

PART I

About the Ingredients

CHAPTER 1: � The History of Unix, GNU, and Linux

CHAPTER 2: � Getting Started

CHAPTER 3: � Variables

CHAPTER 4: � Wildcard Expansion

CHAPTER 5: � Conditional Execution

CHAPTER 6: � Flow Control Using Loops

CHAPTER 7: � Variables Continued

CHAPTER 8: � Functions and Libraries

CHAPTER 9: � Arrays

CHAPTER 10: � Processes

CHAPTER 11: � Choosing and Using Shells

024485c01.indd 1024485c01.indd 1 7/26/11 8:31:56 AM7/26/11 8:31:56 AM

The History of Unix, GNU,
and Linux

The Unix tradition has a long history, and Linux comes from the Unix tradition, so to understand
Linux one must understand Unix and to understand Unix one must understand its history. Before
Unix, a developer would submit a stack of punched cards, each card representing a command,
or part of a command. These cards would be read and executed sequentially by the computer.
The developer would receive the generated output after the job had completed. This would often
be a few days after the job had been submitted; if there was an error in the code, the output was
just the error and the developer had to start again. Later, teletype and various forms of timeshar-
ing systems sped up the matter considerably, but the model was basically the same: a sequence
of characters (punch cards, or keys on keyboards — it’s still just a string of characters) submit-
ted as a batch job to be run (or fail to run), and for the result to come back accordingly. This is
signifi cant today in that it is still how data is transmitted on any computerized system — it’s all
sequences of characters, transmitted in order. Whether a text fi le, a web page, a movie, or music,
it is all just strings of ones and zeroes, same as it ever was. Anything that looks even slightly dif-
ferent is simply putting an interface over the top of a string of ones and zeroes.

Unix and various other interactive and timesharing systems came along in the mid-1960s. Unix
and its conventions continue to be central to computing practices today; its infl uences can be seen
in DOS, Linux, Mac OS X, and even Microsoft Windows.

UNIX

In 1965, Bell Labs and GE joined a Massachusetts Institute of Technology (MIT) project known
as MULTICS, the Multiplexed Information and Computing System. Multics was intended to be a
stable, timesharing OS. The “Multiplexed” aspect added unnecessary complexity, which eventu-
ally led Bell Labs to abandon the project in 1969. Ken Thompson, Dennis Ritchie, Doug McIlroy,
and Joe Ossanna retained some of the ideas behind it, took out a lot of the complexity, and came
up with Unix (a play on the word MULTICS, as this was a simplifi ed operating system inspired
by MULTICS).

1

024485c01.indd 3024485c01.indd 3 7/26/11 8:31:57 AM7/26/11 8:31:57 AM

4 ❘ CHAPTER 1 THE HISTORY OF UNIX, GNU, AND LINUX

An early feature of Unix was the introduction of pipes — something that Doug McIlroy had been
thinking about for a few years and was implemented in Unix by Ken Thompson. Again, it took the
same notion of streamed serial data, but pipes introduced the idea of having stdin and stdout,
through which the data would fl ow. Similar things had been done before, and the concept is fairly
simple: One process creates output, which becomes input to another command. The Unix pipes method
introduced a concept that dramatically affected the design of the rest of the system.

Most commands have a fi le argument as well, but existing commands were modifi ed to default
to read from their “Standard Input” (stdin) and “Standard Output” (stdout); the pipe can then
“stream” the data from one tool to another. This was a novel concept, and one that strongly defi nes
the Unix shell; it makes the whole system a set of generically useful tools, as opposed to monolithic,
single-purpose applications. This has been summarized as “do one thing and do it well.” The GNU
toolchain was written to replace Unix while maintaining compatibility with Unix tools. The devel-
opers on the GNU project often took the opportunity presented by rewriting the tool to include
additional functionality, while still sticking to the “do one thing and do it well” philosophy.

The GNU project was started in 1983 by Richard Stallman, with the intention of
replacing proprietary commercial Unices with Free Software alternatives. GNU
had all but completed the task of replacing all of the userspace tools by the time
the Linux kernel project started in 1991. In fact, the GNU tools generally per-
form the same task at least as well as their original Unix equivalents, often pro-
viding extra useful features borne of experience in the real world. Independent
testing has shown that GNU tools can actually be more reliable than their tradi-
tional Unix equivalents (http://www.gnu.org/software/reliability.html).

For example, the who command lists who is logged in to the system, one line per logged-in session.
The wc command counts characters, words, and lines. Therefore, the following code will tell you
how many people are logged in:

who | wc -l

There is no need for the who tool to have an option to count the logged-in users because the generic
wc tool can do that already. This saves some small effort in who, but when that is applied across the
whole range of tools, including any new tools that might be written, a lot of effort and therefore
complexity, which means a greater likelihood of the introduction of additional bugs, is avoided.
When this is applied to more complicated tools, such as grep or even more, the fl exibility of the sys-
tem is increased with every added tool.

In the case of more, this is actually more tricky than it seems; fi rst it has to fi nd
out how many columns and rows are available. Again, there is a set of tools that
combine to provide this information. In this way, every tool in the chain can be
used by the other tools.

024485c01.indd 4024485c01.indd 4 7/26/11 8:31:57 AM7/26/11 8:31:57 AM

Unix ❘ 5

Also this system means that you do not have to learn how each individual utility implements its
“word count” feature. There are a few defacto standard switches; -q typically means Quiet, -v typi-
cally means Verbose, and so on, but if who -c meant “count the number of entries,” then cut -c
<n>, which means “cut the fi rst n characters,” would be inconsistent. It is better that each tool does
its own job, and that wc do the counting for all of them.

For a more involved example, the sort utility just sorts text. It can sort alphabetically or numeri-
cally (the difference being that “10” comes before “9” alphabetically, but after it when sorted
numerically), but it doesn’t search for content or display a page at a time. grep and more can be
combined with sort to achieve this in a pipeline:

grep foo /path/to/file | sort -n -k 3 | more

This pipeline will search for foo in /path/to/file. The output (stdout) from that command will
then be fed into the stdin of the sort command. Imagine a garden hose, taking the output from grep
and attaching it to the input for sort. The sort utility takes the fi ltered list from grep and outputs the
sorted results into the stdin of more, which reads the fi ltered and sorted data and paginates it.

It is useful to understand exactly what happens here; it is the opposite of what one might intuitively
assume. First, the more tool is started. Its input is attached to a pipe. Then sort is started, and its
output is attached to that pipe. A second pipe is created, and the stdin for sort is attached to that.
grep is then run, with its stdout attached to the pipe that will link it to the sort process.

When grep begins running and outputting data, that data gets fed down the pipe into sort, which
sorts its input and outputs down the pipe to more, which paginates the whole thing. This can affect
what happens in case of an error; if you mistype “more,” then nothing will happen. If you mistype
“grep,” then more and sort will have been started by the time the error is detected. In this exam-
ple, that does not matter, but if commands further down the pipeline have some kind of permanent
effect (say, if they create or modify a fi le), then the state of the system will have changed, even
though the whole pipeline was never executed.

“Everything Is a File” and Pipelines

There are a few more key concepts that grew into Unix as well. One is the famous “everything is a
fi le” design, whereby device drivers, directories, system confi guration, kernel parameters, and pro-
cesses are all represented as fi les on the fi lesystem. Everything, whether a plain-text fi le (for exam-
ple, /etc/hosts), a block or character special device driver (for example, /dev/sda), or kernel state
and confi guration (for example, /proc/cpuinfo) is represented as a fi le.

The existence of pipes leads to a system whereby tools are written to assume that they will be handling
streams of text, and indeed, most of the system confi guration is in text form also. Confi guration fi les
can be sorted, searched, reformatted, even differentiated and recombined, all using existing tools.

The “everything is a fi le” concept and the four operations (open, close, read, write) that are avail-
able on the fi le mean that Unix provides a really clean, simple system design. Shell scripts themselves
are another example of a system utility that is also text. It means that you can write programs like this:

#!/bin/sh
cat $0
echo “===”
tac $0

024485c01.indd 5024485c01.indd 5 7/26/11 8:31:58 AM7/26/11 8:31:58 AM

6 ❘ CHAPTER 1 THE HISTORY OF UNIX, GNU, AND LINUX

This code uses the cat facility, which simply outputs a fi le, and the tac tool, which does the same
but reverses it. (The name is therefore quite a literal interpretation of what the tool does, and quite
a typical example of Unix humor.) The variable $0 is a special variable, defi ned by the system, and
contains the name of the currently running program, as it was called.

So the output of this command is as follows:

#!/bin/sh
cat $0
echo “===”
tac $0
===
tac $0
echo “===”
cat $0
#!/bin/sh

The fi rst four lines are the result of cat, the fi fth line is the result of the echo statement, and the
fi nal four lines are the output of tac.

BSD

AT&T/Bell Labs couldn’t sell Unix because it was a telecommunications monopoly, and as such was
barred from extending into other industries, such as computing. So instead, AT&T gave Unix away,
particularly to universities, which were naturally keen to get an operating system at no cost. The fact
that the schools could also get the source code was an extra benefi t, particularly for administrators but
also for the students. Not only could users and administrators run the OS, they could see (and modify)
the code that made it work. Providing access to the source code was an easy choice for AT&T; they
were not (at that stage) particularly interested in developing and supporting it themselves, and this
way users could support themselves. The end result was that many university graduates came into the
industry with Unix experience, so when they needed an OS for work, they suggested Unix. The use of
Unix thus spread because of its popularity with users, who liked its clean design, and because of the
way it happened to be distributed.

Although it was often given away at no cost or low cost and included the source code, Unix was not
Free Software according to the Free Software Foundation’s defi nition, which is about freedom, not
cost. The Unix license prohibited redistribution of Unix to others, although many users developed
their own patches, and some of those shared patches with fellow Unix licensees. (The patches would
be useless to someone who didn’t already have a Unix license from AT&T. The core software was
still Unix; any patches were simply modifi cations to that.) Berkeley Software Distribution (BSD)
of the University of California at Berkeley created and distributed many such patches, fi xing bugs,
adding features, and just generally improving Unix. The terms “Free Software” and “Open Source”
would not exist for a long time to come, but all this was distributed on the understanding that if
something is useful, then it may as well be shared. TCP/IP, the two core protocols of the Internet,
came into Unix via BSD, as did BIND, the DNS (Domain Name System) server, and the Sendmail
MTA (mail transport agent). Eventually, BSD developed so many patches to Unix that the project
had replaced virtually all of the original Unix source code. After a lawsuit, AT&T and BSD made
peace and agreed that the few remaining AT&T components of BSD would be rewritten or reli-
censed so that BSD was not the property of AT&T, and could be distributed in its own right. BSD
has since forked into NetBSD, OpenBSD, FreeBSD, and other variants.

024485c01.indd 6024485c01.indd 6 7/26/11 8:31:58 AM7/26/11 8:31:58 AM

GNU ❘ 7

GNU

As mentioned previously, the GNU project was started in 1983 as a response to the closed source
software that was by then being distributed by most computer manufacturers along with their hard-
ware. Previously, there had generally been a community that would share source code among users,
such that if anyone felt that an improvement could be made, they were free to fi x the code to work
as they would like. This hadn’t been enshrined in any legally binding paperwork; it was simply the
culture in which developers naturally operated. If someone expressed an interest in a piece of soft-
ware, why would you not give him a copy of it (usually in source code form, so that he could modify
it to work on his system? Very few installations at the time were suffi ciently similar to assume that a
binary compiled on one machine would run on another). As Stallman likes to point out, “Sharing of
software…is as old as computers, just as sharing of recipes is as old as cooking.”1

Stallman had been working on the Incompatible Timesharing System (ITS) with other developers at
MIT through the 1970s and early 1980s. As that generation of hardware died out, newer hardware
came out, and — as the industry was developing and adding features — these new machines came
with bespoke operating systems. Operating systems, at the time, were usually very hardware-specifi c,
so ITS and CTSS died as the hardware they ran on were replaced by newer designs.

ITS was a pun on IBM’s Compatible Time Sharing System (CTSS), which was
also developed at MIT around the same time. The “C” in CTSS highlighted the
fact that it was somewhat compatible with older IBM mainframes. By including
“Incompatible” in its name, ITS gloried in its rebellious incompatibility.

Stallman’s turning point occurred when he wanted to fi x a printer driver, such that when the printer
jammed (which it often did), it would alert the user who had submitted the job, so that she could
fi x the jam. The printer would then be available for everyone else to use. The user whose job had
jammed the printer wouldn’t get her output until the problem was fi xed, but the users who had sub-
mitted subsequent jobs would have to wait even longer. The frustration of submitting a print job,
then waiting a few hours (printers were much slower then), only to discover that the printer had
already stalled before you had even submitted your own print job, was too much for the users at
MIT, so Stallman wanted to fi x the code. He didn’t expect the original developers to work on this
particular feature for him; he was happy to make the changes himself, so he asked the developers for
a copy of the source code. He was refused, as the driver software contained proprietary information
about how the printer worked, which could be valuable competitive information to other printer
manufacturers.

What offended Stallman was not the feature itself, it was that one developer was refusing to share
code with another developer. That attitude was foreign to Stallman, who had taken sharing of code
for granted until that stage. The problem was that the software — in particular the printer driver —
was not as free (it didn’t convey the same freedoms) as previous operating systems that Stallman had
worked with. This problem prevailed across the industry; it was not specifi c to one particular plat-
form, so changing hardware would not fi x the problem.

1Free Software, Free Society, 2002, Chapter 1. ISBN 1-882114-98-1

024485c01.indd 7024485c01.indd 7 7/26/11 8:31:58 AM7/26/11 8:31:58 AM

8 ❘ CHAPTER 1 THE HISTORY OF UNIX, GNU, AND LINUX

GNU stands for “GNU’s Not Unix,” which is a recursive acronym; if you
expand the acronym “IBM,” you get “International Business Machines,” and
you’re done. If you expand “GNU,” you get “GNU’s Not Unix’s Not Unix.”
Expand that, and you get “GNU’s Not Unix’s Not Unix’s Not Unix” and so
on. This is an example of “hacker humor,” which is usually quite a dry sense
of humor, with something a little bit clever or out of the ordinary about it. At
the bottom of the grep manpage, under the section heading “NOTES” is a
comment: “GNU’s not Unix, but Unix is a beast; its plural form is Unixen,” a
friendly dig at Unix.

Richard Stallman is a strong-willed character (he has described himself as “borderline autistic”),
with a very logical mind, and he determined to fi x the problem in the only way he knew how: by
making a new operating system that would maintain the old unwritten freedoms to allow equal
access to the system, including the code that makes it run. As no such thing existed at the time, he
would have to write it. So he did.

STALLMAN CHARGES AHEAD!

From CSvax:pur-ee:inuxc!ixn5c!ihnp4!houxm!mhuxi!eagle!mit-vax!mit-
eddie!RMS@MIT-OZ

Newsgroups: net.unix-wizards,net.usoft

Organization: MIT AI Lab, Cambridge, MA

From: RMS%MIT-OZ@mit-eddie

Subject: new Unix implementation

Date: Tue, 27-Sep-83 12:35:59 EST

Free Unix!

Starting this Thanksgiving I am going to write a complete Unix-compatible software
system called GNU (for Gnu’s Not Unix), and give it away free to everyone who can
use it. Contributions of time, money, programs and equipment are greatly needed.

To begin with, GNU will be a kernel plus all the utilities needed to write and run C
programs: editor, shell, C compiler, linker, assembler, and a few other things. After
this we will add a text formatter, a YACC, an Empire game, a spreadsheet, and
hundreds of other things. We hope to supply, eventually, everything useful that nor-
mally comes with a Unix system, and anything else useful, including on-line and
hardcopy documentation.

GNU will be able to run Unix programs, but will not be identical to Unix. We will
make all improvements that are convenient, based on our experience with other
operating systems. In particular, we plan to have longer fi lenames, fi le version

024485c01.indd 8024485c01.indd 8 7/26/11 8:31:58 AM7/26/11 8:31:58 AM

GNU ❘ 9

numbers, a crashproof fi le system, fi lename completion perhaps, terminal-independent
display support, and eventually a Lisp-based window system through which several
Lisp programs and ordinary Unix programs can share a screen. Both C and Lisp will
be available as system programming languages. We will have network software based
on MIT’s chaosnet protocol, far superior to UUCP. We may also have something
compatible with UUCP.

Who Am I?

I am Richard Stallman, inventor of the original much-imitated EMACS editor, now
at the Artifi cial Intelligence Lab at MIT. I have worked extensively on compilers,
editors, debuggers, command interpreters, the Incompatible Timesharing System
and the Lisp Machine operating system. I pioneered terminal-independent display
support in ITS. In addition I have implemented one crashproof fi le system and two
window systems for Lisp machines.

Why I Must Write GNU

I consider that the golden rule requires that if I like a program I must share it with
other people who like it. I cannot in good conscience sign a nondisclosure agree-
ment or a software license agreement.

So that I can continue to use computers without violating my principles, I have
decided to put together a suffi cient body of free software so that I will be able to
get along without any software that is not free.

How You Can Contribute

I am asking computer manufacturers for donations of machines and money. I’m
asking individuals for donations of programs and work.

One computer manufacturer has already offered to provide a machine. But we
could use more. One consequence you can expect if you donate machines is that
GNU will run on them at an early date. The machine had better be able to operate
in a residential area, and not require sophisticated cooling or power.

Individual programmers can contribute by writing a compatible duplicate of some
Unix utility and giving it to me. For most projects, such part-time distributed work
would be very hard to coordinate; the independently-written parts would not work
together. But for the particular task of replacing Unix, this problem is absent. Most
interface specifi cations are fi xed by Unix compatibility. If each contribution works
with the rest of Unix, it will probably work with the rest of GNU.

If I get donations of money, I may be able to hire a few people full or part time.
The salary won’t be high, but I’m looking for people for whom knowing they are
helping humanity is as important as money. I view this as a way of enabling dedi-
cated people to devote their full energies to working on GNU by sparing them the
need to make a living in another way.

For more information, contact me.

024485c01.indd 9024485c01.indd 9 7/26/11 8:31:58 AM7/26/11 8:31:58 AM

10 ❘ CHAPTER 1 THE HISTORY OF UNIX, GNU, AND LINUX

Unix already existed, was quite mature, and was nicely modular. So the GNU project was started
with the goal of replacing the userland tools of Unix with Free Software equivalents. The kernel was
another part of the overall goal, although one can’t have a kernel in isolation — the kernel needs an
editor, a compiler, and a linker to be built, and some kind of initialization process in order to boot.
So existing proprietary software systems were used to assemble a free ecosystem suffi cient to fur-
ther develop itself, and ultimately to compile a kernel. This subject had not been ignored; the Mach
microkernel had been selected in line with the latest thinking on operating system kernel design, and
the HURD kernel has been available for quite some time, although it has been overtaken by a newer
upstart kernel, which was also developed under, and can also work with, the GNU tools.

HURD is “Hird of Unix-Replacing Daemons,” because its microkernel
approach uses multiple userspace background processes (known as daemons
in the Unix tradition) to achieve what the Unix kernel does in one monolithic
kernel. HIRD in turn stands for “Hurd of Interfaces Representing Depth.” This
is again a recursive acronym, like GNU (“GNU’s Not Unix”) but this time it is
a pair of mutually recursive acronyms. It is also a play on the word “herd,” the
collective noun for Gnus.

As the unwritten understandings had failed, Stallman would need to create a novel way to ensure
that freely distributable software remained that way. The GNU General Public License (GPL) pro-
vided that in a typically intelligent style. The GPL uses copyright to ensure that the license itself can-
not be changed; the rest of the license then states that the recipient has full right to the code, so long
as he grants the same rights to anybody he distributes it to (whether modifi ed or not) and the license
does not change. In that way, all developers (and users) are on a level playing fi eld, where the code
is effectively owned by all involved, but no one can change the license, which ensures that equality.
The creator of a piece of software may dual-license it, under the GPL and a more restrictive license;
this has been done many times — for example, by the MySQL project.

One of the tasks taken on by the GNU project was — of course — to write a shell interpreter as free
software. Brian Fox wrote the bash (Bourne Again SHell) shell — its name comes from the fact that
the original /bin/sh was written by Steve Bourne, and is known as the Bourne Shell. As bash takes
the features of the Bourne shell, and adds new features, too, bash is, obviously, the Bourne Again
Shell. Brian also wrote the readline utility, which offers fl exible editing of input lines of text before
submitting them for parsing. This is probably the most signifi cant feature to make bash a great
interactive shell. Brian Fox was the fi rst employee of the Free Software Foundation, the entity set up
to coordinate the GNU project.

You’ve probably spotted the pattern by now; although bash isn’t a recursive
acronym, its name is a play on the fact that it’s based on the Bourne shell. It
also implies that bash is an improvement on the original Bourne shell, in having
been “bourne again.”

024485c01.indd 10024485c01.indd 10 7/26/11 8:31:58 AM7/26/11 8:31:58 AM

Linux ❘ 11

LINUX

Linus Torvalds, a Finnish university student, was using Minix, a simple Unix clone written by Vrije
Universiteit (Amsterdam) lecturer Andrew Tanenbaum, but Torvalds was frustrated by its lack of
features and the fact that it did not make full use of the (still relatively new) Intel 80386 processor,
and in particular its “protected mode,” which allows for much better separation between the kernel
and userspace. Relatively quickly, he got a working shell, and then got GCC, the GNU C compiler
(now known as the GNU Compiler Collection, as it has been extended to compile various fl avors of
C, Fortran, Java, and Ada) working. At that stage, the kernel plus shell plus compiler was enough to
be able to “bootstrap” the system — it could be used to build a copy of itself.

TORVALDS’ NEWSGROUP POST

On August 25, 1991, Torvalds posted the following to the MINIX newsgroup
comp.os.minix:

From: torvalds@klaava.helsinki.fi (Linus Benedict Torvalds)
To: Newsgroups: comp.os.minix
Subject: What would you like to see most in minix?
Summary: small poll for my new operating system

Hello everybody out there using minix-

I’m doing a (free) operating system (just a hobby, won’t be big and professional like
gnu) for 386 (486) AT clones. This has been brewing since april, and is starting to
get ready. I’d like any feedback on things people like/dislike in minix, as my OS
resembles it somewhat (same physical layout of the fi le-sytem due to practical rea-
sons) among other things.

I’ve currently ported bash (1.08) an gcc (1.40), and things seem to work. This
implies that i’ll get something practical within a few months, and I’d like to know
what features most people want.

Any suggestions are welcome, but I won’t promise I’ll implement them :-)

Linus Torvalds torvalds@kruuna.helsinki.fi

What is interesting is that Torvalds took the GNU project’s inevitable success for granted; it had
been going for eight years, and had basically implemented most of its goals (bar the kernel). Torvalds
also, after initially making the mistake of trying to write his own license (generally inadvisable for
those of us who are not experts in the minutiae of international application of intellectual property
law), licensed the kernel under the GNU GPL (version 2) as a natural license for the project.

In practice, this book is far more about shell scripting with Unix and GNU tools than specifi -
cally about shell scripting under the Linux kernel; in general, the majority of the tools referred to
are GNU tools from the Free Software Foundation: grep, ls, find, less, sed, awk, bash itself of
course, diff, basename, and dirname; most of the critical commands for shell scripting on Linux

024485c01.indd 11024485c01.indd 11 7/26/11 8:31:58 AM7/26/11 8:31:58 AM

12 ❘ CHAPTER 1 THE HISTORY OF UNIX, GNU, AND LINUX

are GNU tools. As such, some people prefer to use the phrase “GNU/Linux” to describe the com-
bination of GNU userspace plus Linux kernel. For the purposes of this book, the goal is to be
technically accurate while avoiding overly political zeal. RedHat Linux is what RedHat calls its dis-
tribution, so it is referred to as RedHat Linux. Debian GNU/Linux prefers to acknowledge the GNU
content so we will, too, when referring specifi cally to Debian. When talking about the Linux kernel,
we will say “Linux”; when talking about a GNU tool we will name it as such. Journalists desper-
ate for headlines can occasionally dream up a far greater rift than actually exists in the community.
Like any large family, it has its disagreements — often loudly and in public — but we will try not to
stoke the fi re here.

Unix was designed with the assumption that it would be operated by engineers;
that if somebody wanted to achieve anything with it, he or she would be prepared
to learn how the system works and how to manipulate it. The elegant simplicity of
the overall design (“everything is a fi le,” “do one thing and do it well,” etc.) means
that principles learned in one part of the system can be applied to other parts.

The rise in popularity of GNU/Linux systems, and in particular, their relatively widespread use on
desktop PCs and laptop systems — not just servers humming away to themselves in dark datacen-
ters — has brought a new generation to a set of tools built on this shared philosophy, but without
necessarily bringing the context of history into the equation.

Microsoft Windows has a very different philosophy: The end users need not concern themselves
with how the underlying system works, and as a result, should not expect it to be discernable, even
to an experienced professional, because of the closed-source license of the software. This is not
a difference in quality or even quantity; this is a different approach, which assumes a hierarchy
whereby the developers know everything and the users need know nothing.

As a result, many experienced Windows users have reviewed a GNU/Linux distribution and found
to their disappointment that to get something confi gured as it “obviously” should be done, they had
to edit a text fi le by hand, or specify a certain parameter. This fl exibility is actually a strength of the
system, not a weakness. In the Windows model, the user does not have to learn because they are not
allowed to make any decisions of importance: which kernel scheduler, which fi lesystem, which win-
dow manager. These decisions have all been made to a “one size fi ts most” level by the developers.

SUMMARY

Although it is quite possible to administer and write shell scripts for a GNU/Linux system without
knowing any of the history behind it, a lot of apparent quirks will not make sense without some appre-
ciation of how things came to be the way they are. There is a difference between scripting for a typical
Linux distribution, such as RedHat, SuSE, or Ubuntu, and scripting for an embedded device, which
is more likely to be running busybox than a full GNU set of tools. Scripting for commercial Unix is
slightly different again, and much as a web developer has to take care to ensure that a website works

024485c01.indd 12024485c01.indd 12 7/26/11 8:31:59 AM7/26/11 8:31:59 AM

Summary ❘ 13

in multiple browsers on multiple platforms, a certain amount of testing is required to write solid cross-
platform shell scripts.

Even when writing for a typical Linux distribution, it is useful to know what is where, and how
it came to be there. Is there an /etc/sysconfig? Are init scripts in /etc/rc.d/init.d or /etc/
init.d, or do they even exist in that way? What features can be identifi ed to see what tradition
is being followed by this particular distribution? Knowing the history of the system helps one to
understand whether the syntax is tar xzf or tar -xzf; whether to use /etc/fstab or /etc/
vfstab; whether running killall httpd will stop just your Apache processes (as it would under
GNU/Linux) or halt the entire system (as it would on Solaris)!

The next chapter follows on from this checkered history to compare the variety of choices available
when selecting a Unix or GNU/Linux environment.

024485c01.indd 13024485c01.indd 13 7/26/11 8:31:59 AM7/26/11 8:31:59 AM

Getting Started

Before you can work through and test the code in this book, you will need to get some kind of
Unix-like environment running. Since you are reading this book, it is likely that you already
have access to a Unix or Linux system, but this chapter provides an overview of some of the
choices available, how to get them, and how to get up and running with your test environ-
ment. It might also be worth considering running a virtual machine, or at least creating a
separate account on your existing system when working on the code in this book.

Although GNU/Linux and the Bash shell is probably the most common operating system and
shell combination currently in use, and that combination is the main focus of this book, there
are lots of other operating systems available, and a variety of shells, too. For shell scripting,
the choice of operating system does not make a huge difference much of the time, so this chap-
ter focuses more on operating system and editor choices.

CHOOSING AN OS

First of all, it is worth mentioning that Linux is not the only option available; other freely
available operating systems include the BSDs (FreeBSD, NetBSD, OpenBSD), Solaris Express,
Nexenta, and others. However, there are many GNU/Linux distributions available, and these
generally have support for the widest range of hardware and software. Most of these distri-
butions can be downloaded and used totally legally, even for production use. Of the Linux
distributions mentioned here, RedHat Enterprise Linux (RHEL) and SuSE Linux Enterprise
Server (SLES) have restricted availability and access to updates; Oracle Solaris is restricted to a
90-day trial period for production use.

GNU/Linux

RHEL is the commercial distribution based on Fedora. It is particularly popular in North
America and much of Europe. Because the RHEL media includes RedHat trademarks and
some non-Free Software (such as the RedHat Cluster), distribution of the media is restricted
to licensed customers. However, the CentOS project rebuilds RHEL from source, removing

2

024485c02.indd 15024485c02.indd 15 7/26/11 8:31:45 AM7/26/11 8:31:45 AM

16 ❘ CHAPTER 2 GETTING STARTED

RedHat trademarks, providing a Linux distribution that is totally binary and source code–com-
patible with RHEL. This can be very useful as a lot of commercial software for Linux is tested and
supported only on RHEL, but those vendors will often also support the application running on
CentOS, even if they do not support the OS itself.

RHEL itself is available by paid subscription only. However, CentOS and Oracle Enterprise Linux are
two clones built by stripping the RedHat trademarks from the source code and rebuilding in exactly
the same way as the RedHat binaries are built. CentOS is available from http://centos.org/, and
Oracle Enterprise Linux is available from http://edelivery.oracle.com/linux.

Fedora is the community-maintained distribution that feeds into RHEL. It has a highly active,
generally very technical user base, and a lot of developments tested in Fedora fi rst are then pushed
upstream (to the relevant project, be it GNOME, KDE, the Linux kernel, and so on). Like Ubuntu,
it has six-month releases, but a much shorter one-year support cycle. The technologies that have
been proven in Fedora make their way into RedHat Enterprise Linux. As with Ubuntu, KDE,
XFCE, and LXDE respins are available as well as the main GNOME-based desktop. DVD images
can be obtained from http://fedoraproject.org/.

SLES is Novell’s enterprise Linux. It is based on OpenSUSE, which is the community edition. SLES
and OpenSUSE are particularly popular in Europe, partly due to SuSE’s roots as a German company
before Novell purchased it in 2004. SuSE’s biggest differentiator from other Linux distributions is
its YaST2 confi guration tool. SLES has a fairly stable release cycle; with a new major release every
2–3 years, it is updated more frequently than RHEL but less frequently than most other Linux
distributions.

SLES is available for evaluation purposes from http://www.novell.com/products/server/. Like
RedHat Enterprise Linux, a support contract is required to use the full version.

OpenSUSE is to SLES as Fedora is to RHEL — a possibly less stable but more community-focused,
cutting-edge version of its Enterprise relative. Test versions are available before the offi cial release.
OpenSUSE is available from http://software.opensuse.org/. The main OpenSUSE website is
http://www.opensuse.org/.

Ubuntu is based on the Debian “testing” branch, with additional features and customizations. It is
very easy to install and confi gure, has lots of Internet forums providing support, and is a polished
GNU/Linux distribution. Ubuntu offers a Long-Term Support (LTS) release once every 2 years,
which is supported for 2 years on the desktop and 5 years for servers. There are also regular releases
every 6 months, which are numbered as YY-MM, so the 10-10 release (Lucid Lynx) was released in
October 2010. Although widely known for its desktop OS, the server version, without the graphical
features, is growing in popularity.

Ubuntu can be installed in many ways — from a CD/DVD, a USB stick, or even from within an
existing Windows installation. Instructions and freely downloadable media and torrents are avail-
able from http://ubuntu.com/. Many rebuilds of Ubuntu are also available: Kubuntu with KDE
instead of GNOME and Xubuntu with the XFCE window manager, as well Edubuntu, which
includes educational software, and the Netbook Edition tailored for netbook computers.

Debian is one of the older GNU/Linux distributions in mainstream use. It has a team of over 1,000
Debian developers, providing over 30,000 packages. The stable branch is generally released every
5 years or so, so the current stable release can be rather old, although plans are to increase the
frequency of stable releases. The testing branch is popular with many users, providing the latest

024485c02.indd 16024485c02.indd 16 7/26/11 8:31:45 AM7/26/11 8:31:45 AM

Choosing an OS ❘ 17

packages but without the unpredictability of the unstable branch. Debian CD/DVD images are
available for direct download, or via BitTorrent, from www.debian.org/CD/.

Many hundreds of GNU/Linux distributions are available. The website http://distrowatch.com/
is an excellent resource with information on just about every distribution that exists, as well as other
Unix and Unix-like software. Some other popular distributions worth highlighting include Gentoo,
Damn Small Linux, Knoppix, Slackware, and Mandriva.

The BSDs

Berkeley Software Distribution, or BSD, is one of the oldest Unix fl avors. It has split into a number
of different developments, the main three of which are listed here. Each fl avor of BSD has a different
focus which determines its development style.

FreeBSD is probably the most accessible of the BSDs, with support for a wider variety of hardware.
OpenBSD is a fork of NetBSD and is generally regarded as the most secure Unix system available,
and although its development is often slower, the resulting system is incredibly stable and secure.
OpenBSD is widely used as a router or fi rewall. As for version 4.9 which was released in May 2011,
only two remotely exploitable security holes have ever been found in a default install of OpenBSD.
Some operating systems fi nd that many in one month.

NetBSD is the most portable of the BSDs, running on PC, Alpha, and PowerPC, as well as ARM,
HPPA, SPARC/SPARC64, Vax, and many others.

Proprietary Unix

Oracle Solaris traces its roots back to 1983, and is arguably the most feature-full and actively developed
enterprise OS on the market today. SunOS was originally based on BSD, but with the move to Solaris
switched to the System V fl avor of Unix. Solaris today comes with the original Bourne shell as /bin/sh,
as well as ksh93, bash, csh, tcsh, and zsh shells. Solaris is available for SPARC and x86 architectures.

Oracle Solaris is available for download from http://www.oracle.com/technetwork/server-
storage/solaris/downloads/index.html, which can be used for free in nonproduction use, or on a
90-day trial basis. Solaris Express is a technical preview of the version of Solaris currently in develop-
ment. There is also OpenIndiana, a fork of OpenSolaris available at http://openindiana.org/, and
Nexenta, another fork with a GNU user space, at http://nexenta.org/.

IBM AIX is IBM’s Unix for the Power architecture, based on System V Unix. It is available in an
Express edition (limited to four CPU cores and 8GB RAM), the Standard Edition (which does not
have the scalability limitations), and the Enterprise Edition (which adds extra monitoring tools and
features). At the time of this writing, the current version is AIX 7.1, released in September 2010.

HP-UX is HP’s Unix offering, based on System V Unix. It runs on PA-RISC and Intel Itanium sys-
tems. At the time of this writing, the current version of HP-UX is 11iv3, released in April 2008.

Microsoft Windows

Cygwin is an environment that runs under Microsoft Windows, providing you with a fairly comprehen-
sive GNU toolset. If you can’t change to an OS that uses a shell natively, cygwin is a convenient way to
get a fully functioning bash shell and the core utilities (ls, dd, cat — just about everything you would

024485c02.indd 17024485c02.indd 17 7/26/11 8:31:45 AM7/26/11 8:31:45 AM

18 ❘ CHAPTER 2 GETTING STARTED

expect in your GNU/Linux distribution) without leaving Windows. This means that you have the GNU
tools such as grep, sed, awk, and sort working exactly as they do under Linux. Note that cygwin is
not an emulator — it provides a Windows DLL (cygwin1.dll) and a set of (mainly GNU) utilities
compiled as Microsoft Windows executables (.exe). These run natively under Windows; nothing is
emulated. Figure 2-1 shows cygwin in use. Notice that some of the binaries are named with the .exe
extension used by Microsoft DOS and Windows.

FIGURE 2-1

Cygwin is available from http://www.cygwin.com/.

CHOOSING AN EDITOR

A variety of text editors are available in most of the OSs mentioned previously. Word-processing
software, such as OpenOffi ce.org, Abiword, or Microsoft Word, is not particularly suitable for pro-
gramming, as these programs often make changes to the text, such as spell-checking, capitalization,
formatting, and so on, which can break the script in unexpected ways. It is far better to use a plain-text
editor, the most common of which you will look at here. Just because they do not add formatting to the
actual fi le does not mean that these editors are at all lacking in powerful features; most offer syntax
highlighting, and many offer further useful features for editing shell scripts as well as other text fi les.

Graphical Text Editors

For a graphical environment, a GUI-based editor can be easier to use. It is still vital to know how to
use a nongraphical editor for situations where a GUI is not available (broken X Window system con-
fi guration, remote ssh to the server, serial access to server, and so on). However, for day-to-day use,
some people fi nd the convenience of a graphical editor to be useful.

Gedit

The default GNOME text editor is gedit, normally to be found under Applications ➪ Accessories ➪

gedit Text Editor. Gedit offers basic syntax highlighting, which can be useful when checking for syntax
errors in your script. It also has tabbed windows and support for different text fi le formats (Windows,
Linux, Mac OS line breaks, and character encodings). Figure 2-2 shows gedit in action.

024485c02.indd 18024485c02.indd 18 7/26/11 8:31:45 AM7/26/11 8:31:45 AM

Choosing an Editor ❘ 19

FIGURE 2-2

Kate

The default KDE text editor is kate. It offers syntax highlighting, multiple tabs, and so on, but
also features a windowed shell so that you can edit your script and run it, all without leaving kate.
Figure 2-3 shows kate running with a command window executing the shell script that is being
edited by the editor.

FIGURE 2-3

024485c02.indd 19024485c02.indd 19 7/26/11 8:31:45 AM7/26/11 8:31:45 AM

20 ❘ CHAPTER 2 GETTING STARTED

Kwrite is also available as part of KDE, although kwrite is more focused on writing short docu-
ments than writing code.

A graphical alternative to the hardcore commandline tool vi (which is provided in most Linux dis-
tributions as VIM [Vi IMproved] is gvim. This is a useful halfway house, providing some graphical
features (it looks almost identical to gedit) while maintaining the familiar keystrokes of vi and vim.
Figure 2-4 shows gvim in use, with two tabs editing two different scripts.

FIGURE 2-4

Vim is also available (in both vim and gvim incarnations) for Microsoft Windows from http://
www.vim.org/download.php#pc.

Eclipse

Eclipse is a full IDE (Integrated Development Environment) by IBM. It is written with Java devel-
opment in mind but can be used for shell scripting. It is overkill for most shell programming
tasks, however.

Notepad++ for Windows

Notepad++ (http://notepad-plus-plus.org/) is a very powerful GPL (Free Software) editor for
the Microsoft Windows environment. It offers syntax highlighting for many languages, powerful
search options, and many additional features via the plugin infrastructure. It is very popular as a
lightweight but full-featured text editor in the Windows environment. Figure 2-5 shows Notepad++
with its native Windows window decorations.

024485c02.indd 20024485c02.indd 20 7/26/11 8:31:46 AM7/26/11 8:31:46 AM

Choosing an Editor ❘ 21

FIGURE 2-5

Terminal Emulation

GNOME has gnome-terminal; KDE has konsole. XFCE has a terminal emulator called simply
“Terminal,” with a stated aim of being a worthy alternative to gnome-terminal without the GNOME
dependencies. There is also xterm, rxvt, and others. There is also the native “linux” terminal emula-
tion, which is what you get when you log in to a Linux system without a graphical session.

Gnome-terminal is the default terminal in the GNOME environment. It uses profi les so you can
defi ne different appearance settings for different purposes. It also uses tabs, which can be shuffl ed
and even detached from the original window.

Konsole is the default, and very fl exible, terminal emulator in the KDE environment. It is found
under the System menu. Some particularly nice things about Konsole include the ability to get a
popup alert from KDE when the terminal either stays quiet for 10 full seconds (for example, when a
long-running job fi nishes writing data to the terminal) or when the silence ends (for example, when
a long-running job ends its silence and starts writing data to the terminal).

Another standout feature is the capability, through the profi le settings, to defi ne what constitutes
a “word” when you double-click on it. If you want to be able to select an entire e-mail address by
double-clicking it, make sure that the at sign (@) and the period (.) are in the list; if you want to be
able to double-click $100 and select only the number, make sure that $ is not in the list.

If you need to run the same command on a set of systems, you can log in to each server in a different
tab, and then select Edit ➪ Copy Input To ➪ All tabs in current window. Don’t forget to deselect this
as soon as you have fi nished.

The original terminal emulator for a graphical session is xterm. Although not as common any lon-
ger, it is well worth being familiar with xterm for those occasions when a more complete graphical
environment is not available.

024485c02.indd 21024485c02.indd 21 7/26/11 8:31:46 AM7/26/11 8:31:46 AM

22 ❘ CHAPTER 2 GETTING STARTED

When you log in to a Linux system without graphical capabilities, or by pressing Ctrl+Alt+F1, you
get the native Linux terminal emulation. This is the basic terminal emulator, which is part of the
actual Linux OS. It is capable of color as well as highlighted and blinking text.

Nongraphical Text Editors

There are also a good number of command line–based text editors, each with different strengths.

Vi is by far the most widely used text editor among system administrators — it has quite a steep
learning curve to start with, mainly because it can operate in two different modes — insert mode,
where you can type text as normal in an editor, and command mode, where your keystrokes are
interpreted as commands to perform on the text — and because it is diffi cult to tell which mode you
are in at any given time. All that you really need to know about modes is to press Escape to enter
command mode, and press i in command mode to enter Insert mode. Pressing Escape will always
get you into command mode, so Escape+i will always get you into Insert mode. Once you have got-
ten the hang of that, and learned the fi rst few of vi’s many powerful commands, other editors will
feel slow, awkward, and cumbersome by comparison. While vi is part of Unix, most GNU/Linux
distributions include vim (Vi Improved), with vi as an alias to vim. Vim offers compatibility with
vi, plus additional functionality, too. Vim comes with a vimtutor script, which walks you through
tutorials using its many examples. Figure 2-6 shows the fi rst page of vimtutor’s tutorial.

FIGURE 2-6

Emacs is another popular text editor, with an incredible amount of plugins. With a fully confi gured
emacs setup, there is no need to ever go to the shell! It has been described as a “thermonuclear word
processor.” Like vim, emacs started out as a console, nongraphical text editor, but now has graphi-
cal versions, too. Being cross-platform from the start, emacs does not make any assumptions about
what keys will be available on your keyboard, so the PC Ctrl key is referred to as Control, and the
Alt key is known as the Meta key. These are written out as C- and M- respectively, so C-f, that is,
holding down Control and the f key, moves the cursor forward by one character, while M-f, or
holding down Alt and the f key, moves the cursor forward by one word. Use C-x C-s to save, and
C-x C-c to quit.

024485c02.indd 22024485c02.indd 22 7/26/11 8:31:46 AM7/26/11 8:31:46 AM

Choosing an Editor ❘ 23

There is a long-running but generally light-hearted rivalry between vi and emacs; as long as nobody
is forced to use the “other” editor, vi and emacs users can generally agree to disagree. Figure 2-7
shows a graphical Emacs session running under the KDE desktop environment.

FIGURE 2-7

Pico and nano are rather more accessible text editors. Pico started as the editor for Washington
University’s pine e-mail client; nano is the GNU clone of pico and is the editor normally suggested on
Ubuntu forums. Much like emacs, commands are sent via the Control key (for example, Ctrl-X to
exit), but unlike emacs, there is always a context-sensitive menu displayed on the bottom of the screen,
making the available choices much more obvious. Figure 2-8 shows nano editing an /etc/hosts fi le.

FIGURE 2-8

024485c02.indd 23024485c02.indd 23 7/26/11 8:31:46 AM7/26/11 8:31:46 AM

24 ❘ CHAPTER 2 GETTING STARTED

SETTING UP THE ENVIRONMENT

Unix and Linux are very customizable systems. You can set the environment (settings and variables
that defi ne how the shell behaves) to your liking in a number of ways. If there is something that you
fi nd yourself repeatedly setting or changing, it is usually possible to have that automatically done for
you by the system. Here some of the most useful are explored.

The Shell Profi le

One of the main places for putting your personalized tweaks is the ~/.profile ($HOME/.profile)
fi le. When a new interactive shell is started, /etc/profile, followed by /etc/bash.bashrc (if a
bash shell), ~/.profile, and fi nally ~/.bashrc are executed in that order. ~/.profile is read by
all shells so it is best to put generic settings in there, and then bash-specifi c settings in ~/.bashrc.
You can set variables and aliases here, and even run commands if you want to. Because the local
(user-specifi c) versions of these fi les all reside in the home directory and begin with a period (.) so
that a regular ls does not list them, they are often referred to as “dotfi les.” There are many exam-
ples of dotfi les around the net; http://dotfiles.org/ is one useful repository.

Environment Variables

There are many environment variables that change the way the system works. You can set these
interactively, or more usefully in your ~/.bashrc fi le.

PS1 Prompt

PS1 is the basic shell prompt; you can customize this. The default for bash is \s-\v\$, or “shell-
version-dollar” — for example, bash-4.1$. Numerous settings are available — see the “Prompting”
section of the bash man page for the full list. A common value for PS1 is \u@\h:\w$ — this displays
the login name, the server name, and the current working directory. The following example:

steve@goldie:/var/log$

shows that you are logged in to the server “goldie” as the user “steve,” and are currently in the
/var/log directory.

In Debian, the default ~/.bashrc allows for color in the PS1 prompt, but it also comments that “the
focus in a terminal window should be on the output of commands, not on the prompt.” You can
uncomment the force_color_prompt=yes line in that fi le if you really do want a color prompt.

PATH

You can set your PATH environment variable to tell the shell where to search for programs (and scripts)
to be run. The main system commands are in /bin, /usr/bin, /sbin, and /usr/sbin, but you may
have your own scripts in $HOME/bin, $HOME/scripts, /usr/local/bin, or elsewhere. Append these to
the PATH so that they will be found by the shell even when you are not in that directory:

PATH=${PATH}:${HOME}/bin

024485c02.indd 24024485c02.indd 24 7/26/11 8:31:46 AM7/26/11 8:31:46 AM

Setting Up the Environment ❘ 25

Without the PATH, you will need to provide an explicit path (either absolute or relative) to the com-
mand. For example:

$ myscript.sh
bash: myscript.sh: command not found
$ /home/steve/bin/myscript.sh
 ... or:
$ cd /home/steve/bin
$./myscript.sh

From a security perspective, it is very bad practice to put a dot (.) in your PATH, especially at the front
of the PATH. If you change into a directory and run a command (maybe ls), any program in that
directory called ls will be run, and not the system /bin/ls program. Avoid having a colon at the start
or end of the PATH, or a pair of colons with nothing between them, as that will have the same effect
as a dot (.). Also, it is better to keep the system directories such as /usr/bin and /bin at the start of
the PATH so that local scripts do not override system default ones. Therefore, use the syntax

PATH=$PATH:${HOME}/bin

rather than:

PATH=${HOME}/bin:$PATH

Tool-Specifi c Variables

Many system tools have their own variables; less adds the value of $LESS to its commands. ls adds
$LS_OPTIONS. Your profi le can therefore defi ne useful shortcuts by setting these environment variables.

define tool-specific settings
export LS_OPTIONS=’--color=yes’
Tidy up the appearance of less
export LESS=’-X’

less also reads the $LESS_TERMCAP_* variables, which tell it about your terminal’s capabilities.
This is a useful sequence, which means that the codes hidden inside man pages (which are formatted
by less) are interpreted as color changes.

man pages in color
export LESS_TERMCAP_mb=$’\E[01;31m’
export LESS_TERMCAP_md=$’\E[01;31m’
export LESS_TERMCAP_me=$’\E[0m’
export LESS_TERMCAP_se=$’\E[0m’
export LESS_TERMCAP_so=$’\E[01;44;33m’
export LESS_TERMCAP_ue=$’\E[0m’
export LESS_TERMCAP_us=$’\E[01;32m’

variables

There are also a few widely recognized variables that may be used by many other tools to allow
the system to be fl exible to your needs. You can specify which text editor you want to use, and

024485c02.indd 25024485c02.indd 25 7/26/11 8:31:46 AM7/26/11 8:31:46 AM

26 ❘ CHAPTER 2 GETTING STARTED

certain tools such as mail should use that value. You can also specify your preferred pagination
tool — less and more are the two most common.

define preferred tools
export EDITOR=vim
export PAGER=less

Your own scripts can make use of these variables to be more fl exible to the user. Just use the
${EDITOR:-vim} syntax so that if $EDITOR is set then that command will be used, or if not set, you
can provide a default for your application:

#!/bin/bash
${EDITOR:-vim} “$1”
echo “Thank you for editing the file. Here it is:”
${PAGER:-less} “$1”

edit.sh

This script will edit a fi le in your preferred $EDITOR and then display it back to you with your pre-
ferred $PAGER.

Aliases

Aliases provide mnemonics for aliases for frequently used, or hard-to-remember commands. Aliases
can also be useful for specifying a default set of options where the command does not use a con-
fi guration fi le or environment variables for this. These can be put into your startup scripts to make
everyday typing easier.

less

less has an -X option, which stops it from refreshing the screen after it has completed. This is very
much a personal preference; if you wanted to less a fi le and then continue working with the fi le
contents still visible in the terminal, you will want to use -X to stop the screen from being refreshed
(much as if you had used cat on the fi le — its contents would be visible after the command has
fi nished). However, if you want to be able to see what was displayed on the terminal before you
invoked less, you would not want the -X option. Do try both and see which you prefer. If you want
to use -X, you can set an alias in your ~/.bashrc fi le.

alias less=”less -X”

Because the less command takes parameters from the $LESS environment variable mentioned pre-
viously, you can set that variable instead.

cp, rm, and mv Aliases

Because they are binary-compatible clones of RedHat Enterprise Linux, some Linux distributions —
in particular RedHat, and therefore CentOS and Oracle Enterprise Linux — defi ne some very care-
ful aliases for the cp, rm, and mv commands. These are all aliased to their -i option, which causes
them in an interactive shell to prompt for confi rmation before removing or overwriting a fi le. This

024485c02.indd 26024485c02.indd 26 7/26/11 8:31:46 AM7/26/11 8:31:46 AM

Setting Up the Environment ❘ 27

can be a very useful safety feature but quickly becomes irritating. If you fi nd the defaults annoying,
you can unset these aliases in ~/.bashrc. The command unalias rm removes this aliasing, and
similarly unalias cp and unalias mv reverts those commands, to their standard behavior, too.

If you know that a command (such as rm) is aliased, you can access the
unaliased version in two ways. If you know the full path to the command is
/bin/rm, you can type /bin/rm, which will bypass the alias defi nition. A sim-
pler way to do this is to put a backslash before the command; \rm will call the
unaliased rm command.

ls Aliases

Because it is such a common command, there are a few popular ls aliases, the two most common
being ll for ls -l and la for ls -a. Your distribution might even set these for you. Some popular
ls aliases include:

save fingers!
alias l=’ls’
long listing of ls
alias ll=’ls -l’
colors and file types
alias lf=’ls -CF’
sort by filename extension
alias lx=’ls -lXB’
sort by size
alias lk=’ls -lSr’
show hidden files
alias la=’ls -A’
sort by date
alias lt=’ls -ltr’

Other Command Shortcuts

There are many other commands that you might use frequently and want to defi ne aliases for. In a
graphical session, you can launch a web browser and direct it straight to a particular website.

launch webpages from terminal
alias bbc=’firefox http://www.bbc.co.uk/ &’
alias sd=’firefox http://slashdot.org/ &’
alias www=’firefox’

Another very frequently used command is ssh. Sometimes this is as simple as ssh hostname, but some-
times quite complicated command lines are used with ssh, in which case an alias again is very useful.

ssh to common destinations by just typing their name
log in to ‘declan’
alias declan=’ssh declan’
log in to work using a non-standard port (222)

024485c02.indd 27024485c02.indd 27 7/26/11 8:31:46 AM7/26/11 8:31:46 AM

28 ❘ CHAPTER 2 GETTING STARTED

alias work=’ssh work.example.com -p 222’
log in to work and tunnel the internal proxy to localhost:80
alias workweb=’ssh work.example.com -p 222 -L 80:proxy.example.com:8080’

aliases

Changing History

Another feature of the shell that can be changed in your personalized settings is the history com-
mand. This is affected by some environment variables and some shell options (shopt). When you
have multiple shell windows open at once, or multiple sessions logged in for the same user from
different systems, the way that the history feature logs commands can get a bit complicated, and
some history events may be overwritten by newer ones. You can set the histappend option to pre-
vent this from happening.

Another potential problem with history is that it can take up a lot of disk space if you do not have
much disk quota for your personal fi les. The HISTSIZE variable defi nes how many entries a shell ses-
sion should store in the history fi le; HISTFILESIZE defi nes the maximum total size of the history fi le.

HISTIGNORE is a colon-separated list of commands that should not be stored in the history; these
are often common commands such as ls, which are not generally very interesting to audit. From
an auditing perspective, it is more useful to keep commands such as rm, ssh, and scp. Additionally,
HISTCONTROL can tell history to ignore leading spaces (so that these two commands are both stored
as rm and not as “ rm” (with the leading spaces before the command):

$ rm /etc/hosts
$ rm /etc/hosts

HISTCONTROL can also be told to ignore duplicates, so if one command was run multiple times,
there may not be much point in storing that information in the history fi le. HISTCONTROL can be
set to ignorespace, ignoredups, or ignoreboth. The history section of your ~/.bashrc could
look like this:

append, don’t overwrite the history
shopt -s histappend

control the size of the history file
export HISTSIZE=100000
export HISTFILESIZE=409600

ignore common commands
export HISTIGNORE=”:pwd:id:uptime:resize:ls:clear:history:”

ignore duplicate entries
export HISTCONTROL=ignoredups

history

024485c02.indd 28024485c02.indd 28 7/26/11 8:31:46 AM7/26/11 8:31:46 AM

Setting Up the Environment ❘ 29

~/.inputrc and /etc/inputrc

/etc/inputrc and ~/.inputrc are used by GNU readline facility (used by bash and many other
utilities to read a line of text from the terminal) to control how readline behaves. These confi gura-
tion fi les are only used by shells that make use of the readline library (bash and dash, zsh) and are
not used by any other shells — ksh, tcsh, and so on. This defi nes many of the handy things that bash
gets credit for over Bourne shell, such as proper use of the cursor keys on today’s PC keyboards.
There is normally no need to edit this fi le, nor to create your own custom ~/.inputrc (the global
/etc/inputrc normally suffi ces). It is useful to know what it contains in order to understand how
your shell interacts with your keyboard commands. inputrc also defi nes 8-bit features so you may
need to use this if you are working heavily with 7-bit systems.

Another useful bash option to know is

set completion-ignore-case On

which means that when you type cd foo and press the Tab key, if there is no foo* directory, the
shell will search without case, so that any directories named Foo*, fOo* or fOO* will match.

Another bash option is to shut up the audible bell:

set bell-style visible

It is important to note that inputrc affects anything using the readline library, which is normally
a good thing as it gives you consistency in the behavior of multiple different tools. I have never
been aware of a situation where this caused a problem, but it is good to be aware of the impact of
the changes.

~/.wgetrc and /etc/wgetrc

If you need to go via a proxy server, the ~/.wgetrc fi le can be used to set proxy settings for the
wget tool. For example:

http_proxy = http://proxyserver.intranet.example.com:8080/
https_proxy = http://proxyserver.intranet.example.com:8080/
proxy_user = steve
proxy_password = letmein

You can also set equivalent variables in the shell.

The /etc/wgetrc fi le will be processed fi rst, but is overruled by the user’s ~/.wgetrc (if it exists).

You must use chmod 0600 ~/.wgetrc for ~/.wgetrc to be processed — this is for
your own protection; valid passwords should not be visible by anyone but your-
self! If the permissions are any more open than 0600, wget will ignore the fi le.

024485c02.indd 29024485c02.indd 29 7/26/11 8:31:46 AM7/26/11 8:31:46 AM

30 ❘ CHAPTER 2 GETTING STARTED

Vi Mode

People coming from a Unix background may be more comfortable with the ksh, both for interactive
use as well as for shell scripting. Interactively, ksh scrolls back through previous commands via the
Esc-k key sequence and searches history with the Esc-/ sequence. These are roughly equivalent to
bash’s up arrow (or ^P) and Ctrl-R key sequences, respectively. To make bash (or indeed the Bourne
shell under Unix) act more like ksh, set the -o vi option:

 bash$ set -o vi
 bash$

Vim Settings

The following useful commands can be set in ~/.vimrc or manually from command mode. Note
that vim uses the double quote (“) character to mark comments. These samples should be fairly
self-explanatory; these can also be set interactively from within a vim session, so typing :syntax
on or :syntax off will turn syntax highlighting on or off for the rest of the current session. It
can be useful to have all of your favorite settings predefi ned in ~/.vimrc.

$ cat ~/.vimrc
“ This must be first, because it changes other options as a side effect.
set nocompatible

“ show line numbers
set number

“ display “-- INSERT --” when entering insert mode
set showmode

“ incremental search
set incsearch
“ highlight matching search terms
set hlsearch
“ set ic means case-insensitive search; noic means case-sensitive.
set noic
“ allow backspacing over any character in insert mode
set backspace=indent,eol,start
“ do not wrap lines
set nowrap

“ set the mouse to work in the console
set mouse=a
“ keep 50 lines of command line history
set history=50
“ show the cursor position
set ruler
“ do incremental searching
set incsearch
“ save a backup file
set backup

“ the visual bell flashes the background instead of an audible bell.

024485c02.indd 30024485c02.indd 30 7/26/11 8:31:47 AM7/26/11 8:31:47 AM

Summary ❘ 31

set visualbell

“ set sensible defaults for different types of text files.
au FileType c set cindent tw=79
au FileType sh set ai et sw=4 sts=4 noexpandtab
au FileType vim set ai et sw=2 sts=2 noexpandtab

“ indent new lines to match the current indentation
set autoindent
“ don’t replace tabs with spaces
set noexpandtab
“ use tabs at the start of a line, spaces elsewhere
set smarttab

“ show syntax highlighting
syntax on

“ show whitespace at the end of a line
highlight WhitespaceEOL ctermbg=blue guibg=blue
match WhitespaceEOL /\s\+$/

vimrc

SUMMARY

There are many operating systems, shells, and editors to choose from. In general, the choice of editor
is a personal preference. The choice of operating system can be very signifi cant in some ways, although
for shell scripting purposes, many environments (all of the GNU/Linux distributions, Cygwin, and
some proprietary Unixes, notably Solaris) today use GNU bash and the GNU implementations of stan-
dard Unix tools such as bc, grep, ls, diff, and so on. This book focuses on GNU/Linux, bash, and
the GNU tools, but the vast majority also applies to their non-GNU equivalents.

I hope some of the customizations in the second part of the chapter will prove useful as you tweak
the environment to customize the system to your personal preferences; the computer is there to make
your life easier, and not the other way around, so if an alias means that you don’t have to remember
some complicated syntax, your mind is freed of distractions and you can concentrate on what you
are actually trying to achieve, not on memorizing the exact syntax of some obscure command.

These fi rst two introductory chapters should have prepared you to do some shell scripting; the rest
of Part I covers the tools available and how to use them. The rest of the book builds on this intro-
ductory material with real-world recipes that you can use and build on, and so that you can be
inspired to write your own scripts to perform real-world tasks to address situations that you face.

024485c02.indd 31024485c02.indd 31 7/26/11 8:31:47 AM7/26/11 8:31:47 AM

CONTENTS

INTRODUCTION xxix

ABOUT THE INGREDIENTPART I: S

THE HISTORY OF UNIX, GNU, AND LINUX CHAPTER 1: 3

Unix 3

“Everything Is a File” and Pipelines 5

BSD 6

GNU 7

Linux 11

Summary 12

GETTING STARTED 1CHAPTER 2: 5

Choosing an OS 15

GNU/Linux 15

The BSDs 17

Proprietary Unix 17

Microsoft Windows 17

Choosing an Editor 18

Graphical Text Editors 18

Terminal Emulation 21

Nongraphical Text Editors 22

Setting Up the Environment 24

The Shell Profi le 24

Aliases 26

vim Settings 30

Summary 31

VARIABLES 3CHAPTER 3: 3

Using Variables 33

Typing 34

Assigning Values to Variables 35

Positional Parameters 39

Return Codes 42

Unsetting Variables 45

024485ftoc.indd xvii024485ftoc.indd xvii 7/26/11 8:32:19 AM7/26/11 8:32:19 AM

xviii

CONTENTS

Preset and Standard Variables 47

BASH_ENV 47

BASHOPTS 47

SHELLOPTS 48

BASH_COMMAND 50

BASH_SOURCE, FUNCNAME, LINENO, and BASH_LINENO 51

SHELL 55

HOSTNAME and HOSTTYPE 55

Working Directory 55

PIPESTATUS 55

TIMEFORMAT 56

PPID 57

RANDOM 58

REPLY 58

SECONDS 58

BASH_XTRACEFD 59

GLOBIGNORE 60

HOME 62

IFS 62

PATH 63

TMOUT 64

TMPDIR 65

User Identifi cation Variables 65

Summary 66

WILDCARD EXPANSION 6CHAPTER 4: 7

Filename Expansion (Globbing) 67

Bash Globbing Features 70

Shell Options 71

Regular Expressions and Quoting 75

Overview of Regular Expressions 76

Quoting 77

Summary 81

CONDITIONAL EXECUTION 8CHAPTER 5: 3

If/Then 83

Else 85

elif 85

Test ([) 87

Flags for Test 88

File Comparison Tests 95

024485ftoc.indd xviii024485ftoc.indd xviii 7/26/11 8:32:19 AM7/26/11 8:32:19 AM

xix

CONTENTS

String Comparison Tests 96

Regular Expression Tests 98

Numerical Tests 101

Combining Tests 103

Case 105

Summary 109

FLOW CONTROL USING LOOPS 11CHAPTER 6: 1

For Loops 111

When to Use for Loops 112

Imaginative Ways of Feeding “for” with Data 112

C-Style for Loops 118

while Loops 119

When to Use while Loops 119

Ways to Use while Loops 119

Nested Loops 125

Breaking and Continuing Loop Execution 126

while with Case 130

until Loops 131

select Loops 133

Summary 137

VARIABLES CONTINUED 13CHAPTER 7: 9

Using Variables 139

Variable Types 141

Length of Variables 142

Special String Operators 144

Stripping Variable Strings by Length 144

Stripping from the End of the String 146

Stripping Strings with Patterns 147

Searching Strings 151

Using Search and Replace 151

Replacing Patterns 153

Deleting Patterns 153

Changing Case 153

Providing Default Values 153

Indirection 157

Sourcing Variables 158

Summary 159

024485ftoc.indd xix024485ftoc.indd xix 7/26/11 8:32:19 AM7/26/11 8:32:19 AM

xx

CONTENTS

FUNCTIONS AND LIBRARIES 16CHAPTER 8: 1

Functions 161

Defi ning Functions 162

Function Output 162

Writing to a File 164

Redirecting the Output of an Entire Function 167

Functions with Trap 171

Recursive Functions 173

Variable Scope 177

Libraries 181

Creating and Accessing Libraries 183

Library Structures 183

Network Confi guration Library 187

Use of Libraries 191

getopts 191

Handling Errors 194

getopts within Functions 195

Summary 197

ARRAYS 19CHAPTER 9: 9

Assigning Arrays 199

One at a Time 200

All at Once 200

By Index 201

All at Once from a Source 201

Read from Input 203

Accessing Arrays 205

Accessing by Index 205

Length of Arrays 206

Accessing by Variable Index 206

Selecting Items from an Array 209

Displaying the Entire Array 209

Associative Arrays 210

Manipulating Arrays 211

Copying an Array 211

Appending to an Array 213

Deleting from an Array 214

Advanced Techniques 216

Summary 217

024485ftoc.indd xx024485ftoc.indd xx 7/26/11 8:32:19 AM7/26/11 8:32:19 AM

xxi

CONTENTS

PROCESSES 21CHAPTER 10: 9

The ps Command 219

ps Line Length 220

Parsing the Process Table Accurately 220

killall 223

The /proc pseudo-fi lesystem 225

prtstat 226

I/O Redirection 227

Appending Output to an Existing File 229

Permissions on Redirections 229

exec 229

Using exec to Replace the Existing Program 230

Using exec to Change Redirection 231

Pipelines 237

Background Processing 237

wait 238

Catching Hangups with nohup 239

Other Features of /proc and /sys 242

Version 242

SysRq 242

/proc/meminfo 245

/proc/cpuinfo 245

/sys 246

/sys/devices/system/node 251

sysctl 253

Summary 254

CHOOSING AND USING SHELLS 25CHAPTER 11: 5

The Bourne Shell 256

The KornShell 256

The C Shell 256

The Tenex C Shell 257

The Z Shell 257

The Bourne Again Shell 257

The Debian Almquist Shell 258

Dotfi les 258

Interactive Login Shells 259

Interactive Non-Login Shells 260

Non-Interactive Shells 261

Logout Scripts 262

024485ftoc.indd xxi024485ftoc.indd xxi 7/26/11 8:32:19 AM7/26/11 8:32:19 AM

xxii

CONTENTS

Command Prompts 262

The PS1 Prompt 262

The PS2, PS3, and PS4 Prompts 264

Aliases 265

Timesavers 265

Modifying Behaviors 265

History 266

Recalling Commands 267

Searching History 267

Timestamps 268

Tab Completion 269

ksh 269

tcsh 270

zsh 270

bash 271

Foreground, Background, and Job Control 272

Backgrounding Processes 272

Job Control 273

nohup and disown 275

Summary 276

RECIPES FOR USING AND EXTENDING SYSTEPART II: M TOOLS

FILE MANIPULATION 27CHAPTER 12: 9

stat 279

cat 281

Numbering Lines 282

Dealing with Blank Lines 282

Non-Printing Characters 283

cat Backwards is tac 284

Redirection 285

Redirecting Output: The Single Greater-Than Arrow (>) 285

Appending: The Double Greater-Than Arrow (>>) 286

Input Redirection: The Single Less-Than Arrow (<) 288

Here Documents: The Double Less-Than Arrow (<< EOF) 290

dd 292

df 294

mktemp 295

join 297

install 298

024485ftoc.indd xxii024485ftoc.indd xxii 7/26/11 8:32:19 AM7/26/11 8:32:19 AM

xxiii

CONTENTS

grep 300

grep Flags 300

grep Regular Expressions 301

split 303

tee 304

touch 306

fi nd 307

fi nd-exec 310

Summary 313

TEXT MANIPULATION 31CHAPTER 13: 5

cut 315

echo 316

dial1 316

dial2 319

fmt 320

head and tail 323

Prizes 323

World Cup 324

od 328

paste 331

pr 334

printf 335

shuf 337

Dice Thrower 337

Card Dealer 338

Travel Planner 340

sort 341

Sorting on Keys 342

Sorting Log Files by Date and Time 344

Sorting Human-Readable Numbers 345

tr 346

uniq 350

wc 351

Summary 352

TOOLS FOR CHAPTER 14: SYSTEMS ADMINISTRATION 353

basename 353

date 355

Typical Uses of date 355

More Interesting Uses of date 359

024485ftoc.indd xxiii024485ftoc.indd xxiii 7/26/11 8:32:19 AM7/26/11 8:32:19 AM

xxiv

CONTENTS

dirname 360

factor 362

identity, groups, and getent 364

logger 367

md5sum 368

mkfi fo 370

Master and Minions 371

Reversing the Order 373

Networking 375

telnet 376

netcat 376

ping 378

Scripting ssh and scp 381

OpenSSL 383

nohup 390

seq 391

Integer Sequences 391

Floating Point Sequences 393

sleep 394

timeout 394

Shutdown Script 396

Network Timeout 399

uname 400

uuencode 401

xargs 402

yes 405

Summary 406

RECIPES FOR SYSTEMS ADMINISTRATIOPART III: N

SHELL FEATURES 40CHAPTER 15: 9

Recipe 15-1: Installing Init Scripts 409

Technologies Used 410

Concepts 410

Potential Pitfalls 410

Structure 410

Recipe 412

Invocation 414

Summary 414

Recipe 15-2: RPM Report 414

Technologies Used 415

Concepts 415

024485ftoc.indd xxiv024485ftoc.indd xxiv 7/26/11 8:32:19 AM7/26/11 8:32:19 AM

xxv

CONTENTS

Potential Pitfalls 415

Structure 415

Recipe 417

Invocation 419

Summary 420

Recipe 15-3: Postinstall Scripts 421

Technologies Used 421

Concepts 421

Potential Pitfalls 422

Structure 422

Recipe 423

Invocation 425

Summary 426

SYSTEMS ADMINISTRATION 42CHAPTER 16: 7

Recipe 16-1: init Scripts 427

Technologies Used 428

Concepts 428

Potential Pitfalls 429

Structure 430

Recipe 431

Invocation 432

Summary 433

Recipe 16-2: CGI Scripts 433

Technologies Used 433

Concepts 434

Potential Pitfalls 434

Structure 435

Recipe 438

Invocation 441

Summary 445

Recipe 16-3: Confi guration Files 445

Technologies Used 445

Concepts 445

Potential Pitfalls 446

Structure 446

Recipe 446

Invocation 447

Summary 448

Recipe 16-4: Locks 448

Technologies Used 448

Concepts 448

024485ftoc.indd xxv024485ftoc.indd xxv 7/26/11 8:32:20 AM7/26/11 8:32:20 AM

xxvi

CONTENTS

Potential Pitfalls 449

Structure 450

Recipe 453

Invocation 455

Summary 458

PRESENTATION 45CHAPTER 17: 9

Recipe 17-1: Space Game 459

Technologies Used 459

Concepts 460

Potential Pitfalls 462

Structure 462

Recipe 464

Invocation 469

Summary 470

DATA STORAGE AND RETRIEVAL 47CHAPTER 18: 1

Recipe 18-1: Parsing HTML 471

Technologies Used 471

Concepts 472

Potential Pitfalls 472

Structure 472

Recipe 473

Invocation 474

Summary 476

Recipe 18-2: CSV Formatting 476

Technologies Used 476

Concepts 476

Potential Pitfalls 477

Structure 477

Recipe 478

Invocation 480

Summary 481

NUMBERS 48CHAPTER 19: 3

Recipe 19-1: The Fibonacci Sequence 483

Technologies Used 483

Concepts 484

024485ftoc.indd xxvi024485ftoc.indd xxvi 7/26/11 8:32:20 AM7/26/11 8:32:20 AM

xxvii

CONTENTS

Potential Pitfalls 484

Structure for Method 1 485

Recipe for Method 1 486

Invocation of Method 1 486

Structure for Method 2 487

Recipes for Method 2 488

Invocations of Method 2 489

Structure for Method 3 490

Recipe for Method 3 490

Invocation of Method 3 491

Summary 492

Recipe 19-2: PXE Booting 492

Technologies Used 492

Concepts 493

Potential Pitfalls 493

Structure 493

Recipe 494

Invocation 497

Summary 499

PROCESSES 50CHAPTER 20: 1

Recipe 20-1: Process Control 501

Technologies Used 501

Concepts 502

Potential Pitfalls 503

Structure 503

Recipe 506

Invocation 511

Summary 516

INTERNATIONALIZATION 51CHAPTER 21: 7

Recipe 21-1: Internationalization 517

Technologies Used 518

Concepts 518

Potential Pitfalls 519

Structure 520

Recipe 521

Invocation 525

Summary 526

024485ftoc.indd xxvii024485ftoc.indd xxvii 7/26/11 8:32:20 AM7/26/11 8:32:20 AM

xxviii

CONTENTS

REFERENCPART IV: E

APPENDIX: FURTHER READING 529

Shell Tutorials and Documentation 529

Arrays 530

Tools 530

Unix Flavors 531

Shell Services 531

GLOSSARY 533

INDEX 539

024485ftoc.indd xxviii024485ftoc.indd xxviii 7/26/11 8:32:20 AM7/26/11 8:32:20 AM

	f (9)
	024485c01
	024485c02
	024485ftoc
	b (9)

