.

The average network load of both datasets was 40%.
Generator parameters were set according to section 5.1.
The results are shown in Figure 7 by box plot.

As it can be seen from fig. 7 random training shows the
best median results, but untrained case has better average
value. However sequential method has the least amount
of ejections. For the further experiments we use random
training method.

5.3. MAROH Advantages

In this section we will demonstrate the advantage ob-
tained by the combination of our NHS, MARL and hash-
function. Consider three approaches to compare:
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Figure 7: Experimental comparison of training methods

1. All egress port weights are equal to 1. NHS algo-
rithm only considers nexthops than belong to the
shortest paths by hops to destination. Hashing is
done by DxHash function. Call this approach ECMP-
hashing.

2. All egress port weights are equal to 1. NHS algo-
rithm works according to section 4.1. Hashing is
done by DxHash function. Let this approach be
called Weightless MAROH.

3. MAROH approach as described in section 4.

Figure 8: Advantage of the MAROH approach

Figure 8 shows 200 runs of each approach on the same
dataset. The dataset was generated at 60% average net-
work load with parameters chosen according to section 5.1.
MAROH approach was trained on another dataset gen-

erated with the same parameters by performing random
training and running 10000 episodes. The figure shows
that full MAROH approach has significantly better re-
sults compared to approaches where only parts of the full
MAROH approach are used.

5.4. Stability under topology changes

In this section we will analyze to what extent the topol-
ogy changes have influence on the behavior and results of
the trained algorithm. This implies that topology changes
can be significant compared to the one on which the algo-
rithm was trained.

The algorithm was trained on a single traffic matrix
dataset by performing 10000 episodes. The dataset was
generated at 40% average network load with parameters
chosen according to section 5.1.

In the first experiment the algorithm was run 300 times,
and in each run two random connected nodes u and v were
chosen. All edges between u and v in both directions were
removed from the topology. The algorithm outputted the
average goal function value from 10 runs in the updated
topology.

The second experiment was performed identically ex-
cept this time two pairs of connected nodes were chosen:
u, v and m,n. All edges between u and v, and all edges
between m and n were removed from the topology. Addi-
tional condition was u ̸= v ̸= m ̸= n to keep the topology
connected at all times.

The results of the experiment are shown in Figure 9.
Blue line indicates the average goal function value obtained
by running the algorithm on full topology 10 times.

Figure 9: Link removing experiment results.

The figure 9 shows that the median and spread are in-
creased by removing 1 link from a topology with a smaller
increase when 2 links are removed. Actually we found
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that the result depends on which link was removed. Cer-
tain links barely increase the phi value, however there are
cases when removing one link can lead to almost tripling
the phi function as can be seen on the ejections in the
graphs.

5.5. MPNN parameter tuning

So far in the research the MPNN parameters were cho-
sen as follows: the number of exchanges K was equal the
the topology graph’s diameter, and the length of a single
MPNN message M was equal to 16. The value of param-
eter K was chosen as such because our experiments show
any values higher than that demonstrated poor behavior:
logits produced by the agent were less dependent on st
and were more and more similar for different agents with
rising value of K.

In the final section of the experimental research we
will examine how M affects the algorithm’s convergence.
K will be fixed to topology graph’s diameter, and M will
vary between 2 and 16.

MAROH convergence speed will be estimated on a sin-
gle traffic matrix. We define it as number of episodes re-
quired for the average phi value from 100 episodes to be
less than a fixed value C. We assume C = 0.015 and for
each value of M the algorithm was run 10 times.

Figure 10: Number of episodes for convergence with varying length
of the MPNN message

The dependence of the convergence speed on M is
shown on Figure 10. This parameter has a great influence
on convergence speed. Low values of M demonstrate un-
stable convergence: even though with M = 3 and M = 4
the median value is almost as low as with M = 16, there
are cases when the algorithm takes from 3 to 20 times
the number of episodes to converge. The lowest values of
M with more stable convergence speed are M = 7 and

M = 8. The median value and range are higher compared
to M = 16, but it comes with the benefit of smaller mes-
sages. These results are useful to reduce the amount of
extra information transferred in the network.

6. Conclusion

The problem of traffic balancing in a data network envi-
ronment is considered in relation to Network Powered by
Computing (NPC) - a new generation of computational
infrastructure, where computational resources and data
transmission resources form a network. The key contri-
bution of this work is Multi-Agent Routing using Hashing
(MAROH) method that provides fast and fair bandwidth
distribution inside a data transmission network.

There are three approaches to MARL optimization:
centralized, decentralized with communication and fully
decentralized. It is assumed in all these approaches that
agents construct their local state based on the environ-
ment observations. However the agents behavior in these
approaches are different:

• centralized approach: a single entity named control
center is responsible for the operation of every agent.
This center collects the local states from all agents
and defines the actions for every agent by solving an
optimization problem.

• decentralized approach with communication (or just
decentralized approach): assumes that the local state
of every agent can be broadcasted to all neighboring
agents. Then the agent himself chooses an optimal
action based on the knowledge of local and neigh-
boring agent states.

• the fully decentralized approach: do not suppose any
communication between agents. Decision should be
made based only on the history of the agent local
behavior observations.

The main problems of MA methods for traffic control
are poor scalability; there are no mathematical models
that guarantee convergence to the optimal solution; it is
difficult to mathematically frame the optimization func-
tional; the extent of deviation from the optimal solution is
unknown.

In this paper we focus on the decentralized approach
as NPCRs are able to communicate with each other and
there is no single control center in NPC. Based on exam-
ining of the works related to ML methods for load balanc-
ing, a new method is proposed called MultiAgent Routing
with Hashing (MAROH) to surmount the problems listed
above. This method combines multi-agent reinforcement
learning and hashing algorithms to achieve fast and fair
bandwidth distribution.

The experimental results show that proposed MAROH
method achieves convergence and is most efficient under
high network load. Three ways to train the algorithm were
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examined and compared: all three are deemed suitable for
different scenarios.

The scope of the research presented in this paper does
not cover the point of deviation between the goal opti-
mization function and the optimal one. The space of the
paper does not have enough room for that. The result of
the research of this point will be topic for the next paper.
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