
In this course, you will learn about software defined networking
and how it is changing the way communications networks are
managed, maintained, and secured.

School of Computer Science

Software Defined
Networking

Dr. Nick Feamster
Associate Professor

� Four Lessons
� Motivation for Programming SDNs
�  Programming Languages for SDNs
� Composing SDN Control
�  Event-Driven SDN

� Programming Assignment
� Quiz

Module 6.2: Programming SDNs

2 Some	
 slide	
 material	
 courtesy	
 of	
 Jennifer	
 Rexford	

Programming SDNs

3

Controller	
 Pla7orm	

Controller	
 Applica:on	

Network-­‐wide	

visibility	
 and	

control	

Direct	
 control	
 via	

open	
 interface	

Southbound	
 APIs	
 such	
 as	
 OpenFlow	
 	

are	
 :ed	
 to	
 the	
 underlying	
 hardware	
 	

SDN Programming: Three Steps

Read/
Monitor!
state and
events!

OpenFlow!
Switches!

Write!
policy!

Compute Policy!

Reading State: Multiple Rules
�  Traffic counters

�  Each rule counts bytes and packets
�  Controller can poll the counters

�  Multiple rules
�  E.g., Web server traffic except for source 1.2.3.4

�  Solution: predicates
�  E.g., (srcip != 1.2.3.4) && (srcport == 80)
�  Run-time system

translates into switch patterns

1. srcip = 1.2.3.4, srcport = 80!
2. srcport = 80!

Reading State: Unfolding Rules
�  Limited number of rules

�  Switches have limited space for rules
�  Cannot install all possible patterns

�  Must add new rules as traffic arrives
�  E.g., histogram of traffic by IP address
�  … packet arrives from source 5.6.7.8

�  Solution: dynamic unfolding
�  Programmer specifies GroupBy(srcip)
�  Run-time system dynamically adds rules

1. srcip = 1.2.3.4! 1. srcip = 1.2.3.4!
2. srcip = 5.6.7.8!

Reading State: Extra Unexpected Events

� Common programming idiom
� First packet goes to the controller
� Controller application installs rules

7

packets!

Reading State: Extra Unexpected Events

� More packets arrive before rules installed?
� Multiple packets reach the controller

8

packets!

Reading State: Extra Unexpected Events

� Solution: suppress extra events
� Programmer specifies “Limit(1)”
� Run-time system hides the extra events

9

packets!

not seen by!
application!

Frenetic: SQL-Like Query Language
�  Get what you ask for

�  Nothing more, nothing less
�  SQL-like query language

�  Familiar abstraction
�  Returns a stream
�  Intuitive cost model

�  Minimize controller overhead
�  Filter using high-level patterns
�  Limit the # of values returned
�  Aggregate by #/size of packets

10

Select(bytes)	
 *	

Where(in:2	
 &	
 srcport:80)	
 *	

GroupBy([dstmac])	
 *	

Every(60)	
 	
 	
 	
 	

Select(packets) *"
GroupBy([srcmac]) *"
SplitWhen([inport]) *"
Limit(1)"

Learning Host Location!

Traffic Monitoring!

Foster,	
 Nate,	
 et	
 al.	
 "Frene:c:	
 A	
 network	
 programming	

language."	
 ACM	
 SIGPLAN	
 No,ces	
 46.9	
 (2011):	
 279-­‐291.	

SDN Programming: Three Steps

Read/
Monitor!
state and
events!

OpenFlow!
Switches!

Write!
policy!

Compute Policy!

But, Modules Affect the Same Traffic

12

Controller	
 Pla7orm	

LB	
 Route	
 Monitor	
 FW	

Next	
 Lesson:	
 	

How	
 to	
 combine	
 modules	
 	

into	
 a	
 complete	
 applica:on?	

Each	
 module	

par,ally	
 specifies	

the	
 handling	
 of	
 the	

traffic	

Summary
� SDN control programs: common abstractions

� Reading and monitoring state and events
� Computing policy
� Writing state

� Frenetic: SQL-Like query language to control
the traffic seen at the controller

� Other challenges: Composing policy,
responding to events, compilation

13

