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� Four Lessons 
� Motivation for Programming SDNs 
�  Programming Languages for SDNs 
� Composing SDN Control 
�  Event-Driven SDN 

� Programming Assignment 
� Quiz 

Module 6.2: Programming SDNs 
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Programming SDNs 
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SDN Programming: Three Steps 

Read/
Monitor!
state and 
events!

OpenFlow!
Switches!

Write!
policy!

Compute Policy!



Reading State: Multiple Rules 
�  Traffic counters 

�  Each rule counts bytes and packets 
�  Controller can poll the counters 

�  Multiple rules 
�  E.g., Web server traffic except for source 1.2.3.4 

�  Solution: predicates 
�  E.g., (srcip != 1.2.3.4) && (srcport == 80) 
�  Run-time system  

translates into switch patterns  

 

1. srcip = 1.2.3.4, srcport = 80!
2. srcport = 80!



Reading State: Unfolding Rules 
�  Limited number of rules 

�  Switches have limited space for rules 
�  Cannot install all possible patterns 

�  Must add new rules as traffic arrives 
�  E.g., histogram of traffic by IP address 
�  … packet arrives from source 5.6.7.8 
 

�  Solution: dynamic unfolding 
�  Programmer specifies GroupBy(srcip) 
�  Run-time system dynamically adds rules 

1. srcip = 1.2.3.4! 1. srcip = 1.2.3.4!
2. srcip = 5.6.7.8!



Reading State: Extra Unexpected Events 

� Common programming idiom 
� First packet goes to the controller 
� Controller application installs rules 
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packets!



Reading State: Extra Unexpected Events 

� More packets arrive before rules installed? 
� Multiple packets reach the controller 
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packets!



Reading State: Extra Unexpected Events 

� Solution: suppress extra events 
� Programmer specifies “Limit(1)” 
� Run-time system hides the extra events 
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Frenetic: SQL-Like Query Language 
�  Get what you ask for 

�  Nothing more, nothing less 
�  SQL-like query language 

�  Familiar abstraction 
�  Returns a stream 
�  Intuitive cost model 

�  Minimize controller overhead 
�  Filter using high-level patterns 
�  Limit the # of values returned  
�  Aggregate by #/size of packets 
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Select(bytes)	
  *	
  
Where(in:2	
  &	
  srcport:80)	
  *	
  
GroupBy([dstmac])	
  *	
  
Every(60)	
  	
  	
  	
  	
  

Select(packets) *"
GroupBy([srcmac]) *"
SplitWhen([inport]) *"
Limit(1)"

Learning Host Location!

Traffic Monitoring!
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SDN Programming: Three Steps 

Read/
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state and 
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But, Modules Affect the Same Traffic 
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Summary 
� SDN control programs: common abstractions 

� Reading and monitoring state and events 
� Computing policy 
� Writing state 

� Frenetic: SQL-Like query language to control 
the traffic seen at the controller 

� Other challenges: Composing policy, 
responding to events, compilation 
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