
SDN & NFV:
Modern Networking Technologies

2014 International Science and Technology Conference
«Modern Networking Technologies (MoNeTec)»
Moscow, Russia,
October 27–29, 2014

Proceedings

Partners

MOSCOW
2014www.arccn.ru

SDN & NFV:
Next Generation of Computational Infrastructure

2014 International Science and Technology Conference
«Modern Networking Technologies (MoNeTec)»

Moscow, Russia,
October 27–29, 2014

Proceedings

МОСКВА – 2014

УДК 004.4
 ББК 32.973.202-018.2
 У67

Под общей редакцией
д.ф.-м.н., чл.-корр. РАН, профессора Р.Л. Смелянского

У67
 Управление и виртуализация в современных сетях (Сети 2014: SDN&NFV): Тру-
ды Международной научной конференции; Москва, 27–29 октября 2014 г. / Под общ.
ред. Р.Л. Смелянского. – М.: МАКС Пресс, 2014. – 174 с.
 ISBN 978-5-317-04829-7

Международная научно-техническая конференция «Управление и виртуализация в современ-
ных сетях» (Сети 2014: SDN&NFV) посвящена двум наиболее перспективным трендам, про-
явившимся в последние несколько лет - Программно Конфигурируемые Сети (SDN) и Виртуа-
лизация Сетевых Функций (NFV). Эти тенденции обещают сформировать эволюцию отрасли
Интернета и облачной инфраструктуры в Программно-Конфигурируемые Инфраструктуры. Се-
тевые операторы и поставщики облачных сервисов уже начали освоение этих технологий, а
наиболее смелые уже начали активно испытывать и разворачивать решения на базе SDN и
NFV. В конференции приняли участие видные представители международных научных кругов
из различных международных проектов, направленных на создание новых способов и инстру-
ментов в области SDN&NFV для создания новой инфраструктуры для научных исследований.
В трудах конференции представлены доклады, где широко обсуждаются различные аспекты
SDN & NFV технологий. Конференция проводится при финансовой поддержке Министерства
образования и науки Российской Федерации ГК №14.598.11.0012 и Университета Иннополис
(г. Казань). Технический спонсор IEEE Computer Society, рег. конференции №34611.

Ключевые слова: Программно-конфигурируемые сети (ПКС), Сетевая операционная система,
Виртуализация Сетевых Функций (NFV), Программно-Конфигурируемая Инфраструктура
(SDI), Программно-Конфигурируемые Точки Обмена (SDX), архитектура ПКС контроллера,
производительность, масштабируемость, надежность, безопасность, верификация политики
маршрутизации.

УДК 004.4
 ББК 32.973.202-018.2

SDN & NFV: The Next Generation of Computational Infrastructure: 2014 International Sci-

ence and Technology Conference «Modern Networking Technologies (MoNeTec)»: Proceedings;
Moscow, Russia, October 27–29, 2014 / Alexander Shalimov et al. Editor-in-Chief Ruslan
Smelyanskiy. – M.: MAKS Press, 2014. – 174 p.

International Science and Technology Conference «Innovative Networking Technologies: SDN & NFV – The
Next Generation of Computational Infrastructure» was dedicated to the Software Defined Network (SDN) and
Network Function Virtualization (NFV). Technologies have emerged as the hottest new networking trends of the
past a few years. These trends promise to shape the evolution of the Internet and Cloud infrastructure into a Soft-
ware Defined Infrastructure while transforming the industry. Network and cloud providers are already embracing
these trends and early adopters are aggressively trialing and deploying SDN and NFV. The conference gathered
prominent international academia representatives from various international projects focusing on SDN/NFV to
discuss developing novel ways and tools for network-enabled scientific research. The conference proceedings rep-
resent the papers where the broad scope of SDN&NFV are discussed. The Conference is supported by the Ministry
of education and science of the Russian Federation GK №14.598.11.0012 and Innopolis University, Kazan, Rus-
sia. The Conference is technically co-sponsored by IEEE Computer Society, Conference Record #34611.

Keywords: Software-Defined Network, Network operating system (NOS), Network Function Virtualization
(NFV), Software Defined Infrastructure (SDI), SDX – Software Defined Exchange point, SDX architecture, SDN
controller architecture, performance, scalability, reliability, security, Forwarding Policy Verification.

Напечатано с готового оригинал-макета

Подписано в печать 07.03.2014 г. Формат 60х90 1/8. Усл.печ.л. 21,75. Тираж 150 экз. Изд. № 215.

Издательство ООО “МАКС Пресс”. Лицензия ИД N 00510 от 01.12.99 г.

119992, ГСП-2, Москва, Ленинские горы, МГУ им. М.В. Ломоносова,
2-й учебный корпус, 527 к. Тел. 8(985)939-3890/91. Тел./Факс 8(985)939-3891.

Отпечатано в ППП «Типография «Наука»

121099, Москва, Шубинский пер., 6
Заказ №

ISBN 978-5-317-04829-7 Коллектив авторов, 2014

I

Conference Committee

Chairman: Ruslan L. Smelyanskiy

Corresponding member of the Russian Academy of Sciences, Professor (MSU, IEEE

member), R&D Director at Applied Research Center for Computer Networks

Co‐Chairman: Vladimir N. Vasilev

Corresponding member of the Russian Academy of Sciences, Professor (ITMO, IEEE

member), Rector of Saint‐Petersburg National Research University of Information

Technologies, Mechanics & Optics (ITMO)

Co‐Chairman: Alexander P. Kuleshov

Director of the A.A. Kharkevich Institute for Information Transmission Problems

(IITP) of the Russian Academy of Sciences

Member: Akihiro Nakao

Professor, University of Tokyo

Member: Ilya Baldin

PhD, RENCI, Department of Computer Science Duke University, IEEE member

Member: Jeffrey S. Chase

Professor, Department of Computer Science Duke University, IEEE member

Member: Nate Foster

Assistant professor, Department of Computer Science Cornell University

Member: Kuang‐Ching Wang

Associate Professor (Department of Electrical and Computer Engineering Clemson

University, IEEE senior member

Member: Serge Fdida

Professor UPMC ‐ University Pierre & Marie Curie (Paris VI) senior member of IEEE

and a Distinguished ACM Member

Member: Ivan Sescar

Assoc. Director WINLAB, Rutgers University, senior member of IEEE

II

Member: Sergey M. Avdoshin

Associate professor, National Research University Higher School of Economics

Member: Viktor P. Gergel

Professor, National Research University Lobachevsky State University of Nizhni

Novgorod

Member: Alexander A. Grusho

Professor, The Institute of Informatics Problems of the Russian Academy of

Sciences (IPI RAN)

Member: Vladimir V. Krylov

Professor, Alekseev State Technical University of Nizhni Novgorod, IEEE member

Member: Vladimir P. Kulagin

Professor, MIEM National Research University Higher School of Economics

Member: Veniamin N. Tarasov

Professor, Povolzhskiy State University of Telecommunications and Informatics

Member: Alexander G. Tormasov

Professor, Innopolis University, IEEE member

Member: Lev N. Shchur

Professor, Chernogolovka Scientific Center of Russian Academy of Science,

Moscow Institute of Physics and Technology

Member: Reza Nejabati

PhD, senior lecturer, University of Bristol, senior member of IEEE

III

Preface

International Science and Technology Conference «Innovative Networking

Technologies: SDN & NFV – The Next Generation of Computational Infrastructure» was
organized under financial support of Ministry of Science and Education of Russian Federation
(GK №14.598.11.0012) by Moscow State University together with a number of leading Russian
universities and scientific centers of the Russian Academy of Sciences (RAS), which are
currently joined in the consortium to develop novel SDN-technologies for research and
educational environments. It was dedicated to the two main streams in modern Network
Architecture – Software-Defined Network and Network Function Virtualization.

Software-Defined Networking (SDN) has emerged as the hottest new networking trend of the
past few decade. Network Function Virtualization (NFV) is a complementary trend and together
they promise to shape the evolution of the Internet and Cloud infrastructure into a Software
Defined Infrastructure while transforming the industry. Network and cloud providers are already
embracing these trends and early adopters are aggressively trialing and deploying SDN and
NFV. Established and new vendors are busy creating their own SDN and NFV technologies and
solutions and are competing for leadership positions in this rapidly growing international market.

The conference brought together SDN and NFV leaders of the international scientific
community, research departments of corporations, and industrial enterprises of the Russian
Federation, as well as academic institutions and public authorities where they have discussed the
most urgent and promising technologies in the area of computer networking, virtualization and
cloud computing, to share the latest developments and provide a platform for in-depth
discussions on the state of the industry and how to move forward. The conference provided
excellent opportunities to interact with and influence the rapidly developing ecosystem of
researchers, telecom and cloud operators, vendors and other stakeholders in Russia.
The conference gathered prominent representatives of industry and academia from various
international projects focusing on SDN/NFV to discuss developing novel ways and tools for
network-enabled scientific research. It was facilitate the exchange of information within
individual scientific fields as well as inside interdisciplinary and international collaborations.

The conference agenda has also included two-days School for young scientists, post-graduates
and graduate students. Its goal is to develop and enhance the pool of available talent proficient in
these technologies and solutions within the Russian Federation.

The papers presented on the conference are collected in this proceeding

October, 2014 Ruslan Smelyanskiy, DrS,
Prof., Сor.-member of

Russian Academy of Science

IV

Table of contents

On real‐time delay monitoring in software‐defined networks ... 1

V. Altukhov, E. Chemeritskiy

VERMONT ‐ a toolset for checking SDN packet forwarding policies on‐line .. 7

V. Altukhov, E. Chemeritskiy, V. Podymov, V. Zakharov

Towards SDI‐bases Infrastructure for Supporting Science in Russia ... 13

V. Antonenko, R. Smeliansky, I. Baldin, Y. Izhvanov, Y. Gugel

An Analysis of Approaches to Onboard Networks Design .. 20

V. Balashov, V. Kostenko, P. Vdovin, R. Smeliansky, A. Shalimov

Towards Load Balancing in SDN‐Networks During DDoS‐attacks ... 25

M. Belyaev, S. Gaivoronski

Progress and Challenges in Worldwide Federation of Future Internet and Distributed Cloud Testbeds .. 31

M. Berman, M. Brinn

Network Verication: Calculus and Solvers .. 37

N. Bjorner, K. Jayaraman

On QoS Management in SDN by Multipath Routing ... 41

E. Chemeritskiy, R. Smeliansky

Consistent network update without tagging .. 47

E. Chemeritskiy, V. Zakharov

SDN‐based Innovation in New Zealand ... 53

S. Cotter

The EXPRESS SDN Experiment in the OpenLab Large Scale Shared Experimental Facility 55

S. Fdida, T. Korakis, H. Niavis, S. Salsano, G. Siracusano

SDNI: The GEANT Testbeds Service – Virtual Network Environments for Advanced Network and
Applications Research ... 62

M. Hazlinsky, B. Pietrzak, P. Szegedi, F. Farina, J. Sobieski

Five SDN‐oriented Directions in Information Security .. 68

A. Grusho, N. Grusho, E. Timonina, V. Piskovski

Towards Distributed Hierarchical SDN Control Plane ... 72

V A. Koshibe, A. Baid, I. Seskar

Selforganizing Cloud Platform ... 77

V. Kostenko, A. Plakunov, A. Nikolaev, V. Tabolin, R. Smeliansky, M. Shakhova

SDI Defense Against DDoS Attacks Based on IP Fast Hopping Method .. 83

V. Krylov, K. Kravtsov, E. Sokolova, D. Lyakhmanov

V

Software‐Defined Network Exchanges (SDXs) and Infrastructure (SDI): Emerging Innovations In SDN and
SDI Interdomain Multi‐Layer Services and Capabilities .. 88

J. Mambretti, J. Chen, F. Yeh

Program Tools and Language for Network Simulation and Analysis .. 94

A. Mikov, E. Zamiatina

Application and Device Specific Slicing for MVNO .. 103

A. Nakao, P. Du

A stateless transport protocol in software defined networks .. 108

M. Nikitinskiy, I. Alekseev

Controller Failover for SDN Enterprise Networks ... 114

V. Pashkov, A. Shalimov, R. Smeliansky

Localizing errors in controller applications ... 120

M. Perevedentsev, V. Antonenko

Data Center Resource Mapping Algorithm Based on the Ant Colony Optimization 127

A. Plakunov, V. Kostenko

Development of educational resource datacenters based on software defined networks 133

P. Polezhaev, A. Shukhman, A. Konnov

OpenFlow SDN testbed for Storage Area Network ... 140

O. Sadov , V. Grudinin , A. Shevel, D. Vlasov, S. Khoruzhnikov, V. Titov ,
A. Shkrebets, A. Kairkanov

In‐kernel offloading of an SDN/OpenFlow Controller ... 143

A. Shalimov, P. Ivashchenko

Queuing Systems with Multiple Queues and Batch Arrivals for Cloud Computing System Performance
Analysis .. 147

S. Shorgin, A. Pechinkin, K. Samouylov, Yu. Gaidamaka, E. Sopin, E. Mokrov

On the Benefits of 5G Wireless Technology for Future Mobile Cloud Computing 151

S. Shorgin, K. Samouylov, I. Gudkova, O. Galinina, S. Andreev

SDN for network security .. 155

R. Smeliansky

A network analytics system in the SDN ... 160

V. Sokolov, I. Alekseev, M. Nikitinskiy, D. Mazilov

Network utilization optimizer for SD‐WAN ... 163

L. Vdovin, P. Likin, A. Vilchinsky

From Federated Software Defined Infrastructure to Future Internet Architecture 167

K.‐C. Wang, M. Brinn, J. Mambretti

A Measurement Architecture for Software Defined Exchanges ... 173

M. Zink

On real-time delay monitoring in
software-defined networks

V. Altukhov
Lomonosov Moscow State University

Moscow, Russia
victoralt@lvk.cs.msu.su

E. Chemeritskiy
Applied Research Center for Computer Networks

Moscow, Russia
tyz@lvk.cs.msu.su

Abstract—The paper introduces a new loop-based method to
measure end-to-end packet delay in software-defined network
infrastructures. Although the method generates auxiliary service
packets, it does not require any complementary support from the
switching hardware. The prototype implementation shows the
method is able to provide one-way delay values with microsecond
precision on a steady load. Direct application of the method to
each data flow in the network is straightforward, but can cause
excessive hardware utilization. Thus, the paper proposes an
algorithm to improve it by decomposing global end-to-end
estimations into the set local ones whereas removing their
redundancy. The algorithm makes it practically possible to
monitor delay of each data flow in real-time.

Keywords—One-Way Delay; Measurement; Software-Defined
Networking; Quality of Service

I. INTRODUCTION

A steady growth in a number of interactive network
applications and services originates an increasing demand in
advanced control over the quality of connections through the
network infrastructure. However, it is a hard problem to
compute an appropriate data transmission path and configure
network devices along this path to meet the requested end-to-
end requirements for the connection. It is even harder to
establish such a cooperation of logically independent network
devices to enable dynamic provisioning of the requested
connections. Furthermore, network hardware evolved without
sufficient attention to Quality of Service (QoS) issues, and
support of corresponding functionality is often a subject to
various restrictions.

Surprisingly, all the listed obstacles have been successfully
overcome by the systems focused on end-to-end bandwidth. It
is due to its concavity bandwidth is guaranteed to be the
minimum among the bandwidths of the links along the
connection path. However, the most of the QoS metrics does
not have this property, and their calculation cannot be easily
decomposed. Quite the contrary, measurement, estimation and
attuning of end-to-end delay are naturally hard in any
asynchronous distributed system without global clock, and
require accurate and precise coordination of network devices.
As a result, no modern system for end-to-end delay
measurement can improve the precision of a theoretical worst-

case estimation, and avoid exotic requirement to the switching
hardware.

In this paper we make a first step towards the QoS-aware
routing by introducing a new method to measure end-to-end
connection delay based on the centralized control and flexible
management interfaces for the switching hardware provided by
Software-Defined Networking (SDN). Our approach has the
following features:

 Measure end-to-end delay on a per-flow basis;
 Precise enough to cover the mutual flow influence;
 Work in SDN with general switching hardware;
 Update results up to several times in a second.

The paper has the following structure. Section II provides a
brief review of related works. In section III we introduce a new
method to measure packet transmission delay along any route
in a network based on header looping. Section IV considers the
algorithm to optimize application of our delay measurement
method to all routes in a network.

II. RELATED WORK

Back in the days of circuit-switched networks end-to-end
delay was in a straight dependence on a length of the wire. The
compliance with the delay requirements was naturally achieved
by searching the network infrastructure for a short enough
virtual channel. Since, the problem of delay control has
complicated dramatically. With the emergence of packet-
switched networks, data flows started to compete with each
other for network resources. The development of technology in
accordance with Moore’s and Gilder’s empiric laws gradually
shifted the bottleneck of data transmission from the wire to the
switching devices. A considerable effort has been made
towards the designing of an efficient network switch
architecture that could provide maximum utilization to the
connected links [1]. In the pursuit of throughput performance a
contemporary switch utilizes a multistage engine for packet
analysis and a mixture of packet buffers and switching fabric,
managed by complicated dynamic packet scheduling
algorithms.

Each delay control tool relies on a certain method of end-
to-end delay estimation, and there has been suggested quite a
number of them. On the one hand, a conservative estimation
based on independent computation of the worst-case delay for
each network node may be easily implemented and applied to This research is supported by the Skolkovo Foundation Grant N 79, July,

2012 and Russian Foundation for Basic Research, project 14-07-00625.

1

any kind of a network. However, is known to inflate the actual
delay value by several orders of magnitude. On the other hand,
state-of-the-art achievements in Network Calculus make it
possible to compute a tight upper bound for the worst-case end-
to-end delay with assumptions of traffic conditioning on the
border network switches, fluid data flows, and their FIFO
multiplexing [2]. Unfortunately, these limitations as well as a
high computation complexity are not insensible. The diverse
and intricate operating principles of switching devices
obscured network-wide packet scheduling and made it hardly
promising to build a method for end-to-end delay estimation
with a wide scope, an appropriate precision, and an acceptable
computation complexity at the same time.

Inability to estimate network delay pushed forward an
intention to measure it. Though, one-way delay measurement
in an asynchronous system is challenging. A computation of a
one way delay as a bisection of the round trip time seems to be
natural, but this approach does not generally work as intended
because both routes and network load of the forward and the
backward paths of a flow may differ. Although it is possible to
compute the one-way delay of a flow with higher precision
with help of the complementary software modules installed on
the end hosts [3], this method is either applicable only to
protocols with some specific features or make the end hosts to
generate a lot of secondary traffic.

Less host-assuming approaches address the data
transmission only through the network infrastructure. It is a
tried-and-true method to bypath the asynchrony by setting up a
global clock with Network Time Protocol (NTP), Global
Positioning System (GPS), or Code Division Multiple Access
(CDMA), and tagging the transmitted packets with timestamp
on send. However, it implies each packet has a place for the
timestamp in its headers, and the switches are able to handle
this timestamp. The prevalent approach is to compute the delay
non-intrusively by means of ad hoc service packets and avoid
the tagging similar to [4]. However, this modification does not
eliminate the need in the dedicated time server and the abilities
of the switching devices to synchronize and generate the
appropriate service packets automatically.

SDN introduces a concept of a single centralized controller
to rule all the switching devices and provided a convenient way
to synchronize them. The paper [5] proposes to use this
opportunity to measure the delay by the following outline. First,
the controller reserves a certain header for the service purposes.
Then, it installs a set of forwarding rules to route the packets
with this header by the path of the flow of interest. However,
the last rule along the path is modified to send outgoing
packets to the controller. From time to time, the controller
forges a probe packet with the reserved header and a relevant
timestamp in its payload, and sends it through the ingress
switch of the constructed path. When the packet comes back,
the controller checks its timestamp and computes the packet
delay.

Packet probes do not require any complementary support
from the hardware, nor the synchronization of switching
devices. However, the probe comprises not only the route of
the real packets, but also the routes from the controller to the

ingress switch and from the egress switch back to the controller.
Moreover, each probe packet experiences two passes through a
network stack of the controller, and a pair of transitions
between the Control Plane and the Data Plane at the switches,
usually implemented by means of a slow software processing.
As a result, the value of the target delay component often
becomes smaller than the value of parasitic components, and
the method is unable to provide the required precision.

In this paper we propose a novel approach to establish
packet probes, which copes the negative impact of the adverse
delay components by increasing the share of the target
component with packet iteration.

III. ONE-WAY DELAY MEASUREMENT FOR A SINGLE PATH

A. Rationale

End-to-end packet transmission delay is equal to a sum of a
network infrastructure delay and a delay between border
switches and network applications at the ends of the route. It is
not possible to measure the latter component due to a lack of
information about configurations of the hosts. However, the
delay of packet transmission through the network infrastructure
is a large part of the end-to-end delay. In this paper we discard
the delay between the network and the hosts, and consider the
delay of the network infrastructure only.

In SDN packets can pass through the network infrastructure
with two types of routes: (1) slow path routes that imply
processing of packets at the controller, and (2) fast path routes
that are processed solely by the switching devices. In most
cases, packets pass through the fast path, therefore, in this work
we focus on measuring end-to-end delay for fast path.

We assume each network switch implements Output
Queuing and consists of the following components:

 Packet analyzers (one per port),
 Switching fabric,
 Output queues (one per port).

Fig. 1. Scheme of switch interaction.

Packet processing at a switch is organized as follows (fig.
1). Upon receiving a packet, the switch analyzes its headers
and produces an instruction to process it. Then, the switch
fabric executes the instruction and transmits the packet to an
appropriate set of output ports. However, the packet can arrive
when the connected channel is already in use by packets from
the other ports. In this case the packet is pushed into a FIFO-
queue of the port. The queue is polled every time the channel
becomes ready to transmit.

We assume the delay of packet processing at analyzers and
switching fabrics as well as the delay of packet serialization

2

and propagation depends solely on packet length and some
performance characteristics of the networking hardware. Thus,
the listed components can be calculated statically without a
regard to the network load. Note our assumption does not
generally hold and some advanced hardware violates it.
However, the value of calculation error is negligible compared
to the delay of packet queuing. Thus, our method focuses on
measuring of the latter one.

Because of the dependence on mutual influence of the
flows, queuing delay cannot be calculated a priori. Our method
captures this dependency with help of a service packets forged
by a network controller to follow the path of the usual data
packets and experience all the appropriate delays. However,
instead of making a single run along the path of interest, the
packet iterates it back and forth in an endless loop. At the
beginning of each iteration the first switch of the loop sends a
copy of the packet to the controller as a pulse message.

Note the interval between a pair of consecutive pulses
provides a precise estimation for RTT over the path of interest.
Its value does not capture any delays cause by interaction with
the controller. The first pulse is sent after the service packet is
already inside of the data path. Thus, the interval does not
include the delay of transmission from the controller to the
Data Plane. Next, although each copy of the service packet
actually goes from the switch to the controller, the interval
value is calculated with a subtraction which annihilates the
corresponding delays and reduces their impact to a jitter.

Our method uses aforesaid advantage and derives one-way
delay along the path of interest from its RTT. However, direct
application of the loop-based measurement results into a heavy
load of the controller usually inadmissible in practice. Thereby,
we focus on decrease in the performance requirements of the
loop-based RTT measurement method in the first place, and
consider the ways to divide RTT into one-way delays fairly in
the second.

B. Measuring RTT with Packet Looping

Intensity of the pulse packet flow depends on a length of
the underlying loop that generates it. The longer the loop, the
fewer impulses reach the controller. It is not possible to expand
the loop because it is tied to the path of interest. However, the
controller can use the headers of a service packet to implement
a counter and send pulse messages once per several iterations.

Let a path of interest consists of N>1 switches S1,…, Sn.
To set up an appropriate topology loop controller goes through
the switches along the path and supplies i-th switch with a pair
of forwarding rules to transmit service packets from the switch
number (i-1 mod N) to the switch number (i+1 mod N) and
back without any modifications. Controller identifies a packet
with a predefined value in a certain field of its header (e.g.
0xBEEF in Ethernet type) to be the service one disregarding
the other fields. Thus, the installed rules contain a nonempty
set of wildcard fields (e.g. Ethernet source and destination
addresses).

Controller interprets the values stored a certain subset of
wildcarded fields as a encoding of a loop counter. To make the
counter run, it selects any switch in the loop and replaces one
of its transmission rules with a set of M similar rules that

modify the value of stored a counter. The pattern of i-th rule
matches the encoding of i while its actions sets the counter
fields with the encoding of (i+1 mod M). Thereby, after being
sent into a constructed loop, a service packet with a valid
encoding of a counter in its headers restores the same set of
headers and appears at the same location of a network at every
M-th iteration. Note such a combination of packet location and
headers is often referred as a packet state [6]. Using this term,
it is correct to say the controller sets up a single loop in the
space of packet states.

The described approach requires M rules to set up a counter
for M iterations and leads to a fast exhaustion of forwarding
tables of the switches. Fortunately, it is possible to reduce it by
modifying individual fields of a counter at different switches.
For example, the switch S1 can increment the first field of a
counter encoding and ignore its other fields. The switch S2 can
increment the second field of a counter while passing through
any packets with non-zero value at its first field. This cascade
scheme factorizes the number of required rules. The controller
installs M1 rules into the first switch and M2 rules at a second
switch and set up a loop with an iteration number equal to their
product M1*M2. In general, if the packet has k counter field of
a sufficient size, it is possible to set up a loop of M iteration
along the path of N≥K switches with K* M^(1/K) +N+1. The
number of rules can be reduced even more, if the switches
support some advanced actions for a certain set of counter
fields (e.g. decrement TTL).

Finally, controller selects any of the counter modification
rules that is used by a single iteration of the loop and extends
its instruction set with an action to send an appropriate pulse
message. As a result, the value RTT can be estimated as an
interval between a pair of consequent pulses divided by the
number of iterations in the constructed loop.

Upon a loss of a service packet the described method stops
the measurement. However, this problem can be solved by
injecting of a new service packet to replace the previous one if
no pulse message has been received for some period. Also this
situation can be used to detect network congestion.

Note a loop over the packet states improves the accuracy of
the RTT measurement. Although intervals between the pulses
include parasitic jitter of a switch-to-controller communication,
its share may be reduced to an eligible value by increasing the
length of the state loop. Suppose the switch-to-controller (SC)
delay varies from 300 µs to 500 µs, and real RTT is about 5 µs.
Then, SC jitter exceeds an actual RTT forty times. If we want
the measured value to provide 90 percent accuracy, it is
necessary to set up a loop with over 400 iterations. Thereby,
we can get a suitable precision even in a network with a high-
latency controller.

C. RTT measurement experiments

We implemented our method to measure the RTT along the
given path with the state looping as an application for POX
controller [7] and validated it experimentally. We used a single
hybrid OpenFlow switch NEC PF5200 with 48 1Gbit/s
interfaces to create a network with 4 virtual switches (fig. 2).

3

The experiments were aimed to check the method accuracy
in dependence on the network load.

The path of interest is S3, S2, S1.Traffic generators and
controller are deployed at a single server with 3 1-Gbit/s
interfaces. We used pktgen [8] to generate and send 1000 byte
packets over the paths S3, S2, S1 and S1, S2, S4, S3, S2, S1.
During the generation, each packet was marked with a
corresponding timestamp. Generated traffic was captured with
wireshark [9]. A difference between the time of packet
capturing and the timestamp inside of its body was considered
as a reference approximation of the RTT at the network
infrastructure.

Under a steady load the reference delay was in range from
500 to 560 μs with an average of 540 μs. The measurement
with a loop running along the path of interest 1024 times
estimated the RTT by a range from 500 to 600 μs, with an
average of 560 μs. This assessment differs from the average
reference estimation by 3.7 percent.

The second purpose of the experiment was to show, that the
results of the proposed method reacted the changes in network
load. To simulate dynamically changing network load traffic
we generated flows of 10000 packets with rate of 600 Mbit/s.
Thus, the rate of data transmission in links along the path S3,
S2, S1 changed from 0 to 1.2Gbit/s (some packets were
dropped).

Measurement results for proposed method showed that
delay was in range from 500 μs up to 1.5 ms. Measured delay
increase to 700 μs, until output port queues became congested.
Upper bound values match packet loss. After output port
queues became empty, measured delay decrease to normal
value – from 500 to 600 μs.

D. Deriving one-way delay of a route by RTT

The calculation of a one-way delay by bisecting the RTT is
often inaccurate. Note we can divide RTT over a single hop
with more precision by taking into account the proportion of
data transmitted in each link direction.

Consider a pair of switches connected to each other by a
link with a bandwidth of C (figure 1). For a given time interval
T, X and Y denote a number of bytes, directed to queues Q1
and Q2 of the switches S1 and S2 respectively. Controller can
obtain actual values of X and Y by sending appropriate statistic
requests to the switches. Note these values are usually
measured at the stage of packet analysis. Thus, their
accumulated size can exceed the number of bytes transmitted
through the channel.

There are three possible options:
1. X/T≤C and Y/T≤C. Thereby, both output queues are

empty and one-way delay in each link direction is
equal to a half of RTT.

2. X/T≥C and Y/T≤C. Q1 is congested and Q2 is empty.
Thus, one-way delay from Switch1 to Switch2 can be
calculated as (RTT+(X/C-T))/2 and one-way delay
from Switch2 to Switch1 can be calculated as (RTT-
(X/C-T))/2.

3. X/T≥C and Y/T≥C. Both Q1 and Q2 are not empty.
One-way delay from Switch1 to Switch2 can be

calculated as (RTT+(X/C-T)-(Y/C-T))/2 and one-way
delay from Switch2 to Switch1 can be calculated as
(RTT-(X/C-T)+(Y/C-T))/2.

With these assumptions, we can divide target path into one-
hop paths, obtain their one-way delays by an advanced division
of RTT and sum them up into a pair of resulted one-way
delays. This method has a large overhead, especially if we want
to measure multiple paths in the network. However, if the paths
of interest have some common parts, it is possible to measure
them only once.

IV. DELAY MEASUREMENT FOR ANY ROUTE

A. Divide and measure

Proposed method allows us to measure RTT of single path
in a network. However, the total number of paths depends
exponentially on the number of switches and it is not possible
to apply the proposed method for each of them directly.

POX

S1 S2

S4

S3

Traffic generator

Traffic generator

Target route

First flow Second flow

Fig. 2. Delay measurement experiment topology with generated flows and

target flow.

Suppose (fig.2) we know delays from S3 to S2 and from S2
to S1. Then delay from S3 to S1, can be represented as sum of
one-hop delays: d(3,1)=d(3,2)+d(2,1). Similarly, the delay for
any route in network can be split into a sum of one-hop delays
and the main target is to measure all one-hop delays in network,
or to construct a network delay map - a structure, containing all
one-hop delays.

A straightforward approach is to measure all one-hop RTTs,
using the proposed measurement method, and obtain one-way
delays using the advanced method for RTT separation.

Another approach is to organize so many loop
measurements, which will allow obtain network delay map as
the result of solving a system of linear equations with loops
RTT. We propose an algorithm that construct network delay
map and organize measurements with minimal controller load.

B. Algorithm for constructing network delay map

We need to organize measurements with minimal controller
load. Header looping measurement method provides two
approaches to minimize network load: increase length of the
topological loops and increase the number of iterations over the
headers. Second approach does not arrange us, because while
minimizing number of PacketIn messages, it increases the

4

number of rules installed into the switches. We will use both
approaches in proposing algorithm.

The idea of the algorithm is to replace some measurements
over single links with measurements over longer paths, and
then derive the former from the latter.

We set up the loop construction problem as follows. For a
given network graph, find such a set of topology loops as to:

1. Each one-way link must be included in at least one
loop;

2. Maximize the accumulated length of the loops in a set;
Assign a variable directed edge in graph. Delay for any

path can be calculated from the linear equation, where directed
edges will represent each hop in path. Suppose we can measure
delay for any path in graph. Then, we can construct such a
system of linear equations, solving which will be obtained
network delay map. Therefore, we need to find such a set of
topology loops that will meet all listed requirements and may
be used to construct a system of linear equations solving which
will be obtained network delay map.

Let two loops be dependent, if edges set of one loop
contain edges set of another loop. Only set of independent
loops can be used to construct a system of linear equations.

Let one loop be sum of two another loops, if it’s set of
edges contain every edge from summand loops and does not
contain any other edge.

We will call set of independent loops - objective, if it meets
all the listed requirements. Any loop of the objective set can be
represented as the sum of other loops of smaller lengths (if the
objective loop includes more than two directed edges and it
does not belong to the graph basis). Then the objective set of
cycles can be constructed from the basis of all simple loops of
the graph. The construction of simple loops sets requires
finding a fundamental set of loops of the graph, which is a
union of fundamental sets of all spanning trees of the original
graph.

The problem of finding a fundamental set is complicated,
because the number of spanning trees of the graph can reach

, where n is the number of vertices in graph. Therefore, to
construct the independent set of loops we use an algorithm to
find all the simple loops in the graph described in [10]. Its
complexity – O((n+m)(c+1)), where c is the number of simple
loops in the graph. The resulting set may contain linearly
dependent loops and they should be filtered out with post
processing.

Next step is to construct objective set from set of basic
loops. As mentioned before, any objective loop can be
represented as sum of basic loops. We can construct objective
set of loops as a linear combination of basic loops. But
construction of the objective set of loops with maximum sum
of length is a problem that cannot be solved without exhaustive
search. Therefore, we propose a greedy algorithm that expands
topological loops. In this algorithm, we use only independent
simple loops from constructed system. For every loop in
system, we try to combine it with other, and if combination is
simple independent loop, longer than previous one, we save it.
Thus, after every step of algorithm we get a correct

(independent) system of loops with total topological length,
bigger than the one at the previous step.

Number of loops in the constructed objective set of graph
does not exceed its cyclomatic number. Thus, we need to
supplement it with more loops (total number of loops must be
equals to number of one-way edges in network). To achieve
this, we complete the system with measurements using the
advanced RTT division.

Now we just need to start measurements for every loop in
system. Measuring RTT from this loops and solving linear
system will give us network delay map.

1

3

5 4

2

Fig. 3. Delay map construction experiment topology.

C. Delay map construction experiments

Applied to an example network topology showed by figure
3 our algorithm generates a set of seven loops listed in table I.
However, there are five links and ten delay values to calculate.
Thus, we had to derive one-way delays from the RTT at links
1-2, 2-3, 2-5 (fig. 4).

We have implemented the algorithm as an application for
POX controller and have studied its performance in a network
simulated by Mininet [11].

Experiments with our method showed the one-way delay
for each link has been in range from 16 to 20 µs. For
comparison, the value of RTT measured by pinging hosts,
connected to switches 1 and 2 (which includes SC delay) is in
the range of 40 to 60 μs, so we reached necessary accuracy of
measurements. The number of iterations for each loop was
2048. It used two counter-fields, that required to install 96 + k
rules per loop (k is number of switches in loop). The number of
PacketIn messages in a second is from 60 to 100. Such a low
intensity should be acceptable for any modern controller.

TABLE I. SYSTEM OF NETWORK LOOPS, GENERATED BY ALGORITHM

Loop number Switches in loop

1 1, 2, 5, 4, 3, 2, 3, 4, 5, 2, 1

2 1, 2, 5, 4, 3, 4, 5, 2, 1

3 1, 2, 5, 4, 3, 2, 1

4 1, 2, 5, 4, 5, 2, 1

5 1, 2, 1

6 2, 5, 2

7 2, 3, 2

5

Num\link 1 - 2 2 - 1 2 - 3 2 - 5 3 - 2 3 - 4 4 - 3 4 - 5 5 - 2 5 - 4
1 1 1 1 1 1 1 1 1 1 1
2 1 1 0 1 0 1 1 1 1 1
3 1 1 0 1 1 0 1 0 0 1
4 1 1 0 1 0 0 0 1 1 1
5 1 1 0 0 0 0 0 0 0 0
6 0 0 0 1 0 0 0 0 1 0
7 0 0 1 0 1 0 0 0 0 0
8 1 0 0 0 0 0 0 0 0 0
9 0 0 1 0 0 0 0 0 0 0

10 0 0 0 1 0 0 0 0 0 0
Fig. 4. System of linear equations, generated by algorithm.

V. CONCLUSION

We proposed a flexible method to measure one-way delay
of any flow with adjustable trade-off between the accuracy and
the load of network infrastructure it imposes. Using of loops in
space of packet states allowed us to measure delay through fast
path and make switch-controller delay negligible. Proposed
method can be used out-of-the-box, and can be easily
implemented as module of any SDN controller.

We proposed an algorithm to construct a delay map suitable
to estimate the infrastructure delay for all paths in a network
with necessary accuracy in real-time. The algorithm allows our
delay measurement method to scale without overloading of the
controller.

REFERENCES

[1] N. McKeown, A. Mekkittikul, V. Anantharam and J. Walrand,
“Achieving 100% throughput in an input-queued switch”, IEEE
Trans. on Communications, № 8, Vol. 47, pp. 1260—1267,
1999.

[2] A. Bouillard and G. Stea, “Exact worst-case delay for FIFO-
multiplexing tandems”, Proc. of the 6th International
Conference on Performance Evaluation Methodologies and
Tools, 2012.

[3] B. Ngamwongwattana and R. Thompson, “Measuring one-way
delay of VoIP packets without clock synchronization”, Proc. of
the International Instrumentation and Measurement Technology
Conference (I2MTC), pp. 532-535, 2009.

[4] S. Shalunov, B.Teitelbaum and A. Karp, “A One-way Active
Measurement Protocol (OWAMP)”, Internet Engineering Task
Force, RFC 4656, September 2006.

[5] K.Phemius and M.Bouet, “Monitoring latency with OpenFlow”,
2013 9th International Conference on Network and Service
Management (CNSM) and its three collocated Workshops -
ICQT, SVM and SETM, pp. 122-125, 2013.

[6] Peyman Kazemian, George Varghese and Nick McKeown,
“Header Space Analysis: Static Checking For Networks”, Proc.
of the 9th USENIX conference on Networked Systems Design
and Implementation, 2012

[7] Pox controller. http://www.noxrepo.org/pox/about-pox/

[8] Robert Olsson, “pktgen the linux packet generator”, Linux
Symposium, 2005

[9] Arora Himanshu, “Wireshark - The best open source network
packet analyzer”, IBM developerWorks, 2012

[10] Donald B. Johnson, “Finding All the Elementary Circuits of a
Directed Graph”, SIAM Journal on Computing 4, no. 1, 77-84,
1975

[11] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob
Lantz and Nick McKeown, “Reproducible Network
Experiments Using Container-Based Emulation”, CoNEXT,
2012

6

VERMONT - a toolset for checking SDN packet
forwarding policies on-line

V. Altukhov, V. Podymov, V. Zakharov
Lomonosov Moscow State University

Moscow, Russia
Email: victoralt@lvk.cs.msu.su, valdus@yandex.ru, zakh@cs.msu.su

E. Chemeritskiy
Applied Research Center for Computer Networks

Moscow, Russia
Email: tyz@lvk.cs.msu.su

Abstract—In this paper we present a VERifying MONiTor
(VERMONT) which is a software toolset for checking the
consistency of network configurations with formally specified
invariants of Packet Forwarding Policies (PFP). Correct and
safe management of networks is a very hard task. Every time
the current load of flow tables should satisfy certain require-
ments. Some packets have to reach their destination, whereas
some other packets have to be dropped. Certain switches are
forbidden for some packets, whereas some other switches have
to be obligatorily traversed. Loops are not allowed. These and
some other requirements constitute a PFP. One of the aims of
network engineering is to provide such a loading of switches
with forwarding rules as to guarantee compliance with the PFP.
VERMONT provides some automation to the solution of this
task. VERMONT can be installed in line with the control plane.
It observes state changes of a network by intercepting messages
sent by switches to the controller and command sent by the
controller to switches. It builds an adequate formal model of
a whole network and checks every event, such as installation,
deletion, or modification of rules, port and switch up and down
events, against a set formal requirements of PFP. Before a network
update command is sent to a switch VERMONT anticipates
the result of its execution and checks whether a new state of
network satisfies all requirements of PFP. If this is the case then
the command is delivered to the corresponding switch. Upon
detecting a violation of PFP VERMONT blocks the change, alerts
a network administrator, and gives some additional information
to elucidate a possible source of an error. VERMONT has a
wide area of applications. It can be attached to a SDN controller
just to check basic safety properties (the absence of loops, black-
holes, etc) of the network managed by the controller. VERMONT
may be also cooperated with software units (like FlowVisor) that
aggregate several controllers. In this case VERMONT checks
the compatibility of PFPs implemented by these controllers. This
toolset can be used as a fully automatic safeguard for every
software application which implements certain PFP on a SDN
controller.

Keywords—runtime verification, formal specification, model
checking, software defined network, controller, switch, packet for-
warding relation, Binary Decision Diagram, network update

I. INTRODUCTION

Runtime verification is an approach to computing system
analysis and verification based on extracting information,
checking required properties and possibly reacting to the vio-
lation of some requirements in the course of system execution.
Runtime verification can be used for many purposes, such
as security or safety policy monitoring, debugging, testing,
verification, validation, profiling, fault protection, behavior
modification (e.g., recovery), etc. Runtime verification avoids

the complexity of traditional formal verification techniques,
such as model checking and theorem proving, by analyzing
only one or a few execution traces and by working directly
with the actual system, thus scaling up relatively well and
giving more confidence in the results of the analysis. Runtime
verification can be performed when there is no access to the
software code of the computing systems to be verified.

No wonder that these nice features of runtime verification
make this approach much favor in using it for verification and
analysis of the behaviour of reactive systems, such as network
protocols. In this paper we present a VERifying MONiTor
(VERMONT) which is a toolset for runtime verification of
Software Defined Networks (SDNs) against formally specified
invariants of Packet Forwarding Policies (PFP). The paper is
organized as follows. In Section 2 we introduce a formal model
for SDN configurations, and in Section 3 we present a formal
language for PFP specification. In Section 4 we discuss three
main tasks to be solved for runtime verification of SDNs,
namely, model building, model checking, and model updating.
In section 5 we describe our runtime verification toolset, its
structure and functionality. And, finally, in the Conclusion we
compare our tool set with other SDN verification tools.

II. NETWORK MODEL

In this Section we presented a relational formal model of
SDN configurations which is used in VERMONT for SDN
data plane runtime verification. This formal model of SDN
has been introduced in [15].

Packet header is a binary vector h = (h1, h2, . . . , hN). All
headers have the same length N and the set of all packet
headers is denoted by H. Components of a header h are
denoted by h[i], 1 ≤ i ≤ N .

Switch port is a binary vector p = (p0, p1, p2, . . . , pk). Its
components are denoted by p[i], 0 ≤ i ≤ k. If p[0] = 1
then p is an input port, otherwise it is an output port. All
switches in the network are assumed to be identical and have
the same number of ports. The set of all (input,output) ports
of a switch is denoted by P(IP,OP) respectively. The output
port p = (0, 0, . . . , 0) is viewed as a drop port. It is denoted
by drop; at arriving to this port the packets are dropped. The
output port p = 〈0, 1, 1, . . . , 1〉 is the control output port. It is
denoted by octrl; at arriving to this port the packets are sent to
a controller. The input port p = 〈1, 1, 1, . . . , 1〉 is the control
input port. It is denoted by ictrl; only commands from the
controller come to this port.

7

All network switches are enumerated. The name of each
switch is a binary vector w = (w1, w2, . . . , wm). Its compo-
nents are denoted by w[i], 0 ≤ i ≤ m. The set of such vectors
is denoted by W .

Let h ∈ H, p ∈ P, w ∈ W . Then a pair 〈h,p〉 is called
a local packet state, a pair 〈p,w〉 is called a vertice, and a
triple 〈h,p,w〉 is called a packet state. The set of all packet
states is denoted by S.

A header pattern is a vector z = (σ1, σ2, . . . , σN), where
σi ∈ {0, 1, ∗}, 1 ≤ i ≤ N . A port pattern is a vector y =
(δ1, δ2, . . . , δk), where δi ∈ {0, 1, ∗}, 1 ≤ i ≤ k. Patterns are
used for the selection of appropriate rules from flow tables as
well as for the updating of packet headers.

In our model of SDN we consider two types of actions:
forwarding actions OUTPUT (y), where y ∈ OP , and header
modification action SET FIELD(z), where z is a header
pattern. An instruction is any finite sequence of actions.

A rule is a tuple r = 〈(z,y), α, `〉), where z,y are header
and port patterns, α is an instruction, and ` is natural number
which is a priority of the rule. A flow-table tab is a pair (D,β),
where D = {r1, r2, . . . , rn} is a set of forwarding rules and β
is a default instruction. A switch applies rules from its flow-
table to those packets which arrive to the input ports of a
switch. If all rules from the set D are inapplicable to a packet
then the default instruction β takes effect. Usually in practice
β just sends the packets to the SDN controller. The set of all
possible flow-tables is denoted by Tab.

Unlike the SDN models introduced in [1], [2], [3] our
model deals with paths in the data plane routed by forwarding
rules (per flow model) rather than individual packets that
traverse a network of switches (per packet model). Therefore,
the semantics of the SDN model is defined in terms of packet
forwarding relations on packet states and vertices. These
relations are specified by Quantified Boolean Formulae. To
capture the effect of patterns in forwarding rules we use two
auxiliary functions Uσ(u, v) and Eσ(u), where σ ∈ {0, 1, ∗},
and u, v are binary vectors, such that

• if σ = ∗, then Uσ(u, v) is u ≡ v and Eσ(u) is 1,

• if σ ∈ {0, 1}, then Uσ(u, v) and Eσ(u) are u ≡ σ.

An action a = OUTPUT (y) sends packets without
changing their header to all output ports that match a pattern
y = (δ1, δ2, . . . , δk). It computes the relation

Ra(〈h,p〉,〈h′,p′〉)=
N∧
i=1

(h[i] ≡ h′[i]) ∧
k∧
i=1

Uδi(p
′[i],p[i])

on the set of local packet states H×P .

An action b = SET FIELD(z) uses a pattern z to
modify headers of packets: a bit h[i] in a header remains intact
if z = ∗, otherwise it is changed to z[i]. This action computes
the relation

Rb(〈h,p〉,〈h′,p′〉)=
N∧
i=1

Uσi
(h′[i],h[i]) ∧

k∧
i=1

(p[i] ≡ p′[i]) .

on the set H×P .

An instruction α computes the relation Rα which is a
sequential composition of the relations that correspond to its
actions. If α is empty then a packet by default have to be
dropped, i.e. sent to the port drop. Therefore, we assume that
every instruction always ends with a forwarding action.

A packet forwarding rule r = (〈z,y〉, α, `) applies the
instruction α to all packets whose port and header match the
patterns y and z. Its effect is specified by the relation Rr on
the set of local packet states H×P

Rr(〈h,p〉,〈h′,p′〉)=PRCr(〈h,p〉) ∧Rα(〈h,p〉, 〈h′,p′〉) ,

where PRCr(〈h,p〉) =
k∧
i=1

Eδi(p[i]) ∧
N∧
j=1

Eσj (h[j]) is a

precondition of the rule r.

The semantics of a flow-table tab = (D,β), where D =
{r1, r2, . . . , rn} is specified by a binary relation as follows.
Let n be the highest priority of the rules from tab. For every
i, 1 ≤ i ≤ n, denote by tabi the set of rules from tab which
have priority i: tabi = {r = (〈z,y〉, α, i) : r ∈ tab}. Then
define recursively (from n down to 1) the pairs of relations
Ritab and Bitab as follows:

Rntab =
∨

r∈tabn
Rr, Bntab =

∨
r∈tabn

PRCr;

Ritab = {(〈h,p〉,〈h′,p′〉) : there exists r in tabi such that
〈h,p〉 /∈ Bi+1

tab and (〈h,p〉,〈h′,p′〉) ∈ Rr}),
Bitab = Bi+1

tab ∨
∨

r∈tabi
PRCr.

Since the missed packets are managed by the default rule
β, we introduce also the predicate

R0
tab(〈h,p〉,〈h′,p′〉) = ¬B0

tab(h,p) ∧Rβ(〈h,p〉,〈h′,p′〉).

Finally, Rtab =
n∨
i=0

Ritab; it means that every packet arrived at

some port of the switch is either processed by the rule of the
highest priority that matches the local state of the packet, or
it is managed by the default rule β of the flow-table.

The topology of a network is completely defined by a
packet transmission relation T ⊆ (OP ×W)× (IP ×W). In
practice T is an injective function. Vertices that are involved in
the relation T are called internal vertices of the network; others
are called external vertices. We denote by In and Out the sets
of all external input vertices and external output vertices of a
network respectively. External vertices of a switch are assumed
to be connected to outer devices (hosts, servers, gateways, etc.)
that are out of the scope of the SDN controller. Packets enter a
network through the input vertices and leave a network through
its output vertices.

When a set of switchesW and a topology T are fixed then
a network configuration is a total function Net : W → Tab
which assign flow-tables to the switches of the network. The
semantics of a network at a configuration Net is specified
by the 1-hop packet forwarding relation RNet on the set of
(global) packet states S as follows:

RNet(〈h,p,w〉, 〈h′,p′,w′〉) holds iff

• either (〈h,p〉, 〈h′,p′〉) ∈ RNet(w), w = w′, and
〈p′,w〉 ∈ Out (a packet is forwarded to an outer

8

device connected to an external output port p′ of a
switch w),

• or there exists a port p′′ such that (〈h,p〉, 〈h′,p′〉) ∈
RNet(w) and (〈p′′,w〉, 〈p′,w′〉) ∈ T (a packet is
delivered to an input port p′ of a switch w′).

Thus, a formal model of SDN configuration Net is a triple
MNet = (RNet, In,Out).

Network configurations alter at the expiry of forwarding
rules’ time-outs, at the shutting down or failure of links, ports,
or switches, and by the network updating commands received
from the controller. OpenFlow protocol [4] includes network
updating commands of the following types:

• add(w, r) to install a forwarding rule r in the flow-
table of a switch w;

• del(w, 〈z,y〉, `) to remove rules from the flow-table
of a switch w: a rule r = (〈z′,y′〉, α,m) is uninstalled
iff m = ` and the pattern 〈z′,y′〉 of the rule matches
the pair 〈z,y〉;

• mod(w, 〈z,y〉, β, `) to modify the rules in the flow-
table of a switch w: if pattern 〈z′,y′〉 of the rule r =
(〈z′,y′〉, α,m) matches the pair 〈z,y〉 and m = `
then the instruction α in such rule is changed to the
instruction β.

As a network updating command is delivered to a switch it
changes the flow-table of the switch by installing, removing or
modifying the appropriate forwarding rules. Formally, we write
com(Net) for the new configuration obtained at the execution
of a network updating command com on a configuration Net.

III. SPECIFICATION LANGUAGE

Usually a wide range of requirements is imposed upon
communication networks to guarantee their correct, safe and
secure behaviour. We consider only those requirements that
concern the reachability properties. Certain packets have to
reach their destination, whereas some other packets have to
be dropped. Certain switches are forbidden for some packets,
whereas some other switches have to be obligatorily traversed.
Loops are not allowed. These and some other requirements
constitute a Packet Forwarding Policy (PFP). One of the
aims of network engineering is to provide such a loading of
switches with forwarding rules as to guarantee compliance
with a given PFP. Since flow-tables of switches are updated
by the controller, this raises the problems of verification of
SDN configurations against PFPs. In order to apply formal
methods to this problem one needs a formal language to
specify forwarding policies.

PFPs refer to properties of network configurations at some
stages of the SDN behaviour. These properties mostly concern
the paths routed in a network by packet forwarding rules.
We choose first-order logic with two variables and transitive
closure operator (FO2[TC] in symbols) to specify the prop-
erties of network configurations. As for atomic formulae, we
use for this purpose Boolean formulae to specify relationships
between packet states and three basic predicates R, I , and O
to denote one-hop packet forwarding relation and the sets of
incoming and outgoing packet states. Now we consider this
PFP specification language in some more details.

Let V ar = {X,Y } be a set of two variables that are
evaluated over the set S = H × P × W = {0, 1}N+k+m

of packet states. A packet state specification is any Boolean
formula ϕ constructed from a set of Boolean variables {Xi[j] :
Xi ∈ V ar, 1 ≤ j ≤ N +k+m} and connectives ¬, ∧, ∨. A
PFP specification language L is the smallest set of expressions
which satisfies the following requirements:

1) if ϕ is a packet state specification then ϕ ∈ L;
2) if X ′, X ′′ ∈ V ar then R(X ′, X ′′), I(X ′), O(X ′′) are

in L;
3) if ψ(X,Y) is a formula in L and it includes exactly

two free variables then TC(ϕ(X,Y)) ∈ L;
4) if ψ1 and ψ2 are formulae in L and X ∈ V ar then

the formulae (¬ψ1), (ψ1∧ψ2), , (ψ1∨ψ2), (∃X ψ1),
and (∀X ψ1) are in L.

A PFP specification is any closed formula in L.

The semantics of L is defined as follows. Let Net be a
network configuration, and s = 〈h,p,w〉 and s′ = 〈h′,p′,w′〉
be a pair of packet states. Then

1) Net |= R(X,Y)[s, s′] iff (s, s′) ∈ RNet;
2) Net |= I(X)[s] iff 〈p,w〉 ∈ In;
3) Net |= O(X)[s] iff 〈p,w〉 ∈ Out;
4) Net |= TC(ϕ(X,Y))[s, s′] iff there exists a finite

sequence of packet states s0, s1, . . . , sn such that
s0 = s, sn = s′, and Net |= ϕ[si, si+1] holds for
every i, 0 ≤ i < n.

The satisfiability relation for other formulae in L is defined
straightforward as in the first-order logics.

Some simple examples show that L is rather expressive to
formalize PFPs.

1) No loop-holes are reachable from the outside of the
network:
¬∃X (I(X)∧ ∃Y (TC(R(X,Y))∧ TC(R(Y, Y)));

2) Packet flows flow1 and flow2 do not pass the same
switch:
¬∃X (∃Y (flow1(Y) ∧ I(Y) ∧ TC(R(Y,X)))∧
∃Y (flow2(Y) ∧ I(Y) ∧ TC(R(Y,X)))),
where flow1 and flow2 are Boolean formulae which
specify the aforesaid flows.

There are several reasons to explain our choice of FO2[TC]
for PFP specification language. In the most papers that study
verification problem for SDN (see [8], [9], [10], [11], [14])
the authors use temporal logics (LTL or CTL) for PFP spec-
ification language. This choice is explicable when per-packet
abstraction is concerned since the movement of a packet may
be viewed as a process evolving in time. But as soon as
our model has a per-flow abstraction level, temporal logics
become inadequate formalism. Since we are interested in the
relationships between packet states and routs in the network
configurations, FO2[TC] expresses these more properties far
more explicitly. Moreover, as it was shown in [6], [7], LTL,
CTL, µ-calculus, and PDL can be translated in FO2[TC].
This fragment of 2-nd order logics is well-suited for model
checking. As it follows from the results of [5], model checking
problem for FO[TC] is NLOG-complete. The very structure of
FO2[TC] provides a possibility to evaluate it in straightforward
manner on any finite model.

9

IV. MODEL BUILDING, MODEL CHECKING AND MODEL
UPDATING

The aim of run-time verification is to check the correctness
of program behaviour in the course of program execution. In
the framework of our per-flow abstract model of SDN this
problem can be formalized as follows: given an initial network
configuration Net0, a list of PFP formal specifications Φ =
{ϕ1, . . . , ϕn}, and a sequence of network updating commands
α = com1, . . . , comi, . . . , check that for every i, i ≥ 1, a
network configuration Neti = comi(Neti−1) satisfies all PFP
specifications, i.e. all formulae from the list Φ are invariants
of the sequence α.

To cope with this problem one needs some means to solve
three individual tasks:

1) build a formal model MNet of SDN configuration by
the description of SDN topology T and the content
of SDN switch flow-tables Net,

2) check satisfiability MNet |= ϕ of a given formal
specification ϕ on a given formal model MNet of
SDN configuration, and

3) update a formal model MNet of SDN configuration
Net at the execution of a network updating command
com on this configuration.

We briefly discuss our approach to the solution of these tasks.

A formal model of SDN configuration MNet is completely
specified by the finite relations RNet, In,Out on the set of
binary vectors (packet states and vertices). Finite relations
can be represented symbolically by Binary Decision Diagrams
(BDDs) that are well-suited for set-theoretic manipulations
with such relations (see [17]). Nowadays many software pack-
ages for computations on BDDs are available; in our project
we used the toolset BuDDy due to its simple and convenient
interface.

Using packages for manipulations with BDDs it is quite
easy to solve the model building task. To this end it is sufficient
to compute step by step in a straightforward way BDDs for all
relations involved in the definition of RNet (see Section II),
namely for actions, instructions, rules, flow-tables.

As for the second task, model checking, it can be easily
solved as well with the help of BDD. Every formula ϕ from the
specification language L is presented by an Abstract Syntax
Tree (AST) Tϕ. The leaves of this tree are variables X and Y ,
whereas the inner nodes of this tree are basic predicates R, I,O
of L, Boolean operators and quantifiers, and transitive closure
operator TC. To check M |= ϕ it is sufficient to evaluate Tϕ
on a model M . Vertices marked with basic predicates invoke
the corresponding BDDs (with possible variable renaming). If
a vertex is marked with a Boolean operator or a quantifier then
the corresponding procedures for manipulations with BDDs is
used to assign a BDD to this vertex. The only type of vertices
that require some specific treatment are those that are marked
by transitive closure operator. To build a BDD for TC(R0),
given a BDD for a binary relation R0, we use the following
simple scheme: compute iteratively BDDs for relations

Ri+1(X,Y) = ∃Z (Ri(X,Z) ∧Ri(Z, Y))

until Ri+1 = Ri. This is the most time consuming stage of
AST evaluation and much efforts have been made to implement

it efficiently. Since every specification formula is closed then
BDD assigned to the root of Tϕ is a Boolean constant which
indicates (un)satisfiability of ϕ on M .

Some heuristics are used to reduce the cost of AST evalua-
tion. For example, in practice only some fields (VLAN, coun-
ters, etc.) in packet headers are subjected to SET FIELD
actions. Therefore, a packet header h may be split into two
components h = (h′,h′′), where h′ is composed of those bits
that are not changed. Then 1-hop packet forwarding relation
RNet may be viewed as RNet(h

′
1,h
′′
1 ,p1,w1,h

′′
2 ,p2,w2).

Such a presentation substantially reduces the size of BDDs.

An efficient solution of the third task — model updating
— is crucial for the utility of run-time verification, since the
performance of model updating procedure must be adequate
to the rate of configuration updatings occurred in real-life
networks. In some cases the basic relations in the SDN
configuration models can be modified rather quickly.

V. A TOOLSET VERMONT

An SDN run-time verification toolset VERMONT includes
four components (see Fig. 1):

1) a module for intercepting OpenFlow commands and
messages (Proxy-Server),

2) a model checking module (Verifier),
3) an initializing module (Feeder),
4) a PFP specification editor (Editor)

While operating the toolset interacts with OpenFlow controller
and SDN switches (when carrying out experiments we used
instead Mininet — a software system for SDN prototyping
[16]).

One of the aims of network engineering is to provide such a
loading of switches with forwarding rules as to guarantee com-
pliance with the PFP. VERMONT provides some automation
to the solution of this task. VERMONT can be installed in line
with the control plane. It observes state changes of a network
by intercepting messages sent by switches to the controller
and command sent by the controller to switches. It builds
an adequate formal model of a whole network and checks
every event, such as installation, deletion, or modification of
rules, port and switch up and down events, against a set formal
requirements of PFP. Before a network update command is sent
to a switch VERMONT anticipates the result of its execution
and checks whether a new state of network satisfies all require-
ments of PFP. If this is the case then the command is delivered
to the corresponding switch. Upon detecting a violation of PFP
VERMONT blocks the change, alerts a network administrator,
and gives some additional information to elucidate a possible
source of an error. VERMONT has a wide area of applications.
It can be attached to a SDN controller just to check basic
safety properties (the absence of loops, black-holes, etc) of
the flow-tables managed by his controller. VERMONT may
be also cooperated with software units (like FlowVisor) that
aggregate several controllers. In this case VERMONT checks
the compatibility of PFPs implemented by these controllers.
This toolset can be used as a fully automatic safeguard for
every software application which implements certain PFP on
a SDN controller.

10

To achieve these tasks the modules of VERMONT operate
as follows.

Proxy-Server communicates with OpenFlow controller,
SDN switches and Verifier Server. It intercepts all commands
sent by the controller to SDN switches and all messages trans-
mitted from the SDN switches to the controller. Proxy-Server
is managed by the user of VERMONT (network manager) who
can turn on and off this module, select its operational mode
(SEAMLESS, MIRROR, INTRRUPT), set up and change
the operation parameters. Depending on the chosen operation
mode Proxy-Server may provide data (OpenFlow messages
and commands) to Verifier, suspend some commands sent
by the controller to SDN switches and block some of these
commands by the results of their verification.

Verifier communicates with Proxy-Server, Feeder and Ed-
itor. This module runs three main algorithms:

• an initialization procedure which, given a description
of a current network configuration (i.e. network topol-
ogy and the content of flow-tables of the network
switches) Net, builds a BDD representation of 1-hop
packet forwarding relation RNet;

• a model checking procedure which verifies a set of
PFP formal specifications Φ1, . . . ,Φn against a formal
model of network configuration Net.

• a model updating procedure which, given a BDD
representation of 1-hop packet forwarding relation
RNet for a current network configuration Net and a
network updating command com builds 1-hop packet
forwarding relation Rcom(Net) for the updating of
Net.

Verifier as a server receives from Proxy-Server a sequence
of OpenFlow network updating commands and messages on
forwarding rules time-out expirations, and (depending on the
operation mode of the toolset) it checks the correctness of
commands w.r.t. given PFP specifications, blocks incorrect
commands, and informs the user about the results of the
verification. Verifier as a client may send requests to Feeder for
the descriptions of a current network configuration. Verifier as
a server receives from Editor formal specifications of a current
PFP.

Feeder interacts with Verifier and with OpenFlow con-
troller. At the requests from Verifier it communicates with the
OpenFlow controller as a client and asks it about the necessary
data. At receiving the data on current network configuration
Feeder retransmits them to Verifier.

By means of Editor a user of the Toolset may input PFP
formal specifications, check their syntactic correctness, and
send these specifications to Verifier.

VERMONT admits three modes of operation.

1) SEAMLESS mode. In this mode VERMONT oper-
ates like a control flow channel between the Open-
Flow controller and the network of switches. Proxy-
Server does not invoke Verifier, updating commands
are not suspended and they are delivered to corre-
sponding switches without delay. VERMONT pro-
ceeds to this mode either by the request from its user

OpenFlow
controller

?

6commands

messages

Proxy-Server

?

6commands
messages

SDN
network

Feeder
�

-

request

network topology
and flow-tables

Verifier:
Model Builder,
Model Checker,
Model Updater

?

6

request

Net

-
�

commands

verification
verdicts

Editor

6PFP
specifications

Fig. 1.

(manually), or at the shutting down of communication
with Verifier (automatically).

2) MIRROR mode. In this mode Proxy-Server retrans-
mits without delay all OpenFlow commands and
messages to the corresponding parties (controller
and switches) but the copies of these control flow
data are delivered to Verifier. At receiving network
updating commands Verifier checks their correctness;
it informs a user about the results of the checking, but
does not block incorrect commands.

3) INTERRUPT mode. In this mode VERMONT carries
out a full-fledged run-time verification of network
configurations and handle the flow of network up-
dating commands sent to by the OpenFlow controller
to SDN switches. All updating commands and statis-
tics requests that depend on these commands are
suspended by Proxy-Server until their verification
is completed. The copies of suspended commands
are delivered to Verifier. It simulates the execution
of every such command on the current network
configuration and checks the resulting configuration
against the PFP specifications it received from Editor.
If all PFP requirements are satisfied then Verifier
allows Proxy-Server to sent the command to the
corresponding switch. Otherwise, Proxy-Server drops
the command and informs the network manager about
this event.

VI. CONCLUSIONS

We evaluate the performance of our run-time verification
toolset VERMONT on the model of Stanford University
Backbone Net. This network has 16 switches, and each of
them has three flow-tables. Totally, the flow-tables of this net
contain more than 750000 forwarding rules. Stanford has made
the entire configuration rule set public and it can be found
in [18]. This example is used in many papers [8], [9], [10],
[12], [13] on network verification as benchmark. The results
of comparative analysis of the performance of these tools is
presented in the table below (MB — Model Building, MUC
— Model Updating and Checking).

11

Tool MB MUC Spec
(ms) (ms) Lang

VERMONT 4600 100 – 600 FO[TC]
(2013)
NetPlumber 37000 2 – 1000 CTL
(2013) [12]
VeriFlow > 4000 68-100 Fixed
(2013) [10] properties
AP Verifier 1000 0.1 Fixed
(2013) [13] properties
FlowChecker 1200000 350 – 67000 CTL
(2010) [8]
Anteater 400000 ??? Fixed
(2011) [9] properties

As it can be seen from this table VERMONT has the
most expressive PFP specification language and displays good
performance in building initial models of SDN configurations.
But some verification toolsets overcome VERMONT in the
efficiency of model updating. Nevertheless, we believe that
this feature of VERMONT can be substantially improved
with the help of new techniques similar to those used in
[13]. This is one of the lines of our further research on this
topic. Another important task to be solved is the designing
and implementation of a new module for generating counter-
example in those cases when a network configuration does not
satisfies some PFP requirement expressed by a ∀-formula of
specification language L.

ACKNOWLEDGMENTS

This research is supported by the Skolkovo Foundation
Grant N 79, July, 2012, and by RFBR Grant 12-01-00706.

REFERENCES

[1] M. Reitblatt, N. Foster, J. Rexford, D. Walker. Consistent updates for
software-defined networks: change you can believe in!. HotNets, v. 7,
2011.

[2] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger. D. Walker. Abstrac-
tions for Network Update. In the Proceedings of ACM SIGCOMM,
2012.

[3] M. Canini, D. Venzano, P. Peresini, D. Kostic, J. Rexford ”A NICE
way to Test OpenFlow Applications”. In the Proceedings of Networked
Systems Design and Implementation, April 2012.

[4] Open Flow Switch Specification. Version 1.3.0, June 25, 2012,
http://www.openflow.org/wp/documents/.

[5] Immerman N. Languages that capture complexity classes. SIAM Journal
of Computing, v. 16, N 4, 1987, p. 760-778.

[6] Immerman N., Vardi M. Model checking and transitive closure logic.
Lecture Notes in Computer Science, 1997, p. 291-302.

[7] Alechina N., Immerman N. Reachability logic: efficient fragment of
transitive closure logic. Logic Journal of IGPL, 2000, v. 8, N 3, p. 325-
337.

[8] E. Al-Shaer, W. Marrero, A. El-Atawy, K. El Badawi. Network
Configuration in a Box: Toward End-to-End Verification of Network
Reachability and Security. In the 17th IEEE International Conference
on Network Protocols (ICNP’09), Princeton, New Jersey, USA, 2009.

[9] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, R.B. Godfrey, S.T. King.
Debugging of the Data Plane with Anteater. In the Proceedings of the
ACM SIGCOMM conference, 2011, p. 290-301.

[10] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey. VeriFlow:
Verifying Network-Wide Invariants in Real Time In the Proceedings of
International Conference ”Hot Topics in Software Defined Networking”
(HotSDN), 2012.

[11] P. Kazemian, G. Varghese, N. McKeown. Header space analysis: Static
checking for networks. In the Proceedings of 9-th USENIX Symposium
on Networked Systems Design and Implementation, 2012.

[12] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, S. Whyte.
Real time network policy checking using header space analysis. In the
Proceedings of USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2013.

[13] H. Yang, S. S. Lam, Real-time verification of network properties using
atomic predicates. In the Proceedings of IEEE International Conference
on Network Protocols, 2013.

[14] S. Gutz, A. Story, C. Schlesinger, N. Foster. Splendid isolation: A
Slice Abstraction for Software Defined Networks. In the Proceedings of
International Conference ”Hot Topics in Software Defined Networking”
(HotSDN), 2012.

[15] Chemeritskiy E.V., Smelyansky R.L., Zakharov V.A. A Formal Model
and Verification Problems for Software Defined Networks. In the
Proceedings of of the 4-th Workshop ”Program Semantics, Specifica-
tion and Verification: Theory and Applications”, 2013, Yekaterinburg,
Russia, p. 21-30.

[16] B. Lantz, B. Heller, and N. McKeown. A Network in a Laptop: Rapid
Prototyping for Software-Defined Networks. In the Proceedings of the
9-th ACM Workshop on Hot Topics in Networks, October 20-21, 2010,
Monterey, CA.

[17] R. E. Bryant. ”Graph-Based Algorithms for Boolean Function Manip-
ulation”. IEEE Transactions on Computers, C-35(8):677691, 1986.

[18] Header Space Library and NetPlumber.
https://bitbucket.org/peymank/hassel-public/.

12

Towards SDI-bases Infrastructure for Supporting
Science in Russia

V. Antonenko
ARCCN,

Lomonosov Moscow State University
Moscow, Russian Federation

vantonenko@arccn.ru

R. Smeliansky
ARCCN,

Lomonosov Moscow State University
Moscow, Russian Federation

rsmeliansky@arccn.ru

I. Baldin
ARCCN

Moscow, Russian Federation
ibaldin@arccn.ru

Y. Izhvanov
Informika/RUNNet

Moscow, Russian Federation
yli@informika.ru

Y. Gugel
Informika/RUNNet

Moscow, Russian Federation
gugel@run.net

Abstract—Modern science presents a number of challenges to
the cyber-infrastructure supporting it: heterogeneity of the
required computational resources, problems associated with
storing, preserving and moving large quantities of information, a
collaborative nature of scientific activities requiring shared
access to resources, continuously growing requirements for
computational power and network bandwidth, and, last, but not
least, ease of use. In this position paper we explore a new
approach to creating and growing such infrastructure based on
the principles of federation, enabled by deep programmability of
individual infrastructure elements: Software-Defined
Infrastructure (SDI). We describe the evolution of the science
infrastructure, open research problems and the concrete steps we
are taking towards its realization by building a unique, widely
distributed science facility in Russia based on SDI and GENI
technologies.

Keywords—software-defined networking, infrastructure-as-a-
service

I. INTRODUCTIONS
Modern scientific research is impossible without the

sophisticated computational and data-processing
infrastructure. Different science domains present a variety of
challenges to the cyber-infrastructure, which today may
consist of desktop computers, small institutional clusters,
cloud resources and supercomputers purpose-built to address
specific problems. These challenges can be summed up as:

• Infrastructure heterogeneity. Different computational
solutions may require differently optimized computational
and data-processing architectures. For example part of a
given computational workflow may be executed using
“map-reduce”, followed by calculations in a tightly-coupled,
massively parallel MPI environment. Recent advances in
many-core systems present new infrastructure optimization
points by allowing the use of Intel MIC[1] or GPGPU [2]
co-processors targeted at specific computational approaches.

• Data processing. A number of science domains are
beginning to encounter a problem that is generically referred
to as the “Big Data” problem, where the ability to generate
the data by scientific instruments exceeds the ability of the
computational elements to process them due to e.g.
inadequate network bandwidth and/or insufficient
computational power. Added to that are issues with long-
term data storage and provenance.

• Distributed science. Today’s progress of science relies
on collaborative efforts by multiple institutions and requires
cyber resources belonging to multiple organizations. The
multi-disciplinary nature of science requires the
participation of experts from multiple domains. For example
bio-informatics brings together computer scientists and
geneticists with the goal of designing efficient genotype
processing algorithms.

These challenges are compounded by the reductions in
operating budgets of many scientific organizations, which
require that the existing or newly constructed cyber-
infrastructure is utilized by many collaborative projects across
multiple science domains to improve the economies of scale.

In order to answer these challenges we need a new kind of
cyber-infrastructure that will simultaneously

• Be deeply reconfigurable, i.e. able to match the
requirements of a wide range of computational problems.

• Be economical, i.e. support simultaneous uses by
scientists from multiple domains

• Support easy formation of collaborations around
available institutional infrastructure by allowing their
participants to flexibly ‘opt-in’ portions of their resources
without relinquishing control over them.

• Provide for ‘friction-free’ movement of data and
computation as determined by the dataset sizes and
availability of computational resources.

This research is supported by the Skolkovo Foundation Grant N 79,
July, 2012 and Russian Foundation for Basic Research, project
14-07-00743

13

• Allow for connecting experimental devices and
instruments for the purposes of generating or processing
data.

In this position paper we explore a new approach to
constructing such an infrastructure based on Software-Defined
Infrastructure (SDI) technologies that combine performance
with the required deep programmability. We also describe our
efforts to construct a widely-distributed testbed called
“GRANIT – Global Russian Advanced Network InitiaTive” in
Russia to help answer the many architectural, deployment and
usability questions that we expect to encounter while turning
our vision into reality.

II. RELATED WORK

The challenges outlined above have in some form or
another been the focus of interest of the research community
for some time.

The first systematic approach to address some of them was
attempted with the creation of the Grid, standardized via Open
Grid Services Architecture (OGSA) [3]. The critical
components of the architecture have been realized via Globus
Toolkit [4] and Condor-G [5]. The combination of the two
allows for distribution of computational tasks over multiple
clusters that have Globus interfaces, as is done in many High-
Throughput Computing (HTC) and High-Performance
Computing (HPC) facilities. Globus also provides some
solutions for data movement via GridFTP software [6] that
allows to efficiently move data between clusters by utilizing
the available high-bandwidth connections through e.g.
multiple parallel TCP sessions.

There have also been attempts to unite under the common
grid framework the scheduling of compute resources and on-
demand optical network paths that would support large data
transfers, as, for example, was done in G-lambda [7] project.

The commonly acknowledged shortcomings of these
efforts are in

• The complexity of the configuration and maintenance of
the certificate-based grid authorization system.

• The fundamental assumption of the grid computing
paradigm that all elements of the grid are continuously
connected by reliable high-bandwidth interconnects.

• That the first-class object in the grid architecture is a
compute-job, which makes it difficult to attach dedicated
networking bandwidth to a particular activity.

• Difficulties in packaging the units of computation with
their environments (operating system, data), that lead to
productivity lost to adjusting the environments of the
executing clusters to run specific applications.

• Difficulties in adapting the grid to conceptually new
computational paradigms, such as “map-reduce”.

The typical way of achieving data movement in grid-based
high-performance and high-throughput environments is by
deploying Data-Transfer Nodes (DTNs) [20] - specially tuned
hardware nodes that have an interface into the public Internet
or a bandwidth-on-demand network and also have high-speed

access into the shared filesystem of the grid resource. The data
transfer software on the DTN (e.g. GridFTP) and the
networking stack are specially tuned for sustained high-speed
data transfers. It is the responsibility of the user to stage the
data in and out of the HTC/HPC resource using the DTNs.
The deployment of DTNs represents a form of a static Content
Distribution Network (CDN) tuned for super-computing or
grid applications.

The cloud computing paradigm, which became popular in
the recent years also promises to address many of the
problems we identified. Originally introduced by several large
commercial entities (largely Amazon) as a way to amortize the
expense of maintaining their own computational
infrastructure, they developed virtualization mechanisms to
sell time on that infrastructure during off-peak hours to other
customers. It has since become a entire new area of research
by commercial and academic research organizations. Among
cloud offerings that are of interest to the science community,
we should note Amazon Elastic Compute Cloud (EC2) and
Simple Storage Service (S3). These initial basic services
opened the possibilities for resellers to tailor them to specific
customer classes. For example, using EC2, Cycle Computing
offers HTC and HPC services for domain scientists struggling
to maintain their own infrastructure. Recently they
demonstrated a 1.2 peta-flop system built out of EC2
resources for the study of molecular structures of organic
semiconductors [8]. Other offerings supporting new
computational paradigms include Elastic MapReduce [9]. In
parallel to these “public” clouds, new technologies were
developed for creating “private” or “institutional” clouds.
These include OpenStack[10], Eucalyptus[11],
CloudStack[12] and VMWare[13].

Compared to the grid, cloud technologies offer several
advantages: deep programmability — since the unit of
computation is a virtual machine environment that packages
the computation and data together — and massive scale,
especially the public clouds, which provide the illusion of
infinitely scalable resources. They do, however, have several
shortcomings:

• Difficulties with moving data in and especially out of the
cloud/vendor lock-in [15]

• Opaqueness of internal cloud topology that does not
allow users to predict the performance of network links
ahead of time [18]

• Clouds are well suited to “pleasantly parallel”
computation paradigms that don’t require large amounts of
inter-node communications via e.g. MPI

• Difficulties in allowing external users access to specific
private cloud resources, which in the grid are resolved using
Grid Security Architecture (GSI)

What is required is a combination of some of the best
features of grids and clouds with an additional support for
programmability, federated access and programmatic control
over network resources in a single elastic infrastructure. Due
to its deep programmability, this paradigm has been termed
“Software-Defined Infrastructure” (SDI) [14], which we
examine in the following section.

14

III. SOFTWARE-DEFINED INFRASTRUCTURE

The move towards SDI began largely with the
development of the OpenFlow [16] protocol and the
concomitant emergence of the concept of Software-Defined
Networking (SDN). Today SDN is understood to be broader
than OpenFlow, however this protocol deserves to be called
one of the first building blocks towards SDN.

The broadest set of ideas defining SDI today originates
from the project named GENI (Global Environment for
Network Innovation) [17], initiated by the US National
Science Foundation. GENI is an international federation of
testbeds by now spanning several countries and offering its
resources to many researchers across the globe. GENI
resources include cloud compute and storage resources,
OpenFlow switches and programmable wireless networks.

GENI control software federates together multiple
resource providers and allows users to create “slices” of
infrastructure - programmable topologies of resources
collected from those providers, connected by various network
fabrics which offer bandwidth-on-demand services or higher-
level SDN services. These slices are, in effect, independent
virtual systems or networks target-built for specific
experimental or computational activities.

The individual slices operate in parallel and independently
from each other, with performance isolation provided by the
specific virtualization or slivering technologies, that allow for
programmatic partitioning of various resource types, such as
compute hypervisors, individual network paths (VLANs and
MPLS) or individually-addressable storage volumes.

Resource slivers are mono-typed and user-programmable,
i.e. a user may specify, for example, the specific operating
system image or file system type in compute and storage
slivers, respectively. The slivers within a slice are
interconnected into a user-defined topology with dedicated
network links of specified performance. Slices may connect to
the commodity Internet via a variety of gateway technologies.
Taken together, programmable compute, storage and
networking form the foundation of the Software-Defined
Infrastructure.

We note that the technologies for low-level slivering and
programming computational and storage resources are
generally well-understood today, although open problems
remain when it comes to proper isolation of these sliver types
from each other and quantifying their performance in a multi-
user system. Network slivers, on the other hand, represent a
relatively new idea, which with the emergence of SDN added
a new level of programmability, not envisioned before.

Specifically, SDN technologies allow the interposition of
user control directly into the network elements within the slice
topology, that belong to a specific network provider, thus
creating new points for inserting user-specified network traffic
forwarding policies. Prior to the introduction of OpenFlow,
the level of virtualization and programmability of networks
was limited to the creation of bandwidth on-demand paths
through one or more network providers [19]. Now users can
dictate not only the topologies of the slice interconnects, but

actually affect the behavior of the network traffic inside those
slices.

These new capabilities coupled with the push by multiple
vendors to create OpenFlow-compliant networking equipment
capable of serving at different networking layers and different
market segments, create new opportunities for extending the
notion of SDI deeper into the networking domain. The
development and extension of the concept of SDNs into new
areas is actively continuing and, along with developing further
abilities to orchestrate different resources together into
complex slice topologies and behaviors is included as part of
our vision in this paper.

The tight coupling of network, computational and storage
resources in GENI allows it to become a federated platform
unifying multiple independent resource providers for the
purposes of solving a variety of computational problems,
whose solutions today are limited by their ability to move
data, e.g. gene sequencing or processing of high-volumes of
other kinds digital data from physics, astronomy, biology or
other science domains. For us the problems of data movement
within slices in service of science applications represent a
critical area for advancement, in order to support the needs of
domain sciences.

III. KEY PROBLEMS FOR SCIENCE APPLICATIONS AND SDI

A. Use Cases
We begin with a few examples of using SDI technologies

for scientific computational research. Considering the strong
connection between SDI and cloud technologies, one of the
easiest areas to apply is to problems that are easily
parallelizable. These types of problems are frequently
encountered today, for example, in gene sequencing. In part it
is because most of the software was originally written for
analysis on personal computers, but it is also due to relatively
small size of individual genetic datasets, so that they can be
packaged together with applications into a virtual machine
image.

Using slices created out of institutional private clouds
federated using GENI technologies, scientists gain access to a
platform that can easily launch large numbers of parallel
analyses. However, unlike with public clouds, the users are
not limited to using datasets that are baked into the images:
their applications may query databases or datasets stored
inside or the slice, as necessary and still see predictable data
transfer performance. Additionally, the slices may host other
auxiliary resources that include, for example, graphical front
ends for access by the users. All elements of these
infrastructure configurations are completely dynamic, created
on-demand as the users see fit.

A more complex example includes a problem that requires
elements of parallel computation, but also where some part of
the computational process is tightly-coupled and requires MPI
on a cluster or supercomputer with an MPI-friendly
interconnect. In this case several collaborating organizations
can create a virtual system or slice that includes not only cloud
computational elements, but also portions or slivers of
supercomputers belonging to them, which are connected to the
slice when needed. The data needed for processing on the

15

supercomputer can be transferred via the slice network links
into the supercomputer and afterwards saved into permanent
storage or transferred elsewhere for further processing.

B. Requirements and Open Problems
As we mentioned, any virtual system or slice created for a

science application consists of three basic sliver types:
compute, storage and network. A science application may
require heterogeneous computational and storage resources to
be present in a slice for solving various steps within the
computation. The topology of the slice must support the needs
of the application by allowing the movement of data or
computation to where it is most efficient, for example,
transferring a dataset to available processing compute
elements or saving the resulting datasets into permanent
storage - all tasks that are difficult today, requiring manual
user intervention, as with DTNs and making data sharing,
especially in collaborative environments, a difficult task.

In order to provide a predictable high-productivity
environment for domain scientists this virtual system must be
able to

1. Guarantee the performance of individual slivers. A
user may formulate their requirement in the form of an
SLE (Service Level Expectation), which quantifiably
describes their expected behavior. For example for
compute slivers it may be specified in the form of
expected computational performance, size and I/O speeds
for storage, bandwidth and latency for network links.

2. Dynamically control the placement of virtualized
slivers into the physical infrastructure of federated
providers in order to satisfy the SLE, the indicated
topology connecting storage and compute slivers and the
anticipated traffic forwarding policies within this
topology. Also includes being able to easily recreate a
slice configuration whenever a particular experiment or
computational activity must be rerun.

3. Be able to efficiently move data or computation,
which includes both provisioning links with sufficient
bandwidth, as well as providing policies for in-slice
control over traffic forwarding which optimize data
movement in response to application objectives.

Some of these questions are being answered in GENI and
other research projects. Our focus is on broadening the
application of SDI and its extension to new types of resources.
Here we describe some of the research directions we plan to
take in developing the GRANIT testbed as related to the three
requirements formulated above.

C. Heterogeneous Network Virtualization and Bridging
As we mentioned, computational resources in GENI today

are represented by cloud-like computational containers
capable of launching easily parallelizable tasks. However
many computational science domains reliy on tightly coupled
models of computation, which require large amounts of inter-
node communications via e.g. MPI. The speed and
effectiveness of the computations depends directly on the
efficiency of the backplane network fabric connecting the

nodes. Most supercomputer architectures today rely on
InfiniBand interconnects to support these requirements.

InfiniBand is architected for high-performance systems
requiring delay-sensitive communications, while Ethernet is
firmly entrenched in the data center and even metro-area and
some wide-area networks. The popularity of InfiniBand is
justified by its relatively low cost and the availability of
software solutions that take advantage of it. At the same time,
using Ethernet for time-critical communications is still
challenging, although the vendor community is working on
some converged solutions (like, for example, Data Center
Bridging [802.1Qbb, 802.1Qaz etc.]).

In the traditional static computing architectures this
dichotomy between InfiniBand and Ethernet does not present
a problem, since there is no need to bridge and control the two
together - the data is transferred e.g. via DTNs using Ethernet
from outside the cluster into the supercomputer filesystem, as
we described in Section II, while the nodes inside the
supercomputer communicate via InfiniBand.

However, with the ability to federate various resources via
GENI technologies, comes the opportunity to tightly
interconnect nodes of multiple clusters for the purposes of
marshaling their power for addressing a single problem. In this
case the InfiniBand fabrics of the supercomputers must be
virtualized and joined together with traditional MAN/WAN
mechanisms using Ethernet. This would allow partitions of
multiple supercomputers to be joined together in slices with
other types of computational or data-generating resources.

Thus efficient virtualization and bridging of InfiniBand to
Ethernet is one of the problems we plan to address. This fits
with the first requirement for satisfying user SLEs. The
partitioning of the problem data and codes across the slivers
belonging to different supercomputers also represents an
interesting area of research we plan to investigate. This could
take the form of several tightly coupled models launched on
their respective supercomputer partitions and exchanging
coupled data in real-time over the bridged InfiniBand/Ethernet
fabric. Alternatively, it could be a single problem code and
dataset launched on multiple partitions simultaneously as if
they were a single supercomputer, with some links
experiencing higher latencies due to bridging over Ethernet
between different locations. Determining the efficient ways of
achieving these partitions, benchmarking the results and
devising strategies for determining resource allocation
tradeoffs to achieve the best performance are part of our
scope.

D. Software-Defined Storage
Software-Defined Storage or SDS represents an important

component of the overall SDI system. The key problem to be
solved here relates to extremely high expectations placed on
data consistency and reliability in the traditional systems.
These are a good match for a SAN local to a particular
supercomputer, however in a distributed environment due to
the CAP (Consistency, Availablity and Partition tolerance)
theorem [21] we must find more flexible ways of operating
storage in a slice, by making intelligent tradeoffs between
those three attributes. Examples of the initial tradeoffs in this

16

area can be seen in the design and deployment of distributed
NoSQL databases [22] or distributed storage systems like
GlusterFS [23] and CouchDB [24].

These tradeoffs, as applied to block and object storage as
well as filesystems in a virtualized SDI environment will
involve novel user-programmable behaviors that we plan to
concentrate some of our research efforts.

E. Description Languages
A system for supporting scientific experiments and

computation must offer its users a way of describing their
requirements to the slice. Languages, suitable for describing
the experiments are referred to as domain-specific languages
(DSLs), and in this case are intended for describing the
requests of creating the virtual infrastructure suitable for the
experiment. Significant amount of work has been invested in
this direction in GENI, where the declarative GENI RSpecs
[25] are used for

• Describing the requirements to the desired virtual system

• Describing the resources available within the federation
for allocation to virtual system

• Describing the allocated resources back to the user
including details of allocation needed for accessing and
using the resources.

One key issue lies in the fact that GENI represents a kind
of Infrastructure-as-a-Service (IaaS), thus focusing on the task
of allocating and interconnecting together the resources in the
desired topology. However, for serving science the IaaS
paradigm may present abstractions that are too low level to be
useful. The user must be able to specify not only the necessary
resources, but also to some extent pre-define the behavior of
the individual slivers by e.g. assigning and configuring
applications in them, defining storage access policies for e.g.
shared datasets and finally, determining the policies for
forwarding traffic within the allocated virtual network, that
answer the needs of the application (e.g. prioritize specific
types of traffic, route different kinds of traffic in different
ways across the topology and so on). All these configurable
behaviors fall well within the SDI paradigm, however are not
answered by existing GENI technologies.

We plan to invest significant efforts in designing and
implementing a family of domain-specific languages that
answer the needs described above. The related effort would be
to design algorithms that operate on these language
representations in order to perform the allocation and
placement of resources that go into the different virtual
systems - a problem that combines aspects of resource
scheduling, placement and authorization.

F. Software-Defined eXchanges
The final aspect of this problem area that represents

interest to us is the ability to bridge together virtual systems
created, for example, by multiple collaborations in order to
join their efforts for further collaborative activities and allow
the movement of data between their collaborative

infrastructures. This requires that multiple virtual systems peer
with each other in a controlled fashion.

One of the emergent ideas in this area is the idea of a
Software-Defined eXchange [26] - a virtual point location
where peering networks can exchange traffic in a way that
satisfies their internal policies. The simplest form of an SDX
replaces the bulky and expensive to configure BGP protocol
with a logical SDN-controlled fabric that can enforce the rules
for traffic exchange between the peering partners.

Considering the significant efforts being made by the
vendors to extend OpenFlow into new areas of network
control and management, we can expect this concept to mature
and extend not only to Layer 3 IP networks, but also to Layer
2 and, perhaps, transport networks. The flexibility provided by
OpenFlow in terms of traffic matching allows to create
sophisticated filtering and forwarding policies at SDXs that
are easier to implement and, importantly, validate, than the
existing BGP-based solutions.

We plan to investigate the suitability of the SDX paradigm
to peering virtual systems serving multiple science
applications. This idea also dovetails with our planned
research activities into domain-specific languages, as SDXs
present a new kind of application running in a slice, which
has specific configuration parameters and abstractions that
will need to be incorporated into our DSL.

IV. CONSTRUCTING GRANIT
We are in the process of constructing the infrastructure for

running and studying distributed science applications in
Russia (Figure 1), based on the principles describes in this
paper and using SDI and GENI technologies. It has the dual
goals of attracting science users to the new type of
infrastructure, while at the same time providing a research
testbed for addressing the issues of data movement within
virtual networks built to serve specific domain science
applications.

The testbed is built around a consortium of Russian
universities:

1. Lomonosov Moscow State University;

2. Applied Research Center for Computer Networks
(ARCCN) ;

3. Saint Petersburg National Research University of
Information Technologies, Mechanics and Optics;

4. Moscow Institute of Physics and Technology;

5. The National research university "Higher school of
economics";

6. Nizhny Novgorod State Technical University;

7. A. Kharkevich Institute for Information Transmission
Problems;

8. Lobachevsky State University of Nizhni Novgorod -
National Research University;

17

Figure 1: Map of the future testbed.

9. Southern Federal University;

10. Orenburg State University;

11. National Research Tomsk Polytechnic University;

12. State Institute of Information Technologies and
Telecommunications.

The core of the infrastructure will be built around cloud
components deployed as individual racks of servers, with
attached storage and networking capabilities. These racks will
be deployed on the campuses of consortium members and
interconnected with each other using Russian federal research
and education network provider RUNNet. The racks will be
controlled using ORCA software suite [27] - one of several
control frameworks developed for GENI.

Each rack represents a small private cloud with a selection
of SDI technologies available to users and experimenters:
compute virtualization via a hypervisor or provisioning of
bare-metal nodes, software-sliverable iSCSI storage, onto
which we can superimpose programmable high-level
distributed storage policies and SDN-capable switches to
support the greater degree of control over its networking
functions.

Network connectivity between the elements of this system
is key to its performance and evolution. This becomes more
critical as the scale of the system grows and as it involves
more and more members. For example, in the US, the core
GENI connectivity depends on Internet2 [28] and its
bandwidth-on-demand services AL2S and ION. Internet2 is
actively developing SDN-based services for its infrastructure.
Similar projects are underway in other research networks
around the world: GEANT, NORDUNet, SURFnet [29, 30,
31].

In Russia, RUNNet has points of presence in 63 regions of
the country reaching over 2M users. RUNNet partners with a

number of commercial providers, like “Rostelecom”,
“Transtelecom”, “Megafon”, “Vympelcom” and others to
utilize their available fiber and increase its reach.

RUNNet connects to the rest of the world using a number
of 10Gbps connections with peerings in Amsterdam and
Stockholm with GEANT, NORDUNet, Internet2, GLIF and
others. Some parts of RUNNet DWDM infrastructure now run
at 100Gbps. RUNNet also peers with commercial providers
in- and outside of Russia.

Its infrastructure provides access to high-performance
computational resources and instruments that generate large
amounts of data in a number of top Russian universities and
labs: several Top50 supercomputers, remote robotic protein
crystallography stations, instruments for studying synchrotron
radiation and so on.

Using this capability we also plan to connect the resources
available via RUNNet to our testbed in order to create an
environment in which a variety of computational problems
with a mix of instruments and computational resources can be
addressed. These connections will provide the ability for the
users to run their experiments and computations on a
heterogeneous set of powerful resources and at the same time
enhance our research activities by providing a richer set of
problems that need to be addressed.

Selecting an appropriate topology for GRANIT
deployment environment depends upon several factors:

1. Scale of project, we planed on first stage to interconnect
up to 15 Racks.

2. Amount of traffic expected on the network, base on
similar projects in other countries we suppose that 10
Gbps will provide confortable conditions for holding
experiments.

3. Budget allotted for the project.

18

4. Already existed network infrastructure that mentioned
above.

Based on all factors we consider to build the hybrid Star-
Ring topology. That will provide the scalability without
disturbing existing architecture and fault detection and
troubleshooting.

Basic workflow for GRANIT user will consist of several
steps:

1. Define experiment;

2. Provision the resources;

3. Launch experiment and collect data;

4. Observe and analyze the results.

With the possibility of dynamically adding new
computational and storage resources to already launched
experiment, GRANIT will become the flexible and powerfully
experimental testbad for researchers of natural scientific and
computer science profile.

V. CONCLUSIONS
In this paper we presented our vision of a future distributed

computational science infrastructure built on the principles of
federation and using multiple software-defined technologies to
support its performance objectives.

We presented a set of open problems we plan to address in
order to make our vision a reality. Part of the vision is
constructing an advanced testbed connecting deeply
reconfigurable compute, storage and networking resources
with existing high-performance resource in Russia in a hybrid
system that simultaneously serves as a blueprint for evolving
the national cyber-infrastructure and a testbed for
investigating a number of important problems related to
different areas of scientific research.

We are very thankful to GENI Project Office for their
openness willingness to help, active support, as well as
providing access to GENI toolkits and documentation.

REFERENCES
1. “Programming and Compiling for Intel® Many Integrated Core

Architecture”, https://software.intel.com/en-us/articles/programming-
and-compiling-for-intel-many-integrated-core-architecture. Retrieved on
June 27, 2014.

2. H. Kim, R. Vuduc, S. Baghsorkhi “Performance Analysis and Tuning
for General Purpose Graphics Processing Units (GPGPU).” — Morgan
& Claypool Publishers, 2012.

3. OGSA http://toolkit.globus.org/ogsa/
4. Globus Toolkit http://toolkit.globus.org/toolkit/
5. Frey, J., Tannenbaum, T., Livny, M., Foster, I., & Tuecke, S. (2002).

Condor-G: A computation management agent for multi-institutional
grids. Cluster Computing, 5(3), 237-246.

6. Allcock, W., Bresnahan, J., Kettimuthu, R., Link, M., Dumitrescu, C.,
Raicu, I., & Foster, I. (2005, November). The Globus striped GridFTP
framework and server. In Proceedings of the 2005 ACM/IEEE
conference on Supercomputing (p. 54). IEEE Computer Society.

7. Takefusa, A., Hayashi, M., Nagatsu, N., Nakada, H., Kudoh, T.,
Miyamoto, T., ... & Sekiguchi, S. (2006). G-lambda: coordination of a

grid scheduler and lambda path service over GMPLS. Future Generation
Computer Systems, 22(8), 868-875.

8. MegaRun http://www.cyclecomputing.com/discovery-invention/use-
cases/

9. Amazon Elastic MapReduce https://aws.amazon.com/elasticmapreduce/
10. Pepple, K. (2011). Deploying OpenStack. " O'Reilly Media, Inc.”.
11. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S.,

Youseff, L., & Zagorodnov, D. (2009, May). The eucalyptus open-
source cloud-computing system. In Cluster Computing and the Grid,
2009. CCGRID'09. 9th IEEE/ACM International Symposium on (pp.
124-131). IEEE.

12. Baset, S. A. (2012, October). Open source cloud technologies. In
Proceedings of the Third ACM Symposium on Cloud Computing (p.
28). ACM.

13. VMWare http://www.vmware.com/
14. J. Thomas, “A road map to software-defined infrastructure” InfoWorld,

November 13, 2013
15. J. Brodkin, “Data movement from Amazon to rival clouds hits speed

bump”, ArsTechnica Mar. 20, 2012.
16. Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,

Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner
“OpenFlow: Enabling Innovation in Campus Networks“ ACM
SIGCOMM Computer Communication Review, Volume 38, Number 2,
April 2008.

17. Elliott, C. (2008, October). GENI-global environment for network
innovations. In LCN (p. 8).

18. Wang, G., & Ng, T. E. (2010, March). The impact of virtualization on
network performance of amazon ec2 data center. In INFOCOM, 2010
Proceedings IEEE (pp. 1-9). IEEE.

19. Guok, C., Robertson, D., Thompson, M., Lee, J., Tierney, B., &
Johnston, W. (2006, October). Intra and interdomain circuit provisioning
using the oscars reservation system. In Broadband Communications,
Networks and Systems, 2006. BROADNETS 2006. 3rd International
Conference on (pp. 1-8). IEEE.

20. Data Transfer Nodes https://fasterdata.es.net/science-dmz/DTN/
21. Seth Gilbert and Nancy Lynch. 2002. Brewer's conjecture and the

feasibility of consistent, available, partition-tolerant web services.
SIGACT News 33, 2 (June 2002), 51-59.

22. Cattell, R. (2011). Scalable SQL and NoSQL data stores. ACM
SIGMOD Record, 39(4), 12-27.

23. Gluster FS http://www.gluster.org/
24. Anderson, J. C., Lehnardt, J., & Slater, N. (2010). CouchDB: the

definitive guide. " O'Reilly Media, Inc.”.
25. GENI RSpec

http://groups.geni.net/geni/wiki/GENIExperimenter/RSpecs
26. Feamster, N., Rexford, J., Shenker, S., Clark, R., Hutchins, R., Levin,

D., & Bailey, J. (2013). SDX: A software-defined internet exchange.
Open Networking Summit.

27. Baldine, I., Xin, Y., Mandal, A., Ruth, P., Heerman, C., & Chase, J.
(2012). Exogeni: A multi-domain infrastructure-as-a-service testbed. In
Testbeds and Research Infrastructure. Development of Networks and
Communities (pp. 97-113). Springer Berlin Heidelberg.

28. Internet2 and GENI
http://www.internet2.edu/presentations/tip2013/20130116-boyd-fowler-
Internet2-GENI.pdf

29. GÉANT SDN research and outlook
http://www.ofertie.org/files/2014/02/geant_research.pdf

30. Demonstration: SURFnet SDN/OpenFlow Testbed
https://tnc2014.terena.org/core/event/34

31. Integration of NSI and SDN
http://apan.net/meetings/Hawaii2013/Session/presentations/APAN-
TIP2013-FIT-tanaka-rev04.pdf

19

An Analysis of Approaches to

Onboard Networks Design

V. Balashov, V. Kostenko, P. Vdovin

Department of Computational Mathematics and Cybernetics

Lomonosov Moscow State University

Moscow, Russia

hbd@cs.msu.su, kostmsu@gmail.com,

pavel.vdovin@gmail.com

R. Smeliansky, A. Shalimov

Applied Research Center for Computer Networks

Moscow, Russia

smel@arccn.ru, ashalimov@arccn.ru

Abstract—This paper presents a comparison of several

approaches to design of data exchange networks for onboard

real-time information and control systems (RT ICS). The

approaches considered are based on Fibre Channel (FC),

Avionics Full Duplex Ethernet (AFDX) and Software-Defined

Networking (SDN) technologies. The networks are compared

according to the following criteria: ability to guarantee real-time

messages transfer; ability to maintain common time in the

system; amount of extra hardware resources to ensure the

necessary reliability; support for dynamic (during the RT ICS

runtime) alteration of message transfer routes.

Keywords—real-time systems; onboard networks; fibre

channel; software-defined networks

I. INTRODUCTION

In real-time information and control systems (RT ICS),
tasks execution and messages transfer must be performed in
strictly defined time intervals. Violation of these intervals
leads to RT ICS inoperability. To aircraft onboard RT ICS,
besides timing constraints, constraints on weight and
dimensions are applied, as well as increased reliability
requirements.

Traditionally, point-to-point channels and multiple access
channels with centralized control were employed to perform
data exchange in onboard RT ICS. This practice resulted in
growth of the number of data exchange links according to
growth of the number of functional units and subsystems of
the aircraft, as well as to increase of requirements to speed and
reliability of data transfer. Usage of copper cable for the
physical links constrained the onboard network bandwidth and
resulted in growth of weight and dimensions of RT ICS.
Furthermore, cable shielding was required to protect the
network from electromagnetic interference, which led to
additional increase of the network weight.

One of the promising approaches to reduction of the
number of physical data exchange links is usage of switched
data exchange networks based on packet switching. To
increase the network bandwidth it is reasonable to widely use
optical channels which are by order of magnitude lighter than
copper ones and are insensitive to electromagnetic

interference.

In this paper we present a comparison of approaches to
onboard switched networks design based on Fibre Channel
(FC), Avionics Full Duplex Ethernet (AFDX) and Software-
Defined Networking (SDN). The networks are compared
according to the following criteria:

1) Ability to guarantee real-time messages transfer. This
criterion is described in the next section in terms of
Service Level Agreement (SLA) requirements.

2) Ability to maintain common time in the system.

3) Amount of extra hardware resources to ensure the
necessary reliability.

4) Support for dynamic (during the RT ICS runtime)
alteration of message transfer routes without violation of
SLA requirements for the other messages.

To ensure the data transfer reliability, it is necessary that
two non-intersecting routes for each message are present in the
onboard network. For most modern RT ICS this equals to
duplication of every physical data exchange channel [1, 2].

Possibility to dynamically alter the message transfer routes
is determined by the extent to which the routing tables in the
switches can be modified in runtime. In some cases these
tables can be modified only before start of RT ICS operation;
in other cases, the modification can be performed during the
system operation.

Dynamic alteration of message transfer routes is necessary
in cases of:

 network equipment and/or computational units failure;

 tasks migration during the RT ICS mode change.

Different RT ICS operation modes involve execution of
different, but possibly intersecting, sets of tasks. Tasks
migration is relevant for integrated RT ICS in which a
common pool of computational resources is shared between
different subsystems. Support for tasks migration increases the
efficiency of computational resources utilization.

This research is supported by the Ministry of education and science of
the Russian Federation, Unique ID RFMEFI60714X0070

20

II. DATA FLOWS IN THE ONBOARD NETWORK

Data flows between network nodes are specified as a set of
messages MSG={msg}. For each message the following
attributes are defined:

 msgsize – message size;

 for periodic messages: msgT – period of message

transfer; for irregular (aperiodic) messages:

)},{(msgmsg fs – set of deadline intervals;

 Asrcmsg – message sender node (A is the set of all

onboard network nodes);

 Adstmsg }{ – set of message receiver nodes;

 msgJ – message generation jitter, i.e. fluctuation

range for the message generation time in relation to
some reference time within the message period or
deadline interval.

Message generation jitter emerges because the execution
time of the message’s source task depends on the values of its
input data.

For each message the following SLA requirements are
specified to guarantee real time message transfer: For each
message the following SLA requirements are specified to
guarantee real time message transfer:

 for periodic messages: the message must be
transferred no less than once per its period; for
irregular messages: the message must be transferred
no less than once per each deadline interval;

 msg – maximum allowed message transfer latency

(duration between message generation on the sender
node and message arrival to all receiver nodes);

msgJ – maximum allowed message transfer jitter

(difference between the maximum and minimum
message transfer latencies).

III. AFDX NETWORKS

The Avionics Full Duplex Ethernet (AFDX) standard [3]
specifies onboard network design based on the Ethernet 802.3
specification with some modifications to achieve real time
operation. According to AFDX, the network consists of the
following elements:

 nodes which exchange messages;

 end systems which provide interface between the
nodes and the network;

 packet switches connected by data transfer links.

Meeting the constraints on message passing latency in
AFDX networks is achieved by allocation of guaranteed
bandwidth to connections between pairs of end systems. Such

connection can pass through several packet switches and data
transfer links. In AFDX, the connection between end systems
is referred to as virtual link. All data exchange between nodes
is performed through virtual links; routes of these links in the
physical network are defined in advance. For each virtual link
there is one sender end system and one or more receiver end
systems. Several nodes connected to the sender end system
can send data through the same virtual link.

Reliability of data transfer through an AFDX network is
provided by physical sparing. Each end system is connected to
two identical independent AFDX networks. The frames are
sent to both networks (in each network the frame follows
identical routes). If a frame transfer error is detected in one of
the networks (e.g. the received frame has incorrect checksum),
the duplicate frame is taken from the other network, where
there was no error. The receiver end system checks the
integrity of the frames, and if a frame was already received
from one network, the duplicate frame is discarded.

Routing tables for the AFDX switch are configured for a
static set of virtual links defined in advance and covering the
set of RT ICS operation modes. Besides routing, AFDX
switches perform traffic management and filtering. Filtering
includes checking the correctness of frames transfer sequence
as well as verification of frames integrity. Traffic management
provides guaranteed bandwidth for every virtual link and does
not allow the nodes to exceed the bandwidth. To perform
traffic shaping in AFDX, the token bucket algorithm is
utilized [4]. Bandwidth for each virtual link is specified during
the switch configuration before the start of RT ICS operation.
Therefore the routing settings for AFDX network, including
virtual link routes and bandwidth allocation, are fixed during
the RT ICS runtime, and the standard provides no option to
dynamically modify the routing tables.

Upon arrival to the sender end system, the messages from
a node are split into frames in the link layer; the frames are
placed in the appropriate virtual link’s queue and then
transmitted into the physical data transfer link. Duration of a
time interval between consequent frames of the same message
(i.e. for the same virtual link) cannot be less than a specific
lower bound.

To ensure data transfer determinism, following attributes
are specified for a virtual link:

 minimum duration (start to start) between sending of
consequent frames into the same virtual link;

 maximum frame size;

 maximum transfer jitter between two consequent
frames.

It should be noted that AFDX only accounts for jitter
between two consequent frames (of the same virtual link) and
does not account for message generation jitter within the
message’s period. For instance, in the paper [5] a technique is
presented for calculating the virtual link attributes according
to data flow parameters and constraints on maximum message
transfer latency. The paper assumes strictly periodic
generation of messages. Operation with irregular messages in

21

AFDX networks, as well as accounting for message generation

jitter msgJ within the message period, is not considered.

IV. FIBRE CHANNEL NETWORKS

Fibre Channel (FC) standard [6] specifies data exchange
protocols for high speed (1 to 20 Gbit/s) data exchange
networks. This standard supports the following network
topologies: point-to-point, arbitrated loop, switched fabric. In
this paper we consider switched fabric topology for RT ICS
networks, as point-to-point topology is not suitable for
complex onboard networks, and FC arbitrated loop does not
support concurrent data exchange between several pairs of
nodes.

Let us consider a simplest switched fabric network
consisting of a single direct switch and a set of nodes
connected to the switch (star physical topology). The
statements made below can be generalized for a fabric of
multiple switches.

There are following existing approaches to provide
guaranteed timings for data transfer over FC network:

1) Master-slave approach in which a single dedicated
node supervises data exchange in the network [7]. All
the slave nodes transmit data only by command from
this master node. This approach guarantees exchange
determinism but leads to inefficient utilization of the
network bandwidth, as at any time instant only a
single pair of nodes can exchange data.

2) Time shared access of nodes to the network according
to a static schedule [8]. For each network node there is
a data transfer schedule; the schedules are coordinated
to avoid access collisions. A node can start data
transfer only at time instants specified in the schedule.
All nodes have synchronized clocks. The set of
schedules allows concurrent data exchange between
non-intersecting pairs of nodes. This approach utilizes
the inherent concurrency of the FC switched fabric to
greater extent than the first one, however is does not
support bandwidth sharing between several data flows
from the switch to a single node. Furthermore, this
approach is not resilient to schedule violation by a
single node, or to generation of abnormal data flows.

3) Virtual link-based traffic management implemented in
“Fibre Channel – Real Time” (FC-RT) profile which
is considered in detail farther on.

As noted above, the approaches 1 and 2 have several
drawbacks. Therefore we will concentrate on the FC-RT
approach which in fact introduces to FC networks most of the
essential data exchange solutions supported in AFDX
standard.

According to the FC-RT profile, data are transferred
through virtual links with bandwidth control. As in AFDX, for
every virtual link there is a single sender node and one or
more receiver nodes. The set of virtual links and their routes is
fixed for each RT ICS operation mode, but FC-RT provides
support for several virtual link configuration tables

(configurations) on nodes and the switch, with transitions
between configurations by commands from a dedicated
configuration master node. Transition of the network to a
different configuration (e.g. during RT ICS mode change) is
initiated by the configuration master via sending a broadcast
message containing the number of the new configuration.
Consistency of data exchange through virtual links is not
guaranteed during the transition between network
configurations.

Use of virtual links in FC-RT enables guaranteed message
transfer timings. Like AFDX, FC-RT utilizes the token bucket
algorithm for traffic shaping, however on the nodes this
algorithm operates with whole messages, not with separate
frames. Following traffic control parameters are specified for a
virtual link in the FC-RT network configuration:

 maximum message size;

 period of message generation (i.e. by an application
task);

 message generation jitter;

 parameters for the token bucket scheme used for credit
allocation: bucket volume and filling speed.

In contrast to AFDX, FC-RT does not implement “sparse”
transfer of multi-frame messages, in which there are
constraints on minimum start-to-start interval between
consequent frames of a message. In the standard scheme for
message transmission to the FC-RT channel, all frames are
transmitted sequentially without delay. Interruption of
message transmission from a node by another message
(without interruption of current frame transmission) is possible
only when the second message has higher priority.

Reliability of data transfer is provided in FC-RT network
by using two independent identical networks. In case of frame
loss in the primary network, the receiver node uses the
duplicate frame received from the secondary network. In case
of successful arrival of both frames, the first arrived frame is
used and the second one is discarded.

To support irregular messages in FC-RT, the priority
system can be used. Low priority irregular messages do not
interfere with data exchange through virtual links, but the
transmission latencies for such messages are hardly
predictable. High priorities can be assigned to urgent irregular
messages, however transmission of such messages can break
data exchange through virtual links.

The FC-RT profile provides a service for time
synchronization between the network nodes.

V. SDN NETWORKS

The essence of Software-Defined Networking (SDN)
approach is separation of data transfer management (Control
Plane) and data transfer itself (Data Plane) in the networked
devices. Data transfer is managed from a specific center [9,
10].

One of the approaches to SDN implementation is based on
the OpenFlow protocol [11]. In terms of OpenFlow, the

22

network consists of (a) switches responsible for packets
transfer according to the routing and switching rules stored in
the flow tables, (b) the controller responsible for centralized
generation of rules and their transfer to all controlled switches,
(c) physical data transfer links, and (d) optional dedicated
physical links between the switches and the controller. If no
dedicated links are present, regular data transfer links are used
to exchange data between the switches and the controller.

 The controller itself only provides a layer for interaction
with the switches via OpenFlow protocol; network
management and rules generation is essentially performed by
the applications running on the controller.

The OpenFlow network operates as follows. First packet of
each new data flow (or a session) is sent to the controller by
the boundary switch (i.e. the first switch of the network to
receive the packet), as there is no corresponding record in the
flow table of the boundary switch. The controller produces the
necessary set of rules for the given flow and sends this set to
the switches. All subsequent packets of the same flow are
processed by switches according to these rules, bypassing the
controller. This operation mode is called active. In the passive
mode all rules are stored on the switches in advance and no
additional processing on the controller is performed.

In order to manage the onboard network according to
SDN/OpenFlow approach, the controller must run a dedicated
network application which implements following principles of
network control:

 In passive mode the application produces and loads
the necessary rule sets to the switches in advance,
according to SLA requirements specified for the
messages. To ensure data transfer reliability, the rule
sets must provide two non-intersecting routes for each
message. A message is transferred by the secondary
route only in case of transfer errors on the primary
route, or to provide redundant transfer, in which case
several copies of the message are delivered by
different routes. It is not strictly necessary to duplicate
the whole network to support redundant transfer; the
sufficient solution is to provide at least two non-
intersecting routes for each message.

 In active mode each message (whole or header only)
is processed by the application running on the
controller. The application monitors fulfillment of the
SLA requirements (message size, period or deadline
interval, jitter, addresses of receiver nodes) and
reorders the messages if necessary. The main
workload in this mode is assigned to the controller
which may become a performance bottleneck.
However, according to the analysis presented in [12,
13], the performance of OpenFlow controllers is
sufficient for processing the messages transferred with
frequencies typical for onboard networks.
Furthermore, in some cases there is no need for
continuous processing of messages on the controller,
as it is sufficient to configure the rules on the switch
in order to enable it to check the messages arrival
frequency for the given data flows.

Presence of the centralized controller enables dynamic
reconfiguration of the network in case of RT ICS operation
mode change.

In active network operation mode, a failure of the
controller or a link connecting the controller to a switch leads
to a failure of the whole network operation. So if the network
operates in active mode, duplication of the controller and the
links connecting the controller to the switches is critical for
reliability of data transfer. If some of the “regular” data
transfer links are used to connect the controller to the
switches, and there are no alternate routes, these links also
must be duplicated.

To maintain unified time on the network nodes, the
controller can regularly send time synchronization information
to the nodes, e.g. according to PTP (Precision Time Protocol).

As the data flows for most of onboard RT ICS operation
modes are predictable or even predefined, passive controller
mode looks preferable for onboard SDN networks. Ultimately,
in this mode the controller application responsible for
configuring the OpenFlow switches must perform following
activities:

 construction of the routes for message transfer
between network nodes to provide the necessary
quality of service, including predictable transfer
latency and jitter;

 dynamic adaptation of the routes in case of network
failures;

 generation of rules for switches, including:

 rules for checking the traffic for conformance
to the SLA requirements;

 routing rules;

 rules for distribution of network bandwidth
between data flows.

Another approach to application of SDN technology to
onboard networks is integration of AFDX or FC-RT networks
with OpenFlow networks to enable dynamic management of
switches. In this case there is no need to control the message
transfer timings on the OpenFlow controller.

VI. CONSLUSION

Table I presents a comparison of three above mentioned
approaches to design of onboard switched networks. The set
of requirements met by a specific approach determines the
class of RT ICS to which the approach is applicable.

23

TABLE I. COMPARISON OF APPROACHES TO DESIGN OF ONBOARD

SWITCHED NETWORKS

Requirement to the

network
AFDX

Fibre

Channel

SDN/

OpenFlow

Support for periodic

messages
+ + +

Support for irregular

messages
_ + +

Ability to maintain

common time in the

system

_ + +

Guaranteed maximum

transfer latency (msg)
+ + +

Guaranteed maximum

transfer jitter (

msgJ)

for
frames

only

+ +

Ability to provide reliable

data transfer without full
duplication of the network

_ – + (a)

Support for dynamic

alteration of message
transfer routes

– – +

a. In active operation mode of an SDN/OpenFlow network, duplication of the controller
and the links connecting the controller to the switches is necessary.

AFDX and Fibre Channel networks are widely used in RT
ICS for modern aircraft. Use of AFDX is limited to civilian
aircraft. A specific of AFDX-based RT ICS is presence of
only periodic messages (irregular messages must be simulated
as periodic ones, leading to bandwidth wasting). FC networks
are used in both civilian and military aircraft, including
unmanned ones. Like AFDX, FC networks do not support
dynamic alteration of message passing routes without total
reconfiguration of the network. Therefore, FC networks can be
used only in RT ICS for which the set of modes is defined in
advance. Applications of SDN networks are not known to the
authors of this paper, however this class of networks is

potentially applicable to a wider range of RT ICS than AFDX
and FC due to higher flexibility.

REFERENCES

[1] V. Kuminov and B. Naumov, “Space computers: open standards and
technologies go to the outer space,” World of Computer Automation,
2002, N. 3.

[2] V.V. Balashov, V.A. Balakhanov, V.A. Kostenko, R.L. Smeliansky,
V.A. Kokarev, and P.E. Shestov, “A technology for scheduling of data
exchange over bus with centralized control in onboard avionics
systems,” Proc. Institute of Mechanical Engineering, Part G: Journal of
Aerospace Engineering, vol. 224, N. 9, pp/ 993–1004, 2010.

[3] Aircraft Data Network. Part 7. Avionics Full Duplex Switched Ethernet
(AFDX) Network. Aeronautical Radio, Inc., 2005.

[4] R.L. Smeliansky. Computer Networks, vol. 2. Moscow, Academy, 2011,
240 pp. [in Russian]

[5] A. Al Sheikh et al, “Optimal design of virtual links in AFDX networks,”
Real-Time Systems, vol. 49, N. 3. pp. 308-336, 2013.

[6] INCITS 373. Information Technology – Fibre Channel Framing and
Signaling Interface (FC-FS). International Committee for Information
Technology Standards, 2003.

[7] ISO/IEC TR 14165-312. Information technology – Fibre channel – Part
312: Avionics environment upper layer protocol (FC-AE 1553).
ISO/IEC, 2009.

[8] INCITS T11/08-013v1. Fibre Channel Avionics Environment –
Anonymous Subscriber Messaging (ASM) Amendment 1. International
Committee for Information Technology Standards, 2008.

[9] M. Casado, T. Koponen, D. Moon, S. Shenker, “Rethinking packet
forwarding hardware,” Proc. HotNets, 2008.

[10] R.L. Smeliansky, “Software-Defined Networks,” Open Systems, N.9,
2012. [in Russian]

[11] OpenFlow Switch Specification, Version 1.3.0. Open Networking
Foundation, 2012.

[12] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, R. Smeliansky,
“Advanced study of SDN/OpenFlow controllers,” Proc. CEE-SECR'13:
Central & Eastern European Software Engineering Conference in
Russia, ACM SIGSOFT, Moscow, Russia, October 2013.

[13] P. Ivashchenko, A. Shalimov, R. Smeliansky, “High performance in-
kernel SDN/OpenFlow controller,” Proc. 2014 Open Networking
Summit Research Track, USENIX, Santa Clara, USA, March 2014.

24

Towards Load Balancing in SDN-Networks During

DDoS-attacks

M Belyaev

Dept. of Computer Systems and Software Engineering

St.Petersburg State Polytechnical University

Applied Research Center for Computer Networks

St.Petersburg, Russia

belyaev@kspt.icc.spbstu.ru

S Gaivoronski

Computational Mathematics and Cybernetics dept.

Moscow State University

Applied Research Center for Computer Networks

Moscow, Russia

s.gaivoronski@gmail.com

Abstract—Software Defined Networks (SDN) are becoming a
trending technology in modern Internet. This technology helps to
solve a significant number of well-known engineering problems
in a effective and elegant way as they provide software-defined
centralized network control. An SDN controller can be extended
with application that effectively serve for concrete purposes and
provide flexible management of network flows. This opens a great
number of opportunities for a lot of network security problems
such as maintaining of privileges in a proper way, splitting control
and data planes, and attacks detection and mitigation. In this
work we consider the opportunities of SDN for a ”survival”
mitigation during DDoS attacks, the load balancing problem.
We propose two-level balancing solution in SDN networks, which
includes traditional balancing between servers and load balancing
between network devices as well. Experiments show that our
solution increase ”survival” time of a system during DDoS
attack in times compared to existing balancing solution in SDN
networks.

Keywords—load balancing; DDoS mitigation; SDN networks;

I. INTRODUCTION

Several years ago clouds made a computational revolution
in IT world. Clouds also can be considered as logical step
of computational evolution, starting from computations on
single machines and going through clusters and grids. The
idea behind the clouds is to migrate all computational, storage,
network, even some specific services requirements to a service-
oriented platform using virtual machines at data centers. This
idea provides great opportunities for variety of consumers:
from independed researchers, small and medium businesses to
big organizations. The trend of migrating computations to the
clouds continues to grow: according to recent statistics, about
60% of server workloads will be virtualized in 2013 [1], and
totally cloud service market is forecast to grow to 18.5% in
2013 [2]. Nowadays, a plethora of big organizations extend
their resources for cloud computing: Amazon EC2, Windows
Azure, Google Engine, etc.

But every story has two sides. Wide spread of cloud
technology leads to a number of interesting research prob-
lems, one of which is a load balancing among resources.
Load balancing is a problem of resource distribution which
guarantees that all available resources are used with maximum
utilization. Despite the fact that load balancing problem in
cloud considers different types of resources, in current work

we focus on traffic balancing and network resources utiliza-
tion. Network resources utilization typically includes L7 load
balancing which is balancing between computing nodes or L4
load balancing which is balancing between network equipment.
Existing approaches on load balancing typically describe L7
or L4 balancing, but not both.

Over the last few years we also can notice the wide adop-
tion of very new conception in networking - programmable
networks, or so-called Software Defined Networks. For ex-
ample, that technology is already adopted by Google and
a number of other significant players. In current work we
decided to consider load balancing problem in case of SDN
networks. SDN decouples control plane from data plane and
gives the functionality of network and resources management
to controller which can be programmable by user. That leads to
such advantages as, for example, flexibility of flows manage-
ment. In current work we ask ourselves a question: given the
opportunities of SDN networks, can we reconsider the problem
of load balancing? What can be improved and what can we
do better? As a result, we propose load-balancing solution
that examines only ip source and destination ip addresses.
In common terms, our approach may be considered as L4
solution, but in fact in works at even lower level of OSI model.

One of the interesting application of load balancer that
we consider in this work is the balancing in case of DDoS
attacks. Speaking of DDoS attacks, load balancing is one
of the significant mitigation survival techniques that typically
increase maximum capacity of defended system.

The contribution of the paper can be summarized as
following:

• We researched the opportunities to apply new concept
of networks, SDN, for solving a well-known problem
of load balancing during DDoS attacks. We found that
ideas that stand behind SDN serve for that purpose
natively;

• We proposed an efficient algorithm of two-level load
balancing which includes typical load balancing be-
tween servers and balancing between network devices
for SDN networks. Experiments show that our solution
significantly increase survival time of the system under
DDoS-attack;

• We implemented our algorithm as the part of DDoS

25

detection and mitigation system, which is able to
detect the presence of attack and start different miti-
gation solutions automatically.

The paper is organized as following. In section II we
provide brief overview of existing load balancing techniques.
In section III we describe our load balancing solution for SDN
networks, including overview of main differences between
traditional networks and SDN networks, detailed description
of the proposed algorithms and overview of implementation
details. In section IV we provide evaluation results and in
section V we summarize our work.

II. LOAD BALANCING BACKGROUND

A. L7 Balancing

L7 load balancing usually decouples on server cluster load
balancing and server load balancing[3]. Server cluster load
balancing is typically produced between computing nodes.
The cluster load can be interpreted as client sessions or
running applications. In the first case, TCP sessions are evenly
distributed between servers and if some server is overloaded it
prohibits new incoming connections. The redirection of already
established connections are not usually performed due to the
TCP session transfer and applications synchronization over-
heads. Commonly used techniques for distribution of client
sessions between servers are using of DNS server or Network
Address Translation (NAT). In the case of running applications
servers are clustered by the type of their applications (database
server, Web applications, etc.) and every client request is
divided between several clusters [4]. The case of server load
balancing occurs when the system tries to decrease the load of
particular server. In our work we will not consider that case.

For both NAT and DNS distribution system should choose
the most appropriate server for the next session. All balancing
techniques typically fall into the classification, which includes
static and dynamic approaches.

Static load balancing algorithms use a-priori information
about the system state such that throughput or computation
power, or any other performance features of selected nodes.
Static approaches ignore current state of the nodes and their
load. The main advantage of static approaches is an easy
implementation, but the possibility of inefficient balancing is
high. Static load balancing typically presented by following
techniques [3], [5]: random selection; hash selection, where
hash is generally considered as a function of client ip ad-
dresses; and (weighted) round-robin which may or may not
consider performance of servers.

Dynamic load balancing distributes load between the
servers during runtime. Such balancers typically monitor the
load of every single server and when imbalance reaches
specified throughput they start balancing algorithms [6]. The
dynamic algorithms include such simple techniques as selec-
tion of server with fastest response time, server with the small-
est number of connections, dynamic round-robin techniques
and others. More sophisticated algorithms were observed and
compared in [7]. It includes description of Honeybee Foraging
Angorithm [9] that based on nature algorithm of honeybee self-
organization; Biased Random Sampling [8] that uses random
sampling of the system domain to achieve self-organization;

ACCLB which is load balancing mechanism that base on Ant
Colony and Complex network theory [10] and several others.

All described algorithms are suitable for different purposes,
typically in Cloud computing environment, but none of them
take into assumption the information about load of network
devices themselves which is significantly important in case of
SDN networks.

B. L4 Balancing

L4 balancing is the balancing between network devices and
equipment. In case of SDN network, algorithms describing L4
balancing focused at load distribution from different switches
between controllers . Such problem is very significant in terms
of reliability of SDN networks but do not has any connection
with traffic load balancing.

R. Wang at al [11] describes the load balancing between
servers solution under the OpenFlow protocol. That solution
may occasionally affect alternate routes between entry point
and selected server, but it is not studied in the paper.

The lack of load balancing between switches and alternate
routes in SDN networks studies has driven us to cover this
gap.

III. LOAD BALANCING SOLUTION FOR SDN NETWORKS

A. SDN background

Software-Defined Networking (SDN) is a rising approach
to networking that allows administrators to manage network
services through an abstraction of lower-level functionality.
SDN is based on decomposition of the network traffic in
two layers: the control plane and the data plane. The control
plane is the distributed system that actually makes decisions on
where and how the traffic on the data plane (the usual TCP-IP
stack user data) is sent.

SDN networks provide a simple and robust way to access
all levels of traffic management in the data layer of the
network through a simple interface and using software-based
mechanisms exclusively. When it comes to the task of load
balancing, this approach does provide some pros and cons,
including, but not limited to:

• A single point of failure (the SDN controller) that may
become a bottleneck of the whole setup if used in a
wrong way;

• There is a number of security concerns regarding the
complex interactions between the control plane and
the data plane using state-of-the-art SDN implemen-
tations;

• The ability to provide means for routing, splitting and
controlling traffic streams on all layers of TCP-IP
stack using a single software-based solution;

• Multiple ways to provide hardware duplication of used
lines and connections without any need to make an
account for it on the data layer;

• Ways to balance the traffic on OSI model layers 2 and
3 (as opposed to the usually employed levels 4 and 7).

26

In this work we are trying to employ the benefits of
SDN while also avoiding the possible implications that can be
caused by negative effects. The security of SDN networking,
which is becoming a big concern the more this type of
networking gets widespread and can have negative implications
on the way load balancing works, is out of scope for this paper.

B. Proposed solution

The proposed solution to traffic load balancing generally
consists of two parts: the L7 load balancing using standard
means (DNS/NAT balancing) of splitting the traffic streams
between endpoint servers and the L4 load balancing to enable
splitting the packets between different paths in the network.
The first part does not consider the network which lies between
entry point and servers as it is shown at figure 1. Such
balancer operates in terms of entry point and servers. The
second part takes into consideration all information about local
network which includes the network topology (map), current
load of channels between different switches, throughput of
the channels and other significant parameters, as it shown
at figure 2. This approach assumes that the SDN network
between the server-level load balancer and the endpoint servers
is structurally excessive in order to have different paths to the
same servers to begin with. We do not describe the way to do
L7 load balancing in this paper, which can be found at [3],
[4], [7], [8]. It should be noted, however, that the approach we
describe in this section does assume that the traffic streams are
already distributed between endpoint servers as the algorithm
does not provide any kind of distribution between those itself.

Fig. 1. First level of balancing.

The basic advantage of having these two levels of load
balancing is that they can be made sufficiently independent
from each other. As the inner balancing algorithm operates
on layers 2-4 of the OSI model, it does not care for any of
the peculiar properties the outer balancer may introduce, and
vice versa. The fact that we use SDN control level to do the
job of inner load balancing and do not introduce any additional
modifications to the packets themselves, we can be sure that the

Fig. 2. Second level of balancing. αij stands for bandwidth of a channel
between switches i and j, ωij stands for current channel load.

two levels of load balancing do not interact in any unintended
way.

The algorithm itself is based on the fact that we can use the
SDN switch-level flows to redirect traffic based on destination
and source IP-address information. This allows for dividing
the traffic between different routes in the network regardless
of the packets’ actual contents. The algorithm goes as follows:

1) Acquire the load and topology information for the
network;

2) Override the routing for the network with static
routing information acquired by using Bellman-Ford
pathfinding algorithm;

3) Iteratively keep splitting (and reapplying) traffic paths
for routes that are:

• Overloaded;
• Have alternate routes available.

The splitting is done by using source IP address mask
as packet distinguishers.

Let the network contain switches 1−N . A channel between
switches i and j will be addressed as (i, j). We define the
bandwidth of this channel as αij and the current channel load
as ωij . We say the the channel is overloaded if ωij + ε ≥ αij ,
where ε is a constant small load value parameter. In current
implementation we define ε as an input parameter for the
algorithm. The impact of this parameter and the range of its
values has not been studied yet and is considered as a direction
of futher work.

Let the endpoint servers be defined as β1 . . . βK . Band-
width matrix Mmaxload is the matrix of size N×N containing
all the bandwidth values αij . Load matrix Mload is the matrix
of size N×N containing all the current load values ωij . Matrix
of available resources Mfree is defined as Mmaxload−Mload.

Phase 1 of the algorithm need to be executed before the
need for load balancing arises (e. g. if we apply the approach
to mitigate network attacks, we need to run it in a timed loop
without other phases for as long as the attack doesn’t begin
to keep the topology and load information updated). Phase 1
introduces and updates the network load mask Mload, where

27

element ωij corresponds to the number of bytes coming from
switch i to switch j during a single update period.

Phase 2 is applied only once to override the default packet
routing mechanisms and use statically defined routes we can
later modify using network address masks. This is performed
by running the standard Bellman-Ford algorithm on the whole
network topology graph in order to acquire shortest paths from
the network entry point to the endpoint servers.

Phase 3 goes as follows. On the first iteration we build
the current path table Tpath based on the path information
acquired on Phase 2. Tpath is essentially a set of triples
{ipssrc, ipβi

, path} where each triple denotes a path path
from all addresses conforming to the address mask ipssrc to
the address ipβi

, which is the IP address of the server βi. On
the first iteration of phase 3 value of ipssrc for all the entries
in the table is 0.0.0.0/0, which is a wildcard accepting
all the possible IP addresses. On the second and subsequent
iterations, this table gets updated along with the corresponding
network flows:

1) Update Mload and Mfree with current load informa-
tion from SDN switches;

2) Find the first overloaded link in Mload: the link (i, j)
such that ωij + ε ≥ αij ;

3) Find the first path rq in Tpath such that it contains
link (i, j);

4) For the ipβi
part of rq , find a new shortest path from

entry to the server βi assuming that link (i, j) is
closed in current topology. If there is no such path,
we should go back to 3 and find a new path for the
same link. If there are no more paths containing this
link, we should go back to 2 and select a new link.
Let’s call the new path pathq;

5) Calculate the maximum available additional
load for pathq. For that, we look up every
link in pathq in Mfree: al = micrit,jcrit =
min (mij : (i, j) ∈ pathq) and note al and
(icrit, jcrit). If al < ε, go back to 4 and find
a new path that does not contain (icrit, jcrit).

6) Try to calculate the new sets of masks ipsold and
ipsnew such that they divide all the address space of
ipssrc into parts with coefficient al/ωij . Remove the
corresponding entry from Tpath, insert all the entries
{ipsold k, ipβi

, path} and {ipsnew k, ipβi
, pathq}

into Tpath.
7) Commit the changes in Tpath to all the switches

across path and pathq.
8) Wait for the timeframe and go back to 1.

Of course, it is not generally possible to introduce a set of
new network ip/mask pairs for a given one such that it divides
all the address space denoted by it to a particular fraction, but it
is possible to do it in a discreet manner, up to some number of
bits in a network address. For example, if we do the division
for 5 significant bits, we can divide the address space into
parts that are multiples of 1/(25). For all practical purposes,
this discreetness does not seem to introduce any significant
effect on the behavior of the algorithm.

For example, given a ip/mask 9.0.0.0/8 and a factor of
1/3, we do the following:

1) Introduce the 32 masks dividing the address space
given into 32 equal pieces by adding 5 bits to the size
of the mask (the ip/mask becoming 9.0.0.0/13)
and enumerating the now valid 5 bits in ip address
with values from 0 to 31;

2) Divide the space of 32 address/mask pairs into 2
parts by the ratio: that is, putting first 21 pairs
(9.0.0.0/13–9.160.0.0/13) into first part and
last 11 pairs (9.176.0.0/13–9.248.0.0/13)
into the second;

3) Collapse the pairs in each half that can be summa-
rized using a pair with a smaller mask size (e.g. all
pairs in (9.0.0.0/13–9.112.0.0/13) can be
collapsed into (9.0.0.0/9).

For the given pair 9.0.0.0/8 the result will create 6
address/mask pairs. It can be easily shown that for any N bits
used as a discretion factor, any ip/mask pair will produce no
more than N +1 new ip/mask pairs in each iteration, thus the
growing factor of introduced flows is constant. The ip address
space is finite, so this process will always terminate.

It should be noted that we produce flow management that is
based at source ip adresses due to the following reasons. First
of all, after the phase 1 traffic is already distributed uniformly
among available servers. Secondly, we want to distrubute at-
tacking traffic among available routes as uniformly as possible.
From that point of view, the worst case to the presented
algorithm is the case of DoS attack with one attacking ip
address.

C. Implementation

The proposed approach was implemented as a part of a
attack detection and mitigation system called Callophrys.
The system aims at both identifying, detecting and mitigating
DDoS attacks at early phases. It uses the Floodlight Openflow
controller[12] for both gathering information from the SDN
switches and applying the calculated paths and wildcards
by deploying them to the switches. Both tasks are achieved
through controller’s REST API.

Callophrys is a distributed software system employing
a number of asynchronous agents (actors[13]) communicating
using immutable messages both between processes and ma-
chines and inside them. This model of computation allows
for greater modularity and scalability of the whole system,
but also introduces some difficulties for implementation of
non-asynchronous algorithms, like the one introduced in the
previous section.

The biggest difference for the procedural description of
the algorithm found above is the fact that in an asynchronous
system there is no need to wait for the next timeframe to come
or for the other part of the system (i. e. the SDN controller) to
send in the next portion of data to perform useful work. The
asynchronous way of implementing the same algorithm is to
identify the important events (in this case, keeping the topology
and load information updated can be done independently from
the rest of the algorithm) and perform actions when they
happen. The load balancing algorithm is incapsulated into a
single actor (whether it can be further decomposed to employ
capabilities of the asynchronous computations is subject to
further research) that handles the following kinds of messages:

28

• Timeframe message signaling that a timeframe is
reached (sent by the program scheduler):

1) Send a query message for the current network
topology;

2) Send a query message for the current load
information.

• Topology message signaling that the topology infor-
mation has changed (sent by Floodlight interface):

1) Update the topology information.

• Load message signaling that the periodic load infor-
mation is received (sent by Floodlight interface):

1) Validate and apply the current load informa-
tion;

2) If the balancer is in active mode, start per-
forming a single phase 3 iteration of the
algorithm.

• Alert message signaling that the attack has started
(sent by one of Callophrys detector programs):

1) Turn on active mode;
2) Force send a timeframe message to self.

An important property of an actor in the actor model is the
fact that message handlers are never run concurrently. All the
message-handling routines, other actions and receiving/sending
can be done in separate threads, but the message handlers
themselves are always run in an order and thus we don’t need
any kind of additional synchronization precautions. Thus this
asynchronous implementation is very similar to the procedural
one described in the previous section.

IV. EVALUATION

The prototype Callophrys system was evaluated using
the Mininet[14] network simulator and Floodlight SDN con-
troller. The simulation used a custom Mininet script for the
network topology. The test topology configuration is shown at
picture 3. The attacker nodes (signed with ”A”) are generating
high traffic towards the target nodes (signed with ”T”) using
the iperf tool[15], while the SDN switches (the rest of the
nodes) try to balance the load between themselves and data
links. For the purpose of this experiment, the links that are
always overloaded (the links coming directly to target nodes,
all the links coming to and from the entry node) are simulated
as having infinite bandwidth, while all the other links in the
setup have a thorough simulation with limited bandwidth and
latency.

The process of evaluated using Floodlight and its built-
in network-tracing mechanism. The preliminary experiments
using this setup show that the proposed approach does balance
the network load between switches, let the traffic take alternate
roots and does not overload the switches with static flows.

In this setup, the time between the start of the attack and
the full balance of traffic between available roots was from 10
to 60 seconds. Total number of flow rules generated is around
13000, while every single switch is subject to no more than
3000 different rules. Most of existing SDN switches can easily
handle number of rules up to hundreds of thousands. A more
thorough simulation using different topologies and testing on
a real physical network is a subject of further work, as well as

Fig. 3. The test network topology

introducing more accurate tools to measure the effect of the
algorithm.

V. CONCLUSION

In this work we were focused on studying of possible
impacts SDN networks could bring into traditional network
security related problems. As DDoS attacks remain one of
the most important security problems for a single hosts and
data centers as well, we decided to consider DDoS-mitigation
solution for SDN networks. DDoS mitigation solutions are typ-
ically divided into two classes: active techniques that include
filtering of an attacking traffic and ”survival” techniques that
include increase of resources under attacks and effective load
balancing.

We noticed that all existing load balancing solutions are
based on a load balancing between endpoint resources, such
as different servers in our case. Despite the fact that those
techniques serve well for that purpose in traditional networks,
SDN benefits help to increase survival time even more. Typical
SDN controllers select alternative route between entry point
and end point only when current route is not available. That
works well and helps to remain network reliability. Neverthe-
less, during DDoS attack it does not solve problem at all as
all attacking traffic will be forwarded to different route. There
is high probability of new route to be overloaded as well. In
our work we propose a solution for efficient traffic distribution
between all alternative routes in a SDN network.

Experiments show that our solution helps to increase sur-
vival time of defended system during DDoS attack, thus it is
effective as DDoS mitigation solution in SDN networks, but
it can also be used as a general load balancing system.

29

REFERENCES

[1] Cloud Hypermarket, The Cloud Revolution,
http://www.cloudhypermarket.com/whatiscloud/CloudUptake.

[2] Garthner, Inc. Gartner Says Worldwide Public Cloud Services Market to

Total $131 Billion., https://www.gartner.com/newsroom/id/2352816

[3] Jasobanta Laha, Rabinarayan Satpathy , Kaustuva Dev. Load Balancing

Techniques: Major Challenges in Cloud Computing - A Systematic

Review. IJCSN International Journal of Computer Science and Network,
Volume 3, Issue 1, February 2014

[4] Kaushik V. K., Sharma H. K., Gopalani D. Load Balancing In Cloud-

Computing Using High Level Fragmentation Of Dataset

[5] P. Mohamed Shameem and R.S Shaji.A Methodological Survey on Load

Balancing Techniques in Cloud Computing. International Journal of
Engineering and Technology (IJET)

[6] Malik, S., Dynamic Load Balancing in a Network of Workstation, 95.515
Research Report, 19th November, 2000

[7] Rajoriya, Sheetanshu. Load Balancing Techniques in Cloud Computing:

An Overview. International Journal of Science and Research 3.7 (2014).

[8] Randles, M., Lamb, D. and Taleb-Bendiab, A., A Comparative Study

into Distributed Load Balancing Algorithms for Cloud Computing, 24th
International Conference on Advanced Information Networking and
Applications Workshops, 551-556, 2010

[9] Padhy, R. P., and Rao, P G. P., thesis entitled Load balancing in cloud

computing system, Department of Computer Science and Engineering,
National Institute of Technology, Rourkela, Orissa, India, May, 2011

[10] Zhang, Z. and Zhang, X., A Load Balancing Mechanism Based on

Ant Colony and Complex Network Theory in Open Cloud Computing
Federation, Proceedings of 2nd International Conference on Industrial
Mechatronics and Automation (ICIMA), 240-243, May, 2010

[11] Richard Wang, Dana Butnariu, and Jennifer Rexford. OpenFlow-Based
Server Load Balancing GoneWild. Hot-ICE11 Proceedings of the 11th
USENIX conference on Hot topics. Vol 12

[12] Floodlight Openflow Controller, http://floodlight.openflowhub.org

[13] Hewitt, Carl. The Actor Model. MASSACHUSETTS INST OF TECH
CAMBRIDGE, 1993.

[14] Lantz, Bob, Brandon Heller, and Nick McKeown. A network in a laptop:

rapid prototyping for software-defined networks. Proc. of the 9th ACM
SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010.

[15] Schroder, Carla. Measure Network Performance with iperf. Enterprise
Networking Planet, 2007.

30

Progress and Challenges in Worldwide Federation of
Future Internet and Distributed Cloud Testbeds

M. Berman, M. Brinn
 GENI Project Office

Raytheon BBN Technologies
Cambridge, MA, USA

Abstract—Future Internet and distributed cloud (FIDC)
testbeds are rapidly becoming important research and
educational resoures worldwide. While FIDC testbeds may be
built on diverse technologies, they share the primary capabilities
of slicing (virtualized end-to-end configurations of computing,
networking, and storage resources) and deep programmability
(experimenter programmability of all resources from low level
hardware to virtualized components). FIDC testbeds often
achieve their deep programmability through software defined
networking (SDN) capabilities, which researchers employ both to
construct per-application and per-experiment virtual networks,
and to intelligently steer traffic throughout the virtual
network/cloud environment.

Increasingly, FIDC testbed developers and researchers
worldwide are working together to create federated testbed and
experiment configurations. Federation holds the promise of
greater scale, geographic reach, and technical diversity, while
controlling the cost and effort required to create and maintain
each individual testbed.

Federation is primarily a human endeavor. In the case of
FIDC testbeds, the underlying agreements of trust and resource
sharing are implemented technically via trusted identities,
policies, and resource managers.

The past two years have seen strong progress and
international cooperation in defining many of the key application
programmer interfaces (APIs) that enable the technical
implementation of federated testbeds, at both the control plane
and data plane levels. These APIs, and the implementation of the
underlying services, rely on well-understood and open
technology, such as public key cryptography, attribute based
access control (ABAC), and dynamic circuit networking (DCN).

These cooperative efforts have resulted in a number of
exciting demonstrations and specific collaborations. There are a
number of remaining challenges. Some of these are technical,
(e.g., improving the semantic content of resource representation
and exploring policy development and enforcement). However,
the largest challenges in testbed federation are still on the human
side – defining the best ways to build and share resources to meet
the shared goals of the research community.

Keywords — future Internet, distributed clouds, FIDC testbeds,

federated testbeds, federation policy.

I. INTRODUCTION – WHY FIDC TESTBEDS? WHY FEDERATE?

A. Motivation
Future Internet and Distributed Cloud (FIDC) testbeds are

rapidly gaining acceptance within the computer science
research community. These testbeds create opportunities for
experimental research and education that are difficult or
impossible to conduct in individual laboratories, commercial
clouds, or the public Internet. FIDC testbeds, which began with
the Global Environment for Networking Innovation (GENI)
project in the US [1] and the Future Internet Research &
Experimentation (FIRE) project in the EU [2], are gaining
acceptance. There is now a growing number of national and
regional scale FIDC testbeds in use or development worldwide,
as shown in Figure 1.

Figure 1: Worldwide FIDC testbed activity

These testbeds were originally conceived in response to
researchers’ concerns over Internet ossification, a term that
refers to the difficulty of performing innovative research within
the public Internet [3]. For example, novel protocols that do not
accord with current Internet standards are, by specification,
discarded or ignored within the public Internet. Other
experiments might disrupt the normal behavior of the Internet,
and are therefore not ethical. Networking researchers found
themselves in a dilemma. In general, they were forced to
compromise by conducting their novel experiments in
simulation or in small-scale, isolated laboratory conditions.

More recently, cloud computing researchers found
themselves in much the same situation. Commercial cloud
providers do not typically grant researcher access to the

This research is supported by the GENI project. GENI is funded by the
US National Science Foundation under cooperative agreement CNS-0737890.
Any opinions, findings, conclusions or recommendations expressed in this
material are the author’s and do not necessarily reflect the views of the
National Science Foundation.

31

internal workings of their data centers, and with good reason –
they are in the business of providing cloud services, not
supporting research. However, researchers are out in the cold if
they seek to conduct experiments affecting the network
topology or protocols comprising a cloud computing
environment.

These researchers are increasingly choosing to conduct
their experiments in FIDC testbed environments. As these
testbeds grow in scale and capability, they are supporting a
wide variety of research, not only in the original target
communities of networking, distributed computing, and cloud
computing, but also in computer science education and in data
intensive domain sciences.

In the past few years, the FIDC research, testbed developer,
and testbed owner communities have begun to build
federations of testbeds in order to better achieve their shared
goals. A number of straightforward considerations have driven
a desire for testbed federation.

• In order to conduct the most realistic experiments,
researchers want access to resources around the world,
but testbeds are often limited to national or regional
scope.

• Federation extends the reach of each community of
researchers supported by each participating testbed.

• Federation preserves the unique capabilities of each
participating testbed.

• Federation enables participating testbeds to enter into
multiple arrangements for specific purposes.
(“Federation is not monogamous.”)

In fact, federation is often an underlying architectural
principle of a national or regional FIDC. GENI, for instance, is
built as a federation of participating resource owners, some
preexisting, and others deployed during the project [4].
Similarly, the Fed4FIRE (Federation for FIRE) effort is
federating multiple FIRE testbeds [5].

This paper surveys recent progress towards worldwide
federation, discusses some of the key technical underpinnings
of federation, and identifies some of the important challenges
confronting the growing international FIDC testbed
community.

B. Definitions
The following terms will be useful to clarify a discussion of

FIDC testbeds and federation.

A slice is a group of physical and/or virtualized resources,
potentially heterogeneous (e.g., computers, networks, and
storage), that are reserved and connected into a single
configuration on behalf of one or more slice owners. A slice
differs from a bag of resources because it is constructed to
preserve some degree of isolation that applies to the entire
collection, rather than just its individual components. As with
any type of virtualization, the quality and performance of
isolation will vary according to the implementation. The intent
is to give a slice owner the illusion that he or she enjoys

exclusive use of the entire interconnected collection of
resources.

Deep programmability is the ability of an experimenter to
exert programmatic control over all (physical or virtual)
resources in a configuration, not limited to computing
resources or to resources at the network edge. As with any
programming model, the expressive power and performance
will vary according to the implementation and is likely to vary
across different resource types. The goal is that the slice owner
can “program everything” in his or her slice.

A FIDC testbed is a shared computing environment that
enables future Internet and distributed cloud experiments by
implementing the two key capabilities of slicing and deep
programmability.

A resource (or testbed) owner is the person or entity that
has physical and administrative control over a particular
resource (or testbed) and is presumptively responsible for its
misuse. The various roles (ownership, administration, and
accountability) may be separated, but such distinctions are not
needed for the current discussion.

A federation is a group of testbeds whose owners choose to
share resources across their user communities, according to
mutually agreed rules and limits. The intent of the federation
participants is implemented by testbed hardware, software, and
configuration. Federations whose participants are themselves
federations are entirely possible.

II. ADMINISTRATIVE AND POLICY STEPS TO FEDERATION
Establishing a federation of testbeds is a fundamentally

human endeavor. Before the technical processes get underway,
the affected testbed owners and researchers should come to a
clear understanding of their various goals in pursuing
federation. Often the driving goal for all participants is the
straightforward desire to provide more resources and broader
geographic scope to researchers from the participating testbeds.
However, there are several additional factors to be considered.

A. Participant approval and access policies
Perhaps the greatest benefit that a federation offers to its

participants is to act as a trust broker. Resource owners trust
the federation to grant access only to qualified users. Similarly,
researchers trust the federation to admit only reputable and
well-managed testbeds, where their work will be safe. By
relying on these trust relationships, the number of agreements
among m resource owners and n end users is reduced from the
intractable m×n to a more reasonable m+n. Repeating this
process to federate a group of existing federations is very much
akin to investors trading derivatives – everyone’s leverage is
increased, but it’s important that the participants understand
what they are doing.

While end users clearly reap the benefit of an extended
collection of available resources, the testbed participants
benefit as well. Testbed owners often have a strong interest in
expanding their research user base and thereby maximizing the
impact of their testbeds. In addition, exposure to a broader
group of end users will place greater demands on the testbed,
identifying additional potential uses and identifying areas for
improvement and expansion.

32

Potential issues arise when different participants have
varying policies for trust. This concern is typically less
important for the end user than for testbed participants. An end
user who is concerned about the trustworthiness of a particular
testbed or resource can generally design slices that simply
exclude any suspect resources. Participating testbed owners can
face more complex policy challenges.

In some cases, the membership policy of one federation
participant may allow end user members who are not
acceptable to another resource owner. For example, a testbed
whose sponsor limits use to openly disseminated academic
research may need to take special steps in order to enter into
federation with another that encourages commercial, for-profit
use. A similar challenge confronts testbeds that limit end user
access by nationality. These challenges are not insurmountable.
In fact, they are readily addressed by simple application of
control plane policies discussed in section III.A below.
However, the participant who admits the end user must collect
the information needed to implement the relevant policies (e.g.,
“Is this researcher an academic?”) and must share this data
within the federation. Advance planning makes this task much
simpler.

Another relatively common event is when different
participating testbeds recognize different categories of end
user. For example, one testbed may have Principal
Investigators, while another has Project Leads. If there is a
simple one-to-one correspondence, a policy to map
terminology is quite simple. In other cases there is no clear
correspondence. For example, one testbed often used for
education may have the concept of a Teaching Assistant, who
can gain access to student’s resources for grading or
debugging, while a more research-focused testbed may not
share this concept. In such cases, the latter testbed may need to
craft a custom policy to recognize the new concept within the
federation, or the federation participants may choose to forgo
this particular capability.

B. Resource allocation and limits
Some testbed resources will be subject to quotas or to

special limits to ensure broad availability or to avoid accidental
or intentional misuse. Typically the resources in question are
either in high demand or “dangerous” in some way. The goal of
restrictions on high demand resources is to avoid a “tragedy of
the commons” situation, where end users who perceive little or
no cost in consuming resources take unfair advantage of lenient
policies. Policies for the dangerous resources are intended to
prevent undesired consequences and to ensure accountability in
the event of an incident.

Many of these policies are straightforward, but some can be
quite sophisticated. As with membership policies,
implementation is greatly facilitated if the participants are
prepared to gather and disseminate the required information.
Some example policies are listed below.

• “Only end users with the Administrator attribute may
shut down resources.”

• “Only researchers whose code has been reviewed and
approved may install an OpenFlow controller in the
core network.”

• “Researchers from testbed X may collectively consume
no more than Y% of resources from testbed Z.”

• “End users who leave scarce resources idle for X hours
will not be permitted to renew their reservation on
these resources beyond current expiration time.”

III. CONTROL PLANE FEDERATION
Armed with a clear understanding of the intent of the

resource owners and the testbeds to be federated, it falls to the
testbed developers and owners to complete the implementation.
A central goal is to automate the largest possible fraction of
federation functionality. Thus, capturing federation policy in
configuration files is optimal; software is next best; and falling
back to human intervention in the form of hardware
configuration or administrative procedure is least desirable.

Federating FIDC testbeds requires some level of
coordination at both the control plane and data plane levels.
Control plane refers to the functions associated with the
creation, configuration, and management of testbed resources.
Control plane functions are often implemented over the public
Internet, to give experimenters ready access to their slices. Data
plane refers to the experimental network resources that are
allocated to slices. The data plane should generally not be
implemented over the standard Internet for reasons discussed in
section I.A above.

A. Policy statements and enforcement
Most policy should be enforced locally by each

participating testbed. There are a number of benefits to this
approach. Ultimately, it is the resource owner who is
responsible for the correct administration of policy at each
testbed. Furthermore, because a testbed may well be
participating in multiple federation agreements, and serving its
own local users outside of any federation, no other authority
can be expected to have full knowledge of the complete set of
policies to be enforced. Finally, a testbed will generally already
have an existing admission and allocation procedure encoded
in software, saving additional development.

A concrete example used in the following discussion is
provided by the growing international federation discussed in
section V below. This federation has adopted certain central
concepts from the GENI architecture. For example, the local
testbed software component responsible for access control and
allocation is called an aggregate manager (AM). The
interactions among key components involved in policy
enforcement are shown in Figure 2 and summarized below.
More detailed discussions may be found in [4] and [6].

Figure 2: Key AAA Components in Federation Architecture

33

B. AAA – Authentication, Authorization, and Accounting
Three vital services required to achieve adequate trust

within the control plane are authentication, authorization, and
accounting, collectively known as AAA. Authentication is the
ability to validate the identity of the person (or entity) who is
making a request. Authorization is the process of confirming
that the person requesting an action is permitted to perform that
action. Accounting is recording and retaining enough
information about each transaction to carry out the business of
the federation, which may include such functions as audit,
billing, and incident response. Typically, participating testbeds
will already have local AAA capabilities in place when joining
a federation. These existing capabilities may be sufficient for
the needs of the federation, or additional federation-level
processes may be needed. In the GENI federation, for example,
the GMOC (GENI meta-operations center) receives and retains
accounting data logged by various federation participants.

International federation efforts have worked to ensure that
each of these functions is implemented using readily available
open standards and software technology. This approach has the
advantage of making federation accessible to all interested
testbeds. Furthermore, using open technology encourages the
development of a thriving community of tool developers, who
can create software that facilitates end user access to federation
resources. In current FIDC federation implementations,
authentication is generally provided via X.509 certificates [7]
and secure socket layer (SSL) [8]. Authorization generally
follows one of two approaches. Role-based access control
(RBAC) describes a person’s rights to perform actions on a
particular slice and is implemented via the slice federation
architecture (SFA) [9]. Attribute-based access control (ABAC)
enables policy enforcement based on signed statements
asserting attributes of a particular person or entity [10]. (E.g.,
“Resource owner X certifies that person Y is a principal
investigator.”) Accounting data chiefly consists of transaction
and resource status information, and may be managed by
standard database software. Transaction reports are produced
as a side effect of authorization actions. In the case of ABAC,
which follows a theorem-proving approach to authorization,
each approved transaction can be accompanied by the first-
order logic proof that justifies a particular authorization
decision. Various resource managers in the federation generate
a variety of status information, such as utilization and up/down
condition, which can be used for alerting and to inform end
users of the state of different participating testbeds and their
resources.

C. Common APIs
Two key application programmer interfaces (APIs) are used

for control plane federation. An international consortium is
responsible for specification of these APIs, and open source
reference implementations are available. Testbed developers
who wish to participate in FIDC testbed federations based on
these APIs may either adopt them natively or develop
translation code, such as the slice exchange point SEP software
[11].

The federation API [12] is used to coordinate the so-called
“clearinghouse services” of the federation. These services are
conceptually centralized, but may be implemented in a

distributed fashion among federation participants. The
federation API defines two types of entity, a member authority
(MA) and a slice authority (SA), and the relationships between.
Briefly, federation participants choose to trust a member
authority to make assertions about end users. Similarly, a slice
authority manages slice objects and generates credentials for
members representing their authority to act on slices and their
associated resources. A federation may include one or more of
each type of authority.

The aggregate manager API (AM API) is the lingua franca
that connects end users (or the software tools acting on their
behalf) to the aggregate managers that allocate, configure, and
manage testbed resources. The central operations supported by
this API include resource discovery, resource allocation,
resource management, status inquiries, and resource
reclamation. Current international testbed federations are
implemented using the GENI AM API, with an open source
reference implementation available from [13]. An
internationalization effort is underway; its emerging open
source implementation may be found at [14].

IV. DATA PLANE FEDERATION
By contrast with control plane efforts, the work to federate

FIDC testbeds at the data plane level seems comparatively
simple, because it is not plowing nearly as much new ground.
The chief challenge in data plane federation is to provide
connectivity across the underlying research networks
participating in the federation. A few specific capabilities are
desirable to maintain and extend FIDC capabilities within the
larger federation.

• Data plane connections should be carried over research
and education (R&E) networks or other assets suited
for FIDC applications, rather than the public Internet.

• In order to enable novel, non-IP-based research,
researchers must be able to establish connectivity at
layer 2.

• To maintain slice isolation, the federated data plane
must preserve a network virtualization model across
participating federates.

• To support deep programmability, the federated data
plane should support a consistent programmability
model for network resources, or at a minimum, not
interfere with the network programmability model of
diverse resources combined into a single slice.

Fortunately, there are a number of existing technologies
that support at least the first three of these requirements. The
most accessible and familiar of these is simply to provision
VLAN connections to create the data plane connectivity among
federated resources. The VLAN approach has several benefits,
but also suffers from a few drawbacks. On the positive side,
VLANs are a well-understood network virtualization model,
and are essentially certain to be supported by networking
hardware in each federate. Similarly, most resource owners
already have expertise in segmenting their networks by VLAN,
so provisioning a distinct group of VLANs on behalf of data
plane federation will be relatively easy.

34

Current FIDC testbed federations make frequent use of
VLAN-based data plane federation. In its most rudimentary
form, such federation can be achieved by manually
provisioning a connection between federated resources.
Clearly, this method is undesirable from a scalability
viewpoint, because it requires human intervention to create
each federated slice. The process of stitching the data plane of
these slices is greatly accelerated by placing a statically
provisioned group of VLANs under the control of an aggregate
manager, which allocates them to slices as needed and reclaims
them after use. The current implementation of stitching in most
of the GENI federation uses this approach. A recent data plane
federation effort connecting GENI and FIRE resources is also
built on this model, using a group of fifty VLANs connecting
iMinds in Ghent with the Manhattan Landing (MAN LAN)
exchange point in New York.

The next step evolution of stitching beyond dynamic
allocation from a static pool is dynamic circuit allocation under
aggregate manager control at slice creation time. One existing
implementation of this approach in the GENI federation uses
an aggregate manager to request dynamic virtual circuits in the
Internet2 R&E network via the Internet2 ION service. A
particularly promising technology for international federation
using this strategy is the network service interface (NSI)
connection service [15].

In situations where resource limitations do not permit true
layer 2 connectivity via R&E network connections, it is
possible to fall back to a tunneling approach. Existing
implementations use generic routing encapsulation (GRE) or
enhanced generic routing encapsulation (EGRE) to create a
tunnel connecting federated resources. Although this tunnel is
typically carried over the public Internet, it provides a degree
of isolation encapsulates traffic sufficiently to permit non-IP
experimentation. However, tunneling remains a less desirable
solution, as it generally comes with undesired overhead and
can introduce unwanted technical restrictions. Furthermore,
when tunneled connections are carried over the public Internet,
unpredictable performance variations are likely.

The data plane federation approaches discussed above
provide connectivity solutions, but they sidestep the question of
deep programmability. In many cases, adequate
programmability is achieved within the data plane of the
participating testbeds, and the goals of the research end user
can be met simply by interconnecting these collaborating
resources within a slice. However, in some slice designs, the
researcher may wish to program the federation data plane
resources as well. There are a number of promising approaches
currently in the investigation, development, and deployment
stages. One approach is to use software defined networking
(SDN) technology, such as OpenFlow, to implement data plane
virtualization and interconnect federated resources. In addition
to avoiding some of the negative aspects of VLAN-based data
plane virtualization, the approach holds out the promise to
extend SDN control uniformly throughout the slice, including
core network resources. GENI and Internet2 are jointly
pursuing this approach, through a two-pronged strategy. The
first component is an aggregate manager that provisions virtual
circuits within the network’s SDN-based core. The second, a
“flow space firewall” multiplexes research OpenFlow

controllers over the core network’s flow space, enabling
uniform deep programmability. For the protection of the core
network, it is likely that such research controllers will require
detailed review and monitoring for the foreseeable future.

Another promising line of inquiry for federation lies in the
concepts of software defined exchange (SDX) and software
defined infrastructure (SDI). These concepts are relatively new
and their definitions, specifications, and implementations are
likely to be the topics of debate for some time to come. A
recent workshop [16] tentatively defined SDX as “a real or
virtual ‘meet-me’ point, where [SDN-enabled] peers meet to
communicate, each with its own policies.” Similarly, SDI was
defined as “the collection of shared [resources] plus networks
and SDXs that users / applications can utilize to build end-to-
end, multi domain software defined slices.” While SDX and
SDI are clearly unproven technology, it is clear that any
capability that emerges in this area will bear directly at least on
data plane federation, and quite probably on control plane
federation as well.

V. INTERNATIONAL FEDERATION – RECENT PROGRESS AND
UPCOMING CHALLENGES

Initial application and validation of most technical
capabilities supporting FIDC testbed federation take place
within national or regional scale testbeds. Progress towards
international federation of FIDC testbeds really began with a
series of demonstrations of ad hoc multi-testbed configurations
assembled for specific events. Key venues for such
demonstrations included GENI engineering conferences
(GECs) and SC (formerly Supercomputing) conferences,
beginning in 2012. Understandably, these configurations
typically focused on the data plane aspects of federation,
validating the ability to assemble transoceanic collections of
assets into slices for high performance networking or non-IP
future Internet applications. While these experiments were
valuable to illustrate the scientific potential of federation, the
relative weakness of control plane coordination represented a
significant shortcoming. Because little automation was
available to support the setup and control of these ad hoc
configurations, they required significant person-to-person
coordination. As a result, these demonstration configurations
were not generally available to typical end users of the
federated testbeds.

Early discussions on enduring international federation
began in July 2012, with a focus on available resources and
understanding the requirements for control plane and data
plane federation. These plans matured into the July 2013
“breakfast club” meeting, in which participants committed to
devote testbed resources and staff time to build an enduring
federation based on common APIs. In the year since that
meeting, dramatic progress has been made towards an initial
federation, although only limited resources have been
dedicated to date, and general availability of federated
resources is only now emerging.

The trend towards FIDC testbed federation represents an
exciting opportunity for testbed developers and the research
and educational communities that they support.

35

However, there is still a long way to go, on both the human
and technical sides of FIDC testbed federation. In many ways,
the current state of activities is still very much in a Wild West
(or perhaps Summer of Love) phase. Resource owners and
testbed developers have relatively little experience with
complex federation policies, even within at national scales.
Existing implementations often make do with the unmodified
default policies of individual participating testbeds. In some
cases, these policies are trivial or nearly so. As membership
grows beyond a tightly knit group of participants, the status
quo is clearly not scalable and will lead to unintended
consequences. Better tools for defining and enforcing
federation policies are needed to remedy this situation. While it
is tempting to press ahead with purely technical approaches, it
is apparent that software implementations must be guided by
clear understanding of the policies that are to be enforced. This
guidance must come from the resource owners and testbed
developers, based on their combined efforts to gain the greatest
benefit from FIDC testbeds.

ACKNOWLEDGMENTS
Building federations is by its nature a collaborative activity,

and any work to plan, build, and support federated FIDC
testbeds relies on the efforts of many participants. Although
there are too many for a comprehensive list, some of the key
participants in the efforts described above include the
following. The GENI architects (who have included Ilya
Baldin, Nick Bastin, Andy Bavier, Mark Berman, Marshall
Brinn, Jeff Chase, Chip Elliott, Aaron Helsinger, Tom
Mitchell, Max Ott, Larry Peterson, Rob Ricci, and Mike Zink)
insisted on designing for federation from the start. Early ad hoc
international federation efforts were supported by collaboration
and late-night efforts from many, including Akihiro Nakao, Joe
Mambretti, Rick McGeer, Paul Müller, and Niky Riga. Key
contributors to the common APIs, their early implementations,
and dissemination include Tom Rothe, Brecht Vermeulen, and
Timur Friedman. The MobilityFirst and eXpressive Internet
Architecture NSF Future Internet Architecture projects served
as willing test subjects for early international FIDC federations
– thanks to Ray Raychaudhuri, Ivan Seskar, Kiran Nagaraja,
Peter Steenkiste, Matt Mukerjee, and David Naylor. The GENI
and Fed4FIRE efforts enjoy a very fruitful collaboration,
supported by Piet Demeester and cheered on by EC and NSF
representatives, including Per Blixt, Jorge Pereira, Suzi Iacono,
and Bryan Lyles. Data plane stitching innovations are actively
supported by Internet2, including efforts by Eric Boyd, Luke
Fowler, and others, while Tom Lehman and Xi Yang
implemented controlling software. International connections
supported by the NSF international research network
connections (IRNC) program were invaluable in building
connections – thanks to David Lassner, Julio Ibarra, Jim
Williams, and others already mentioned. The initial July 2012
GEC planning group included Tomonori Aoyama, Dave
Farber, Serge Fdida, Martin Swany, MyungKi Shin, Mauro
Campanella, James Sterbenz, Vasilis Maglaris, Cees de Laat,
Cesar Marcondes, and others already mentioned. Larry
Landweber convened the July 2013 “breakfast club” meeting,
which, in addition to several already listed, included Michael
Stanton, Luis Lopez, Jack Hong, Iara Machado, Al Leon-

Garcia, Thierry Rakotoarivelo, Carlos Casasus, and Hagen
Woesner. KC Wang and Felix Wu, as well as many others,
some already mentioned, participated in international outreach.

REFERENCES

[1] Mark Berman et al., "GENI: A Federated Testbed for
Innovative Network Experiments," Computer Networks, no. 61,
pp. 5-23, March 2014.

[2] Serge Fdida et al., "FIRE Roadmap Report 1 – Part II," Future
Internet Research and Experimentation (FIRE), 2011.

[3] J.S. Turner and D.E. Taylor, "Diversifying the Internet," in
Global Telecommunications Conference, vol. 2, 2005.

[4] GENI Architecture Team (Marshall Brinn and Robert Ricci,
chairs). (2012, March) GENI Federation Software Architecture
Document. [Online].
http://groups.geni.net/geni/attachment/wiki/GeniArchitectTeam/
GENI%20Software%20Architecture%20v1.0.pdf

[5] Wim Vandenberghe et al., "Architecture for the Heterogeneous
Federation of Future Internet Experimentation Facilities," in
Future Network and Mobile Summit 2013 Conference
Proceedings, 2013.

[6] Marshall Brinn. (2014, June) 20th GENI Engineering
Conference. [Online].
http://groups.geni.net/geni/attachment/wiki/GEC20Agenda/Intr
oToArch/GEC20%20Architecture%20Review%20final.pptx

[7] D. Cooper et al. (2008, May) RFC 5280: Internet X.509 Public
Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile. [Online]. http://tools.ietf.org/html/rfc5280

[8] A. Freier, P. Karlton, and P. Kocher. (2011, August) RFC 6101:
The Secure Sockets Layer (SSL) Protocol Version 3.0. [Online].
http://tools.ietf.org/html/rfc6101

[9] Larry Peterson et al. (2009, April) Slice-Based Facility
Architecture. [Online]. http://svn.planet-
lab.org/attachment/wiki/WikiStart/sfa.pdf

[10] ABAC Development Team. ABAC. [Online].
http://abac.deterlab.net/

[11] Michiaki Hayashi, Toshiaki Tarui, Yasushi Kanada, Shu
Yamamoto, and Akihiro Nakao, "Inter-domain Virtualization
with Slice Exchange Point," in 10th International Conference
on IP + Optican Network, Tokyo, 2014.

[12] Marshall Brinn et al. (2013, November) GENI Wiki. [Online].
http://groups.geni.net/geni/wiki/CommonFederationAPIv1

[13] GENI Project Office. (2014) Getting GCF and Omni Source
Code. [Online]. http://trac.gpolab.bbn.com/gcf/wiki/GettingGcf

[14] Federation AM API Team. (2014) Federation AM API.
[Online]. https://github.com/open-multinet/federation-am-api

[15] G. Roberts et al. (2014, June) NSI Connection Service v2.0.
[Online]. http://www.ogf.org/documents/GFD.212.pdf

[16] Lawrence Landweber and Jeannie Albrecht. (2014, June)
Workshop on Prototyping and Deploying Experimental
Software Defined Exchanges (SDXs). [Online].
http://groups.geni.net/geni/wiki/SDXandSDIWorkshop

36

Network Verification: Calculus and Solvers
N Bjørner

Abstract—We examine calculus and solvers for Network
Verification. As starting point we take the SecGuru tool that
checks network access restrictions in the Microsoft Azure
public cloud infrastructure. The tool is based on the Sat-
isfiability Modulo Theories solver Z3. SecGuru is also used
for checking Network Invariants for data-centers that are
deployed using Azure’s network architecture. In both cases
SecGuru relies on a calculus of network configurations in
order to capture intent and check these statically. SecGuru
models network configurations using quantifier-free logical
formulas over bit-vectors. We recall also other scenarios
in the context of network verification. They use other frag-
ments of logic and specialized engines for Datalog and quan-
tifier reasoning in Z3. In each case, correctness assertions
can be modeled and solved using logics that are supported
in state-of-the art theorem provers.

Based on our experiences we claim that Network Verifi-
cation is an important and exciting new opportunity where
formal methods and modern theorem proving technologies
play an important role. Many formalisms that make it con-
venient to model scenarios from networking domain are al-
ready supported in modern solvers. On the other hand, net-
working provides an inspiration for additional formalisms
that can be supported using new efficient data-structures
and solving algorithms.

I. Calculus and Solvers

A. Network Verification Calculus: Routers, Access Con-
trol Lists and Protocols

Modern data-centers use routers from several vendors,
such as Cisco and Juniper networks. They expose dif-
ferent interfaces for configuration and newer routers also
ease programmability for open-stack style controller-based
software defined networking. The configuration formats
are on one hand very low level: the language resembles
a bare bones assembly format. On the other hand, con-
figurations are quite expressive, including Access Control
Lists (ACLs), Quality of Service contracts, and monitoring
directives. Furthermore, in large networks, configurations
are distributed among several routers and management de-
vices. The behavior of a full system is the effect of aligning
many configurations. Configurations are of course only a
means to an end: ACLs exist to enforce security policies
and routing policies exist to implement a routing architec-
ture. The task of bridging the actual configurations with
the original intent is inhumane: the complexity of large
scale deployments does not lend itself to manual inspec-
tion, even for masters of complexity 1.
We provide selected use cases where important features

of modern industrial network systems can be modeled us-
ing logical theories capturing the main intent of operators.

Microsoft Research

nbjorner@microsoft.com

Microsoft Azure

karjay@microsoft.com
1 Thanks to Nick McKeown for this fitting characterization

B. Solvers for Network Verification

The use of Satisfiability Modulo Theories, SMT, solvers
for software analysis, verification and testing has blos-
somed in recent years thanks to significant advances in
theorem proving technologies coupled with availability of
usable SMT tools that match closely the domains useful
in software analysis. The SMT solver Z3 [5] is the most
widely used SMT solver with applications ranging from
symbolic execution and test-case generation [6], program
verification [10], symbolic model checking [2] and many
other areas.

Network Verification is not unlike software or hardware
so it is possible to apply some of the tools developed with
other applications in mind for software defined networks.
We here provide instances where SMT solvers can be of sig-
nificant benefit for managing modern software defined net-
works. We also claim that the networking domain presents
its own features that inspire new efficient constraint solving
algorithms and data-structures.

II. Access Control Lists

1 remark Isolating private addresses
2 deny ip 10.0.0.0/8 any
3 deny ip 172.16.0.0/12 any
4 deny ip 192.0.2.0/24 any
5 ...
6 remark Anti spoofing ACLs
7 deny ip 128.30.0.0/15 any
8 deny ip 171.64.0.0/15 any
9 ...

10 remark permits for IPs without
11 port and protocol blocks
12 permit ip any 171.64.64.0/20
13
14 remark standard port and protocol
15 blocks
16 deny tcp any any eq 445
17 deny udp any any eq 445
18 deny tcp any any eq 593
19 deny udp any any eq 593
20 ...
21 deny 53 any any
22 deny 55 any any
23 ...
24 remark permits for IPs with
25 port and protocol blocks
26 permit ip any 128.30.0.0/15
27 permit ip any 171.64.0.0/15
28 ...

Fig. 1. An Edge Network ACL configuration

The Azure architecture enforces network access restric-
tions using ACLs. These are placed on multiple routers and
firewalls in data-centers and on the edge between internal
networks and the internet. Miss-configurations, such as
miss-configured ACLs, are a dominant source of network
outages. The SecGuru [8] tool uses Z3 to check contracts
on firewall ACLs. It translates the ACLs into a logical
predicate over packet headers that are represented as bit-
vectors. These predicates are checked for containment and
equivalence with contracts that are represented as other
bit-vector formulas. SecGuru checks virtually all Microsoft

K Jayaraman

37

routers on a continuous basis: each router is checked every
30 minutes against a data-base of contracts.
The routers that are dedicated to connect internal net-

works to the Internet backbone are called Edge routers
and they enforce restrictions using ACLs. Figure 1 pro-
vides a canonical example of an Edge ACL. The ACL in
this example is authored in the Cisco IOS language. It is
basically a set of rules that filter IP packets. They inspect
header information of the packets and the rules determine
whether the packets may pass through the device.
Each rule of a policy contains a packet filter, and typ-

ically comprises two portions, namely a traffic expression
and an action. The traffic expression specifies a range of
source and destination IP addresses, ports, and a protocol
specifier. The expression 10.0.0.0/8 specifies an address
range 10.0.0.0 to 10.255.255.255. That is, the first 8 bits
are fixed and the remaining 24 (= 32-8) are varying. A
wild card is indicated by Any. For ports, Any encodes the
range from 0 to 216 − 1. The action is either Permit or
Deny. They indicate whether packets matching the range
should be allowed through the firewall. This language has
the first-applicable rule semantics, where the device pro-
cesses an incoming packet per the first rule that matches
its description. If no rules match, then the incoming packet
is denied by default.
The meaning of network ACLs can be captured in logic

as a predicate ACL over variables src, a source address
and port, dst , a destination address and port, and other
parameters, such as protocol and TCP flags. For our ex-
ample from Figure 1, we can capture the meaning as the
predicate:

ACL≡
if src = 10.0.0.0/8 ∧ proto = 6 then false else
if src = 172.16.0.0/12 ∧ proto = 6 then false else
if src = 192.0.2.0/24 ∧ proto = 6 then false else
. . .
if dst = 171.64.64.0/20∧ proto = 6 then true else
. . .
if proto = 4∧ dstport = 445 then false else
. . .

For ease of readability, we re-use the notation for writing
address ranges. In bit-vector logic we would write the con-
straint src = 10.0.0.0/8 as src[31 : 24] = 10, e.g., a pred-
icate that specifies the 8 most significant bits should be
equal to the numeral 10 (the bit-vector 00000110).
Traffic is permitted by an ACL if the predicate ACL is

true. Traffic permitted by one ACL and denied by an-
other is given by ACL1 ⊕ACL2 (the exclusive or of ACL1

and ACL2). The SecGuru tool uses the encoding of ACLs
into bit-vector logic and poses differential queries between
ACLs to find differences between configurations. It also
checks contracts of ACLs by posing queries of the form
ACL ⇒ Property , where an example property is that UDP
ports to DNS servers are allowed. The main technological
novelty in SecGuru is an enumeration algorithm for com-
pactly representing these differences. Compact representa-
tion of differences help network operators understand the

full effect of a miss-configuration. Checking firewall con-
figurations is central to securing networks. Several other
tools address checking firewall configurations. These in-
clude Margrave [15], which provides a convenient formal-
ism for expressing rich properties of networks and firewalls
(but counter-examples are only available for one address
at a time), and the firewall testing tool in [4], which builds
upon Isabelle/HOL and Z3 for generating test-cases.

III. Routing tables

Figure 2 shows an excerpt of a routing table from an
Arista network switch

1 B E 0.0.0.0/0 [200/0] via 100.91.176.0, n1
2 via 100.91.176.2, n2
3

4 B E 10.91.114.0/25 [200/0] via 100.91.176.125, n3
5 via 100.91.176.127, n4
6 via 100.91.176.129, n5
7 via 100.91.176.131, n6
8 B E 10.91.114.128/25 [200/0] via 100.91.176.125, n3
9 via 100.91.176.131, n6

10 via 100.91.176.133, n7
11 ...

Fig. 2. A BGP routing table

Similarly to ACLs we can model routing tables as re-
lations Router over destination addresses and next-hop
ports that can be represented as atomic Boolean predi-
cates. Each rule in the routing table is either provisioned
based on static configurations specified in the device, or
derived based on BGP network announcements that the
device receives.
We here choose an encoding of Router , such that for

each destination address dst and next-hop address n:

Router [dst �→ dst,n �→ true] is true
iff

n is a possible next hop for address dst

The routing tables have an ordered interpretation,
wherein rules whose destination prefixes are the longest
applies first. The default rule with mask 0.0.0.0/0, listed
first, applies if no other rule applies. For our example, our
chosen encoding of the predicate Router is of the form:

Router ≡
if . . .
if dst = 10.91.114.128/25 then n3 ∨n6 ∨n7 else
if dst = 10.91.114.0/25 then n3 ∨n4 ∨n5 ∨n6 else
n1 ∨n2

Each Azure data-center is built up around a hierarchy of
routers that facilitate high-bandwidth traffic in and out as
well as within the data-center. Traffic that leaves and en-
ters the data-center traverses four layers of routers, while
traffic within the data-center may traverse only one, two
or at most three layers depending on whether the traffic
is within a rack, a physical partition called a cluster, or
between clusters. Routers close to the host machines be-
long to one of the clusters. Traffic in a correctly configured
data-center is routed without loops and along the shortest
path for cluster-local traffic. Azure checks these properties

38

NETWORK VERIFICATION: CALCULUS AND SOLVERS

as network invariants. Sample (slightly simplified from the
ones checked for Azure) network invariants are:

Network Invariant 1: Traffic from a host leaf directed
to a different cluster from the leaf is forwarded to a router
in a layer above. In other words, suppose that Router
belongs to a cluster given as a predicate Cluster , and that
RouterAbove is the set of routers above Router , then

dst 	∈ Cluster ∧Router ⇒
∨

n∈RouterAbove

n

On the other hand,

Network Invariant 2: Traffic from a host leaf directed to
the same cluster is directed to the local VLAN or a router
in the layer above that belongs to the same cluster as the
host leaf router:

dst ∈ Cluster ∧Router ⇒
VLAN ∨ ∨

n∈RouterAbove(n∧n ∈ Cluster)

The routing behavior of routers at the same level from
the same cluster should also act uniformly for addresses
within the cluster (they can behave differently for ad-
dresses outside of a cluster range).

Network Invariant 3: Let Router1, Router2 be two
routers at the same layer within the cluster Cluster , then

dst ∈ Cluster ⇒ Router1 ≡ Router2

IV. Differential Network Reachability

In the previous section we described how SecGuru per-
forms local checks on routers. These local checks often im-
ply global properties of the network. This approach works
fine in the context of the Azure architecture, which is fixed
and data-centers are deployed in cookie-cutter form. Find-
ing local invariants, however, is an entirely manual process
and the approach does not generalize to arbitrary networks
(though there is a really good point to capturing and check-
ing architecture based invariants for Azure). The behavior
of a router is commonly a combination of ACLs, forward-
ing rules, and packet rewriting. It is therefore not generally
possible to check global network invariants from a fixed set
of local network invariants. To check global network prop-
erties we developed a specialized tool in Z3 that handles
configurations for packet switching networks efficiently.

This time we represent forwarding logic and networks
as a set of constrained Datalog rules. Suppose that nr is
a predicate representing the current router from our ex-
ample, and n1, n2, . . . are the names of next-hop routers,
represented as predicates, then the rules for representing
the routing behavior can be written:

∀dst . n1(dst) ←
⎛
⎝ nr(dst)

∧ dst 	= 10.91.114.0/25
∧ dst 	= 10.91.114.128/25∧ . . .

⎞
⎠

∀dst . n2(dst) ←
⎛
⎝ nr(dst)

∧ dst 	= 10.91.114.0/25
∧ dst 	= 10.91.114.128/25∧ . . .

⎞
⎠

∀dst . n3(dst) ←

⎛
⎜⎜⎝

nr(dst)

∧
(

dst = 10.91.114.0/25∨
dst = 10.91.114.128/25

)

∧ . . .

⎞
⎟⎟⎠

. . .

Constrained Datalog with stratified negation provides logi-
cal expressitivity that makes it easy to encode queries over
pairs of paths. Thus, one can use Datalog to query for
packets that are dropped along one route but not another.
Header Space Algebra (HSA) [9] was introduced to rea-

son efficiently about reachability over sets of headers. The
basic data-structure used by HSA is a difference of cubes
(DOC) representation of three-valued bit-vectors. Three-
valued bit-vectors encode address masks compactly using
don’t cares. An example DOC is the expression:

1 ∗ 110 ∗ ∗ \ (∗1 ∗ ∗ ∗ 11 ∪ ∗0 ∗ ∗ ∗ 00)
It is shorthand for the set

{1011011, 1011001, 1011010, 1111000, 1111001, 1111010}.
In [11] we adapt DOC encodings as an underlying table
representations for a Datalog engine in Z3. For a set of
benchmarks extracted from Azure and Stanford networks
we observed that the DOC representation scales well be-
yond competing representations, such as BDDs, or SAT
based bounded model checking. Model checking tech-
niques for (software defined) networks is actively investi-
gated in several contexts, including the Anteater tool [12]
and in [18].

V. Programmable Controllers

Network controller programs operate at their core by re-
ceiving packets from routers. The packets are rewritten,
forwarded and used to update both local state and routing
tables. In [1] we developed a language, VeriCon, capturing
core features of network controllers relevant to verification
of network controllers. State, local and external routing
tables, are uniformly represented as predicates (Boolean
arrays). Proving invariants of the controllers turns out to
requite a limited expressive logical power close in style to
the Bernays-Schönfinkel-Ramsey, otherwise known as Ef-
fectively Propositional Reasoning (EPR). EPR formulas
are of the form: ∀�y . ϕ[�c,�y], where �c is a set of constant
symbols, and the formula ϕ is quantifier-free over equal-
ities and uninterpreted relations over the constants and
bound variables. Thus, EPR formulas do not have nested
functions.
The VeriCon verification conditions are discharged au-

tomatically by Z3, or in case of properties that are not
invariants, Z3 provides counter-examples. Furthermore,
invariants that were not already inductive are in some
cases inductive after conjoining the invariants with their
weakest pre-conditions. Weakest pre-condition strengthen-
ing is a folklore approach used in variations in deductive-
algorithmic model checking. While it is simple to imple-
ment it does not scale very well and current efforts in-
clude replacing the strengthening by more sophisticated

39

approaches and also ensuring that the assertion language
remains within a decidable extension of EPR.

VI. The Logical Power of Networks

A common experience so far has been that network ver-
ification is matched well by logics and solvers that exploit
how ACLs, forwarding rules and controller programs han-
dle sets of packets the same way: Transitions are guarded
by predicates on bit-ranges and state updates copy or up-
date bit-ranges to constant values. In other words, the
tools exploit and support packet ranges and how the state
of controllers is updated based on a few enumerable at-
tributes. Yet, the underlying algorithms from our ex-
periences are orthogonal. The bit-vector solver used in
SecGuru reduces verification to propositional SAT; DNA
pairing requires a Datalog engine; controller verification
uses invariants expressed over quantified first-order logic
so it requires efficient quantifier instantiation. The Z3
SMT solver exposes much richer functionality than the
fragments we used here: Z3 supports reasoning about logi-
cal formulas using linear integer, linear and non-linear real
arithmetic, algebraic data-types and arrays. It contains
specialized engines for solving Horn clauses over arith-
metic [3], [7], [13] that so far target applications from sym-
bolic software model checking.
We believe the mutual exposure of formal methods to

modern packet switched network engineering is a signif-
icant area of opportunity for both camps. An indication
that this is broadly the case is that we are not the only ones
who apply SMT, SAT, QBF, finite state model checking
and other verification and synthesis technologies for pro-
grammable packet switched networks [14], [17], [19], [16].
More narrowly, the use of SMT solving and other theorem
proving technologies for Network Verification offers mutual
opportunities to improve scale and reliability of modern
(large scale) data-center networks. On the other hand, the
applications that emerge from Network Verification inspire
new algorithms and data-structures for theorem proving
and model checking.
Acknowledgment Our experiences with network verifi-
cation is based on joint work with several collaborators,
including: George Varghese, Mooly Sagiv, Charlie Kauf-
man, Geoff Outhred, Nuno Lopes, Mingchen Zhao, Jeff
Jensen, Monika Machado, Garvit Juniwal, Ratul Maha-
jan, Ari Fogel, Jim Larus, Thomas Ball, Aaron Gember,
Shachar Itzhaky, Aleksandr Karbyshev, Michael Schapira
and Asaf Valadarsky.

References

[1] Thomas Ball, Nikolaj Bjørner, Aaron Gember, Shachar Itzhaky,

Aleksandr Karbyshev, Mooly Sagiv, Michael Schapira, and Asaf

Valadarsky. VeriCon: towards verifying controller programs in

software-defined networks. In Michael F. P. O’Boyle and Keshav

Pingali, editors, PLDI, page 31. ACM, 2014.

[2] Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. A

decade of software model checking with SLAM. Commun. ACM,

54(7):68–76, 2011.

[3] Nikolaj Bjørner, Kenneth L. McMillan, and Andrey Ry-

balchenko. Program Verification as Satisfiability Modulo Theo-

ries. In Pascal Fontaine and Amit Goel, editors, SMT@IJCAR,

volume 20 of EPiC Series, pages 3–11. EasyChair, 2012.

[4] Achim D. Brucker, Lukas Brügger, and Burkhart Wolff. hol-

TestGen/fw - An Environment for Specification-Based Firewall

Conformance Testing. In Zhiming Liu, Jim Woodcock, and

Huibiao Zhu, editors, ICTAC, volume 8049 of Lecture Notes
in Computer Science, pages 112–121. Springer, 2013.

[5] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An

Efficient SMT Solver. In C. R. Ramakrishnan and Jakob Rehof,

editors, TACAS, volume 4963 of Lecture Notes in Computer
Science, pages 337–340. Springer, 2008.

[6] P. Godefroid, J. de Halleux, A. V. Nori, S. K. Rajamani,

W. Schulte, N. Tillmann, and M. Y. Levin. Automating Soft-

ware Testing Using Program Analysis. IEEE Software, 25(5):30–
37, 2008.

[7] Krystof Hoder and Nikolaj Bjørner. Generalized Property Di-

rected Reachability. In Alessandro Cimatti and Roberto Sebas-

tiani, editors, SAT, volume 7317 of Lecture Notes in Computer
Science, pages 157–171. Springer, 2012.

[8] Karthick Jayaraman, Nikolaj Bjørner, Geoff Outhred, and Char-

lie Kaufman. Automated Analysis and Debugging of Network

Connectivity Policies. Technical Report MSR-TR-2014-102, Mi-

crosoft Research, July 2014.

[9] Peyman Kazemian, George Varghese, and Nick McKeown.

Header space analysis: static checking for networks. In NSDI,
2012.

[10] K. Rustan M. Leino. Developing verified programs with dafny.

In David Notkin, Betty H. C. Cheng, and Klaus Pohl, editors,

ICSE, pages 1488–1490. IEEE / ACM, 2013.

[11] Nuno Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Ja-

yaraman, and George Varghese. DNA Pairing: Using Differ-

ential Network Analysis to find Reachability Bugs. Technical

Report MSR-TR-2014-58, Microsoft Research, 2014.

[12] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Cae-

sar, P. Brighten Godfrey, and Samuel Talmadge King. Debug-

ging the Data Plane with Anteater. In Proceedings of the ACM
SIGCOMM 2011 Conference, SIGCOMM ’11, New York, NY,

USA, 2011. ACM.

[13] Kenneth L. McMillan. Lazy Annotation Revisited. In Armin

Biere and Roderick Bloem, editors, CAV, volume 8559 of Lecture
Notes in Computer Science, pages 243–259. Springer, 2014.

[14] Sanjai Narain, Gary Levin, Sharad Malik, and Vikram Kaul.

Declarative Infrastructure Configuration Synthesis and Debug-

ging. J. Netw. Syst. Manage., 16(3):235–258, September 2008.

[15] Timothy Nelson, Christopher Barratt, Daniel J. Dougherty,

Kathi Fisler, and Shriram Krishnamurthi. The Margrave tool

for firewall analysis. In LISA, pages 1–8, Berkeley, CA, USA,

2010. USENIX Association.

[16] Andrew Noyes, Todd Warszawski, Pavol Cerný, and Nate Fos-

ter. Toward synthesis of network updates. In Bernd Finkbeiner

and Armando Solar-Lezama, editors, SYNT, volume 142 of

EPTCS, pages 8–23, 2014.

[17] Shuyuan Zhang, Abdulrahman Mahmoud, Sharad Malik, and

Sanjai Narain. Verification and synthesis of firewalls using SAT

and QBF. In ICNP, pages 1–6. IEEE, 2012.

[18] Shuyuan Zhang and Sharad Malik. SAT Based Verification of

Network Data Planes. In Dang Van Hung and Mizuhito Ogawa,

editors, ATVA, volume 8172 of Lecture Notes in Computer Sci-
ence, pages 496–505. Springer, 2013.

[19] Shuyuan Zhang, Sharad Malik, and Rick McGeer. Verification

of computer switching networks: An overview. In ATVA, 2012.

40

On QoS Management in SDN by Multipath Routing

E. Chemeritskiy

Lomonosov Moscow State University

Moscow, Russia

tyz@lvk.cs.msu.su

R. Smelansky

Applied Research Center for Computer Networks

Moscow, Russia

smel@arccn.ru

Abstract—The Quality of Service (QoS) management is one of

the urgent problems in networking which doesn’t have an

acceptable solution yet. In the paper the approach to this

problem based on multipath routing protocol in SDN is

considered. The proposed approach is compared with other QoS

management methods. A structural and operation schemes for its

practical implementation is proposed.

Keywords—Quality of Service; Multipath Routing; Software-

Defined Networks; Network Management

I. INTRODUCTION

QoS (Quality of Service) as a term is a general description
of the performance of a network connection. This term is
treated either as qualitative assessment of the connection
performance by a user, or as a set of objective quantitative
parameters characterizing the one. Qualitative evaluation of
QoS is defined as the degree of satisfaction of a user by
communication quality as for example in Skype – the sound
quality, the presence of a distortion, the appearance of echo,
jitter, quality of the picture etc. There are two basic methods
for QoS qualitative evaluation: Mean Opinion Score and
Quality of Experience [1]. These methods provide an
integrated assessment of all subjective assessment of service.

In this paper we are primarily interested in the second
interpretation of the term QoS as a set of the parameters a
network connection. Under term QoS requirements we will
mean a set of the QoS parameters a network connection has to
meet. The term QoS management we will treat as ability of
network to maintain a set of connection parameters compliant
with the QoS requirements of the application it is due to.
Saying “connection” we mean end-to-end (e2e) connection. A
set of QoS parameters includes:

• Throughput – a part of the channel bandwidth
available to the particular connection;

• End-to-end delay – time is needed to deliver a packet
from one source host to a destination host;

• Jitter – a deviation of the end-to-end delay from its
mean value;

• Error Rates - the share of packets lost or damaged
during a transmission through connection.

Different parameters of QoS play a different role for
different applications. For example, multimedia application

requires high throughput, videoconferencing and real time
simulation – small jitter and end-to-end delay, telemedicine
(distance surgery) – high throughput and low error rate.

Providing a connection with an appropriate QoS require a
certain network resources. However, the network has only a
limited amount of the resources to handle data flows. Thus we
get a problem how to allocate network resources to meet QoS
requirements of different applications operate at the same time?
In practice usually there is problem connected to the previous
one - what level of utilization (efficiency) of the network
resources under allocation have been made? Thus, a network
has to be selective while spreading bandwidths of its channels
and capacities of its switching devices over the applications.
Thereby, the solution for the quality of service problem we are
looking for should meet the following criteria: (1) ensure
compliance of granted e2e connections with the QoS
requirements of applications, (2) provide a small resource
fragmentation, and (3) to be a practical method delivering a
suboptimal resource allocation.

Although QoS issue has been addressed since the first
attempts to transmit voice over a packet switched network [2],
and the community has developed a set of diverse approaches
to conquer it, none of them is successful enough to be
implemented by default. They are either too expensive to
deploy or provide insufficient increase to the admissible
utilization of a network. Thereby, the existing practices of the
network management advice to obtain the missing resources by
a straightforward resource extension, rather than to invest into
an intricate piece of hardware, gain better control over the
resource distribution and attune the performance in an
intelligent way.

In this paper we propose a new approach to QoS
management in SDN networks [3] based on Multi Path Routing
(MPR) called MPRSDN with the following features:

 MPRSDN refuses resource reservation in favor of their
efficient utilization. Thereby, it provides no strict
guarantees and implements a best effort approach.

 Although we propose to construct a QoS-compliant
resource allocation with a heuristic search, our
approach uses a considerably large search space to
allocate the resources for each of the requested
connections. Thus, if it fails to meet the requirements
of a given application, most likely, there are no more
suitable resources left.

 It does not require specialized hardware and may be
deployed in any SDN network with an appropriate

This research is supported by the Ministry of education and science of
the Russian Federation, Unique ID RFMEFI60914X0003 and Russian
Foundation for Basic Research, project 14-07-00625

41

control over the switches. The hosts have to be
preinstalled with the software agent for multipath
routing enabling to involve some idling resources.

In section II we provide the comparative analysis of
existing approaches to QoS management. Section III introduces
the structural and operational schemes of the proposed QoS
control toolset.

II. RELATED WORK

A. Conventional QoS management

There are multiple well-known approaches to the quality of
service management. Introduced by the model of Integrated
Services (IntServ) [4], signaling protocol RSVP (and later
NSLP [5]) provides applications with guarantees over
throughput and delay of the granted connection by resource
reservation at each router along the flow path calculated by a
routing protocol. The reservation restricts schedule of packet
handling at each affected router because the allocated resources
are assigned to the flow exclusively and cannot be used even if
the flow does not fully utilize them at that time. An application
has to announce its QoS requirements before the connection
setup and cannot modify them until the connection close. Thus,
the application is forced to over pledge and reserve resources
with a margin for the maximum traffic burst.

IntServ relies on static resource reservation and brakes
work-conserving operation of switching devices. This results
into an unnecessary resource fragmentation, similar to the one
in a computer with paged allocation of RAM. As a result, in
some cases network fails to supply the connection with the
requested QoS even if accumulative amount of the network
resources is enough to make it. The similar problem may be
also caused by the independence of the signaling and routing
protocols. There might be a bypass route to avoid the
overloaded network component, however reservation is
separated from routing and cannot take this advantage.

The model of Differentiated Services (DiffServ) [6]
proposes to replace an awkward resource scheduling for end-
to-end connections with predefined qualities by a local flows
grading at the network devices. Each device defines a set of
service classes and attributes each class with a certain QoS.
Although each flow has a right to request a class with an
appropriate service, the model does not provide any guarantees
over the provided packet processing quality. Instead, each
switch undertakes to share its resources among the flows of
different classes in accordance with their relative shares. If
there are no flows for a certain class of service then the
resources of this class are allocated among the other classes.
Thereby, switches are work-conserving and never idle when
there are some packets to process. Although the application
may specify required class of service for its packets explicitly,
it is optional. In practice switching devices often calculate the
class of service for a packet automatically by a certain set of its
attributes and a mapping preinstalled by the administrator.

Differentiated Services introduce a way to deal with switch-
level resource fragmentation and increase the overall network
performance. However, it manages only the network resources
along the primary route of an application. Thus, some idling

and suitable resources away from this route are unavailable.
Moreover, the class of service of the flow is set statically for
the whole path. Although it is possible to improve granularity
by dynamic changing of class of service at some points in the
network this interference into the switching logic is beyond the
capabilities of the networks of ordinary switching devices
without a centralized control.

QoS-routing [7] was intended to improve allocation of
network resources by constructing individual data transmission
paths for each connection. Such a fine-grained routing is used
to balance data flows among several paths, bypass congestion
involve idling resources aside from heavy loaded channels, and
take into account the QoS requirements of the application. For
example, the delay sensitive traffic is usually routed along the
shortest path, whereas the other flows may be forced to use the
longer paths. However, a practical implementation of this
method requires a low-level and centralized control over the
switching devices unavailable back in time of its emergence.
Moreover, QoS-routing algorithms tried to treat the problem of
resource allocation as a global optimization problem with
multiple constraints and their implementations were too slow to
run on the fly.

B. QoS management with SDN

SDN supplies a complete control over the packet handling
rules of each switch in the network, and an SDN controller may
easily implement each of the mentioned approaches to QoS
management without a regard to a complex distributed
exchange algorithms for service data. Controller can mimic
resource reservation by dynamic adjustment of traffic shaping
parameters at its border switches of the network. It is also
capable to collect a comprehensive set of the QoS metrics and
implement a relevant QoS-aware routing on a per-flow basis,
or improve capabilities of DiffServ with dynamic reassigning
the class of service mark for any flow at any point of the
network. Unfortunately, neither flexibility, nor convenience of
SDN removes the inherent disadvantages of these methods.

SDN provides a technical capability to gather the relevant
information about the network, but it is a hard task to construct
a comprehensive algorithm to dispose the collected data
properly. This algorithm is expected to analyze a set of
heterogeneous parameters and synthesize such a set of
appropriate forwarding instructions for the switches to achieve
a better network performance. It is hardly believable there are
real opportunities to construct routing algorithm able to work
on the fly [8].

SDN does not give us any advantage to cope the problem of
how to transmit QoS requirements from the user application to
the Control Plane. However, this problem has been realized.
FLARE [9] proposes to enable such an interaction by
appending of arbitrary data to the tail of a packet and
introducing corresponding handlers for the piggy-backed data
at both end-host and switches. PANE [10] considers direct
communication of the end-host application and the controller.
On the other hand, loosening of the separation between the
Data Plane and the Control Plane leads to potential security
breach, and there is a lot of skepticism about its overall
advantage.

42

Another reason for controller to avoid interference in
applications communication is Internet Architecture Principles
[11, 12]. As an evolutionary development of the network
architecture SDN should not violate these principles. End to
End principle states “The network’s job is to transmit
datagrams as efficiently and flexibly as possible. Everything
else should be done at the fringes…” [11]. Clark explained this
principle with the following words “The function in question
can completely and correctly be implemented only with the
knowledge and help of the application standing at the end
points of the communication system. Therefore, providing that
questioned function as a feature of the communication system
itself is not possible. (Sometimes an incomplete version of the
function provided by the communication system may be useful
as a performance enhancement.)” [13].

C. Multi-Path Routing

An SDN controller has a number of options to provide an
application with a connection of an appropriate QoS: controller
can route the flow through the underused links, reallocate the
resources along the existing routes and/or impose stronger
restrictions to the other flows. However, it requires too
complicated algorithm to manage all the listed possibilities
simultaneously. MPRSDN proposes to decompose this global
resource management problem into a set of smaller problems
with help of Multi Path Routing.

MPRSDN associate each connection with a simple module
to detect violations of its QoS requirements and request the
controller to supply additional resources on their occurrences.
The controller module handles the requests by constructing of
additional data transmission paths through the network. The set
of paths granted to a connection is used to balance its packets
and gain a larger amount of the resources. If controller provides
connection with a path, it has not used before, there is a good
chance, this path improves accumulated QoS of the connection.

There are multiple well-known approaches to implement
the described splitting and balancing of a packet flow among a
set of alternative paths. Routers often use Equal Cost Multi
Path (ECMP) [14] to route the traffic addressed to the same
destination along the different paths with equal cost. ECMP is
simple to implement by distributing of the incoming packets
with round-robin. However, such a naive approach to balancing
results into packet reordering, the most of TCP congestion-
avoidance algorithms treat as a packet loss. As a result, the size
of congestion window decreases, and the original non-split
connection may even outperform the balanced one. Thereby,
practical balancer implementations send all the packets of a
single connection along the same route. So, they are often
unable to split the “elephant” flows and overcome the problem
of fragmentation at the data channels.

In contrast to ECMP, Multi Path (MP) TCP [15] follows
the End to End principle and proposes to split a single TCP
session into smaller virtual sessions at the end hosts. MP TCP
operates transparently for an application. Upon the setting up
of the connection, it creates a static set of internal sockets. Each
of these sockets is used to establish an individual connection
trough the network. MP TCP balances the packets among this
set of connections and uses an original congestion-avoidance

algorithm to cope inter-connection packet reordering without a
significant performance drop.

Although MP TCP implements an automatic adjustment for
the packet ordering, it does not provide any means to ensure
the allocated internal connection use different paths. Existing
implementations of MP TCP send the information about the
original connection the packet within an optional L4 field the
most of network devices unable to distinguish. Thereby, flows
of the same application are most likely to take the same path.
This fact cancels all the advantages of a multipath routing, until
the sender or/and receiver has multiple interfaces connected to
different networks.

Fortunately, flexibility of SDN networks can surmount the
disadvantages of MP TCP. Controller may easily detect a new
connection is setting up by intercepting its first packet; get any
of its attributes including the data stored inside of the payload;
find out the original application connection it belongs to, and
minimize intersection of its route with the other flows of the
same connection.

III. QUALITY OF SERVICE IN MULTI PATH SDN

The paper refers a middleware designed to split a single
Application Flow (AF) into a set of Sub Flows (SF) and
multiplex these SFs into a single AF as a Multi Flow Agent
(MPA). For a given AF, we will call the AF degree a number
of SFs, carrying its data.

Each SF establishes a connection between a pair of unique
L4 addresses: one at the source and one at the destination host.
Network switches are supposed to distinguish different SFs by
their headers and treat each of them as an ordinary and
independent flow. In particular, each SF may attribute its
packets with a higher TOS/DSCP mark and get a better service
as compared to the other SFs of the same AF.

Although MP TCP agent may be considered as an example
of MPA, we imply the latter to be a more general term.
Different MPA implementation may go over TCP and provide
the similar multi path transmission to other protocols, modify
the number and intensity of SFs dynamically without the need
to reestablish the parent AF, rate-limit or shape individual SFs
with some arbitrary algorithms, and interact with an SDN
controller explicitly or implicitly.

 To design an efficient implementation of the MPRSDN
one should answer on the following questions:

 How to retrieve the QoS requirements for an
application?

 How to monitor and properly estimate the quality of
the granted connections?

 How to keep connection properties compliant with the
QoS requirements of applications by MPA?

 How should MPA and SDN controller interact?

A. Deriving QoS requirements

MPRSDN does not use the greedy approach. It requests
extra resources dynamically and only when it founds that there

43

is a risk to violate the QoS requirements. Thus, it allows
application to release the sparse part of the previously acquired
resources and request the missing resources without
reestablishing of the connection. For example, a network
video-streaming application may loosen its requirements to the
connection, while playing static scenes, and increase them at
the moments of active motions.

Thereby, there is an issue, how to retrieve the initial QoS
requirements of the application and how to modify them during
the MPA operation? There are two options to resolve this
problem: (1) make application to specify its QoS requirements
through a socket-level API, or (2) derive these requirements
from some application profile.

Using of the socket-level API results into a considerable
complication of network programming for the application
developer. Although this kind of effort may result into a
reasonable benefit for applications with severe dependency on
the connection QoS, in many cases this functionality will be
considered as unnecessary and obscuring.

Transparent deriving of the application requirements does
not imply any extra effort by the developers, and has more
perspectives to be generally accepted. However, the only
connection characteristic that can be estimated transparently is
its intensity. This kind of data may be sufficient to derive the
required bandwidth, but it does not allow estimate the other
QoS characteristics such as a transmission delay.

B. Monitoring of a connection QoS

SDN controller has comprehensive possibilities to monitor
QoS of an e2e connection. There are some researches devoted
to constructing and maintenance of a traffic matrix formed by
an enumeration of bandwidths consumed by each of the end-
host applications [16] and measurement of one-way delay for
an arbitrary flow while it moves through the network
infrastructure [17]. However, a comprehensive fine-grained
measurement imposes a frequent polling of the devices and
results into excessive loading of both network devices and the
controller. There are some attempts to reduce intensity of the
controller requests to the devices by using the dead reckoning
estimation [18]. The idea is to use a simple network model to
approximate parameters of interest between the measurements
and reduce their total number. However, the simulation of a
network with an appropriate accuracy often results into even
higher requirements to computation power of the controller.

As a result, controller has to delegate part of its monitoring
functions to MPAs. However, monitoring at hosts becomes
rather challenging, especially in case of a UDP-like half-duplex
connections. UDP sender does not know the amount of packets
dropped and both the connected hosts are unaware of an actual
network delay value. In practice, this problem is usually
moderated by wrapping the raw application data into RTP
protocol [19]. It establishes an additional RTCP connection to
send periodic statistics backwards from destination to source,
and reduces the case of half-duplex connections to the simpler
full-duplex one. TCP-like connection allows the hosts to detect
bandwidth shortage by the amount of the lost packets and infer
a one way delay of the connection from the RTT provided by
the underlying congestion avoidance algorithm.

C. QoS management with MPRSDN

MPRSDN provides two ways to meet QoS requirements:
adjustment of the number of SFs in the AF and individual
regulation of their service classes. Upon QoS violation MPA
scales AF partitioning and/or steps up the service for some of
its SFs. Upon detecting excessive overprovisioning MPA
rollbacks the parameters to avoid unnecessary overhead and
simplify the AF maintenance.

The listed QoS management means are independent of each
other, and may be applied in any order. However, one sequence
may be superior in the first set of cases, while the other is more
efficient in another set. Thus, it makes sense to develop a set of
strategies to regulate the properties of some SFs and adjust
their number for different types of requirement violations in a
most efficient way. A set of appropriate MPA heuristics may
include the following examples:

 When accumulated bandwidth of the SFs subsides,
some network channel is likely to become congested. In
this case rise in classes of service for the SFs with the
lower throughput is usually less efficient than increase
in the number of the SFs.

 If the estimated AF delay exceeds the allowed upper
limit, MPA should accelerate the slowest of its SFs.
One way to accomplish this task is to give up using this
SF and reallocate its data among the others.

 If the violation is due to a change in the requirements of
an application, there are no reasons to increase the
degree of AF partitioning. Thereby, MPA should cover
the lack of resources by rising of QoS requirements for
some of the existing SFs in the first place, and consider
increasing of SF number to be an auxiliary leverage.

D. Communication between an MPA and and SDN controller

SDN provides two different ways to install forwarding rules
into the network devices: the proactive and the reactive one.
The former one implies an SDN controller foresees the need in
some paths through the network and sets up appropriate rules
in advance. Any packets that match these rules are transmitted
by the devices autonomously without further involvement of
the controller. Thus, it is unable to track the establishment of
new connections directly. The reactive approach implies the
border network devices request packet processing instructions
from the SDN controller upon receiving a packet without a
match among the existing rules.

In order to support multipath routing an SDN controller
should identify individual SFs of a single AF and provide them
with different paths. This requires the controller to react MPA
in dynamic. Thus, the controller either has to provide MPAs
with ability to connect it directly through a dedicated channel,
or operate in the reactive mode. Since the former one implies
mixing of Data and Control planes and requires a fundamental
change of the interaction between the host and the network, we
give preference to a more practical second option.

While requesting controller for instructions to process a
packet of an unknown flow, switching device either provide

44

controller with a set of preprocessed headers, or supplement
these headers with the original packet body.

MPAs at the sender and the receiver hosts interact to each
other through a certain set of L4 header options. These are used
to initiate a new multipath connection, preserve correct relative
ordering among the packets sent through the different SFs of a
single AF, synchronize opening and closing of certain SFs, etc.
Commodity switching devices cannot parse optional headers at
a suitable speed. Therefore they are able to identify new data
flows, and new SF in particular, but are unable to simplify
matching against the existing AFs. Thus, to lower the threshold
for the deployment the controller has to request the switches to
send a full body of the packet and extract the multipath options
from the packet by its own.

After detection and identification, the controller should
check validity of the new flow with regards to a certain set of
policies. In this paper we restrict the term policy to a scope of
QoS management and consider the following examples of the
enforced restrictions:

 AF may split into at most 10 SFs simultaneously;

 AF may request at most 5 connections within a second;

 SFs of a certain AF cannot request priority service.

 Accumulated bandwidth of the AF must not exceed 10
Mbps (this kind of restrictions implies monitoring).

Next, the controller should generate an appropriate path to
route the SF through the network and take into account the
dependencies among the SFs of a single AF.

The path should avoid the points of congestion. Otherwise,
the new extra flow will not bring much gain, but subtract some
resources from the other flows, who would probably try to take
their resources back with their own extra flows. Thereby, the
MPAs will compete to each other and request the controller to
grant them more and more SFs. This kind of racing reveals no
new resources but complicates packet processing and occupies
the links with unnecessary headers. Thereby, the controller
should banish appending of extra SFs, if there no appropriate
path to set it up.

Next, the controller has to minimize the number of links
traversed by several SFs of a single AF. If an arbitrary subset
of SF has similar paths, the congestion at any of its components
is likely to affect both SFs, and the AF multiplexing does not
increase its accumulated QoS.

Note the controller should route as flows as SFs without
regards to violation of the route restriction to preserve network
availability under a heavy load.

Taking into account these remarks, the routing library of
the controller may calculate paths using the following logic:

1. Identify the congested links using network monitoring
and temporarily exclude corresponding edges from the
topology graph.

2. If the flow is not a subsidiary one, route it with some
Shortest Path algorithm (such as the Dejkstra one). If

there is no appropriate path, route the flow using the
original topology graph;

3. Otherwise, generate a set of alternative paths using one
of K Shortest Path algorithms (such as [20]) and
choose a path with high QoS and minimal intersection
with other SFs of the same AF.

If the new SF violates some multipath routing policies or
the controller fails to construct an appropriate path to route it,
the packets of this SF should be dropped. This behavior of the
controller prevents MPA to increase the degree of partitioning
for some AF, and the AF will likely violate QoS requirements
of some application. However, the requested flow was unable
to give more resources to the AF.

IV. CONCLUSION

MPRSDN method is a novel approach to manage QoS of
the connections in SDN networks based on multipath routing.
The primary focus of our approach is to meet the QoS
requirements of network application. However, it does not
coincide with the aims of the IntServ model. The latter
considers QoS requirement as a dominant, and does not take
much account to the capabilities of the network. As well as the
DiffServ model, we tolerate QoS violations in favor of network
efficiency. However, we do not rely on convenience of local
resource reallocation at the switching hardware. Multipath
routing allows our approach to increase the search space for the
idling resources dramatically and to result into their better
allocation. Although our approach is fully compatible with
DiffServ model and they may supplement each other, it can
also work independently.

We have also proposed a possible scheme to implement the
idea of QoS management with multipath routing in practice.
Although the scheme provides conventional network services
to any hosts, only the ones with the preinstalled multipath agent
are capable to use all its advantages. Note the agent does not
provide any interface to manage the host externally, and does
not inject any additional security breaches. As for the network
infrastructure, our approach does not impose any requirements
to the hardware. The only modification of the Control Plane we
need is the specialized routing application. Although controller
interacts with agents at the hosts and reallocates resources in
response to their request, this kind of communication does not
break separation between the Control and Data plane.

REFERENCES

[1] R. Serral-Gracià, E. Cerqueira, M. Curado, M. Yannuzzi, E. Monteiro,
X. Masip-Bruin “An Overview of Quality of Experience Measurement
Challenges for Video Applications in IP Networks” Proceeding of the
8th international conference on Wired/Wireless Internet
Communications (WWIC'10), pp. 252-263, Luleå, Sweden, 2010.

[2] Cohen, D. "Specifications for the Network Voice Protocol (NVP),"
IETF Network Working Group, Request for Comments 741, November
1977.

[3] Open Networking Foundation “Software-Defined Networking: The New
Norm for Networks” April 2012.

[4] R. Braden, D. Clark, S. Shenker. “Integrated Services in the Internet
Architecture: an Overview” IETF Network Working Group, Request for
Comments: 1633, June 1994.

45

[5] Xiaoming Fu, Schulzrinne, H., Bader, A., Hogrefe, D., Kappler, C.,
Karagiannis, G., Tschofenig, H., Van den Bosch, S. “NSIS: a new
extensible IP signaling protocol suite” IEEE Communications Magazine,
Vol. 43, Issue 10, 2005.

[6] Kalevi Kilkki “Differentiated Services for the Internet” Macmillan
Technical Publishing, Indianapolis, IN, USA, June 1999.

[7] P. Van Mieghem, F.A. Kuipers “On the complexity of QoS routing”
Computer Communications, Volume 26 Issue 4, March, 2003, pp. 376–
387.

[8] Garroppo, R. G., Giordano, S., Tavanti, L. “A survey on multi-
constrained optimal path computation: Exact and approximate
algorithms” Computer Networks, 54(17), 2010, 3081–3107.

[9] Akihiro Nakao, “Deeply Programmable Network Through Network
Virtualization,” In The 13th ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD), August 2012

[10] Ferguson, A., Guha, A., Liang, C., Fonseca, R., Krishnamurthi, S.
“Participatory Networking: An API for Application Control of SDN”
Proceedings of the ACM SIGCOMM 2013 (SIGCOMM'13), pp. 327-
338, Hong-Kong, August 2013.

[11] Architectural Principles of the Internet. RFC 1958.
http://www.ietf.org/rfc/rfc1958.txt

[12] David D. Clark, "The Design Philosophy of the DARPA Internet
Protocols", Computer Communications Review 18:4, August 1988,
pp. 106–114

[13] Saltzer, Reed, and Clark, End-to-end Arguments in System Design,
1984

[14] Thaler, D., Hopps, C. “Multipath Issues in Unicast and Multicast Next-
Hop Selection” IETF Network Working Group, Request for Comments
2991, November 2000.

[15] Raiciu, C., Barre, S., Pluntke, C., Greenhalgh, A., Wischik, D., Handley,
M. “Improving datacenter performance and robustness with multipath
TCP” Proceedings of the ACM SIGCOMM 2011 (SIGCOMM '11),
Toronto, Ontario, Canada, 2011, 266-277.

[16] [12] Tootoonchian, A., Ghobadi, M., Ganjali, Y. “OpenTM: traffic
matrix estimator for OpenFlow networks” Proceedings of the 11th
international conference on Passive and active measurement (PAM’11),
2010, pp. 201-210.

[17] Phemius K., Bouet M. “Monitoring latency with OpenFlow”
Proceedings of the 9th International Conference on Network and Service
Management (CNSM) and its three collocated workshops, 2013, pp.
122-125.

[18] Ciucu, F., Schmitt, J. “Perspectives on network calculus: no free lunch,
but still good value” Proceedings of the ACM SIGCOMM 2012
(SIGCOMM’12), pp. Helsinki, Finland, 2012, pp. 311-322.

[19] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson “RTP: A
Transport Protocol for Real-Time Applications” IETF Network Working
Group, Request for Comments: 3550, July 2003.

[20] Aaron Bernstein: “A Nearly Optimal Algorithm for Approximating
Replacement Paths and k Shortest Simple Paths in General Graphs”
Proceeding of the Symposium on Discrete Algorithms (SODA), Austin,
Texas, USA, 2010, pp. 742-755.

46

Consistent network update without tagging

E. Chemeritskiy
Applied Research Center for Computer Networks

Moscow, Russia
tyz@lvk.cs.msu.su

V. Zakharov
Lomonosov Moscow State University

Moscow, Russia
zakh@cs.msu.su

Abstract—Designing of network update algorithms is urgent
for development of SDN control software. A particular case of
Network Update Problem is that of adding a set of forwarding
rules into flow-tables of SDN switches (say, to install new
paths in the network) or restoring seamlessly a given network
configuration after some packet forwarding rules have been
disabled (say, at the expiry of their time-outs). Some algorithms
provide solutions to these problems but only with the help of
tagging techniques. But is it possible to perform a consistent
network update without tagging? We study this problem in the
framework of a formal model of SDN, develop correct and safe
network updating algorithms, and show that in some cases it is
impossible to update consistently network configurations without
resorting either to tagging or to priorities of packet forwarding
rules.

Keywords—software defined network, network update, forward-
ing rule, updating command, packet forwarding relation, invariant,
post-condition

I. INTRODUCTION

Almost as soon as the concept of SDN emerged, a number
of projects on the development of languages and tools for SDN
programming have been launched: Frenetic [1], Maestro [2],
Procera [3], Nettle [4]. Although focusing on different aspects
of network management, they exploit the same principal idea
of multi-level programming: replace a low-level imperative
interfaces of OpenFlow commands and messages [5] with a
high-level abstractions for querying network state, defining,
updating and combining policies in a consistent way. In these
languages the application programs for SDN controllers could
be designed in highly abstract terms, like ”Maintain the current
configuration until an event E occurs”, or ”As soon as a
rate of the flow F exceeds the bound c change seamlessly
the route A to B”, etc. It is highly desirable to make these
constructs modular; then simple policies can be formed in
isolation and later composed with other modules to create more
sophisticated switch-level and net-level forwarding policies.
At the next stage these high-level constructs are translated
into appropriate sequences of low-level instructions that are
more adapted to OpenFlow protocol; they form some kind
of objective code. Finally, a composition of such low-level
instructions is transformed into a sequence of OpenFlow
commands to be delivered to SDN switches.

Certainly, a great deal of problems have to be solved
to implement this approach to SDN programming. Some of
them are usual tasks of system programming; in choosing
appropriate means to meet the challenge one would probably
more suffer from embarras de choix than from desolation.
But there are many problems that are totally specific for
network control. Some of them arose in the framework of

SDN paradigm and, therefore, have not been considered until
recently. The study of these network control problems is crucial
for the development of SDN programming, since algorithms
and techniques for their solution constitute the routine library
of high-level network programming systems.

One of such problems innate to SDN control is that
of correct and safe modification of network configurations
— Network Update Problem. The list of cases when net-
work update is necessary includes flow-table optimization,
maintenance of configurations at shutting down switches and
links, or the expiry of forwarding rules’ time-out, end host
migration, load balancing, changing access control lists, traffic
monitoring.

In the most general setting Network Update Problem
(NUP) is as follows: given a network configuration C – a
network topology coupled with an assignment of flow-tables
to switches, – and a pair of network specifications – an
invariant Φ and a post-condition Ψ – compute a sequence α
of flow-table updating commands such that by applying α to
C we finally obtain a configuration C ′ which satisfies Ψ while
every intermediate configuration satisfies Φ. In the early papers
[6], [7], [8], [9] researchers considered only some special
cases of this problem for specific protocols and operational
practices to prevent transient anomalies such as forwarding
loops, black-holes, disconnection, etc. A far more systematic
study of NUP was launched in [10] and continued in [11], [12],
[13], [14]. In these papers the authors studied the problem
of consistent global SDN update, namely, how to transform
a given configuration C into another given configuration C ′

in such a way that every packet traversing the network is
forwarded either by the rules of C or by the rules C ′, but
not by their mixture.

In [12] it was shown that consistent global update can be
achieved with the help of a three-phase commitment algorithm
which operates with meta-data — tags or labels attached to
every data packet. It is assumed that every stable network
configuration C is associated with some version number (tag)
LC . When a packet arrives at some ingress port of the net it is
stamped with this tag (e.g., it may be stored in a VLAN field).
Tag LC is included in the patterns of all forwarding rules and
the switches in configuration C process only those packets
that have a set version number. To alter from configuration
C to a new network configuration C ′ the update algorithm
first installs the forwarding rules of new configurations C ′

guarded by the next version number LC′ in the middle of the
network. At completing the first phase the algorithm enables
the new configurations C ′ by installing rules at the perimeter
of the network that stamp packets with the next version number

47

LC′ . Finally, the the out-of-date rules of configuration C are
removed. In [13], [14] the authors considered the optimization
issues of implementation of their algorithms.

Network update problem has been studied in some other
papers. An algorithm offered in [11] redirects traffic through
the controller, introducing substantial overhead and limiting
packet-processing throughput. For the same purpose the au-
thors of [15] suggested to use scheduled execution time to
coordinate network updating. Some preliminary studies of
other variants of NUP have been carried out in [16] (syn-
thesis of network configurations) and in [17], [18] (flow-table
optimization).

Although network update algorithm presented in [12] gives
a universal solution to some variants of NUP, its safe and
correct implementation requires additional resources — extra
fields in packet headers. Therefore, it is also important to
study the cases of NUP that can be solved by means of
some tag-free techniques. In this paper we consider the case
of NUP when a new network configuration C ′ is obtained
from an initial configuration C by adding a finite set of packet
forwarding rules into flow tables of some switches. Or, in other
terms, this variant of NUP may be viewed as the problem of
restoring a SDN configuration after some packet forwarding
rules have been disabled. To the extent our knowledge, this
problem has not been considered yet in a formal setting. Our
contribution to the study of Network Recovering Problem
(NRP) is twofold. First, following [12] as the example, we
introduce an enhanced abstract model of SDN which is both
compatible with OpenFlow protocol [5] and suitable for setting
up formally all those variants of NUP that have been studied
in [10], [11], [12], [13], [14], [16], [17], [18]. Second, in the
framework of the said model of SDN we define formally NRP,
give solutions to some of its basic cases, and show that even
this simple variant of NUP is not quite trivial.

II. NETWORK MODEL

To build the formal model of SDN we take OpenFlow
protocol [5] as a standard and abstract from the internal
structure of packets, forwarding rules and reconfiguration
commands: packet headers and ports are considered as atomic
entities, match sections and action sections of forwarding rules
are specified by predicates on packet states. Unlike [12], we
define network semantics not in terms of packet-processing
transitions for individual packets in a network (per-packet
abstraction) but in terms of packet forwarding relations induced
by packet forwarding rules in the flow-tables of SDN switches
(per-flow abstraction). The similar approach is used in some
papers on network verification (see [19], [20]).

Denote by H the set of all packet headers, by W the set
of all switches in a SDN, and by P the set of data flow ports
of a switch (all switches are assumed to be of the same type).
The pairs from V = P × W are called network points, the
pairs from L = H × P are called local packet states, and the
triples from S = H×P ×W are called packet states. In every
switch two special ports Drop and Contr are distinguished.
Packets queued to Drop port (Contr port) have to be dropped
(sent to the controller). We denote by L0 the set H × (P ∪
{Drop,Contr}.

Network topology is defined by a topology relation T ⊆
V × V such that (v′, v′′) ∈ T iff there is a point-to-point link
between v′ and v′′. A point v is an egress point if it is not
linked to any point in the network. Networks communicate
with the outside world (environment) via egress points. We
denote by ET the set of all egress packet states 〈h, p, w〉, where
〈p, w〉 is an egress point of the network.

A forwarding rule is a triple r = (Gr, Ar,mr), where
Gr ⊆ L, Ar ⊆ L × L0, and mr is a positive integer. A
predicate Gr (guard) is an abstraction of a match section of
the rule, a binary predicate Ar (action) is an abstraction of an
action section of the rule, and mr is a priority of the rule. The
effect of r is specified by a relation Fr ⊆ L × L0 such that
(`, `0) ∈ Fr ⇐⇒ ` ∈ Gr ∧ (`, `0) ∈ Ar.

A flow-table tab of a switch w is a finite set of forwarding
rules {r1, r2, . . . , rN}. The semantics of tab is specified by
a packet forwarding relation Rtab as follows. Let k be the
highest priority of the rules from tab. For every i, 1 ≤ i ≤ k,
denote by tabi the set of rules from tab which have priority i:
tabi = {(G,A, i) : (G,A, i) ∈ tab}. Then define recursively
(from k down to 1) the pairs of predicates Ritab and Bitab as
follows:

Rktab =
⋃

r∈tabk
Fr, Bktab =

⋃
r∈tabk

Gr;

Ritab = {(`, `0) : ∃ r (r ∈ tabi ∧ ` /∈ Bi+1
tab ∧ (`, `0) ∈ Fr}),

Bitab = Bi+1
tab ∪

⋃
r∈tabi

Gr.

Assuming that missed packets are sent by default to the
controller, we introduce also the predicate

R0
tab = {(〈h, p〉, 〈h,Contr〉) : 〈h, p〉 /∈ B1

tab}

and define Rtab =
k⋃
i=0

Ritab which means that every packet

arrived at some port of the switch w is either processed by the
rule of the highest priority that matches the local state of the
packet, or sent to the controller.

SDN flow-tables must be unambiguous: no packets match
two rules of the same priority in the same table, i.e. for every
pair of rules r1 = (G1, A1,m1) and r2 = (G2, A2,m2) if
m1 = m2 then G1 ∩ G2 = ∅. Denote by Tab the set of all
possible unambiguous flow-tables.

A network configuration C on the set of switches W
is a pair (T, I), where T is a topology relation on V , and
I : W → Tab is a table assignment function which maps
a flow-table tabw = I(w) to every switch w. Given a
network configuration C = (T, I) we define a 1-hop packet
forwarding relation RC on the set of (global) packet states S as
follows: (〈h, p, w〉, 〈h′, p′, w′〉) ∈ RC if one of the following
requirements holds

1) there exists such a port p′′ that (〈h, p〉, 〈h′, p′′〉) ∈
RI(w) and (〈p′′, w〉, 〈p′, w′〉) ∈ T (packet transmis-
sion to the next switch);

2) w′ = w, (〈h, p〉, 〈h′, p′〉) ∈ RI(w) and p′ is an egress
port (packet transmission outside the network);

3) w′ = w, (〈h, p〉, 〈h′, p′〉) ∈ RI(w) and p′ = Drop
(packet drop);

48

4) w′ = w, (〈h, p〉, 〈h′, p′〉) ∈ RI(w) and p′ = Contr
(PacketIn message to the controller).

The relation RC provides the semantics of a network
configuration C and completely specifies the behavior of
packets in a network. Nevertheless, sometimes only the con-
nectivity between egress ports via data paths may be of
particular importance. A sequence of packet states path =
s0, s1, . . . , si, si+1, . . . is called a path in a network config-
uration C iff s0 ∈ ET , and (si, si+1) ∈ RC holds for every
i, i ≥ 0. If a path ends with a packet state s = 〈h, p, w〉
such that either s ∈ ET , or p ∈ {Drop,Contr}, then it is
called a complete path. Denote the set of all complete paths in
a network configuration C (that begin with an egress packet
state s) by Path(C) (respectively, Path(C, s)).

Network configurations alter at the expiry of forwarding
rules’ time-outs, at the shutting down or failure of links, ports,
or switches, and by the commands received from the controller.
OpenFlow protocol [5] includes reconfiguration commands of
the following types:

• add(w, r) to install a forwarding rule r in the flow-
table of a switch w;

• del(w,G0,m) to remove rules from the flow-table of
a switch w: a rule r = (G,A,m) is uninstalled iff its
guard G is subsumed by a predicate G0.

We denote by com(C) the result of application of a re-
configuration command com to a configuration C. Given
a sequence of commands α = com1, . . . , comk we define
α(C) = comk(. . . , com1(C) . . .).

Since SDN is a completely asynchronous distributed sys-
tem, any pair of reconfiguration commands (even though
addressed to the same switch) can be executed in an arbi-
trary order. OpenFlow protocol provides some synchronization
means to regulate partially the order of command execution.
Without going into details of such means we will assume that
every finite set of reconfiguration commands Com (in what
follows we call it a reconfiguration batch) is supplied with a
partial order ≺: if com′ ≺ com′′ then at every run of the batch
Com the command com′′ is executed after the completion
of com′. Given two reconfiguration batches (Com1,≺1) and
(Com2,≺2) we write (Com1,≺1); (Com2,≺2) to denote
their sequential composition which is a batch (Com1 ∪
Com2,≺) such that any pair of commands com′, com′′ is
ordered as com′ ≺ com′′ iff either both com′ and com′′

are in the same set Comi, i = 1, 2, and com′ ≺i com′′,
or com′ ∈ Com1 and com′′ ∈ Com2.

III. NETWORK RECOVERY PROBLEM

There are many ways to specify formally packet forwarding
policies. Since a pair (S,RC) may be viewed as a Labeled
Transition System, one may specify a desirable network behav-
ior by using Temporal Logics, µ-calculus, or some fragments
of the first-order logic (see [10], [12], [16], [19], [20]). Alter-
natively, a language of extended regular expressions introduced
in [21] may be used to specify packet forwarding policies in
terms of sets of paths in admissible network configurations.

In the most general case Network Update Problem (NUP)
can be set up as follows. Let Φ (invariant) and Ψ (post-
condition) be some formal specifications of packet forwarding

policies, and C be a network configuration. Then NUP is
the problem of computing a reconfiguration batch (Com,≺)
such that for every linearization α of the partially ordered set
(Com,≺) the following requirements hold: 1) α(C) |= Ψ, and
2) β(C) |= Φ for every prefix β of α.

Network Recovery Problem (NRP) is a particular case of
NUP. A network configuration C ′ may spontaneously turn into
a configuration C upon removing some forwarding rules from
flow-tables, say, due to the expiry of their time-outs, erroneous
execution of reconfiguration commands, switch faultiness, etc.
Let C ′ be an arbitrary configuration, and forwarding rules
r1, r2, . . . , rn are in the flow-tables of switches w1, w2, . . . , wn
respectively. Suppose that time-outs of all these rules expired,
the switches uninstalled them and notified the controller about
these events. Thus, the configuration C ′ degraded to config-
uration C. The aim of the controller is to restore seamlessly
C ′ from C. Here the ”seamlessness” requirement means that
in the course of network recovery any outside observer (an
end host or the controller) detects only minimal necessary
changes in the behaviour of the network. Namely, only those
complete data paths that are in Path(C) but not in Path(C ′)
dissolves, and only those paths that are in Path(C ′) but not in
Path(C) arise. In fact, a seamless network recovery assumes
that a reconfiguration batch should operate by the principle
”push-and-forget”: after being pushed to the SDN control flow
channel it neither cause network to transmit any unexpected
PacketIn message to the controller, nor generate any redundant
data routes in the network. In more precise terms this problem
may be regarded as a variant of NUP, where post-condition
Ψ(X) is X = C ′, and invariant Φ(X) is specified by the
conjunctive formula

Path(C) ∩ Path(C ′) ⊆ Path(X) ∧
Path(X) ⊆ Path(C) ∪ Path(C ′)

When configurations C and C ′ are fixed we denote this variant
of NUP as (C,C ′)-NRP.

We begin with the consideration of the case when all
rules in C and C ′ have the same priority. It should be
noticed that sometimes it is impossible to restore seamlessly
the configuration C ′ just by installing the lost rules in some
appropriate order in the corresponding flow-tables. Consider a
network configuration C ′ depicted on Fig. 1. Here H = {g, h},
and the rules r1 and r2 serve the packets of both types g and h.
Notations r1 : g, h and r3 : g mean that a rule r1 is applicable
to the packets of both types g and h, whereas a rule r3 is
applicable only to the packets of the type g. Clearly, there are
4 complete paths in C ′:
p′1 = (h, v11), (h, v31), (h, v21), (h, v41), (h, v43);
p′2 = (g, v11), (g, v31), (g, v32);
p′3 = (g, v22), (g, v41), (g, v12), (g, v31), (g, v32);
p′4 = (h, v22), (h, v41), (h, v43).
Suppose that the rules r1 and r2 disappeared and C ′ degraded
to a configuration C. Since no rules serve the packets of the
types h and g in the switches w1 and w2, these packets are
sent to the controller by default. Thus, there are 4 complete
paths in C:
p1 = (h, v11), (h,Contr); p2 = (g, v11), (g, Contr);
p3 = (h, v22), (h,Contr); p4 = (g, v22), (g, Contr).
But an attempt to restore C ′ by adding first the rule r1 to
the flow-table of w1 (see Fig 2.) brings a complete path
p0 = (h, v11), (h, v31), (h, v21), (h,Contr) which is neither

49

w4

r6 : h

r5 : gt��
@R

v41 t-
v43

t- v42

-

@
@

-

w3

r4 : h

r3 : gt��
@R

v31 t-
v33

t- v32-

�
�

-

r1 :g, ht��v12

t
@R

v11 t- v13
-

-

w1

w2

r2 :g, ht��
v22

t
@Rv21 t- v23

-
-

Fig. 1.

in Path(C), nor in Path(C ′). A similar situation holds when
one tries to install first the rule r2.

This effect is due to the mutual dependency between the
rules r1 and r2: each of them is able to process packets
that have been forwarded by the other rule. To restore a
configuration seamlessly we need to break the loops in the
dependence of one rule upon another in a given configuration.
To this end we introduce auxiliary predicates on the set L of
packet local states.

Let Z be a arbitrary network configuration and r′ =
(G′, A′,m′), r′′ = (G′′, A′′,m′′) be a pair of rules from the
flow-tables of switches w′ and w′′ respectively. Denote by R+

Z
the transitive closure of 1-hop packet forwarding relation RZ .
Then a dependency predicate θr′r′′ on L is specified by the
formula

θr′r′′(x) = ∃s ∈ S, ` ∈ L0 [ET (s) ∧R+
Z (s, 〈x,w′〉)∧

G′(x) ∧R+
Z (〈x,w′〉, 〈`, w′′〉) ∧G′′(`)] .

which, intuitively, holds iff there exists a complete path
s
r0→ s1 → · · · si

r′→ si+1→· · · sj
r′′→ sj+1 → · · · such that

the rule r′ processes packets at the state si = 〈x,w′〉, and
the rule r′′ processes the same packets but after the rule r′.
Dependency predicates give rise to a binary relation vZ on
the set of forwarding rules in the flow-tables of configuration
Z: a rule r′′ depends on a rule r′ (r′′ vZ r′ in symbols)
iff θr′r′′ 6≡ false. The relation vZ in its turn induces a
binary relation ≺Z on the set of reconfiguration commands:
add(w′′, r′′) ≺Z add(w′, r′) iff a forwarding rule r′′ in the
flow-table of a switch w′′ depends on a rule r′ in the flow-
table of a switch w′ in a network configuration Z.

The most simple case of (C,C ′)-NRP is that of partially
ordered dependence on the set of removed rules.

Theorem 1. Suppose that a network configuration C ′

turns into a configuration C as some forwarding rules
r1, r2, . . . , rn have been disabled in the flow-tables of switches
w1, w2, . . . , wn. Suppose also that vC′ is a partial order on
the set of rules E = {r1, r2, . . . , rn}. Then a reconfiguration
batch (Com,≺C′), where Com is the set of commands
add(wi, ri) : 1 ≤ i ≤ n, provides a solution to (C,C ′)-NRP.

If a dependency relation vC′ is not a partial order on the
set of removed rules then priority mechanism becomes crucial
for the seamless restoration of C ′.

Theorem 2. Suppose that network configurations C and C ′

are the same as in Theorem 1 and vC′ is not a partial order on
the set of removed rules E , i.e. r′ vC′ r′′ and r′′ vC′ r′ hold
for some pair of rules r′, r′′ in E . Then any reconfiguration

w4

r6 : h

r5 : gt��
@R

v41 t-
v43

t- v42

-

@
@

-

w3

r4 : h

r3 : gt��
@R

v31 t-
v33

t- v32-

�
�

-

r1 :g, ht��v12

t
@R

v11 t- v13
-

-

w1

w2

t
v22

t
v21 tv23
-

-

Fig. 2.

batch (Com,≺) composed of reconfiguration commands that
operate with forwarding rules of the same priority is not a
solution to (C,C ′)-NRP.

To resolve (C,C ′)-NRP for an arbitrary vC′ we will use
auxiliary forwarding rules with multiple priorities. For every
forwarding rule ri, 1 ≤ i ≤ n, such that ri = (Gi, Ai, 1)
we split this rule against the rules of the set E as follows:
for every binary tuple σ = (σ1, . . . , σn) we define a guard

Gi,σ = Gi∧
n∧
j=1

θ
σj

ij , where θ1ij = θij and θ0ij = ¬θij , and form

a set of forwarding rules Rules(ri) = {ri,σ = (Gi,σ, Ai, 2) :
σ ∈ {0, 1}n, Gi,σ 6≡ false}. Let Z be a configuration obtained
from C by inserting all rules from the set Rules(ri) to the
flow-table of every switch wi, 1 ≤ i ≤ n. Clearly, Z is an
unambiguous network configuration which has the same 1-hop
packet forwarding relation as C ′.

Lemma 1. If a network configuration C ′ is free from forward-
ing loops (i.e. R+

C′ is a partial order relation on the set of
packet states S) then the dependency relation vZ is a partial

order on the set of rules
n⋃
i=1

Rulesi.

Now we are able to introduce a three-phase solution
to (C,C ′)-NRP. Let Com1 be the set of reconfiguration
commands {add(ri,σ, wi) : ri,σ ∈ Rulesi}, Com2 be the
set of reconfiguration commands {add(ri, wi) : 1 ≤ i ≤
n}, and Com3 be the set of reconfiguration commands
{del(wi, Gi, 2) : 1 ≤ i ≤ n}.
Theorem 3. Suppose that configurations C and C ′ are
free from forwarding loops. Then a reconfiguration batch
(Com1,≺Z); (Com2, ∅); (Com3, ∅) provides a solution to
(C,C ′)-NRP.

This reconfiguration batch operates as follows. At first it
installs in the appropriate order the high-priority split rules
from Rules(ri), 1 ≤ i ≤ n, and, thus, seamlessly restores all
complete paths of C ′. Next it installs (in an arbitrary order)
the low-priority rules from E . Since every low-priority rule
ri from E is ”locked-out” by the set of high-priority rules
Rules(ri), this does not affect the 1-hop packet forwarding
relation. Finally, the split high-priority rules ri,σ are deleted
(in an arbitrary order). At the disabling of every such rule ri,σ
its functionality is immediately passed to the corresponding
low-priority rule ri. As the result the 1-hop packet forwarding
relation does not change in the course of such deletions.

Clearly, the solution provided by Theorem 3 is not optimal
since it requires to split all forwarding rules to be reinstalled. A

50

r5:f :Ltv51 t-
v52

w5

w4

r7:f :Lt
v41

t
v42

�
��

r3:f :H

r4:f :L
t�
A

v31 ttv32v33PPPq
�

-

w3

r1:f :H

r2:f :L
t�
A

v11 ttv12v13-
PPPq

�

-

w1

w2

r6:f :Lt
v21

t
v22

�
���

Fig. 3.

more careful treatment of the dependency relation vC′ makes
it possible to reduce considerably the size of reconfiguration
batch.

Let E = {r1, r2, . . . , rn} be a set of forwarding rules to
be reinstalled to the flow-tables of the network. Consider a
transitive-reflexive closure v∗C′ of the dependency relation vC′

on the set of rules E . It is well known that v∗C′ is a quasi-
order, and the set E can be partitioned into equivalence classes
E1, . . . , Ek w.r.t. v∗C′ . Occasionally, some Ei may coincide with
the whole set E , but typically non-trivial equivalence classes
are rare and small. Now for every non-trivial equivalence class
Ej , 1 ≤ j ≤ k, we split each rule ri from Ej but only against
all rules from the same equivalence class Ej . Thus, we obtain
the set of auxiliary rules R̂ules(ri) for every rule ri, ri ∈ E ,
and this set is typically far smaller than Rules(ri).

Lemma 2. Suppose that a configuration Ẑ is obtained from
C by formally inserting all forwarding rules from R̂ules(ri)
to the flow-table of every switch wi, 1 ≤ i ≤ n. Suppose also
that a network configuration C ′ is free from forwarding loops.
Then the dependency relation vẐ is a partial order on the set

of rules
n⋃
i=1

R̂ulesi.

Following this lemma we may form a reconfiguration batch
in the same way as in Theorem 3.

However, if configurations C and C ′ include packet for-
warding rules with multiple priorities it is impossible to
guarantee the solution of (C,C ′)-NRP.

Consider a configuration C ′ depicted on Fig. 3 which
includes rules of high proirity (e.g., r1 : f : H) and low
priority (e.g., r2 : f : L). Let H = {f}. Since the high priority
rules suppress the low priority rules, there is only one complete
path in C:

p1 = (f, v11), (f, v31), (f, v51), (f, v52).

Suppose that high priority rules r1 and r3 were removed and
the configuration C ′ degraded to a configuration C depicted
on Fig. 4. Now the low priority rules in the switches w1 and
w3 recover their capablity and the path

p2 = (f, v11), (f, v21), (f, v31), (f, v41), (f, v51), (f, v52)

becomes active. Clearly, this is the only complete path in
configuration C. But there is no way to restore seamlessly
C ′ from C by means of ordinary reconfiguration commands.

Theorem 4. Suppose that configurations C ′ and C are those
as depicted on Fig. 3 and 4 respectively. Then (C,C ′)-NRP
doesn’t have a solution, i.e. for every reconfiguration batch

r5:f :Ltv51 t-
v52

w5

w4

r7:f :Lt
v41

t
v42

�
��r4:f :L

t
A

v31 ttv32v33PPPq
�

-

w3

r2:f :L
t
A

v11 ttv12v13-
PPPq

�

-

w1

w2

r6:f :Lt
v21

t
v22

�
���

Fig. 4.

α there exists a prefix β of α such that Path(β(C)) 6⊆
Path(C) ∪ Path(C ′).

IV. CONCLUSIONS

We introduced an abstract model of SDN as a uniform
framework for formal study of Network Update Problems and
consider one of the most elementary case of NUP — the
Network Recovery Problem. But as it can be seen from the
list below many other variants of NUP can be formalized in
the same way.

1). Network Configuration Synthesis. Given a post-condition
Ψ build a configuration C ′ such that C ′ |= Ψ. An initial
configuration C is of no importance since to achieve C ′ it
suffices to uninstall all previous rules and then insert new rules
of a target configuration C ′. The study of this variant of NUP
has been initiated in [16].

2). Global Consistent Network Update. Transform a network
configuration C into a configuration C ′ in such a way that
every packet traversing the network in the course of update is
processed either only by the rules of C, or only by the rules
of C ′. In this case the post-condition Ψ(X) is X = C, and
the invariant Φ(X) is specified by the formula

∀ s (ET (s) → ((Path(X, s) ⊆ Path(C))∨
(Path(X, s) ⊆ Path(C ′))) .

Some algorithms for Global Consistent Network Update has
been developed and studied in [10], [11], [12], [13], [14].

3). Local Consistent Network Update. Transform a network
configuration C by safely installing a set of complete paths
Padd and uninstalling a set of complete paths Pdel; the safety
constraint requires that in the course of updating only new
paths from Padd may appear and only paths from Pdel may
dissolve in the intermediate configurations. In this case Ψ(X)
is specified by the formula Path(X) = (Path(C) \ Pdel) ∪
Padd, and Φ(X) is specified by the formula

Path(C) \ Pdel ⊆ Path(X) ⊆ Path(C) ∪ Padd.

This problem has been considered in [6], [7], [8], [9].

4). Network Configuration Optimization. Given a configuration
C and some numerical characteristics of network configura-
tions f(X) (i.e. the total number or the maximal number of
rules in the flow-tables) build an optimal configuration C ′

which has the same 1-hop packet forwarding relation. In this
case Ψ(X) is (RX = RC) ∧ ∀ Y (RY = RC → f(X) ≤
f(Y)), and Φ(X) is RX = RC . Some preliminary studies of
this problem have been made in [18].

51

While studying Network Recovery Problem we confine
ourselves with the case of network configurations that include
only forwarding rules of the same priority. Restoration of
network configurations that include forwarding rules with
multiple priorities is a far more complicated task. In a simple
case, when the removal high-priority rules does not uncover
hidden low-priority complete paths, it can be solved with a help
of techniques similar to that in Theorem 3. But in the most
extreme case the removal of high-priority rules may bring a
configuration C ′ to an arbitrary configuration C such that 1-
hop packet forwarding relations of C and C ′ have nothing
in common. In this case Network Recovery turns into Global
Consistent Network Update.

It is worth noticing that to restore network configuration
seamlessly it is inevitable to check dependency relation r′ vC′

r′′ between the forwarding rules r′, r′′ to be reinstalled. The
way to do this is through the using of the tools for verification
of network forwarding policies [19], [20], [21]. Thereby, the
designing of efficient network updating algorithms relies upon
the development of efficient network verification techniques.

Theorems 1 and 3 show that sometimes consistent network
update may be achieved merely by the use of forwarding
rule prioritization which is a far less restrictive reconfiguration
means than those brought into play in [10], [11], [12], [13],
[14]. We think that it is a challenging mathematical task to
give a complete characterization of all those cases of NUP
that could be solved by a particular network reconfiguration
means. Such classification would be very much helpful in the
development of efficient low-level procedures for SDN control.

V. ACKNOWLEDGMENTS

This research is supported by the Skolkovo Foundation
Grant N 79, July, 2012, and by RFBR Grant 12-01-00706.

REFERENCES

[1] N. Foster, M. Harrison, M.J. Freedman, et al., Frenetic: A Network Pro-
gramming Language // Proc. of the 16th ACM SIGPLAN International
Conference on Functional Programming, 2011, p. 279-291.

[2] T. S. E. N. Zheng Cai, A. L. Cox. Maestro: A System for Scalable
OpenFlow Control // Tech. Rep. TR10-08, Rice University, 2010.

[3] A. Voellmy, H. Kim, N. Feamster. Procera: A Language for High-Level
Reactive Network Control // Proc. of the First Workshop on Hot Topics
in Software Defined Networks, 2012, p. 43-48.

[4] A. Voellmy, P. Hudak. Nettle — a Language for Configuring Routing
Networks // Proc. of the IFIP TC 2 Working Conference on Domain-
Specific Languages, 2009, p. 211-235.

[5] OpenFlow Switch Specification. Version 1.4.0, October 14, 2013,
https://www.opennetworking.org.

[6] P. Francois, M. Shand, O. Bonaventure. Disruption-free topology re-
configuration in OSPF networks // IEEE INFOCOM, May 2007.

[7] P. Francois, P.-A. Coste, B. Decraene, O. Bonaventure. Avoiding
disruptions during maintenance operations on BGP sessions // IEEE
Transactions on Network and Service Management , v. 4, N 7, 2007,
p. 1-11.

[8] S. Raza, Y. Zhu, C.-N. Chuah. Graceful network state migrations //
IEEE/ACM Transactions on Networking, v. 19, N 4, 2011, p. 1097-
1110.

[9] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, O. Bonaventure.
Seamless network-wide IGP migration // ACM SIGCOMM Computer
Communication Review - SIGCOMM ’11 , v. 41, N 4, 2011, p. 314-
325.

[10] M. Reitblatt, N. Foster, J. Rexford, D. Walker. Consistent updates for
software-defined networks: change you can believe in! // HotNets, v. 7,
2011.

[11] R. McGeer. A safe, efficient update protocol for OpenFlow Networks
// Proc. of the First Workshop on Hot Topics in Software Defined
Networks, 2012, p. 61-66.

[12] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger. D. Walker. Ab-
stractions for Network Update // Proc. of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, 2012, p. 323-334.

[13] N. P. Katta, J. Rexford, D. Walker. Incremental Consistent Updates
// Proc. of the Second Workshop on Hot Topics in Software Defined
Networks, 2013, p. 49-54.

[14] R. McGeer. A Correct, Zero-Overhead Protocol for Network Updates
// Proc. of the Second Workshop on Hot Topics in Software Defined
Networks, 2013, p. 161-162.

[15] T. Mizrahi, Y. Moses. Time-based updates in software defined networks
// Proc. of the Second Workshop on Hot Topics in Software Defined
Networks, 2013, p. 163-164.

[16] A. Noyes, T. Warszawski, P. Cernyand, N. Foster. Toward Synthesis of
Network Updates //Proc. of the Second Workshop on Synthesis, July
13-14, 2013, Saint Petersburg, Russia.

[17] A. X. Liu, C. R. Meiners, and E. Torng. TCAM Razor: A systematic ap-
proach towards minimizing packet classifiers in TCAMs // IEEE/ACM
Transactions on Networking , vol. 18, 2010, p. 490-500.

[18] K Kogan, S.I. Nikolenko, W. Culhane, P. Eugster, E. Ruan. Towards
efficient implementation of packet classifiers // Proc. of the Second
Workshop on Hot Topics in Software Defined Networks, 2013.

[19] E. Al-Shaer, W. Marrero, A. El-Atawy, K. El Badawi. Network
Configuration in a Box: Toward End-to-End Verification of Network
Reachability and Security // Proc. of the 17th IEEE International
Conference on Network Protocols (ICNP’09), Princeton, New Jersey,
USA, 2009.

[20] E.V. Chemeritsky, R.L. Smeliansky, V.A. Zakharov. A formal model
and verification problems for Software Defined Networks // Proc. of
the 4-th International Workshop ”Program Semantics, Specification and
Verification: Theory and Applications”, 2013, Yekaterinburg, Russia, .
21-30.

[21] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, S.
Whyte. Real Time Network Policy Checking using Header Space
Analysis // 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 2013).

52

SDN‐based Innovation in New Zealand

S. Cotter
REANNZ Ltd.,

Research and Education Advanced Network
New Zealand

steve.cotter@reannz.co.nz

Abstract—The innovation ecosystem is often seen as a
‘pipeline’, or in other words, a linear commercialization model
that goes from idea to the marketplace with stages in research,
proof‐of‐concept development, prototype, product beta‐testing
and market launch. This often works for ‘technology push’
projects that commonly begin not with a discovery, but with the
identification of a market need that triggers industry‐led
innovation.

REANNZ, the Crown‐owned research and education network
supporting New Zealand’s universities and research institutes,
has been partnering with researchers and industry to identify
market opportunities and develop SDN‐based technologies to
address them. In this talk, I will highlight the experiences and
lessons learned on the following projects:

 SDN-Secured ScienceDMZ that uses ACLs on an
OpenFlow edge switch to whitelist authorized traffic, and
configures this through a web frontend. Recently deployed
at a NZ university.

 Distributed Routers that split a single control plane over
multiple data planes in different locations – a mesh of
devices behaving as a single router – in this on either side
of the Pacific Ocean.

 SDN Internet Exchange Point deployed by a commercial
carrier using OpenFlow-enabled devices. Intent is to have
several across the country acting as a distributed
exchange.

Keywords—SDN; OpenFlow; ScienceDMZ; Distributed
Router; Exchange Point

I. SDN‐SECURED SCIENCEDMZ

Campus infrastructures designed to support backend office
systems and implementing strict firewall policies at the border
are often incompatible with researchers' needs to regularly
move large files. The “ScienceDMZ” architecture moves data-
transfer odes outside the firewall, solving part of the high-
speed data transfer problem, but reintroducing security
problems that were “solved” by the firewall. Numerous
approaches attempt to address these issues, from hardening the
servers within the ScienceDMZ, to using short‐term virtual
circuits (but only if these are supported by the network
provider).

REANNZ has developed a service for research‐focused
institutions that uses an OpenFlow-enabled device at the edge
of a ScienceDMZ with a clean web interface that lets

researchers poke small holes into the ScienceDMZ as they
need them. Using the POX OpenFlow controller, and Django,
the open source web framework, this service provides many of
the security benefits of virtual circuits without requiring
support from the WAN. The end result markedly reduces the
attack surface, while allowing data‐intensive science to enjoy
maximum use of the network infrastructure.

II. DISTRIBUTED ROUTERS

REANNZ worked with researchers from Google, the US
Dept of Energy’s ESnet, and Victoria University of Wellington
to demonstrate an OpenFlow-controlled hardware forwarding
router handling a number of layer 3 routes that “challenged”
the hardware and control plane (exceeding native hardware
flow table resources so that FIB compression/other FIB
management strategies had to be used). The primary goal was
to demonstrate RIB/FIB scaling properties for future WAN
projects, SDN-IX, edge router, etc. as a practical
implementation.

Figure 1: Distributed Router Setup

The project leveraged community open-source packages,
RouteFlow and Quagga, to establish the first BGP peering
using SDN in production between two national-scale research
networks. With the REANNZ switch in New Zealand and the
ESnet switch in California, innovative FIB compression
enabled commodity OpenFlow switches to achieve ~40% FIB
compression: 13215 uncompressed routes, 7757 compressed
routes.

53

III. SDN INTERNET EXCHANGE POINT

REANNZ worked with researchers from Victoria
University of Wellington, Waikato University, CPqD in Brazil,
and commercial Internet exchange point operator CityLink on a
pilot deployment of a RouteFlow distributed router. This
deployment connected the REANNZ offices to the Wellington
Internet Exchange (WIX) in a production environment.
RouteFlow was used to control two OpenFlow switches
connected via a dark fibre link, located at border of each
network. The controller was located at a third location,
connected to both switches by an out-of-band layer 2 VLAN.
BGP peer sessions were established with a router running
within REANNZ and all WIX participants. Routes to the
REANNZ network were advertised onto the WIX and traffic
was forwarded through the two switches.

Commercial carrier CityLink is continuing development
using NoviFlow devices. Their intent is to deploy new features
like application-specific peering or certain types of traffic
engineering across a distributed exchange that spans the
country.

AUTHOR BIOGRAPHY

Steve joined REANNZ from the US Department of
Energy's Energy Sciences Network (ESnet) in 2011. As the
head of ESnet, he was responsible for providing high-
performance networking to thousands of researchers and
scientists at more than 40 national laboratories and research
institutions. Prior to ESnet, he served as Google’s network
deployment manager for Europe, the Middle East and Africa.
Before being hired by Google, Steve worked for Internet2 as
Deputy Operations Officer and was CEO & President of their
wholly owned subsidiary, FiberCo. Steve earned a bachelor’s
degree in aeronautical engineering at the US Naval Academy
and an MBA from Boston University. He also served eight
years as an officer and helicopter pilot in the US Marine Corps.

54

The EXPRESS SDN Experiment in the OpenLab
Large Scale Shared Experimental Facility

S. Fdida(1), T. Korakis(2), H. Niavis(2), S. Salsano(3), G. Siracusano(3)
(1) UPMC Sorbonne Universités & CNRS (2) University of Thessaly (3) CNIT/University of Rome Tor Vergata

Abstract— In this paper we describe the design and
implementation of an experiments dealing with SDN for Wireless
Mesh Networks over the OpenLab Facility. The experiment is
called EXPRESS: “EXPerimenting and Researching Evolutions
of Software-defined networking over federated test-bedS”.
EXPRESS aims at designing and evaluating a resilient SDN
system able to operate in fragmented and intermittently
connected networks as needed in a Wireless Mesh Networking
environment. The experimental dimension of EXPRESS is to
deploy the designed SDN infrastructure over a federation of
three testbeds (PlanetLab, NITOS and w-iLab.t) from the
OpenLab federation. The experiments consist in the evaluation of
a designed solution for the selection of the SDN controller by the
Wireless Mesh Routers in intermittently connected networks.
The experiment is executed through the OMF framework
(cOntrol and Management Framework). OMF provides the
ability to describe the distributed experiment spanning over
different physical testbeds. Following the experiment description,
the OMF framework realizes the configuration of the resources
(in our case the Wireless Mesh Routers) and their
interconnection, runs the experiment and collects the results.

Keywords—Software Defined Networking, Open Testbeds,
Distributed Tesbeds, Testbed Federation, Wireless Mesh Networks

I. INTRODUCTION
SDN is becoming a preferred networking paradigm for

Enterprise Networks and Data centers. Since, the networking
community is pushing the envelope of SDN to use it in many
other type of environments. The expected benefit is mostly
related to the possibility to perform dynamic traffic
engineering.

This paper explores the possibility to use SDN in a dynamic
heterogeneous environment, such as fragmented and
intermittently connected networks. The solution should be able
to easily organize together isolated networks, as it may be
needed in a dynamic Wireless Mesh Networking (WMN)
scenario. We designed EXPRESS, which integrates the basic
solutions necessary to discover the network topology and
operate the routing protocols in WMNs with an SDN
architecture meant to support advanced services (e.g. dynamic
traffic engineering).

The complexity of the environment under study makes the
evaluation of EXPRESS a complicated task. The OpenLab
facility has been used for that purpose. Indeed, the
experimental dimension consists in deploying the proposed
SDN infrastructure (and the implemented software modules)
over a federation of three testbeds (PlanetLab Europe, NITOS

and w-iLab.t) from the OpenLab federation and collect
performance measurements. OpenLab exploits the concept of
federation of testbeds that allows a simplified access to diverse
set of heterogeneous resources to the experimenter. The paper
briefly presents the basic components and benefits of using
OpenLab. It describes the experiments that were carried out
and a set of results that demonstrate the ability of OpenLab to
provide insight into the designed solution.

II. THE OPENLAB FEDERATED TESTBED

OpenLab comes from a vision originated in 2005, built on
several issues related to experimentally driven research. The
networking community was facing a few successes in its
ability to build testing tools (like PlanetLab or Emulab) but
many more failures due to well-identified causes. In addition,
a challenge that is still open to our community is to develop
reproducible research, meaning that one should be able to
reproduce the results that are published and supports a
discovery.

This vision considers that an experimenter, namely, the one
that uses the facility, should have access to an ecosystem or a
“market” of various resources managed by different
authorities. For this purpose, the experimenter will register to
one such authority that will act as a mediator towards its peers.

The beauty of this model is grounded on the observation that
there exist plenty of valuable resources out there that one can
benefit if an open access is provided. Some of these resources
might be unique, or the sum, or combination of them might be
valuable. In addition, it became quickly evident there is not a
single testbed that fit all needs and that, solely, a federated
model will succeed to embrace the vision.

Enabling this vision requires to define an architecture that
supports the underlying concept of federation that was
originally introduced in the OneLab EU funded project in
2006. Therefore, it became instrumental to address the
following questions:
- What is the right level of abstraction, the minimum set of
functionalities to be adopted to share resources owned by
various authorities?
- What is the governance model that best supports
subsidiarity?

55

A. The Architecture for enabling an Internet of Testbeds
We benefited from the experience in architecting the Internet
to design our model. It is grounded on two principles:
- The “Hourglass” model of the Internet that identifies the IP
protocol as the convergence layer. We’ll define one such
convergence layer for the Federation of testbed resources,
- The peering model of the Internet that relies Customer sand
Providers and define peering agreements in a way that there is
not a single point of control. Here, we will clearly identify
Experimenters, Testbed owners or providers and the Facility
itself that rule them all.

We therefore have defined the following abstractions:
- Resource: Testbed ensures proper management of nodes,
links, switches, ...
- User/Experimenter: Testbed guarantees the identity of its
users
- Slice: A distributed container in which resources are shared
(sharing with VMs, in time, frequency, within flowspace,
etc.). It is also the base for accountability.
- Authority: An entity responsible for a subset of services
(resources, users, slices, etc.)

SFA (Slice Facility Architecture) was designed as an
international effort, originated by the NSF GENI framework,
to provide a secure common API with the minimum possible
functionality to enable a global testbed federation.

The fundamental components for testbed federation were built
incrementally, as the understanding about the requirements
matured. The first international realization of federation arose
in 2007, as a mutual investment from PlanetLab Central,
managed by Princeton, and PlanetLab Europe, established by
UPMC and INRIA in Europe. It then became of utmost
importance to enlarge and extend the federation principle to
other type of resources, a more scalable model of federation
and an increased ease of use. In parallel, started the important
effort to complement and populate the architecture with
components mandatory for the entire experiment life cycle.

The experiment lifecycle comprises the following steps:
➊ User account & slice creation
➋ Authentication
➌ Resource discovery
➍ Resource reservation & scheduling
➎ Configuration/instrumentation
➏ Execution
➐ Repatriation of results
➑ Resource release

Step ➊ is handled by the Home Authority of the User, the one
the user has registered with. Steps ➋ to ➍ and ➑ concern all
involved authorities. Steps ➎ to ➏ are not in SFA but other
components such as OMF have been developed for this
purpose. OMF is a control, measurement and management
framework that was originally developed for the ORBIT
wireless testbed at "Winlab, Rutgers University". Since 2008,

OMF has been extended and maintained by NICTA as an
international effort.

SFA provides a secure API that allows authenticated and
authorized users to browse all the available resources and
allocate those required to perform a specific experiment,
according to the agreed federation policies. Therefore, SFA is
used to federate the heterogeneous resources belonging to
different administrative domains (authorities) to be federated.
This will allow experimenters registered with these authorities
to combine all available resources of these testbeds and run
advanced networking experiments, involving wired and
wireless technologies. The SFA layer is composed of the SFA
Registry, the SFA AMs and drivers. The SFA Registry is
responsible to store the users and their slices with the
corresponding credentials.

MySlice1 was introduced by UPMC as a mean to provide a
graphical user interface that allows users to authenticate,
browse all the testbeds resources, and manage their slices.
This work was important to provide a unified and simplified
view of many hidden components to the experimenter. The
basic configuration of MySlice consists on the creation of an
admin user and a user to whom all MySlice users could
delegate their credentials for accessing the testbed resources.
In order to enable MySlice to interact with heterogeneous
testbeds, MySlice has to be able to generate and parse
different types of RSpecs (Resource Description of the
testbeds); this task is performed by plugins.

B. The OpenLab facility

The OpenLab2 federation of testbeds was launched in august
2014 under the brand of OneLab Facility in order to avoid
confusing the Openlab EU funded project that ended in august
2014 with the Facility that we expect to be sustainable). For
the sake of clarity, we continue to use OpenLab as the name of
the facility in this paper. OpenLab started with the following
set of initial federated testbeds:

- Internet-overlaid testbeds: The public fixed-line Internet, at a
global scale.
PlanetLab Europe3, a platform offering virtual machines on
over 300 servers located at over 150 locations across Europe.

- Wireless, sensing, and mobility testbeds: Internet of things
testing environments.
These platforms offer both fixed nodes and mobile nodes with
controlled mobility via robots or model trains. The first
testbeds to fit this category are FIT-IoTLab4 (a French testbed

1	 http://www.myslice.info	
2	 http://new.OneLab.eu	
3	 http://www.planet-‐lab.eu	
4	 https://www.iot-‐lab.info	

56

funded by ANR) and the NITOS5 testbed from the University
of Thessaly. The w-iLab.t6 testbed from iMinds was added for
the purpose of the EXPRESS experiment.

As the need for networking research evolves, new testbeds
appears or new requirements were expressed. This has been
the case for instance for the OpenFlow/SDN developments
that trigger new needs and emerging testbeds (such as
OFELIA7 in Europe). The OpenLab project quite early
developed a solution named OpenFlow in a Slice that provides
the ability to run Openflow vswitches in a slice of a PlanetLab
Europe set-up. Experimenters were then able to create an
OpenFlow overlay8 network by specifying the links between
PLE nodes, benefiting from the large number of PLE nodes
deployed.

Finally, the OpenLab Portal9 was developed and provides the
generic access to the facility. The portal is implemented by the
MySlice software component, which allows the users to
manage their slices through SFA. The NOC (Network
Operation Center) has been installed in the premises of UPMC
and allows a full access to the federated testbed, users and
experiments managed by the facility. OpenLab is freely
accessible to the community at large.

III. THE EXPRESS EXPERIMENT: SDN FOR
WIRELESS MESH NETWORKS

The EXPRESS experiment has been selected for funding in
the 2nd OpenLab competitive call for additional project
partners. EXPRESS stands for “EXPerimenting and
Researching Evolutions of Software-defined networking over
federated test-bedS” and it includes two main dimensions:
scientific and experimental. The scientific dimension
considered the design of an innovative, resilient SDN system
able to keep operating in fragmented and intermittently
connected networks. Such a system should be able to easily
glue together isolated networks, as it may be needed in a
dynamic Wireless Mesh Networking (WMN) scenario.
EXPRESS integrates the basic solutions necessary to discover
the network topology and operate the routing protocols in
WMNs with an SDN architecture meant to support advanced
services (e.g. dynamic traffic engineering). The experimental
dimension consists in deploying the proposed SDN
infrastructure (and the implemented software modules) over a
federation of three testbeds (PlanetLab, NITOS and w-iLab.t)
from the OpenLab federation and collect performance
measurements.

5	 http://nitlab.inf.uth.gr/NITlab/	
6	 http://ilabt.iminds.be/wilabt	
7	 http://www.fp7-‐ofelia.eu/	
8	 https://www.planet-‐
lab.eu/doc/guides/user/practices/openflow	
9	 http://portal.OneLab.eu/	

A. Scientific questions and technicall challenges
The main scientific question behind the experiment is

whether the SDN paradigm can be applied to networking
scenarios where: 1) it is not feasible or reasonable to
implement a separate out-of-band signaling infrastructure
among nodes, therefore SDN signaling will be intermixed at
packet level with user data flows following an in-band
approach; 2) there is a relatively high probability of link
failure, the network can become partitioned in disconnected set
of nodes, the partitions can later merge back into larger
partitions. These conditions may occur in Wireless Mesh
Networks (WMNs), like Community Networks ([14]), in which
some parts of the network are interconnected by long links that
may temporary fail. The reference scenario for our work is
shown in Fig. 1, as an example the link between the Wireless
Mesh Routers A and B can partition the network in two parts if
it goes down. Let us now consider the advantages and the
criticalities of using SDN in WMNs.

Fig. 1. Wireless Mesh Network reference scenario

The advantage of introducing the SDN paradigm in such
environment are mostly related to the possibility to perform
dynamic traffic engineering to optimally distribute the traffic
over the wireless resources and across the different gateways
towards the Internet that could be available in the WMN. The
IP best effort routing based on distributed shortest path (e.g.
with OLSR [15] or OSPF routing protocols) may lead to poor
utilization of the available capacity, with bottlenecks
constituted by congested wireless links or gateway nodes. We
expect that, using the SDN paradigm will make possible to
optimally allocate the user traffic with the needed level of
granularity.

On the other hand, using SDN in the considered WMN
scenarios has some criticalities. We have identified two main
challenges. As for the first challenge, a SDN based approach
requires a control connection between the controlled network
nodes and the SDN controllers. In a fixed networking
environment the control-plane communications between the
switching nodes and the SDN controllers typically run over
out-of-band channels, separated from the data-plane traffic.
For example VLANs can be used in a layer 2 Ethernet network
to establish a “signaling” network that will operate
independently from the SDN mechanisms used to manipulate
the data-plane traffic. Replicating this approach in the WMN
scenario will not work, because: i) VLANs are not typically
used in WiFi networks; ii) the basic connectivity among nodes
of a WMN (referred to as WMR, Wireless Mesh Routers) is
established using layer 3 routing protocols. The first challenge

57

is therefore to design a SDN solution suited to the
characteristics of WMNs.

The second challenge that we addressed concerns the
applicability of SDN in network partitioning and merging
scenarios. Assuming that a SDN controller runs over a set of
WMRs, if the network becomes partitioned a subset of WMRs
will disconnect from the controller and will need to associate to
a different controller (if available in the partition). On the other
hand, if two network partitions under the control of two
different SDN controllers merge into a single partition, it is
desirable that all WMRs fall under a single SDN controller.
Clearly, the service logic in the different SDN controllers needs
to be coordinated, but as prerequisite we focused on the issue
of the establishment of the connection between the WMRs and
the most appropriate SDN controller. We can restate the second
challenge as “SDN controller selection under network
partitioning and merging scenarios”. The problem of assigning
a SDN controller to each switch in a network with different
SDN controllers has been already faced when considering
“distributed” SDN solution with multiple controllers, see for
example [2]. According to the OpenFlow specifications [4],
when a switch is connected to multiple SDN controllers, one of
these controllers can act as master. The procedure to select the
master controller for a given switch is typically referred to as
master election. The reason is that the procedure is distributed
among the controllers that coordinate with each other in order
to elect the master. The switch is slave in this approach and
will be notified by the winner of the election. This procedure
works well assuming that there is a stable connectivity among
the controllers (in fact in the typical use case the procedure
needs to elect a master controller among a set of “replica”
controllers operating in the same data center). Using this
procedure in the considered WMN scenario may easily lead to
inconsistent results. The convergence time of routing protocols
used in WMNs is in the order of seconds. During transient
phases the different controllers may have different visions of
network connectivity. For example two controllers could both
believe to be the best candidates to take mastership of a given
switch and can both start acting as master for the switch.

A. Solutions to 1st challenge (SDN in WMNs)
In order to address the first challenge identified above, the

designed solution foresees to use the OLSR routing protocol
[15] to establish the basic IP connectivity in the WMN.
Coexistence mechanisms are defined between packets routed
using classical IP routing tables (including the OLSR packets)
and packets routed using the SDN approach under the
instructions of SDN controllers. The forwarding of SDN
signaling packets follows an in-band approach, i.e. the packets
between the switching nodes and the SDN controllers are sent
on the same network on which the data plane packets are sent.
The signaling packets belonging to the SDN control plane
(among WMN nodes and SDN controllers) are forwarded
using the basic IP routing information established using OLSR,
while the data packets can be forwarded using the basic IP
routing or using arbitrary routing under the control of the SDN
controller.

Fig. 2. wmSDN node architecture

The architecture of a node implementing the proposed
solution is reported in Fig. 2, the solution was first proposed in
[3], referred to as wmSDN (wireless mesh SDN). Then it has
been improved and extended in [5] taking into account the
OSHI IP/SDN framework [6]. We refer the reader to [5] for the
technical details of the solution. In the context of EXPRESS,
we have ported and deployed the solution on real wireless
nodes in the NITOS and w-iLab.t testbeds.

B. Solution to 2nd challenge (SDN controller selection in
network partitioning and merging scenarios)
Coming to the second challenge, the EXPRESS experiment

has designed and implemented a solution for SDN controller
selection by the Wireless Mesh Routers. The main idea is to
assign more responsibility to the controlled nodes (WMRs),
letting them take the decision about which switch has to take
mastership of the node. Therefore we named this procedure
controller selection rather than master election. The nodes will
monitor a set of SDN controllers that can potentially assume
the master role and will implement a selection algorithm to
choose the preferred controller among the set of reachable
controllers (see Fig. 3). Note that WMRs and controllers have
the same information about the status of the network
(excluding transient conditions), because they share the OLSR
vision of the topology. In particular, the WMRs are directly
involved in the OLSR topology dissemination while the
controller extracts the topology information from a nearby
WMR. Therefore, from the topology discovery point of view
the WMR acquires topology information even before the
controller. Moreover, a WMR can directly check the
connectivity with potential controllers trying to establish TCP
connections towards them (or monitoring the liveliness of
established TCP connections).

58

Fig. 3. Controller selection by a Wireless Mesh Router

In the designed procedure a WMR connects only toward a
single controller at a given time. This is different from the
classical approach where a switch connects in parallel with
several controllers. The procedure is performed in the WMR
with the help of the EFTM (External Flow Table Manager)
entity shown in Fig. 2. The EFTM entity is in charge to
perform the master selection procedure and will instruct the
switch to connect to the selected controller at a given time.

Performing the master selection on the WMR side has some
advantages in our scenario. The first advantage is that each
OpenFlow switch will be connected with a single controller at
a time, and no conflicting rules can be injected. The second
advantage is that a run-time coordination mechanism among
controllers is not needed, each controller can operate on its
own, obviously all the controllers should follow a consistent
service logic.

IV. EXPERIMENTING OVER THE OPENLAB TESTBEDS
As described above, we designed and developed novel

algorithms and procedures in order to address the
aforementioned challenges, thus we needed to test them under
real world settings and in the largest scale possible. To this end,
we took advantage of the OpenLab facility that provides the
unique capability to deploy and evaluate experiments easily in
a mid-scale environment exploiting a plethora of different
kinds of resources.

A. Taking advantage of the tools provided by OpenLab

The main issue when you conduct an experiment involving
several heterogeneous resources is burden related to their
control and configuration, as well as their synchronization
during the experiment. This was addressed easily by using the
OMF framework, which enabled us to configure and control
the different kinds of nodes that were part of the experiment,
through a single script. In this script, which is written in a
simple, domain-specific language provided by OMF, namely
the OEDL [7], we described the required initial configuration
of the nodes and specified a list of events and associated tasks,
as well. The list of tasks includes the drop of a link, the sleep
for a specified time period or measurement points for
collecting data.

Another big issue that OpenLab tools assisted us to address
is the gathering of the measurements generated during the
experiment, in a unified way. The collection of all those data is
handled by the OML [8], which is again provided by OMF. In
this way, we defined measurement points in the experiment
description script and OML handled the collection of the

experimental results and their storage in a database for further
processing.

The necessary steps for conducting the experiment on the
federated testbeds and the tools we used are:

• The reservation of the resources through mySlice portal,

• The development of the experiment description using
OEDL,

• The development of the experiment scripts through OMF,

• The execution of the experiment through a single script
and the collection of the measurements through OML.

In the following subsection, we describe the main
challenges faced and the methods followed towards the
successful deployment of the EXPRESS experiment on the
OpenLab federation.

B. Main challenges during the deployment

The experiment is performed across three different
OpenLab testbeds, two wireless testbeds (NITOS [9] and
w-iLab.t [10]) that supports different Wireless Mesh Networks
and a wired testbed (PLE - Planetlab Europe [11]) that is used
to emulate a “backbone” link interconnecting the two Wireless
Mesh Networks. The backbone link was implemented through
the establishment of an Ethernet over UDP tunnel across
PlanetLab testbed (actually two UDP tunnels bridged with a
Virtual Switch on a PLE node, as shown in Fig. 4).

Fig. 4. Experiment over PlanetLab, NITOS and w-iLab.t

In most cases, the description of the experiment in the OMF
language is a straightforward procedure, so was in our case. On
the other hand, one of the difficulties we faced during the
deployment is that most of the wireless nodes in the testbeds
are inside the coverage area of all the other wireless nodes in
their testbed, making difficult to emulate topologies where
nodes lie more than two-hops away from each other. In order to
face this difficulty, we filtered the packets at the receiving node
in order to emulate the desired experimental topology – thus all
packets received by nodes that are not in the mutual
communication range were discarded. Further details on the

59

aforementioned procedure can be found in the OpenLab
Deliverable D3.11 [12].

Another problem we had to face is the private IP addressing
that NITOS and w-iLab.t use for their wireless nodes. Taking
under consideration the advantages and disadvantages of all the
different options for dealing with this problem, we concluded
that a solution based on NAT is the most appropriate and
applicable one for our situation. Further details on the
aforementioned procedure can be found in the OpenLab
Deliverable D3.10 [13].

Since we successfully implemented all challenges during
the deployment phase, we designed and developed two
different types of experiments.

C. Description of the experiments

In the combined OpenLab testbed, we run two types of
experiments, respectively denoted as “network merging” and
“network partitioning” experiment. In the network merging
experiment we start with two mutually disconnected network
sets (each one with a SDN controller) and then reactivate a
wireless link between two WMRs residing in different sets. In
the network partitioning experiment we deliberately deactivate
a wireless link that interconnects two sets of the networks, each
one including (at least) a SDN controller. In both experiments
the following simple control logic is run by the WMR nodes.
Each WMR node has a list of SDN controllers that can
potentially take control of the node, ordered by priority. The
SDN controllers are listed with their IP address. The WMR
will periodically check which controller IP addresses are
reachable looking at the IP routing table established by means
of the OLSR protocol. The WMR will try to connect to all
reachable controllers (and will check the liveliness of the
connection for the currently selected master SDN controller).
Then it will select the highest priority controller among the
ones to which it has successfully established a connection. In
the experiment, the priority list of the preferred controllers was
simply preconfigured in the nodes (using a configuration file).
In a real life implementation the priority list could be
transferred by a SDN controller to the WMR node and updated
when needed.

In both types of experiments, we measured the time needed
for the WMRs to connect to the highest priority controller after
the event that determined the network merging/partitioning. In
the network merging experiment, this time interval can be
decomposed into two phases: in the first phase the IP routing
(OLSR) will properly reconfigure the connectivity in the
control network (OLSR routing procedure). In the second
phase our proposed controller selection algorithm will operate
to select the highest priority controller (controller selection
procedure). In the network partitioning experiment, the WMR
node does not rely on OLSR to detect that a controller is no
longer reachable, but it will perform its own connectivity
check, achieving a faster reaction time.

The rationale of the two experiments is to demonstrate that
the controller selection procedure operates within the same
time scale than the OLSR restoration procedure. If we accept
the performance of OLSR in routing packets over the WMN,
we will likely accept the performance of the proposed SDN

based approach offering traffic engineering services in the
WMN.

D. Experiment setups

To perform the network merging experiment, the tunnel
between the two wireless testbeds is initially not active, and the
WMRs are connected to their respective controllers available
within their own local testbed. As soon as the tunnel across
Planet Lab Europe is activated, messages start to flow from one
wireless testbed to the other and the WMR nodes belonging to
w.iLab-t testbed learn the IP route towards the remote
controller in NITOS. The EFTM entity implemented into each
of the WMR checks if a controller is actually active at that IP
address by trying to establish an OpenFlow protocol
connection. When this check is positive, the entity chooses to
connect to the highest priority controller, in this case the one in
the remote wireless testbed (NITOS).

To perform the network partitioning experiments we drop
the tunnel established through PlanetLab and measure the time
needed by WMRs in each wireless testbed to connect to their
local controllers.

V. EXPERIMENTS RESULTS
In this section we present the experiment results. We do not

aim to provide an in depth technical analysis of the results. We
only illustrate what results we obtained and show how they can
support the answers to the questions we have identified in
section III.

A. Network merging experiment
In this experiment we evaluate the time needed for the

WMRs to connect to a higher priority controller after the
merging of two network partitions. As shown in Fig. 5, this
time is decomposed in two phases, network connectivity and
master selection. The former one considers the time needed for
the routing protocol to setup the IP routes in all WMRs taking
into account the merged network topology. We measure it by
trying to send ping requests from a WMR to the controller that
was not reachable before the merging event. In our experiments
it averages to 15 seconds. In fact, according to the OLSR
routing protocol mechanisms, three “Hello” messages need to
be received in order to declare a link up and the default interval
for sending OLSR Hello messages is 5 seconds. Starting from
this time instant we measure the interval needed for the WMRs
to disconnect from old controller and connect to the one with
higher priority. In our implementation the EFTM periodically
tries to establish a connection with all controllers that have
been discovered, starting from the highest priority one. The
polling period is 3 seconds. In the experiment we measured an
average of more than 1.5 seconds for the latest connected
WMR, which is consistent with the expectations.

60

Fig. 5. Network merging experiment

B. Network partitioning experiments
In this second set of experiments we consider the

partitioning of the network: starting from a connected network
as shown in Fig. 4, we disconnect one of the tunnels across
PlanetLab Europe. In Fig. 6 we report the evaluation of the
time needed by the WMRs in the w-iLab.t testbed to
disconnect from the remote controller in NITOS and connect to
the local controller. In this case the WMRs does not rely on
OLSR to discover that a controller is not reachable, as it would
require more than 15 seconds considering the default OLSR
configuration (3 Hello intervals of 5 s needed to declare the
link down). The ETFM periodic controller polling procedure
(running with a 3 seconds period) considers a 2 seconds
timeout before declaring that a controller is down. With this
procedure, an average master selection delay of 5.5 seconds is
measured.

Fig. 6. Network partitioning experiment: master selection delay

VI. CONCLUSIONS
This paper presents two major contributions. The first one

is related to the question whether SDN can be efficiently used
in a dynamic environment with intermittently connected
networks. A solution has been designed for this purpose.

Nevertheless, it is critical to evaluate such a proposal in a
practical setting. The second value of the paper is to
demonstrate that the OpenLab federation of heterogeneous
testbeds provides the mean to configure and experiment the
solution derived in order to assess its performance. The
experiment was conducted with a reduced effort thanks to the
tools provided by the OpenLab facility. Despites the fact that
the experiment involved three different and heterogeneous
testbeds, the performance of the proposed solution has been
captured and the results helped to answer the suitability of
SDN for this type of complex environments.

ACKNOWLEDGMENTS
This work has been supported by the OpenLab project,

"OpenLab: extending FIRE testbeds and tools ", funded by the
EC under FP Grant agreement no: 287581.

REFERENCES
[1] T. Rakotoarivelo, M. Ott, G. Jourjon, and I. Seskar, “OMF: a control and

management framework for networking testbeds”, SIGOPS Oper. Syst.
Rev. 43, 4 (January 2010), pp. 54-59

[2] A. Dixit, F. Hao,S. Mukherjee,T.V. Lakshman, R. Kompella, “Towards
an Elastic Distributed SDN Controller”, ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking (HotSDN 2013), August
16, 2013, Hong Kong

[3] A. Detti, C. Pisa, S. Salsano, N. Blefari-Melazzi, “Wireless Mesh
Software Defined Networks (wmSDN)”, CNBuB Workshop at IEEE
WiMob, France, Lyon, 7 October 2013

[4] Open Networking Foundation (ONF) “OpenFlow Switch Specification”,
Version 1.4.0, October 14, 2013

[5] S. Salsano, G. Siracusano, A. Detti, C. Pisa, P. L. Ventre, N. Blefari-
Melazzi, “Controller selection in a Wireless Mesh SDN under network
partitioning and merging scenarios”, submitted paper, available at
http://arxiv.org/abs/1406.2470

[6] S. Salsano, P. L. Ventre, L. Prete, G. Siracusano, M. Gerola, E.
Salvadori, “OSHI - Open Source Hybrid IP/SDN networking (and its
emulation on Mininet and on distributed SDN testbeds)”, EWSDN 2014,
1-3 September 2014, Budapest, Hungary

[7] OEDL - The OMF Experiment Description Language
http://mytestbed.net/projects/omf54/wiki/OEDL-5-4

[8] OML - Measurement Library
http://mytestbed.net/projects/oml/wiki/

[9] NITOS testbed http://nitlab.inf.uth.gr/NITlab/index.php/testbed
[10] w-iLab.t testbed http://ilabt.iminds.be/wilabt
[11] PlanetLab Europe (PLE) testbed http://www.planet-lab.eu/
[12] S. Salsano (editor) “EXPRESS final evaluation and overall report”,

Deliverable D3.11 of EU FP7 Project “OpenLab”
[13] S. Salsano (editor) “EXPRESS – Final architecture and design,

evaluation plan”, Deliverable D3.10 of EU FP7 Project “OpenLab”
[14] http://en.wikipedia.org/wiki/Wireless_community_network
[15] T. Clausen (Ed.), P. Jacquet (Ed.), “Optimized Link State Routing

Protocol (OLSR)”, IETF RFC 3626, October 2003

61

SDNI: The GEANT Testbeds Service – Virtual
Network Environments for Advanced Network and

Applications Research
M Hazlinsky

CESnet
Prague, CZ

hazlinsky@cesnet.cz

B Pietrzak
PSNC

Poznan, PL
blazej.pietrzak@man.poznan.pl

P Szegedi
TERENA

Amsterdam, NE
szegedi@terena.org

F Farina
GARR

Milan, IT
fabio.farina@garr.it

J Sobieski
NORDUnet
Kastrup, DK

jerry@nordu.net

62

THE GEANT TESTBEDS SERVICE OVERVIEW

The GEANT Testbeds Service (“GTS”) is a new production
service introduced by the GEANT Network to address
experimental needs of the networking and distributed
applications research community. GTS allows network
researchers to formally describe an experimental network
environment using a domain specific grammar and then
instantiate and manage that environment though its life cycle.
Testbeds can be scheduled, i.e. set up at a pre-arranged time in
the future, and they can be provisioned across geographically
distributed locations. The Service model is generic and highly
extensible so that it can incorporate a wide array of
experimental components. This Service dramatically reduces
costs, complexity, and lead times required to field experimental
networks at scale and allows the research community to focus
on the research topic rather than the scaffolding associated with
conventional network engineering, contracting, procurement,
installation, and operations of the physical facilities.

Section 2 of this paper describes the GTS architecture – the
conceptual model, and the processes and components that
deliver the service and manage the underlying infrastructure
upon which it operates. Section 3 will address the specifics of
GTS version 1.0 – the key feature set and the current
deployment status. Section 4 will provide a features and
capabilities roadmap for GTS covering both the near term
version 2.0 and the version 3.0 anticipated in early GEANT 4.
Section 5 will address the longer term strategy towards
interoperability and global scaling.

II. THE GEANT TESTBEDS SERVICE ARCHITECTURE

The GTS architecture and service semantics are based in the
proposition that all networks can be represented as graphs. In
conventional graphs, the graph vertices represent network
processes that source or sink data flows, or make forwarding
decisions about the data as it transits the vertex. The graph
edges represent data transport processes (e.g. circuits or links)
that simply move data transparently and unmodified from one
network vertex to the next. However, GTS reduces and
generalizes this conventional network graph one step further to
create a derived resource graph (DRG.) In the DRG, all data
plane functions – transport, switching, forwarding, acquisition,
storage, etc - are represented as “resource” objects, and these

resources make up the vertices (the nodes) in the DRG. The
topology of the network is expressed separately through a set of
“adjacency” relationships that constitute the edges in the DRG.
This DRG representation allows GTS to treat all data plane
functional components in a consistent object oriented fashion,
and it allows the juxtaposition of those data plane components
to be described separately via the adjacencies.

 Just as in the conventional graph, the DRG model
recognizes that any particular resource object may have
multiple links to/from other resources, perhaps even multiple
links between the same two resources. There must be a means
to identify and differentiate these links within the local context
of each resource. The DRG model defines “port” constructs to
enumerate the I/O interfaces associated with a resource thus
allowing each I/O interface to have its own unique port id
within each resource. The connectivity among resources, and
therefore the topology of the network, is described by the
adjacency relationships that indicate which resource-ports are
connected to which other resource-ports. The port construct
allows attributes of each interface to be described separately
from the attributes of the resource itself.

With these three basic constructs – resources, ports, and
adjacencies – GTS can fully describe a network topology.
And the DRG model neatly organizes and associates attributes
of each of these key components in a consistent and generic
manner regardless of the specific resource functionality. This
model simplifies many aspects of network analysis and
management, enhances the extensibility of the overall service
model, and aids in the reliability and maintainability of the
software.

Resources are not uniform – obviously a data transport
circuit differs significantly in functionality and relevant
attributes from, say, an OpenFlow switching fabric. The GTS
model organizes resources by their Type or class. Resources
of a given Type will have a common set of attributes or
parameters that constrain or define resources of that type.
For example, a resource definition of type “Host” may have a
parameter “cpuClockRate” that defines the cpu speed of that
class of resource. Likewise, a reference to resource of that
class may use cpuClockRate as a constraint that must be met
when searching for (or manufacturing) a resource instance to
satisfy a resource request. Further, even resources of the same
class may differ somewhat in their respective attributes within
the context of a particular network. For instance, two
switching nodes that otherwise are identical in functional
characteristics may have different numbers of ports. These
differing characteristics of a resource instance do not change
the fundamental capabilities or function of the resource type or
class.

So GTS supports a resource Class Definition that defines
the fixed public attributes of a resource and the parameters that
can be set/chosen by the user when requesting such a resource.

The user interacts with the GTS service though a set of
request/response messages that carry functional primitives
(basic commands or requests) between the “user” agent and the
“provider” agent. The specific primitives themselves are
defined as part of each resource class definition. GTS requires
all resource classes to support a base set of primitives: Reserve
and Release of the resource reservation, Activate or Deactivate
of the resource (during its reserved window), and a Query
primitive that returns the state of the resource. In addition to

63

these base primitives, the GTS model allows resources to
define additional resource specific primitives that perform
control function(s) that may be unique to a particular class of
resource. For instance, a VM resource may provide a
“coldStart” primitive that reboots the VM as if the power had
been cycled.

The GTS software suite includes a web based GUI that acts
as a user agent. From the GUI, a user can login to the Service,
import resource type definitions, instantiate one or more of
those resources, and then access those resource instances via
other control primitives or via console proxy or some another
means (e.g. SSH). The GUI can also display resource state
information for a single resource or an entire testbed network

TESTBED RESOURCES

At a very high level, the GEANT Testbeds Service (GTS)
implements a simple virtual resource model that creates
resource instances from underlying infrastructure facilities
according to resource class descriptions. The Service allocates
these virtual resources to the user’s Project for a fixed time
period (the reservation window.) The GTS virtualization model
is highly scalable, secure, and extensible, and it allows GTS to
efficiently share the underlying infrastructure among many
potential users.

From the user’s perspective, their testbed is comprised
solely of virtual resources instantiated within an abstracted
virtual private universe. Resource instances have a lifecycle
that extends from when the resource is first referenced as part
of a Reserve() request until that reservation is Released() and
the virtual resource is decomposed and returned to the
infrastructure pool. The initial GTS v1.0 supports four key
resource types: Composite resources are logical containers that
contain other resources. Composites enable an object oriented
approach to testbed construction; Host resources are Linux
virtual machines running on Dell server hardware and managed
by the OpenStack software; Link resources are ethernet
framed data transport circuits provisioned over NSI circuit
services; And OpenFlowFabric resources are OpenFlow
capable data plane switching fabrics provisioned over HP 5900
hardware platforms. These basic resource classes will be
enhanced over time to provide more flavors of each resource
type. In general, the virtualization process simply allows the
underlying physical infrastructure to be partitioned or
timeshared and does not otherwise obscure access to the actual
underlying physical hardware performance.

A user creates a “Testbed” by first defining a composite
resource class to contain all other resource, port, adjacency, and
attribute specifications required to define the testbed. When
the user Reserves this top level (“root”) resource, the GTS
service agent will process the root Testbed description,
recursively locate and process the class descriptions for any
composite children resources encountered, until only “atomic”
resources are remaining. “Atomic” resources are resources that
contain no other resource references. Thus a resource tree is
constructed that contains all of the information required to
satisfy the user’s resource reservation request. Once the
resource tree has been constructed, and all port adjacencies
resolved, the tree is processed once again to actually reserve the
constituent atomic resources. This resource tree is the
complete internal representation of the user’s testbed and is
stored in a persistent Resource DataBase.

The virtual resources in GTS are manufactured as needed
from underlying infrastructure objects. It is important to
differentiate the Service layer virtualization processes from the
Data Plane virtualization processes. Functions such as API and
primitive processing, resource allocation and mapping, life
cycle management, book-ahead scheduling, policy application,
etc are performed by the Service layer software. These
service layer functions typically only manage and orchestrate
the resources from the sidelines, and are not involved directly
in realizing the virtualized entities themselves. Data Plane
virtualization refers to processes that realize the virtual
resource at the data plane. Examples of these data plane
processes include the hypervisor that allocates cpu cycles to
VM instances and emulates low level VM systems calls, or the
encapsulation processes in network elements that sort traffic
into virtual circuits or shape that traffic accordingly as it
transits a switch.

“Dynamic” resources are manufactured on-demand from
the infrastructure when a Reserve request is received by GTS
core service agent. For some commonly requested resources,
the resources can be provisioned in advance with a fixed
“static” configuration. Such static resources sit in an available
“running-but-idle” state until needed. These static resources
can be allocated and Activated very rapidly at the cost of some
configuration flexibility.

Data flow among resources – and between the internal
virtual testbed universe and the external real world- are
explicitly defined using the resource port constructs. The GTS
virtualization model does not allow data to enter or exit a
resource except through one of these explicitly defined ports.
This feature allows the Service to identify all I/O flows, and

64

very carefully monitor interfaces that could [potential] pose a
threat to external systems or services. If/when necessary, the
GTS port monitoring can trigger remedial action if those flows
exceed certain thresholds. As long as the data flow activities
of a testbed remain internal, among the resources of that
testbed, the Service does not interfere with the user’s
experiment.

GTS testbeds and all associated resources are described
using a domain specific language – referred to as the GTS
“DSL”. The DSL is an object oriented grammar, implemented
in the Groovy programming language, that provides a concise
and very powerful means of describing complex resources. The
DSL provides a number of novel capabilities such as iterators
that allow the grammar to describe large networks using
programmatically constructed resource specifications. The
DSL inherits many features of modern programming
languages. In this respect, it empowers the researcher to
develop parametric network design specifications that can
dynamically shape target testbeds to address goals of individual
experiments.

The GEANT Testbeds Service is a work in progress. The
GTS architecture is the product of much prior research and the
developers believe this prior work is now showing benefit both
in its simplicity for new users to be productive and in its
adaptability and power to address new requirements into the
future.

III. KEY FEATURES OF GTS VERSION 1.0

The GEANT Testbeds Service first became available for
users as a production service in August 2014. It represents an
initial implementation of a strategic vision for how future
advanced network research can co-exists with and leverage
shared production networking infrastructure.

The initial deployment of GTS v1.0 offers some basic
capabilities and resource types that act as building blocks –
allowing new users to experience the service and to become
productive very quickly. As mentioned previously, version 1.0
introduces Composite resources, Host and Link resources, and
OpenFlowFabric resources. The Composite, Host, and Link
classes are general classes and will provide a broadbased
capability for the user. The OpenFlowFabric resource class is

more specialized and is a good example of how the architecture
can accommodate such novel resource classes.

GTS v1.0 provides the researcher with a web based
Graphical User Interface that interacts with the GTS service
and allows the researcher (the user) to easily manage their
testbed resources. This is a basic functionality in v1.0 that
allows the user to upload the DSL testbed descriptions, reserve
resources, activate/deactivate resources, release resources, and
display state and informational attributes of resources. Since
one important feature of GTS is its ability to create object
oriented and/or geographically distributed virtual
environments, the GUI can present the testbed details as either
as a tree structured list (similar to a file directory listing) or
project it onto Google Earth for geographical presentation.
The GUI also provides service administrators with menus to
create and manage projects and users associated with each
project.

The Testbeds Service supports book-ahead reservations for
all resources. This allows users to coordinate their experiments
with other external events or to simply coordinate access to
diverse resources within the Service itself. GTS treats a
resource reservation as an important commitment to the user
and does not overbook, prioritize, or preempt confirmed
reservations except in the event of unavoidable and
unanticipated hardware failures. Even then, in many cases a
testbed reservation can be remapped to other infrastructure
before the reservation is activated. Book-ahead reservations
also provide a not-so-obvious feature: they allow users to
validate testbed or resource descriptions by reserving them in
the far future – the service will book everything but will not
actually activate the testbed. This can reveal specification
errors that might be related to resource constraints, topologies,
scaling, authorization policy, etc. allowing the user to modify
or correct the testbed description before it is actually required.

The Testbeds Service will construct a testbed by
interconnecting resources according to the DSL description.
But interestingly, GTS does not actually produce a “network”
per se. GTS views networking within the testbed environment
as an integral element of the researcher’s experiment and so
GTS prefers to leave this alone. However, the Service
recognizes that even disruptive experimental testbeds still need
to allow the researcher to access their resources. IP networking
is the defacto means of doing so. Therefore, GTS v1.0
constructs a general purpose IP subnet for each GTS project.
This subnet is assigned a dedicated VLAN and IP CIDR block.
This subnet can be used by any/all resources reserved under
that Project. The Testbeds Service configures a gateway router
on this subnet, provides DHCP services, NAT’d access to the
real world Internet, and provides VPN server so that users can
access the subnet from outside. In v1.0, “Host” resource
instances (VMs) assign their eth0 interface to this general
purpose subnet. Other resources may also attach to this subnet
depending on their nature.

A network File System is created for each Project as well.
This file system resides on a GTS managed NAS server. This
file system can be mounted by resources within the testbed –
most notably the virtual machines. This persistent networked
storage allows the user to save testbed state and be able to
access and/or restore this state across testbed reservations. The
file system can also be mounted externally to allow researchers
to pre-position software or data into their testbed environment
or to extract data or logs from their testbed.

65

IV. DEPLOYMENT STATUS

The GEANT Testbed Service version 1.0 is currently
deployed in four European cities – Copenhagen, Amsterdam,
Bratislava, and Ljubljana. Three additional locations - Paris,
Hamburg, and Milan - are in progress and will be online in the
fall of 2014. As users migrate to the GTS environment from
the predecessor GEANT3 OpenFlow test facility, the
infrastructure serving this facility will be absorbed into the
GTS expanding the reach to include Frankfurt, Zagreb, and
Viena. Indeed, as the service matures we expect to recreate
the GOFF within GTS in order to simplify user migration.

GTS is establishing data plane connectivity to the US GENI
project. The [initial] GTS demarcation point is planned to be at
the MANLAN open exchange in New York City. GTS and the
ExoGENI project have begun initial efforts to construct
Testbeds across these two facilities.

The Service is currently in an introductory phase during
which new users are invited to self register (gts.geant.net) and
“kick the tires” by creating simple testbeds. Introductory users
are constrained to small testbeds and short reservations. Users
wishing to construct larger and more persistent testbeds should
contact and register with the GTS Service Management.

V. THE GTS EVOLUTION ROADMAP

The development of GTS v1.0 defined the GTS
Architecture and developed the initial key components and
resources.

Version 1.1, due in fall 2014, will provide a number of
background enhancements such as restart and migration tools,
additional local storage for VMs, enhanced operational
monitoring capabilities, and “lightweight” VM resources (to
enable substantially more “basic best effort” VMs to be made
available.)

Version 2.0 is targeted for deployment in early 2015-Q1.
This release will deliver several key new capabilities: 1)
“Multi-Domain” GTS capabilities. MD-GTS will allow a
user’s testbed to seamlessly span multiple GTS domains. 2) A
much improved graphical user interface will provide drag-and-
drop graphical testbed editing. The new GUI will let users
graphically manage testbed topology, and configure or query
attributes through interactive dynamic dialogs. 3) Active in-
situ modification of testbeds will be available allowing
resources to be added or removed without releasing and re-
reserving the entire testbed. 4) New operational monitoring
capabilities will provide more detailed insights into service
state. These tools will be integrated into the GUI and will
provide greater visibility and more detailed control of the
service for the GEANT NOC and for users.

GTS 2.0 will introduce several additional resource classes
including “Bare metal servers” that provide a user with an
entire physical server as a resource, and VLAN-delineated
virtual circuits which will enable multiple virtual circuits to be
provisioned over an individual physical Ethernet interfaces.
The latter, VLAN delineated VCs, will also introduce increased
VC capacity to 10 Gbps [or possibly 100]. The GTS v2.0
Service will peer with the GEANT Bandwidth-on-Demand
service and will be able to leverage the GEANT BoD
connectivity to deliver virtual circuit resources globally.
Global reach for virtual circuits are key to delivering Multi-
Domain GTS testbeds. Version2.0 is planned to demonstrate

an initial “GTS-to-Cloud” integrated service capability that is
hoped will enable GTS to acquire VM resources from cloud
data centers and to provision virtual circuit resources into those
cloud facilities to realize user topologies.

The next stage, GTS version 3.0, will be developed as part
of GEANT4 Phase 1 and will be begin development in 2015-
Q2. Version 3 features are not fully defined as of this writing.
However, some interesting new features are being discussed:
“Smart” resources can react to events in the testbed – such as
the addition or deletion of a resource instance somewhere in the
topology. A smart resource could, for example, analyze and
reconfigure the topology to meet user resiliency goals. “Soft”
resources do not have a particular hardware analog. Soft
resources might include encryption/decryption modules, or
framing adaptors/interworking modules, or a BGP routing
instance. There is interest in advanced timing capabilities as a
virtual resource, and a new family of “optical/photonic” testbed
resources to manage long haul optical/photonic infrastructure
and make photonic testbeds facilities easily available to the
research community. Similarly, there is interest in wireless
and mobile resources. The final v3.0 feature set requires
additional consideration which will also be weighed in terms of
the growth of the user bases served as GEANT4 begins.

V. THE VISION

The long term vision is a ubiquitous and easily accessible
service capability that can construct experimental networks
spanning the globe. Recent research efforts have developed a
number of promising approaches over the last several years.
However, interoperability and global scaling were not the
primary research objectives, and so these frameworks exhibit
only limited (if any) interoperability. This is not atypical of
early very advanced work in a field. The most expedient
approach to interworking two dissimilar systems is to develop
software translation, or interworking, of the two service
models. Such translational approaches do not scale well when
the interworking must address more than a very few different
service models. Interworking often is just unable to convert
service features from one model to the other – simulacrums do
not exist. The results are often only partially successful, or
require excessive manual intervention to deliver services. Even
lack of common end-to-end operational continuity can make
interoperability sketchy at best. A more strategic and formal
approach is needed.

What is needed now is a common canonical service model
that all agree supports the necessary basic service concept, and
that all agree to support and adopt. Such a common model
must identify the fundamental service semantics, normalize
terminology, define principles for security, privacy, and
scalability, identify common data objects/constructs, and agree
to a set of common service primitives. Operational
implementation of such a common service model requires
agreement on policy – at least at a high level – such that
administrative control is retained in the domains offering the
service, and service interconnections and peering relations must
be worked out.

Such a consensus service paradigm need not invalidate
existing service models. Indeed, the common model will likely
have a strong resemblance to these predecessors. But a
canonical model means that existing service domains need only
develop a single interworking process between the canonical

66

model and their existing local model. Inter-domain
interoperability is achieved using the common canonical
model, while internally each domain can retain their existing
intra-domain service model. The canonical model may also be
implemented directly within a domain making the interworking
unnecessary altogether.

Agreement on a common canonical model will take time.
There will inevitably be many hard discussions as to which
concepts should be implemented, how they should function,
what terminology will be used, etc. This is best progressed in
stages. Simple shared concepts first, then more sophisticated
features. Time allows compromise, e.g. a topic that cannot
gain sufficient support now can be held for later re-
consideration thus avoiding alienation of the contributors and
losing a potential supporter for the overall effort.

The GEANT Testbeds Service will continue to evolve to
incorporate more useability features, to provide the reliability
of a production service, and to integrate into a global consensus
service model. Long term commitment to services such as GTS
will entice users to incorporate these capabilities into their
ongoing research efforts, and this increasing usage lead to
wider adoption and deployment. The result will be a
ubiquitous global facility for advanced networking and
networked applications development.

67

Five SDN-oriented Directions in Information Security

A. Grusho, N. Grusho, E. Timonina
The Institute of Informatics Problems of the Russian

Academy of Sciences
IPI RAS

Moscow, Russia

V. Piskovski
Non-profit Partnership «Applied Research Center for

Computer Networks»
ARCCN

Moscow, Russia

Abstract—the concept of Software Defined Networks (SDN)
originates new approaches in Information Security. The paper
presents how to make use of SDN to guard hosts and networks.
Also we consider newly opened perspectives in information
security

Keywords—Software Defined Networks; Information security;
Artificial Intelligence; Cryptography

I. INTRODUCTION

The work has been granted by the Russian Foundation for
Basic Research, project 13-01-00215.

Now access restriction methods mostly are based on the
idea to isolate domain. There are such a kind of mechanisms
built in OS and DBMS to provide them with discretionary
access control. Switches, routers and firewalls implement
domain isolation in networks. The concept of Software
Defined Networks (SDN) opens new approaches in this area.

The paper presents how to make use of SDN to guard hosts
and networks. Also we consider newly opened perspectives in
information security.

SDN concept is to put network management functions into
physically decoupled control plane. This enables a wide range
of technical software and hardware means including artificial
intelligence to enforce proactive guarding of selected nodes,
LAN segments and IT infrastructure. Some of these means are
as follows:

 SDN allows to implement an architecture to
secure distributed virtual systems. We consider
principles of this idea in next chapter. One of
practical use of such a secure architecture is a
realization of so called process approach in
information security. In other words that is to use
patterns and dependencies between data flows,
which are predefined by IT. So there is a new
chance to build security facilities based upon
information processes.

 On-line tailoring security policies in Big Data and
OLAP systems. Relations between data flows, its
content and the subject can dynamically control
an access to information and support multilevel
security policy and mandatory access control.

 The use of computationally complex, heuristic
algorithms along with AI1 approaches,
implementing a kind of “man-in-the-middle”
systems enable on-line traffic analysis and
preprocessing. This empowers withstanding to
DDoS attacks and traffic anonymizing.

 Parallel processing along with obfuscating in
order to store information in a number of isolated
independent domains. This essentially
complicates unauthorized access. The approach is
a new direction of information security.

 Cryptography as a mean to authenticate and
isolate domains. The problem resides in crypt
algorithm implementations and key management
system as well.

II. THE SECURE ARCHITECTURE

First of all we define what we mean under the architecture
of a distributed virtual system

If we denote V as a set of components belonged to this
distributed virtual system, and E as a set of interactions
between components, then G = (V, E) represents the
architecture of the system. It’s also possible to consider time-
dependent architecture as G(t) = (V(t), E(t)). We consider
time-independent systems just for the sake of simplicity.

If we consider interactions E as communications in pairs
then we can represent the architecture as an oriented graph
where an edge identifies the data flow from a component to
another one. Generally the interactions can be denoted as a
complex architecture, which contains its own components
with its own interactions in its turn. Similarly components can
be also a combined structure of elements, which enclose other
components with its interactions as well.

We define the concept of the secure architecture as
follows.

Information security considers threats as a result of
technical issues like vulnerability and exploits and social
matters like classes of probable attackers and their potential
targets. All of these issues

1 Artificial Intelligence

68

We define on the set V a function f: VL1. The function
maps components into a scale L1 defining the level of a risk
for a component to suffer from an attack for example with
malware. Here L1 is a semiordered categorical hierarchy (a
set) for determining of the risk (scalar value, i.e. a kind of a
norm) mentioned above. Thus some components have got a
lower risk, some ones map to a larger risk, e.g. components
connected to Internet. Similarly we can introduce a function
h: EL1, which maps the set of interactions into categorical
risk hierarchy L1, e.g. a channel inside a protected perimeter
has a lower risk to be eavesdropped then a channel through-
passing an open unsecure territory.

Also we categorize all components according their values
by means of a function g: VL2, where L2 is a hierarchy
structure, reflecting component value from the perspective of
confidentiality, integrity and availability. For instance
components containing crypto keys or digital signatures are
more valued then components with open background
materials.

 Therefore the function f, the norm of L1 representing a
scalar risk and a given threshold defines a subset V1 of
components in some distributed (and/or virtual) system. We
can assume those components have got heightened risk of
unsafe impact. Alike we described above the function g, a
threshold applied to V, L2 defines a subset V2 of hosts or
components containing valuable information needed to be
protected. We determine the system architecture as secure
when there are no direct interactions between V1 and V2

elements.

If there is a need in such interactions then we have to put
an interface called SecS (Security Server)

The Security Server is both to lower a risk of hazard effect
on valuable hosts and to prevent of rising value level for risky
hosts.

Thus we’ve defined the model of a secure architecture for
distributed (either virtual) system. This model can stand
independently of other known concept in information security.

One of the central requirements to distributed or virtual
information systems is quick modernization, developing and
implementing of new information technologies. It means a
need for quick upgrading architecture of such systems and it’s
possible that new components and requirements can be
revealed. In order to keep the architecture secured it’s
necessary to calculate functions f and g for these components
and to check out the requirement mentioned above to have no
interactions between subsets V1 and V2.

One of solutions to this problem is to make use of SDN
concept because it’s much faster and efficiently to customize
configurations programmatically other than tuning up of
traditional routing systems.

Next, we deliberate problems of analyzing the secure
architecture of systems considered in this chapter. There is too
early to treat, say, some deliberated architecture as absolutely
or assured secure one, but it’s worth to compare several
architectures as more secure or less secure. Also it’s to build
more secure systems from less secure.

As an example of systems with different levels of security
we appeal to a PC with Hyper-V processor feature. Also we
assume the PC runs under a hypervisor with its manager and
two virtual machine with OS’s working under this hypervisor.
And a user can switch between those two OS’s as he (or she)
wants.

Then we assume, that a virtual machine (VM I) has
connected with Internet, and the other (VM II) is not allowed
to connect to Internet. A user can work with his confidential
data on a VM II and has to switch to VM I in order to send
these packages. Here we can state that just described
architecture is more secure in comparison of situation when
both virtual machines have been accessed to Internet.

 On like occasions of traditional architectures it’s
worthwhile to build safety architectural elements. For
instance, when either a component with high risk and a
component with high value access to common resources it’s
worth to provide every component with its own “common”
resource with previously doubled information. Also these
resources have to be placed into isolated domains along with
its components. Correspondingly “common” resources have to
synchronize data regularly.

Enterprise information systems automate technological
and/or business procedures in part or entirely. One of the first
stages at implementing a system is a business analysis and
modelling. This has data flow formalism as an artifact,
describing traffic between servers, nodes, system components
and workplaces. We can consider a business model as a
number of graphs with vertices as information processors and
edges as data flows. That means we consider an architecture
which depends on time. Thus we can describe network
security model as a domain of legal traffic at every moment of
business processes. We treat legal traffic in general
irrespective of professional area like industrial control systems
or an office infrastructure. This security model along with
legal traffic domain is being adjusted during implementing
procedures.

Having efficient high performance technical means placed
in the control plane to analyze and control traffic of SDN we
can manage on-the-fly alternating data flows in accordance
with dynamic security policy and system informational model.
This reflects the sense of process approach in information
security methodology.

III. INFORMATION SECURITY IN OLAP AND BIG DATA

Enterprises have rigid requirements to guard confidential
data when users work with analytical systems such as OLAP
or Big Data. Very often these requirements imply the
discretionary access policy for a certain type of aggregated
data and monitoring of access policy fulfillment in real-time.
It means a user or a software agent can have whether a full
access to the whole data source (e.g. hypercube) or nothing.
Populating a control plane with special technical means like
DPI along with AI technology allows us to realize flexible
security policy. This policy can on-line combine current data
confidentiality, users’ credentials and his activity profile.

69

Let’s assume a user is collecting accessible structured
(OLAP) and unstructured (Big Data) data from corporative
sources. All facts and information fragments have markers, i.e.
structures of information properties including confidential
level. Aggregation procedures recalculate markers according
to predefined rules. Also logged user (or program agent)
activity results into operational recalculating of user’s
credentials, which defines first of all his access level. Thus
applications located in the control plane constantly recalculate
information markers and users credentials in order to limit or
grant an access on-line matching markers and user credentials.

IV. WEB-TRAFFIC CONTENT ANALYSIS

As common practice shows the usage of web applications
and web-services can contain a lot of security threats. One of
methods to withstand is web-traffic analysis. To implement it
we have to solve two problems:

 To get an access to the object of analysis, i.e.
data flow from a web-service to a client, e.g. by
“men-in-the-middle” method, realized via any
available way.

 To analyze data flow and make a decision on its
content during the period defined by
technological and business requirements. This
problem needs effective fast algorithms and
heuristic approaches accompanied with elements
of AI technique.

Both problems can be solved as SDN controller
applications with proper functionality and performance.
Realization of such an approach allows resisting DDoS attacks
and anonymity in internet sessions.

Such a kind of solutions regarding content-analysis shows
up in firewall products of new generation and anti-bot systems

V. SDN AS A MECHANISM TO GUARD

When attacking computer systems with help of malware
the toughest problems are to get an access to protected
information and its processing. To create isolated domains of
storing and processing data is a solution to defend systems
against these attacks. For instance, modern OS process data in
an isolated domain such as the kernel of OS.

Nowadays techniques of data storage and virtualization
provide a number of means of distributed storing and
processing. Applying of SDN extends mentioned above
solution with an ability to decouple a way to define storing
and processing from storing and processing itself. Such a kind
of detachment opens a perspective to develop new
mechanisms to defend against malware attacks.

Let’s consider the essence of this idea in details.
Technically speaking SDN arranges a dynamically isolated
domain for any task to link nodes. If this domain contains no
built-in malware then an attacker needs to look over all
components for valuable data. If this dynamically isolated
domain contains a lot of components (irrespective they are
virtual or real) of storing and processing data and malware has
no access to SDN controller managing the domain then

malware has to perform an exhaustive search. Nowadays
malware can’t perform such a kind of search and it’s hardly
possible that malware could do it in any future perspective.

From another side, if a malware is already running in SDN
controller but it has not connected with malware of data plane,
then it also can’t arrange a dedicated, object-oriented search.

For example, we have to protect a text of a length L. We
can divide the text into sequential fragments of 512 bytes long,
what are about a hundred words in Russian. Such a long
fragments length can ensure a context search within bulk of
data, but there are few chances for a deep inspections and data
mining if the text is comparatively long.

Our suggestion is (i) to furnish every fragment with two
cryptographically protected marks; (ii) to store crypto keys for
these marks in control plane; (iii) to place fragments into
randomly chosen memory slices. The first mark contains
encrypted information about the address of previous fragment;
the second mark contains the address of next one. Thus we can
obfuscate all fragments and leave a possibility to look for
information via open parts of fragments at the same time.

For to retrieve obfuscated text as a whole a user has to get
through an authorization at SDN controller and only then to
place his request to obtain the text. In response a controller
can swiftly restore a full text as a linked list according to
requested fragment. From another hand malicious code or an
unauthorized user have to complete an exhaustive search
through whole memory storage with no guarantee to restore
original information.

As a result SDN can arrange storing information
irrespective of computer systems which actually keep data, i.e.
storing data system cannot effect on how and when to store
either it cannot gather up the thread of obfuscated text. Also
malicious code in control plane can’t help malicious code in
data plane to reduce an exhaustive search as long as they are
not connected with each other.

Thus we’ve got a solution to a long-standing problem to
build guaranteed secure system with unsecure, distrusted
components. Such a type of protection is a new direction in
information security.

VI. SDN AND CRYPTOGRAPHY

An enhancement of computing and intellectual power to
process traffic by means of control plane facilities increases an
efficiency of cryptographic security. This is grounded on two
ideas. The first idea is that a secure usage of cryptography
depends on the quality of isolating domain with cryptographic
functions running. As mentioned above such isolation can be
achieved by the instrumentality of SDN even in a case of
components with built-in malware. The second idea regards
with a need to carry out bulk computations at instantiating
cryptographic protection of high quality. Applying specialized
high performance technical means in control plane allows
meeting the requirement of using dissimilar crypto keys in
different data flows, generating these keys with usage of
compound protocols of key sharing and fault protecting crypto
systems.

70

VII. CONCLUSION

SDN initiates new perspectives in the area of information
security. The possibility to populate a control plane with high
performance intelligent facilities opens new directions in
managing data flows and developing adaptive algorithms to
protect computer systems.

REFERENCES

1. Martin Casado, Tal Garfinkel, Aditya Akella,
Michael J. Freedman Dan Boneh, Nick McKeown,
Scott Shenker. SANE: A Protection Architecture for
Enterprise Networks // 15-th Usenix Security
Symposium, Vancouver, Canada, August 2006.

2. Ruslan Smelyanski. Software Defined Networks//
«Open Systems», № 09, 2012 (in Russian)

3. Check Point extends the functionality of products.
http://www.securitylab.ru/blog/company/besecure/30
615.php (in Russian)

4. A. Grusho, Ed. Primenko, E. Timonina. Theoretical
Basis of Computer security, Academia, Moscow,
2009 (in Russian).

5. Grusho A.A., Grusho N.A., Timonina E.E.
Information security methods from attacks with the
help of covert channels and hardware-software agents
in distributed systems // RGGU Bulletin. Scientific
journal: “Information science. Information security.
Mathematics” Series, 2009. – 10. – pp. 33-45 (in
Russian).

6. Kaspersky DDoS Prevention.

http://www.kaspersky.ru/products/business/services/d
dos

7. Norton AntiBot.

http://en.wikipedia.org/wiki/Norton_AntiBot

8. Timonina, E.E. The analysis of threats of the covert
channels and methods of creation of guaranteed
protected distributed automated systems // D.Sc.
Dissertation, 2004 (in Russian).

71

Abstract—This paper presents a concept for
hierarchical distributed control of SDN networks.
The proposed architecture is based on a
heterogeneous control plane with a hierarchical
structure that offers a general framework for
building non-classical SDN deployments. This control
plane organizes a group of controllers nodes, into a
hierarchy, with each tier containing one or more
interconnected controllers. The hierarchical approach is
intended to improve scalability and increase service
flexibility by distributing functionality between
multiple controllers. A proof-of-concept
implementation using the Floodlight SDN controller
platform is described, and performance results
demonstrating basic feasibility are given.

Keywords—Software Defined Networking (SDN), Next
generation networks, control plane , distributed controller

I. INTRODUCTION

The architecture of the Software Defined Networking
(SDN) control plane has been a point of interest since its
beginnings in OpenFlow, with the reference design [1]
featuring a single physical controller. However, to manage
larger or more disparate networks, a single controller can
quickly become a point of failure, route inefficiency, and
processing bottleneck. The ideas on distributed
implementation of the control plane followed naturally in the
SDN community to tackle these problems. This is typically
achieved through the distribution of the controller across
multiple compute resources as clones sharing a synchronized
view of the network state. Figure 1 shows the organization of
such a logically centralized, distributed control plane.
Distributed control platforms, such as [2, 3, 4, 5, 6], often
follow this archetype to scale to larger networks and traffic
loads and/or to reduce flow setup latencies by reducing the
distance between any given switch and the closest available
controller. Most early efforts on the distributed control plane
architectures have gone towards a functionally homogeneous
layer of controllers. Every controller in such an architecture

performs the same set of tasks, although for different parts of
the network, or in different fail-safe conditions. A functional
distribution of the control plane tasks, in addition to the
topological distribution, is arguably a harder problem and the
subject of this paper.

Due to tighter delay bounds and rapidly changing network
conditions, the single vs. distributed control plane debate is
even more important for wireless networks. Efficiently
operating a large wireless network requires the adaptation of
numerous parameters (e.g., channel assignment, data
transmission rate, client association, and transmit power) to
network conditions. While the algorithms controlling some of
the parameters are run directly on the APs, others are run on
centralized controllers. Yet other functionalities such as policy
management, authentication, and security needs to be
implemented at the junction of the wired and wireless
networks in order to ensure the same set of rules are used
throughout the network. In such situations a single controller
or a homogeneous set of controllers with an identical set of
functionalities is clearly inefficient.

For this deployment scenario and several others that we
expand upon in the next section, a functionally distributed
control plane is a better fitting solution. In this paper we

propose a heterogeneous SDN control plane with multi-tier
hierarchical structure through which different control plane

Towards Distributed Hierarchical SDN Control
Plane

A. Koshibe, A. Baid and I. Seskar
WINLAB, Rutgers University

671 Rt. 1 South, North Brunswick, NJ, USA
{akoshibe,baid, seskar}@winlab.rutgers.edu

Figure 1: Distributed SDN Control Plane

72

functions can be distributed between separate physical
controllers. This architecture is lean and efficient in terms of
the overhead of distribution and transparent to the underlying
data plane.

II. HIERARCHICAL HETEROGENEOUS CONTROL PLANE

Current SDN control planes were not designed for network
deployments that do not uniformly centralize their control
logic. A network stack, run in one or more controllers as a set
of applications, typically assumes that it is the sole source of
network control in a deployment. Several situations break
down this assumption, including:

• Shared networks: Multiple administrative groups may
configure various aspects of a service-rich network.
Particularly, in active infrastructure sharing, multiple service
providers share network elements such as switching, routing,
and other telecommunications equipment, or, in case of
wireless, shared access to spectrum for unlicensed bands, and
individually provide support to their customer bases. Notably,
there is interest for these providers to allow their customers (or
controllers) to interact with one another to increase service
utilization. In these cases, each administrative group or service
provider may wish to maintain their own controllers, and in
the latter case, have them coordinate with the global controller
for the shared infrastructure.

• Heterogeneous networks: Modern networks are built with
a mixture of technologies with various properties and feature
sets that must coordinate seamlessly. For example, typical
LANs combine wired and wireless components, which
frequently require different traffic handling and host
admission schemes. In another vein, service providers with
adjacent infrastructures may wish to negotiate the handling of
each other’s customers, e.g. different charging policies for
roaming or negotiating traffic routing. Both cases involve
potentially disparate service stacks that interact as
collaborative peers.

• Large-scale global policies applying to multiple spheres
of influence: large internetworks, even when managed by a
single organization, will often be administered in pieces.
Additionally, these local administrative domains may also
implement their own local policies and services. This is seen
in campus area networks, in which host authentication may be
controlled by a set of global policies that span across multiple
(W)LANs administered on a per-department/facility basis.

In order to address these issues, we propose that a
heterogeneous control plane with a hierarchical structure
offers a general framework for building these non-classical
SDN deployments. This control plane organizes a group of
controllers, or nodes, into a hierarchy, with each tier
containing one or more possibly interconnected (peer)
controllers. The nodes of each tier behave as clients to the
nodes in the tier above, and servers to the nodes in the tiers
below. The client-server relationship stems from the notion of
a service process chain, in which network events are ferried
from low to high tiers. Events are processed incrementally at
each hop, implementing network functions as they are handed
off across the controllers. The nodes within the same tier host

services that serve the same function or share operational
scope; in this respect, a single tier of a heterogeneous control
plane is roughly analogous to the classic distributed control
plane. Figure 2 illustrates this with a simple network stack of
three tiers and three categories of services, A, B, and C, and
two peer links. The client and server relations are labeled with
respect to node B1’s perspective. We point out that the service
process chain corresponds to a network stack, and each service

category is its subcomponent; that is, the full set of
applications within a typical controller is dispersed across
hierarchically arranged controllers.

The ability to break network functions (service set) down
into modular components introduces flexibility in terms of
what functions are being used to handle a given event. The
event process chain enables the control plane to 1) host
functionalities from multiple network stacks without the need
to rely on assistive tools such as hypervisors [7], and 2) allow
services to share their functionalities with other interested
parties, including those of other service sets. For 1), event
process chains may exist side-by-side as higher tier services
invoked on disjoint sets of events. For 2), events may be
handled by process chains that incorporate nodes from
separate service sets that reside in a hierarchy organized to
merge the sets (i.e. different administrative domains, etc.). In
other words, 2) enables the coordination of event handling
between otherwise functionally disjoint control planes.

There are several challenges in the design of such
hierarchical control plane architecture including the fact that
the distribution of functionality between different control
plane elements has to be relatively transparent to data plane
devices.

III. RELATED WORK

Architectures in which varying controllers coexist on a
single network have been rarely addressed outside of the topic
of network virtualization. However, we acknowledge that the
design of this control plane is influenced by several prior
works.

Figure 2: A generic representation of a hierarchical, heterogeneous
SDN control plane.

73

FlowVisor [7] is a specialized controller that serves as a
virtualization layer between the data plane and multiple,
functionally different controllers by overwriting control
message contents to present a controlled portion of network
resources to each controller. Save for specifically configured
mirror slices with read-only access to other slices, controllers
behind a FlowVisor are largely unaware of one another.

Kandoo [8] is a hierarchical control plane that separates its
service set into two tiers. Although closest to proposed
architecture, Kandoo does not allow controllers within a tier to
communicate directly with one another, and limits usage of
the second tier to services requiring a global network view.

Onix [9] is capable of limited federated operation, in which
two Onix instances may share summarized views of the
networks that they have control over. This sharing of
information is contained to instances under the same authority,
and serves to allow the compact representation of massive data
planes within the Onix NIB.

IV. CONTROL PLANE IMPLEMENTATION

There are several implications to a hierarchical design. The
control plane must have a messaging scheme that member
nodes can use to pass events amongst themselves. The scheme
must also allow nodes to propagate service information that
would allow others to determine available event handlers and
the means to reach them. In addition, it is assumed that service
sets can be broken down into functional subsets according to
some policy.

We recognize the control plane to have three distinct layers:
• control channel handler : The control channel handler

interfaces the control channel, and is directly responsible for
sending and receiving network control packets and listening
for incoming connections from the data plane. We focus on
OpenFlow as a widely-supported control protocol.

• event dispatcher : The event dispatcher translates between
control channel messages and controller-internal events
meaningful within the controller and to its services, and serves
as an event dispatch/scheduling mechanism that passes events
to various interested services.

• applications : Applications implement the various services
that add functionality and usability to the controller. These
functions range from network stack functions such as topology
mapping and packet forwarding to interfaces such as RESTful
APIs. Applications may also provide specialized functions
such as synchronization elements of distributed controllers.
In the following, we assume that our control plane would be
given a dedicated control network physically separate from the
data plane. This allows us to avoid the bootstrapping issues
associated with in-band control. We also assume that state
distribution can be performed through synchronization
mechanisms well-explored by logically-centralized distributed
control planes. This allows us to focus on the components and
mechanisms that provide the features necessary for
implementing the heterogeneous hierarchical control plane.

A. Inter-controller (Control-plane-level) functions

Each node in the control plane is identified by three attributes:

1. A unique node identifier (UUID), a value assigned to
each node to serve as an address in the control plane

2. A service identifier (SID), a value assigned to the
services hosted at a node

3. Event subscriptions, the set of network events that a
service is capable of handling and that a server will
subscribe to a client for.

1) Controller Initialization and Discovery
The nodes participating in the control plane must be able to
find one another in order to form the hierarchy. Our approach
mirrors that of the OpenFlow control channel. Upon startup, a

server begins listening for client connections on a pre-
established port, with clients periodically attempting to
connect to them. For the purpose of simplicity, our
implementation of the client is supplied with a list of servers
to which it must attempt to connect to. The client attempts a
limited number of reconnects if its server is initially
unavailable. A successful connection attempt is followed by a
handshake, in which the server informs the client of its event
subscriptions. Peer links are bidirectional, containing two links
connecting both ends as clients of the other. Controllers may
make use of services similar to portmap or UPnP to facilitate
more sophisticated forms of discovery.
2) Service propagation
Each node must advertise the services that they provide, so
that others may subscribe to them. This information is
propagated in configuration messages that encode a
controller’s attributes and location within the hierarchy. For
the sake of simplicity, we implement a simple RIP-like
distance vector algorithm with split horizon [10] which uses
hop count as the distance metric. This allows recipients of
these messages to build maps of service locations within the
control plane in a structure similar to a route table.

B. Context preservation

Once the control plane enters the operating state, a node’s
ability to preserve the context of an event being handled
across the multiple hops in an event process chain becomes
important. In situations where client nodes rely on results
generated by nodes later in the process chain, each server in
the process chain must be able to identify the client that it had

Figure 3: A timing diagram showing the handling of a message
event across a two-tiered, two-service event process chain.

74

received the event from, so that it may return the message to
the correct client. We simply rely on the service map to route
the messages back down the process chain.

C. Event process chain execution

In the initialization of client-server connections, the client’s
local packet process chain is essentially configured by its
servers so as to incorporate, and properly execute, their
services. A client node’s service map contains mappings
between services and server event subscriptions. An
OpenFlow message received at a first-tier node is translated
into an event, which is then used to search its map for
matching entries. Matches return one or more SIDs that can be
used to determine the next node in the process chain, to which
the event should be dispatched. The current implementation
attempts to handle an event locally if no match is found. A
more sophisticated action may follow with a discovery process
for servers capable of handling the event. In addition to SIDs,
we define a set of actions that a client should take when it
finds a match:
• DENY: do not process the event further, returning a

DROP FlowMod to the sender switch if necessary.
• ALLOW: handle with local packet process chain,

bypassing other event subscriptions associated with the
event

• DIVERT: dispatch the event to the service and halt the
process chain until the service returns a response

• SPLIT: dispatch the event to the service, and continue
process chain execution

One or more of these directives are assigned by the server to
its event subscriptions. Given the example of the two-tiered
control plane in Figure 2, a PacketIn triggered by a new
device’s traffic will prompt the execution of a process chain
containing both forwarding (client) and authentication (server)
nodes. In this situation, authentication must first determine
whether or not the host is allowed on the network before its
traffic can be handled by the forwarding service. The
configuration messages sent by the authentication module

pairs message events, associated with new devices on the
network, with the DIVERT action, causing the forwarding
node to wait on the server to allow or deny the processing of
the host’s traffic. Figure 3 illustrates this flow of execution for
case of an unauthorized host. The event reaches the tier 1
node, where it matches against the subscriptions of the
authentication service, found to reside on the server with the
UUID of 0xa. The client blocks on the DIVERT directive,
waiting for the server response - in this case, a FlowMod to

drop traffic associated with the host. The result, returned via
the client node, is forwarded to the client’s peers as a rule to
apply throughout the network.

We develop the components of our controller as a series of
modules and services on the Floodlight [11] SDN platform.
Figure 4 shows the layered model of the architecture of our
modified version of Floodlight, with our additions shown in
green. Our implementation complies with the Floodlight API
and is fully compatible with the base platform, and can be
treated like any other Floodlight application.

V. PERFORMANCE AND FUNCTIONAL EVALUATION

This section presents some of the performance evaluations that
were done to test the functionality of distributed hierarchical,
heterogeneous control plane. We run our tests on the ORBIT
[12,13] network testbed. The nodes used for the evaluations
have 8GB of RAM and Core i7 CPUs. Each node has two
network interfaces, connected to dedicated VLANs that can be
used to separate control and data plane traffic. Each interface
connects to an aggregation switch with gigabit Ethernet links.
We consider several factors when evaluating the performance
of proposed distributed hierarchical control plane:

1. Number of switches. Control packets and channels are
tracked in terms of switches and client nodes. As this
value increases, a controller will have larger amounts
of transaction and context mappings to maintain if it
needs higher tiers to handle the events.

2. Number of hosts. Unique host traffic that generates
misses at the switch flow table trigger message events.
More hosts intuitively generate more events, as do
hosts communicating across multiple datapaths.

3. Number of control plane hops. Even with high-
throughput, low-latency links, a longer route to a
particular service will incur processing delays in the
form of network overhead (propagation, queueing,
kernel buffer etc).

4. Number of services. Larger numbers of services
(modules) handling a given event naturally incurs more
processing overhead.

5. Listener policy. Event traffic volume above tier 1 in the
control plane is directly related to listener
subscriptions; a listen-to-any policy will dispatch every
event from the data plane, whereas more stringent
policies will dispatch events less frequently. Listeners
may also request to divert process chains, in which case
the dispatcher must wait for the listener reply before
continuing to process an event.

A. Overhead Analysis

The most prominent feature of this control plane is its
hierarchical control network and we measure the effect of
control plane complexity on control packet processing times,
focusing on the impact of route hop count and service
subscriptions with DIVERT versus SPLIT directives.
Using a custom OpenFlow client, a stream of PacketIns is
injected into the control plane. The time between PacketIn
transmission and the reception of the corresponding PacketOut

Figure 4: A Hierarchical Controller with Floodlight.

75

were measured at tier 1 using Tcpdump, and at the client using
its logging functions. Two control plane topologies with three
controller configurations were tested.

For the first, a variable-length chain of controllers associated
with each other as tiers was configured so that only the highest
tier hosted the PacketOut service, and the rest escalated
PacketIns to the service. In the second, a two-tiered topology

with a variable numbers of servers in tier 2 was configured
with servers that requested Divert directives in one test, and
Split directives in another. For the second topology, each
server was assigned a different priority to fix the dispatch
order across multiple trials, with the last server in line hosting
the PacketOut service and the rest, echo services that echo
back a clone of a received PacketIn. For each of the three
controller cases, ten trials of 10,000 PacketIns each were
conducted for increasing tier height for the first topology, and
increasing fanout for the second. Figure 5 shows the CDFs for
the observed processing times of the three cases. The tests
subject the control plane to the worst-case scenario where the
higher tiers request escalation of every event.Discounting link
delays, each additional tier adds an average of 0.32 ms of
overhead. Similarly, each blocking and nonblocking server
adds approximately 0.46 and 0.11 ms, respectively. The first
two cases are similar, as the client must wait for the server to
reply before taking action, with the differences in value due to
each hop in the blocking server case handling the event with
its modules.

VI. CONCLUSION

In this paper, we have presented a concept for hierarchical
distributed control of SDN networks. The proposed
architecture has the potential to improve scalability and
increase service flexibility by distributing functionality
between multiple controllers organized in a hierarchy. A
proof-of-concept implementation was developed using a
Floodlight SDN controller platform, and the results
demonstrate feasibility for an intra-domain usage scenario.
Future work will focus on extensions to the control plane
necessary for interactions between SDN controllers across
multiple administrative domains.

REFERENCES

[1] OpenFlow Downloads - OpenFlow Switching Reference System.
http://www.openflow.org/wp/downloads/

[2] A. Tootoonchian and Y. Ganjali. HyperFlow: A Distributed Control
Plane for OpenFlow. in INM/WREN’10 Proceedings of the 2010
internet network management conference on Research on enterprise
networking, p. 3, Apr. 2010.

[3] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R.
Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix: A
Distributed Control Platform for Large-scale Production Networks. in
OSDI’10 Proceedings of the 9th USENIX conference on Operating
systems design and implementation, pp. 1-6, Oct. 2010.

[4] H. Shimonishi, S. Ishii, Y. Chiba, T. Koide, M. Takahashi, Y. Takamiya,
and L. Sun. Helios: Fully Distributed OpenFlow Controller Platform.
9th GENI Engineering Conference (GEC9) Demo, Nov. 2010.

[5] J. Stringer, Q. Fu, C. Lorier, R. Nelson, and C. Rothenberg. Cardigan:
Deploying a Distributed Routing Fabric. HotSDN’13 Proceedings of the
second workshop on Hot Topics in Software Defined Networking, Aug.
2013.

[6] U. Krishnaswamy, P. Berde, J. Hart, M. Kobayashi, P. Radoslavov, T.
Lindberg, R. Sverdlov, S. Zhang, W. Snow, and G. Parulkar. Open
Network Operating System: An Experimental Open-Source Distributed
SDN OS. http://www.slideshare.net/umeshkrishnaswamy/open-network-
operating-system

[7] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, N. McKeown, and G.
Parulkar. Flowvisor: A network virtualization layer. Tech. Rep.
OPENFLOW-TR-2009-01, OpenFlow Consortium, Oct. 2009.

[8] S. Yeganeh and Y. Ganjali. Kandoo: a framework for efficient and
scalable offloading of control applications. in HotSDN’12 Proceedings
of the first workshop on Hot topics in software defined networks, pp. 19-
24, Aug. 2012.

[9] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R.
Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix: A
Distributed Control Platform for Large-scale Production Networks. in
OSDI’10 Proceedings of the 9th USENIX conference on Operating
systems design and implementation, pp. 1-6, Oct. 2010.

[10] C. Kozierok. TCP/IP Guide - A Comprehensive, Illustrated Internet
Protocols Reference, Nostarch Press, Inc., San Francisco, Oct. 2005,
Chap. 23.

[11] Floodlight OpenFlow Controller - http://floodlight.openflowhub.org/
[12] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H.

Kremo, R. Siracusa, H. Liu, and M. Singh:Overview of the ORBIT Radio
Grid Testbed for Evaluation of Next-Generation Wireless Network
Protocols. Proceedings of the IEEE WCNC 2005, New Orleans, USA.

[13] ORBIT Testbed – http://www.orbit-lab.org

Figure 5: Processing time distributions for multiple tier, DIVERT,
and SPLIT subscriptions compared with baseline (1 node/1 tier)
controller.
.

76

Selforganizing Cloud Platform

V. Kostenko, А. Plakunov
Moscow State University

Faculty of Computational Mathematics and Cybernetics
 Moscow, Russia

kost@cs.msu.su, artacc@lvk.cs.msu.su

А. Nikolaev, V. Tabolin, R. Smeliansky, М. Shakhova
Applied Research Center For Computer Networks

Moscow, Russia
anikolaev@arccn.ru, vtabolin@arccn.ru, smel@cs.msu.su,

mshakhova@arccn.ru

Abstract— Selforganizing cloud platform (SOC) to deploy
virtual networks in DC is presented. The platform supports both
IaaS mode and PaaS mode. The paper describes Platform
architecture, virtual infrastructure description language, the
comparison of the platform with known ones.

Keywords—data center; virtualization; cloud computing;
OpenStack; NFV

I. INTRODUCTION

In this paper we consider a selforganizing cloud platform
(SOC) which allows one to deploy virtual networks to be used
for a data center both in Infrastructure-as-a-Service (IaaS)
mode and in Platform-as-a-service (PaaS) mode [1]. In order to
provide efficient work of a data center in these modes and
ensure guaranteed levels of service specified in a service level
agreement (SLA) the platform must conform the following
requirements:

1. Consistently distribute compute, storage and network
resources; consider these resources as manageable.
Scheduling should be performed consistently in terms
of SLA compliance;

2. Allow virtual resource migration in order to eliminate
segmentation of physical resources which occurs in
the process of data center operation. Administer local
network: for example, specify certain routing policy
for data flows in virtual networks;

3. Allow the users to define and use virtual network
functions (VNF) for purpose of virtual network
organization, including VNFs which are managed by
external providers as well as VNFs which are
managed by one cloud user for another one. Allow to
join networks managed by different users and
organizations and efficiently transfer data between
these networks.

Existing commercial cloud platforms [2-8] and OpenStack
platform [9] do not possess all these properties in the
aggregate. Also, none of the known algorithms [10-23] that
map requests to physical data center resources meet the
requirements 1-2.

In this paper we propose a cloud platform for a data center.
This platform meets all of the above listed requirements and is
compliant with and based on OpenStack.

 This research is supported by the Skolkovo Foundation Grant N 79, July,
2012 and the Ministry of education and science of the Russian
Federation, Unique ID RFMEFI60714X0070.

II. SOC PLATFORM ARCHITECTURE

SOC platform uses some components of OpenStack
(Nova, Cinder, Keystone, Rabbit Message Queue) in
combination with the original specialized components:
OpenFlow controller, orchestrator, unified scheduler for
consistent resource allocation, graphical user interface (GUI)
for network definition, an extensive “sensor” system for
physical resources monitoring and management, and modified
OpenStack component Neutron. SOC platform architecture is
given on Figure 1.

Orchestrator is the central element of the platform. It
controls all other components and coordinates their interaction.
Orchestrator generates databases of physical resources which
keep track of actual load of the resources, accepts requests for
new virtual networks creation, for modification and deletion of
existing virtual networks. As soon as all data about actual state
of the data center are collected orchestrator launches a
scheduler. Based on the results provided by the scheduler the
orchestrator performs control function by means of OpenStack
components API and OpenFlow controller API. Orchestrator
uses Rabbit Message Queue to interact with the OpenStack
components.

In our model Network, Compute and Storage nodes are
considered as roles. These roles are assigned to physical
servers in accordance with their hardware resources. It is
possible to assign several roles to one single physical server.

Network virtualization in the proposed platform has several
distinguished characteristics:

 Network owner can arbitrarily define virtual network
topology;

 It is possible to use VNF as a network element. In
particular, it is possible to provide VNF which is
designed and supported in one user network and is
used in another user network;

 A user can specify SLA for virtual commutation
elements, for example, virtual channel capacity, as
well as for virtual servers, virtual storage elements, or
VNF elements.

OpenFlow controller integrated into the SOC platform
plays an important role both in virtual network organization
and in sensor system by providing actual data about physical
connections load and distribution of this load between virtual
networks. Also controller provides centralized control of
channel aggregation [24] for servers connectivity which

77

ensures fault tolerance level not worse than for LACP protocol.
This leads to the decreasing of the network infrastructure
management costs.

Information about physical resources, virtual network
description and mapping of virtual resources on physical
resources is stored in SQL database. The database is used by

the orchestrator and the scheduler. In order to describe virtual
network we develop OVF-like data format language [25].
Virtual network description can be provided either by means of
graphical tool (GUI) or by special file in the format described
above.

FIGURE 1. CLOUD PLATFORM ARCHITECTURE

III. RESOURCE ALLOCATION SCHEDULER

Mathematical formalization of the resource mapping
problem and solution algorithms which are used in the
scheduler are described in details in [26,27,28]. Below we
provide summary of these works.

A model of physical resources of the data center is
represented by a graph

),(LKMPH ,

where Р is a set of compute nodes, М – set of data storages,
К – set of commutation elements of data center's network, L –
set of physical data links. We define vector functions on sets P,
M, K and L. Values of these functions are characteristics of
corresponding compute node, data storage, commutation
element or data link:

Pppfphphphph n),(),,,(121 ,

Mmmfmhmhmhmh n),(),,,(221 ,

Kkkfkhkhkhkh n),(),,,(321 ,

Lllflhlhlhlh n),(),,,(421 .

Detailed description of these characteristics is provided in
Chapter IV.

A request for virtual network creation is defined by a graph

),(ESWG ,

where W is set of virtual machines used by applications, S –
set of virtual data storages (storage elements), E – set of virtual

78

data links between virtual machines and storage elements of the
request. Commutation elements of the virtual network are
considered as virtual machines. We define vector functions on
sets W, S and E. Values of these functions are characteristics
(required SLA) of corresponding virtual machines, storage
elements, or virtual links:

Wwwfwgwgwgwg n),(),,,(121 ,

Sssfsgsgsgsg n),(),,,(221 ,

Eeefegegegeg n),(),,,(421 .

SLA characteristics of an element of request match
characteristics of corresponding physical resource (i. e. the
physical resource on which this element is assigned).

We define a request assignment as a mapping:

}},{,,{: LKEMSPWHGA .

Let us distinguish three types of relations between
characteristics of request and corresponding characteristics of
physical resource. Denote by xi a request characteristic number
i and yj as corresponding characteristic of physical resource j.
Then these constraints can be written as follows:

1. Impossibility of physical resource overload:

j
Ri

i yx
j

 ,

here Rj is set of requests, elements of which are assigned on
physical resource j, xi – corresponding characteristic of the
scheduled request. As an example of such resources, we can
consider number of cores, RAM, channel capacity.

 Correspondence between the type of requested
resource and the type of physical resource:

xi=yj.

In this case we consider qualitative characteristics, for
example type of operating system or type of CPU.

 Availability of requested characteristics of the
physical resource:

ji yх .

As an example, we can consider core frequency or cache
memory (i. e. technical characteristics).

As a characteristics of the requests and physical resources,
SLA criteria described in Chapter IV.

Let us call mapping

}},{,,{: LKEMSPWHGA

to be correct, if for all physical resources and their
characteristics corresponding condition from 1-3 is fulfilled.

Residual graph of the available resources is the graph Hres,
for which we redefine values of functions on the characteristics
to fulfill relation 1:

() () ()
p

res
w W

fph p fph p fwg w

 ,

() () ()
m

res
s S

fmh m fmh m fsg s

 ,

,

Here Wp – set of virtual machines scheduled for compute
node p, El – set of virtual links mapped to physical link l, Ek –
set of virtual links passing through commutation element k, Sm

– set of storage elements allocated on data storage m.

Let us define the input data for the request allocation
problem:

1. Set of requests Z = {Gi}. Set }{ iG is formed by the
orchestrator. This set can contain both new requests
and requests which are in progress and for which
migration is allowed. Also orchestrator defines the
time when scheduler starts.

2. Residual graph of resources available:

),(LKMPH res .

Required: schedule maximal number of requests from set Z
for which mapping A is correct.

In order to map requests to physical resources three
algorithms were developed: two algorithms are based on
combination of greedy strategies and limited search strategies
[26,27], and the third algorithm is based on the use of ant
colony schemes [28]. For algorithms based on combination of
greedy strategies and limited search strategies we set search
depth parameter for limited search procedure. This parameter
allows to regulate computational complexity and accuracy of
the algorithm. The first algorithm is the most effective when
data exchange network is a critical resource, second – when
compute capacity or size of data storage elements is a critical
resource [26]. Ant colony optimization algorithm provides best
solutions on the test examples for all classes of input data, but
has greater computational complexity [28].

The distinguished features of the problem formulated and
of algorithms proposed are:

1. Mapping of all types of request elements (compute
resources, data storages and network resources) on
physical resources occurs consistently in terms of
SLA compliance.

2. In case when set of SLA characteristics is changed
there is no need to modify algorithm.

In paper [26] it was shown that the algorithm used allows
to provide mapping of requests to physical resources results of
which substantially exceeds the results of algorithms provided
in OpenStack platform. In some cases this difference can be up
to 65%. In our experiments, we compared the results of the
algorithms of the OpenStack platform and of the developed
algorithm, which is used in the SOC platform. The most

79

considerable difference between the results of the algorithms is
shown for a set of queries consisting of virtual machines that
require more than 90-95% of server resources, and virtual
machines that require about 5-10% percent of server resources.

FIGURE 2. RESULTS OF THE ALGORITHMS

Figure 2 shows the dependence of the number of assigned
requests from data center physical resources load for the
algorithm of SOC platform and the algorithm of OpenStack
platform “selection of random query and physical resources
from a variety of appropriate resources”. Detailed description
of input data and results of experiments is presented in [26].
You can compare results of algorithms used in SOC platform
and in OpenStack platform on your own input data using
experimental system of investigation of the properties of
algorithms. In order to run algorithms and check their
applicability to your data center you need:

 Send a request indicating your name to email address
ev@arccn.ru;

 Install any VNC client;
 Read the manual.

Instrumental system allows one to describe data center
resources, create set of requests and see how these requests will
be distributed on physical resources by the algorithm selected.

IV. VIRTUAL NETWORKS DESCRIPTION LANGUAGE

There are many approaches to describe requirements to
cloud system configuration. OVF (Open Virtualization Format,
[25]) standard is an open universal standard for declarative
description of virtual machines. This standard does not depend
on virtualization system and hardware architecture. OVF
standard allows to store the most complete information about
virtual machine. This standard is extendable. First version of
OVF standard did not allow to describe such virtual network
elements as virtual data storages or virtual network switching
equipment. Starting from 2.0 version (January, 2013) OVF

standard supports network configuration specification and
network data storages description. OVF standard is actively
used by such companies as VmWare, Citrix, RedHat, Cisco,
and others.

TOSCA (Topology and Orchestration Specification for
Cloud Applications) [29] standard is designed to describe small
networks taking into account their functionality, roles of
network applications, means and characteristics of application
deployment. This standard is relatively new: first version of
TOSCA appeared in January, 2014. TOSCA standard is
developed by such companies as IBM, SAP, HP, Rackspace.
Templates of this standard are supported in OpenStack Heat
project. The aim of TOSCA is to standardize interaction
between cloud platforms and to provide cross-platform
compatibility for applications and services.

CIM (Common Information Model, [30]) standard is
designed in order to provide uniform data exchange between
network nodes of different types having different sets of
parameters. The aim of CIM standard is to describe control
information in a standard way. CIM maps different control
schemes, including SNMP management information bases
(MIBs), to their data structure. CIM can be considered as a data
dictionary used to manage systems and networks and to
document how their features should correlate. To some extent
CIM can be considered as an SNMP protocol extension. CIM
is the basis for many other DMTF (Distributed Management
Task Force) standards as well as for SMI-S (Storage
Management Initiative — Specification, [31]) standard, which
is designed to manage data storage systems.

 One more language which is designed for network
management, monitoring and modeling is Yang (RFC 6020)
[32], the add-on for NETCONF protocol (RFC 6241) [33].
NETCONF protocol provides mechanisms for placement,
management and removal of network devices configuration by
using RPC (Remote Procedure Call) mechanisms. NETCONF
uses XML for configuration provisioning and message
generation. NETCONF protocol is used over transport protocol
(e.g. SSH). NETCONF represents extended and improved
model of network resources management and monitoring. Yang
is a language of network infrastructure description which is
rather procedural than declarative. It describes not only
network nodes and their parameters, but also procedures of
network nodes management. Network description language
presented in this work realizes composite data types by means
of dictionaries and therefore in our case there is no need for
complex tools for new data types creation realized in Yang.

In order to manage resource allocation and provisioning,
Global Environment for Network Innovations (GENI) project
uses Resource Specification (RSpec) [34] standard. RSpec is a
language for resources querying (request) and resources
provisioning (manifest). Requests are provided as XML files of
predefined format. GENI project tools allow to combine
computational, network, sensor, and authorization schemes as
well as configurations of preinstalled software. Request
description language RSpec is represented as an XML Schema
and is essentially similar to the network description language
proposed in this work. At the same time, in GENI RSpec there
is no description of virtual services (virtual network functions).
Also, GENI data structure is not fully compliant with
OpenStack data model.

80

In our case the goal is to provide a network description
which is based on unified elements, such as virtual machine,
data storage, virtual network. Structure of these elements is
fully described in OpenStack data model to which we are
trying to fit as much as possible. Moreover, our virtual network
description language allows to describe such objects as virtual
network functions (VNF) [35], as well as to describe
interconnection between virtual networks and providing VNF
services from one virtual network to another. In order to solve
these problems we developed a domain specific language
(DSL) [36], which represents a declarative description of
virtual network. In order to describe the grammar of this
language we use Backus-Naur Form (BNF) [37]. BNF notation
provides simple tools to describe grammar constructs and does
not need to use large amount of syntax rules. BNF can be
interpreted using standard language interpreter generators
(lexers and parsers) [38], which are based on DSL grammar
definition provided in BNF notation.

The node of virtual network can be one of the following:
virtual machine, VNF, commutation element, data storage
element, network domain. Nodes are connected to each other
by virtual links.

Every node is described by a list of parameters and by a set
of SLA criteria specific for this node type. A user can select
certain values of SLA requirements from allowed range or use
default values which are predefined by the provider.

For virtual machine the following parameters are set:
unique name; identifier of the deployment image; network port
names; SLA criteria (number of virtual cores, frequency, core
type, RAM, number of mounted disks).

For VNF the following parameters are set: unique name,
identifier from a predefined set to describe deployment
scenario, port names. Scenarios are provided in form of XML
files. A scenario XML file contains description of SLA criteria
which are needed for network function deployment.

For data storage element the following parameters are set:
unique name, port names, SLA criteria (required storage size
and data storage type).

SLA parameters for commutation element are: unique
name, commutation element type (e.g. switch or router), port
names. For a router commutation element ip address and
subnet mask are defined.

Domain is a nested L2 subnet in the virtual network. For
domain the following parameters are set: unique name, number
of physical servers and data storage elements, network type,
names of external ports. If network type is bus then at any
moment of time only one connection between domain elements
(virtual machine, data storage element, external port) is
possible. If network type is switch then at any moment of time
it is possible to connect any domain element to any other
domain element. SLA criteria are equal for all virtual machines
and data storage elements of the domain and are set similarly to
appropriate virtual network nodes.

For virtual link unique name and SLA parameter (link
capacity) are set. Link name is defined by names of nodes and
ports which are connected by this link.

Also, for any element of the network the following
parameters are set: creation time, update time, deletion time.

For virtual network we specify desirable SLA level:

 guaranteed SLA for all network nodes and virtual
links – to meet SLA at any moment of time;

 non-guaranteed SLA for all network nodes and virtual
links – preferred by non-mandatory SLA criteria
which can be provided.

The language proposed allows to provide services by one
network to another and get services either from other networks
or from provider network in form of secure VNFs.

Our network description language allows one to set routing
policies for virtual networks. Routing policy for non-managed
virtual network is the list of descriptions of allowed and
forbidden flows in the network (for example, set of nodes
through which all routes of the flow should or should not pass).
If the type of a virtual network is set to be manageable then the
owner of the network manages routing policies himself in the
process of network operation.

V. CONCLUSION

SOC cloud platform considered in this paper allows to
deploy both manageable and non-manageable virtual networks
in the data center. Possibility of virtual resources migration,
consistent scheduling and management of computing
resources allows one to ensure high load of physical resources
and guaranteed SLA compliance for the network as a whole.
Request for virtual network creation can be defined either by
means of the network description language or by means of
GUI. The SOC cloud platform is consistent with OpenStack.

Especially one should note that this platform is neither pure
PaaS nor IaaS or SaaS. We intentionally escape from outdated
“anatomical” approach to cloud design philosophy when,
according to “purity of concept”, user was limited in obtaining
particular services and in abilities to deploy and use complex
functional blocks in virtual networks.

REFERENCES

[1] Amies A, Sluiman H., Tong Q.G., et al, Developing and Hosting
Applications on the Cloud // IBM Press, 2012.

[2] Venkata Josyula, Malcolm Orr, Greg Page, Cloud Computing:
Automating the Virtualized Data Center // Cisco Press, 2012

[3] Pietro Iannucci, Manav Gupta, IBM SmartCloud: Building a Cloud
Enabled Data Center // IBM Redbooks, 2013

[4] John Arrasjid, Vmware Vcloud Architecture Toolkit (Vcat) // Vmware
Press, Pearson Education, Limited, 2013

[5] David Ziembicki, Microsoft System Center: Integrated Cloud Platform //
Microsoft Press, 2013

[6] Harding Ozihel, HP Cloud Service Automation Software // Frac Press,
2012

[7] Hemant Kumar Mehta, Getting Started with Oracle Public Cloud //
Packt Publishing Ltd, 2013

[8] Borko Furht, Armando Escalante, Handbook of Cloud // Springer
Science & Business Media, 2010

[9] Pepple K. Deploying OpenStack // O'Reilly, 2011.

[10] Urgaonkar B., Rosenberg A.L., Shenoy P. Application placement on a
cluster of servers // Intern. J. of Foundations of Computer Science, 2007,
Т. 18, №05, P.1023-1041.

81

[11] Bein D., Bein W., Venigella S. Cloud Storage and Online Bin Packing //
Proc. of the 5th Intern. Symp. on Intelligent Distributed Computing,
2011, Delft: IDC, P. 63-68.

[12] Nagendram S., Lakshmi J.V., Rao D.V., et al Efficient Resource
Scheduling in Data Centers using MRIS // Indian J. of Computer Science
and Engineering, 2011, V. 2. Issue 5, P. 764-769.

[13] Arzuaga E., Kaeli D.R. Quantifying load imbalance on virtualized
enterprise servers // Proc. of the first joint WOSP/SIPEW international
conference on Performance engineering, 2010, San Josa, CA: ACM,
P.235-242.

[14] Mishra M., Sahoo A. On theory of VM placement: Anomalies in existing
methodologies and their mitigation using a novel vector based
approach // Cloud Computing (CLOUD), IEEE International
Conference, 2011, Washington: IEEE Press, P.275-282.

[15] Botero J.F., Hesselbach X., Fischer A., et al Optimal mapping of virtual
networks with hidden hops // Telecommunication Systems, 2012. V.51,
№4, P.273-282.

[16] Yu M., Yi Y., Rexford J., et al Rethinking virtual network embedding:
substrate support for path splitting and migration // ACM SIGCOMM
Computer Communication Review, 2008, V.38, №2, P.17-29.

[17] Lischka J., Karl H. A virtual network mapping algorithm based on
subgraph isomorphism detection // Proc. of the 1st ACM workshop on
Virtualized infrastructure systems and architectures, 2009, Barcelona:
ACM, P.81-88.

[18] Zhu Y., Ammar M.H. Algorithms for Assigning Substrate Network
Resources to Virtual Network Components // 25th Intern. Conference on
Computer Communications, 2006, Barcelona: INFOCOM, P.1-12.

[19] Chowdhury N.M.M.K., Rahman M.R., Boutaba R. Virtual network
embedding with coordinated node and link mapping // 28th Intern.
Conference on Computer Communications, 2009, Barcelona:
INFOCOM, P.783-791.

[20] Cheng X., Sen S., Zhongbao Z., et al Virtual network embedding
through topology-aware node ranking // ACM SIGCOMM Computer
Communication Review, 2011, V.41, №2, P.38-47.

[21] Korupolu M., Singh A., Bamba B. Coupled placement in modern data
centers // IEEE Intern. Symposium on Parallel & Distributed Processing,
2009, New York: IPDPS, P.1-12.

[22] Singh A., Korupolu M., Mohapatra D. Server-storage virtualization:
integration and load balancing in data centers // Proc. of the 2008
ACM/IEEE conference on Supercomputing, 2008, Austin: IEEE Press,
P.1-12.

[23] Jiang J.W., Tian L., Sangtae H., et al Joint VM placement and routing
for data center traffic engineering // 31th Intern. Conference on
Computer Communications, 2012, Orlando: INFOCOM, P.2876-2880.

[24] Sidnie Feit, Local Area High Speed Networks // Sams Publishing, 2000.

[25] Open Virtualization Format Specification. DMTF Standard.
(http://www.dmtf.org/sites/default/files/standards/documents/DSP0243_
2.1.0.pdf).

[26] Vdovin P.M., Zotov I.A., Kostenko V.A., Plakunov A.V., Smelyansky
R.L. Comparing Various Approaches to Resource Allocating in Data
Centers // J. of Computer and Systems Sciences Intern. 2014.V. 53. № 5.

[27] Vdovin P.M., Kostenko V.A. Algorithm for Resource Allocation in Data

Centers with Independent Schedulers for Different Types of Resources /
/ J. of Computer and Systems Sciences Intern. 2014. V. 53. № 6.

[28] A.V. Plakunov, V.A. Kostenko. Data Center Resource Mapping

Algorithm Based on the Ant Colony Optimization// Proc. of the 2014
International Science and Technology Conference «(MoNeTec)»

[29] Topology and Orchestration Specification for Cloud Applications

(http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html)

[30] Common Information Model. DMTF Standard.
(http://www.dmtf.org/standards/cim)

[31] ISO/IEC 24775:2011. Information technology -- Storage management.
(http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm
?csnumber=55234)

[32] YANG - A Data Modeling Language for the Network Configuration
Protocol (NETCONF)(https://datatracker.ietf.org/doc/rfc6020/)

[33] Network Configuration Protocol (NETCONF)
(http://datatracker.ietf.org/doc/rfc6241/)

[34] Resource Specification (RSpec) Documents in GENI
(http://groups.geni.net/geni/wiki/GeniRspec)

[35] Network Functions Visualization. ETSI Technology Specification.
(http://www.etsi.org/technologies-clusters/technologies/nfv)

[36] Martin Fowler. Domain-Specific Languages // Pearson Education, 2010.

[37] Kent D. Lee. Programming Languages: An Active Learning Approach //
Springer Science & Business Media, 2008.

[38] John R. Levine, Tony Mason, Doug Brown. Lex & Yacc // "O'Reilly
Media, Inc.", 1992

82

http://www.etsi.org/technologies-clusters/technologies/nfv
http://groups.geni.net/geni/wiki/GeniRspec
http://datatracker.ietf.org/doc/rfc6241/
https://datatracker.ietf.org/doc/rfc6020/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=55234
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=55234
http://www.dmtf.org/standards/cim
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://www.dmtf.org/sites/default/files/standards/documents/DSP0243_2.1.0.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0243_2.1.0.pdf

SDI Defense Against DDoS Attacks Based on IP
Fast Hopping Method

V. Krylov, K. Kravtsov, E. Sokolova, D. Lyakhmanov
Nizhny Novgorod State Technical University n.a. R.E. Alekseev,

Nizhny Novgorod, 603950, Russia
vkrylov@heterarchica.com, kirill@kravtsov.biz, essokolowa@gmail.com, dm.virger@gmail.com

Abstract—We introduce IP Fast Hopping, easily deployable
network-layer software solution against DDoS attacks. Our
approach enhances server’s SDN environment by providing an
easy way for SDN controllers to protect servers against DDoS
attacks and traffic interception by hiding of these servers behind
a set of physical network switches.

Keywords— SDI security, DDoS attacks, traffic interception,
switcher, IP hopping, IP Fast Hopping

I. INTRODUCTION

A Denial-of-Service attack is characterized by an explicit
attempt to prevent the legitimate use of a service. A
Distributed Denial-of-Service attack deploys multiple
attacking entities to attain this goal [1]. In such attacks, a
single bot or a group of bots are sending a large number of
packets that lead to exhausting of victim’s bandwidth capacity
or software processing capabilities.

According to [1], methods of DDoS attacks can be divided
by the two groups: semantic attacks and brute-force (flood)
attacks. A semantic attack exploits a specific feature or
implementation bug of some protocol or application installed
at the victim in order to consume excess amounts of its
resources. For example, an attacker can send a specific
sequence of packets initiating CPU time consuming
procedures on the server. In case of a large number of such
requests, the victim is unable to handle requests from
legitimate clients. Undesirable impact from such attack can be
minimized by protocol or software modifying and by applying
of special filter mechanisms. In our paper, we introduce a
DDoS defense mechanism that aims to filter all TCP traffic
issued by unauthorized clients on network level. Therefore
unauthorized malefactor is unable to perform semantic attacks
based on TCP protocol on the victim server.

A brute-force attack is an attack aimed to prevent
legitimate service using by exhausting of bandwidth. E.g. it is
a large number of short requests to the victim which initiates
heavy responses sent by the victim. Together these streams
overfills bandwidth of the victim server or it’s ISP. In contrast
to semantic attacks, brute-force attacks abuses legal services
so installing of filtering mechanisms for such requests will
impact traffic from legitimate client too. During brute-force
DDoS attacks a number of malefactor terminals (botnet) and
legitimate users are connected to the victim at the same time
(see Fig. 1). Each bot sends a big number of requests to the
victim which creates heavy malicious traffic targeted at the
server. Since the increase in the flow of requests is created
here increase the number of terminals, then whichever level of
server performance has not been achieved starting from a
certain number of bots, they create the flow of requests
exceeds the permissible level for any server.

Size and frequency of DDoS attack is continuing to grow
despite on the fact that a large number of defense mechanisms
have been proposed. According to [2] application layer attacks
rose approximately 42% in 2013 from 2012, infrastructure
layer attacks increased approximately 30% at the same period.

The infrastructure layer DDoS attacks are still most
popular: around 77% of DDoS attacks in Q4 2013 were
infrastructure layer attacks. The average size of attacks
increased by 19.5% from Q1 2012 to Q1 2013 (up to 1.77
GB/s) [3]. So, developing new DDoS prevention mechanisms
is still a topical issue.

Each new DDoS defense method should satisfy the
following main principles:

 Real world applicability. Now a number of different
approaches have been suggested in literature which
require a significant changes of the existing network
architecture of ISPs or entire Internet architecture. But
the main problem here that mostly DDoS attacks
threaten organizations which provide services to end
users [4], and so this problem is not very vital for
transit ISPs because they actually suffer very little
from such attacks. Thus, priority will be given to such
systems, which filters malicious traffic without
changing of global network architecture, into server’s
or edge ISP’s networks.

Legitimate client

The Internet

DNS server

...

Botnet

Internet‐service
(victim)

Bot #1 Bot #2 Bot #M

Fig. 1. Schema of brute-force DDoS attack.

 The solution must be designed to prevent misuse. So,
it must be impossible to exploit the method to increase
impact issues by an attack or to filter legitimate traffic.

83

Taking into account these principles, our work suggest
DDoS prevention mechanism as software solution which does
not require additional hardware equipment. Due to this fact,
described approach can be implemented as part of Software
Defined Infrastructure of a server.

II. RELATED WORK

The rise of DDoS attack frequency in recent years has
resulted in many proposed defense approaches from the
community. For example, patent [5] suggests solution on
application level. According to the article, the server sends a
special response on first connection attempt from a client. The
client uses this response to identify new URL address, after
that the client creates new requests and sends this new
requests to this new URL. After receiving this second request,
the server validates the new URL based on sent response. If
the value does not exceed preset load threshold, the packet
will be prioritized and processed by the server. Thus the
solution is based on applying of special filter on server side;
this filter controls prioritizing of client’s requests depending
on load on the server at the moment of receiving of the first
request from the client.

Other high level approach was suggested under [6]. This
method introduced special server responsible for creating and
updating of cryptographically secured keys. Each client can
access to the service only after successful legitimacy
verification on this special server. Thus, client should be
successfully authorized on the special server to get a secure
key which should be used for processing of a special scenario.
The aim of this scenario is identifying client’s legitimacy.
These approaches purpose defense methods on application
layer and does not impact IP packets exchange. So, a
malefactor can perform brute force attack on the server.

Also, the research community suggested a wide scope of
different more low level approaches. For example, [7]
purposes dividing of data stream transmitted between server
and client into two consecutive segments on TCP level. This
work suggested comparing of keys of two consecutive
segments to detect possible segments from not legitimate
source. In case of detection of such segments, data receiving
will be blocked to prevent possible impact from attack.

Paper [8] introduces DDoS defense mechanism based on
dynamic change of server’s IP address. Server’s IP address is
changing according to pseudo-random law which is known
only for authorized clients. At the first sight the work [8]
purposes a similar DDoS prevention mechanism (dynamic
changing of IP address), but this contains some significant
differences. Among others, are:

 IP address of the victim is changing only during active
DDoS attack on the server

 The new IP address is assigned for all client sessions
simultaneously on a relatively long time (suggested
period is around 5 minutes)

 Accurate time synchronization is required for
calculation of each next IP address since external
timestamp is using.

III. IP FAST HOPPING METHOD

In our paper, we introduce a DDoS prevention mechanism
based on protocol level defense methods which was suggested
under patent [9]. The main goal of this technique is
counteraction to exhausting of server’s resources initiated by
attackers and prevention of legitimate traffic filtering. To
achieve these aims, the method is using real-time changing of
server’s IP address according to a schedule which is available
only for authorized clients. Attackers can’t get access to this
schedule, so they cannot send requests to the correct IP
address. Due to this effect, bots are unable to create enough
high load on the server to prevent normal system behavior.

In our work, we suggest to call this method as IP Fast
Hopping.

The method suggested in this paper is similar to radio
systems with frequency hopping. In such systems, receiver
and transmitter are switching from one frequency to other
frequency synchronously during an ongoing data transmission
session. A malefactor’s transmitter, which is going to
introduce a noise into such session, has not an actual schedule
of frequency hopping; therefore such attacker cannot create a
noticeable harm for the legitimate transmitter defended by
frequency hopping mechanism.

In our case, frequency can be treated like IP address. So,
the legitimate client must know schedule of server’s IP
address changing. At the same time, the schedule should be
unavailable for non-legitimate clients.

The method of IP masquerading for received packets is
utilized in Network Address Translation technology. In
contrast to the technique suggested in this paper, such IP
masquerading is permanent during the entire session, i.e.
mapping of the internal constant address to a temporary
external address is not changing during a session [10]. This
approach provides a way to share limited external network
resources between a large number of devices. In our paper, we
propose to make such mapping dynamic.

According to DDoS prevention mechanism based on IP
hopping approach, DNS entries are equal to IP address of the
authorization server instead of IP address of the protected
server. To access the protected server, each client must be
tested on legitimacy on this authorization server.
Authorization process can cover validation of user’s
login/password, user’s subscription on a service and so on. In
case of successful client’s authorization, the client is
redirecting to special server, IP Hopper Manager which can be
a part of SDN controller, instead of to the protected server.
This server is controller of enhanced secured sessions. In this
paper, enhanced secured session is a communication session
between client and server which is protected by IP Fast
Hopping method. The legitimate client must establish secured
connection to this controller. The IP Hopper Manager will use
this connection to transmit a pool of IP addresses and unique
identifier of the session to the client’s terminal. The IP Hopper
Manager sends the same information to a set of edge switches
randomly located in the Internet. These switches must support
IP Fast Hopping method and the server must be signed on this
service. In this paper, the edge switcher is high performance

84

switcher which is edge relatively to the suggested protection
mechanism, because in the network sector between this
switcher and the protected server the data stream has not any
difference in comparison with the case when IP Fast Hopping
was not deployed. The IP pool is unordered and each IP
address must be related to this switches set. Also, this pool
should not contain the real server’s IP and the “initial” IP. The
initial IP is public virtual address of the protected server. All
client’s applications use the initial IP address instead of real IP
address of the server.

After such handshake the client starts communication
session with the server. During communication session
between the client and the protected server, IP address of the
server is hopping between addresses from this pool in real-
time. The client’s terminal is changing initial IP address in the
destination address field of each outgoing packet on an
address from the pool of IP addresses according to a special
hash function. This hash function is mapping timestamps field
of TCP header [11] and unique identifier of the session to an
entry of the IP pool. This UID can be obtained for the private
key of a certificate installed on the client’s equipment or can
be received from IP Hopper Manager as was mentioned
above. After such replacement of the initial address to a virtual
address from the IP pool, the packet is transmitted over the
Internet to one of edge switches according to common
switching protocols.

When the edge switcher received the packet from the
client, the switcher calculates the same pseudo-random
function with the same arguments as was done on the client
side. If the result of this calculation is the same to the
destination address field of IP header, the packet is forwarded
to the real IP address of the server as legitimate packet.
Otherwise, this packet will be dropped as malicious packet.

The same procedures (but in reverse mode) will be applied
for each server’s responses to the client. After receiving of
such packets, client’s terminal changes server’s virtual IP into
source field on initial IP address, after that the packet can be
processed by client’s application by a common way.

As the result, from the point of view of an external
observer of the client-server communication session, the IP
address of the server is changing regularly to a random
address with each increment of timestamps field into TCP
header of the packet (usually every millisecond).

Prediction of destination IP of the next packet is very
difficult for an external observer due to the fact that
destination IP is changing according to pseudo-random
function and this observer has not information about
parameters of this function (UID or real server’s IP address).

If the IP pool is not large enough, a botnet can start an
attack on each IP address using masquerading of malicious
traffic as legitimate data stream by IP spoofing technique [12].
In this case, edge routers redirects part of hateful traffic
together with legal traffic to the protected server. In this paper,
we suggest the following options to mitigate such risks:

1. The IP pool which is used for IP Fast Hopping should be
large enough to make such excessive attack very resource
consuming and non-efficient for possible attackers.

Obviously, the method will be more efficient in IPv6
systems. In this case, IP pool can contain a thousands of
addresses related to a number of different routers in the
Internet.

2. IP providers should apply IP spoofing filtering
mechanisms, e.g. [13]

The described particular qualities of introduced DDoS
protection mechanism allow to use this method not only for
DDoS prevention but also for defense of communication
session between server and client. In this paper, all TCP
packets in each client-server communication session
transmitted via network according to IP Fast Hopping rules
without depending on existing of active attack on the server.
This fact causes the following effect: for an external observer
close to the client, the communication session between the
client and the Internet service does not look like packet stream
between terminal of the client and a server on which this
Internet server is hosted. This session is visible for an external
observer as different communication sessions between the
client and a large scope of different servers in the Internet and
data stream is randomly mixed between these streams. From
an external observer point of view, interpretation of these data
stream into one logical data stream are difficult process. Also,
due to the fact that one pool of virtual IP addresses is shared
between different Internet services at the same time, such
external observer close to the client is unable to identify server
which established communication session. So, IP Fast
Hopping could be used in cases when clients want to hide
content of data stream and destination of this stream.

IV. SYSTEM ARCHITECTURE

Our paper introduces DDoS protection mechanism aims to
prevent access to the server from a botnet by dynamic
changing of IP address of the server. Such system can have a
scope of different implementations, but our work takes into
account the following requirement: the suggested approach
should be easy deployable in real world conditions and should
not require a significant changes of the existing network
architecture or network equipment. Easy deployability means
that switching to the suggested defense method does not
require a considerable preparation or workflow changes for an
Internet server or its clients.

To achieve these goals, our work uses only existing
commonly used technologies and protocols and also the
logical core of the system is deployable into external (for the
server and its clients) networks (e.g. into ISP networks).

We can say that our work is a new point of view on using
of existing abilities of TCP/IP protocols. Our paper introduced
re-use of already used technologies for DDoS attacks
prevention. An example of such alternative utilization, the
timestamps field of TCP packet header, are suggested to be
used not only to identify the correct packets order [11], but at
the same time this field can be used to identify the correct
destination address of the packet as was described above.

85

Legitimate client

The Internet

Authorization serverDNS server

ISP router #1

ISP router #N

ISP
or several separate ISPs

...

IP Hopper Manager

...

Botnet

Internet‐service
(victim)

Bot #1 Bot #2 Bot #M

 Fig. 2. IP Fast Hopping architecture.

Also, our work introduced distributed DDoS defense
mechanism: an Internet server is being hidden behind a large
pool of virtual IP addresses which belong to a big number of
routers in different sectors of the Internet. Since this IP
address pool is public, botnets can initiate DDoS attacks on
one or several of these IP addresses. But the pool is divided
into groups of addresses which belong to various routers in
various Internet sectors. So the stream of malicious packets
initiated by a botnet is divided into several sub-streams
directed to several Internet sectors by commonly used
switching protocols. And, according to our work, this stream
will be filtered into this different networks. This approach
defends the victim server and also our method decreases load
on network infrastructure of victim and it’s ISP during active
DDoS attack.

In case of deploying of the introduced defense mechanism,
the original client-server architecture (see Fig. 1) contains

some new blocks (see updated schema on Fig. 2). The
suggested architecture has the following difference:

1. As was mentioned above, the DNS server contains link to
IP address of Authorization server instead of IP address of
Internet-service

2. Introduced Authorization server which validates
legitimation of the client. If client successfully authorized
and the client’s terminal has a special SSL certificate and
supports IP Fast Hopping algorithm (i.e. installed special
software – IP Hopper Core), Authorization server initiates
handshake between the client’s IP Hopper Core and IP
Hopper Manager

3. IP Hopper Core is special system utility installed on
client’s terminal and ISP routers #1 - #N (entire IP pool
belongs to these routers). This utility is performing
establishing of enhanced secured connection and real-time
changing of initial IP address of the Internet-service on
one address from IP pool according to rules of IP Fast
Hopping.

4. IP Hopper Manager is a server which is responsible for
controlling the enhanced secure connections between
Internet-services and clients. Can be implemented as part
of SDN controller.

Time chart of introduced defense mechanism can be found
on Fig. 3.

V. IMPLEMENTATION

As was noted above, one of requirements for our work is
real world deployability. Therefore, we implement IP Fast
Hopping mechanism as kernel module of OS GNU/Linux. In
this case, installing this module on routers based on
GNU/Linux is enough to deploy the suggested system. In our
work we build such routers based on Debian OS.

Client
DNS
server

Authorization
server

Router #k:
IP Hopper Core

IP Hopper
Manager

Internet‐
server

DNS lookup

IP address of Authorization server

Connection establishing

Client’s authorization

IP address of IP Hopper Manager

Client’s IP
Hopper Core

Request on establishing of enhanced secured connection

IP pool, session UID

Initial IP address Of Internet‐server (IP0)

IP0 Destination IP address = f(timestamp, ID)
Destination IP = Server’s IP

Source IP = Server’s IP
Source IP address = f(timestamp, ID)IP0

IP0 Destination IP address = f(timestamp, ID)
Destination IP = Server’s IP

Source IP = Server’s IP
Source IP address = f(timestamp, ID)

IP0

Router #m:
IP Hopper Core

Connection established

Request on switching to enhanced secured session

Fig. 3. Time Chart of IP Fast Hopping

86

Linux kernel contains built-in firewall Netfilter [14],
which is responsible on packet filtering and forwarding
according to predefined rules by iptables utility. Netfilter
architecture is scope of hooks of ordered rules. Netfilter
performs a predefined action with a packet, which is passed to
a hook, according to the corresponding rule.

Netfilter supports 5 hooks: PREROUTING, INPUT,
FORWARD, OUTPUT, POSTROUTING. When the packet
comes to the system, the packet is processed by
PREROUTING hook. If this packet is addressed to a local
process, it is passed to INPUT hook, otherwise it is passed to
FORWARD. All packets sent by local processes are processed
by OUTPUT hook. The final processing of the packet
outgoing from the system (forwarded under FORWARD hook
or issued by a local process) is performing by
POSTROUTING hook.

In our work, Netfilter contains new module which is
responsible for changing of IP address into destination field of
outgoing packets and into source field of ingoing packets. This
module is calculating the new IP address according to IP Fast
Hopping rules (by timestamp field and session UID). During
handshake, IP Hopper Manager adds new set of rules into
POSTROUTING hook on client’s terminal and into
PREROUTING each edge switcher. This rule activates the
kernel module which implements the following algorithm:

 On the client side this module calculates hash-function
using timestamps field and session UID for each
outgoing packet addressed to the initial IP address.
After that the module uses this result as index of
correct address into IP pool which should be put into
destination field of the packet. For each ingoing
packet from the same communication session, the
module performs the same actions for source field:
checks the current value of the field (by calculation of
the same hash-function) and changes it on the initial
address.

 On switches side this module calculates hash-function
using timestamps field and session UID for each
ingoing packet addressed to IP addresses from IP
pool. If the current destination address corresponds to
the timestamps field and session UID, the real IP
address of the server will be placed into the
destination field. Otherwise, the packet will be
dropped. For all ingoing packets issued by the server,
the module will replace source field by one of virtual
addresses according to current value of hash-function.

VI. CONCLUSIONS

We presented IP Fast Hopping, a new approach that can
prevent exhausting of server’s resources during brute-force
DDoS attacks and can be used to hide content and destination
of client’s communication session. This method hides the real
IP address of the server behind a big number of “virtual” IP
addresses. The mapping of the real IP address on one of
“virtual” is unique for each communication session and
changes dynamically every millisecond. The introduced
approach is distributed: it divides the traffic from legitimate
users and botnets into a number of sub-streams. This leads to a

decrease of load on network infrastructure during active DDoS
attack. The method is easily deployable and can filter even the
biggest malicious streams.

This work was supported by Ministry of Education of
Russian Federation under government contract
№14.574.21.0034 from 06/17/2014.

REFERENCES

[1] J. Mirkovic and P. Reiher, "A taxonomy of DDoS attack
and DDoS defense mechanisms," ACM SIGCOMM
Computer Communication Review, no. Volume 34 Issue
2, pp. 39 - 53, 2004.

[2] Prolexic Technologies, Inc, "Prolexic Quarterly Global
DDoS Attack Report," Q4 4013.

[3] S. M. Kerner, "DDoS Attacks: Growing, but How
Much?," 26 April 2013.
http://www.esecurityplanet.com/network-security/ddos-
attacks-growing-but-how-much.html.

[4] NSFOCUS, Inc., "NSFOCUS Mid-Year DDoS Threat
Report," 2013.

[5] W.-C. Feng and E. Kaiser, "Systems and methods for
protecting against denial of service attacks". USA
Patent 20100031315 A1, 2010.

[6] Arun K. Iyengar, Mudhakar Srivatsa and Jian Yin,
"Protecting against denial of service attacks using trust,
quality of service, personalization, and hide port
messages". USA Patent US20100235632 A1, 2010.

[7] D. R. Marquardt, P. A. Paranjape and P. S. Patil,
"Securing a communication protocol against attacks".
USA Patent 20110283367 A1, 13 May 2011.

[8] P. Mittal, D. Kim, Y.-C. Hu and M. Caesar, "Mirage:
Towards Deployable DDoS Defense for Web
Applications," arXiv, 2012.

[9] V. V. Krylov and D. M. Ponomarev, "Method of
interaction of terminal client device with server over
Internet with high level of security from DDoS attack
and system for realising said method". Russia Patent
2496136C1, 14 May 2012.

[10] E. S. Guha, K. Biswas, B. Ford, S. Sivakumar and P.
Srisuresh, "RFC 5382 NAT Behavioral Requirements
for TCP," 2008. http://www.ietf.org/rfc/rfc5382.txt.

[11] V. Jacobson, R. Braden and D. Borman, "RFC 1323
TCP Extensions for High Performance," 1992.
http://www.ietf.org/rfc/rfc1323.txt.

[12] A. Farha, "IP Spoofing,"
http://www.cisco.com/web/about/ac123/ac147/archived
_issues/ipj_10-4/104_ip-spoofing.html.

[13] P. Ferguson and D. Senie, "RFC 2827 Network Ingress
Filtering: Defeating Denial of Service Attacks which
employ IP Source Address Spoofing," 2000.
http://www.ietf.org/rfc/rfc2827.txt.

[14] "netfilter/iptables project," http://www.netfilter.org/.

87

Categories and Subject Descriptors
[Sofware Defined Networking Exchanges (SDX)]: Software
Defined Networking (SDN), Software Defined Infrastructure
(SDI) and Highly Distributed Environments
General Terms
Design, Experimentation,Theory,Verification.

Software-Defined-Networking (SDN) has rapidly changed the
how networks are designed, implemented, and operated.
Traditionally, communication services and their underlying
support infrastructure have been designed and deployed in
anticipation of their remaining fairly static for long periods of
production. However, increasingly, this model has been made
obsolete by continually changing demands at all levels.

Consequently, a new architectural approach is required to enable
more dynamic services and infrastructure. To date much progress
has been made in this area by using programmable networking
based on SDN/OpenFlow and other virtualization techniques.
This approach has enabled significantly higher levels of
abstraction for network services, control and management
functions, and across foundation resource technologies. These
approaches are allowing network designers to create a much wider
range of programmable services and capabilities than can be
provided with traditional networks. Consequently, they are
providing for a) many more dynamic provisioning options,
including real time provisioning b) faster implementation of new
and enhanced services c) enabling applications, edge processes
and even individuals to directly control core resources; e)
substantially improved options for creating customizable networks
e) enhanced operational efficiency and effectiveness and f) many
more options for traffic engineering.
These capabilities have been proven as especially important
resources for services based on distributed clouds, particularly
those that are distributed across multiple domains. In part, because
SDN enables a more optimal dynamic networking and matching
of communication service requirements and network resources.
The demonstrated success of SDN techniques with distributed
clouds has given rise to considerations of developing other types
of Software Defined Infrastructure (SDI), including clouds,
compute grids, storage devices, instruments, and many other types
of edge devices.
By now, the many benefits of SDN are fairly well known,
particularly with regard to data center networks and private Wide
Area Networks (WANs) interconnecting data centers. However,
SDN architecture is single domain oriented, and, consequently, to
date almost all of its implementations have been within single
domains. Therefore, increasingly SDN deployments have created
many isolated SDN islands. Also, currently, SDN
implementations have also been somewhat isolated from non-
SDN environments. Both of these issues are challenges that
require new capabilities for multi-domain, multi-service SDN
provisioning that can be integrated with existing network services.
One approach to addressing both these issues is a Software
Defined Networking Exchange (SDX). Although the need for
SDXs is recognized, no consensus exists about how their services,
architecture, capabilities, and underlying technologies should be
designed, implemented, and operated. Currently, much debate and
discussion is taking place on all of these issues. Nonetheless, a

88

number of research communities are proceeding to develop
models of SDXs. Therefore, today, although no production SDX
exists, a number of SDXs are being planned, and several
prototypes have already been implemented.

One of these prototypes was designed and deployed by the
International Center for Advanced Internet Research (iCAIR) and
its research partners at the StarLight International/National
Communications Exchange Facility, a major exchange facility for
world-wide international, national, and regional research and
education networks, data intensive science networks, federal
agency networks, and large scale national and international
network research testbeds. This prototype SDX is being used for
research experimentation to explore various approaches to SDX
services, protocols, and technologies. It is also being used to
demonstration these approaches at a national and global scale.
Three core issues being addressed are a) international and national
multi-domain SDX interoperability enabling federated controllers
in different domains to manage network resources across WANs
using an integrated control planes b) multi-service SDX
provisioning across and among network layers, including hybrid
services and c) enabling interoperability among SDN
environments and non-SDN environments.

Programmable networking using SDN is generally based on the
OpenFlow protocol, an architectural approach that separates the
control plane from the data plane, abstracts the forwarding path,
and enables a controller, connected by a secure channel to
network devices to address network functions. [1] An OpenFlow
switch has a flow table that stores cached information on traffic
streams. This information can be interrogated and analyzedat a
highly granulated level so that the results can initiate required
responses to control the behaviors of specific individual flows
supported by the switch. The controller can monitor the cached
information, detect flow attributes and patterns and then react
dynamically to the resulting analysis. This technique was initially
developed and deployed for primarily for L2 services, and then
was extended to both L2 and L3 services. It has also been used
for L1 and L0 services.

The SDN technique enables a detailed centralized overview of
network services, configurations and resources. However, to date
this view has been possible only within and across a single
domain. However, there is a need to extend SDN capabilities
across and among multiple domains. This requirement is a
primary motivation for creating Software Defined Networking
Exchanges (SDXs). However, SDXs also are being developed to
provide bridges between SDN domains and non-SDN domains,
and to enable multi-service networks, based on integrating traffic
among all traditional network layers.

As noted, the design, capabilities, and technologies of SDXs are
under active discussion. Certainly, one objective is to address
these requirements. However, there are many other requirement
considerations, for example, providing for control and network
resource APIs, precise techniques for multi-domain integrated and
federated controller interoperability, controller signaling,
including edge signaling, SDN/OF multi layer traffic integration,
multi domain resource advertisement and discovery, topology
exchange services, highly granulated policy based resource access
including through edge processes signaling, rapid configuration
and reconfiguration of resources, gateways to non-SDN/OF
environments, integration of OF and Non-OF paths, including 3rd
party integration, programmability for core resources including

large scale large capacity transport streams, etc. To address these
requirements, specialized facilities are required.

A prototype SDX described has been implemented at the
StarLight International/National Communications Exchange
Facility in Chicago, which has direct access to over 130 private
networks, including many large scale nation and international
networks and twenty major experimental network research
testbeds, including international testbeds. [2] StarLight was
designed to allow for traffic exchange at all layers, and across all
layers. The facility created innovative techniques for dynamic L2
and lightpath provisioning. Because StarLight supports multiple
data intensive science communities, it interconnects almost 30
individual 100 Gbps paths as well as many 40 Gbps paths and
several hundred 10 Gbps paths, all channels on optical fiber based
lightpaths. StarLight supports connections among multiple
communication exchanges and networks around the world.
StarLight is a core component of a larger world-wide facility, the
Global Lambda Integrated Facility (GLIF). (Ref Fig. 1) [3] This
facility provides optical fiber based lightpaths that can be used to
create customized production, prototype, and testbed networks
among multiple GLIF Open Lambda Exchanges (GOLEs) around
the world. StarLight is one of these GOLEs, all which provide
multi-layer interconnection services for communities around the
world.

The design of the prototype SDX at StarLight was informed by
several wider development contexts. One is the overall IT
transition to virtualization at all levels, Software as a Service
(SaaS), Platform as a Service (PaaS), Infrastructure as a Service
(IaaS), etc. Another has been an interdomain architecture
development project initially undertaken by the GLIF community.
Almost all of these exchanges have adopted a different control
framework architecture for the resources within those exchanges.
Consequently, GLIF community, including iCAIR and the
StarLight consortium has undertaken a project Open Grid Forum,
a standards organization to develop an interface, the Network
Services Interface Connection Service, or NSI CS (currently
published as NSI CS 2.0) as an API for the various control
frameworks that are used by GOLEs to manage services and
resources. [4] A recent major current initiative is a project that is
integrating NSI CS 2.0 with OpenFlow/SDN techniques and
instantiating these services at exchange points within the GLIF.
Another context has been the many years of development of

89

programmable networks for highly distributed Grid environments.
[5] This capability has been showcase through multiple
demonstrations at national and international conferences through
the AutoGOLE initiative. The figure below shows the word wide
individual VLANs that were directly addressable through the NSI
SC API.

Two other reference contexts have been the National Science
Foundation’s (NSF’s) Global Environment for Network
innovations (GENI) and the International GENI (iGENI), large
scale, highly distributed infrastructure environments.

Conceptually, the StarLight SDX can be considered an ultra large
scale virtual switch comprised of a collection of resources that can
be partitioned and integrated for use by external controllers within
other domains. The real foundation consists of actual physical
SDN/OpenFlow Switches. (Ref: Fig 2). The SDX resources can
appear as components that are extensions of external domains.
The architectural design is intended to remove middle processes
among domains. Of course, this “removal” process is policy
driven. Federation policies and processes are required to
providing services based on this architecture.

As programmable facilities, SDXs can be used to provide an almost
unlimited range of services, including specialized new services,
such as application specific peering exchanges and large scale
encrypted stream exchanges. However, as noted a primary
motivation is simply to provide a mechanism for interconnecting the
growing number of single domain SDN islands. This capability is
especially important for large scale services based on highly
distributed clouds, which provide services from a small number of
data centers located around the world and are connected through
high performance WANs. Today, SDN capabilities have been
extremely beneficial for dynamic provisioning to quickly respond to
changing traffic flow attributes, and to optimize matching service
requirements and network within and among such data centers, and
to perform granulated traffic engineering. However, currently, there
are no services to allow for interconnections outside those single
isolated domains. Because SDNs have not been implemented in
current exchanges, they prevent such extensions.
Because of its virtualized resources, options for segmentation and
partitioning, and resource programmability, an SDX provides an
opportunity to address multi-domain and multi-services
interoperability. For example, an SDX supports techniques that
enable L2 resources to be discovered, acquired, and integrated by
edge controllers in multiple different domains.
Currently, L2 and OF implementations have almost all been
deployed as separate environments. In contrast, the StarLight SDX
provides support for L2 services, OpenFlow services, and integrated
and hybrid L2/OF services.
For SDX multi-services provisioning and integration, these
techniques can be extended to any service layer, including L3, L0,
L4-L8 and to hybrid services composed of multiple layers.

To accomplish the design objectives described in the previous
section, the StarLight SDX has implemented an SDN/OF/L2
integrated path controller. This controller is essentially a link
controller, which provides options for SDX resource management
by other controllers, including federated controllers residing in other
domains. This architecture relies on abstracted capabilities to
support services and functions, including path optimization,
resource discovery, dynamic network resource provisioning, precise
explicit data flow provisioning, static resource provisioning,
resource monitoring operations and administrative management to
be obtained by using signaling supported by a control framework to
manipulate lower layer function and physical and virtual resources.
The basic resource used is an OpenFlow controller supporting the
control framework as a programmable platform that has been
extended to L2 paths. Consequently, the network programmability
of SDN/OpenFlow is extended to L2 paths. Also, this technique
enables L2 features to be integrated into SDN/OpenFlow
environments, which generally are limited without access to those
features. This approach also enables edge processes (as well as
applications and external services) to customize network services
and resources to meet highly specific and defined requirements.
The StarLight SDX was developed with support from the NSF’s
GENI program, which has developed a nationwide distributed
environment for experimental network research. [6] Therefore, the
StarLight SDX is based in part on GENI software.

90

One GENI component, implemented within the StarLight SDX is
the Flowvisor OpenFlow Aggregate Manager (FOAM), which
interacts with other GENI domains as a resource allocation
interface. [7] The StarLight SDX has also implemented Floodlight
and other Open SDN controllers. The control functions for these
controllers have been extended to L2 services.

The StarLight SDX, in part, is an extension of an
initiative established by an international network research
consortium, which designed and implemented a world-wide
OpenFlow/SDN testbed, extended the programmable environment
termed the “International GENI” (iGENI). [8] For almost 5
years, this international community of network research
organizations been developing a large scale global advanced
network research testbed based on OpenFlow/SDN, using the
GLIF optical networking infrastructure. This programmable
distributed environment has a large collection of network resources
that can be discovered and integrated, as partitioned
resources isolated from others within the environment. Different
research groups have used it to conduct experiments, trials,
prototypes, and demonstrations. For several years,
this programmable testbed was showcased at international
SC supercomputing conferences. (Ref: Figure 3)

The different colors in these schematics designate different
experiments and demonstrations, undertaken by separate groups
of researchers . (Ref: Figures 4, 5, and 6). Topics included an
array of L2 functions including a POX based VLAN translation
service, a NOX based multi-domain LLDP (Link Layer Discovery
Protocol service), a NOX based OAM Continuity Check Message
service (CCM), a Multipath TCP (MPTCP) integrated with
Floodlight, and many other capabilities. [9, 10, 11, 12, 13]

91

One set of experiments and demonstrations was staged by the
National Center for High Performance Computing (NCHC),
which operates and maintains the Taiwan Advanced Research and
Education Network (TWAREN), and which has developed the
Future Internet Testbed in Taiwan based on OpenFlow and
extended it to the StarLight/iCAIR facilities. The Future Internet
Testbed actively supports many projects by multiple universities,
including the integrated project “Research of NetFPGA-based
testbed for Future Inter-Cloud Computing Systems” with
participants of NCHC, NCKU, KUAS, NTUST (National Taiwan
University of Science and Technology) and NCU (National
Central University), “Computing and Communications on the
Clouds: Applications and Platforms (C3AP)” initiated by NCTU,
and the Cloud Test Center operated by Telecommunication Lab of
ChungHwa Telcom.

A particular challenge for intercontroller communications and
interoperability is federated controller signaling. To address this
issue, one of the research projects is using this testbed to explore
new techniques for multiple domain services, specifically methods
that allow for large scale, international, multi-domain automatic
network topology discovery (MDANTD) and interactivity. [14]
This technique is key for adding East West capabilities to the
standard North South SDN/OpenFlow protocols. Other methods
are being designed to anticipate ongoing changing information
related to the availability and location of highly distributed
network resources. This approach has been used with other
innovative OpenFlow and NOX controller techniques, including
multipathing with MPTCP. [15].

Recently, the StarLight prototype SDX has been used to stage a
number of demonstrations. In March of 2014, this SDX was used
as one of the facilities for a showcase demonstration at the GENI
Engineering Conference in Atlanta (GEC 19), illustrating
distributed capabilities over five domains. For the demonstration,
the StarLight SDX was interconnected to a prototype SDX being
developed by Georgia Tech and the Southern Crossroads
Exchange (SOX). The two SDXs were interconnected over three
separate network domains provisioned on private optical fiber
between Chicago and Atlanta. To demonstrate the utility of these
two interoperable SDXs, a severe weather prediction application
being developed by the University of Massachusetts at Amherst
was demonstrated (Ref Image below)

This application is based on small form factor Doppler radar,
which generates extremely large volumes of data that cannot be
stored, computed, analyzed, or visualized locally. It must be sent
to remote facilities for processing and then results must be
returned in real time. At the same time, the topology of the
network must change continually. For the TERENA Networking
Conference in May 2014, an international interoperability
demonstration was staged interconnecting the StarLight SDX
with a prototype SDX at NetherLight in Amsterdam (Ref Figure
9)

The design, architecture, and technology for SDXs are currently
being vigorously debated, because there are many potential
opportunities for these types of facilities. Many SDX and SDI
research topics are being explored, including semantic network
descriptions (e.g., Network Description Language (NDL)
initiative at the University of Amsterdam [16, 17], enhanced APIs,
resource signaling, resource integration, mechanisms for topology
exchanges, and closer integration with edge computers, clouds,
storage devices, instruments, “Internet of Things” devices, etc.
Several research communities are investigating Software Defined
Internet Exchanges, with a focus on L3 traffic management,
control, and optimization. [18] Also, the concept of designing a
completely virtualized SDX is being discussed as is highly
distributed SDXs

92

Software-Defined-Networking (SDN) is transforming all aspects
of how networks are designed, implemented and operated.
Programmable networking based on innovative virtualization
techniques, including SDN, are enabling high levels of abstraction
for network services, control and management functions, and
underlying technology resources. Consequently, networks can be
designed to provide many more services and capabilities than
traditional networks. SDNs and SDN Exchanges (SDXs) enable a)
many more dynamic provisioning options, including in real time
b) faster implementation of new and enhanced services c)
enabling applications, edge processes and even individuals to
directly control core resources; e) substantially improved options
for creating customizable networks and e) enhanced operational
efficiency and effectiveness. Also, these capabilities are being
extended to other types of Software Defined Infrastructure (SDI),
including clouds, compute grids, storage devices, instruments, and
many other edge devices.

For their excellent support, the authors would like to thank the US
National Science Foundation, in particular, the Computer and
Information Science and Engineering (CISE) Directorate, and its
Global Environment for Network Innovations (GENI)
program, including the International GENI (iGENI) program and
the GENI Program Office the Office of Cyberinfrastructure and
its International Research Network Connections (IRNC) program,
the National Center for High-Performance Computing (NCHC),
Taiwan, the National Kaohsiung University of Applied Science
(KUAS), the National Cheng Kung University (NCKU)
KUAS/NCKU, the National Taiwan University of Science and
Technology (NTUST), the National Central University (NCU),
SURFSara, SURFnet, the GigaPort program of the Dutch
Government, the Geant3 project of the European Commission.
Research at the Communications Research Centre of Canada.
Canada’s Advanced Research and Innovation Network
(CANARIE), the US Department of Energy’s Office of Science,
and members of the iCAIR research partnership consortiums,
including members of the Global Lambda Integrated Facility
(GLIF), the StarLight consortium, the Metropolitan Research and
Education Network, the Energy Science Network (ESnet), GENI,
International GENI, and the Open Cloud Consortium.

[1] N. McKeown, et al., OpenFlow: Enabling Innovation in
Campus Networks, ACM SIGCOMM Computer Communication
Review, 2008, 2, 69-74.

[2] J. Mambretti, T. DeFanti, M. Brown, StarLight: Next-
Generation Communication Services, Exchanges, and Global
Facilities, Advances in Computers. 01/2010; 80:191-207.

[3] Global Lambda Integrated Facility (GLIF) www.glif.is

[4] G. Roberts, T. Kudoh, I. Monga, J. Sobieski, J. MacAuley, C.
Guok, NSI Connection Service V2.0, Open Grid Forum, GFD-R-
P.212, NSI-WG June 2014.

[5] F. Travostino, J. Mambretti, G. Karmous-Edwards (editors),
Grid Networks: Enabling Grids with Advanced Communication
Technology, John Wiley & Sons, July 2006.

[6] www.geni.net

[7] R. Sherwood, et al., “FlowVisor: A Network Virtualization
Layer,” OpenFlow Technical Report TR-2009-1.

[8] http://groups.geni.net/geni/wiki/IGENI

[9] M. Luo, S. Lin, J. Chen, “From Monolithic Systems to a
Federated E-Learning Cloud System”, IEEE International
Conference on Cloud Engineering, March 25-28, San Francisco,
California, USA, 2013.

[10] M. Luo, J. Chen, J. Mambretti, S. Lin, P. Tsai, F. Yeh, and C.
Yang, “Network Virtualization Implementation over Global
Research Production Networks”, Journal of Internet Technology,
Vol. 14, No.7, pp. 1061-1072, 2013.

[11] J. Mambretti, J. Chen, F. Yeh, T.-L. Liu, M.-Y. Luo, C.-S.
Yang, R. v. d. Pol, A. Barczyk, F. Dijkstra, and G. v. Malensteinz,
"OpenFlow Services for Science: An International Experimental
Research Network Demonstrating Multi-Domain Automatic
Network Topology Discovery, Direct Dynamic Path Provisioning
Using Edge Signaling and Control, Integration With Multipathing
Using MPTCP," in SCinet Research Sandbox at International
Conference for High Performance Computing, Networking,
Storage, and Analysis, White Paper and Presentation, SC12,
November, 2012.

[12] M. Luo, J. Chen, “Towards Network Virtualization
Management for Federated Cloud Systems”, IEEE 6th
International Conference on Cloud Computing, June 27-July 2,
2013, Santa Clara, CA, USA.
[13] M. Luo and J. Chen, “Software Defined Networking Across
Distributed Datacenters over Cloud,” 5th IEEE International
Conference on Cloud Computing Technology and Science (IEEE
CloudCom), Bristol, UK, December 2-5, 2013.
[14] W-Y. Huang, J-W. Hu, S-C. Lin, T-L. Liu, P-W. Tsai, C-S.
Yang, F. Yeh, J. Hao Chen, J. Mambretti, “Design and
Implementation of An Automatic Network Topology Discovery
System for the Future Internet Across Different Domains,”
Proceedings of IEEE 26th International Conference on Advanced
Information Networking and Applications Workshops
(AINAW'12), Singapore, March 2012.

[15] R. van der Pol, Sander Boele, Freek Dijkstra, Artur
Barczyky, Gerben van Malensteinz, Jim Hao Chen, and Joe
Mambretti, Multipathing with MPTCP and OpenFlow,
forthcoming, Proceedings Companion SC12, November 2012

[16] M. Ghijsen, J. van der Ham, P. Grosso, C. Dumitru, H. Zhu,
Z. Zhao, C. de Laat, "A Semantic-Web Approach for Modeling
Computing Infrastructures", Journal of Computers and Electrical
Engineering, Elsevier, Volume 39, Issue 8, November 2013,
Pages 2553–2565, doi: 10.1016/j.compeleceng.2013.08.011.

[17] D. Schwerdel, D. Hock, D. Günther, B. Reuther, P. Müller, P.
Tran-Gia. ToMaTo - A Network Experimentation Tool. 7th
International ICST Conference on Testbeds and Research
Infrastructures for the Development of Networks and
Communities (TridentCom 2011), Shanghai, China, April 2011.

[18] N. Feamster, J. Rexford, S. Shenkerz, D. Levin, R. Clark, J.
Bailey, SDX: A Software Defined Internet Exchange, White
Paper, University of Maryland.

93

Program Tools and Language for Network
Simulation and Analysis

A. Mikov
Department of Computing Technologies,

CubSU

Krasnodar, Russia

Alexander_ Mikov@mail.ru

E. Zamiatina
The Department of Information Technologies in Business,

HSE

Perm, Russia

e_zamyatina@mail.ru

Abstract— This paper considers software tools and linguistic

constructions of the network simulator TRIADNS. Nowadays

network applications – especially in the area of wireless networks

– are becoming more and more complex which makes the design

and the testing almost impossible without appropriate software.

This software available to aid the user in simulating previously

designed scenarios, scalable algorithms and changing structure of

computer network. So it is necessary to have effective and flexible

program tools for computer network design and simulation.

Network simulator must design and investigate not only

hardware, but software too, explore computer networks,

considering in particular the specific characteristics of a variety

of computer networks. Besides computer networks may include a

lot of nodes. This paper discusses approaches allowing to decide

the problems mentioned above: hierarchical model, using

ontologies and Data Mining methods for the analyses of

simulation results, using several computing nodes for computer

network simulation (distributed and parallel simulation).

Keywords— simulation, computer networks, ontologies, routing

algorithms, Data Mining, distributed and parallel simulation

I. INTRODUCTION

Computer networks are very wide spread now. Indeed
computer networks are used in information systems, Grid
computing, cloud computing and so on.

Widespread computer networks impose requirements to the
speed and reliability of information transfer, to its effective
treatment. For this reason, it becomes necessary to study
traffic, to investigate new protocols, to design and develop new
devices and new algorithms.

It is not always possible to apply analytical methods to
investigate computer network because of the complexity of
modeling object and, moreover, natural experiments can‘t
investigate all aspects of this object too.

So the designers prefer to use simulation methods and
appropriate program tools (network simulators). A lot of
network simulators were developed recently [1]. We consider
some of them below.

Because of complexity of modeling object (computer
networks) simulators should have the following properties:

 Simulation experiment should be optimized in respect to
time. Indeed very often it is necessary to investigate
large-scale networks with a tremendous amount of
computing nodes. It is clear that the simulation of large-
scale networks must be terminated within a reasonable
time [2, 3]. But it is possible if one can perform
simulation experiment on a supercomputer (cluster and
so on). Besides, the investigators need the special
software tools implementing special synchronization
algorithm (conservative or optimistic), managing time
advancement [4, 5, 6]. Moreover it is necessary to solve
a problem of the equal workload on the computing
nodes [7, 8, 9]. And nowadays new class of computer
network simulators appears – there are simulators using
graphical processors (GPU) [10].

 A joint study of hardware and software of computer
networks. The computer network designers usually
consider separately the hardware and software.
However, the most appropriate solution would be to
have software tools for design and analysis hardware,
design and analysis of algorithms that control hardware,
and for the co-design of hardware and software [11].
For example, it is very important to analyze the
behavior of routing algorithm after the moment when
the topology of computer network is changed (new
computing node appears or some nodes become not
accessible). In this case, the designer is interested in the
topological characteristics of the network. These
characteristics may affect the communication
complexity of the algorithm. The structure of network
may be represented as a graph. So it is important to
investigate the structure of network using known graph
algorithms (the shortest distance, for example).
Nowadays the adaptable routing algorithms are applied
in networks. These algorithms change their behavior
depending on the values of certain characteristics of the
network (overload of communication lines, for
example). So it is advisable to simulate routing
algorithm. Moreover it is important to simulate the
behavior of various devices of computer networks and
algorithms which control the behavior of these devices.

 Adaptability of software simulators to incorporate into
a simulation model new devices and new algorithmsThis work was supported in part by Russian Foundation for Basic

Research (grants 12-07-00302, 13-07-96506).

94

that govern their work. There are various software tools
to design the computer networks nowadays. The most
popular are: NS-2 [12] (the design of the local and
global networks, multiprocessor and distributed
computing systems, the ability to assess the
performance of the designed system , etc.); OpNet [13]
(a discrete event simulator that allows investigators to
explore all levels of computer networks and to include
customer modules into simulation model), OMNeT ++
[14], etc. Each of these simulators has specific
characteristics. Some tools are designed to manage local
networks, while others permit the design and analyses
of global networks. Some of these software tools allow
network designing, but have limited modeling
capabilities, others are able to perform complex analysis
of specific networks (may be only global networks or
local or sensor ones). Network simulators have to be
able to design, simulate and analyze new types of
computer networks, new devices, new algorithms and
technologies because of rapid development of network
technologies.

The designers and developers of computer networks
simulator TRIADNS tried to consider the experience of various
software tools of this kind. This simulator is based on CAD
Triad [15]. The ideas embodied in CAD system Triad allow it
to adapt to rapid change of computer networks, new algorithms
and technologies due to special linguistic and program tools:

 Linguistic and program tools for the description of the
structure of computer networks and the behavior of the
devices and computing nodes;

 Advanced analysis subsystem, which includes a library
of standard information procedures (information
procedures are obtained to collect the information about
simulation model during simulation experiment and to
process it) and linguistic tools to create new procedures
and, therefore, new algorithms of analysis.

Furthermore, the effectiveness of the simulator is provided
by distributed (parallel) simulation experiment (using the
resources of several nodes of computer network, cluster or
multiprocessor (the advantages of a distributed (parallel)
simulation experiment are listed in [5, 16]). Optimistic
synchronization algorithm (based on knowledge)(subsystem
TriadRule) and load balancing subsystem (TriadBalance) are
implemented in simulator TRIADNS. This software permits to
reduce the time needed for simulation experiment.

Moreover the effectiveness of simulation system may be
achieved by the subsystem of collecting and processing of the
simulation model characteristics (the processing of data may be
partly carried out during simulation experiments) and
intelligent analysis of simulation results (based on the methods
of Data Mining).

The flexibility of simulation software is achieved through
the use of ontologies and the mechanism of redefining models,
interoperability (including in the model components developed
in the other modeling systems).

First of all, we should talk about how the simulation model
is presented in the simulator TRIADNS, the architecture of
simulator and the description of each it‘s subsystem.

II. SIMULATION MODEL REPRESENTATION IN TRIADNS

A. Simulation Model and Three Layers

Simulation model in Triad.Net is represented by several

objects functioning according to some scenario and interacting

with one another by sending messages. So simulation model is

={STR, ROUT, MES} and it consists of three layers, where

STR is a layer of structures, ROUT – a layer of routines and

MES – a layer of messages appropriately.

The layer of structure is dedicated to describe objects and

their interconnections, but the layer of routines presents their

behavior. Each object can send a message to another object.

So, each object has the input and output poles (Pin – input

poles are used to send the messages, Pout – output poles serve

to receive the messages).

One level of the structure is presented by graph P = {U, V,

W}. P-graph is named as graph with poles. A set of nodes V

presents a set of programming objects, W – a set of

connections between them, U – a set of external poles. The

internal poles are used for information exchange within the

same structure level; in contrast, the set of external poles

serves to send messages to the objects situated on higher or

underlying levels of description. Special statement <message>

through <name of pole> is used to send the messages.

B. The Layer of Structure

One can describe the structure of a system to be simulated

using such a linguistic construction:

structure <name of structure> def (<a list of generic

parameters>)

(<a list of input and output parameters>)

<a list of variables description> <statements>)

endstr

The investigator may not describe all the layers. So if it is
necessary to study structural characteristics of the model, only
the layer of structures can be described. The example of
computer network (the layer of structure) is given below. This
computer network consists of a server and several clients.

Note, please, that the layer of structure is a procedure with
parameters.

Triad-model is considered as a variable. Initially it may be
void and further may be constructed with the special statements
of Triad-language (operations within the layer of structures).

The structure of some computer network will include a
different number of nodes and edges connecting them obtained
as a result of operations on graphs. This number depends on the
values of parameters of procedure structure or procedure
routine. These parameters can indicate the range of the
transceivers, current time, and so on in the representation of
wireless ad hoc networks. Thus, the description of networks in
TRIADNS is varying in time and space. So it is corresponds to

95

the idea of ad hoc computer networks, for example. Fig.1.
gives the structure of network ―Client_Server‖. It consists of
the node ―Server‖ and the attached array of nodes ―Client‖.

The links between nodes are set within the cycle <for> with
the help of arcs. Input and output poles have to be specified:
(arc (Server.Send -- Client[i].Receive)). The number of nodes
Client may be changed by formal parameter
Number_of_Client.

Structure Client_Server[integer Number_of_Clients]

 def
 Client_Server := node Server<Receive, Send>

 + node Клиент[0 : Number_of_Clients - 1]

 < Receive, Send >;

 integer i;

for i := 0 by 1 to Number_of_Clients - 1 do

Number_of_Clients := Number_of_Clients +

 arc (Client[i].Send -- Сервер.Receive) +

 arc (Сервер.Send -- Клиент[i].Receive);

endf;

endstr

Fig.1. The Structure of layer for Client-Server description

C. Graphical Interface

There are two ways to describe model in Triad: via text
editor or via graphical editor. The description of a layer of
structure being built with the help of graphical editor is given
below (fig.2.).

This description is a fragment of computer network. It
consists of several workstations sending messages between
them. Besides, the computer network includes the routers
responsible for the searching of the route.

Fig.2. The fragment of computer network. Graphical editor

The description of this fragment of computer network being
built with the help of text editor is given on fig.3.

Type Router,Host; integer i;
M:=dcycle(Rout[5]<Pol>[5]);
M:=M+node (Hst[11]<Pol>);
for i:=1 by 1 to 5 do

 M.Rout[i]=>Router;
 M:=M+edge(Rout[i].Pol[1] — Hst[i]);

endf
for i:=1 by 1 to 3 do
 M:=M+edge(Rout[i].Pol[2] — Hst[2*i-1]);
endf;
for i:=0 by 1 to 11 do M.Hst[i]=>Host; endf;

Fig.3. The fragment of computer network in Triad language.

D. Graph Constants

Simulation model (see fig.3.) is built using graph constants.
A set of special linguistic units - graph constants - presents the
basic types of topologies of computer network. In the text
given above the graph constant ―directed cycle‖ (Dcycle) was
used.

E. Semantic Type

Besides, in above example the semantic types (Type
Router,Host) were used. Namely they are ―router‖ and ―host‖.
The semantic types are used for simulation model redefining.
More details will be given later.

F. Standard Procedures

There are the several standard procedures in the structure
layer. The investigator is able to take out from the structure of
model a lot of characteristics: a set of nodes, a set of arcs, a set
of edges and etc. Moreover one can find the shortest distance
between two nodes or cfn find connected components
(procedure GetStronglyConnectedComponents(G)) or fulfill
the selection of the structure layer (procedure
GetGraphWithoutRoutines(M)) and so on.

Besides, the investigator obtains the linguistic and
programming tools enabling him to write the absent procedure
by himself. The investigation of the structure layer only is
static process. The simulation process may take place only after
the definition of the behavior of all nodes.

The behavior is determined by the statement Put. The
example will be given later. The investigator may take the
description of the node‘s behavior in repository (or via
Internet) or may describe using special statements and
linguistic construction of Triad-language.

G. The Layer of Routines

Special algorithms (named ―routine‖) define the behavior
of an object. It is associated with particular node of graph P =
{U, V, W}. Each routine is specified by a set of events (E-set),
the linearly ordered set of time moments (T-set), and a set of
states {Q-set}. State is specified by the local variable values.
Local variables are defined in routine. The state is changed if
an event occurs only. One event schedules another event.
Routine (as an object) has input and output poles (Prin and
Prout). An input pole serves to receive messages, output – to
send them. One can pick out input event ein. All the input poles

96

are processed by an input event, an output poles – by the other
(usual) event.

So the formal rules of routine one can see here:

 routine<name>(<a list of generic parameters>)(<a list of
input and output formal parameters>)

initial <a sequence of a statements> endi event <a sequence
of a statements> ende

 event <a name of an event> <a sequence of statements>
ende …

event<a name of an event><a sequence of a statements>
ende

endrout

Let us return to the description of Client-Server model.
Client behavior scenario is described with special linguistic
unit which is named as ―routine‖. The syntax of routine is
given above. One can see that the routine consists of
initialization part, input event (without name) and several
events (these events have names) scheduling one another. The
description of the ―Client‖ behavior is given below:

routine Client (input Receive; output Send)[real deltaT]
initial boolean Quiery_is_Send;

 Quiery_is_Send := false; schedule Quiery in 0;
 Print "Client Initialization";
Endi
event Quiry; (* it is an event *) out "I send a quiry" through
Send; Print "A Client sends a quiry to Server";

 schedule ЗАПРОС in deltaT;
ende
endrout

Fig.4. The Routine ―Client‖.

The routine is a procedure with parameters too, it includes
not only the interface parameters (input and output interface
parameters ―Receive‖ and ―Send‖, but the parameter deltaT-
the time interval between the queries of Clients to Server). So
the parameter deltaT may be changed during simulation
experiment (in accordance with the behavior of real process,
object or system of objects being investigated).

The instances of routine are formed by the statement let
Client (clientDeltaT) be Client. An instance of routine may be
―put‖ on an appropriate node with the help of statement:
put Client on Model.Client[i]<Receive=Receive,Send=Send>.
The input and output poles of routine are matched to the poles
of node here. Consequently, the program tools of simulator
become more flexible because of that fact that the investigator
can change the behavior of some node during simulation
experiment (statement simulate, it will be described below).

The simulation model is complete if all of nodes have
appropriate routines and only complete model can take part in
simulation experiment.

The behavior of routines may describe the algorithm
functioning in some computational environment. The
computational environment is described with the help of
parameterized procedure structure.

It is possible to select only the layer of structure (the layer
of structure usually describes hardware of computer network),
the layer of routines.

So TRIADNS permits to carry out the design and analyses
of hardware (the layer of structure), the design and analyses of
software (the layer of routines) and co-design of hardware and
software (the complete model).

The linguistic constructions of parameterized procedures
structure and routine allow to incorporate new devices and
algorithms in simulation model.

III. SIMULATION EXPERIMENT

The objects of simulation model are managed by the special
algorithm during the simulation run. Let us name it as
―simulation algorithm‖ (CAD system Triad has distributed
version and corresponding algorithm for distributed objects of
simulation model too) [15]. CAD system Triad includes
analyses subsystem implementing the algorithm of
investigation - special algorithm for data (the results of
simulation run) collection and processing.

The analysis subsystem includes special objects of two
types: information procedures and conditions of simulation.
Information procedures are ―connected‖ to nodes or, more
precisely, to routines, which describe the behavior of particular
nodes during simulation experiment. Information procedures
inspect the execution process and play a role of monitors of test
desk. Conditions of simulation are special linguistic
constructions defining the algorithm of investigation because
the corresponding linguistic construction includes a list of
information procedures which are necessary for investigator.

The algorithm of investigation is detached from the
simulation model. Hence it is possible to change the algorithm
of investigation if investigator would be interested in the other
specifications of simulation model. For this one need to change
the conditions of simulation. But the simulation model remains
invariant. We may remind that it is not possible in some
simulation systems.

One can describe the information procedure as so:

 information procedure<name>
(<a list of generic parameters>)
(<input and output formal parameters>)
initial <a sequence of statements> endi
<a sequence of statements>processing <a sequence of
statements>
endinf

It is possible to examine the value of local variables, the
event occurrence and the value of messages which were sent or
received. A part of linguistic construction ‗processing‘ defines
the final processing of data being collected during simulation
run (mean, variance and so on).

Let us present the linguistic construction conditions of
simulation:

Conditions of simulation<name>
(<a list of generic parameters>)

97

(<input and output formal parameters>)
initial <a sequence of statements> endi
<a list of information procedures>
 <a sequence of statements>
processing <a sequence of statements>…endcond

 The linguistic construction conditions of simulation
describes the algorithm of investigation which defines not only
the list of information procedures but the final processing of
some information procedure and checks if conditions of
simulation correspond to the end of simulation. The subsystem
of visualization represents the results of simulation. One can
see the representation of the results of simulation run at fig.5.

Fig.5. The results of simulation.

Simulation run is initialized after simulation statement
processing. One can pay an attention to the fact that the several
models may be simulated under the same conditions of
simulation simultaneously.

simulate <a list of an elements of models, being inspected>
on conditions of simulation <name>
(a list of actual generic parameters>)
[<a list of input and output actual parameters>]
(<a list of information procedures>
<a list of statements>…)
endsim

IV. THE COMPONENTS OF SIMULATION SYSTEM TRIADNS

Let us consider simulation modeling system TriadNS, its
appointment, its components and functions of each component.
TriadNS – it is simulation system dedicated for computer
networks analysis. It is based on object-oriented simulation
system Triad.Net. Simulation system Triad.Net is a modern
version of previous simulation modeling system Triad [6]
dedicated to computer aided design and simulation of computer
systems. Triad.Net is designed as distributed simulation system
(it may be consider as one of the class of PDES systems –
parallel discrete event simulation), so various objects of
simulation model may be distributed on the different compute
nodes of a computer system. One more specific characteristic
of Triad.Net – remote access, so several investigators may
fulfill a certain project from different computers situating in
different geographical points.

Distributed simulation system Triad.Net consists of some
subsystems: compiler (TriadCompile), core of simulation
system (TriadCore), graphical and text editors, subsystem of
testing and debugging (TriadDebugger), subsystem of
distributed simulation (synchronization of simulation model
objects which are situated on different compute nodes of
computer system, conservative and optimistic algorithms
realization)(TriadRule), subsystem for equal workload of
compute nodes (TriadBalance), subsystem of remote and local
access (TriadEditor), subsystem of automatic and
semiautomatic simulation model completeness (TriadBuilder),
the subsystem for remote access and a security subsystem from
external and internal threats TriadSecurity), the subsystem of
automatically extending the definition of the model
(TriadBuilder), the subsystem of intellectual processing of the
results of simulation experiment (TriadMining). Initially we
address to the specific characteristics of simulation model in
TriadNS.

V. THE FLEXIBILITY OF THE SIMULATION TOOLKIT

A. Using ontologies in TRIADNS

It is important to involve into the simulation process not
only the specialists in simulation but the specialist in specific
domains and specialists in the other spheres of knowledge.
That is why it is necessary to adjust a simulation system to
specific domain. Indeed the investigator of computer network
may use a graph theory while studying the structure of
network, or a queue network theory, or the theory of Petri Nets.
Ontologies are used in TriadNS to adjust the simulation system
to specific domain.

Ontologies can be applied on the different stages of
simulation [17, 18]. Very often ontologies are applied for the
simulation model assembly. So the simulation model may
consist of separately designed and reusable components. These
components may be kept in repositories or may be found via
Internet. The ontologies keep the information about
interconnections of simulation model components and other
characteristics of these components. Ontologies enable
investigators to use one and the same terminology. Ontologies
allow to make the repositories of components to store not only
an information about their characteristics, interfaces, but the
information about their interconnections.

The base ontology is designed in TriadNS. Its basic classes
are: TriadEntity (any named logic entity), Model (simulation
model), ModelElement (a part of simulation model and all the
specific characteristics of a node of structure layer), Routine
(node behavior), Message (note, please, that structure layer
nodes of simulation model can interchange with messages) and
so on.

The basic properties of base ontology are: (a) the property
of ownership: model has a structure, a structure has a node, a
node has a pole and so on; (b) the property to belong to
somethin0g -– inverse properties to previous one. The structure
belongs to the model, the node belong to strucrure, the pole
belong to the node and so on; (c) the properties of a pole and
an arc connection – connectsWithArc(Pole,Arc),
connectsWithPole (Arc, Pole); (d) the property of a node and

98

an appropriate routine binding-putsOn (Routine, Node); (e)
The properties of a node and an appropriate structure binding:
explicatesNode (Structure, Node), explicatedByStructure
(Node, Structure); (f) The property of the model and conditions
of simulation binding (Model, ModelingCondition).

The simulator TriadNS has some additional special
subclasses of the base classes (specific domain – computer
networks): (a) ComputerNetworkModel (a model of a computer
network); (b) ComputerNetworkStructure (a structure of a
computer network model); (c) ComputerNetworkNode (a
computer network element, it contain several subclasses:
Workstation, Server, Router); (d) ComputerNetworkRoutine (a
routine of a computer network) и т.д. This ontology includes
two special properties of a pole. These properties are used to
check the conditions of matching routine to a node, for
example a property check if it is necessary to connect a pole
with another pole or a property checking the semantic type of
an element of a structure being connected.

B. Redefining of Simulation Model

An ordinary simulation system is able to perform a
simulation run for a completely described model only. At the
initial stage of designing process an investigator may describe a
model only partly omitting description of behavior of a model

element r* = {STR, ROUT*, MES}). Simulation model may
be described without any indication on the information flows

effectin0g the model (s* = {STR*, ROUT*, MES}) or without

the rules of signal transformation in the layer of messages (m*
= {STR, ROUT*, MES}). However for the simulation run and
the following analysis of the model all these elements have to
be described may be approximately.

For example, in a completely described model each

terminal node vi V has an elementary routine ri ROUT. An
elementary routine is represented by a procedure. This
procedure has to be called if one of poles of node vi receives a
message. But some of the terminal nodes vi of partly described
model do not have any routines. Therefore the task of an
automatic completion of a simulation model consists either in
―calculation‖ of appropriate elementary routines for these
nodes, i.e. in defining ri = f(vi), either in ―calculation‖ of a
structure graph si = h(vi) to open it with (in order to receive
more detailed description of object being designed). It was
mentioned above that the routine specifies behavioral function
assigned to the node, but the structure graph specifies
additional structure level of the model description. And at the
same time, all structures si must be completely described as the
submodels.

These actions have to be fulfilled by the subsystem
TriadBuilder. Subsystem TriadBuilder [19] attempts to search
the appropriate routine by the help of base ontology (it was
described earlier). It may be found thanks to special semantic
type (semantic type ―Router‖ and ―Host‖, for example).
Model completion subsystem starts when the internal form of
simulation model is built according to a Triad code.

First, model analyzer searches the model for incomplete
nodes, and marks them. Thus, the model analyzer will mark all
Rout nodes. After the inference module starts looking for an
appropriate routine instance for each of marked nodes

according to specification condition (the semantic type of node
and routine must coincide).Then the condition of configuration
must be checked (the number of input and output poles of node
and the number of poles of routine must coincide). After the
appropriate instance has been found, it may be put on the node.

C. Intellectual Analysis of the Simulation Experiment

Results

It is well known that the goal of a simulation experiment is
to obtain the most accurate and adequate characteristic of the
studied object. This stage of simulation deals with data
collection and processing. The special syntax units such as
information procedures and conditions of simulation are
designed in TriadNS. Information procedures and conditions of
simulation are described above. Note, please, that data
collection and data processing with the help of information
procedures permit to obtain more adequacy results. Information
procedures monitor only these characteristics of simulation
model which are interested for investigator. In contrary some
other simulators able to monitor and to collect a set of
predefined characteristics.

But we can note another problem: the results of simulation
experiment are not ordered and not structured. The processing
of a simulation experiment results requires highly skilled
analysts. So we can state the appearance of several papers with
the suggestion to make the additional processing of the results
of simulation experiments [20] and to apply the methods of
Data Mining for these purposes [21]. Usually investigators
obtain standard report with the results of simulation. The
additional processing allow to find dependences between
characteristics of the modelling objects.

 The analyses of these dependences allow to reduce the
overall data capacity, dimension of problem and eventually to
optimize the simulation experiment.

The additional processing may be done with the special
software tools of TriadNS (component TriadMining).
TriadMining use the results of the information procedures, the
results are processed with the help of regression analyses, time
serious, Bayesian networks and so on. We mentioned above
that an information procedure monitors the implementation of
the sequence of events, the variables changing and so on. It is
well known that the sequence of the predefined events allow to
find crashes in nodes of telecommunication systems. Here is an
example of information procedure.

information procedure event_sequence (in ref event
E1,E2,E3;out Boolean arrived)
initial interlock (E2,E3); Arrived := false;
 case of e1:available(e2);

 e2:available(E3):
 e3:ARRIVED:=true;

 endc
endinf

Fig. 6. The information procedure to detect the proper sequence of events.

So investigator may detect the arrival of the sequence of
events E1→E2→E3. The statement interlock provides input
parameter blocking (event E1 in this case). It means that
information procedure doesn‘t watch parameters being marked

99

in interlock statement. The statement available allows
beginning the marked parameter monitoring again.

Information procedure monitors the changing of variables
and the moments of appropriate time. So the time series may be
formed. It is necessary to analyze the similarity of two or more
time series. So it is possible to find dependences between the
elements of simulation model and reduce the data capacity.

VI. THE EFFECTIVENESS OF THE SIMULATION TOOLKIT

A. Distributed simulation model representation

It is necessary to use several nodes of cluster, network or

mainframe in order to design effective simulation toolkit. A

distributed simulation model is presented as several logical

processes carried out on different compute nodes in this case.

Logical processes are functioning and interacting with one

another sending and receiving messages. These messages have

the time stamps – the local time of the event being carried out.

B. Optimistic and conservative algorithms

There are two main approaches to provide the causality of
the events in parallel/distributed simulation: conservative and
optimistic. Conservative algorithm defines the time of the
―safety‖ event from the list of scheduled and not processed
events. One may name the event as ―safety‖ if a logical process
does not receive message with lower time stamp than the time
stamp of event from the list of scheduled events. Conservative
algorithm does not process event if it is not safety. More
details are given in papers [4, 5]. Optimistic algorithms allow
carrying out the logical process without local causality
restrictions. One of the famous optimistic algorithms is a Time
Warp [22]. When a logical process receives an event with the
lower time stamp than the time stamp of processed event the
process performs a rollback and processes this event again in
the chronological order. Time Warp algorithm uses the
mechanism of anti-messages.

The analysis of improved conservative and optimistic
algorithms shows that their efficiency becomes higher due to
increase of knowledge about the model (lookahead, lookback,
time stamp of the next event and so on). So it is necessary to
use the information about the model more precisely, the
knowledge of a researcher about the behavior of specific model
for increase of the simulation experiment efficiency.

C. Knowledge Based Sinchronization Algorithm

Usually a researcher has some knowledge about the specific
behavior of the model. We propose to present this knowledge
as production rules in the knowledge base. Rules may be
presented as: IF e1 AND e2 AND e3 AND … AND en THEN
ek СF <0..100>. These rules show that the event ek depends
on e1, e2, ,en. CF is a trust coefficient. 0 - no trust, 100 -
maximum trust. The rules reflect the causality between events,
but the events are not exact, that is why each rule is assigned a
trust coefficient.

However it is not enough to relay upon the knowledge of a
researcher. Some knowledge has to be received within the
simulation experiment in order to replenish and to improve
rules in the knowledge base. The authors have developed the

specific program tools (TriadRule) to collect and to process the
specific knowledge required to replenish and to improve the
production rules in the knowledge base. The application of
TriadRule shows that efficiency of the optimistic algorithm is
actually increased.

D. Load balancing subsystem

Load balancing subsystem is dedicated to optimal
distribution of program model among compute nodes (in
multiprocessor computer or in network) and consequently to
enhance the performance of these computers.

Load balancing it is a problem of non-isomorphic vertex-

connected graphs mapping B: PM NG, where PM – a set of
graphs of program models, NG – a set of graphs – computer

network configurations. Graph G NG, G = {C, Ed}, can be
defined by a set of calculating nodes C and a set of edges Ed
(edges Ed are associated with communication lines). One can
consider NG as a super graph, containing all eventual

(admissible) graphs Gi as subgraphs. Graph M PM
represents program model.

It is possible to use three kinds of load balancing: static Bs,
dynamic (automatic) Ba and dynamic (controlled) Bc.
Preliminary allocation of program objects (static Bs) is not
effective. This is explicable from the following facts: (a) a
program model can be changed due to new processes
appearance, terminating some processes; (b) a compute
environment can be changed because one or the several
processors (or computers) are failed. In any case, the benefit of
distributing the logical processes between compute nodes
before the program execution is very often not seen.

In regards to dynamic balancing Ba the graphs G and M are
considered to be loaded. The nodes of the first graph have a
parameter – performance, edges – data rate. The characteristics
of nodes in the second graph – time complexity, the
characteristics of edges – the intensity of a traffic flow. The
weights of nodes and edges in graph NG are considered to be
known. The corresponding graph M parameters must be
defined during the program execution. The ―bottle neck‖ of the
program model and computer system is determined in
accordance with some algorithm, and migration of the program
objects without interruption until the program is executed.

There is a new approach of implementation of controlled
dynamic load balancing based on knowledge in Triad.Net (Bc).
Controlled dynamic load balancing subsystem includes expert
component and information procedures developed by a model
designer (nonstandard information procedures in other words).
Expert component consists of optimization rules defined by the
author of the given model (or of class of models). Nonstandard
information procedures are intended to estimate the events (or
conditions) of rule applications.

Restoring the balance of the workload is a well-known
problem. There are several solutions of this problem and a lot
of algorithms were developed. However, very often, these
algorithms are applicable only for a specific simulation model.
Researchers attempted to develop adaptable algorithms
(SPEEDES[7] and Charm ++[8], for example). The
experiments have shown that the effectiveness of these

100

algorithms maybe achieved only in special cases. Indeed, the
development of some universal algorithm is almost impossible.
The authors wish to solve at least partially this problem by
applying a controlled balance. Controlled load balancing uses
the knowledge of concrete simulation model. For example, the
researcher knows that the intensity of data exchange between
two compute nodes would be much higher after one hour from
the beginning of computer network functioning. So a
researcher may formulate the appropriate rule which can be
used by load balancing subsystem.

There are two ways to implement controlled dynamic load
balancing subsystem: in centralized manner or in distributed
one.

The knowledge-based load balancing subsystem in
Triad.Net includes: (a) Expert system with knowledge base,
rules editor, inference engine and module of explanations.
Knowledge base consists of rules for optimal distribution of
program model objects among the calculating nodes. (b)
Simulation model and computing environment analysis
subsystem. Analysis subsystem consists of information
procedures to collect data: a frequency of interchanges among
the objects, a frequency of event occurrence and etc; to collect
data on computational environment (flow capacity of
communication lines, workload of computers). (c) Subsystem
for simulation model and calculating environment
visualization. (d) Migration subsystem which carries out
program object migration from one compute node to another.

Expert component carries out some operations on graph G
(this graph represents the structure of program model) mapped
on graph M – graph of computing environment.

Rules imply operations on graph G. Rules are productions
such as «if then else…» and could be described by Triad
language.

But this controlled load balancing uses centralized
algorithm, all rules are in single knowledge base, simulation
model and computing environment analyses subsystem is
situated on a selected compute node too and interacts with
other compute nodes. Authors of this paper propose multi-
agent approach in order to reduce the time needed to exchange
the data.

E. Multi-Agent approach

Dynamic multi-agent load balancing subsystem
TriadBalance consists of different agents: (a) Agent-sensor of
compute node; (b) Agent-sensor of simulation model; (c)
Agent of distribution; (d) Agent of migration; (e) Agent of
analyses. Each agent works in accordance to its scenario, but
together they carry out the load balancing algorithm.

More precisely: (a) The agent-sensor of compute node
permanently collects data about the state of a compute node
(computational load on the node and link capacity). (b) The
agent-sensor of simulation model permanently monitors a
simulation model during the simulation run, recording the
intensity of the exchange between the objects, the frequency of
certain events, the rate of change of variables, etc. Agent-
sensor of the simulation model uses information procedures.
The agent of analysis interacts with agents-sensors (these

agents are reactive) and decide if it is necessary to distribute
the load or not. It is a cognitive object and it uses the rules of
expert system in order to make a decision.

The agent of the distribution receives information from the
agent of analysis. The purpose of the agent of the distribution is
to define a portion of the load (it is needed to select some
objects of simulation model located on compute node) which
should be referred to other nodes in order to avoid imbalances,
and to identify the target compute node for transfer a portion of
load.

In order to identify the target node it is necessary to check
the load on the neighbor nodes. If the node with the lowest load
is not found, the distribution agent tries to find the address of
the node from its neighbors. If the load of the compute node is
less than the limit then the agent of distribution informs its
neighbors that compute node may place the additional load.
Agent of distribution is a cognitive one and it acts in
accordance to rules from the knowledge base. These rules are
defined by a modeler and are corrected during the simulation
run. The knowledge base includes the information about all
neighbors of a concrete compute node and this information
must be updated during the interaction with neighbors.

The agent of migration must transfer the selected portion of
load to a target node and perform it in optimal way.

Cognitive agents have to be adapted to the conditions
which could be changed during simulation run. For this
purpose the meta rules were designed.

The experiments show that multi-agent load balancing
subsystem reduces the time of simulation run. One can see it in
the figures 7 and 8.

Fig.7. Static and dynamic multi-agent load balancing with 4 compute
nodes.

Fig.8. Static and dynamic multi-agent load balancing with 8 compute
nodes.

101

VII. CONCLUSION

The paper discusses the problems of flexible and effective
software for computer network simulation. Authors consider
ontology approach application to automatic redefining of
simulation model and to adjusting the simulation system to the
specific domain.

Simulator TRIADNS is provided with a convenient
graphical interface. Simulator permits separate and joint
hardware and software modelling. Another distinguished
characteristic of the simulator is the ability to make a
distributed simulation experiment.

The Data Mining methods allow to simplify the analyses of
the simulation experiment results. Ontologies enable to
automate the simulation model construction and to achieve the
interoperability of the software tools (to use components
designed in the other simulation systems).

Authors suggest special optimistic algorithm and load
balancing based on knowledge in order to reduce the overall
time of simulation experiment. So software being under
consideration is effective and flexible.

REFERENCES

[1] S. Salmon, H.Elarag. Simulation Based Experiments Using Ednas: The
Event-Driven Network Аrchitecture Simulator. In Proceedings of the
2011 Winter Simulation Conference S. Jain, R.R. Creasey, J.
Himmelspach, K.P. White, and M. Fu, eds. The 2011 Winter Simulation
Conference 11-14 December 2011. Grand Arizona Resort Phoenix, AZ,
pp. 3266-3277.

[2] A.I.Mikov, E.B.Zamy0atina The simulation model technologies for big
systems investigation // In Proceedings of the Scientific Conference
"Scientific service on the Internet" – М.: MSU, 2008. С.199-204.[in
Russian]

[3] Y.Liu, Y.He. A Large-Scale Real-Time Network Simulation Study
Using Prime. M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and
R. G. Ingalls, eds. The 2009 Winter Simulation Conference 13-16
December 2009. Hilton Austin Hotel, Austin, TX, pp. 797-806.

[4] Riley, R.M. Fujimoto, M. Ammar. A Generic Framework for
Parallelization of Network Simulations‖, in Proc. 7th Int.Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 1999, p. 128-135.

[5] R.M. Fujimoto Distributed Simulation Systems. In Proceedings of the
2003 Winter Simulation Conference S. Chick, P. J. Sánchez, D. Ferrin,
and D. J. Morrice, eds. The 2003 Winter Simulation Conference 7-10
December 2003. The Fairmont New Orleans, New Orleans, LA, pp. 124-
134

[6] E. Zamyatina, S. Еrmakov. The Synchronization Algorithm of
Distributed Simulation Model in TRIAD.Net. Applicable Information
Models. ITHEA, Sofia, Bulgaria, 2011, ISBN: 978-954-16-0050-4,
pp.211-220.[in Russian]

[7] L. F. Wilson, W. Shen Experiments in load migration and dynamic load
balancing in Speedes // Proc. of the Winter simulation conf. / Ed. by D.
J. Medeiros, E. F.Watson, J. S. Carson, M. S. Manivannan. Piscataway
(New Jersey): Inst. of Electric. and Electron. Engrs, 1998. P. 487–490.

[8] G. Zheng Achieving high performance on extremely large parallel
machines: Performance prediction and load balancing: Ph.D. Thesis.
Department Comput. Sci., Univ. of Illinois at Urbana-Champaign, 2005.
165 p. [Electron. resource]. http://charm.cs.uiuc.edu/.

[9] A.I.Mikov, E.B.Zamyatina, A.A.Kozlov The Multiagent Approach to
the Equel Distribution of the Workload. Natural and Artificial
Intelligence, ITHEA, Sofia, Bulgaria, 2010, pp.173-180.

[10] L. Djinevski., S. Filiposka, D.Trajanov Network Simulator Tools and
GPU Parallel Systems. In Proceedings of Small Systems Simulation
Symposium 2012, Niš, Serbia, 12th-14th February 2012, pp.111-114

[11] W.Hu, H.S. Sarjoughian A Co-Design Modeling Approach For
Computer Network Systems. . In Proceedings of the 2007 Winter
Simulation Conference S. G. Henderson, B. Biller, M.-H. Hsieh, J.
Shortle, J. D. Tew, and R. R. Barton, eds. The 2007 Winter Simulation
Conference 9-12 December 2007 J.W. Marriott Hotel, Washington,
D.C., pp. 124-134

[12] [NS-2. 2004] The Network Simulator - NS-2. Доступно на сайте:
http://www.isi.edu/nsnam/ns [Проверено 21 марта 2012]

[13] [OPNET, 2004] OPNET Modeler. Доступно на сайте:
<http://www.opnet.com> [Проверено: 21 марта 2012]

[14] [OMNeT++, 2005] OMNeT++ Community Site. Доступно на сайте:
http://www.omnetpp.org. [Проверено: 21 марта 2012]

[15] A.I. Mikov Simulation and Design of Hardware and Software with
Triad// Proc.2nd Intl.Conf. on Electronic Hardware Description
Languages, Las Vegas, USA, 1995. pp. 15-20.

[16] R.E. Nance Distributed Simulation With Federated Models:
Expectations, Realizations And Limitations. In Proceedings of the 1999
Winter Simulation Conference. P. A. Farrington, H. B. Nembhard, D. T.
Sturrock, and G. W. Evans, eds., The 1999 Winter Simulation
Conference 5 – 8 December 1999 Squaw Peak, Phoenix, AZ, pp. 1026-
1031.

[17] P Benjamin., K.V Akella., K Malek., R Fernandes. An Ontology-Driven
Framework for Process-Oriented Applications // Proceedings of the
2005 Winter Simulation Conference / M. E. Kuhl, N. M. Steiger, F. B.
Armstrong, and J. A. Joines, eds.,– pp 2355-2363

[18] P. Benjamin.,M. Patki, R. J Mayer. Using Ontologies For Simulation
Modeling // Proceedings of the 2006 Winter Simulation Conference/ L.
F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M.
Fujimoto, eds. –pp.1161-1167

[19] A.Mikov A., E.Zamyatina, E. Kubrak. Implementation of simulation
process under incomplete knowledge using domain ontology. In
proceedings of 6-th EUROSIM Congress on modeling and Simulation.
9-14, September, 2007, Ljubljana, Slovenia, Vol.2. Full papers, 7 pp.

[20] G. Neumann, J.Tolujew , From Tracefile Analysis to Understanding the
Message of Simulation Results, proceeding of the 7th EUROSIM
Congress on Modeling and Simulation, Prague, Czechia, 2010, 7
pp.100-117

[21] T. Brady, E.Yellig, Simulation Data Mining: a new form of simulation
output, 37th Winter Simulation Conference, Orlando, USA, 2005, pp
285-289.

[22] D.Jefferson, H.Sowizral, Fast Concurrent Simulation Using the Time
Warp Mechanism, Part I: Local Control // Rand Note N-1906AF, Rand
Corp., Santa Monica, Cal., 1982

102

Application and Device Specific Slicing for MVNO
A. Nakao, P. Du

The University of Tokyo
nakao@nakao-lab.org, ping@nakao-lab.org

Abstract—In this paper, we apply the concept of
software-defined data plane to defining new services for
Mobile Virtual Network Operators (MVNOs). Although
there are a large number of MVNOs proliferating all over the
world and most of them provide low bandwidth at low price,
we propose a new busi- ness model for MVNOs and empower
them with capability of tailoring fine-grained subscription
plans that can meet users’ demands, for example allocate
abundant bandwidth for some specific applications, but the
rest of the applica- tions are limited to low bandwidth. For
this purpose, we propose application and/or device specific
slicing that clas- sify application and/or device specific traffic
into slices and apply fine-grained quality of services (QoS).
We also intro- duce various applications of our proposed
system.

Keywords—Software-Defined Networking (SDN), Network
Functions Vir- tualisation (NFV), Network Virtualization

1. INTRODUCTION
Software-Defined Networking (SDN) and Network Functions
Virtualization (NFV) have recently caught attentions from
industries as technologies for reducing capital expense (CAPEX)
and operational expense (OPEX), where software-defined
programmable network equipment dispenses with high main-
tenance cost of hardware appliances and enables rapid revi-
sions of functionalities and the automation of operation and
management (OAM) of network. While SDN primarily fo-
cuses on the programmability on the control of networking,
NFV aims at implementing data processing functions in soft-
ware on top of virtual machines (VMs) especially that exist
today as hardware network appliances. Data packets can
be programmatically redirected by SDN and can be program-
matically processed by NFV.

We have recently posited that software-defined data plane,
i.e., arbitrarily defining data plane by software program-

ming, significantly enhance the synergy between SDN and
NFV [7]. In carefully designed sandboxes such as virtual
machines inside network equipment, we should be able to
enhance the data plane functionalities, e.g., those related
to OAM, and publish the SBI for controllers to use them.
Such enhancement is only recently discussed in a few re-
search projects [1, 4]. Also, NFV is so far limited to imple-
menting network appliances in software, and deals neither
with crafting new protocols nor with OAM functionalities.
Since the current SDN’s data plane is not so much flexi-
bly programmable because it is still often implemented in
hardware, enhancing SDN with software-defined data plane
would fill the gap in the current NFV.

In this paper, we apply the concept of software-defined data
plane to defining new services for Mobile Virtual Network
Operators (MVNOs) that obtain network services from mo-
bile network operators and resell network services to cus-
tomers at their own prices without owning the wireless net-
work infrastructure on their own. There are a large number
of MVNOs proliferating all over the world and most of them
provide low bandwidth at low price. We propose a new
business model for MVNOs and empower them with capa-
bility of tailoring fine-grained subscription plans that can
meet users’ demands, for example, abundant bandwidth is
allocated for some specific applications, but the rest of the
applications are limited to low bandwidth. To this end, we
propose application and/or device specific slicing that clas-
sify application and/or device specific traffic into slices and
apply fine-grained quality of services (QoS).

The rest of the paper is organized as follows. Section 2 in-
troduces our design decisions for enabling application and/or
device specific slicing utilizing programmable software-defined
data plane. Section 3 discusses various applications of our
proposed system. Section 4 introduces our programmable
network node architecture called FLARE and shows our
preliminary prototype implementation and experiments. Fi-
nally, Section 5 briefly concludes.

2. DESIGN
This section introduces our preliminary design for applica-
tion and device specific slicing to enable Software-Defined
Networking and Network-Functions Virtualization for MVNO.

2.1 Overview
In order to realize application and/or device specific slicing,
we have designed trailer slicing [1] where meta information

103

Smartphones

Packet	 Marking	

The	 Internet	
FLARE	 Network	 (SDN/NFV	 Enabled)	

Header	 Payload	

Add app/device information to packet trailers

Trailer	

App/Device	 Informa<on	

Smartphones (wearables)

Header	 Payload	

Parse and remove “trailers” and map between flows and apps

FLARE（Deeply Programmable Node)

Header	 Payload	

Traffic Engineering based on headers

SDN Controller

MNO

SDN	 Controller	

Gateway	

MVNO Backhaul

Packet	

Parse	 and	 Remove	
Trailers	

Smartphones	 aDach	 app/device	
informa<on	 to	 packets	
FLARE	 detects	 app/device	
informa<on	 and	 creates	 mapping	
between	 flows	 and	 apps/devices	

Figure 1: Application/Device Specific Slicing

on applications and devices at the end of packets (as dis-
cussed in more detail in Section 2.3.1.) Note that in our
design, the meta-information may include many other kinds
of information, but for the sake of brevity, we limit its scope
to applications and devices within this paper.

In generic trailer slicing, each packet may carry trailer bits
containing meta information of the packet, such as from
which application process and/or from which device a packet
has been transmitted. For example, we install our software
on smartphones for capturing the very first packet an ap-
plication transmits, i.e., a TCP SYN packet when the ap-
plication establishes a TCP session, and then for attaching
trailer. In more detail, we capture the header information
of a TCP SYN packet and examine the process table and
the socket table of the operating system to look for a corre-
sponding application process that uses the flow space (such
as IP addresses and port numbers) and attach the informa-
tion regarding the application process such as a name and
status as a trailer. Note that this approach can be easily ap-
plied also any other transport protocol such as UDP. Also we
can attach device information as well as that of application.

A programmable node, e.g., FLARE (explained in 4.1) at
the gateway to the MVNO backhaul network detects the
trailer attached to the unusual TCP SYN (with non-zero
payload size) or the packet that uses a flow space for the first
time, and decodes/removes the information in the trailer. It

also observes the flow space information of the packet at
the same time and maps the information on the application
processes and that of the flow. When the SDN controller
can receive this mapping information, the subsequent pack-
ets can be controlled by the SDN switches along the route
to the destination according to the flow space information
associated with application/device information. For exam-
ple, we can perform QoS traffic control such as bandwidth
throttling for particular applications/devices using the tra-
ditional flow-based traffic control.

2.2 Filling a Gap between Application/Device
and Network Programming

Although SDN and NFV are considered useful tools for pro-
grammable networking, we observe a gap between develop-
ment of applications, services and devices, and that of pro-
grammable networking, mainly caused by the gap between
abstractions defined in two worlds.

In the current Internet, applications and services implemented
on end systems use socket interface to utilize services pro-
vided by the communication infrastructures. Since socket
interface provides clear separation between end-systems and
networking, the context of applications, services and devices
are dismissed when packets are transmitted into the net-
work. In other words, unless performing deep packet in-
spection (DPI) on packets or inferring from various charac-
teristics such as packet length and timing, it is difficult to

tell which application context sends/receives those packets.

Operating systems on top of end-systems use processes and
threads as abstraction for programming applications and
services. The current SDN networking equipment uses flow
information as abstraction for programming network. In
a sense, our proposal for application/device specific slicing
bridges the abstractions used in operating systems and pro-
grammable networking.

2.3 Slicing Mechanism
2.3.1 Trailer-Slicing
The idea of trailer slicing is to attach a slice identifier at the
end of the packets under the agreement of the existence of
such bits among the users of the infrastructure, for example
in mobile backhaul networks, at cloud data centers, and in
any other administrative domains where the agreement may
be established. As briefly explained in 2.1, a slice identifier
may not just be an explicit number, but can be the meta
information to identify a slice such as application name or
device type under the agreement.

In SDN, we have been using the header information to de-
fine a slice, specifically, so-called flow information, which is a
combination of MAC addresses, IP addresses and port num-
bers. However, when we consider cooperation between op-
erating system entities and networking, we conclude that we
should use a more straightforward identifier, such as a pro-
cess name, an application name and a device type, etc. We
can define a name space so that within the name space a slice
can be identified uniquely, e.g., com.android.google.youtube
in case of the name space for process names in the Android
operating system.

The idea of trailer slicing is similar to MPLS in that we use
bits (that can be view as label) for switching, but the differ-
ence is that the position of bits in layers and in packets and
the length of the bits. We intentionally put a slice identifier
at the end of packets. With adjustment of header fields in L3
and/or L4, we can get packets through with trailers through
the existing network equipment, since they treat trailers as
L7 data bits. Of course, we need to remove trailers before
packets reach the destination, but that should be taken care
of by the agreement of trailer slicing among administrative
domain.

One may argue that we could use header option fields instead
of a trailer for storing a slice identifier. However, there is a
risk that non-standard header options may be removed or
may cause network equipment to malfunction. Also option
fields may be in short of bits, flexibility and extensibility. To
avoid pressing header handling on the part of legacy network
equipment, we decide to use a trailer since all the network
equipment along the route of a packet treats a trailer as a
part of payload data, so it keeps preserved till it gets parsed
and removed. However, our scheme could be easily imple-
mented in header options of course, when the concerns above
are not an issue.

Note that not all packets need to carry trailers, although
such design is certainly possible. As long as we agree on
which packet in a flow carries a slice identifier, we can estab-
lish mapping between the traditional flow information and

the slice identifier in network equipment. After the mapping
is created, from then on, flow information could be used for
the slice identifier.

As an aside, there is an interesting use case of trailer slic-
ing called TagFlow [5], where we push expensive complex
classification to the edge of the network and use one field
trailer to simplify the classification at the core of network.
In TagFlow, every packet is expected to carry a trailer.

2.3.2 TCP-SYN Piggy-backing
Some may argue that piggy-backing data in TCP SYN may
render incompatibility and security issues. However, such
unusual piggy-backing is not uncommon today. For exam-
ple, Google does this in TCP Fast Open (TFO) [8] for the
different purpose than ours, where they attempt to reduce
the number of packets and the delay in three-way handshak-
ing, storing“cookies” in newly emitted TCP SYN’s payloads
for already authenticated end systems via the past three-way
handshakes.

2.4 Signaling between End-Systems and Net-
work

2.4.1 Out-of-band Signaling
Even if applications keep track of their flow information,
they need to let the SDN controller know the flow informa-
tion out of band, that is, besides the application data traffic,
they must open control channels to convey such flow infor-
mation to the SDN controller so that they may be able to
control their flows. This approach is prohibitive for a large
number of small devices such as smartphones and sensors
since it may become significant overhead for them.

2.4.2 In-band Signaling
We propose a method to modify operating systems of the
end systems such as smartphones, so that we can find ap-
plication process information and convey such information
through an in-band communication. Our prototype system
attaches the application process information as a trailer on
the part of the end systems, and decodes the information
in it then removes it on the part of the programmable node
located in the backhaul, ideally at the first hop from the
gateway from a mobile network operator (MNO). In this
way, we learn the mapping of the information on applica-
tion processes and flows and inform the SDN controller so
that subsequent nodes can just perform the conventional
flow-based traffic control.

2.5 Deep Data Plane Programmability
We should note that in order to enable application/device
specific slicing for MVNO, data-plane functionality must be
extended from the current SDN model where data-plane el-
ements have limited pattern match capabilities and too few
actions. Especially note that the manipulation of the packet
trailer at Layer 7 (L7) is largely missing from the current
SDN data-plane elements and the extension to support such
manipulation is useful to enable new applications.

3. APPLICATIONS
3.1 Traffic Engineering

105

Traffic engineering such as Quality of Service (QoS) and
route/switch control for specific applications and devices
is the immediate application of our proposal in this paper.
We can create slices according to (1) application names, (2)
application processes, (3) device types, and (4) device sta-
tus/location, etc. However, it is obviously possible to extend
a trailer to include much more information about applica-
tions, devices, the context of usage of them, etc.

3.2 Value-Add Services
After classifying application and/or device specific traffic
into slices, we can apply NFV virtual functions to perform
useful data processing such as compression and decompres-
sion and packet caching, etc. This application helps differ-
entiating competing applications such as web browsers. For
example, a certain browser can benefit from installing trans-
parent data cache near smartphones, while other browsers
may not. We expect more and more applications on smart-
phones can be empowered by small, yet smart functionalities
embedded in NFV for aiding the operations of the applica-
tions.

3.3 In-Network Security
Another interesting example application is in-network secu-
rity. Malware containment in a slice is one example appli-
cation. In our prototype, as long as malwares on the smart-
phones transmit packets, we can catch the traffic from those
processes and contain the traffic into a slice, by examining
the application process names associated with flows. Our
prototype system even raise alerts to smartphones that they
may have accidentally installed malwares on them once their
traffic get detected.

Also, in-network parental control is another example appli-
cation in the security area. Usually, parents would like to
restrict the usage of applications on their childrens’ smart-
phones by installing parental control software on them. How-
ever, in most of the cases, those applications may be removed
easily by the children. In our system, since application and
device specific traffic can be classified into a slice, we can
easily set policy and control bandwidth such traffic. For ex-
ample, the traffic from a specific application on a specific
device can be controlled on the part of network, not on the
device, for a determined period of time. The parental con-
trol enabled by this mechanism is not easily removed by the
hands of the children.

3.4 Big-Data Analysis
Neither capturing nor deeply inspecting users’ traffic are al-
lowed in several countries such as Japan. However, MVNO
operators are interested in collecting application specific band-
width usage to provide more fine-grained subscription plan.
We intentionally design our system so that the privacy of
user data (L7 payload data) may not be infringed. If users
are fine with their application usage being collected, we be-
lieve we can alleviate the dilemma between MVNOs’ de-
mands for bandwidth usage data and users’ privacy. Most
of the related work for identifying applications from the traf-
fic trace relies on deep packet inspection (DPI) of the user
data, which may not work if DPI is restricted by law or the
packet payload data is encrypted.

There are lots of MVNOs proliferating in Japan, but most
of them offer low bandwidth at cheap price, which causes
fighting for selling ever-lower-cost subscription plans among
those MVNOs. We believe an MVNO may be able to cre-
ate a fine-grained and tailored subscription plan that can
meet users’ demands, for example, provisioning bandwidth
for some specific applications, but the rest of the applica-
tions are limited to low bandwidth. In order to come up
with viable subscription plans, application traffic analysis
becomes a key.

4. PRELIMINARY EVALUATION
4.1 FLARE
FLARE is a deeply programmable network node architec-
ture [1] utilizing a hybrid of computational resources, such
as network processors, general purpose processors, (and op-
tionally GPGPU) hierarchically to extend data plane pro-
cessing functions easily by software program.

FLARE tackles three research challenges, (1) ease of pro-
gramming, (2) reasonable and predictable performance, and
(3) enabling multiple concurrent isolated logics. For (1),
we introduce Toy-Block networking programming model [6]
to facilitate drag and drop data plane programming. For
(2), we combine of high-frequency small-number-core pro-
cessors for control and management functionalities, and low-
frequency many-core processors for massively parallel pro-
cessing for a large number of flows. And finally, for (3), we
employ a lightweight resource virtualization technique called
resource container for isolation of multiple logics. For the
best isolation, we decide to partition many cores into groups
and deploy a resource container per group.

The goal of FLARE is similar in spirit to that of OpenDat-
aPlane [3], especially in that the purpose is to flexibly and
easily extend data plane. However, the key difference is that
we consider isolation of resources to support multiple con-
current data plane logics via virtualization. For example,
FLARE program multiple concurrent logics such as Open-
Flow 1.0 and OpenFlow 1.3 data plane elements in isolated
execution environments.

4.2 Preliminary Prototyping and Experiments
Utilizing FLARE prototypes, we have implemented our pro-
totype system to enable application and/or device specific
slicing for MVNO as shown in the overview of our design
depicted in Section 2.1. We have developed Android smart-
phone software to enable trailer slicing, i.e., embedding a
slice identifier at the trailer of TCP SYN packets and QoS
traffic engineering per slice on our FLARE platform [1]. We
have discovered that we can use TCP SYN trailers unless
ISPs do not filter unusual TCP SYN in fear of SYN Flood-
ing, which is not really performed in most MVNO services
of today.

In implementing our prototype, we reconsider southbound
API (SBI) for your application. As reviewed in Section 2.2,
we believe application users and developers, process-based
traffic control is more natural than flow-based one. Extend-
ing the Openflow model, the right abstraction for program-
ming in this case may be one such as,

106

<Application/Device><Action><Stat>,

instead of

<Flow><Action><Stat>,

although we may not have to follow OpenFlow’s convention
for programming abstraction and also one could rather de-
fine one’s own programming abstraction, as long as it is open
and published as an API.

We also jointly operate our prototype system with an ISP in
Japan with 40 Android phones and successfully demonstrate
our prototype system works on top of an MVNO. We plan to
extend our experiments to enable various application ideas
shown in Section 3. Note that the same prototype but with
WiFi network has been demonstrated successfully at vari-
ous venues such as GEC20 [2]. We believe that empowering
MVNOs with application/device specific traffic engineering
would become the norm of the next generation MVNO busi-
ness.

5. CONCLUSION
Our contributions in this paper are four-fold.

First, we propose application and/or device specific slicing
applying the concept of software-defined data plane to defin-
ing new services for MVNOs. More specifically, we use
software-defined deeply programmable data plane to handle
trailer bits to attach a slice identifier, so that we can clas-
sify application and/or device specific traffic into slices and
apply fine-grained quality of services (QoS). Most MVNOs
of today provide low bandwidth at low price and thus, they
are forced into fighting for the market with ever-lower-cost
subscription plans. However, low flat-rate bandwidth ser-
vices may not be attractive to users any more, since cer-
tain applications, such as a YouTube browser needs more
bandwidth than low flat-rate bandwidth. Our solution can
provide pay-as-you-go bandwidth services for a specific set
of applications of customers’ choice, and low flat-rate band-
width services for the rest of applications. We expect our
proposed system change business models of MVNOs and en-
hance the market of the MVNO business.

Second, we also introduce various applications of our pro-
posed system, e.g., (1) traffic engineering based on applica-
tion names, application processes, device types, and device
status/location etc., (2) value-add services for specific ap-
plications and devices such as acceleration of content access
and traffic reduction through compression/decompression
and packet caching, (3) realizing in-network security such
as malwares containment in a slice, and in-network parental
control, and finally (4) big-data analysis to improve the
bandwidth utilization according to the statistical usage of
applications and devices.

Third, our contribution includes not only providing new ser-
vices for MVNOs, but also pointing out a compelling use
case of software defined data plane, which is extended from
the current SDN and NFV for allowing one (1) to define use-
ful data processing within data plane in SDN and (2) to pub-
lish the access method to them as a (sub)set of southbound

interface (SBI). We strongly believe that there are more and
more useful use cases of software-defined data plane.

At last, another contribution is, while most people are pay-
ing attention to OPEX/CAPEX reduction in SDN/NFV, we
attempt to create new values out of applications of SDN/NFV.
For this, we believe that it is important to think application-
driven programmable networking where starting from the ap-
plication that cannot be built without the help from the
in-network functions, i.e., the network functions embedded
inside the data plane of SDN solution. Developing generic
infrastructure to accommodate all the applications, that is,
bottom-up approach may not correctly define APIs. It is
important to think top-down, from applications that do not
exist today due to the limitation in the network, down to
defining what are necessary inside the data plane of SDN.

We strongly believe that enabling deeper programmability
in SDN data-plane with ease of programming and reasonable
performance surely open the door to bringing more innova-
tions.

6. REFERENCES
[1] Flare: Deeply programmable network node

architecture.
http://netseminar.stanford.edu/10_18_12.html.

[2] Geni engineering conference 20. http://groups.geni.
net/geni/wiki/GEC20Agenda/EveningDemoSession.

[3] Opendataplane. http://www.opendataplane.org.

[4] Protocol oblivious forwarding.
http://www.poforwarding.org.

[5] H. Farhady and A. Nakao. Tagflow: Efficient flow
classification in sdn. IEICE Transactions on
Communications, 97(11), 2014.

[6] M. Fukushima, Y. Yoshida, A. Tagami, S. Yamamoto,
and A. Nakao. Toy block networking: Easily deploying
diverse network functions in programmable networks. In
Proceedings of ADMNET Workshop, COMSAC, 2014.

[7] A. Nakao. Software-defined data plane enhancing sdn
and nfv. Special Section on Quality of Diversifying
Communication Networks and Services, IEICE
Transactions on Communications, to appear, 2014.

[8] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and
B. Raghavan. Tcp fast open. In Proceedings of the 7th
International Conference on emerging Networking
EXperiments and Technologies (CoNEXT), 2011.

107

 A Stateless Transport Protocol in Software Defined

Networks*

 M. Nikitinskiy

System analyst, programmer

A-Real Group, Energia-Info Inc.

Yaroslavl, Russia

man@a-real.ru

 I. Alekseev

Director of the Internet Center

P. G. Demidov Yaroslavl State University

Yaroslavl, Russia

aiv@yars.free.net

Abstract — Network traffic balancing is one of the major

factors of building scalable and robust service oriented

communication networks. A plethora of algorithms for traffic

balancing exists for classical network architecture and for

software-defined networks. Having spotted certain deficiencies of

existing methods, we are presently developing a stateless

transport protocol, one of key features of which is the possibility

to use anycast for concurrent connection with several servers. In

this article, we consider various methods of a stateless protocol

application for enhancing traffic balancing in software-defined

networks.

Keywords — software-defined networking; asymmetric transport

protocol; balancing algorithm; Internet Control Server;

NewTrickles; Internet gateway

I. INTRODUCTION

Every year more and more companies and developers join
the arena of software defined network (SDN) technologies.
This happens due need to achieve significant economic
benefit to organization by applying the SDN approach
construction corporate network infrastructure. Financial
component of savings expressed in reducing the cost of
network equipment, energy consumption, as well as reduction
of the number of staff serving the enterprise network
infrastructure. The leading organizations in the development
of SDN include CISCO SYSTEMS, International Business
Machines, Hewlett-Packard, Nippon Electronics Corporation
and others.

It may seem in general, that vast area of research can
described as development of a universal controller for SDN.
Equally, important parts are switching technology and
operating communication protocols. The latter play the most
important role for operation of the network end nodes. Due to
the increasing number of mobile devices, massive data
processing systems, virtualization and cloud systems, as well
as sensor networks arises the problem of efficient protocols
directly operating at the network end nodes and the creation
of new algorithms for balancing network traffic. One
approach to solving this problem is to use the transport
protocol we developed, which controls the connection settings
and stores its state at only one end node. Thus, it is possible to

use new ways of balancing network traffic.

II. LOAD-BALANCING ALGORITHMS FOR SDN

Aster * x [2]. Developed at Stanford University
specifically for NoX SDN controller. The algorithm based on
the idea of balancing the type of traffic (for example, all http
requests on a specific port are routed in pre-defined way).
Aster * x also has the ability to disable balancing for certain
types of queries.

In [3] authors proposed and evaluated a novel load
balancing mechanism leveraged by flow admission control.
Seamless connectivity enabled with SDN is the bottom-line of
their work which ultimately offloads core network, maximizes
the per-flow capacity, and enhances the end-user experience
by means of reduced waiting time and drop-rate. Most
strikingly, the results revealed that probabilistic approach has
reduced unsatisfied-user percentage almost by five times.
Their model reveals a 237% of improvement in terms of per-
flow resource allocation. Furthermore, they have noticed a
drastic reduction of drop-rate (300%) compared to the
analytical model and almost 520% of reduction compared to
no load-balancing. Overall, their findings in this paper have
elaborated the ultimate gain of load balancing in the SDN
context and verified the results based on an analytical model.

Mentioned above are just some balancing algorithms. If we
consider all of the algorithms, it is necessary to classify their
intended use: energy saving, support of Quality of Service
(QoS), for mobile solutions, for heavily loaded systems,
trivial. Moreover, balancing algorithms can be divided into
proactive (when balancing rules are set in advance) and
reactive (rules are set for each newcomer flow). In this article,
we consider the case of proactive balancing algorithm at the
level of L4 for heavily loaded servers.

III. ASYMMETRIC TRANSPORT PROTOCOL

The main task of transmission control protocol (TCP) is a
reliable and efficient data transfer between end systems
through unreliable transmission medium - the

*The work was fulfilled at financial support of the Ministry of Education
and Science of the Russian Federation, unique ID RFMEFI57614X0105.

108

communications network that can lose, reorder, and distort the
transmitted data. For simplicity, we assume that the
transmission is in one direction, and call the server side,
transmit data, and the client - the host. In addition, each byte
of data transmitted uniquely numbered increasing sequence
numbers. Data reliability is ensured through a mechanism of
cumulative acknowledgement - the successful receipt of each
piece of data (which is also called a segment), transmitted to
the server needs to be validated by the client. In that case, if a
confirmation for a certain time has not come, the server
retransmits the data [4, 5]. The transmission strategy is to
utilize all available resources of the communication network,
not allowing its unnecessary downtime and possible overload.
On the other hand, to ensure reliable and efficient data
transfer server and client are required to maintain the
connection information before it is completed. For this
purpose, the transmission control block (TCB) containing
numbers of local and foreign socket, flags and priority of
security for this connection, pointers send and receive buffers,
pointers and the current segment retransmission queue used
both at server and at client. Such a distributed organization of
interaction between server and client leads to the following
problems:

 For storage and processing of connection, status
resources are required on both server and client side.

 Number of simultaneously connected clients to a
server, is limited due to limited resources.

 There is possibility of Distributed Denial of Service
(DDoS)-attacks on a server, which may cause
undesired operation of the server.

Thus, the problem arises of modifying the transport
protocol for more efficient operation directly in the final
nodes of the network as possible without significantly
reducing the performance of data transmission. One approach
to solving this problem is a protocol Trickles.

The Trickles protocol was proposed in 2005 at Cornell
University, USA [6].The main difference of Trickles protocol
from TCP protocols is keeping of all of control parameters on
the client side, while the backend does not store information
about the transport connection. Transport protocol operating
on this principle from server to client will be called
asymmetric protocol or unallocated connection state.

Trickles protocol server completely mimics the server
TCP New Reno [7]. To control the connection, the server
must have Trickles control information, but since it does not
store its information on the connection status, client sends it
in each new segment (Fig. 1). After processing the request,
the server closes the connection.

Fig. 1. Trickles segment.

Trickles connection consists of client requests and server
responses to the client and at the same time there may be
several such requests. We will call the continuation of flow

(continuation) segment, the segment travelling from server to
client and back. Consistent continuation flow forms an
elementary stream (trickle). Thus, we can say that during the
data transfer parallel operation of several elementary streams
(Fig. 2) occur. During transit in the network, each elementary
stream is independent of the other elementary streams, their
synchronization only occurs at the client side.

Fig. 2. Continuation and trickle

We describe flow control algorithm of Trickles protocol,
since this part of the protocol has greatest influence on its
performance. This algorithm runs for each elementary stream
in the sense that when a segment belonging to a certain flow is
in transit, it stores all the necessary parameters. At the same
time server part of the protocol converts these parameters and
takes further actions to control elementary streams. When a
segment arrives at the server, there are three possible
scenarios: the server sends a segment with the data in response
to a request by continuing stream; server increases the number
of elementary streams; server destroys the flow, not sending
anything in response to the request. Since one elementary
stream in the network is represented by one segment, the
number of running elementary streams is a current assessment
of network bandwidth by the protocol.

Mechanism of elementary streams management has three
modes; this mechanism seeks to comply with a similar
algorithm in TCP New Reno: slow start / congestion
avoidance, fast recovery and retransmit timeout.

In the slow start / congestion avoidance, Trickles server [6]
associates with each packet its request number k, and decides
whether to continue the flow or separate it using TCPCwnd
(k) function.

Transition to fast recovery mode is done by the client
because the server does not store information about the state
of the connection. Client received packets with numbers k+1
and k+2 believes that the package number k was lost and
sends the server requests where SACK-blocks[9] not contain
the number of k. Server receives such a request, halves the
amount of trickle in the network. If the request is numbered k
+1 and SACK-block does not contain a number k, then the
server sends back the lost packet with the number k. After
receiving confirmation that the loss has been restored, the
server recalculates the control connection parameters and
sends them to the client. Client received new connection
settings, believes that fast recovery mode is finished, set the
new connection settings and enters the slow start / congestion
avoidance. Thus, fast recovery mode duration is equal to two
Round Trip Time (RTT).

If there are two or more losses, the client enters Trickles
retransmit timeout. Thus, the server, receiving a package
wherein the SACK-unit has two or more loss terminates
inbound trickle. Once triggered by retransmission timer, the
client sends a request to restore any lost segments. Having

109

recovered all the losses the client changes the control
parameters and connections enters slow start / congestion.

This change in the pattern of the transport protocol has
several advantages:

 The server part can be replicated across multiple
physical devices, as transmitted segments contain all
necessary information about the connection (i.e., there
is an opportunity to work with several copies of the
same server).

 Increased number of clients because there is no more
need to keep detailed information about the
connections.

 In mobile networks, it is possible to transfer transport
connection from one network to another, which is a
challenge when using the classical TCP.

 Increased resistance to DDoS-attacks.

It is evident that the class of asymmetric protocols can
facilitate the operation of heavily loaded server that was
shown in [6]. However, this work is not a comprehensive
analysis of Trickles protocol performance, which is an
important task in the development of any transport protocol.

Most methodologies of performance analysis of transport
protocols are a simulation-based or an implementation as a
part of the operation system. We have chosen a simulation-
based analysis, since there exists the ns-2 [10] system which
contains a fair number of built-in models of various TCP
protocol versions. The ns-2 system is a de-facto standard for
the performance analysis of protocols.

The ns-2 [10] system uses an object-oriented approach.
The kernel of the system is implemented in C++ and network
models must be implemented in OTcl. This approach, which
involves the usage of two programming languages, is based on
two reasons: first, models must be executed fast and C++
usage helps us to achieve it; second, models must be
developed quickly, so the scripting nature of OTcl is helpful to
us in doing it.

The central concept of the ns-2 system is the agent which
is an entity executing on the endpoint. The Trickles protocol
model is an example of a such an agent in the experiments.
Typical workflow of the transport protocol model construction
is the following procedure:

 Implement a packet model for the protocol
introduced.

 Implement an agent C++ class, which models the
protocol. For the sake of simplicity, most transport
protocols are modeled with two kinds of agent: first
one acts as a server, and the second one as a client.

 The C++ language is used for implementing packet
and agent models. The final step is to provide OTcl
bindings, so the model is available for experiments.

Our implementation of the Trickles protocol packet is
based on the variant proposed in [6].

In the ns-2 system the parent class of all agents, the Agent
class, encapsulates virtual methods which model the packet
processing and triggering time-outs. The Trickles server
model is implemented by deriving from the parent class Agent
and redefining only the virtual Agent :: recv() method. The
method accepts an incoming packet which contains the client
request and immediately sends a response. The workflow for
the client implementation is the same except for the fact that
now we have to redefine the virtual Agent :: timeout() method
for modeling time-outs.

Fig. 3. Network configuration which is used for experiments.

IV. EXPERIMENTAL RESULTS

After a thorough analysis of the paper [6] we have
implemented the original model of the Trickles protocol. This
model was used for constructing the network model, which is
shown in Fig. 3. This network contains two intermediate nodes
N0 and N1, each of which has a queue with the maximum size
of 50 segments. The segment size is 1540 bytes. Traffic is
transmitted from nodes, which are labelled as servers to nodes,
which are labelled as clients. Acknowledgements are
transmitted in the opposite direction.

We are interested in the performance of the protocol
instances which are shown in Fig. 3 as TCP1 Server,…, TCPM
Server. These instances are variants of transport protocols
under consideration including built-in ns-2 models: TCP
Reno, TCP SACK, TCP Vegas, TCP NewReno which were
compared with the original Trickles model. During every
experiment, we simulate 600 seconds long data transfer. In
addition to competition of TCP1 Server,…, TCPM Server
protocol instances for network resources there exists a traffic
which discomforts acknowledgement transmission process.
This traffic is generated by ten instances of TCP NewReno
protocol. They start at the same time and transmit data from
150 to 300 seconds and from 450 to 600 seconds of the model
time. The experiment has two parameters. First, one is M, the
number of working protocol instances; M is changed from 10
to 50 with step 1. The second parameter r is the delay for data
link between nodes N0 and N1. The delay is changed from 10
to 120 ms with the step 10 ms.

We calculate two performance metrics. The goodput
metric shows us how much data were transferred from a server
to a client, and can be calculated for a single connection as
follows:

goodput = (send_data - retransmitted_data) / t,

where send_data is the total amount of data segments
which were transferred by the protocol, retransmitted_data is
the number of retransmitted segments, and t is the time of the

110

Fig. 4. Results of experiments. Goodput values are on the left side, Jain fairness index values are on the right side.

111

experiment. The second performance metric is the Jain
fairness index [11], which can be calculated as follows:

where bi is a goodput of i-th connection and M is the total
number of connections which share the same networking
resource.

The experimental results are shown in Fig. 4. The y axis
shows the total goodput of all connections in the experiment
and the x axis is the value of the delay r between nodes N0 and
N1. As we can see, the Trickles protocol transmitted the
comparable to other protocols amount of data. The Jain
fairness index shows that Trickless share network resources
quite fairly. Thus, experimental results show us that the
Trickles protocol is a quite efficient transport protocol in
comparison with common variants of the TCP protocol.
However, the experiments indicated some shortcomings of
Trickles protocol, mainly its instability.

V. NEWTRICKLES AND SDN

Analysis of data obtained during the experiments showed
that the fast recovery mode works for time equal to 2 * RTT in
Trickles protocol, whereas in most versions of TCP, this mode
works for time equal to RTT [12]. Therefore, for large values
of RTT, or a large number of trickles, the probability of packet
loss and frequent retransmit timeout transition becomes
critical, which in turn affects the performance of the transport
protocol in general.

We proposed a new algorithm of the fast recovery mode
for asymmetric protocols. Transition to fast recovery mode is
done by the client. Client received packets with numbers k+1
and k+2 believes that the package number k was lost. It
regenerates the lost data request and sends it. This ensures
compatibility of our algorithm with the Trickles protocol, in
contrast to which the client decides to reduce the amount of
trickle's network. When resent segment arrives, the client
calculates the new connection settings and enters the slow start
/ congestion avoidance. Thus, we get recovery time equal to
RTT. Other modes work as in the Trickles protocol.

We have proposed and developed a model of asymmetric
transport protocol that uses this recovery algorithm, which we
called - NewTrickles. This model has all the advantages of
Trickles protocol, and also reduces the load on the
communication network, and reduces the number of
calculations run on the server and has recovery time equal to
the RTT. Currently NewTrickles is being modeled in the
network simulator.

Explosive growth in the number of network applications
and devices in recent years has led us to the fact that it is
necessary not only store information, but also have a copy of it
on the network. Since asymmetric protocol does not require a
rigid connection to the server, the method using anycast
(delivery to any nearest) can simultaneously work with

duplicates of a single server. Such interaction of server with
client gives:

 More balanced load on the network that will be able to
reduce the number of dropped segments in the network.

 Reducing the workload of servers and increase the
number of clients due to the uniform redistribution of
requests.

 Immunity to DDoS-attacks.

Now, we see two variants of the application of asymmetric
protocols with SDN technology. The first involves the
introduction of new rules on OpenFlow switches and in
OpenFlow protocol. It is assumed that if the controller,
inspecting the first packet consisting new flow, sees the
reference to asymmetric protocol or application of anycast, the
packet will be assigned to asymmetric protocol class. Then the
controller will need to invoke anycast method on the switch /
switches for the current flow. To implement this a specific
option should be added in the operation of the OpenFlow
protocol, as well as network equipment to support the change.
We do not have the possibility of changing hardware or
protocol specifications.

Second application, presumes existence of network edge
device, which is able to assess the network bandwidth,
network latency and dynamically adapt to the changing
situation in the network, and the ability to split incoming
stream into two. An SDN border gateway can be used in this
role. In this case, the gateway must use the SDN controller as
a tool for managing communication channels between clients
and servers. Applying asymmetric transport protocol for
clients and servers in the network SDN, we obtain an
additional tool for balancing SDN, as well as improve its
resiliency.

VI. CONCLUSION

In this paper we describe the principles of asymmetric
transport protocol called Trickles. Considered it an advantage
over using TCP. Learned the basic principles of creating a
protocol model in the ns-2. Shown results of one of the
experiments, and identified the main drawback of the protocol
Trickles. On the basis of the identified deficiencies have
developed a new mechanism of fast recovery. At the moment,
we have created a module asymmetric transport protocol
NewTrickles for network simulator.

At present, we are cooperating closely with the developers
of the universal Internet gateway “Internet Control Server”
produced by “A-Real Consulting” Inc. This gateway provides
the following features: firewall, proxy server, mail server,
built-in virus scanner, supports VoIP, multi-level traffic
filtering, DNS, DHCP and various traffic counters. We expect
to develop functions linking this universal Internet gateway
with SDN controller, providing efficient solution for small and
medium enterprises. This solution will provide all the
necessary functionality to the enterprise, and the use of an
asymmetric protocol for the relationship of clients and servers,

112

will further increase efficiency and stability of an SDN
network managed by this solution.

REFERENCES

[1] Brandon Heller, Srini Seetharaman, Priya Mahadevan, Yiannis
Yiakoumis, Puneet Sharma, Sujata Banerjee, and Nick McKeown.
Elastictree: saving energy in data center networks. In Proceedings of the
7th USENIX conference on Networked systems design and
implementation, NSDI'10, pages 17-17, Berkeley, CA, USA, 2010.
USENIX Association.

[2] N. Handigol, S. Seetharaman, M. Flajslik, R. Johari, and N. McKeown.
Aster*x: Load-balancing as a network primitive. 9th GENI Engineering
Conference (Plenary), November 2010.

[3] Suneth Namal, Ijaz Ahmad, Andrei Gurtov, Mika Ylianttila. SDN Based
Inter-Technology Load Balancing Leveraged by Flow Admission
Control. Future Network and Services (SDN4FNS), 2013 IEEE , pages
1-5.

[4] Transmission Control Protocol. DARPA Internet Program. Protocol
Specification // RFC793,September, 1981. Web site: www.rfc-editor.org

[5] Paxson V., Allman M. Computing TCP's Retransmission Timer //
RFC2988,November, 2000. Web site: www.rfc-editor.org

[6] Shieh, A., Myers, A. C., Sirer, E. G. A stateless approach to connection-
oriented protocols // ACM Trans. Comput. Syst. 26, 3, Article 8
(September 2008), 50 pages.

[7] Floyd S., Henderson T., Gurtov A. The NewReno Modification to TCP's
Fast Recovery Algorithm // RFC3782, April, 2004. Web site: www.rfc-
editor.org

[8] M.A. Nikitinskiy, D.Ju. Chalyy. Performance analysis of trickles and
TCP transport protocols under high-load network conditions //
Automatic Control and Computer Sciences. December 2013, volume 47,
issue 7, pp 359-365.

[9] Floyd S., Mahdavi J., Mathis M., Podolsky M. An Extension to the
Selective Acknowledgement (SACK) Option for TCP // RFC2883, July,
2000. Web site: www.rfc-editor.org

[10] S. McCanne and S. Floyd. ns Network Simulator //
http://www.isi.edu/nsnam/ns/

[11] Jain R. The art of computer systems performance analysis. // Jon Wiley
and Sons, 1991.

[12] Nikitinskiy M.A., Novyy analogovyy algoritm vosstanovleniya dlya
assimetrichnykh transportnykh protokolov // Tendentsii razvitiya
prikladnoy informatiki: Sbornik statey po itogam mezhdunarodnoy
nauchno-prakticheskoy konferentsii. Yaroslavl', 2013. S. 234-238 [in
Russian]

113

http://www.rfc-editor.org/
http://www.rfc-editor.org/
http://link.springer.com/journal/11950/47/7/page/1
http://www.rfc-editor.org/
http://www.isi.edu/nsnam/ns/

Controller Failover for SDN Enterprise Networks

V. Pashkov, A. Shalimov, R. Smeliansky

Lomonosov Moscow State University,

Applied Research Center for

Computer Networks

Moscow, Russia

pashkov@lvk.cs.msu.su, ashalimov@lvk.cs.msu.su, smel@cs.msu.su

Abstract—In SDN network based on OpenFlow a controller

performs logically centralized control of enterprise network

infrastructure, network policies, and data flows. At the same time

the controller is a single point of failure which can cause a very

serious problem (e.g. network outage) for network reliability and

production use cases. To address this problem, we consider

different active/standby strategies to provide a controller failover

in case of controller failure. We propose a high-available

controller (HAC) architecture, which allows to deploy a high-

availability control plane for enterprise networks. We develop a

HAC prototype to demonstrate the efficiency of our solution and

also describe initial experimental results.

Keywords—Software-Defined Networking; Control Plane

Design; Controller Architecture; Fault-Tolerance; Redundancy.

I. INTRODUCTION

SDN is a new approach in networking, which significantly
improves the programmability and flexibility of network
management, simplifies the logic of network devices and
reduces the cost of the network infrastructure deployment and
the cost of its maintenance in comparison with traditional
approaches [1, 2]. SDN separates the control plane and the data
plane, which enables their independent deployment, scalability
and maintenance. SDN involves centralized management of
network infrastructure and data flows, but this approach can
lead to network resilience and scalability problems.

The control plane can be deployed on one or several SDN
controllers, which is running on dedicated servers [3]. The set
of hardware and software components for providing of
centralized network management in SDN is a control platform.
The controller supports an actual global network view (GNV),
which is stored in its network information base (NIB). Using
network view controller applications control network devices
states and data flows. That is why SDN network performance,
reliability and scalability is defined by control platform
characteristics.

In spite of the SDN advantages, one of the serious problems
of SDN is that the controller is a critical point of failure and,
therefore, the controller decreases overall network availability.
A Controller failure can be caused by various reasons: failure
of the server where a controller is running, the server operating
system failure, power outage, abnormal termination of the
controller process, network application failure, network attacks
on the controller and many others.

In this paper we address to control plane for OpenFlow
networks, as the one of the most promising implementations of
SDN approach [4]. OpenFlow protocol is the open interface
between the control plane and the data plane. The control plane
in OpenFlow includes a controller (or NOS — network
operating system) to monitor and control the state of OpenFlow
switches, a set of network applications for network traffic and
policy management, OpenFlow communication channels
between the controller and switches and OpenFlow protocol for
their interaction. OpenFlow controller can install rules in
OpenFlow switches for data flows supporting predictive,
reactive, and proactive or hybrid flow installation modes.

At the present time there are about 30 different OpenFlow
controller implementations [5, 6]: NOX, POX, Beacon, MUL,
Floodlight and the others. However most of them do not
support the control plane restoration mechanisms in the case of
controller failure. Only distributed control platforms Onix [7],
Kandoo [8] and some proprietary controllers with OpenFlow
1.0 [4] support restoration procedure in case of a controller
failure. Thus, a controller failure in the control plane of
SDN/OpenFlow is a pressing issue.

 An approach for improving the SDN control plane
availability in case of a controller failure in the enterprise
software-defined networks is presented in the paper.

In summary, in this paper the following points are
presented:

 comparative analysis of the different active/standby
strategies to provide a controller failover;

 a fault-tolerant control plane architecture for enterprise
software-defined networks;

 a High-Available Controller (HAC) architecture that
provides the network ability to fast recovery of the
control plane;

 the control recovery procedure and the procedure for
network view synchronization between active and
standby controller instances;

 the HAC prototype implementation with supporting
OpenFlow version 1.3.

This research is supported by the Skolkovo Foundation Grant N 79,
July, 2012 and the Ministry of education and science of
the Russian Federation, Unique ID RFMEFI60914X0003

114

II. BACKGROUND

A. Typical SDN controller architecture

A typical SDN/OpenFlow controller [6, 9, 10 and 11]
includes:

 Controller core which handles and supports
connectivity with switches and translates control
protocol messages (e.g. OpenFlow) into internal
controller events and vice versa.

 Controller network services which control, form and
monitor network view, states of network devices,
provide an interface (Northbound API) for controller
applications. Usually network services include event
dispatching, device managing, topology managing and
the others.

 Controller network applications which configure
network infrastructure and manage data flows to solve
some business use cases.

The interaction between Network, controller services and
applications is based on the publish-subscribe model.

B. Active/Standby strategies analysis for control platform

Let us consider the basic redundancy approaches to
improve control platform availability for enterprise software-
defined networks. The controllers can be active or standby
mode in the control plane. An active controller directly
receives and processes OpenFlow messages from network
devices. A standby controller duplicates the functionality of the
active controller, but receives and processes OpenFlow
messages from network devices only in case of active
controller failure. The number of standby controllers may be
increased to tolerate more than one failure at a time. The
primary controller for a network segment is a controller which
configures network devices of its segment and installs the rules
for data flows in this segment.

There are active/standby strategies and active/active
strategies for controller redundancy. In case of active/standby
strategies control platform has only one active primary
controller. In case of active/active strategies control platform
can have multiple active controllers. But in this paper we
consider only active/standby strategies with one active primary
controller in the control plane.

In case of primary controller failure the standby controller
automatically takes over network infrastructure control and
data flows management. This procedure is called controller
failover. Controller failback is the reverse procedure to
failover. This procedure is used when the primary controller is
restored.

The active/standby strategies based on the operational
status of standby controllers (switch on/off and loading on/off
before the start of work) and failover transparency are:

 no standby;

 cold standby;

 warm standby;

 hot standby.

«No standby» strategy. The control plane has a single
active primary controller without standby controllers
connectivity. In case of primary controller failure the network
administrator manually resets the controller or replaces it.
Thus, the control plane recovery time is significant and
unpredictable and depends on the efficiency of support service.

«Cold standby» strategy. The control plane has an
additional unloaded server connected to a server of the primary
controller. The «cold standby» strategy uses automatically
failover procedure. The standby controller is stateless. In case
of primary controller failure a standby server runs the standby
controller and its services and applications (including topology
discovery service to form network view) from scratch. This
strategy is preferable to use for stateless services and
applications. Recovery time is determined by the controller
start and time to restore the actual standby controller state.

In the case of cold standby strategy a redundancy hardware
component is often unloaded, that is why it can be used for any
optional extra work: for testing, debugging, maintenance and
other services (e.g. testing of the new versions of controller
network services and applications).

«Warm standby» strategy includes periodically primary
controller state replication to standby controllers and
automatically failover procedure. The «warm standby» strategy
is usually provided by hardware and software redundancy. In
case of primary controller failure the standby controller
replaces a failed controller and continues to operate on the
basis of its previous state. Control plane services for network
devices are interrupted and some state is getting lost. The lost
part of the control plane state is those state changes which were
between the last state synchronization procedure and the
primary controller failure.

«Hot standby» strategy includes full state synchronization
of the primary and standby controllers and automatically
failover procedure. No loss of the controller state provides the
minimum recovery time. State of the primary controller is
replicated to the standby controller for any change in it. In case
of primary controller failure the standby controller replaces a
failed controller and continues basing on the current state. The
«hot standby» strategy is implemented by software and
hardware redundancy.

TABLE I. COMPARATIVE ANALYSIS OF THE ACTIVE/STANDBY

STRATEGIES

Criterion
Active/Standby strategies

No Cold Warm Hot

Redundancy hardware hardware
hardware

and

software

hardware
and

software

Active
controllers

1 1 1 1

Failover

procedure
manually

auto-

matically

auto-

matically

auto-

matically

State loss
complete

loss of

the state

complete
loss of the

state

partial loss

of the state

without
loss of the

state

State and no no regularly up-to-date

115

Criterion
Active/Standby strategies

No Cold Warm Hot

data syncro-

nization

(any

change)

Redundancy
rate

1 1+N 1+N 1+N

Failover
time

unpre-
dictable

from

minutes to

seconds

seconds

from

seconds to
mille-

seconds

Cost
no cost to
low cost

moderate
moderate to

high
moderate to

high

Network

user impact
high moderate low none

C. Key metrics

Key metrics which characterize a fault-tolerant control
platform are the following:

Controller redundancy degree is a number of standby
controller instances included in the control platform. It
determines the cost of the control platform and the number of
failures that can be avoided.

Controller delay in the worst case is the maximum delay
for processing the network device flow installation request by
the controller which is attained in the control recovery process.

Controller failover time is the time during which network
device requests can be lost due to absence of the primary
controller in the network, i.e. the time during which the
network is not the primary controller.

Thus, the SDN control platform should have controller
redundancy degree at least one, delay in the worst case no more
than 150 milliseconds as recommended maximum time delay
for services. Failover time should be as low and close to zero.

D. Fault-Tolerant control plane requirements

To support redundant controllers the control platform must
meet the following requirements:

 there are to be at least two servers;

 identical hardware and software server configuration;

 internal network between servers to decouple control
platform communications from OpenFlow
communication channels and for accessing to data
store;

 each server must have access to SDN network segment
with independent links;

 identical controller instances (with identical versions of
controller network services and applications).

These requirements are due to the following reasons:

 to avoid single point of failure;

 standby controller must have sufficient computing
resources for network infrastructure and data flows
management in case of primary controller failure;

 standby controller must provide the same set of
functions as the primary controller.

III. PROPOSED APPROACH

A. Proposal

Since we have previously discussed the active/standby
strategies it is very important to define controller state.

Controller state includes states of controller services and
applications, event queue state, controller network view and
controller data. The state of the controller service or application
includes values of internal service/application significant
variables.

Service/application snapshot is a service/application state at
a particular time. Controller snapshot is controller services and
applications snapshots and current network view.

For solving the controller failure issue using active/standby
strategies we need to define the basic modes for control
platform: an initial mode which describes the order of launch
controller instances, an operational mode which describes
controller instances synchronization procedure and a primary
controller failure mode which describes failure detection and
failover procedures.

Initial controller mode. Running the primary controller of
the control plane:

 The controller starts in accordance with the
configuration file.

 The controller launches a timer for connecting standby
controllers.

Running the standby controller of control plane:

 The controller starts in accordance with the
configuration file.

 Standby controller establishes a connection to the
primary controller via the internal control network
between controllers.

 Standby controller requests a list of network services
and applications of the primary controller and launches
a similar set of applications and services.

 Standby controller requests the current Network view
and network interfaces list for control channels
connections, current states of network services and
applications.

 Standby controller launches primary controller state
monitoring service.

Operational controller mode. In this mode primary
controller processes OpenFlow messages from network devices
and controls network data flows, the standby controllers
monitor the primary controller state and synchronize with it.

Controllers state synchronization includes:

 network view synchronization;

 controller network services and applications states
synchronization;

 controller data synchronization.

116

In this paper we use two strategies for controllers.

For network view redundancy and synchronization we use
hot active/standby strategy. Primary controller pushes up each
network view change to all standby controllers.

For controller network services and application redundancy
and synchronization we use warm active/standby strategy.
Primary controller periodically or conditionally pushes up
snapshots of services and applications to all standby
controllers.

For controller data synchronization we use reliable shared
data storage between controllers.

Primary controller failure mode. The control plane
recovery procedure consists of two stages:

 Failure detection stage. Primary controller failure
detection mechanism is based on the heartbeat. The
main parameters are: heartbeat interval — the time
interval between heartbeat messages, and dead interval
— the time interval through which standby controller
fixes primary controller failure.

 Recovery stage. The recovery stage starts after
primary controller failure detection. It includes the
following steps:

o Defining a new primary controller. The new
primary controller is a standby controller with
the highest ID (or IP).

o The new primary controller informs the other
controller about its status change.

o Controller network services and application
restoration.

o Control network interfaces up.

B. High-Available Controller Architecture

High-available controller (HAC) architecture is based on
adding of additional cluster middleware between the controller
core and controller network services and applications (see
Figure 1).

To provide fault-tolerance of the control platform the HAC
cluster middleware includes the following managers and
services:

 Controller Manager to coordinate start/restart/stop
controller network services and applications and up
and down control interface for network devices
connections.

 Cluster Manager to control the operation of the
controllers cluster and distribute responsibilities
(primary or standby) in accordance with the cluster
configuration file.

 Sync Manager to control controller network services
and applications synchronization between controller
instances in the cluster.

 Recovery Manager to coordinate the recovery process
(failover and failback) in case of controller instance
failure in the platform.

 Message Service to provide control message
distribution to other controller instances in the
controller cluster.

 Event Service to provide filtering, distribution and
processing to or from other controller instances.

 Heartbeat Service to monitor the operational status of
the controllers and detects controller failures in the
controller cluster.

Fig. 1. High-Available Controller architecture

C. Control Plane Design with HAC

In order to avoid single point of failures in the control
platform we propose the following design of the control
platform (see Figure 2).

Primary
controller

Primary
controller

Standby
controller

Standby
controller

Controller Data
Storage

Network

Services and apps
snapshots

Restoration
from snapshots

Heartbeat
messages

Control
messages

Network view
events

Fig. 2. Fault-tolerant control plane design with HAC controller

117

D. HAC Imlementation

Based on the review of modern open-source SDN control
platforms [5] as a base controller for HAC controller we
choose NOX13oflib from the laboratory CPqD [12]. This
controller supports OpenFlow control protocol version 1.3.0
[13].

All HAC cluster middleware managers and services have
been implemented in C++ with using Qt 4.8.1 and Boost
libraries. Applications and services snapshots are formed using
boost serialization mechanism. Interaction between the
middleware services and managers provides through the Qt
signal-slot mechanism to ensure the independence from the
base controller.

IV. EVALUATION

The HAC controller prototype implementation has been
deployed on a Linux virtual machine for functional and
performance testing. Our experimental evaluation includes two
parts: synchronization overhead evaluation and controller
failover time evaluation. In the first part we evaluate
performance overhead connected with primary and standby
HAC controller synchronization. Using cbench we evaluate
throughput of NOX13oflib and throughput of two-node fault-
tolerant HAC cluster.

Fig. 3. HAC controller synchronization performance overhead

Synchronization overhead range is from 5 to 23 percent of
the nox13oflib controller throughput (see Figure 3).

Fig. 4. Response time during HAC failover

Figure 4 shows the change of response time depending on
the packet-in message index during primary controller failure
and controller failover procedure. Initial experimental results
showed that average failover time for two-node HAC cluster
are from 40 to 50 ms, which is less than the maximum delay
for services and that is why network services for end users will
not be interrupted during controller failover.

V. CONCLUSION AND FUTURE WORK

 Controller is a critical component of enterprise software-
defined networks. In this paper, we showed the relevance and
significance of the control plane availability problem for SDN
in case of controller failure.

We considered and carried out a comparative analysis of
active/standby strategies for their applicability to the control
plane. We formulated a set of necessary requirements for
controller redundancy.

Moreover, we presented control plane design, HAC
controller architecture and tools for controller network
applications and services synchronization and network view
synchronization between controllers in the control plane. We
implemented the HAC cluster middleware that can be easily
adapted to other more productive basic controller
implementation. We showed that our initial evaluation results
are quite encouraging.

Thus, in this paper we proposed approach to solve
controller failover problem for SDN control platform, we
proposed middleware implementation which provides
opportunities for active/active strategies studies and distributed
controller development.

We are continuing the implementation of the HAC cluster
middleware with focus on developing controller state
synchronization algorithms and adding of load balancing
mechanisms between controller instances. We plan to extend
the list of failures that the control platform can prevent.

REFERENCES

[1] N. McKeown et al., “OpenFlow: Enabling innovation in campus
networks,” ACM SIGCOMM Computer Communication Review, vol.
38, i 2, April 2008, pp. 69-74.

[2] R.L. Smeliansky, “Software-Defined Networks,” Open Systems, N.9,
2012. [in Russian]

[3] Open Networking Foundation, “Software-Defined Networking: The
New Norm for Networks,” ONF White Paper, 2012.

[4] Open Networking Foundation, “OpenFlow Switch Specification,
Version 1.0.0 (Wire Protocol 0x01),” 2009.

[5] A. Shalimov, D.Zuikov, D.Zimarina, V. Pashkov, R. Smeliansky,
“Advanced Study of SDN/OpenFlow controllers,” Proceedings of the
CEE-SECR13: Central and Eastern European Software Engineering
Conference in Russia, ACM SIGCOFT, October 23-25, 2013, Moscow.

[6] A. Shalimov et al. “Analysis of SoftwareDefined Networks Performance
and Functionality,” editor-in-chief R. Smelianskiy. – M.:MAKS Press,
2014. – 148 p. [in Russian]

[7] T. Koponen et al., “Onix: A Distributed Control Platform for Large-
scale Production Networks,” in OSDI, 2010.

[8] S. H. Yeganeh and Y. Ganjali, “Kandoo: a framework for efficient and
scalable offloading of control applications,” in HotSDN, 2012.

[9] D. Erickson, “The Beacon OpenFlow controller,” in Proc. HotSDN,
Aug. 2013.

118

[10] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. Mckeown, and
S. Shenker, “NOX: Towards an Operating System for Networks,” in
SIGCOMM CCR, 2008.

[11] Floodlight OpenFlow Controller. http://floodlight.openflowhub.org/.

[12] NOX 1.3 Oflib, https://github.com/CPqD/nox13oflib.

[13] Open Networking Foundation, “OpenFlow Switch Specification,
Version 1.3.0 (Wire Protocol 0x04),” 2012.

119

Localizing Errors in Controller Applications

M. Perevedentsev, V. Antonenko
ARCCN,

Lomonosov Moscow State University
Moscow, Russian Federation

max.pereved@gmail.com, vantonenko@arccn.ru

Abstract—Modern networks are complex. The great number
of network tasks require a complex structure of controller. A
promising approach to this challenge is modularity. The
controller runs many applications, each responsible for a specific
task. Each application can disrupt the operation of another one
thus causing errors. Such errors cannot be detected during
development of a particular application. We discuss errors of
competition for switch tables, i.e. disruption of the routing policy
installed by one application due to operation of another one. In
this work we propose an approach to detection of such errors
including the integration with a specific controller.

Modern network troubleshooting tools cannot help
administrators correct errors in controller applications. In this
paper we propose the Error Localization Tool (ELT) which helps
in fixing errors. Given the faulty rules, it finds the place in code
of applications responsible for each error. With these data the
administrator can eliminate errors more quickly and make the
complex system of controller applications work correctly.

We describe an implementation of these approaches. We
carry out an experimental research to evaluate the performance
of our prototype.

Keywords—Software-Defined Networks; OpenFlow; network
troubleshooting

I. INTRODUCTION

Errors in computer networks are constantly arising. If not
detected and eliminated in time, the error can force the
consequences various in impact on users from lost connectivity
between specific hosts up to security vulnerability threatening
loss of important data. Thus the methods of error detection and
debugging are of great importance.

Administrators today are doomed to use ad hoc network
troubleshooting tools such as tcpdump[19] and traceroute[6].
These tools give the vision of end-to-end connectivity and
traffic routes. They help administrators much but do not
completely eliminate the need for more complex and powerful
tools.

Software-defined networking (SDN) is a paradigm of
computer network construction that separates control layer
responsible for routing from data layer transmitting traffic.
SDNs provide the opportunity of more transparent and flexible
network control when compared to legacy networks. A typical
SDN consists of special software (can be distributed, e.g.
Onix[10]) called controller (or network OS), and a set of

switches. Controller interacts with switches being managed
using a specific protocol (e.g. OpenFlow[16]). Due to
centralization of network management on the controller
network troubleshooting becomes simpler. The existence of a
single device having all the information about the network
(topology, routing rules, traffic) helps the developer to detect
and localize an error.

The SDN approach can introduce new kinds of network
errors as well. Here we consider an error as a deviation in
network functioning (rules in switch tables, traffic routing etc.)
from what is expected by administrator. A promising approach
in controller construction is modularity[1][14]. According to
this approach, several separate modules, called applications,
can run simultaneously on controller. Controller provides high-
level interface for applications to communicate with switches.
Applications can specify a routing policy for a class of traffic
(the actions to be applied to packets with specific header) by
installing, modifying or deleting rules from switch tables. We
assume that applications can share the flow space, i.e. there can
be headers operated by multiple applications. Each of
applications can cause errors in operation of other ones[13][14]
[18]. In this work we introduce a class of errors called errors of
competition for switch tables and propose a method for
detecting and localizing them.

II. RELATED WORKS

Existing SDN troubleshooting tools can be divided into two
groups: static tools and dynamic ones.

We call static the tools which use different techniques of
source code analysis. An example of such tool is NICE[2].
NICE uses symbolic execution of controller applications and
model checking to explore the state space of an OpenFlow
network. This approach is too slow to be used in complex
cases.

Dynamic tools operate as a superstructure over a real
network or use the data acquired from a real network.
NetPlumber[7] uses control messages and network state
updates to incrementally check for network policy compliance.
VeriFlow[9] uses forwarding plane modifications to check for
reachability invariants. Anteater[11] and HSA[8] use data
plane snapshots to detect violations in key network invariants.
OFRewind[20] records and reproduces sequences of
OpenFlow commands. ATPG[21] generates and sends test
packets against router configurations. ndb[5] uses packet
postcards to reconstruct the path of a specific packet. It does
not care about rules set by controller.

This research is supported by the Skolkovo Foundation Grant N 79,
July, 2012 and Russian Foundation for Basic Research, project
14-07-00743

120

Current dynamic tools use only the functionality provided
by OpenFlow protocol, and the set of installed rules. They are
abstracted from network OS. This approach simplifies the
transition from one network to another but reduces usability.
As a result of operation of such tools a user will receive a
conclusion about routing policy compliance; in case of a policy
violation he may also receive the rules leading to this error.
Afterwards he should select from a set of applications the ones
responsible for this particular error, localize a snippet of source
code where these rules were installed and correct this snippet.
With the number of applications on a controller growing, this
task becomes more difficult.

III. ERRORS OF COMPETITION FOR SWITCH TABLES

Let each switch have a single table. According to
OpenFlow, when a packet arrives at a switch, the latter looks
for rules with appropriate pattern in its table. If there are none
of them, the switch sends the packet to the controller.
Otherwise, the appropriate rule with highest priority is chosen,
and the packet is processed according to it. If there are more
than one rule with highest priority, the behavior of the switch is
undefined.

A set of all rules in switch tables we call network state. A
set of rules with maximum priority for each header on each
switch we call effective network state. Each application routes
packets with specific headers. These headers we call
application traffic class (for simplicity, we consider the
application traffic class to be the same on all switches). By
adding, modifying and deleting rules the application can
change the effective network state.

Each application expects the rules installed by it to remain
unmodified and be executed for appropriate packets unless this
application explicitly modifies them, adds other rules or these
rules expire. A set of rules with maximum priority for each
header on each switch from the rules installed and operated by
a specific application is called expected effective network state
for this application. In case of a single application, it will match
the real one. In case of multiple applications running on top of
a controller, each application can modify or delete a foreign
rule or install a new rule preventing the old one from being
executed. As a result, the effective network state will differ
from the one expected by an application i.e. the expected
effective network state will not be a subset of the real one.
Errors of competition for switch tables (CST errors) are the
errors occurring due to the deviation of the effective network
state projected to application traffic class from the effective
network state expected by this application. An example of this
error can be two routing protocols which run in the same
network and install contradictory rules.

More formally, CST error is defined as following. Assume
we have a network specification: a predicate

Correct(tables, netgraph),

describing the requirements to packet routing in network, and
the packets cannot be routed through controller (from switch to
controller, then from controller to another switch). Since the
packets cannot be processed according to rules with lower
priority while there are rules with higher priority in switch
table, this specification describes the requirements to the

effective network state. A network satisfies a specification if
for each network state which can be generated by a specified
system of applications the specification is satisfied. Assume
there is a system of applications and we want the network to
satisfy specification while running these applications. Assume
there is a subsystem of applications such that the network
really satisfies the specification. Such a dead-end subsystem
we call the kernel of the system in terms of specification.
Error of competition for switch tables is a situation when the
specification is not satisfied while running the full system of
applications. As the subsystem satisfies the specification, its
expected effective network state also satisfies the specification,
thus such errors are caused by the deviation of the effective
network state from the expectations of the applications from
kernel due to operation of other applications.

In this case we can simply remove all the application but
kernel ones. Practically important is the case where

Correct ∼ Correct1 ∧ Correct2 ∧ ... ∧ Correctn (1)

and there is no subsystem of applications that satisfies all
Correcti although a specific subsystem exists for each Correcti.
The task is to modify applications so that the system satisfies
the specification (we assume that specification is non-
contradictory). From the user's point of view, each application
is responsible for its own part of the specification and we need
to remove the disruption of one application's operation by
another one.

CST errors cannot be detected during the development of a
particular application, since they depend on system of
controller applications. Since such system is arbitrary, the
probability of CST errors occurring is high in case of
independent controller applications. In controller, applications
can ask the controller to generate table modification messages
or generate such messages themselves. In the first case, the
controller should run CST error detection module prior to
message generation to avoid conflicts. In the second case, such
module is still necessary although it may not be a part of
controller. In any case, methods of detecting and localizing
such errors are important. An alternative approach to CST error
troubleshooting is rejection of application independence and
transition to centralized decision-making, as in [1], [13] and
[14].

In this paper we focus on application conflicts within a
single controller instance. More difficult cases, such as
multiple controllers in a single network and distributed
controllers, are left for future work.

IV. ERROR DETECTION

Before formulating the CST error detection task, we must
consider the following. Routing tables can be filled before
network starts or during the operation. An empty table can
satisfy the specification or not. Thus the specification can be
violated at a specific moment or never be satisfied (e.g. an
error before the table is filled while an empty table is non-
satisfactory). To satisfy different conditions, we use the time T
so that the network must satisfy the specification at any time
after T. Moreover, CST errors are caused by the system of
controller applications and the number of specification
violations strongly depends on the traffic, so it is useless to

121

count errors. We check whether the specification is violated
after T or not.

For (1), CST error detection task is formulated as
following:

For any non-contradictory specification, topology, traffic,
time T after which the specification should be satisfied, and
such system of applications so that for each Correcti exists a

subsystem that satisfies the specification after T, if the
specification is not satisfied at time t>T, the error message

must be generated.

The task does not include the precision of detection but
only the recall[22]. The reason is that the main topic of this
paper is error debugging. The simplicity for user to fix errors
and the detection precision seem to not go together, as it is
shown below. These criteria we use to compare different CST
error troubleshooting methods.

A. Existing methods

OpenFlow describes a flag that tells the switch to check for
overlaps of new rule with existing ones. However, this checks
only the rules with equal priority and does not have
information about rule owners (the same application or
different ones).

Static tools can detect CST errors. But their high
complexity makes them practically inapplicable. Dynamic tools
do not have access to controller applications so they have two
possible approaches to detection of CST errors.

Firstly, dynamic tools can signal about the effect of all table
modification messages to existing rules. This approach has a
high rate of false positives because an application can affect its
own rules, which is a correct behavior.

Secondly, they can check the specification. In general, such
specification can be inaccessible. The user desiring to eliminate
CST errors has to create the full specification of network
routing, what is a difficult task. As a result of specification
checking the user receives the answer "yes" or "no". Probably
he will get the rules violating the specification or the
specification may never be satisfied. A search for the cause of
these violations is complex and is put on user. This approach
does not help user to eliminate errors.

B. Facts of competition for switch tables

We propose signaling about the occurrence of potentially
dangerous situations. From the definition of CST errors we
know that there is a deviation of effective network state from
the expectations of one application due to operation of another
application. Such a deviation we call a fact of competition for
switch table (CST fact). In terms of OpenFlow protocol there
are four types of such facts:

• Foreign rule deleted occurs while an application
deletes a set of rules. This application can delete the
rules installed by another application as well. Although
the second application can acquire such information,
this can be an error and cause additional overhead
(sending a packet to the controller is expensive).

• Foreign rule modified occurs while an application
modifies a set of rules or install a new rule with pattern
and priority equal to an existing rule. By modification,
the application can modify foreign rules as well. In that
case, the owner of modified rules cannot acquire the
information about such modifications. It will remain
certain its rule is correct while the effective network
state differs from the expected one.

• Foreign rule masked occurs when a switch table
contains two rules with different owners and priorities
but intersecting patterns (there are headers matching
both). For the set of common headers, the rule with
lower priority will not be executed for common
headers. This type of CST facts occurs when a new rule
is installed. If the new rule has higher priority, the old
rule will not be executed. Otherwise, the new rule will
not be executed. In both cases, the owner of the rule
with lower priority cannot acquire such information and
expects the effective network state to match
expectations while that is not true.

• Rule undefined occurs when a switch table contains
two rules with equal priorities and intersecting patterns.
According to OpenFlow, switch behavior is unexpected
in this case, so the effective network state will not
match the expectations of the owners of both rules.
Such CST fact occurs when a new rule is added if the
new rule has equal priority and intersecting patterns
with an existing one. This error can occur in case of a
single application as well.

The definition of CST errors implies that for occurrence of
such error, there must be a CST fact between a kernel and non-
kernel application, at least for one of Correcti(1). The
construction of a kernel is impossible in the absence of
specification. So we will not separate the application to kernel
and non-kernel ones. By detection of all CST facts we detect
all possible CST errors. Moreover, CST facts can occur before
the network violates the specification. Thus for elimination of
errors, CST facts are more important than errors themselves.

CST facts do not always lead to errors. Some applications,
e.g. a traffic monitoring system, can modify foreign rules on
purpose. This fact will lead to a considerable number of false
positives. We expect the overhead on processing of them to be
lower then the creation of a specification. The alternative
approach is to explicitly specify, which application can choose
whose rules.

The main advantage of detecting CST errors through CST
facts is the list of participating rules. For every CST fact, there
are two or more rule or table modification messages. This can
be used to find the root cause of errors, as described below.

C. Error detection module

The described approach cannot be implemented without
integration with a specific controller. This integration improves
the precision of this approach in comparison with the first
described in section IV.A. We detect only the table
modification messages affecting foreign rules.

The detection of CST errors is performed by a controller
module. This module must check each message being sent to a
switch for the possibility of CST facts. If it is necessary, this

122

module can prevent a message from being sent to a switch. Our
prototype stores switch table models in controller module. Each
rule is tagged by a set of applications which affected this rule.
When it receives a table modification message it checks for
overlaps in table using application tags and updates the table.
When a CST fact is detected, this module stores type of CST
fact and participating rules and messages to a report. To
provide consistency of table model contents with switch tables
our module should receive the messages about rule expiration
from switches.

V. ERROR LOCALIZATION

CST errors are caused by conflicts in controller
applications. Therefore these errors should be debugged in
integration with controller. This is why dynamic tools
operating as a proxy on OpenFlow channel are not useful in
troubleshooting such errors. But there are different types of
errors which can be debugged easily using the vision of
controller operation. In [23] it is proposed to use traditional
source code debuggers. We expect them to add unnecessary
overhead and propose the creation of a controller module
collecting necessary data. The integration of controller-
independent error detection module operating as a control
channel proxy with debugging module bound to a specific
controller we call complex debugging.

In case of CST errors, the user wants each application to
fulfill its function without disturbing other applications. This is
not always possible so it is required to slightly modify the
application to eliminate such disturbance. The search for the
code snippet to be modified is wholly put on user.

While using a dynamic network troubleshooting tool which
outputs faulty rules, the search for the responsible application
and code snippet is user's task as well.

To simplify these tasks we propose Error Localization Tool
(ELT). ELT cannot operate at the level of abstraction provided
by OpenFlow and is bound to a specific controller (e.g.
POX[17]). Due to this it receives the ability to trace the inner
state of controller. In our prototype, we use the call stack
leading to a particular message being sent. By collecting such
traces ELT can find the application and its approximate
execution path responsible for a faulty message or rule. This
approach will work in the case where each processing step calls
the next step as a function. In the case where the processing
steps are called one after another, we can only find the
applications using a call stack. To reproduce the logic of an
application we need other information, e.g. the values of global
variables.

In a simple case, an SDN consists of multiple switches and
a single controller with several applications running on it.
During the debugging process we put a proxy on the OpenFlow
channel. This proxy should detect errors and send a report
including error type and flow modification messages or rules
involved to the network administrator. The main task of ELT is
the creation of an extended error report. The final error report
includes call stack for each message or rule (call stack for each
message leading to this rule having specific fields). To provide
such data ELT must record call stacks for flow modification
messages and retrieve them by on request. Here we present our
architecture of ELT consisting of three modules: controller
proxy, database server and logger.

A. Controller proxy

The controller proxy is integrated with a specific controller.
When a controller application sends flow modification
message to switch, the proxy sends a copy of message to
database server. Saving messages with call stacks cannot be
implemented without integration with a specific controller.
Modern programming languages used for writing controllers
(Python, Java, Ruby) support accessing call stack from inside a
program.

B. Database server

The database server is the central point of ELT architecture.
It saves flow modification messages received from a client on
the controller proxy. When a request for particular message is
received, the database server looks through the database and
responds with the call stack for the latest equal message. Here
the messages are considered equal if they have the same
patterns, action lists, priorities and target switches. When a
request for a rule is received, the database server selects the
sequences of messages which could shape this rule and returns
call stacks for the latest possible sequence.

Database is put on a remote computer to provide controller
independence. Proxies at different controllers can
communicate with database using the common protocol. Thus
we only need to write a new controller proxy to provide
interaction with a new controller.

Each debugging module should be augmented by adding
database clients and modified logging subsystem including
stack traces.

C. Logger

Imagine we multiple error detection modules. There are
two possible approaches to error logging: distributed and
centralized.

In the distributed approach, each debugging module detects
its errors, queries database to get call stack for each message
and writes the output to its own log. The administrator then has
to inspect all the logs, find different and duplicated errors and
eliminate them using the call stacks saved before.

The centralized approach includes a single logging server
responsible for logging all the errors. Debugging modules
should connect as clients to logging server and send error
reports using specific protocol. Then the logging server queries
the database server for call stacks. The administrator is able to
get all the error logs in a single place so this approach is easier
for administrator. The database server can also benefit from
communicating with a single client instead of a couple, by
caching duplicate requests. Furthermore, it is possible to only
modify debugging module logging for compatibility with
logging server protocol without database client addition.

123

VI. IMPLEMENTATION

Here we present our implementation of ELT[4]. This
prototype we use to evaluate the performance and applicability
of our approach. We have chosen POX controller because of
simplicity of python it is written in. Our whole system are
written in python for easier compatibility with controller.

Database server uses a simple MySQL[15] database to store
and retrieve table modification messages. The usage of
database tables in 3NF[3] leads to complex queries and
multiple indexes slow down message insertion but also speed
up message retrieval. However, it may be faster to use custom
trace files instead of general-purpose database.

We used a set of JSON-formatted set of messages as client-
server protocol.

VII. EVALUATION

We have tested our implementation on a laptop running
Ubuntu Linux with 4GB of RAM and a Core i5 2.1 GHz
processor.

To evaluate the performance of our prototype we created a
testing environment using Mininet[12] network simulator. We
used pox's l2_learning routing module as controller application
because it is simple and fast enough to not affect our
experiments much. We measured the maximum relative
slowdown in network operation between the presence and
absence of our prototype. If the complexity of controller
applications increases and the prototype remains unchanged,
the relative slowdown decreases. Thus it is correct to take the
fastest application. To induce errors in our network we wrote
the application called Interrupter. When a packet arrives at
controller, it randomly selects a pattern P: one field more or
less precise or equal to the pattern created by l2_learning (we
have intentionally wildcarded the VLAN field in l2_learning's
pattern). Then with a given probability it sends one of the
following messages (using pattern P): delete rules, modify
rules (with random output port) or add a rule (with random
output port). These messages conflicted with the network state
installed by l2_learning. CST facts were detected and localized
by our prototype.

We used average end-to-end ICMP-echo delay as the
measure of the influence of our prototype to network. This
value includes Echo Request/Reply and ARP Request/Reply
delays.

We used the following prototype operation modes:

• No proxy. Only l2_learning is working, Interrupter is
idle. Information about messages is not stored. Switch
table models do not work. This mode is a normal
network functioning without our prototype.

• Saving. Only l2_learning is working, Interrupter is
idle. Information about messages is stored. Switch table
models do not work.

• Table model no errors. Only l2_learning is working,
Interrupter is idle. Information about messages is
stored. Table modification messages are checked using
table models.

• Errors X (X ∈ {0.01, 0.1, 0.5}). l2_learning is
working, Interrupter takes the described actions with
probability X. Information about messages is stored.
Table modification messages are checked using table
models. When a CST fact is detected, the information
about the messages/rules taking part is extracted from
database and written to log file.

The topology used in this experiment is shown in Fig. 1.
After the network is started, each host sequentially sends ICMP
requests to each host on the other side of the network. The
hosts work in parallel. The experiment results are shown in
Figure 2. From the results acquired, we can derive the
following estimates of our prototype's influence on the end-to-
end delay in the network (in % from the mode without our
prototype):

• Saving the information about table modification
messages increases the latency not more than by 200%.

• Checking table modification message correctness
increases the latency not more than by 100%.

• When the errors occur rarely (1%) their impact on the
latency is negligible.

• When the errors occur with the probability of 10%, the
latency increases by 100% due to processing of them.

We chose a simple and fast routing application to evaluate
maximum delay growth. In case of slower applications, the
overhead (in %) is lower.

In comparison with the absence of our prototype in
network, the fully functional version increases the end-to-end
delay of the first packet for each new flow by 300%. The
transmission time of the following packets remains unchanged.
This overhead is less than the overhead of static debugging
tools, but still requires controller load reduction when a
network operates in debug mode with our prototype.

VIII.CONCLUSION

In this paper we described CST errors. We found out that
there is no effective approach to troubleshooting this kind of
errors. We proposed the method of detection of such errors that
includes a controller module analyzing table modification
messages.

The overview of existing methods of troubleshooting
control layer errors showed that they do not help the developer
to eliminate errors in applications. To help the developer, we
need integration of error detection modules, which can operate
using OpenFlow level of abstraction, with error localization
modules, which must have an access to controller. As an
example of such module we present ELT, which can find

Fig. 1. Stress test topology.

124

application and call stack responsible for an error using table
modification messages and faulty rules.

We developed, implemented and evaluated a prototype of
ELT. We found out that it successfully localizes errors in
controller application execution. The tests showed that the
addition of debugging modules increases the end-to-end delay
of the first packet not more than by 300%, including 100% due
to CST error detection module.

IX. FUTURE WORK

On the results of this paper we identified three promising
directions for further research.

Integration with network slice manager. Network slice
manager (e.g. FlowVisor[18]) is a tool that helps many
controllers work simultaneously. For each controller it handles
a network slice including a subset of switches, ports and traffic
classes. For each table modification message the network slice
manager projects this message on the appropriate traffic class
and sends the modified message to the switch. Modified
messages can differ from the source ones and that makes ELT
unable to find them in database. A module to slice manager
will help in tracing such message transformations.

More accurate methods to troubleshoot CST errors.
The proposed approach gives a certain number of false
positives. Network administrator is the only one to know which
application should affect which rules. Using the application
interference specification provided by an administrator, it is
possible to create a more accurate method to detect CST errors.

Debugging modules for controller. The complex
debugging approach implemented in ELT involves integration
of error detection modules and debugging modules for
controller. Debugging modules for controller include a part of
functionality of traditional source code debuggers. It is useful
to research, which source code debugger's capabilities may be
useful for network debugging.

REFERENCES

[1] Marco Canini, Daniele De Cicco, Petr Kuznetsov, Dan Levin, Stefan
Schmid, and Stefano Vissicchio. Stn: a robust and distributed sdn
control plane. Open Networking Summit (ONS) Research track, March
2014.

[2] Marco Canini, Daniele Venzano, Peter Peresini, Dejan Kostic, and
Jennifer Rexford. A nice way to test openflow applications. In
Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation, NSDI’12, pages 10–10, Berkeley, CA,
USA, 2012. USENIX Association.

[3] E. F. Codd. Further normalization of the data base relational model.
IBM Research Report, San Jose, California, RJ909, August 1971.

[4] Error localization tool at github. http://github.com/ARCCN/elt.

[5] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazi
́res, and Nick McKeown. Where is the debugger for my software-
defined network? In Proceedings of the First Workshop on Hot Topics
in Software Defined Networks, HotSDN ’12, pages 55–60, New York,
NY, USA, 2012. ACM.

[6] V. Jacobson. Unix traceroute man page, 1987.

[7] Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese,
Nick McKeown, and Scott Whyte. Real time network policy checking
using header space analysis. In Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation,
nsdi’13, pages 99–112, Berkeley, CA, USA, 2013. USENIX
Association.

[8] Peyman Kazemian, George Varghese, and Nick McKeown. Header
space analysis: static checking for networks. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and

Fig. 2. Experiment results.

125

Implementation, NSDI’12, pages 9–9, Berkeley, CA, USA, 2012.
USENIX Association.

[9] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, and P. Brighten
Godfrey. Veriflow: verifying network-wide invariants in real time. In
Proceedings of the First Workshop on Hot Topics in Software Defined
Networks, HotSDN ’12, pages 49–54, New York, NY, USA, 2012.
ACM.

[10] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon
Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue,
Takayuki Hama, and Scott Shenker. Onix: a distributed control platform
for large-scale production networks. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation,
OSDI’10, pages 1–6, Berkeley, CA, USA, 2010. USENIX Association.

[11] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P.
Brighten Godfrey, and Samuel Talmadge King. Debugging the data
plane with anteater. In Proceedings of the ACM SIGCOMM 2011
Conference, SIGCOMM ’11, pages 290–301, New York, NY, USA,
2011. ACM.

[12] Mininet network simulator. http://mininet.org/.

[13] Jeffrey C. Mogul, Alvin AuYoung, Sujata Banerjee, Lucian Popa,
Jeongkeun Lee, Jayaram Mudigonda, Puneet Sharma, and Yoshio
Turner. Corybantic: towards the modular composition of sdn control
programs. In Proceedings of the Twelfth ACM Workshop on Hot Topics
in Networks, HotNets-XII, pages 1:1–1:7, New York, NY, USA, 2013.
ACM.

[14] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and
David Walker. Composing software-defined networks. In Proceedings of
the 10th USENIX Conference on Networked Systems Design and

Implementation, nsdi’13, pages 1–14, Berkeley, CA, USA, 2013.
USENIX Association.

[15] Mysql open source database. http://www.mysql.com/.

[16] OpenFlow switch specification v1.1.0.
http://archive.openflow.org/documents/openflow-spec-v1.1.0.pdf.

[17] Pox controller. http://www.noxrepo.org/pox/about-pox/.

[18] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin
Casado, Nick McKeown, and Guru Parulkar. Can the production
network be the testbed? In Proceedings of the 9th USENIX Conference
on Operating Systems Design and Implementation, OSDI’10, pages 1–6,
Berkeley, CA, USA, 2010. USENIX Association.

[19] tcpdump official site. http://www.tcpdump.org/.

[20] Andreas Wundsam, Dan Levin, Srini Seetharaman, and Anja Feldmann.
Ofrewind: enabling record and replay troubleshooting for networks. In
Proceedings of the 2011 USENIX Conference on USENIX Annual
Technical Conference, USENIXATC’11, pages 29–29, Berkeley, CA,
USA, 2011. USENIX Association.

[21] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick
McKeown. Automatic test packet generation. In Proceedings of the 8th
InternationalConference on Emerging Networking Experiments and
Technologies, CoNEXT ’12, pages 241–252, New York, NY, USA,
2012. ACM.

[22] David MW Powers. Evaluation: from precision, recall and f-factor to
roc, informedness, markedness & correlation. SIE-07-001, 2007.

[23] Brandon Heller, Colin Scott, Nick McKeown, Scott Shenker, Andreas
Wundsam, Hongyi Zeng, Sam Whitlock, Vimalkumar Jeyakumar,
Nikhil Handigol, James McCauley, Kyriakos Zarifis, and Peyman
Kazemian. Leveraging sdn layering to systematically troubleshoot
networks. HotSDN '13, pages 37-42, New York, NY, USA, 2013. ACM.

126

Data Center Resource Mapping Algorithm Based on
the Ant Colony Optimization

A. Plakunov, V. Kostenko
Faculty of Computational Mathematics and Cybernetics

Moscow State University
Moscow, Russia

artacc@lvk.cs.msu.su, kost@cs.msu.su

Abstract—In this paper we present a data center resource
mapping algorithm based on the ant colony optimization
approach. The algorithm considers data centers to present IaaS
model and can be used in a joint scheduler for all resource types.
The algorithm uses ant colony optimization approach to map
resource requests to physical computational nodes and data
storages. The shortest path algorithm is used to map virtual
channels to the data center’s physical network channels and
network switches. We then present a comparison of the
developed algorithm with an algorithm based on greedy and
limited exhaustive search strategies.

Keywords—Ant Colony Optimization, Data Centers,
Virtualization, Cloud Platforms

I. INTRODUCTION
We consider a resource usage efficiency problem which is

a crucial problem in Infrastructure-as-a-Service datacenters
with physical resources load as en efficiency metrics. The
problem consists of different resource placement subproblems,
where each virtual resource has its own related physical
resource. Each virtual resource requests certain SLA, and each
physical resource has parameters related to this SLA. The
problem of resource placement is to map virtual resources
onto physical resources with all SLA to be guaranteed.

Existing algorithms either don’t consider mapping of all
three resource types [1-7] or can only be used for a fixed data
center network topology [8,9]. In this paper we will show how
we can implement multitype resource mapping for any
network topology using an algorithm based on the ant colony
optimization approach.

Ant colony optimization approach is used to map virtual
machines on the computational nodes and to map virtual
storages on the data storages. On mapping completion virtual
channels are mapped on the physical ones using a Dijkstra
shortest path algorithm. The advantage of this scheme is that
ant colony optimization approach allows the algorithm to
automatically adjust itself for a particular problem by
additional input data marking up that is used to build a
solution on each iteration. The solutions are improving as the
number of iterations is growing. This mechanism can provide
high quality solutions on a wide class of the input data [10].1

This research is supported by the Skolkovo Foundation Grant N 79, July, 2012
and the Ministry of education and science of
the Russian Federation, Unique ID RFMEFI60714X0070

II. PROBLEM DEFINITION
Data center physical resource model is defined as a

weighted graph [11]:

),(LKMPH
where P is a set of computational nodes, M is a set of data

storages, K is a set of network switches, L is a set of network
channels. The weights are defined as follows.

 Weights vh(p) and vr(p), defined on the set Р, are the
number of the CPU cores and the amount of the
operational memory of the cpu node Pp .

 Weight uh(m), defined on the set М, is a capacity of the
data storage Mm (bytes).

 Weight bh(k), defined on the set K, is a bandwidth of
the network switch Kk (bytes per second). The
network switch bandwidth is defined as a maximum
total bandwidth of the virtual channels coming through
the switch. We consider all input and output switch
ports to have an equal priority.

 Weight rh(l), defined on the set L, is a bandwidth of the
network channel Ll (bytes per second).

Resource request is defined as a weighted graph:

(,)T W S E

where W is a set of virtual machine requests, S is a set of
virtual storage requests, E is a set of virtual channel requests.
The weights are defined as follows.

 Weights v(w) and r(w), defined on the set W, are the
requested number of CPU cores and the requested
amount of operational memory of the virtual machine
request Ww ;

 Weight u(s), defined on the set S, is a required capacity
for the virtual storage request Ss (bytes);

 Weight r(e), defined on the set E, is a bandwidth for
the virtual channel request Ee (bytes per second).

Resource request mapping is defined as follows:

127

: { , , { , }}A T H W P S M E K L

Given:

 A set of requests Z = {Ti} received by the data center
scheduler.

 Data center physical resource model
),(LKMPH res .

The problem is to define resource request mappings {Ai}
for as much requests as possible (target function iF A).
The mappings should meet the following constraints:

)()(pvhwv

pWw

() ()

pw W
r w rh p

)()(lrher
lEe

)()(kher

kEe

)()(muhsu
mSs

Here Wp is a set of virtual machines mapped on the
computational node p, El is a set of virtual channels mapped
on the physical channel l, Ek is a set of virtual channels
mapped on the switch k, Sm is a set of virtual storages mapped
on the physical storage m. These constraints mean that
capacity of physical resources cannot be exceeded. This
guarantees the SLA to be satisfied.

The algorithm is supposed to be used inside a cloud
platform [12]. There is a controller which gathers incoming
requests for a certain time span and decides when to launch
the scheduler. Round of scheduling should last at least 15
minutes due to the algorithm requiring around 15 minutes to
complete on a set of 100 requests. There are also additional
constraints defined by the platform:

1) CPU cores cannot be shared between virtual machines.

2) Virtual channel should be mapped onto a path in the
physical network

III. PROPOSED ALGORITHM

A. Algorithm Common Scheme
The initial problem can be divided into three subproblems:

1) Mapping virtual machines to physical computational
nodes.

2) Mapping virtual storages to data storages.

3) Mapping virtual channels to physical network channels.

We can solve the subproblems 1 and 2 by an algorithm
based on the ant colony optimization approach. Since the ant
colony optimization approach is intended for optimization
problems represented in the form of the shortest path problem,
subproblems 1 and 2 should be reduced to it (target reduction
graph is denoted as G). The reduction process is described in
section 3.2.1.

After steps 1 and 2 are complete we can solve the problem
of mapping the virtual channels to physical ones by a greedy
algorithm.

The algorithm’s scheme is:

1) Build the graph G. The graph form is chosen so that
path in the graph determines mapping of virtual machines and
virtual storages

2) Build paths Bi in the graph G. The path is built
according to the restrictions on maximum computational node
performance vh(p) and maximum data storage memory
volume uh(m).

3) For each Bi map virtual channels to physical ones given
that virtual machines and virtual storages are mapped
according to path Bi.

4) Calculate the target function Fi for each path Bi.

5) Update the pheromone values on the arcs of the graph
A depending on the target function values Fi.

6) If the stop condition isn’t satisfied, go to stage 2.

B. Basic Algorithm Operations
1) Building Graph
Let N be the number of computational nodes in the data

center and S be the number of data storages, and let R be the
number of resource requests to be mapped. Each request
consists of Rini ..1, virtual machine requests and

Risi ..1, virtual storage requests. The vertices NVV ,...,1 and

SSS ,...,1 are added where the vertex Vi corresponds to the
computational node with the number i, and the vertex Sj
corresponds to the data storage with the number j. For each

R

i
innnk

1

,..1 let one graph vertex to correspond to k-th

virtual machine request: this vertex V0
k is connected to each of

the vertices NVV ,...,1 by two differently directed arcs.

For each nk ..1 vertex V0
k is connected to each of the

vertices klnlV l ,..1,0 by two differently directed arcs
(figure 1).

Similarly, for each

R

i
isssk

1
,..1 let one graph

vertices to correspond to k-th virtual storage request. For each
sk ..1 vertices S0

k are connected to each of the
klslS l ,..1,0 by two differently directed arcs (fig. 1).

128

Fig. 1. Graph G structure

Let’s also add vertex O connected to each of the
nmV m ..1,0 and slS l ..1,0 by two differently directed arcs.

This vertex will be the starting vertex for each ant. Ants can
only choose this vertex when they have no other vertices to
choose.

The following two values correspond to each arc in the
graph: τij is the amount of pheromone on the arc (i,j) and ηij is
a heuristic function set for arc (i,j). The current value of i-th
computational node load corresponds to each of the vertices

N
k

i VVV ,...,,...,1 and the current amount of free memory on the
i-th data storage corresponds to each of the vertices

Si SSS ,...,,...,1 .

2) Building Paths in the Graph
Each ant starts its path in the vertex О. The same ant can’t

go on the same arc twice. The ant chooses the next vertex by a
probabilistic rule. The probability for the k-th ant to travel
from vertex i to vertex j on the iteration t depends on the list of
visited arcs, amount on pheromone and heuristic values on the
available arcs (1).

 ,

()
,

()

0,(,)
k

ij ij
k

il ilij k
l J

k

t t
j L

t tB t

i j L

Here τij(t)is the amount of pheromone of the arc (i,j), ηij(t)
is a heuristic function on the arc (i,j), 0 and 0 are
algorithm’s parameters determining the importance of the
pheromone and heuristic in the process of choosing the arc, Lk
is the list of visited arcs of the k-th ant.

When building a path from the vertex S0
k to the vertex Su

the type of the virtual storage request that corresponds to the
vertex S0

k, is compared to the type of the u-th data storage that

corresponds to the vertex Su. If the types aren’t match, the ant
can’t choose this arc.

When building a path from the vertex V0
k to the vertex V0

u
the ant can’t choose the arc if he has already visited the vertex
V0

u.

After the ant has chosen a vertex Vu, the virtual machine
request that corresponds to the vertex V0

k is added to the Wu
set. The current value of u-th computational node load is
increased by the value v(k). Same actions are performed with
the Su set when a virtual storage request is chosen.

One of the possible ways to set the ηij(t) function is as
follows:

Wm

ij mv
wvt

))(max(

)()(for nkiVj k ..1,,0

Sr

ij ru
sut

))(max(

)()(for skiSj k ..1,,0

Here v(w) and u(s) are, respectively, the requested
performance of the virtual machine request and the capacity of
the virtual storage request.

If nkNmVjVi m
k ..1,..1,,0 the function ηij(t)

is calculated as shown in (2).

)()()(ivwvt
jWw

ij

If skSmSjSi m
k ..1,..1,,0 the function ηij(t)

is calculated as shown in (3).

)()()(iusut
jSs

ij

Here Wj (Sj) is the set of currently mapped virtual
machines (the set of currently mapped virtual storages) to the
computational node (to the data storage), corresponding to the
vertex j. If, respectively, ηij(t) < 0 then ηij(t) is set to zero.

If the corresponding virtual machine (virtual storage) can’t
be mapped to the computational node (data storage) due to
performance (memory) restrictions violation the probability
for the ant to choose the arc is zero. If the probability is zero
for all the available arcs at the moment, ant skips the step and
the entire resource request is considered as a non-mapped
request, and all the virtual machine requests and virtual
storage requests corresponding to the same resource request
are removed from the mapping. After the function ηij(t) is
calculated for all the arcs of one vertex, ηij(t) values for these
arcs are normalized (4).

129

)(max
)(

)(
t

t
t

iji

ij
ij

3) Virtual Channel Mapping Algorithm
Let vl be the virtual channel to map and let i and j be the

vertices of the physical resource graph H where the virtual
resources connected by vl are mapped to.

Physical resource graph H is temporarily modified before
vl is mapped:

 All the arcs (p,q) where vertex q is a network switch
and p isn’t, and p ≠ i are deleted.

 All the arcs (p,q), where vertex p is a network switch
and q isn’t, and q ≠ j are deleted.

 Arcs connecting two network switches are duplicated
and set to different directions.

 Arcs connecting a computational node or a data storage
to a network switch are directed towards the network
switch.

Let’s consider a connected component C in the modified
graph H containing the vertex i. This connected component
also contains vertex j and contains no other vertices that aren’t
a network switch by construction. The connected component
C is used to map vl as follows:

 A weight is assigned to all the remaining arcs (p,q) in
the graph C. The weight equals to
(() ()) (() ())pqh q r vl rh l r vl if vertex p is a network

switch, and equals to () ()pqrh l r vl in other cases,
where lpq is a physical channel connecting the arcs p
and q. If one of the weights or the summands in the
formula is below zero, the corresponding arc is
temporarily deleted from the graph. The weights are
chosen so all the arcs which the channel can’t be
mapped to are deleted. The less capacity remains on
the network channel after the virtual one is mapped, the
less the weight of the corresponding arc.

 Dijkstra’s algorithm is used to build the shortest path
from the vertex i to the vertex j in the weighted graph.

4) Pheromone Update Rule
After the target functions are calculated the pheromone

values for each arc in the graph are updated. The additional
pheromone value for an arc depends on the target function
value that corresponds to the path this arc is included in (5).

 ,

, ,

0, ,
k k

ij k
k

F i j B t
t

i j B t

Here Bk(t) is the path built by the k-th ant and Fi is the
target function equals to the number of the successfully
mapped requests divided to the total number of the requests.

Fig. 2. Network topology used for research

A pheromone evaporation coefficient]1;0[p defines
how much pheromone will be left after previous iterations. So
the total value of the pheromone on the arc (i, j) after iteration
t is calculated as shown in (6).

m

k
kijijij ttpt

1
,11

IV. EXPERIMENTAL RESEARCH
The purpose of the research is to compare the results of the

developed algorithm and an algorithm combining greedy and
exhaustive search strategies (heuristic algorithm) [13] on one
of the typical data center physical network topologies using
modelled data. Papers [11,12] also show that the number of
mapped requests by this algorithm greatly exceeds the number
of mapped requests by algorithms currently used in
OpenStack.

A. Research Metodology
The research was conducted using the following input data

parameter values:

 Standart data center topology “fattree” (fig. 2) with 60
computational nodes (each with 16 CPU cores and
1000 arbitrary units of operational memory) and 60
data storages (each with the capacity of 1000 arbitrary
units).

The following patterns were used to generate the set of
requests:

 The pattern with a small number of virtual channels:
seven virtual machines, five virtual storages, and
eleven virtual channels (on the average, two virtual
channels for one virtual storage).

 The pattern with a large number of virtual channels:
five virtual machines, two virtual storages, and eight
virtual channels (four virtual channels for each virtual
storage);

 The pattern with a small number of virtual machines:
three virtual machines and two virtual storages. One of
the virtual storages was connected to all virtual
machines and the other one was connected to one
virtual machine (four virtual channels in total);

130

Fig. 3. Algorithm comparison on the first class of data, – ant colony
algorithm, – heuristic algorithm.

 The pattern with high requirements for the network
bandwidth: two virtual machines, one virtual storage
and two virtual channels between them. The requested
virtual channel bandwidths were chosen so that their
sum was 900 arbitrary units (with the bandwidth of
1000 arbitrary units for a channel connected to a data
storage).

The sets of requests were divided into two basic classes
and were generated using the following schemes.

 In the first class the potentially possible load of the
channels (with the optimal mapping) connected to data
storages varied from 0.3 to 1.0. The load of the
computation nodes and data storages was fixed to 0.75.
In this class only requests generated by the first and
second patterns were used.

 In the second class only requests generated by the third
and fourth patterns were used. In this class, the number
of requests generated by the fourth pattern varied from
0 to 30; in this case, the potentially possible load of the
network varied from 0.5 to 0.8. The load of the
computation nodes and data storages was fixed to 0.75.

The number of requests in each set was 100.

B. Research Results
Fig. 3 demonstrates the percentage of mapped requests

depending on the network load (the first class of data).

The graph shows that when the network load is greater
than 0.6 the developed algorithm maps more requests and the
difference reaches 14% as the network load grows.

Fig. 4 demonstrates the percentage of mapped requests
depending on the number of requests generated by the fourth
pattern (the second class of data).

Unlike the first class of data, the maximum difference
between the algorithms is 6% and barely change as the
number of the fourth-type requests grow.

Also note that the first class of data is mainly focused on
proper mapping of the virtual channels: there are a large
number of channels with a low requested bandwidth. The
second class of data requires the algorithms to properly map
the virtual machines and virtual storages: in case of ineffective
mapping of these elements it becomes impossible to map the
virtual channels with high requested bandwidth.

Since the heuristic algorithm maps virtual machines and
virtual storages separately and uses exhaustive search to
improve the mapping it does fairly well on the second class of
data. This advantage does not apply to the first class of data
though: even if virtual machines and virtual storages are
mapped effectively, there might be no way to map virtual
channels. The ant colony algorithm bypasses this problem as it
considers more ways to map resources and improves the best
mappings from iteration to iteration.

The developed algorithm shows about the same results on
both classes of the input data which means that it is more
universal than the heuristic algorithm.

V. CONCLUSIONS
The paper proposes a data center resource mapping

algorithm based on the ant colony optimization approach. The
algorithm allows to map virtual machines, virtual storages and
virtual channels and is not bound to a certain data center
network topology.

The experimental research showed that the developed
algorithm is more universal than the heuristic algorithm. The
algorithm maps 98-100% requests when the network load is
less than 70% and 90-95% requests on higher network load on
the considered classes of input data.

Fig. 4. Algorithm comparison on the second class of data, – ant
colony algorithm, – heuristic algorithm.

REFERENCES
[1] Nagendram S., Lakshmi J.V., Rao D.V., Jyothi Ch.N. Efficient resource

scheduling in Data Centers using MRIS // Indian J. Computer Science
and Engineering. 2011. V. 2. Issue 5. P. 764-769.

131

[2] Arzuaga E., Kaeli D.R. Quantifying load imbalance on virtualized
enterprise servers // Proc. of the First Joint WOSP/SIPEW Intern. Conf.
on Performance Engineering. San Josa, CA: ACM, 2010. P.235-242.

[3] Mishra M., Sahoo A. On Theory of VM placement: anomalies in
existing methodologies and their mitigation using a novel vector based
approach // Cloud Computing (CLOUD), IEEE Intern. Conf.
Washington: IEEE Press, 2011. P.275-282.

[4] Botero J.F., Hesselbach X., Fischer A., Hermann M. Optimal mapping
of virtual networks with hidden hops // Telecommunication Systems.
2012. V.51. №4. P.273-282.

[5] Yu M., Yi Y., Rexford J., Chiang M. Rethinking virtual network
embedding: substrate support for path splitting and migration // ACM
SIGCOMM Computer Communication Review. 2008. V.38. №2. P.17-
29.

[6] Lischka J., Karl H. A Virtual network mapping algorithm based on
subgraph isomorphism detection // Proc. of the 1st ACM Workshop on
Virtualized Infrastructure Systems and Architectures. Barcelona: ACM,
2009. P.81-88.

[7] Cheng X., Sen S., Zhongbao Z., Hanchi W., Fangchun Y. Virtual
network embedding through topology-aware node ranking // ACM
SIGCOMM Computer Communication Review. 2011. V.41. №2. P.38-
47.

[8] Korupolu M., Singh A., Bamba B. Coupled placement in modern Data
Centers // IEEE Intern. Symp. on Parallel & Distributed Processing. N.
Y.: IPDPS, 2009. P.1-12.

[9] Singh A., Korupolu M., Mohapatra D. Server-storage virtualization:
integration and load balancing in Data Centers // Proc. of the 2008
ACM/IEEE Conf. on Supercomputing. Austin: IEEE Press, 2008. P.1-
12.

[10] Kostenko V.A., Plakunov A.V. An Algorithm for constructing single
machine schedules based on Ant Colony Approach // Journal of
Computer and System Sciences International, 2013, Vol.52, No.6, pp.
928-937.

[11] Vdovin P.M., Zotov I.A., Kostenko V.A., Plakunov A.V., Smelyansky
R.L. Comparing Various Approaches to Resource Allocating in Data
Centers // J. of Computer and Systems Sciences Intern. 2014. V. 53. №
5.

[12] Kostenko V., Plakunov A., Nikolaev A., Tabolin A., Smeliansky R.,
Shakhova M. Selforganizing cloud platform // Proceedings of the 2014
International Science and Technology Conference «Modern Networking
Technologies (MoNeTec)»

[13] Vdovin P.M., Kostenko V.A. Algorithm for Resource Allocation in

Data Centers with Independent Schedulers for Different Types of
Resources // J. of Computer and Systems Sciences Intern. 2014. V. 53.
№ 6.

132

Development of educational resource datacenters
based on software defined networks

P. Polezhaev, A. Shukhman, A. Konnov
Mathematics Department
Orenburg State University

Orenburg, Russian Federation
peter.polezhaev@gmail.com

Abstract—This paper describes application features of
software defined networks (SDN) to build educational resource
datacenters (ERD), which are intended for shared remote access
to paid software for students from different educational
institutions. We proposed a virtual classroom scheduling
algorithm based on simulated annealing heuristic, a genetic
algorithm for traffic routing and providing QoS for data flows.
We have implemented these algorithms using C++ and partially
tested them on the ERD simulator, which is still under
development. Preliminary experimental studies have
demonstrated their efficiency. The main feature of the proposed
solutions is an interrelation between the virtual classroom
scheduling algorithm and the algorithm for proactive routing
and providing QoS parameters. The first algorithm reports the
information about an assignment of virtual classroom’s machines
to the physical servers and its communication pattern to the
second algorithm.

Keywords—SDN; educational resource datacenter; virtual
classroom scheduling; traffic routing

I. INTRODUCTION

At present the majority of educational institutions in the
Russian Federation are not sufficiently funded for purchasing
software required in the educational process. It results in lower
quality of education and in illegal software use. This problem
can be solved by creating educational resource datacenter
(ERD) with the possibility of remote access to shared paid
software for educational institutions [1]. The ERD can be built
on the base of cloud datacenter (fig.1).

 Cloud

SDN

Virtual
classroom 1

VM1.1 VM1.n1...

Virtual
classroom m

VMm.1 VMm.nm...

………

License
servers

VM1 VMk...

Physical classroom 1

……….
Internet

Physical classroom L

Individual devices

Educational resource datacenter

Fig. 1. Logical structure of educational resource datacenter

The cloud system provides the DaaS (Desktop as a
Service) with the access to virtual machines (VM) including
all essential free and paid software for each student. VMs are
grouped into virtual computer classrooms created by a
coordinator for each educational institution. Access is granted
to students over Internet using the computers from actual
classrooms or their own devices as notebooks, smartphones
and tablets. Additionally the ERD includes several virtual
machines containing the license servers for paid software
limiting the number of active applications at same time.

Note that educational institutions can use outdated low-
performance computers for access to software with browser.
The ERD allows using expensive software in the learning
process for study researches, distance learning, access to
virtual laboratories.

Using the ERD can be organized as follows. An
educational institution shall appoint a responsible coordinator
for working with the ERD. The coordinator gathers
information on planned lessons and for each of them
determines the number of required VMs and the list of needed
software. The educational institution and the ERD conclude a
contract about services, the institution transfers money to its
prepaid account. The coordinator creates the needed number
of virtual classrooms with needed software through the ERD
control system, determines the lessons for each classroom, and
accepts one of the schedule variants offered by the ERD
control system. Then the control system creates virtual
machines for virtual classrooms with automatic installation of
the selected software and updates schedule of the ERD.
During the academic year, teachers use virtual classes at
lessons according to the schedule. If it is necessary, the
coordinator can change the time of lessons, install additional
software, and create new virtual classrooms; if the schedule of
the ERD allow it. Payment is done from prepaid account in
accordance with the consumption of the ERD resources and
the use of paid software. This concept implies the solution of a
number of tasks.

A. Automatic creation and setting of virtual classrooms

The coordinator has to be able to create and set up virtual
classrooms with the use of ERD web-site choosing the virtual
machine characteristics, setting the number of their copies and
determining the essential software, further settings performed

This work is supported by the Russian Foundation for Basic Research
(grants 13-07-97046 and 14-07-97034) and by the Foundation for Assistance
of Development of Small Businesses in the Field of Science and Technology
(grant UMNIK 2628GU1/2014).

133

automatically. To achieve this we propose to integrate cloud
management tools for creating and controlling virtual
machines and software configuration management system
automatically installing and configurating software. For silent
software installation the scripts have been developed.

B. Virtual classroom and machine scheduling

The ERD scheduling algorithms should be developed to
consider: predetermined time intervals for sessions, weekly
schedule cyclicity, actual server restrictions, and software
license restrictions. The existing studies on cloud scheduling
[2-8] and cloud resource control systems, such as OpenStack
[9], OpenNebula [10], Eucalyptus [11], Amazon EC2 [12],
VMWare vCloud Suit [13], Oracle Enterprise Manager
Cloud Control [14], Moab Cloud Suite [15], Citrix Cloud
Platform [16], don’t consider the above factors. An ERD
simulator is being developed for estimation of the algorithm
efficiency for different hardware configurations of datacenter,
software restrictions and administrator request flows. Further
on the best algorithm variations are to be studied within an
actual ERD at our University.

C. Efficient routing within ERD with required QoS

To provide acceptable response time for remote desktops
the QoS characteristics have to be configurated as the
minimum guaranteed bandwidth and the maximum guaranteed
delay. The data flow routing should not violate the QoS
requirements for the other flows and should provide dynamic
route changes in case of virtual machine migration.

II. PROBLEM OF VIRTUAL CLASSROOM SCHEDULING

The ERD is a cloud-based system, A cloud system can be
described by the triple

)Software,Flavors,Nodes(Cloud , (1)

where m,1ii}Node{Nodes is a set of nodes (servers),

q,1ii}Flavor{Flavors – set of typical virtual machine

configurations, h,1ii}ogram{PrSoftware – set of available

software.

Each server iNode is determined by the following
parameters:

)D,M,C(Node node
i

node
i

node
ii , (2)

where node
iC is the number of its computational cores,

node
iM and node

iD are accordingly sizes of its RAM and local
HDD.

Each typical virtual machine configuration iFlavor is
characterized by the same parameters:

)D,M,C(Flavor flavor
i

flavor
i

flavor
ii . (3)

Let the ERD serves r educational institutions. Each of
them is represented by coordinator and is characterized by

)Classrooms,w(K iii , (4)

where]1;0[wi is his priority and

ip,1jiji }Classroom{Classrooms are his virtual classrooms.

Each virtual classroom ijClassroom is characterized by the

following parameters:

)s,g,flavor,n(Classroom ijijijijij , (5)

where ijn is the number of its virtual machines,

Flavorsflavorij – their typical configuration,

)g,...,g(g ijR1ijij – coordinator’s requests representing a

vector of preferred time slots for classes,)s,...,s(s ijH1ijij – a

vector describing software installed on virtual machines
(1sijz , if software zogramPr is installed on virtual

machines of ijClassroom , otherwise 0sijz).

The ERD schedule is developed for the period of one or
two weeks, the period is divided into equal intervals (time
slots) for classes. All the time slots are numbered from 1 to
R . 1gijk , if i -th coordinator prefers to allocate k -th time

slot for his j -th virtual classroom, otherwise 0gijk . The

sum

R

1k
ijkg represents the number of classes for

ijClassroom planned by i -th coordinator.

The ERD schedule can be defined by the set of tuples:

)}r,l,j,i,k{(S . (6)

Each tuple)r,l,j,i,k(describes the assignment of one

virtual machine from ijClassroom to the r -th computational

core of the l -th server for the k -th time slot.

Schedule S is feasible, if it satisfies the following
constraints:

1) Physical constraints for the assignment of virtual
machines to servers (for each node its RAM, HDD and
computational cores are not overused in each time slot):

,MMMm,1l,R,1k

Schedule)r,l,j,i,k(:r
:j,i

node
l

flavor
ij

used
l

 (7)

,DDDm,1l,R,1k

Schedule)r,l,j,i,k(:r
:j,i

node
l

flavor
ij

used
l

 (8)

.CCCm,1l,R,1k

Schedule)r,l,j,i,k(r
:j,i

node
l

flavor
ij

used
l

 (9)

2) Licensed software constraints (restriction on parallel
execution of software instances in virtual machines for each
time slot and each software):

134

,In:h,1z,R,1k z

1s&Schedule)r,l,j,i,k(
rl
:j,i

ij

ijz

 (10)

where zI is the maximum allowed number of instances for

software zogramPr .

We formalize the virtual classroom scheduling problem as
the optimization of the following function:

 max,w)s(F iii

r

1i
i

 (11)

where is an encouragement for assignment of one core
of virtual machine to some server’s core for a preferred time
slot for corresponding coordinator, i – the number of such

cores for the i -th coordinator, – the penalty for assignment
of one core of virtual machine to some server’s core for a not
preferred time slot for corresponding coordinator, i – the

number of such cores of the i -th coordinator, – the penalty
for not assigning any core of virtual machine to any available
physical server of the ERD during one required time slot
(considering that all the cores of all the virtual machines of
each virtual classroom should be assigned simultaneously to
the servers for any selected time slot), i – the number of such

cores for the i -th coordinator, i , i , i are the
characteristics of the ERD schedule s .

III. PROPOSED SIMULATED ANNEALING ALGORITHM FOR

VIRTUAL CLASSROOM SCHEDULING

The optimization problem on constructing a schedule
maximizing the function (11) and satisfying the constraints (7-
10) can be solved by a simulated annealing heuristic
algorithm. It is based on the physical process of substance
crystallization involving controlled cooling (see detailed
information in [17]).

The proposed algorithm has the following steps (see
algorithm 1):

Algorithm 1 – Simulated annealing algorithm for virtual
classroom scheduling in the ERD

Step 1. Create an initial 1Schedule . Let 1L be a set of not
assigned virtual classrooms for necessary classes due to the
lack of free resources.

Step 2. Set the initial temperature max1 t:t , set the initial
number of iteration 1:i .

Step 3. While mini tt and maxIi , do the following:

Step 3.1. Set ic Schedule:Schedule . Select a random
value]1,0[r .

Step 3.2. If qr then do the following:

Step 3.2.1. On the basis of iSchedule create iM – the list
of assigned virtual machines of virtual classrooms, which can
be moved from one server to another one in the same time slot
of the schedule considering resource constraints of the servers.

Step 3.2.2. If 0Mi then go to the step 3.3.1.

Step 3.2.3. Select a random number iM,1k .

Step 3.2.4. Select the best fit server jNode for virtual

machine ik MVM in its time slot. The following criteria
should be used for selection (to minimize remaining
resources):

},
C

CCC

D

DDD

M

MMM
{minargj

node
j

flavor
k

used
j

node
j

C

node
j

flavor
k

used
j

node
j

D

node
j

flavor
k

used
j

node
j

M
m,1j

 (12)

where 1,,0 CDM are weight coefficients
describing the fitness degree of RAM, HDD and the number
of computational cores.

Step 3.2.5. Update cSchedule to apply the move of kVM

to jNode .

Step 3.3. If qr then do the following:

Step 3.3.1. On the basis of iSchedule create iM – the list
of virtual classrooms, which can be moved from one time slot
to another one in the schedule considering resource and
licensed software constraints.

Step 3.3.2. If 0Mi then go to the step 3.6.1

Step 3.3.3. Select a random number iM,1k .

Step 3.3.4. Select ik MClassroom .

Step 3.3.5. If the schedule has preferred and suitable time
slots, where kClassroom can be moved, then move it to any
random of them and assign to the random servers which
satisfy resource constraints. Else, move kClassroom to any
suitable random time slot.

Step 3.3.6. Update cSchedule to apply the move of

kClassroom between time slots.

Step 3.4. Set i1i L:L .

Step 3.5. Select a random value]1,0[r .

Step 3.6. If qr then do the following:

135

Step 3.6.1. On the basis of iL and cSchedule create

ii LM – the list of virtual classrooms, which has classes
not assigned to any time slots in the schedule, but which can
be assigned to the servers of at least one time slot.

Step 3.6.2. If 0MMM iii then do the following:

Step 3.6.2.1. Select a random number R,1k .

Step 3.6.2.2. Remove from cSchedule all the classes

assignments to the k -th time slot and add them to 1iL .

Step 3.6.2.3. Go to the step 3.7.

Step 3.6.3. Select a random number iM,1k .

Step 3.6.4. Select ik MClassroom .

Step 3.3.5. If the schedule has preferred and suitable time
slots, where kClassroom can be assigned to, then assign it to
any random of them and to its random servers which satisfy
resource constraints. Else, assign kClassroom to any suitable
random time slot.

Step 3.3.6. Update cSchedule to apply the assignment of

kClassroom to the selected time slot and to remove it from

1iL .

Step 3.7. If)Schedule(F)Schedule(F ic then set

c1i Schedule:Schedule , else:

Step 3.7.1. Select a random value]1,0[r .

Step 3.7.2. If i

ci

t

)Schedule(F)Schedule(F

er

 then set

c1i Schedule:Schedule .

Step 3.8. Decrease the temperature by the formula

i

t
:t 1

1i

 .

Step 3.9. Increment number of iteration 1i:i and go to
the step 3.

Step 4. Return the resulting iSchedule and set iL .

The first step of the algorithm includes the creation of an
initial schedule satisfying resource and licensed software
constraints. It is created randomly by selecting coordinators’
requests with the probabilities equal to the weight iw . Then in
the cycle, under condition of decreasing the temperature, the
schedule is changed randomly by moving one virtual machine
between servers in the same time slot or by moving one virtual
classroom between different time slots. After that, random
virtual classroom with classes have not yet been assigned to,
probably can be assigned to free resources in the new
schedule. A new schedule is accepted as the schedule for the
next iteration, if it improves optimizing function F , otherwise,

it can be accepted with the probability

i

ci

t

)Schedule(F)Schedule(F

e

. Algorithm ends when the minimum
temperature is reached, or when the maximum number of
iterations is exceeded.

This algorithm has the following parameters having effect
on its work:

 maxt , mint are the maximum and the minimum
temperature. They have influence on the number of
iterations and on the decisions at step 3.7.2.

 maxI is the maximum number of iterations.

 q is a probability of new schedule to be constructed by
moving virtual machine between servers in the same
time slot. Accordingly, q1 is a probability of new
schedule to be constructed by moving virtual classroom
between time slots.

 q is a probability of attempt to assign virtual
classroom with classes have not yet been assigned to.

 CDM ,, are weighting coefficients describing
fitness degree of RAM, HDD and number of
computational cores.

We plan to study the proposed algorithm by the ERD
simulator for different values of these parameters and
coefficients , and in the optimized function F .

IV. PROBLEM OF ROUTING AND PROVIDING QOS

Papers [18], [19], [20] solve the problem of routing
network traffic using SDN. The proposed algorithms do not
consider the need to provide QoS parameters for the current or
previously installed data flow routes. The existing algorithms
[21], [22] for providing QoS in SDN are not efficient enough.
The approach for dynamic routing of multimedia data flows is
described in [21]. It provides the maximum guaranteed delay
by LARAC (Lagrangian Relaxation Based Aggregated)
algorithm. However, the authors consider the only case of unit
delays for each network link and do not take into account the
minimum guaranteed bandwidth. Similar approach is
described in [22], the authors formalize and solve the
optimization problem for lossless multimedia traffic
transmission using alternate routes and leaving short routes for
the general data flows. However, they optimize the delays and
do not consider the need to ensure guaranteed bandwidth.

In this paper, we propose the approach based on the
combination of routing and providing two QoS parameters for
data flows – minimum guaranteed bandwidth and maximum
guaranteed delay.

Let)E,V(GT is an oriented multigraph describing
current network topology of the ERD at time t . The set of its
vertices NetDevicesNodesV is the union of the ERD
nodes (servers) set and other network devices (switches,
gateways, data storages, and so on).

136

Each directed edge Ee corresponds to a specific
network link between the vertices V)e(beg and

V)e(end . e has opposite directed edge due to duplex
connection. In addition, several parallel edges can connect two
vertices, for example, parallel network links between switches.
They provide many alternate routes for the data transmission
and providing QoS parameters.

Two following function are defined on the edge set E :

 }0{RE:b – current bandwidth of the link at
time t .

 }0{RE:d – current delay on the link’s output
port at time t .

Let us denote by)C,V(GP an oriented graph
representing the communication pattern of some virtual
classroom. This pattern is reported by virtual classroom
scheduling algorithm to algorithm for routing and providing
QoS. It is possible due to their close integration. NodesV
is a set of servers used for virtual classroom assignment (its
VMs are assigned to them), C is a set of directed edges,
which correspond to existing data flows between servers.

It should be noted, that, if necessary, the set V may also
include other network devices, for example, gateways in the
case when the most of the traffic comes from remote users to
the servers.

Three following functions are defined on the edge set C :

 }0{RC:b – minimum guaranteed bandwidth of
data flow.

 }0{RC:d – maximum guaranteed delay of
data flow.

 }0{RC:d̂ – estimation of average delay that
arises as a result of data flow’s packets processing on
the ports of network devices.

The algorithm for routing and providing QoS must
construct a function)G(PC: t , which relates each data
flow Cc to its route r leading from the vertex)c(beg to

)c(end . Here)G(P t denotes a set of routes between any two

vertices in topology graph TG .

The function can be represented by a vector

)r,...,r(R C1 , where)c(r ii is the route for data flow

Cci .

Let C2E: is the function relating each network link
Ee to the set of data flows Cc , for which corresponding

routes are pass through e :

}re&)c(r|Cc{)e(. (13)

The vector R must contain the routes satisfying the
following constraints for providing QoS:

1) The bandwidth of each route ir with the influence of
other data flows should not be less than the guaranteed
bandwidth for the flow ic :

)c(b})c(b)e(b{minr i
}c{\)e(c

re
i

i
i

. (14)

2) The summary delay of each route ir with the influence
of other data flows should not be greater than the guaranteed
delay for the flow ic :

)c(d))c(d̂)e(d(r i
}c{\)e(cre

i

ii

. (16)

It should be noted, that these constraints are flexible. They
can be violated for some data flows, for example, when the
ERD is overloaded. Hence, the optimized function has the
following equation:

.max)c(d̂)e(d)c(d

)c(b})c(b)e(b{min

)c(d̂)e(d)c(d

)c(b})c(b)e(b{min

)R(H

)c(d))c(d̂)e(d(
:Cc }c{\)e(cre

id

)c(b})c(b)e(b{min
:Cc

i
}c{\)e(c

re
b

)c(d))c(d̂)e(d(

&)c(b})c(b)e(b{min
:Cc }c{\)e(cre

id

)c(d))c(d̂)e(d(

&)c(b})c(b)e(b{min
:Cc

i
}c/{)e(c

re
b

i
}ic{\)e(cire

i ii

i
}ic/{)e(cire

i i
i

i
}ic{\)e(cire

i
}ic{\)e(cire

i ii

i
}ic{\)e(cire

i
}ic{\)e(cire

i i
i

(17)

Here 0b and 0d are the encouragements for
upholding of corresponding constraints on bandwidth and
delays, 0b and 0d are the penalties for their
noncompliance.

In addition, there are strict constraints for the routes
)e,...,e(r

iin1ii :

1) ir is indeed a route:
)e(beg)e(end1n,1jr 1ijijii . (18)

2) ir should begin at the first vertex of the edge ic and
end at the second vertex of ic :

)c(end)e(end&)c(beg)e(begr iini1ii i
 . (19)

137

3) ir shoud not pass several times through the same
vertex:

)e(beg)e(begkjn,1k,jr ikijii . (20)

V. PROPOSED GENETIC ALGORITHM FOR ROUTING AND

PROVIDING QOS

The described optimization problem can be solved by a
genetic algorithm (see detailed information on this heuristic in
[23]). The problem solution is encoded by the chromosome
representing a route vector)r,...,r(R C1 . Population has a

fixed size N .

The crossover operation is a single point crossover for two

parent chromosomes)r,...,r,r,..,r(R A
C

A
k

A
1k

A
1

A
 and

)r,...,r,r,..,r(R B
C

B
k

B
1k

B
1

B
 . It selects a random number

1C,2k and creates two daughter chromosomes by

combining parent genes separated at selected point:

)r,...,r,r,..,r(R B
C

B
k

A
1k

A
1

AB
1 ,

)r,...,r,r,..,r(R A
C

A
k

B
1k

B
1

AB
2 . (21)

The mutation operation for the chromosome
)r,...,r(R C1 represents the selection of a random number

C,1k and a random transformation of the route kr . For the

transformation it selects two vertices)e(beg kj and)e(beg ks

(knsj1) (if there is alternate route between them) and

replaces the subsequence 1kskj e,...,e in kr with the alternate

subsequence kpkj e,...,e .

The selection operation for each generation combines the
choice of topP percent the best chromosomes (elite selection)

with the roulette selection of remaining chromosomes. In the
last case, chromosomes are selected proportionally to a fitness
value of the optimized function.

Stopping criteria for the genetic algorithm are the
exceeding of the maximum time and the lack of significant
improvements in the average fitness value for several
generations. The last criteria can be written by the following
inequality:

)R(HHmax jGi
i,1Gij

, (22)

where G is a number of controlled generations, GiH – the
average fitness value for the last G generations,)R(H j – the

average fitness value for the j -th previous generation, – the
preferred tolerance degree.

The proposed genetic algorithm has the following steps
(see algorithm 2):

Algorithm 2 – Genetic algorithm for routing and providing
QoS in ERD

Step 1. Save the current time to variable startT .

Step 2. Create an initial 1Population of a fixed size N
including the chromosome R which has routes calculated by
Dijkstra's algorithm launched from each vertex from V . It
should minimize summary delays of the routes. Generate
randomly other chromosomes of 1Population .

Step 3. Let 1:i be the number of iteration.

Step 4. While maxstartcurrent TTT and (Gi or

)R(HHmax jGi
i,1Gij

) do the following steps:

Step 4.1. Combine the parent chromosomes from

iPopulation in random pairs and perform the crossover
operation for them with probability P . Save the resulting
child chromosomes to inPopulatio .

Step 4.2. Perform the mutation operation for the
chromosomes from inPopulatio with probability Q .

Step 4.3. Join parent and child populations:

iii nPopulatioPopulation:nPopulatio . (23)

Step 4.4. Perform the selection operation for inPopulatio ,

save the selected chromosomes to 1iPopulation .

Step 4.5. Increment iteration number 1i:i and go to
step 4.

Step 5. Install all the routes from iPopulation as a rules to
the tables of OpenFlow switches.

For this algorithm currentT means the current time of
system clock.

This algorithm is only run for proactive calculation of data
flow routes implementing communication patterns of virtual
classrooms. Patterns are reported by virtual classroom
scheduler of the ERD. Other traffic (which is not critical to
delays and bandwidth restrictions) is routed by standard
shortest path algorithms.

In addition, it should be noted, that the proposed algorithm
also works in particular situation, when PG contains two
vertices. It corresponds to a single route calculation.

It is planned to study the proposed algorithm by the ERD
simulator for different values of parameters b , d , b , d ,

maxT , topP , G , , P and Q .

VI. CONCLUSIONS

The virtual classroom scheduling problem was formalized
as an optimization problem for the ERD. It considers resource

138

and software constraints, schedule cyclicity and time division
into classes (time slots). For the solution of this problem we
have proposed the scheduling algorithm based on a simulated
annealing heuristic.

In addition, the optimization problem of proactive routing
and providing QoS in the ERD was formalized. It takes into
account flexible constraints on providing QoS parameters for
data flows as the minimum guaranteed bandwidth and the
maximum guaranteed delay. We have proposed genetic
algorithm for solving this problem. It is based on SDN
technology, which is used for gathering information on current
network state and installing rules in the tables of OpenFlow
switches to implement calculated routes.

We have implemented these algorithms using C++ and
partially tested them on the ERD simulator, which is still
under development. Different configurations of ERD were
chosen for preliminary studying. They differ by the hardware
configuration and the size of the ERD. Coordinators’ requests
for virtual classrooms with different configurations of VMs
were randomly generated for the virtual classroom scheduling
algorithm. Randomly generated communication patterns (All-
to-All, One-to-All, Grid and etc.) were used for routing and
providing the QoS algorithm. The preliminary experimental
studies have demonstrated the efficiency (reduction of free
windows in the virtual classrooms schedule, decreasing of
QoS parameters violations for data flows) of proposed
algorithms for different test scenarios. In the future, we plan to
conduct a series of experiments on the ERD simulator and to
describe in detail the obtained results.

The main feature of the proposed solutions is an
interrelation between the virtual classroom scheduling
algorithm and the algorithm for proactive routing and
providing QoS parameters. The first algorithm reports the
information about an assignment of virtual classroom’s
machines to the physical servers and its communication
pattern to the second algorithm.

REFERENCES
[1] A.L. Konnov, L.V. Legashev, P.N. Polezhaev and A.E. Shukhman,

“Concept of Cloud Educational Resource Datacenters for Remote
Access to Software”, Proceedings of 11th International Conference on
Remote Engineering and Virtual Instrumentation (REV), Polytechnic of
Porto (ISEP) in Porto, 2014, pp. 246-247.

[2] J. Tordsson, R.S. Montero, R. Moreno-Vozmediano, I.M. Llorente,
“Cloud brokering mechanisms for optimized placement of virtual
machines across multiple providers”, Journal Future Generation
Computer Systems, volume 28, issue 2, February, 2012, pp. 358-367.

[3] R. Fourer, D.M. Gay, B.W. Kernighan, “A modeling language for
mathematical programming”, Management Science, volume 36, issue 5,
May 1990, pp. 519-554.

[4] “CPLEX Optimizer. High-performance mathematical programming
solver for linear programming, mixed integer programming, and
quadratic programming”, IBM Corporation, 2010, URL: http://
www.ilog.com/products/cplex/.

[5] T. Cordeiro, D. Damalio, N. Pereira, P. Endo, A. Palhares, G.
Gonçalves, D. Sadok, J. Kelner, B. Melander, V. Souza, J.-E. Mångs,
“Open Source Cloud Computing Platforms”, Proceedings of 9th
International Conference on Grid and Cooperative Computing (GCC),
2010, pp. 366-371.

[6] V.P. Solovev, A.O. Uvdovichenko, “Virtual machine placement method
with resource redistribution”, Software Programs and Systems, volume
1, 2012, pp. 134-138.

[7] C. Clark, K. Fraser, S. Hand, J.G. Hansen, E. Jul, C. Limpach, I. Pratt,
A. Warfield, “Live Migration of Virtual Machines”, NSDI'05
Proceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation, volume 2, pp. 273-286.

[8] D.I. Kogan, “Problems and methods of finite-dimensional optimization.
Part 3. Dynamic programming and multicriteria optimization”, Nizhniy
Novgorod: Izdatelstvo NGU, 2004.

[9] “Components of OpenStack”, OpenStack.Ru, 2014, URL:
http://openstack.ru/about/components/.

[10] “OpenNebula | Flexible Enterprise Cloud Made Simple”, OpenNebula
Project, 2014, URL: http://opennebula.org/.

[11] D. Taft, “Eucalyptus 3.2 adds new functions for data control and
storafe”, PCWEEK, 2012, URL:
http://www.pcweek.ru/its/article/detail.php?ID=144980.

[12] “Amazon EC2. Amazon Web Services”, Amazon Web Services, Inc.,
2014, URL: http://aws.amazon.com/ec2/.

[13] “VMware vCloud Suite Datasheet. Standatd, Advanced and Enterprise
Editions”, VMware, Inc., 2014, URL:
http://www.vmware.com/files/ru/pdf/products/vCloud/VMware-vCloud-
Suite-Datasheet.pdf.

[14] “Oracle Enterprise Manager 12c”, Oracle, 2014, URL:
http://www.oracle.com/technetwork/oem/enterprise-
manager/overview/index.html?ssSourceSiteId=ocomit.

[15] “Moab Cloud Suite”, Adaptive Computing, Inc., 2014, URL:
http://www.adaptivecomputing.com/products/cloud-products/moab-
cloud-suite/.

[16] “CloudPlatform - Cloud Orchestration to support Infrastructure-as-a-
Service - Citrix”, Citrix Systems, Inc., URL:
http://www.citrix.com/products/cloudplatform/overview.html.

[17] P.J.M. van Laarhoven, E.H.L. Aarts, “Simulated annealing: theory and
applications”, D. Reidel Publishing Company, Dordrecht, 1987.

[18] G. Ibáñez, J. Naous, E. Rojas, D. Rivera, B.D. Schuymer, T. Dietz,
“Small Data Center Network of ARP-Path Bridges made of Openflow
Switches”, The 36th IEEE Conference on Local Computer Networks
(LCN),2011.

[19] H. Shimonishi, H. Ochiai, E. Enomoto, A. Iwata, “Building Hierarchical
Switch Network Using OpenFlow”, Proceedings of Intelligent
Networking and Collaborative Systems, 2009, pp. 391–394.

[20] A. Tavakoli, M. Casado, T. Koponen, S. Shenker, “Applying NOX to
the datacenter”, Proceedings of the 8th ACM Workshop on Hot Topics
in Networks (HotNets-VIII), New York, 2009.

[21] H. E. Egilmez, S. T. Dane, K. T. Bagci, A. M. Tekalp, “OpenQoS: An
OpenFlow controller design for multimedia delivery with end-to-end
quality of service over software-dened networks”, 2012.

[22] W. Kim, P. Sharma, J. Lee, S. Banerjee, “Automated and Scalable QoS
Control for Network Convergence”, In Proc. INM/WREN , 2010.

[23] L. Davis, Ed., “Handbook of Genetic Algorithms”, New York: Van
Nostrand Reinhold, 1991.

139

OpenFlow SDN testbed for Storage Area Network

O. Sadov, V. Grudinin, A. Shevel, D. Vlasov, S. Khoruzhnikov, V. Titov, A. Shkrebets, A. Kairkanov
ITMO University,

Russia
http://sdn.ifmo.ru

Abstract—The paper describes the testbed to determine the
effectiveness of an approach to build network storage using
Software-Defined networks (SDN) OpenFlow. It is assumed that
main protocol to SAN is iSCSI over local area network.
Prototyping tools for managing network resources and data flows
on the basis of SDN and testing environments based on Free and
Open Source software. We describe experiments with various
modifications of OpenFlow controller NOX and set out the specifics
for the use of various software and hardware OpenFlow switches.
The main tests goals are Data Center SAN specific: implementation
of QoS methods accordingly switchspecifics, topology changing,
measuring of transmission parameters, simulating of large amount
of requesting hosts (up to 100 thousands hosts).

Keywords—OpenFlow; SDN; SAN; network; NOX; QoS

I. INTRODUCTION

The aim of this work was to study the design principles and
performance of Software-Defined Networks, as well as to
develop prototypes of tools for managing network resources and
data flows in SDN, the evaluation of the applicability of the SDN
for data centers and distributed storage. For experiments were
selected OpenFlow SDN and evaluated the effectiveness of their
use for the management of iSCSI storage systems.

The requirements were specified for network resources
management tools and Quality of Service (QoS) assurance.

II. TESTBED

A. Software:

OpenFlow software switch based on
CPqD/of12softswitch [1] and Open vSwitch [2];

OpenFlow controllers based on CPqD/nox12oflib [3]and
NOX [4];

OpenFlow network emulator Mininet [5];

VirtualBOX and KVM Virtual Machines with NauLinux
6.3/6.4 [6] distributions and Ubuntu 11.10 pre-configured
CPqD OpenFlow-1.2 Virtual Machine [7].

B. Hardware

OpenFlow switches – Pica8 3290 and HP 3500-24G-PoE
yl.

HP P4300 G2 7.2TB SAS Starter SAN BK716A was used
as the iSCSI SAN.

III. SPECIALIZED SOFTWARE MODULES

For testing purposes was created a number of specialized
Python modules and programs which used for changing of
topology, QoS policies, starting/stopping of traffic generators and
measuring of transmission characteristics. Developed prototypes
were tailored for the hardware OpenFlow switches.

Specialized “switchqos” module was developed based on
NOX module “switch” to manage network resources and data
flows and to ensure QoS.

This module calculates routes for all packets in the testbed
and generates flow tables for every OpenFlow switch. These
calculations and flow tables modifications are performed after
every topology change or data flow interruption.

The traffic classification for QoS control is based on
TCP/UDP port numbers. Depending on switch type and
capabilities, the different QoS control methods were used:
OpenFlow queues, IP ToS, and VLAN PCP modifications.

Special software tools for QoS policy configuration of
hardware switches were used to prioritize SAN traffic. The
different switches (for example, Open vSwitch and HP
ProCurve) had different QoS control mechanisms, which made
the creation of a unified interface is quite a difficult task.

As the most important configurable parameters of QoS
assurance, the bandwidth and the priority of the packet queues
were selected.

The software prototypes for QoS control on HP 3500 and
Pica8 in OVS mode were placed in the repository [8]. They can
be easily extended to use different QoS settings.

Because different switches and controllers support variety
versions of OpenFlow, several different modules were developed
for NOX classic [8], NOX [4] and nox12oflib [3].

IV. NETWORK RESOURCES AND DATA FLOWS
MANAGEMENT

As a system for network resources and data flows
management, a set of software modules was developed for
attaching and detaching links between switches.

In the emulation mode, this was carried out by means of
Mininets Python module.

For hardware switches this was done via CLI commands over
SSH connection, automated by a Python script.

140

Fig. 1. Loop topology for experiments

A loop topology (Fig. 1) was selected for experiments,
consisting of 4 switches (nodes s2, s3, s4 and s5), and two hosts
for traffic generation and reception (nodes h1 and h6).

SDN routing modules based on standard regular MAC-
learning NOX “switch” modules.

During the experiment, test traffic (ping) was sent from the
host h1 to host h6. In an initial state all nodes were connected
accordingly Fig. 1. The controller was in an undefined state, it
had no routing scheme, and the packets have not passed. After
detaching one link by test framework, the route was constructed
by NOX “switchqos” module, and the pass of the packets was
established. After that, the restoring of the detached link (and
loop) did not break the traffic flow. Detaching the active link led
to an automatic topology rediscovery and redirection of the
traffic to a different route.

V. QOS ASSURANCE METHODS

Data flows prioritization was carried out with the Python
modules. These modules set bandwidth for OpenFlow queues or
ToS/PCP bandwidth. The dpctl utility was used for the software
switch control. Hardware switches were managed by CLI
commands sent over SSH.

For the evaluation of a possible use of SDN in data center, a
data center model (Fig. 2) was created. This model consisted of
iSCSI SAN and few VMs. The first VM acted as an OpenFlow
1.2 switch while the second one generated iSCSI traffic; the
others performed in generating and receiving the load traffic.

During the experiment, the data were read from iSCSI SAN
with simultaneous load traffic generation.

IP diagnostic utility Iperf and VoIP test tool SIPp were used
to generate the load traffic.

Fig. 2. SDN data center model

It was observed that under heavy load condition the iSCSI
connectivity might be lost and later recovered. After iSCSI
connectivity recovery the bandwidth is changing in arbitrary
manner. To keep the same bandwidth after recovery we changed
Linux Traffic Control dynamic bandwidth, which is defined by
CpqD/of12softswitch, to static bandwidth setting. The modified
module can be found in [1].

The utility dpctl sets the share of total bandwidth for selected
QoS queues as percent of total bandwidth. The sum of shares is
not necessary equal to 100.

Table I shows the influence of the presence of queuing on the
resulting SAN I/O speed, but there is a little difference.

The experiment with the HP hardware switch has shown a
correlation between the bandwidth share set and the resulting I/O
speed (Fig. 2).

TABLE I. SAN I/O SPEED THROUGH SOFTWARE SWITCH
DEPENDENCY ON QOS QUEUES BANDWIDTH SHARE

Bandwidth share, in % of the total Load traffic,
Kb/s SAN I/O speed iSCSI traffic

100 0 35.1
100 0.1 31.6
100 100 8.3
0.1 100 5.4
0.1 0.1 9.2

TABLE II. SAN I/O SPEED THROUGH HARDWARE SWITCH
DEPENDENCY ON QOS QUEUES BANDWIDTH SHARE

Bandwidth share, in % of total Load traffic,
Mb/s SAN I/O speed iSCSI traffic

100 0 10.0
80 20 8.4
20 80 2.1
0 100 0

Not comparing the absolute transmission rate, it is possible,
due to a priori restricted channel throughput, to specify the
advantages of QoS control in hardware switches: a high degree of
accuracy, an impossibility of setting a total bandwidth more than
100%.

VI. PROCESSING A LARGE NUMBER OF REQUESTS

In the test program (rd test) SCSI command “TEST UNIT
READY” was sent to SAN in multithread mode via ioctl system
call with SG IO code. The target characteristic was the number of
completed requests for a selected period of time.

The developed “switchqos” module was optimized for speed
of transmission of data passing through controlled switches. This
optimization included a modification of the default NOX flow
matching scheme. It was necessary because the used switches
were unable to perform a flow match based on source and
destination MAC addresses and VLAN PCP with the hardware
acceleration. The software processing was limited to 10 000
packets per second.

141

Another setting was in increasing the idle timeout. It was
found during the experiments that HP 3500 switch had not
refreshed the flow packet statistics frequently enough for the
hardware processed flows. Usually, after 5 seconds of idle time
(default for NOX “switch” module), the switch erroneously
removed the record from the flow table. After increasing the idle
time parameter in “switchqos” module to 20 seconds, this
behavior was corrected and the necessity for repeatedly creating
records of flow matching was eliminated. At the same time, an
excessively large idle timeout value could degrade the
performance due to an increased flow table size.

After these optimizations, the performance of the system
increased significantly, and the value of 100 000 requests to SAN
per second through OpenFlow switch was surpassed. The
example of test program output is shown below.

./rd_test /dev/sdb 2 100

Fig. 3. Modeling the large number of requests to SAN in data center
infrastructure

Result: 130124 requests/sec (260248/2)

VII. SAN RESPONSE TIME

Read operations were used to measure SAN response. SG IO
ioctl was used to exclude the buffering influence, instead of the
generic read.

The test program has measured the average latency and jitter
performing SAN requests.

The results for 1000 packets and data block sizes 512 and
1024 bytes are as follows (the average latency and jitter are
measured in seconds):

./rtt_iscsi_read /dev/raw/raw1 1000 \ 512 1024

Size=512 Packets=1000 Latency=0.000844 Jitter=0.000084

Size=1024 Packets=1000 Latency=0.000860 Jitter=0.000104

VIII. DATA CENTER MODELING

Our modeling of a data center involved a transmission of
ICMP requests to SAN from different MAC addresses.

The test network consisted of SAN, 2 hardware OpenFlow
switches from HP, VM with NauLinux 6.3 guest OS running
NOX and 10 test nodes VMs running Ubuntu 11.10 and Mininet.
Each test node launched 6 virtual hosts, 7 software switches
Open vSwitch, and a local controller NOX (Fig. 3).

The test program, running on the main host, sent messages to
the test nodes, starting local test programs, written as xinetd
services. The local test programs on every virtual host pinged
SAN from every MAC address in a specified range. Requests
were forwarded to SAN through hardware switches, controllable
by NOX launched in multithread mode (10 threads) on the main
host. This controller instance has logged the number of different
MAC addresses in the processed requests and the requests
distribution in the running threads. After getting 100 000
different MAC addresses, test programs stopped.

IX. CONCLUSION

Described experiments have shown that developed OpenFlow
testbed could be used for testing the dynamic (re)configurations
of the network elements, (re)setting various data transfer
parameters for different traffic types. It was shown the testbed is
able to serve the requests from large number of hosts. Suggested
inexpensive testbed might be used for detailed investigation of
OpenFlow approach to the network architecture of data centers
and distributed storage.

Software repositories [1], [3] and [4] contain developed
software modules and tests. The controller applications are
packaged in binary and source forms for NauLinux operating
system distribution [6], binary compatible with RHEL/Oracle
Linux/CentOS/Scientific Linux distributions.

REFERENCES
[1] ITMO OpenFlow 1.2 software switch repository, avail-able at

https://github.com/itmo-infocom/of12softswitch

[2] Open vSwitch project, available at http://openvswitch.org

[3] ITMO OpenFlow 1.2 NOX repository, available at
https://github.com/itmo-infocom/nox12oflib

[4] ITMO NOX repository, available at https://github.com/ itmo-infocom/nox

[5] Mininet, available at http://mininet.github.com

[6] NauLinux distribution, available at http://downloads.
naulinux.ru/pub/NauLinux/

[7] CPqD OpenFlow-1.2-Tutorial, available at https://
github.com/CPqD/OpenFlow-1.2-Tutorial/wiki

[8] ITMO OpenFlow tests repository, available at https:// github.com/itmo-
infocom/of-tests

142

In-kernel offloading of an SDN/OpenFlow Controller

A Shalimov
Applied Research Center for

Computer Networks

Lomonosov Moscow State University

ashalimov@arccn.ru

P Ivashchenko
Applied Research Center for

Computer Networks

pivashchenko@arccn.ru

Abstract—This paper presents the novel approach on offload-
ing the most time consuming and frequently used functionality
of the SDN/OpenFlow controller to the Linux kernel space.
This speeds up network applications in 2.5 times together with
possibility of using the all userspace libraries and programming
tools.

I. INTRODUCTION

SDN/Openflow is already a mainstream in the area of
computer networks [1]. It allows us to automate and to simplify
network management and administration: fine-grained flows
control, observing the entire network, unified open API to
write your own network management applications. All control
decisions are done first in a centralized controller and then
moves down to overseen network’s switches. In other words,
the controller is a heart of SDN/OpenFlow network and
its characteristics determine the performance of the whole
network. The controller throughput means how big and active
our network can be in terms of switches, hosts, and flows.
The response latency directly affects network’s congestion time
and end-user QoE. Moreover, as faster controller we have as
more reactive network we can introduce: faster reaction on host
migration and topology changes, more granular flow control,
advanced network application like load balancing techniques,
security features, and so on.

The recent SDN/OpenFlow controllers performance eval-
uations show that the throughput of the controllers are not
enough for modern datacenters’ networks and large scale
networks [5], [6]. There are two complimentary ways to cover
this performance gap. The first way is to use multiple instances
of a controller collaboratively managing the network and
forming a distributed control plane. But this way brings a lot of
complexity and overheads on maintaining a consistent network
view between all instances. The second way is to improve
single controller itself by leveraging ability of contemporary
multicore systems and by reducing existing bottlenecks and
overheads in data communication path in operating systems.
Note these two ways can and should be used together to create
high efficient distributed control plane.

In this paper, we presents an extended approach on offload-
ing of frequently used SDN/OpenFlow controller functions
down to Linux Kernel to create high performance network
applications. The paper is structured as follows. Section 2
describes related works and motivation. Section 3 contains the
main idea of the proposed approach on in-kernel offloading of
an SDN/OpenFlow controller. Section 4 explains implementa-
tions details of our in-kernel offload engine. Section 5 shows
the result of performance evaluation of the proposed approach.

II. BACKGROUND

At present, there are a more than 30 different SDN/Open-
Flow controllers created by different vendors/universities/re-
search groups, written in different languages (Python, Java,
C/C++, Haskell, Erlang, Ruby), using different runtime multi-
threading techniques, showing different performance num-
bers [4]. These controllers are implemented as ordinary ap-
plications running in Linux userspace.

From the system point of view, implementation in Linux
userspace have several performance drawbacks. Every system
call (malloc, free, read and write packet(s) from the socket,
etc) leads to context switching between userspace and kernel
space that requires additional time. Approximately this time for
FreeBSD Linux is 0.1ms and takes 10% time for whole system
call [3]. Under the high load this leads to significantly time
overhead. Moreover, the userspace programs work in virtual
memory that also require additional memory translation and
isolation mechanism: hierarchical vs linear address translation.

In our previous work [7], to avoid above mentioned over-
heads we have implemented the OpenFlow controller as a mod-
ule inside the Linux kernel space. Our experiment evaluation
shows that it has 5 times higher performance than all existing
controllers. But, as we understood later in practice, it’s very
hard to write our own application for Linux kernel space. There
are several programming challenges: low-level programming
language (object C), limited number of libraries and tools, high
risk to corrupt the whole system. Thus, we need to find out
a way to simplify network applications programming for the
in-kernel controller.

III. PROPOSED APPROACH

As already mentioned, the Linux kernel allows us to
significantly speed up the SDN/OpenFlow controllers and pro-
vides abilities to create high performance network management
applications. The idea is to use kernel space to accelerate the
most time consuming functionality of the controller. We call
our approach as in-kernel offloading.

There are several important tasks: determine what func-
tionality should be offloaded, what northbound programming
API we should provide for a user, and how to implement this
command and data passing interfaces between kernel and user
space.

Usually a controller consists of three main layers:

• OpenFlow network layer is responsible for commu-
nication with OpenFlow switching devices. It imple-

143

ments TCP server listening new switches connections
and OpenFlow library for parsing incoming OpenFlow
messages from TCP streams.

• Service layer contains the most frequently used net-
work functions like link discovery, topology, and rout-
ing.

• Application layer represents user-written network ap-
plications that might use services and subscribe on
events from the network layer (for instance, L2 learn-
ing switch, firewall, DDOS).

Figure 1 shows the basic scheme of the proposed idea.
Figure 1(a) and Figure 1(d) represent two opposite situations
where the all layers of the controller reside fully either in
the userspace or in the kernel space, correspondingly. In the
userpace, the controller has wide range of applications and
libraries but low performance. In kernel space, the controller
has fastest performance but limited number of applications.

During offloading procedure the controller is gradually
been dipping down to the kernel space. The offload scheme
supports two operational modes: pass-through mode and driven
mode. Both modes describe which functions run inside the
kernel. In the pass-through mode, the in-kernel part receives
new OpenFlow messages, parses them, and puts into shared
queues (figure 1(b)). In the driven mode, the in-kernel part
also runs services inside the kernel (figure 1(c)). In this
case, it notifies the userspace applications about changes (e.g.,
topology) and provides an high level interface to manage the
network.

IV. OFFLOAD ENGINE

Fig. 2. The SDN/OpenFlow controller offloading architecture.

The figure 2 shows the offload engine architecture. Log-
ically there are three main levels in the offload architecture:
in-kernel controller that is responsible for communication with
switches, shared data structures that are used to pass informa-
tion to the userspace, and an userspace network application
itself.

The in-kernel has three-tier architecture:

• Server. Server thread listens to a socket, accepts new
connections from switches and distributes connections
between frontend and backend threads.

• Frontend. Frontend threads initialize connections and
check their correctness: openflow version, hello, fea-
tures reply. The correctness of headers are checked for
every messages in the input buffer until a features re-
ply OpenFlow message will be sent. If all verification
is done, connections move to backends.

• Backend. Backend threads work with switches and
applications. They do the main job on sending and re-
ceiving OpenFlow messages. Inside the thread we use
poll() to wait for changes in the sockets’ descriptors.

Applications running in the userspace communicates with
backends through shared data structures. Each backend thread
has its own shared data structures. So, to get full speed
the userspace application must be multithreaded with the
number of threads equal to the number of backends threads
in the kernel space, N threads app = N threads kernel.
If N threads app < N threads kernel an application will
not able to show full power and to process all events coming
from the network. If N threads app < N threads kernel
an application would need to have additional locking mech-
anism to access to shared backends data structures and thus
don’t get the full speed either.

Currently multiple applications have to subscribe to dif-
ferent type of OpenFlow messages because we don’t store
multiple copies of the messages.

Fig. 3. Packet In queue organization scheme

There are two types of shared data structures in backend
threads:

• Buffer. All incoming and outgoing raw OpenFlow
messages are stored in input and output buffers
correspondingly. All buffers are reachable from the
userspace through memory mapped regions.

• Queues. The data queue is designed to hold pre-parsed
OpenFlow messages (see figure 3). For instance, for
PacketIn message it holds the following information:
source port, xid, bufferid, dpid, ethernet frame (offset
and size). An ethernet frame itself resides in input
buffer. The control queue is used for communication
between kernel and userspace part. In the driven mode,
this queue is also used for passing information from
the services.

144

Fig. 1. The basic offload procedure: (a) userspace mode, (b) pass-through mode, (c) driven mode, (d) kernel mode.

From the programming prospective an application’s threads
open /dev/ctrl and issue an ioctl() to register in controller.
Controller queues and OpenFlow packets are in an mmap()
region with well defined ownership, so that lock free access is
possible.

The poll() returns the following flags:

• POLLIN indicates new events in the data queue (e.g.,
new packet-in message)and the control queue.

• POLLRDNORM means there are events only in the
data queue.

• POLLRDBAND means there are events only in the
control queue.

• POLLOUT says all input events have been processed.

A kernel thread reads data from socket and fills buffers,
while user application thread reads data from queues and fills
output buffer. The kernel thread waits while user application
processes all input messages. When the application is done, it
calls write() function. After that the kernel thread wakes up and
finally sends output messages to appropriate switches. Note to
speed on application and to decrease network overheads the
output message buffer are flushed either by timer in the kernel
space or by the application itself. The last option is preferable
for fast I/O throughput.

The example below shows the userspace L2 learning
switch application that communicated with in-kernel controller
through memory API.

fds.fd = open("/dev/ctrl", O_RDWR);

fds.events = POLLIN|POLLOUT;

// get memory mapped region size

mem_size = get_memory_size(fds.fd);

// mapping the memory

p = mmap(NULL, size, PROT_READ|PROT_WRITE,

MAP_SHARED, fds.fd, 0);

// registering the application

app_thread_registration(p->thread_number);

// subscribing to packet-in messages

subscribe_packet_in();

// communicating with in-kernel controller

rx_q = &(p->rx_q);

while (1){

// reading latest events from the kernel space

ret = poll(&fds, 1, 2000);

// nothing to do, wait

if (ret == 0) continue;

if (ret > 0){

// new packet_in messages, process them as

l2 learning

if (fds.revents & POLLIN){

for (; rx_q->avail > 0 ; rx_q->avail--){

l2(rx_q->id, p->thread_number, rx_q->cur);

rx_q->cur++;

}

continue;

}

// the output buffer is full, then send all

data to switches

if (fds.revents & POLLOUT){

write(fds.fd, &p->thread_number,

sizeof(int));

continue;

}

// kernel space is off

if (fds.revents & POLLERR)

error("userpace-kernelspace

communication failed")

}

The driven mode becomes possible when we have im-
plemented pass-through mode and measured that while the
userspace thread is 100% loaded, the dedicated kernel thread
is only 25% loaded. This observation shows the kernel threads
might perform some additional useful functions. This list in-
cludes topology discovery, endpoint tracking, dynamic routing,
working with some dataplane control protocols like ARP. We
add additional type of data and control messages in order
tu push changes and information to applications’ threads.
Applications can send requests through control queues or read
push in changes from data queues [service, type, data].

145

V. EXPERIMENTAL EVALUATION

Our experimental evaluation consists of two parts. The first
part is performance evaluation of pass-through mode of the
OpenFlow controller where the goal is to measure I/O over-
heads on offload engine and kernel/userspace communications
based on L2 learning application. The second part is for driven
mode based on L3 forwarding application in order to use a
topology service.

A. Pass-through mode evaluation

For performance evaluation we use the methodology de-
scribed in [4]. There we used only one 10Gb channel and
on cbench because no one controller was able to process all
messages from the channel. In our case, we need two 10Gb
channels and two cbench’es. Finally, the test-bed consists of
two servers connected with two 10Gb links and two cbench’es
generating the packetin messages over these two links.

Figure 4 and Table 1 shows the renewed throughput and
latency numbers for the existing controller against the pure in-
kernel controller and the in-kernel controller in pass-through
mode. The throughput of the pure in-kernel controller is almost
30M flow per second that is 5 times faster than all others. The
throughput of the pass-through in-kernel controller is lower
with 15M flow per second but it’s still 2.5 times faster than
others. The latency of the pure in-kernel controller and the
pass-through controller are 45us and 50us, respectively.

Fig. 4. The average throughput achieved with different number of threads
(with 32 switches, 105 hosts per switch)(Intel(R) Xeon(R) CPU E5645
2.40GHz)

In-Kernel 45
Pass-through 50
NOX 91

POX 323

Floodlight 75

Beacon 57

MuL 50

Maestro 129

Ryu 105

TABLE I. THE MINIMUM RESPONSE TIME (10−6 SECS/ FLOW)

B. Driven mode evaluation

The controller run L3 forwarding application (calculating
the path between two hosts using Dijkstra algorithm) in the
userspace and topology discovery services in the kernel space.

We measured the time required for initial topology dis-
covery in the driven mode and the userspace mode. We used
mininet to create an OpenFlow network with a tree topology
of depth 3 and fanout 3 (i.e 27 hosts, 13 switches, 39 links).
It takes 24ms in the userspace mode and 5ms in the driven
mode to find out the whole topology. The Beacon controller [8]
requires almost 55ms to discover this topology.

We also tried to use the ten physical servers running two
instances of Open vSwitch connected with different topologies.
The times are slightly less but still different in 4 to 5 times.

Comparing path calculation procedure we measured the 3-
4 times difference: 10ms in the userspace mode and 2ms in
the driven mode.

VI. CONCLUSIONS

Such offloading mechanism accelerates the most time con-
suming and frequently used parts of the OpenFlow controller
using the Linux kernelspace. This allow us to easily create high
performance network application. The proposed architecture
can be easily extended with other services like verification,
link status monitoring, etc. Further work will include the
development of new services and simplify API between the
kernel space and the userspace.

Our in kernel offloading implementation shows high per-
formance number comparing with existed controllers. The
userpace application is still 2.5 times faster with 15M flows per
second. Services might be speed on up to 5 times by moving
them into the kernel side.

Our approach is the future of previous approaches to
inkernel HTTP servers that were only able to return static data
to user requests [9].

ACKNOWLEDGMENT

This research is supported by the Skolkovo Founda-
tion Grant N 79, July, 2012 and the Ministry of edu-
cation and science of the Russian Federation, Unique ID
RFMEFI60914X0003.

REFERENCES

[1] M. Casado, T. Koponen, D. Moon, S. Shenker. Rethinking Packet
Forwarding Hardware. In Proc. of HotNets, 2008

[2] T. Benson, A. Akella, D. Maltz, Network traffic characteristics of data
centers in the wild, IMC, 2010

[3] Netmap, info.iet.unipi.it/∼luigi/netmap/

[4] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, R. Smeliansky,
Advanced Study of SDN/OpenFlow controllers, Proceedings of the CEE-
SECR13: Central and Eastern European Software Engineering Confer-
ence in Russia, ACM SIGSOFT, October 23-25, 2013, Moscow, Russian
Federation

[5] A. Shalimov, R. Smeliansky, On Bringing Software Engineering to
Computer Networks with Software Defined Networking, Proceeding of
the 7th Spring/Summer Young Researchers’ Colloqium on Software
Engineering (SYRCoSE 2013), May 30-31, 2013, Kazan, Russia

[6] Advait Dixit, Towards an Elastic Distributed SDN Controller, Proceeding
of the ACM SIGCOMM HOTSDN 13, Hong Kong.

[7] P. Ivashchenko, A. Shalimov, R. Smeliansky, High performance in-kernel
SDN/OpenFlow controller, Proceedings of the 2014 Open Networking
Summit Research Track, USENIX, 2014, Santa Clara

[8] David Erickson, The Beacon OpenFlow Controller, Proceeding of the
ACM SIGCOMM HOTSDN 13, Hong Kong.

[9] kHTTPd - Linux HTTP accelerator, http://www.fenrus.demon.nl/

146

Queuing Systems with Multiple Queues and Batch

Arrivals for Cloud Computing System Performance

Analysis

S. Shorgin, A. Pechinkin

Institute of Informatics Problems

Russian Academy of Sciences

Moscow, Russia

sshorgin@ipiran.ru, apechinkin@ipiran.ru

K. Samouylov, Y. Gaidamaka, E. Sopin, E. Mokrov

 Telecommunication Systems Department

Peoples’ Friendship University of Russia

Moscow, Russia

{ksam, ygaidamaka}@sci.pfu.edu.ru,

{sopin-eduard, melkor77}@yandex.ru

Abstract— Cloud computing became a popular computing

technology, that provides efficient resource utilization to deliver

IT services. Each user requests cloud computing system for use of

resources. If the system is busy, then user needs to wait until

current user finishes the job. This may result in waiting time

increase and drop of request Thus, cloud computing service

provider needs tools to evaluate and reduce waiting and

processing times. In the paper, each request is assumed to consist

of several independent sub-requests according to the number of

virtual cloud servers in the system. All sub-requests of the same

request arrive simultaneously and each server receives exactly

one sub-request in its queue. One of the main performance

measures of cloud computing system is a maximum waiting and

processing time of all sub-requests, which is called response time

of the request. In order to evaluate this characteristic, we develop

a model in terms of queuing system with multiple queues and

batch arrivals. We provide algorithm to obtain steady-state

probabilities that allow evaluating various performance

measures.

Keywords—cloud computing, batch arrivals, queuing system.

I. INTRODUCTION

Cloud computing is a new approach to computing
infrastructure formation. Investment to computing resources
was one of the main items of expenses for majority of
organizations so far. Using cloud computing services, these
expenses may be considered as operational costs. Cloud
computing system includes network devices, computing
resources and data repositories that may be located faraway
from each other. Operator of cloud computing system
combines all these components to form unified computing
infrastructure [1-4].

In the paper, we propose mathematical model of cloud
computing system is terms of multiple-server multiple-queue
queuing system with batch arrivals. Similar model with focus
on optimal power balancing and ordinary arrival of requests
was investigated in [5]. Under the assumptions of Poisson
arrival process and exponentially distributed service times we

derive two computing method for steady-state probabilities.
First one is based on transition rate matrix of corresponding
random process [6]. It is shown that transition rate matrix has
block-diagonal structure that allows solving system of
equilibrium equations using well-known numerical methods.
Second algorithm is based on elimination method described in
[7]. Finally, we provide evaluation of system response time,
which is one of the most important performance measures of
cloud computing system.

The rest of the paper is organized as follows. Section II
gives brief description of mathematical model. Section III
provides computing methods for steady-state probabilities. In
Section IV numerical analysis results are presented and Section
V concludes the paper.

II. MODEL DESCRIPTION

We study a cloud computing system with K vendors
included. A request sent by user to the system, is split into K
sub requests and each vendor serves one sub request. As soon
as vendor finishes sub request processing, it reports user. It is
considered that the system responded to a request when all
vendors finish processing their sub requests.

 In order to analyze cloud computing system behavior, we
consider K -server queuing system with separate queue for
each server. Customers arrive in batches with exactly K
customers in a batch. Batch arrival process is assumed to have
Poisson distribution with rate and customer service time to

be exponentially distributed. Denote k response time of

subsystem k, and according to [5] the total response time of the
whole system can be calculated by the following equation:

 k
Kk

1
max

Let us denote kr - buffer capacity of server k and k -

service rate of server k. Figure 1 illustrates the proposed model.

This work was partially supported by the RFBR, research project No. 14-
07-00090.

147

.

.

.

.

.

.

r1

rK

µK

µ1

 λ
[K]

Fig. 1. Multiple-server queuing system with batch arrivals.

Let)(tnk be the number of customers in subsystem k at

time 0t , kk Rtn)(0 , where 1 kk rR is capacity of

subsystem k, 1,k K . System behavior is described by

random Markov process))(,),(()(1 tntnt КN with the

following state space:

 KkRnRnnn kkК ,1, 0:),,(1 n

where

k

K

k

RR

1
• k

K

k

nn

1
•

Denote mnm : n - a subspace of states with

exactly m customers Rm ,1 . It can be easily proved that the

state space of Markov process)(tN can be expressed in the

following form:

R

m

m

0

 1
1

1

1
1

 K

iK

Km

i

K
mKm CC

where k
nC is binomial coefficient.

III. STEADY-STATE PROBABILITIES

In this section, we provide computing method for steady-
state probabilities of the considered system.

A. Transition Rate Matrix Based Method

Let A be a transition rate matrix for the Markov process

)(tN and k
Kk

R
,1

max

 - maximum possible value of vector

n elements. Denote 121),,,(1 Knnnn - a

number composed of vector n elements and expressed by
numeration system with number base 1 . It can be shown

that value of 1n in decimal number system can be

calculated as follows:

 kK
k

K

k

n
-

1
10 1)1(

n

We introduce following lexicographic order on state space
 :

 011 10
''

10 nnnnnnnn
'''

•
'
•

''
•

'
•

'''

Fig. 2. Transition rate matrix A with block-tridiagonal structure

148

Considering lexicographic order (4), transition rate matrix
has block-tridiagonal structure (Fig. 2), where

 ,,,0
,, 0

, ,1
,

,if,,0

,if, ,
, 0:

'

1
'''

'

Rm
ji

ji
ji

Rn k

nk

kk

K

km
k

'''

'''

nn

nn
nnD

),0,,0,1,0,,0(

},,0{
,if,0

,if,
,

1

kKk

T
k

k

kk
m Rm

e

enn

enn
nnL

'''

'''
'''

 KRmm -,,0
,if,0

,if,
,

1nn

1nn
nnU

'''

'''
'''

Steady-state probabilities),,,(21
 R

T
pppp can be

obtained by solving system of equilibrium equations, which
can be written in following form considering block-tridiagonal
structure of matrix A :

,0

,1--,,0

1,1, 0

-

11--

11

R
T
RKR

T
KR

m
T
mm

T
mKm

T
Km

m
T
mm

T
m

KRKm

Km

DpUp

LpDpUp

LpDp

where

),,,(1-)1(1)()(mxmxmx
T
m pppp mmx)(

Numerical solution of equations (5)-(8) and normalizing
condition give steady-state probabilities distribution for the
considered model.

B. Elimination method

Let ,2,1, ntn , be instants, at which arrival or departure

of a customer occurs. Then system states at

 ,2,1,0 ntn , instants form an embedded Markov chain

)(
~

tN with same state space M , . Let π be a vector of

steady-state probabilities of)(
~

tN .

Transition probability matrix Q of the Markov chain)(
~

tN

can be obtained from the transition rate matrix A of process

)(tN using following equations:

.if,0

,if,

1

,1
,,

,

ji

jiaa
q

ji
j

jiji
ji

Then we start to eliminate spaces of the original Markov

chain)(
~

tN sequentially, beginning with the greatest number

state. At the first step, we receive a new Markov chain)(
~)1(tN

with state space 1,)1()1(M and a modified transition

probability matrix
)1(

Q :

1,1,,
1 ,

,,
,

)1(
,

 Mji

q

qq
qq

MM

jMMi
jiji

At the s-th step, we have a Markov chain)(
~)(ts
N with

state space sMss)()(, and following matrix)(s
Q :

 sMji
q

qq
qq

s
sMsM

s
jsM

s
sMis

ji
s
ji

,1,,
1

)1(
1,1

)1(
,1

)1(
1,)1(

,
)(

,

The transformation is repeated 2M times, until there is
only two states left. Stationary probabilities of the Markov

chain)(
~)2(tM
N satisfy the balance equation

)2(
2

)2(
2,2

)2(
2

)2(
2,1

)2(
1

MMMMM
qq

hence,

)2(
2,2

)2(
2,1

)2(
1)2(

2
1

M

MM

M

q

q

It is shown in [7] that steady-state probabilities of)(
~)(ts
N

and)(
~)(tv
N are same accurate within a constant. Therefore,

assume 1~
1 and using relations between stationary

probabilities of Markov chains 2,1),(
~)(Msts
N , we can

calculate stationary probabilities of initial chain)(
~

tN accurate

within a constant:

149

 Mj
q

q

jM
jj

j

i

jM
jii

j ,2,
1

~

~
)(

,

1

1

)(
,

Then, we use normalizing condition to calculate stationary

probabilities of initial Markov chain)(
~

tN :

M

i
ijj CMjC

1

1 ~,,1,~

Finally, stationary probabilities of original Markov process

)(tN are obtained:

M

j jj

j

jj

j
j

a
GMj

a
Gp

1 ,,

1 ,,1,

IV. NUMERICAL RESULTS

In this section, results of numerical analysis are presented.

We set 8,1 ,6,1 ,4,1 ,3,3 321321 µµµrrrK and

calculate mean value of cloud computing system response time

E for various load intensities k
Kk

1
max , where

Kkkk ,1,/ . Mean response time kE of subsystem

k can be evaluated using Little’s formula:

 k
k

N
E

where kN is mean number of customers in subsystem k, and

system response E time is calculated by equation (1).

Computing results for our model are compared with results
of simulation model of finite capacity queuing system with
batch arrival. Figure 3 shows that computational algorithm
described in Section 3 provides almost the same mean response
time value as simulation model.

Figure 3 also provides mean response time for infinite

capacity system (Kkrk ,1,). Infinite capacity model

gives lower bound of response time for low load intensities
(5.0), but at higher values of response time sharply

increases. The reason of this effect is absence of customer loss
in infinite system.

Fig. 3. Cloud computing system mean response time.

V. CONCLUSION

In our work, we developed analytical model of cloud
computing system in terms of multi-server queue with batch
arrivals. For the considered model, two computational
algorithms for stationary probability distribution are provided.
Numerical analysis showed that stationary probabilities and
performance measures calculated according to these algorithms
are close to simulation results.

Our further research will be devoted to development and
analysis of cloud computing model with dynamic scaling and
nondeterministic batch size.

REFERENCES

[1] IEEE P2301 Guide for Cloud Portability and Interoperability Profiles
(GCPIP) https://standards.ieee.org/develop/project/2301.html.

[2] IEEE P2302 Standard for Intercloud Interoperability and Federation
(SIIF) http://standards.ieee.org/develop/project/2302.html.

[3] OASIS Identify in Cloud Technical Committee https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=id-cloud.

[4] Joint Coordination Activity on Cloud Computing (JCA-Cloud)
http://www.itu.int/ITUT/.

[5] J. Cao, K. Li, I. Stojmenovic, “Optimal Power Allocation and Load
Distribution for Multiple Heterogenous Multicore Server Processors
across Cloud and Data Centers” IEEE Trans. on Computers, vol. 63,
issue 1, pp. 45-58, 2014.

[6] M. Firdhous, O. Ghazali, S. Hassan, "Modeling of Cloud System using
Erlang Formulas" Proc. of 17th Asia-Pacific Conference on
Communications (APCC), pp. 411-416, Sabah, Malaysia, 2011.

[7] P.P. Bocharov, C. D'Apice, A.V. Pechinkin, S. Salerno, “Queueing
Theory”. Ultrecht Boston: VSP, 2004.

150

On the Benefits of 5G Wireless Technology for

Future Mobile Cloud Computing

S. Shorgin

Institute of Informatics Problems

Russian Academy of Sciences

Moscow, Russia

sshorgin@ipiran.ru

K. Samouylov, I. Gudkova

Telecommunication Systems Department

Peoples’ Friendship University of Russia

Moscow, Russia

{ksam, igudkova}@sci.pfu.edu.ru

O. Galinina, S. Andreev

Tampere University of Technology

Tampere, Finland

{olga.galinina, sergey.andreev}@tut.fi

Abstract—This paper comprehensively reviews the paradigm

of mobile cloud computing, which comprises advantages of

mobile computing, cloud computing, and networking. We

systematically overview the major benefits offered to mobile

cloud computing by the anticipated fifth-generation wireless

technology, including the aspects of heterogeneous connectivity,

device-to-device and machine-to-machine communications, as

well as energy efficiency. Our work concludes by revealing open

challenges as well as attractive directions for further research

and may be useful for initial orientation in this field.

Keywords—mobile cloud computing; fifth generation (5G)

wireless technology; heterogeneous networks (HetNets); device-to-

device (D2D) communications; energy efficiency, Internet of

Things (IoT), Internet of Services (IoS)

I. MODERN MOBILE CLOUD COMPUTING

Today, increasingly capable mobile devices, represented by
advanced smartphones and tablets, are employed to aid people
in their daily routines, from communication and social
interaction to storing and processing their important private
information. With handheld device industry now becoming a
150-billion-dollar business, we witness an unprecedented
diversity of mobile applications and services across both
consumer and enterprise markets. To this end, mobile
computing has already developed into a crucial technology
allowing us to access information and data anytime, anywhere.
However, given limited bandwidth, battery life, and storage
capacity of current user equipment, cloud computing has
recently emerged as the aggregation of computing capability to
augment the contemporary computing infrastructure.

A. The potential of cloud computing

Cloud computing generally offers on-demand provisioning
of various applications, platforms, and heterogeneous
computing infrastructures [1]. Given the scale of its use today,
from entertainment, gaming, travel, and news to healthcare,
business, and social networking, we expect cloud computing to
eventually evolve into the Internet of Services (IoS) [2]. With
IoS, everything that exists on the Internet today may be

represented as a service and then delivered to the end user.
Together with Internet by and for the people and the Internet of
Things (IoT), the IoS is believed to pave the way for the future
networked society, where “people, knowledge, devices, and
information are networked for the growth of society, life, and
business” [3].

The important structural components of the IoS are (i)
Software as a Service (SaaS), enabling on-demand access to
any application, (ii) Platform as a Service (PaaS), providing
platform for construction and delivery of applications, and (iii)
Infrastructure as a Service (IaaS) offering on-demand
computing networking, and storage infrastructures. Ultimately,
diverse applications will be delivered as services over the IoS
infrastructure, whereas the hardware and systems software of
data centers will be used to provide those services. Here, a vital
ingredient for the cloud providers to maintain the scalability of
their services as well as to improve the associated operational
efficiency is the virtualization of cloud resources.
Consequently, cloud operators increasingly rely on commodity
hardware implementations by means of network function
virtualization (NFV) and software defined networking (SDN).

B. Towards mobile cloud computing

Located at the intersection of mobile computing, cloud
computing, and networking, mobile cloud computing (MCC)
inherits the attractive benefits of mobility, communication, and
portability [4]. It promises to significantly extend the battery
lifetime of mobile user devices, improve their data storage
capacity and processing power, as well as augment the
reliability [5]. Therefore, it comes as no surprise that cloud-
based mobile solutions have grown into a 10-billion-dollar
market having applications in image and language processing,
sharing Internet data, crowd computing, multimedia search,
sensor data applications, and social networking.

Unfortunately, unpredictable user movement in mobile
clouds may lead to frequent reconnections and hence brings
along the major limitations of MCC, such as unstable
connectivity, resource scarcity, and finite energy supply [6].
Therefore, considerable progress has to be made in

This work was partially supported by the RFBR, research project No. 14-
07-00090.

151

communications technology before the MCC challenges could
be met satisfactorily. Many, however, believe that recent
advances in wireless connectivity hold a promise to mitigate
the most pressing demands of MCC [7]. In what follows, we

review the latest developments in wireless communications
technology and concentrate on its capabilities to unveil the
full potential of future MCC. Our ultimate goal is thus to
provide a comprehensive overview suitable for initial
orientation in this exciting area, as well as speculate on
associated research challenges that lie ahead.

II. FIFTH GENERATION COMMUNICATIONS TECHNOLOGY

 Current wireless systems are struggling to meet the
anticipated acceleration in user traffic demand aggravated by
the rapid proliferation in cloud-based services and applications.
With the expected 13-fold growth of mobile data over the next
five years, mobile network operators are challenged with the
need to significantly improve capacity and coverage across
their wireless deployments. To augment the existing cellular
technology, mobile industry is taking decisive steps in many
aspects of fifth generation (5G) wireless system design; some
of them summarized in the course of our review.

A. Heterogeneous multi-radio multi-cell connectivity

It is a common belief that 5G wireless systems will not be a
universal one-size-fits-all solution, but rather become a
converged set of various radio access technologies (RATs),
integrated under the control of the operator’s cellular network.
Along these lines, the paradigm of heterogeneous networks
(HetNets) has been introduced as a next-generation networking
architecture (see Figure 1) enabling aggressive capacity and
coverage improvements towards future 5G networks [8].
Today, HetNets already comprise a hierarchical deployment of
small cells, on various scales and by different RATs, for
capacity together with macro cells for ubiquitous coverage,
control coordination, and seamless mobility [9].

Fig. 1. Envisioned architecture of a 5G wireless system.

An important recent trend in HetNets is the increasing co-
existence between cellular (e.g., 3GPP LTE) and local area
networks (e.g., IEEE 802.11 a.k.a. WiFi) [10]. By contrast to
cellular technology residing in expensive licensed spectrum,
WiFi employs unlicensed frequency bands and thus may be
preferred for opportunistic offloading of the cellular network
traffic [11]. Additional benefits of WiFi stem from the fact that
it exists in the multitude of forms (from conventional IEEE
802.11n and high-rate 802.11ac solutions, to mmWave
802.11ad systems, to low-power 802.11ah technology).
Motivated originally by the operators’ desire to relieve
immediate congestion on their networks, the use of WiFi is,
however, likely to remain in the mainstream of 5G
development, with integrated small cells (employing co-located
LTE and WiFi interfaces) flooding the market soon.

To facilitate integration of WiFi under the control of the
cellular network, the 3GPP standards community is developing
flexible lower-layer coordination mechanisms already for the
Release 12 of LTE technology. Such control procedures reside
on the radio access network (RAN) level and allow to, e.g.,
dynamically balance the loading of the associated RATs and
even enable their simultaneous operation, when user equipment
transmits on several radio interfaces [12]. The fine-grained
control schemes employing RAN-level assistance are expected
to deliver improved performance to future HetNets by
enhancing them in many ways, from advanced RAT discovery
and real-time network selection [13] to multi-RAT radio
resource management, mobility, and session transfer functions.

B. Network-assisted device-to-device communications

Whereas deploying an increasing density of multi-radio
small cells becomes the mainstream direction toward the 5G,
network densification naturally implies considerable capital
and operational expenditures to install and manage the extra
base stations. Therefore, dense HetNets may sometimes require
prohibitive investment from the network operators thus making
them seek for alternative methods to offload cellular network
traffic. Moreover, handling a network with multi-RAT small
cells of different sizes may incur significant challenges in
cross-cell interference coordination, as well as result in very
complex control procedures for network assistance.

Fortunately, there is an alternative solution to offload some
of the cellular traffic onto direct device-to-device (D2D) radio
links as these are typically shorter and thus more spectrally
efficient than the conventional small cell connections [14].
With much of the current mobile traffic growth coming from
peer-to-peer applications and services, which typically involve
people in close proximity, the benefits of D2D communications
for data offloading are becoming increasingly attractive [15].
While D2D-based operation does not employ broadband
infrastructure for transferring user data, cellular connectivity
may still help by providing assistance with device discovery,
D2D connection establishment, and service continuity. All in
all, D2D technology can alleviate cellular congestion without
the cost of additional networking infrastructure thus having the
potential for new service revenues [16].

Direct connectivity may potentially exist in two different
forms: as licensed-bands D2D (a.k.a LTE-Direct), when direct

152

links between devices employ cellular spectrum, and
unlicensed-bands D2D, utilizing other RATs than cellular for
direct connections (e.g., over WiFi-Direct). The former
solution is attractive as the cellular network has full control
over the in-band D2D links [17], but it also requires significant
intelligence to coordinate simultaneously running user
transmissions and mitigate harmful interference between them,
which does not exist in the standards today. Given the slow
progress of respective study and work items in 3GPP (as the
result of numerous technical challenges), we do not expect
LTE-Direct technology on the market for several years to
come. However, research on this topic becomes very timely
and is steadily getting momentum worldwide.

An alternative to licensed-bands D2D communications is to
connect proximate devices over the unlicensed frequencies,
that is, by employing WiFi or Bluetooth technologies. Whereas
there is a possibility to communicate over WiFi/Bluetooth also
without centralized assistance, there are numerous ways in
which cellular infrastructure may help improve otherwise
uncoordinated connectivity [18]. Indeed, given that the lion’s
share of current user equipment is multi-radio devices capable
of running simultaneous LTE and WiFi connections, the
control coming from the cellular network may improve session
continuity, reduce user contention, and facilitate security
procedures. Therefore, investigation of unlicensed-bands D2D
connectivity remains an attractive research area.

C. Convergence with Internet of Things

The complications of HetNets and D2D connectivity
between people are aggravated today by the challenges coming
from the integration with the IoT infrastructure [19]. As
numerous unattended wireless devices (sensors, actuators,
smart meters, etc.) connect to the 5G network, preventive
measures are needed to ensure that their uncontrolled
transmissions do not disrupt conventional communication [20].
Along these lines, wireless industry has been designing
overload control mechanisms to protect priority human-centric
communication. With respective procedures standardized
previously for Release 11 of 3GPP LTE, the research
community has now moved forward with the goal to enable
efficient IoT operation [21].

Accordingly, it is widely known that the characteristics of
machine-to-machine (M2M) or machine-type communications
(MTC) are drastically different from those of human-generated
traffic. With small and infrequent data patterns typical for
MTC, the network needs additional mechanisms to carry such
traffic with low overheads and high energy efficiency. This
need is becoming especially pronounced in cellular systems,
such as LTE, which have been historically optimized for
streaming session-based traffic [22]. To make matters worse,
the stringent delay and reliability requirements of industrial-
grade MTC applications accentuate the need for further
aggressive improvements, which are currently an extremely
active discussion topic in the standards.

D. Energy-efficient and green networking

Both human- and machine-centric communication require
efficient mechanisms to improve energy efficiency over the
current levels due to the limited battery lifetime of mobile

handheld devices. Whereas spectral efficiency has been the
dominant topic in network optimization over the past decades,
the focus of the recent research efforts has been shifting toward
“bits-per-Joule” and “throughput-per-Joule” metrics, as
demanded by small form-factor user equipment, where wireless
power consumption contributes the most to the overall power
budget [23]. Correspondingly, the emphasis of the latest
investigations has been put onto accounting for the transmit
power consumption, together with the associated circuit power
expenditures, across a multi-radio multi-cell wireless
environment to improve over existing power allocation
mechanisms and approach green networking [24].

III. SUMMARY AND OPEN CHALLENGES

In the course of this work, we have reviewed the essential
improvements offered by the next-generation wireless
communications technology to enable ubiquitous MCC
applications and services. Our study reveals that despite the
fact that significant progress has already been made along these
lines, additional steps are required to improve heterogeneous
connectivity, mindful of multi-radio access technology, before
it may efficiently satisfy the stringent MCC requirements.
Below we briefly conclude with important directions for future
innovation in this area.

On the mobile communications side, further progress is
necessary in enabling higher-bandwidth MCC architectures
(including, but not limited to integrating mmWave access,
massive MIMO, and ultra-dense networking technologies).
Service quality and availability (connectivity, latency,
mobility, energy-efficiency, etc.) need to be improved as well
by offering more adequate mechanisms to handle heterogeneity
in mobile devices, clouds, and wireless networks. On the
computing side, additional challenges remain in enhancing the
efficiency of data access, building effective context-aware
mobile cloud services, offering more advanced architectures
for mobile computation offloading, as well as upgrading
security, privacy, and trust. To successfully pursue these
challenges, the analytical modelling, by e.g., employing the
mathematical teletraffic theory and queueing theory, is
regarded as one of the important ways of understanding the
effects of MCC [25-30].

REFERENCES

[1] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, Heterogeneity in Mobile
Cloud Computing: Taxonomy and Open Challenges, IEEE
Communications Surveys & Tutorials, vol. 16, pp. 369 – 392, 2014.

[2] R. Moreno-Vozmediano, R. Montero, and I. Llorente, Key Challenges
in Cloud Computing: Enabling the Future Internet of Services, IEEE
Internet Computing, vol. 14, pp. 18 – 25, 2013.

[3] D. Astely, E. Dahlman, G. Fodor, S. Parkvall, and J. Sachs, LTE release
12 and beyond, IEEE Communications Magazine, vol. 51, pp. 154 –
160, 2013.

[4] L. Lei, Z. Zhong, K. Zheng, J. Chen, and H. Meng, Challenges on
wireless heterogeneous networks for mobile cloud computing, IEEE
Wireless Communications, vol. 20, pp. 34 – 44, 2013.

[5] N. Fernando, S. Loke, and W. Rahayu, Mobile cloud computing: A
survey, Future Generation Computer Systems, vol. 29, pp. 84 – 106,
2013.

[6] H. Dinh, C. Lee, D. Niyato, and P. Wang, A survey of mobile cloud
computing: architecture, applications, and approaches, Wireless

153

Communications and Mobile Computing, vol. 13, pp. 1587 – 1611,
2013.

[7] P. Rost, C. Bernardos, A. De Domenico, M. Di Girolamo, M. Lalam, A.
Maeder, D. Sabella, and D. Wubben, Cloud Technologies for Flexible
5G Radio Access Networks, IEEE Communications Magazine, vol. 52,
pp. 68 – 76, 2014.

[8] J. Andrews, Seven ways that HetNets are a cellular paradigm shift, IEEE
Communications Magazine, vol 51, pp. 136 – 144, 2013.

[9] B. Bangerter, S. Talwar, R. Arefi, and K. Stewart, Networks and devices
for the 5G era, IEEE Communications Magazine, vol. 52, pp. 90 – 96,
2014.

[10] M. Bennis, M. Simsek, W. Saad, S. Valentin, and M. Debbah, When
cellular meets WiFi in wireless small cell networks, IEEE
Communications Magazine, vol. 51, pp. 44 – 50, 2013.

[11] O. Galinina, S. Andreev, M. Gerasimenko, Y. Koucheryavy, N.
Himayat, S.-p. Yeh, and S. Talwar, Capturing spatial randomness of
heterogeneous cellular/WLAN deployments with dynamic traffic, IEEE
Journal on Selected Areas in Communications, 2014.

[12] S. Andreev, M. Gerasimenko, O. Galinina, Y. Koucheryavy, N.
Himayat, S.-p. Yeh, and S. Talwar, Intelligent Access Network Selection
in Converged Multi-Radio Heterogeneous Networks, IEEE Wireless
Communications, 2014.

[13] L. Wang and G. Kuo, Mathematical Modeling for Network Selection in
Heterogeneous Wireless Networks – A Tutorial, IEEE Communications
Surveys & Tutorials, vol. 15, pp. 271 – 292, 2013.

[14] L. Al-Kanj, Z. Dawy, and E. Yaacoub, Energy-Aware Cooperative
Content Distribution over Wireless Networks: Design Alternatives and
Implementation Aspects, IEEE Communications Surveys & Tutorials,
vol. 15, pp. 1736 – 1760, 2013.

[15] H. Bagheri, M. Katz, F. Fitzek, D. Lucani, and M. Pedersen, D2D-Based
Mobile Clouds for Energy- and Spectral-Efficient Content Distribution,
Smart Device to Smart Device Communication, pp. 237 – 280, 2014.

[16] N. Golrezaei, A. Molisch, A. Dimakis, and G. Caire, Femtocaching and
device-to-device collaboration: A new architecture for wireless video
distribution, IEEE Communications Magazine, vol. 51, pp. 142 – 149,
2013.

[17] B. Kaufman, J. Lilleberg, and B. Aazhang, Spectrum sharing scheme
between cellular users and ad-hoc device-to-device users, IEEE
Transactions on Wireless Communications, vol. 12, pp. 1038 – 1049,
2013.

[18] S. Andreev, A. Pyattaev, K. Johnsson, O. Galinina, and Y.
Koucheryavy, Cellular traffic offloading onto network-assisted device-
to-device connections, IEEE Communications Magazine, vol. 52, pp. 20
– 31, 2014.

[19] K. Hwang, J. Dongarra, and G. Fox, Distributed and Cloud Computing:
From Parallel Processing to the Internet of Things, Morgan Kaufmann,
672 p., 2011.

[20] M. Gerasimenko, V. Petrov, O. Galinina, S. Andreev, and Y.
Koucheryavy, Impact of MTC on Energy and Delay Performance of
Random-Access Channel in LTE-Advanced, Wiley Transactions on
Emerging Telecommunications Technologies, vol. 24, pp. 366 – 377,
2013.

[21] M. Hasan, E. Hossain, and D. Niyato, Random access for machine-to-
machine communication in LTE-advanced networks: issues and
approaches, IEEE Communications Magazine, vol. 51, pp. 86 – 93,
2013.

[22] K. Zheng, F. Hu, W. Wang, W. Xiang, and M. Dohler, Radio resource
allocation in LTE-advanced cellular networks with M2M
communications, IEEE Communications Magazine, vol. 50, pp. 184 –
192, 2012.

[23] S. Andreev, P. Gonchukov, N. Himayat, Y. Koucheryavy, and A.
Turlikov, Energy efficient communications for future broadband cellular
networks, Computer Communications, vol. 35, pp. 1662 – 1671, 2012.

[24] O. Galinina, S. Andreev, A. Turlikov, and Y. Koucheryavy, Optimizing
energy efficiency of a multi-radio mobile device in heterogeneous
beyond-4G networks, Performance Evaluation, vol. 78, pp. 18 – 41,
2014.

[25] I. Gudkova and K. Samouylov, Analysis of an admission model in a
fourth generation mobile network with triple play traffic, Automatic
Control and Computer Sciences, vol. 47, pp. 202 – 210, 2013.

[26] V. Borodakiy, I. Buturlin, I. Gudkova, and K. Samouylov, Modelling
and analysing a dynamic resource allocation scheme for M2M traffic in
LTE networks, Lecture Notes in Computer Science, vol. 8121, pp. 420 –
426, 2013.

[27] I. Gudkova, K. Samouylov, I. Buturlin, V. Borodakiy, M. Gerasimenko,
O. Galinina, and S. Andreev, Analyzing impacts of coexistence between
M2M and H2H communication on 3GPP LTE system, Lecture Notes in
Computer Science, vol. 8458, pp. 162 – 174, 2014.

[28] P. Abaev, Y. Gaidamaka, K. Samouylov, A. Pechinkin, R. Razumchik,
and S. Shorgin, Hysteretic control technique for overload problem
solution in network of SIP servers, Computing and Informatics, vol. 33,
pp. 218 – 236, 2014.

[29] A. Cascone, R. Manzo, A. Pechinkin, and S. Shorgin, Geom/G/1/n
system with LIFO discipline without interrupts and constrained total
amount of customers, Automation and Remote Control, vol. 72, pp. 99 –
110, 2011.

[30] C. De Nicola, R. Manzo, A. Pechinkin, and S. Shorgin, A two-priority
queueing system with trunk reservation, infinite capacity buffers for
customers of both priorities, and different service intensities for high-
priority and non-priority customers, Lecture Notes in Computer Science,
vol. 6886, pp. 230 – 240, 2011.

154

SDN for network security

R. Smeliansky

Moscow State University,

Computer Systems Laboratory,

Moscow, Russia

smel@cs.msu.su

Abstract—Software Defined Networking, SDN, is the

programmable separation of control and forwarding

elements of networking that enables software control of

network forwarding that can be logically and/or physically

separated from physical switches and routers. The

following important question is considered in this paper:

to what extent can SDN–based networks address network

security management problems? The new opportunities

for enhancing network security brought by this separation

are considered in the paper
Keywords — SDN, NFV, VNF, control plane, data plane,

network infrastructure, security, software, protocols.

I. INTRODUCTION

Traditionally, networks are defined by their physical
topology i.e. how servers, switches and routers are cabled
together. That means that once you have built out your
network, changes are costly and complex. This type of
networking is not compatible with the notion of a “lights-out”
datacenter or a cloud environment that needs the flexibility to
support varying workload demands.

Security in networks is usually treated as а consistent
solution of three problems: confidentiality, integrity and
availability of resources. The term "resources" is interpreted in
the broadest sense. It could be physical resources, it may be
logical resources (software) and it can be information resources
(data).

Under the Software Defined Networking approach, the
software can dynamically configure the network, allowing it to
adapt to changing needs. An SDN-based solution can
accomplish several tasks:

 Create virtual networks that run on top of the physical
network. In a multi-tenant cloud virtual network might
represent a tenant’s network topology complete with the
tenant’s own IP addresses, subnets, and even routing
topology. Through SDN virtual networks can be created
dynamically, and can support VM mobility throughout
the datacenter while preserving the logical network
topology abstraction.

 Control the traffic flow within the network. Some
classes of traffic may need forwarding to a particular
appliance (or VM) for security analysis or monitoring
(so-called Virtual Network Function (VNF)). One may
need to provide bandwidth guarantees or enforce

bandwidth caps on particular workloads. Through SDN,
you can create these policies and dynamically change
them according to the needs of your workloads.

 Create integrated policies that span the physical and
virtual networks. Through SDN, you can ensure that
your physical network and endpoints handle traffic
similarly. For example, you may want to deploy
common security profiles or you may want to share
monitoring and metering infrastructure across both
physical and virtual switches.

In summary, SDN is about being able to configure end
hosts and physical network elements, dynamically adjust
policies for how traffic flows through the network,

Fig. 1. Software Defined Network organization1

and create virtual network abstractions that support real-

time VM instantiation and migration throughout the

datacenter. SDN programmability includes not only the

configuration of physical network elements. It is much

broader and includes programmability of end hosts,

enabling end-to-end software-based automation and

ensuring the reliability in a network [1]. SDN allows to

split the solid Data-Control Plane of a Traditional

Architecture Network (TAN), make the network behavior

control robust and fine grained. In the paper we will

1Nick McKeown Moscow talks 2012.

This research is supported by the Skolkovo Foundation Grant N 79,
July, 2012 and the Ministry of education and science of
the Russian Federation, Unique ID RFMEFI60914X0003

155

http://en.wikipedia.org/wiki/Security_management

examine what influence this split has on a security of

infrastructure, software and protocol of network.

In the following sections we consider the potential impact of

applying SDN architecture. We begin by comparing the

security of traditional networks (TANs) to those based on

SDN, then go on to consider the security implications for the

network infrastructure, software stack and network protocols.

II. SECURITY IN TRADITIONAL ARCHITECTURE NETWORKS

There are many areas that may be under different kinds of

threats in TAN [14]: infrastructure, software, protocols. In

those networks even a single compromised router can cause

serious damage to the network and its customers.

In a TAN where Control Plane and Data Plane are

inextricably intertwined an intruder can attack the control

plane from the data plane by flows of faked requests or by

address spoofing and many others ways. So, the control plane

isolation enhances the robustness and provides for a reliable

network behavior. At the same time this isolation will not help

us avoid the typical threats in the data plane like malware,

exploring software vulnerabilities, protocols vulnerabilities in

data plane.

The number of geographically distributed locations with

network equipment is growing in large heterogeneous

networks. There are customers, who are engaged in a strong

competition with each other. So, there is a need not just to

protect the network from misbehavior of applications and

customers, but to protect customers from each other, which

implies the isolation of data plane of one customer from the

data plane of the others.

The term “protect” is versatile. It implies the integrity and

confidentiality of customer’s data, protection from the

degradation of network services (due to e.g. DDoDs) etc.

Spurred by the rapid evolution of networking technologies, we

are witnessing the enormous growth of Internet throughput

and a shift from the fixed client devices towards mobile

devices (since 2003 the number networked devices, sensors

etc. exceed the number of PCs. We had over 1 billion

connected smartphones already in early 2013, and only about

200 million fixed devices). At the same time the efficiency of

existing access control solutions is reduced [11, 12]. In terms

of client device mobility, network configurations are changing

rapidly and the information on network topology changes can

no longer be used directly for access control. So the problem

of network access control based on the information about the

expected behavior of network applications (flows) is

becoming more and more important.

III. INFRASTRUCTURE

One of the main threats in the area of infrastructure

security is the physical access to the network devices. For

example, in a large airport it’s impossible to guarantee the

physical inaccessibility to the network devices. Once the

intruder gains a physical access to the device, he/she can

modify, replace the internal firmware of that device. An

intruder can gain access to the network cabling as well. This is

another example of the threat in this area. It is impossible to

completely prevent such accesses. For example if a provider

needs to exchange some network equipment in their network,

no one can guarantee that the equipment on its way from a

factory to the provider location was not modified.

In an SDN network, the situation is different. All

intelligence resides away from the routers and switches, inside

SDN network controllers (see Fig. 1). The server with the

controller can be moved into a well protect environment.

Programmable controllers can support a set of so-called

applications (c-application or control program on Fig. 1)

which will supply both ordinary, traditional network services

like routing, load balancing for congestion avoidance or DDoS

attacks mitigation, QoS management, filtering (as ordinary

firewalls) etc. as well as new ones such as virtualization,

resources provisioning, monitoring etc. In the security context,

virtualization services mean separation, e.g. one virtualized

entity which belongs to the one virtual space, should be

strongly separated from the other virtualized entity even the

same type but belong to another virtual space. We can treat

“strongly” in two ways, depending on whether these

virtualized entities share the same physical resources or not.

This adds extra complexity to the routing or provisioning

algorithms running as SDN controller applications. The source

of this additional complexity is the dimension of the problem

that introduces restrictions on mapping virtual entities onto

physical resources.

IV. SOFTWARE

In order to evolve the Internet architecture forward, SDN

should absorb and meet the basic principles of today’s Internet

[7, 8]. One of the key questions here is what services should

be placed in the control plane and which ones should be left in

the data plane? There is no clear answer to this question yet.

SDN would not be able to significantly enhance the security

applications for the attacks exploiting application

vulnerability, unauthorized code penetrations and changes i.e.

typical attacks in data plane, which don’t involve the control

plane.

In an SDN network the control software (c-applications)

is concentrated in the controllers. So, another key question is

where SDN controller should be placed [2]. As it can be seen

today the likely deployment presents a hierarchy of controllers

with different responsibilities. This hierarchy should have at

least two levels: intra-domain and inter-domain [9, 10] (see

Fig.2). On the intra-domain level it should be a controller for

internal domain infrastructure management, resources

virtualization and routing. Controllers on this level issue the

approval for resource allocation under user requests and route

the approved flows. They play the role of infrastructure

resource managers. For example at an airport a new airline or

a new company may issue a request for resources. In this

request it may describe what kind of recourses are needed,

amounts for each kind of resources and the desired QoS. The

156

Fig.2. Multidomain SDN Architecture

mapping of virtual resources onto physical ones is

implemented by controllers of another kind. They issue a set

of proper rules for the corresponding switches.

At the inter-domain level the Controller and its c-

applications should support services for specific peering,

redirections to middleboxes, traffic offloading, inbound traffic

engineering etc. [10]. From the security point of view the most

important services would be the dropping of flows that do not

correspond to inter domain routing policy even if there are

some advertised routes, as well as the blocking of DDoS

traffic etc.

A controller should meet the following:

1) Controllers at the same level should have a set of

compatible c-applications;

2) C-applications should be reusable by different controllers

placed near each other;

3) Different controller instances should be able to share the

same instance of a c-application;

4) A controller should be placed in a trusted environment

and be a trusted environment for c-applications. This

means

 as the centralized decision making point the controller
needs to be closely monitored;

 the c-applications and managed devices should be
trusted entities;

 there should be a way to make sure the controllers are
doing exactly what the administrator actually wants
them to do;

 when an incident happens the administrator must be
able to determine what it was, recover, report the
incident etc.;

5) A controller should be scalable; it means that if the

workload is growing beyond the current computational

power of the controller, it should be able to get more

computational power, for example by splitting its activity

with another controller instance, placed on another

physical resource. If a controller goes down, e.g. because

DDoS attacks, the network goes too therefore a controller

should be high available.

6) If some controller instance shuts down, then some

other controllers placed nearby should be able to take on

those network switches, which were managed by the

controller that was shut down.

A secure c-application is another problem. Here we are

faced with the same problem, as developers of applications for

iPhone, Android etc. A good solution for such problem could

be a formal description of c-application behavior [3]. It seems

this approach will be more effective, not resource consuming

like formal verification e.g. Model checking [4].

Monitoring activities in control plane and in data plane is

another crucial function for network security which can be

improved by SDN. As SDN switch extracts headers of all

layers from a packet at once, the c-applications on SDN

controller can do cross-layer analysis and monitoring of the

traffic. This opens a way to application aware load balancing,

fine grain security policy, application-aware flow sampling,

routing, congestion control etc. Monitoring can help in

separation and isolation of the virtual data planes by sampling

157

the data flows to ensure that virtualization has separated data

flows properly, e.g. the data flows of competitors never share

the same physical resource. It can help develop a feedback

control loop like RTT monitoring is used in TCP congestion

control mechanism. The close coupling and cross-layer

awareness of the SDN-based monitoring allows to create

novel network control applications that rapidly respond to new

multi-vectored threats. Monitoring is an important function for

the IPS within the enterprise network... Once an intruder is

detected such a system should react properly up to restore the

controller operation. It doesn’t matter what form an intrusion

takes, e.g. unauthorized software, misbehavior c/d-application
2

etc.

SDN has also strengthens security in the data plane by

Network Function Virtualization (NFV) which is synergetic

with SDN. Virtualized Network Function is controlled and

placement managed by SDN controller from the control plane.

SDN controller can route a flow through a VNF to filter the

content of the data flow, for example to determine the level of

malware propagation based on the monitoring information.

To achieve this it is possible to build a chain from several

properly selected VNFs.

V. PROTOCOLS

We will define protocol security as confidentiality and

authentication. When discussing the protocol security in SDN

environment, we will split the discussion into the following

parts:

 Switch-controller protocol security;

 c-Application Protocol security;

 Controller-controller protocol security.

Switch-controller protocol security. According to Open

Flow specification [15] in a typical SDN network segment

between a switch and a controller an SSL secure connection is

used. SSL provides the basic level of security and that may not

be sufficient in a real world SDN deployment (requiring for

example, more advanced cryptographic protocols: IPsec,

Kerberos and etc.). These encryption techniques may be

sufficient for Data Centers, but would not be appropriate for

WAN networks or Autonomous Systems. We must note that

Open Flow protocol does not meet the AAA requirements –

Authentication, Authorization and Accounting. SDN

controller has to be sure that it communicate with a proper

SDN switch and vise verse. This is an example of the

Authentication problem. SSL as a solution is bulky and

awkward. It has all the problems related to key management,

which are added to increased costs and delays associated with

encryption [5, 6]. Because of that this mechanism of

authentication in Open Flow protocol is turned off in many

switches. What is needed is a more light-weight and easy-to-

use mechanism. The possible candidate could be mpOTR

protocol [16] which satisfies the following requirements:

1 d-application means an application which operate in data plane.

message encryption - no one else will be able to read the

message; authentication buddies - confidence in the peer

identity; perfect forward secrecy - if you lose the secret keys,

the previous correspondence is not compromised; possibility

of repudiation - a third person cannot claim that the messages

to another recipient were written by someone else. The last

point is important, as to not let a third party discover where

the SDN controller is placed.

The authorization problem means the SDN controller is

allowed to apply specific commands to the switch. There is

currently no such mechanism in the OF specification.. The

role of authorization mechanism should play a tool, which

controls and validates the rules loaded into the OF switch for

correspondence to forwarding policy of an appropriate tenant.

Accounting can be described as a way of classifying,

recording, and reporting events to facilitate effective

monitoring activity. OF specification requires to support 40

counters for monitoring purposes. There are 32 counters

treated as optional from them. It is impossible to change the

semantics of these counters or add some new one if you need.

For example, there is only one way to get application

awareness through port number. But it is unlikely to be a

reliable and secure way to do this.

c-Application protocol security. One of the problems is

whether the existing solutions are sufficient and are they

different for SDN c-applications? One such point is how

encryption keys could be bootstrapped into a proper place in a

secure way [13]? As another example, at first it may appear

that a native place for traffic analysis is the c-application over

the controller. But controller applications focus only on

network packet header analysis. Since it requires forwarding

the entire packet payload to controller over the typically low-

bandwidth control channel, it is not recommended to put deep-

packet inspection functions on the controller. The payload

must never be inspected on a controller side because there is a

risk that the controller will be the victim of an attack, for

example, on the mechanisms of main memory manipulation

like shell code. Instead, it should be done by a VNF in the data

plane, to which a controller directs selected traffic. Another

question here is, should the consideration of c-application

protocol security include the communications with

applications in the data plane (d-application)? On the one

hand, the answer should be NO, because then we lose the

separation of control plane from the data plane, which is one

of the important points of SDN approach towards security.

With the separation in place, there is no way to attack control

plane from the data plane. However the communication

between c-applications and d-applications can be desirable e.g.

to let d-applications supply the requirements for QoS to c-

application.

Controller-controller protocol security. In the near future

SDN controllers will run in a local distributed computer

environment like server clusters. In such cases SSL/TLS

protocols could be used to protect the communication channel.

The major component of a distributed controller is the

protocol used for coordination among several controllers

158

instances in a local environment. Such a protocol can operate

in one of two ways: out-of-band, and in-band. In the out-of-

band case, a dedicated control network among controllers is

used and there is no need for additional network protection. In

the in-band case, it is important to provide a secure logical

channel to forward data among controllers. In the case of

WAN or MAN environment, the controller communications

will have two cases mentioned above. If the protocol runs in

the data plane it will require new sophisticated security

techniques which come with performance and configuration

overhead penalties. We must always keep in mind, that

simplicity is power.

When considering SDN security in the case of a WAN,

we have to understand that a controller would be an extremely

desirable target for an intruder. This brings us to the

fingerprinting problem, which asks if it is possible to know,

whether you operating in TAN or in SDN environment based

on e.g. delays, experienced by packets or other indirect

measurements of the behavior of the flows traversing the

network [16]. There is no the clear answer on this question so

far. If the answer will be positive then the next question would

be what way to identify the SDN controller location?

VI. CONCLUSION

 Software Defined Networking (SDN) has developed

rapidly and is now used by early adopters mostly in data-

centers. It offers immediate capital cost savings by replacing

proprietary routers with commodity switches and controllers;

computer science abstractions in network management offer

operational cost savings, which also bring performance and

functionality improvements.

An SDN network has a lot of advantages for network

security especially in physical security of network equipment.

Splitting data plane and control plane allows for robust and

fine-grained control of the applications. However a lot of

additional research has to be done, especially in SDN software

area. The example of one such area is the security of the

protocols in switch-controller and controller-to-controller

communications.

The major opportunity for the SDN approach is

convenient and flexible configuration of packet forwarding

policies. Using the functionality of OpenFlow protocol, we

can configure forwarding of specific traffic types to go

through special network points and also to verify that all the

network packets come through these specific points. This

feature promises a lot of opportunities for network security,

but still requires additional research.

VII. ACKNOWLEDGEMENTS

The author of this paper is indebted to Ilya Baldin for his

numerous discussions and helpful criticism of this paper and

the author’s English. The author has also considered as a

pleasant duty to thank Vitaly Antonenko, Svetlana

Gaivoronskay and Alexander Shalimov for the discussions of

this paper.

REFERENCES

[1] http://blogs.technet.com/b/windowsserver/archive/2012/08/22/software-
efined-networking-enabled-in-windows-server-2012-and-system-center-
2012-sp1-virtual-machine-manager.aspx

[2] B.Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in Proceedings of the first workshop on Hot topics in software
defined networks, ser. HotSDN ’12. ACM, 2012, pp. 7–12.

[3] R. L. Smeliansky, D.Gamaynov “The model of network applications
behavior.”, Programming and Computer Software, ISSN 0361-7688,
2007, Vol. 33, No. 6, pp. 308–316. ©Pleiades Publishing, Inc., 2007.

[4] Edmund M. Clarke, Jr., Orna Grumberg and Doron A. Peled, Model
Checking, MIT Press, 1999, ISBN 0-262-03270-8.

[5] M.Lepinski (Ed.) “BGPSEC Protocol Specification,” Internet
Engineering Task Force, Feb. 2013. [Online]. Available:
http://www.ietf.org/id/draft-ietf-sidr-bgpsec-protocol-07.txt

[6] Domain Name System Security Extensions. RFC 2535

[7] Architectural Principles of the Internet. RFC 1958.
http://www.ietf.org/rfc/rfc1958.txt

[8] David D. Clark, "The Design Philosophy of the DARPA Internet
Protocols", Computer Communications Review 18:4, August 1988,
pp. 106–114

[9] P.Lin, J.Hart, U.Krishnaswamy, K-C.Wang et all. Seamless
Interworking of SDN and IP. SIGComm 2013, p.475-476.

[10] A. Gupta, M.Shahbaz, L.Vanbever, H.Kimy, R.Clarky, N.Feamster,
J.Rexford, S.Shenker SDX: A Software Defined Internet Exchange
http://vanbever.eu/pdfs/vanbever_sdx_tr_2013.pdf

[11] Yu-Fang Chung, Ming-Hsien Kao, Tzer-Long Chen, and Tzer-Shyong
Chen Efficient Date-constraint Access Control and Key Management
Scheme for Mobile Agents IMECS 2010, Hong Kong.

[12] Yang ZHANG and Jun-Liang CHEN Efficient Access Control of
Sensitive Data Service in Outsourcing Scenarios.
http://eprint.iacr.org/2010/242.pdf

[13] Trusted Computing Technologies.
https://www.trustedcomputinggroup.org

[14] O. Santos End-to-End Network Security: Defence_in_Depth. Cisco
Press, 2007

[15] Open Flow Switch Specification. Version 1.4.0 (Wire Protocol 0x05),
Open Network Foundation, October 14, 2013

[16] Castro, Rui, Mark Coates, Gang Liang, Robert Nowak, and Bin
Yu. "Network tomography: recent developments." Statistical
science (2004): 499-517.

159

https://www.trustedcomputinggroup.org/

A network analytics system in the SDN

V. Sokolov, I. Alekseev, D. Mazilov
P. G. Demidov Yaroslavl State University

Yaroslavl, Russia

valery-sokolov@yandex.ru, aiv@yars.free.net,

denis.mazilov@gmail.com

M. Nikitinskiy

А-Real Group, Energia-Info Inc.

Yaroslavl, Russia

man@a-real.ru

Abstract—The emergence of virtualization and security

problems of the network services, their lack of scalability and

flexibility force network operators to look for “smarter” tools for

network design and management. With the continuous growth of

the number of subscribers, the volume of traffic and competition

at the telecommunication market, there is a stable interest in

finding new ways to identify weak points of the existing

architecture, preventing the collapse of the network as well as

evaluating and predicting the risks of problems in the network.

To solve the problems of increasing the fail-safety and the

efficiency of the network infrastructure, we offer to use the

analytical software in the SDN context.

Keywords—software-defined networking; sdn; software system;

application programming interface; smart tool; big data; analitics;

fail-safety; openflow; protocol; flow; flow table; analysis;

monitoring; network topology; heuristic; network statistics;

weighted graph; dynamic network model; load balancing

I. INTRODUCTION

In recent years the explosive growth of the number of
subscribers in computer and mobile networks, the emergence
of new smart devices and applications have led to a significant
increase of the network traffic. The growth of the mobile
traffic proportion, network connection speed and many other
factors result in qualitative changes in the Internet [1].

The existing architecture of the global network was not
designed for the actual volumes of information. New
technologies and network services complicate network
structure and impose heavy demands on the communication
channels organization and the network resource management.
A list of these requirements is being expanded and updated,
gradually creating a gap between the currently applied
solutions and real needs of customers. The advent of
virtualization and security problems of the network services,
their lack of scalability and flexibility force operators to look
for more "intelligent" tools for network design and
management.

The traditional model of operator networking is static. It
aims to solve common tasks and cannot provide a flexible
approach to the implementation of individual schemes of the
network service providing [2]. With the software-defined
networks (SDN), a new approach to networking, providers
received a powerful tool for the network infrastructure
realization. The key idea of separating the control plane and
the data transmission eliminates the traditional model in favor

of efficient and flexible solutions. The use of the SDN will
reduce the cost of deploying and maintaining the networks and
intranet services, enhance the ability to provide unique
services, making a technological basis for new business
interactions.

With the continuous growth of the number of subscribers,
the volume of traffic and competition at the
telecommunication market it is extremely important for
operators to promptly respond to various changes in the
infrastructure and the network topology. It rouses interest for
finding new ways to identify the weak sides of the existing
architecture, to prevent the collapse of the network by correct
load balancing, to evaluate and predict the risks of any
problem situations in the network. In recent years, with the
growth of computing power and technology in the field of
processing big data, the development of software tools for
analyzing various systems and processes is significantly
accelerated.

The software system designed for the German national
team to the World Cup 2014 can serve as an abstract example
of success in this area. With the help of various means of
monitoring this system collects all sorts of information about
the players: the number of taps, the average time of ball
possession, distance, running speed and changes of movement
direction, and much more. The data collection results in a
report on the effectiveness of the players, allowing to identify
their strong and weak points. Thanks to the conclusions, the
concrete and tangible result has been produced - the average
time of possession has been reduced from 3.4 seconds in 2010
to 1.1 second in 2014.

To solve the problems of increasing the fail-safety and the
efficiency of the network infrastructure, we offer to use an
analytical software in the SDN context. The presence of a
convenient tool for checking the current state of the topology,
the existence of "bottlenecks", opportunities and conditions for
the connection of new subscribers will reduce the cost of the
maintenance of the network and increase its reliability.

II. OVERALL DESCRIPTION

Based on the described problem, we came to the
conclusion that there is a need to develop a software system
that enables a comprehensive analysis of the state of a
software-defined network. The key points that allow creating
tools, that perform the network configuration and its
monitoring from the outside, are an open application

160

programming interface (API) and a centralized control plane
in the SDN which contains information about all network
resources and fully controls their distribution [3].

With the OpenFlow protocol, the application can obtain
information about the flow tables from all switches and
construct a graph of the network topology for further analysis
of its properties and specifications. Various parameters of the
network devices and connections can be objects for analyzing
and monitoring:

 the number of processing flows,

 the number of packets in a given flow,

 the number of bytes in a given flow,

 the number of packets that pass through a given port,

 the lifetime of a given flow [4].

The result of this analysis should be a set of rules and
heuristics dynamically created by the system that allow an
administrator to receive early warning of any network
problems, perform its safe reconfiguration and its
optimization. Taking this into account, we can identify a
number of possible applications of the tool for the analysis in
the SDN area.

III. COLLECTING NETWORK STATISTICS

One of important network characteristics is its numerical
parameters: the traffic volume, the number and speed of
connections. The ability to monitor these parameters allows to
create a flexible system of reporting and collecting statistics
both in the entire network and its individual segments in a
given time period. In turn, the analysis of these parameters in
real time enables the administrator to control the network.

The collection of the detailed statistics is provided by the
OpenFlow protocol opportunities. When writing this article,
the authors relied on version 1.4 of this protocol [4].

The controller can interrogate the controlled switches and
to obtain the necessary information. For example, to obtain
data on the work of a single flow, you can use the multipart
request OFPMP_FLOW, which is offered by the OpenFlow
specification. The number of bytes in the flow and the lifetime
of the flow in seconds are among the return parameters.
Through the regular request of this data we can form the full
statistics of the flow rate and the amount of the transferred
traffic. This will result in a clear detailing of the channel use
by a particular user [4].

The use of this detailing can be different: from calculations
of reporting charts of the load distribution of the channel in
relation to a specified period prior to the formation of
individual client proposals based on the frequency and
intensity of the channel use.

The collected statistic is essential for the correct formation
of network reconfiguration and routing policies in case of
creating a channel for the new user. The OpenFlow allows
collecting statistics not only in relation to the logical flow of
data, but also in the context of specific switch ports. For

example, through the multipart request
OFPMP_PORT_STATS, it is possible to obtain information
on the port lifetime, the number of transmitted packets and
bytes, including dropped packets and errors [4]. Having
collected statistics, in other words, the detailing of a specific
port, we can check the possibility of its use for the
transmission of a new data flow for the given connection
conditions. An example of using this data will be presented
below.

IV. A DYNAMIC NETWORK MODEL

As noted, an outer software system is able to collect and
analyze information about the contents of flow tables, request
detailed statistics on ports and data flows.

Based on these data, the system can build a dynamic
network model, presented by a weighted graph. The
calculation of graph weights depends on a number of
parameters and changes dynamically on the base of the
collected statistics and in accordance with the network
changes.

Among the model parameters should be noted:

 the number of the flows for a specific port,

 the average value of the enabled bandwidth for a
particular port,

 the peak statistics (if available - a rule) of the required
bandwidth for a specific port.

The formation of such a network model allows automating
a number of tasks of the network configuring, to inform the
administrator, to carry out proactive support and verification
of the changes in the configuration process. Below are a few
examples of possible application of the intelligent system for
the SDN analysis.

V. SETTING UP A NEW CONNECTION WITH SPECIFIED

PARAMETERS

For clarity, we give an example: an administrator received
a request to create a new connection. The connection
parameters (edge devices, speed) are fixed in the system
which analyzes the existing topology and offers a network
administrator to choose (approve) one of the channel options
compiled by the system.

In this case, the program of the analysis has the following
general workflow algorithm:

 Search all possible routes from point A to point B.

 Apply to the resulting options set of heuristics based on
specified parameters (e.g. bandwidth and prioritization)

 Generate the final channel set for the network
administrator.

The second step of the algorithm discards the routes that
are unacceptable or ineffective. All parameters and threshold
values the filter triggering can be changed in the application
settings.

161

Thanks to the collected statistics the system will take into
account the level of the data ports load while selecting a
particular channel. If the requested bandwidth exceeds the
difference between maximum allowable and average values
for a specific port, it should be deleted from consideration. In
the case of borderline situations when the bandwidth is wide
enough, but the network can have a bottleneck in high load
cases, it will be made one of the following steps, depending on
the settings of the system heuristics: the route will be either
dropped, or it comes to the final set with an appropriate
warning.

VI. THE LOAD BALANCING IN THE EXISTING NETWORK

Checking an existing network or its individual segments
for the presence of bottlenecks is also possible after the
collection of the relevant statistics. Similarly to the previous
example, heuristics will be applied to possible routes and then
optimization variants will be generated.

VII. THE USE OF THE FALLBACK CHANNEL

The use of the collected statistics can be very useful from
the view point of the fail-safety task in the network.

Dynamic changes in the model allow to track the
problematic situation in which the partial or complete failure
in customer service are possible. For example, it can be the
breaking of the link between two nodes in the graph topology.
To prevent such failures, the system calculates a fallback route
for the connection. In case of the current route failure, an
automatic switch reconfiguration will be made by using the
fallback routing policies.

VIII. CONCLUSION

In today's world of technology we can clearly see the
tendency to simplify the external side of the software, to lower
the threshold of entering. This is due to the increase of the

internal complexity of software systems, when an application
takes more and more responsibility for the processes control.

The emergence of expert and analytical systems
corresponds to this trend in various areas of the software
systems support and maintenance.

By summarizing all the preceding, we can conclude that
the development of systems for collecting network statistics
and further analysis is an important step in the SDN evolution.
It will reduce the risks of network failures, increase the
administrator efficiency, reduce the cost of the network
maintenance.

Our current task of creating the system of the network
analytics is of interest together with tools for formal
verification of the SDN. The consideration of formal models
of the SDN, their verification, reviewing and comparing the
existing solutions is beyond the scope of this article and is a
theme for the future research.

The work was supported by the grant of the Ministry of
Education and Science of the Russian Federation, unique ID
RFMEFI57614X0105.

REFERENCES
[1] Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic

Forecast Update, 2013–2018”, February 2014

[2] S. Darbha, M. Shevenell, J. Normandin, “Impact of software-defined
networking on infrastructure management”, CA Technology exchange:

Disruptive technologies, vol. 4, issue 3, November 2013, pp 33-43.

[3] Active Broadband Networks, “Software-defined networking (SDN)
transforms broadband service management”, September 2013.

[4] Open Networking Foundation, “OpenFlow Switch Specification Version

1.4.0”, October 2013

162

Network utilization optimizer for SD-WAN

L. Vdovin, P. Likin, A. Vilchinskii

MERA

Nizhny Novgorod, Russia

{lvdovin, plikin, avilchin}@mera.ru

Abstract— the question how to use the maximum of network

possibilities is still open. ISPs and large distributed companies

use only 40-50% of total network bandwidth. Technology that

helps to increase network bandwidth utilization and redundancy

is crucial and there is still no generic and simple solution for this

problem. The SDN architecture advocates the separation of data

and control plane, and helps to simplify the network

management and maintenance due to logically centralized

software. Basing on this approach, our team has implemented a

simple solution solving network utilization issue. Remote SDN

controller runs on high performance server and this enables to

apply relatively complex per-flow global routing algorithms. An

application tracks network state. In case of link fault, the flows

affected by outage are re-routed over alternative path. A whole

network acts as the single distributed L2 switch from external

connections perspective, but solution architecture allows to

change a whole network representation from L2 switch to

distributed L3 router. Application was developed by using

OpenFlow technologies at data plane devices. The application

uses modified Dijkstra algorithm. The algorithm searches for the

route with the best spare capacity based on actual network

utilization. Also the algorithm allows to control route length over

per-hop penalty. So the developed application allows to apply

per-flow policing in terms of bandwidth and latency. Nowadays

OpenFlow controllers don't have a standardized API and it

makes it impossible to change a controller for your application.

To avoid this issue an OpenFlow independent Controller-

Application specific interface has been developed. Interface uses

application specific proprietary message format optimized to

increase configuration performance. So our application is flexible

in choosing OpenFlow controller. Characteristics for our

prototype have been defined based on performance

characteristics of Yarnet ISP located in Yaroslavl and it should

work with 30 nodes (each node has at least 3 connections per

switch) and establish 5000 flows per second and has traffic

outage less than 1 second. The characteristics were measured

using simulated and target test environment. Developed

application will be used as the framework to implement traffic

policing features, QoS, bandwidth and latency reservation.

Keywords—Software-defined networking; Software-defined-

WAN; OpenFlow; Floodlight

I. INTRODUCTION

Majority of Internet users travel between city areas during
the day, so that they log in from different areas, but keep
producing large amount of network traffic (Figure 1).

Figure 1: Benefits of using multi path instead of single path.

Traditional star and ring ISP routing network topology is

not so flexible from subscribers’ distribution perspective

(Figure 2). In case majority of users are located in specific

areas, network connection to this area may be oversubscribed,

but other connections won’t be used.

Figure 2: Start network topology.

Enterprise clouds, video calls and other peer-to-peer

application apply new requirements for ISP network capacity.

High bandwidth is required to connect subscribers’ networks

163

directly to each other. Mesh routers topology together with

multipath routing technic may increase tolerance of the

network capacity towards subscribers’ geographical

distribution. SDN approach may simplify deployment for

these solutions sufficiently [1].

Our team set the goal to design a SDN application

managing city scale ISP network with mesh connectivity as

single forwarding media. Traffic flows should be equally

distributed along the network based on actual links utilization

and should develop the application prototype which meets 10%

of system characteristics requirements. The following system

requirements have been defined:

 managed network must act as single virtual

forwarding equipment from external connections

perspective (L2 learning switch, extendable to L3

router)

 packets from the same flow should be forwarded over

the same route, flows are matched by defined user

criteria (source/destination IP)

 in case of link failure, affected flows should be re-

routed over alternative path.

 system should be prepared for QoS, DiffServ and

bandwidth reservation features [2].

 it should be possible to integrate feature with

different types of OpenFlow controllers [3].

 system architecture should be scalable to support big

networks.

The system characteristics were based on characteristics

of the one of Yaroslavl`s ISP [4]:

 network size: 300 nodes (30 for prototype)

 connectivity topology: each node has direct

connection to 20% of nodes in the topology (at least

3 connections per switch for small topologies)

 flow establishing rate: 50k flows/s (5k flows/s for

prototype)

 Traffic outage due to link fault: < 1s.

 Maximal number of flows per edge forwarding node:

300k flows (30k flows for prototype)

II. IMPLEMENTATION DETAILS

Network Utilization Optimizer (NUO) is standalone

application communicating with one or more OpenFlow

controllers over proprietary interface (App-Control interface).

We used to extend NOX OpenFlow controller for the very

first prototypes. Unfortunately it was observed that NOX

development had been stopped on GitHub. Hence it was

decided to migrate to Floodlight controller whose

contributors’ community is more active. We should state that

it is quite hard to forecast which of OpenFlow controllers will

be the most suitable for our purposes next day. Also

OpenFlow controllers don't have a standardized API

nowadays, so that it is impossible to change a controller for

your application. To avoid this issue we developed an

OpenFlow independent Controller-Application specific

interface. Interface uses application specific proprietary

message format optimized to increase configuration

performance.

So our application is flexible in choosing OpenFlow

controller. Currently the solution with independent Controller-

Application interface allows us to migrate to another

OpenFlow controller again. It will be rapidly extending and

we have chosen perspective OpenDaylight controller.

“Switch state control” system functions collect and track

network topology information (network graph), switch ports

operating modes (link bandwidth), switch states and

bandwidth utilized by every flow. Meta Forwarding system

functions process packets on external port as L2 learn switch

(may be extended to support L3 routed functions).

As soon as a new flow is detected by the application at

network external port, it is processed by Meta Forwarder logic

according to L2 learning switch functions. Meta Forwarder

logic stores the source address and then examines the

destination address. If it is not found in forwarding database,

the frame is to be flooded on all external ports from virtual

equipment point of view. In case destination host for the flow

is known – new internal route is calculated towards destination

switch using modified Dijkstra to secure maximal network

utilization (Figure 3). Packet flows for internal routing are

classified based on Source IP address – Destination IP

addresses pair. Flows are expired due to packet inactivity. In

case port or switch goes down OF, controllers and application

are notified about outage.

Figure 3: The NUO high level structure. Two new traffic

flows have been routed through network with different

paths.

All flows routed over faulty link are re-routed over

alternative path. During link outage packets are forwarded

over controller until new route is created.

164

OpenFlow controller polls PM counters for every created

internal flow with fixed polling rate (Figure 4). In case packet

rate crosses discreet threshold, “utilization change” indication

is sent towards NUO application. NUO application uses the

latest received values to calculate spare bandwidth for link in

case new flow is being created.

Figure 4: The NUO application makes it possible to poll

PM counters and to change the discreet threshold for the

flow.

It is reasonable to consider OpenFlow specification

extension to support similar features at switch side. OpenFlow

1.3 meter functions may be extended with new meter type

sending notification towards controller as soon as threshold is

crossed [5]. The NUO application uses modified Dijkstra

algorithm (Figure 5):

 Next hop is selected in order to secure maximal

residual capacity along all links in the path.

 Each hop adds additional penalty in order to take into

account the route length by using route “aspect ratio”

 Route “aspect ratio” controls balance between route

length and capacity AR=0 – 1 hop. AR=1 - highest

bandwidth.

 Route score directly depends on route residual

capacity available at the route and hop count.

Figure 5: The NUO application modified Dijkstra

algorithm.

The main parts of NUO application are (Figure 6):

 Application-controller interface (A-C). It is TCP

based interfaces towards OF controller and control

app. Proprietary message format is a subset of

OpenFlow protocol however it has reduced message

size.

 The application implements the main logic and

includes A-C interface server with multi-client

feature support. The application does not depend on

the specific OpenFlow controller and may be split

into parts for better scalability.

 Floodlight controller with stateless adaptations.

Includes A-C interface client to convert A-C message

into OpenFlow and vice-versa. Also polling logic of

PM counters was implemented on the controller side

[6].

 OAM tools Nuoctrl and FlowTrack. The tools

provide CLI to control and supervise NUO

application and GUI for network and flow

visualization.

Figure 6: The NUO application main parts and its

interaction.

III. THE NUO APPLICATION CHARACTERISTICS

An application performance was verified on all levels by

unit, component and system tests. System testing had very

limited capabilities due to low performance characteristics of

mininet [7] and Tp-Link 1043ND switches with OpenFlow

enabled OpenWRT software [8] used in the system. 50 flows

with 50 pps was originated during the test, control and data

path packet latency were measured based on OF PDU and A-

C interface PDU timestamps (Figure 7).

165

Figure 7: NUO application end-to-end latency.

Two main tests to compare the characteristics with classic

networks have been performed. In the first test scenario test

host originates 35 ICMP traffic streams with constant 60 pps

rate, test server responds to ICMP requests [9, 10]. All streams

run over the same link. Timestamps for ICMP requests and

response are collected at host originating traffic (Figure 8).

Ostinato network packet crafter was used to generate and

analyze ICMP traffic streams.

Figure 9: The NUO application forwarding characteristics.

Timestamps for OF control messages are collected at OF

controller. Link is disabled, flows are re-routed by controller.

During failover some packets are forwarded over OF

controller. We got the following results after the test:

 Latency increment 30 msec for 3 flows.

 Traffic disturbance time 45 msec.

 Failover time 53 msec.

The second test case was developed to make sure NUO

application is able to increase network throughput in case

subscribers relocate between access points. Test covers the

case when all subscribers are located near single access point

or equally distributed between access points. Two Iperf

sessions running simultaneously were used in order to

measure traffic bandwidth improvement.

CONCLUSIONS

In conclusion we would like to say that SDN approach

together with OpenFlow technology allows simple

deployment of solutions providing global network control. Big

companies, for example Google, are interested in effective

resource management and already have production ready

applications to manage scale networks [11].

 Proposed approach for OpenFlow applications architecture

allows to concentrate on functions development without

dependency on specific controller. OpenFlow based approach

delivers high level of redundancy and good failover

characteristics in comparison with traditional L2 redundancy

schemas. SDN technology allows to move complicated

algorithms (e.g. routing) from network devices to high

performance data centers, to reduce network deployment costs

and to increase system performance. OpenFlow hardware

performance characteristics are crucial to leverage SDN based

solution into the market.

REFERENCES

[1] T. D. Nadeau, K. Gray. SDN: Software Defined Networks. O`Reilly,
2013. – 384p.

[2] K. K. Yap, T. Y. Huang, B. Dodson, M. S. Lam, N. McKeown. Towards
Software-Friendly Networks. APSys, 2010.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, J. Turner. OpenFlow: enabling innovaton in
campus networks. SIGGCOMM Comput. Commun. Rev. 38, 2 , March,
2008.

[4] Yarnet, “The summary of core network load”. 27 Jun. 2014;
http://yarnet.ru/company/yarnet/asr/.

[5] Open Networking Foundation. OpenFlow Switch Specification version
1.3.3

[6] Open Networking Foundation. OpenFlow Switch Specification version
1.0

[7] B. Lantz, B. Heller, N. McKeown. A Network in a Laptop: Rapid
Prototyping for Software-Defined Networks. SIGCOMM, November,
2010.

[8] OpenWRT, “TP-Link TL-WR1043ND”. 27 Jun. 2014;
http://wiki.openwrt.org/toh/tp-link/tl-wr1043nd#downloads.for.tl-
wr1043nd.v1.x.

[9] B. Heller, C. Scott, N. McKeown, S. Shenkler, A. WunDsam, H. Zeng,
S. Whitlock, V. Jeyakumar, N. Handigol, J. McCauley, K. Zarisx, P.
Kazemian. Leveraging SDN Layering to Systematically Troubleshoot
Networks. SIGCOMM HotSDN, 2013.

[10] H. Zeng, P. Kazemian, G. Varghese, N. McKeown. Automatic Test
Packet Generation. IEEE/ACM Transactions on Networking, 2013.

[11] “OpenFlow at Google”, 18 Aug. 2014;
http://www.opennetsummit.org/archives/apr12/hoelzle-tue-
openflow.pdf.

166

http://yarnet.ru/company/yarnet/asr/
http://wiki.openwrt.org/toh/tp-link/tl-wr1043nd#downloads.for.tl-wr1043nd.v1.x
http://wiki.openwrt.org/toh/tp-link/tl-wr1043nd#downloads.for.tl-wr1043nd.v1.x
http://www.opennetsummit.org/archives/apr12/hoelzle-tue-openflow.pdf
http://www.opennetsummit.org/archives/apr12/hoelzle-tue-openflow.pdf

Abstract—Significant efforts have been devoted to creating
large scale compute and network testbeds for studying future
Internet challenges. Besides large geographic span, the common
emphasis is programmability, allowing researchers to reserve or
create, via software, flexible sets of compute and network
resources over specified topologies to execute research prototypes
of new protocols, processes, and applications. Also emphasized
are virtualization, instrumentation, and software defined
networking (SDN) capabilities of the infrastructure. SDN in
particular stimulated significant interests in academia, industry,
and public sectors to re-imagine the future computing and
networking infrastructure landscape and roadmap while it
becomes increasingly utilized in production environments.
Amidst these interests, one can start to capture desirable
characteristics to glimpse the potential architecture of the future
Internet. In this paper, we discuss the significance of compute-
network interaction across complex, highly customized federated
architecture in the future Internet.

Infrastructure federation has been happening across multiple
dimensions. Federation expands the scope of infrastructure,
geographically and administratively, for use by members of
different organizations. For example, federation initiatives are
underway among: 1) US Global Environment for Network
Innovations (GENI), Europe Future Internet Research and
Experimentation (FIRE), and future Internet testbeds in Asia,
South America, and Canada, 2) university production
infrastructure, 3) US cities, 4) US public research institutes, and
5) commercial infrastructure. While requirements and objectives
differ, they must all address a common set of issues. Such
federation suggests the fundamental needs of applications to
interact with compute and network resources across a generic,
federated, future Internet environment.

Index Terms— applications, software, hardware, network
architecture, network federation, network testbeds, SDN, SDI,
virtualization, future Internet.

I. INTRODUCTION
Around the globe, research communities have commonly

acknowledged the need of persistent, large-scale physical
experimental facilities to study significant challenges facing
Internet and to evolve the Internet to meet future requirements.
One of the primary challenges is the wide range of diversity in
the network quality of service expected by applications. The

challenge poses itself in several aspects. First, the reduced
core-to-edge bandwidth ratio due to the introduction of gigabit
wireless edge networks and the increasing dominance of
wireless and mobile traffic across Internet require on-
demand, topology-, mobility-, and application-specific quality
of service control across Internet. Second, the growing
applications requiring access, processing, and exchange of
large and often real-time data require persistent connectivity
among data centers and devices potentially at a global scale.
Third, the increasing use of Internet for critical applications
with specialized security requirements requires customized
processing and monitoring of application-specific traffic.
With these requirements in mind, future Internet testbeds
developed across the globe have emphasized deep
programmability via software in the infrastructure to create a
“software defined infrastructure” (SDI), encompassing
elements from SDN to compute nodes, sensors, instruments,
storage, and others. At the same time, researchers are looking
into the federation of such SDIs to allow research at a truly
global scale close to that for the future Internet.

In fact, federation is an inevitability considering the
numerous Internet services, processes and other activities that
are global in scope and must utilize resources in and across
multiple domains. Furthermore, as most SDI testbeds are
realized as part of production networks, decisions of the
federation approaches among these testbeds have direct
implications to the federation of the production infrastructure
of the future Internet. This paper overviews a number of
ongoing and proposed community efforts in SDI federation
and explores open questions to be discussed and investigated.

II. FEDERATION DEFINED

As defined in the Merriam-Webster dictionary, “federation
is “…an organization that is made by loosely joining together
smaller organizations”. Put into the specific context of SDI,
the US Global Environment for Network Innovations (GENI)
project [1] defines: “A federation is a set of agreements
among people or organizations, representing the policies and
terms under which they will trust, collaborate, share resources
or engage in other common activities” [2]. Indeed, federation
defines the policies and terms of usage of resources based on
the preferences and needs of the people and organizations
involved. The primary stakeholders and their needs can then

From Federated Software Defined Infrastructure
to Future Internet Architecture

J Mambretti
Northwestern University

Evanston, IL, USA

K -C Wang
Clemson University

M Brinn
Raytheon BBN Technologies

Cambridge, MA, USA

167

be identified to be its entities, actions, and interfaces.
Entities: In a federation, three types of logical entities are

essential – resource users, resource providers, and the trust
providers. In the GENI example, it defines itself as a research
testbed; therefore, its users are research experimenters, its
resource providers are operators of GENI compute and
network resources on participating universities and research
institutes. As far as the trust provider, GENI adopts a simple
single-clearinghouse approach, based on the umbrella
permission granted by participating universities to offer access
to all users that can be formally identified as a member of a
GENI-participating institution via InCommon [3]. Figure 1
illustrates the three roles. Mapping to our terminology,
“experimenter tools” are users, “aggregates” are resource
providers, “identify providers and slice authority”
approximately map to the trust providers.

Actions: Actions are applied to resources to fulfill users’
reservation requests. Each resource provider must, based on
resource type and policy, define what available actions for the
resource are exposed for user requests. For example, network
resources may expose isolated or shared access at different
scopes (e.g., optical circuit, layer 2, or layer 3), standard or
customized packet switching, and different levels of quality of
service; compute resources may expose physical or virtual
machines with different operating system and storage; other
resources may include special instruments, sensors, software
services (e.g., firewalls, load balancers, encryption services)
with respective customizable actions.

Interfaces: Per our definition, federations are created based
on “human” interests. Nevertheless, their intentions and
actions are manifested in policies expressed as software
constructs that must be communicated among the federated
entities via agreed interfaces.

Agreeing on the choice of interfaces across resources is just
as challenging as agreeing on the choice of common human
languages in international settings. The eventual selection will
have to be the result of natural selection, i.e., the ones that
become most popularly used would be the ones that persist.
This is beyond the scope of this paper. Just as an example, we
introduce the GENI Resource Specification (Rspec) language
[4,5] and the Network Service Interface [6] as two currently
widely used interfaces. The former is used by the GENI
infrastructure to communicate compute and network (both
SDN and non-SDN) resources. The latter is used by global

Experimenter
Tools Aggregates

3. AM Requests

4. AM Responses

Identity
Provider Slice Authority

1. Certified Identity
and Attributes

2. Authorized
Slice Credentials

3. AM Request3. AM Request

d Identity iedi
utesbui

2. Authorize
Slice Crede

Figure 1. Key entities and actions in GENI federation [2].

optical research networks as a standard for provisioning cross-
domain optical network lightpaths and and L2 circuits.

For SDN, the interfaces have so far been diverse and
specific to respective implementations. Just to name a few,
open source SDN implementations such as the Floodlight
controller project, the OpenDayLight controller project, and
the OpenVswitch project have all defined interfaces for
external applications to request the setup of static network
paths based on specific attributes. In order to federate among
SDNs of different types, obviously additional “translation”
among them must be done. Various communities have made
attempts to suggest such a translating interface. In the
OpenStack [7] and Cloudstack [8] open source cloud
computing projects, networking plugin architectures are
defined to provide a common interface for different SDN
providers to offer the same sets of logical service for the
cloud. Similarly, the Open Networking Foundation (ONF) has
created a Northbound API working group [9], and the Object
Management Group (OMG) has created a SDN working group
[10] to attempt the creation of a standard interface for SDN.
Recent papers also presented example interfacing of SDN with
the legacy BGP-based IP network based on a HTTP RESTful
interface of the Floodlight controller and a BGP router [11].

Another recent community effort has begun to focus on the
Software Defined Exchange (SDX) concept as the means of
interfacing different SDN networks, and to also incorporate
other resources in SDIs such as compute, storage, and so on.
The design of SDX necessarily must address the “interface” as
well as the “body”, such that it has the interfaces as well as the
resources needed to orchestrate the interfacing action of
different SDIs of different authorities. Later in the paper we
describe a suggested SDI federation approach based on a
proposed SDX framework that incrementally incorporates
interfaces such as GENI Rspec, NSI, and other interfaces for
established resources (such as Internet2 AL2S service [11]2])
and new resources (such as emerging policy-based SDN
services [13]) based on participating organizations’ needs and
policies.

III. WHAT RESOURCES TO FEDERATE

In an SDI, the typical resources are physical and virtual
compute servers, storage, and network connectivity. When
cyber-physical systems are involved, sensors and actuators are
also considered. Increasing emphasis is placed on software
services as resources; e.g., software firewalls, encryption
services, transcoding agents, and data transfer services. These
types of software services are usually deployed on compute
servers in the applications’ data paths, often conveniently at
the network gateway. Emerging cloud-computing systems
such as OpenStack are looking into insertion of such services
in arbitrary points in the network based on SDN [14].

The majority of resources in a federated SDI environment
will be virtualized/shared. Full access to physical resources by
a single user would be the rare use case and can be considered
a special case equivalent to a virtualized resource request at
full capacity. As an example, consider an organization
operating an SDI with various resources shared by different

168

application providers and users: 1) a point-to-point data
request by a remote user to the organization’s big data archive:
composed of a data retrieval service, an application-specific
data processing service, a firewall service, and high
throughput data transfer agents on both ends – all over a user
requested cross-domain SDN path; 2) a point-to-multi-point
multicast live video streaming service: composed of a
streaming server, quality of service monitors, and transcoder
agents as needed at distributed points in a multicast tree
spanning multiple federated domains; 3) a novel “connected
vehicle” mobile connectivity proxy: composed of a cluster of
data proxies distributed along the trajectory of moving users to
assist reliable communication with remote data centers for
real-time services, and 4) a monitored highly available smart
grid connection: composed of sensor data handler service at a
smart grid control center, distributed monitoring service, and
physical sensors across vast geographic areas spanning more
than one federated domains.

Analyzing the example above, a number of observations can
be made about the resources involved:
1) Software services are instantiated as part of the

application end-to-end data path.
2) Software services run on virtualized compute host.
3) Resources can be persistent or launched each time a

service request is initiated.
4) Resources can be in different federated domains.
5) All federated domains need not provide the same range of

services.
6) An application can operate as long as any traversed

federated domain meets its required resources.
The example above is in fact quite representative of the
majority of Internet applications today. As a result, a sensible
approach towards identifying a federation framework would
be starting with a simple framework that can reserve compute
and network resources effectively, and incrementally
incorporate interfaces and reservation methods for new types
of resources as they emerge. Recognizing that the primary
focus of federation should be the policy and preferences of
people and organization, the underlying framework, i.e., the
resource API, should be kept as simple as possible, and as
expressive as possible. This allows SDI operators to easily
register new resources as well as integrate existing identity
and resource management systems into the framework by
adding simple API wrappers. In fact, in the GENI
architecture, “aggregates” serve as such a common API
wrapper that can be used to contain and allocate ANY
resource (network connectivity, bandwidth, VLAN,
computation, storage, etc.) using a common interface and
common foundations for trust and identity.

Below we propose such a framework based on the GENI
Rspec framework for compute and basic/SDN network
reservation, integrated with the NSI API for wide area light
path reservation, and the Internet2 AL2S API for L2 circuit
reservation.

IV. FEDERATION FRAMEWORK

Figure 2 is an illustration of the current GENI federation
architecture [2]. The “clearinghouse” represents the set of

Figure 2. Current GENI Federation Architecture [2].

authentication and authorization services that provides users
with the necessary credentials to request service from
individual resource aggregates. Given the clearinghouse-
approved credentials, the user can send resource requests with
resource specific attributes to each resource aggregate. While
each resource aggregate can subsequently approve/deny
requests given the specific attributes, resource availability and
user types, the clearinghouse can be seen as the anchor of all
resources within a federation. Based on this concept, we
propose a federation framework as illustrated in Figure 3. By
allowing clearinghouses to communicate with each other,
mutually share information and grant access of the available
resources (based on customizable pairwise agreements, of
course), federations can be infinitely extensible. This model
is, in fact, not far from today’s Internet architecture, where
such clearinghouses are synonymous with the Internet Service
Providers (ISP) and the mutual agreements are based on ISP
peering relationships. In a federated SDI, a richer range of
resources is being “peered”. The resource instantiation,
however, is not limited to a single federation. Instead, once a
request is certified, applications have the flexibility to
communicate directly with resource aggregates, enabling a
more scalable and flexible implementation.

A. The Framework
The very factors that enable the creation of a single federation
have parallels to those required in developing cross-federation

Figure 3. An extensible federation framework based on
clearinghouse peering.

169

cooperation, though perhaps at a larger scale with additional
parameters.

Each federation has its own set of trust roots, which
represent a set of identities (typically certificate authorities or
delegated authorities) whose signed statements of identity and
attribute are accepted by members of the federation. Such trust
roots allow for both federation-wide authentication (using
SSL certificate verification, e.g.) and authorization by
matching federation-authorized credentials against federation
and aggregate-local policies. The representation of credentials
have been standardized in these major categories:
• Identity Credentials: Typically X.509 certificates signed by

a Member Authority
• Role-based access-control (RBAC) credentials: typically in

SFA format [15]
• Attribute-based access-control (ABAC) credentials:

typically in ABAC format [16]

The APIs are the basis for communicating with authorities
for signed credentials. The GENI Federation API v2 [2] and
the GENI Aggregate Manager API v2/v3 [3,4] are becoming
de facto standard for negotiations between tools and
aggregates for the allocation and management of resources.

A federation, be it individual or a federation-of-federations,
typically requires a set of policies that control the issuing of
credentials, the limits on resource allocations based on
different kinds of requests and the attributes of the requesting
user. These policies must be agreed upon, encoded and
disseminated to all federate authorities and aggregates.

Finally, accountability procedures (e.g. monitoring, alerting,
shutdown, forensics, credential revocation) must be extended
and agreed to by all federating domains in order to assure that
a cross-domain topology will be safe to use (from the user’s
perspective) and to contribute resources to (from the resource
provider’s perspective). These mechanisms may range from
integration of monitoring and response automated processes to
human processes to coordinate across operations centers.

B. Federating Wide Area Networks – Network Service
Interface (NSI)
The Network Services Interface (NSI) initiative developed
initially within a worldwide community of international
research and education network providers. Over ten years ago,
this community decided to design, implement and operate a
Global Lambda Integrated Facility (GLIF), based on light
paths over trans-oceanic and terrestrial optical fiber and
DWDM edge switches hosted at GLIF Open Lambda
Exchanges (GOLEs) [17] (Figure 4). The GLIF infrastructure
is not a network, but rather a distributed facility within which
it is possible to design and implement international
customized networks, including those required by data
intensive science. The GOLEs are exchange facility for GLIF
network participants. These GOLEs not only exchange
international network traffic but also traffic from national and
regional research and education networks. Although initially
the GLIF project was focused on dynamic light path
switching, it was extended to include L2 switching and
dynamic control of L3 based paths.
As GOLEs were implemented, almost all adopted a different

Figure 4: Global Lambda Integrated Facility (GLIF)

control framework for resource management and control, e.g.,
DRAC, Autobahn, Argia, OSCARS, G-Lambda, and many
others. The development of the GLIF model required a
mechanism to enable a common interface to interact with
these control frameworks. Consequently, the GLIF community
formed a partnership with the Open Grid Forum (OGF), a
standards organization, to develop a defined standard for such
interfaces.

This initiative created a working group that addresses a
range of architectural issues under the Network Services
Framework (NSF) as described in OGF GWD-R-P “Network
Service Framework v2.0” [6]. Within this framework a suite
of protocols are being defined. The NSF approach assumes
that resources and capabilities are presented externally through
a set of defined Network Services. The NSF presents a unified
model for how various processes interact with these services.
These network services include those for creating connections
(Connection Service), sharing topologies (Topology Service)
and performing other services required by a federation of
software agents (Discovery Service).

The discussion here focuses on NSI, which is an
intermediate process between a software agent that requests a
network service and the software agent that fulfills that
network service. Specifically, it describes the NSI Connection
Service (CS) 2.0 protocol, which enables the reservation,
creation, management and removal of connections, under
appropriate policy based authentication and authorization
processes.

NSI has been designed to allow for the creation of network
paths (termed “connections” in the NSI architecture) that can
cross multiple network domains operated by separate network
providers [18], effectively creating a federation. This approach
is a major departure from common practice, which closely
specifies service plane attributes within individual data plane
implementations, and statically maps attributes to control
plane protocols.
The old model works for single domain networks with
minimal service interactions with other domains (e.g., limited
to L3 peering). In contrast, NSI was designed as an API to
support multi-domain services over many provider network
and facility boundaries and many different implementations of
data plane technology. This API can be used by organizations,

170

Figure 5. STPs interconnecting at a SDP.

applications, edge processes, and even individual users to
invoke network services. NSI is agnostic to any specific
technology. Consequently, NSI provides for the concept of a
“connection,” as an abstracted entity decoupled from any
specific physical technology or configuration. The NSI
architecture provides for a messaging function that includes a
customizable schema that can be used to describe service-
specific attributes, including constraints. NSI processes
determine how these attributes can be mapped to resources in
the various domains across which the paths are implemented.
The NSI architecture incorporates the concept of a pathfinder
function to determine the most optimal path that matches the
requirement attributes of the request, across all reachable
domains, regardless of technologies used in those domains.
The architecture incorporates a two-phase commit function
and options for advanced reservations.

The NSI architecture describes Service Termination Point
(STP) objects, which are core components that are used by a
connection request to determine key attributes of the
connection, namely, its source, destination and intermediate
points. An STP is identified with a network ID, a local ID and
a label. Two or more STPs owned by different network
domains interconnect at a Service Demarcation Point (SDP),
which is a virtual point, not a physical component.
Connections are implemented across domains by
concatenating connection segments by selecting STPs so that
the egress STP of one interlinks with the ingress STP of
another as shown in Figure 5.

The NSI architecture defines an explicit set of messages and
describes the state machines that are the foundation of the
service. For over five years NSI has been showcased through
successful demonstrations at multiple major national and
international conferences, including the Supercomputing (SC)
conferences. Almost all of these recent exhibitions have
demonstrated the NSI utility for implementing L2 paths across
multiple domains. However, dynamic L1 provisioning has also
been demonstrated at multiple conferences. Below is an image
of a dynamic international L2 path demonstration with
participating sites around the world at SC13 in Denver in
November 2013. Each of the points depicted, almost all are
exchange facilities in different countries, is interconnected
with individually controlled L2 paths using NSI.

Currently, NSI is being placed into production within a
number of national research and education networks and at
GLIF GOLEs. Several data intensive science research

Figure 6. Demonstrated global AutoGOLE topology at SC’13.

communities are also considering or experimenting with NSI
implementations [19].

C. Federating SDNs
To date the majority of SDN deployments are research
demonstrations, of which most have been based on a single
network domain by a single controller. On the one hand, the
prime motivation of SDN is to explore the extent of
controllability achievable by a single SDN controller. On the
other hand, it is an inevitable reality that the Internet will not
be made of a single SDN but a myriad of SDNs operated by
different authorities. Before then, even interfacing a SDN with
today’s non-SDN Internet poses substantial design challenges.
In [20], researchers demonstrated one such possibility of
interfacing an OpenFlow SDN with a BGP router to
demonstrate SDN-IP interfacing.

Interfacing two networks can be viewed as a basic form of
federation. In today’s Internet, autonomous systems (ASs)
interface with each other based on exposed topology info
exchanged in the standard BGP routing protocol. With SDN,
there is currently no agreed standard to exchange such
information. However, once such a standard takes shape, it
will obviously allow much richer information to be exchanged
among different SDN domains. GENI offers a mechanism for
researchers to control traffic switching in different network
domains via FlowVisor [21]. A FlowVisor at each network
aggregate delegates control of the local Ethernet switches’
switching to one designated OpenFlow controller, thereby
allowing the controller to have visibility to the topology and
control of the traffic switching at all aggregates. This
demonstrates a basic form of federation at the switch-to-
controller interface via the OpenFlow protocol. Going
forward, the industry is also looking at network description
languages at a higher layer of abstraction – namely the policy
layer (see the Cisco OpFlex project [13]) – to prescribe
desired network composition via logical policies that can be
implemented by different underlying technologies.

171

D. Compute and Storage
Open source cloud computing software stack projects have
brought together vibrant communities looking into ways to
automate, customize, and scale data center implementations in
open source software. OpenStack [7] and CloudStack [8] are
two such projects among the largest ones. In both projects,
plugin architectures are defined to allow instantiation and
management of network, storage, and security resources to be
utilized by virtual compute hosts in a data center. These stack
management software provides APIs for users to instantiate,
monitor, migrate, and terminate resources within, making
them a form of federated infrastructure that can be readily
integrated into a federated SDI environment.

E. Software Defined Exchange (SDX) for Federation
The notion of software defined exchange (SDX) was initiated
in the recent work of [22] discussing how SDN can be used to
implement the Internet Exchange Point (IXP) facilities to
provide existing and new services. Since then, the discussion
has expanded its scope as the community brainstorms about a
wider range of possible scope and realization of SDXs. In this
paper, we see SDX as a means of interfacing SDIs of multiple
distinct authorities. Instead of just sharing network
connectivity, SDXs facilitate sharing of any willingly exposed
resources of each participating domains. We believe an SDX
should be a logical entity that can be realized in one or across
multiple facilities:
1) In one facility: In the same model of today’s IXP, the

SDX operator facilitates pass through of resource sharing
information among interconnecting organizations;

2) Multiple facilities: As an end-to-end path in a federated
SDI environment spans multiple authority domains, a
single IXP is insufficient in orchestrating all resources;
moreover, there can be resources that need to be
instantiated in the source, intermediate, or destination
domains rather than a single IXP facility.

Regardless of either option, the SDX logical abstraction will
be the same, closely mirroring the proposed federation
architecture.

In the 3rd quarter of 2013, iCAIR established a prototype
Software Defined Network Exchange (SDX) at the StarLight
International/National Communications Facility, as part of the
GENI program [23]. This SDX was successfully demonstrated
interoperating with the Georgia Tech prototype SDX in
Atlanta at the GENI Engineering Conference (GEC19) and
with a prototype SDX in Amsterdam for the TERENA 2014
conference in Dublin in May 2014. iCAIR currently is
extending NSI capabilities by integrating its functionality,
including federation options, with SDN/OpenFlow techniques.

It is our belief that the most important challenge is to engage
operators of the production infrastructure today to guide the
incremental integration of existing identity management and
infrastructure operation tasks into a federated SDI API as a
simple lightweight wrapper. As of right now, NSI has
demonstrated success in integrating NSI with GENI, while
Internet2 has also been integrating its advanced layer 2 service
(AL2S) to the GENI Rspec API. We are actively working in
this direction with our ongoing research projects.

V. SUMMARY
Software defined infrastructure (SDI) offers a new way of
customizing deployment of applications across Internet.
Federated SDI addresses the need of most Internet
applications to be conducted across end-to-end paths crossing
multiple authority domains. The key challenges reside in the
policy and needs perceived by “human” stakeholders, while
they can be translated into simple software constructs to be
handled by different resources. A simple, extensible
framework based on GENI Rspec is proposed as a first step to
tackle the federated SDI, or SDX, problem.

VI. SUMMARY

The authors are supported, respectively, by NSF grants
OCI‐1245936, OCI-0962997 and the GENI project. GENI is
funded by the US National Science Foundation under
cooperative agreement CNS-0737890. Any opinions, findings,
conclusions or recommendations expressed in this material are
the authors’ and do not necessarily reflect the views of the
National Science Foundation.

REFERENCES
[1] Global Environment for Network Innovations, http://www.geni.net.
[2] GENI Architecture Team, “GENI Software Architecture”, http://groups.

geni.net/geni/raw-attachment/wiki/GeniArchitectTeam/GENI%20
Software%20Architecture%20v1.0.pdf.

[3] InCommon Federation, http://www.incommonfederation.org/.
[4] GENI AM API v2, groups.geni.net/geni/wiki/GAPI_AM_API_V2.
[5] GENI AM API v3, groups.geni.net/geni/wiki/GAPI_AM_API_V3.
[6] Open Grid Forum, “Network Service Framework v2.0”, http://redmine.

ogf.org/projects/nsi-wg .
[7] OpenStack, http://www.openstack.org.
[8] CloudStack, http://cloudstack.apache.org.
[9] Open Networking Foundation, “The Northbound Interfaces”, https://

www.opennetworking.org/working-groups/northbound-interfaces.
[10] OMG Software Defined Networking Group, http://sdn.omg.org/.
[11] P. Lin, et al., “Seamless Interworking of SDN and IP”, SIGCOMM

2013.
[12] Internet2 Advanced Layer 2 Service, www.internet2.edu/products-

services/advanced-networking/.
[13] Cisco, “OpFlex – An Open Source Approach”, http://www.cisco.com/

c/en/us/solutions/collateral/data-center-virtualization/application-centric-
infrastructure/white-paper-c11-731304.html.

[14] OpenStack Sevice Insertion, https://wiki.openstack.org/wiki/
Neutron/ServiceInsertion.

[15] L. Peterson, et al., “Slice-based Facility Architecture”,
http://www.cs.princeton.edu/ ~llp/geniwrapper.pdf.

[16] NIST, Attribute Based Access Control, csrc.nist.gov/projects/abac/.
[17] Global Lambda Integrated Facility (GLIF), http://www.glif.is.
[18] G. Roberts, et al., NSI Connection Service V2.0, Open Grid Forum,

GWD-R-P, NSI-WG 2013.
[19] J. Mambretti, et al., "OpenFlow Services for Science: An International

Experimental Research Network Demonstrating Multi-Domain
Automatic Network Topology Discovery, Direct Dynamic Path
Provisioning Using Edge Signaling and Control, Integration With
Multipathing Using MPTCP," in SC12, November, 2012.

[20] J. Mambretti, T. DeFanti, M. Brown, StarLight: Next-Generation
Communication Services, Exchanges, and Global Facilities, Advances in
Computers. 01/2010; 80:191-207.

[21] R. Sherwood, et al., “Can the Production Network Be the Testbed,” in
Proceedings of USENIX OSDI’10, pp. 1-6, 2010.

[22] A. Gupta, et al., “SDX: A Software Defined Internet Exchange”, in
Proceedings of ONS 2013, 2013.

[23] IGENI, http://groups.geni.net/geni/wiki/IGENI.

172

A Measurement Architecture for
Software Defined Exchanges

M Zink
Department of Electrical and Computer Engineering

University of Massachusetts Amherst

zink@ecs.umass.edu

Abstract—Prototype deployments of Software Defined Ex-
changes (SDX) have recently come into existence as a platform
for Future Internet architecture to eliminate the need for core
routing technology used in today’s Internet. In this paper, we
motivate the need for an adequate measurement architecture for
such SDXes to be able to evaluate their performance and inform
further development. We present the major requirements for this
architecture, introduce the idea of SDX and its first prototypes,
and give an overview on a SDX measurement experiment we
recently conducted.

I. INTRODUCTION

Software Defined Networking (SDN) which, in contrast

to traditional IP-based routing, decouples the data and the

control plane is seen as a promising approach to enable new

functionalities in the future Internet. While single-domain

SDNs have been around for a few years (e.g., data centers,

research networks [7] [22], and WANs of organizations [11]),

inter-domain deployments that involve SDN implementations

for inter-AS routing using BGP and MPLS have only come

into existence in the recent past [13].
Recently, the research community is proposing the introduc-

tion of so-called Software Defined Exchanges (SDXes) [10]

[21], which can be seen as the SDN equivalent to an Internet

Exchange Point (IXP). The basic idea of an SDX is to

connect several domains, allow traffic exchange and provide

a platform for implementation of new policies through third-

party control in future Internet architectures. Since SDN is

radically different from today’s Internet technology it has to be

further investigated to understand what functionalities an SDX

must provide. Some of the aspects that have to be further in-

vestigated are flow management between autonomous systems

(similar to BGF, OSPF, etc. in today’s Internet) and higher-

level ones like peering policies, peak-usage scheduling and

route-based prioritization [6]. An SDX should also incorporate

SDN advantages such as complete resource virtualization,

real-time traffic analysis, centralized control, plug-and-play

hardware integration, security and third-party control services.
In addition to new functionalities that have to be provided

by SDXes, it is also important to observe the performance of

these new exchanges. As with any new technology, SDXes

will be thoroughly studied by the research community before

commercial versions might be deployed in the future Internet.

In this paper, we present a measurement and monitoring

architecture that is tailored for the performance analysis of

SDXes.

The measurement architecture for SDXes has to fulfill the

following requirements:

• Scalability. A measurement approach for SDXes has to

be scalable since there is the potential of many flows

crossing an SDX. Not only the shear amount of flows but

also the detail of information that should be measured or

monitored can put significant load on such a system. We

have already seen such challenges in measurement and

monitoring approaches for today’s Internet.

• Non-intrusive and Non-interfering. The measurement

and monitoring architecture has to be designed such

that ongoing measurement activities do not impact the

performance of the actual SDX processes (e.g., data

forwarding).

• Ease of Use. The architecture should result in tools

that will make it straight forward for researchers and

developers to observe and analyze the performance of

an SDX. Researchers should also be able to share their

results in an easy and straight forward manner.

• Calibration. The quality of a measurement very much

depends on the accuracy and performance of the measure-

ment mechanisms and tools applied. To allow users of the

architecture to determine the accuracy of a measurement

the architecture will provide calibration mechanisms.

E.g., the architecture will provide mechanisms that will

allow the injection of specific traffic into the SDX.

• From SDX to SDI. While the main focus on SDXes is

currently on the interconnection of different, independent

SDX domains, we believe that the second generations of

SDXes will also offer access to virtualized computation

and storage. Therefore, it is our goal to develop an

architecture that is not only capable of monitoring the

network performance of an SDX but also the performance

of its compute and storage capabilities.

• Legacy. Measurement and monitoring have been an es-

sential component of the Internet and distributed systems

since their inception. Our architecture will be based

on proven mechanisms and approaches. We will build

this architecture based on the GENI Measurement and

Instrumentation Infrastructure (GIMI), which we built for

the GENI project.

• Monitoring and Measuring Control versus Data
Plane. Compared to the traditional Internet which only

173

has one transport plane there exists a control and a

data plane in SDNs. Therefore, it is important that a

measurement and monitoring infrastructure for SDXes

offers the ability to monitor both planes and is able to

identify potential interdependencies between the two. For

example, a bottleneck in the control plane can easily lead

to performance impairments in the data plane.

While a production deployment of SDXes in New Zealand

has proven that SDX is a pragmatic approach for traffic

exchange, our proposed architecture is complementary since

it will allow researchers and developers to analyze the perfor-

mance of this infrastructure. We will use SDXes that have been

recently set up as part of the GENI project [8] to evaluate our

measurement and monitoring architecture. In the long-term, it

is our goal to make this architecture available to the research

community.

The remainder of this paper is outlined as follows. In Sec-

tion II, related work in the area of Software Defined Exchanges

is presented. Section IV gives an overview on the measurement

architecture for SDXes, and Section V introduces a prototype

of such a measurement architecture. The paper finishes with

conclusions and a look at future work in Section VI.

II. RELATED WORK

OpenFlow [15] has been successfully deployed in several

production data centers today. B4 [11] by Google is one of the

first large scale deployments of a Wide Area Network that uses

OpenFlow. Following this, there is some work that discusses

network virtualization using Open APIs defined for Software

Defined Networking [19]. In [2], Podleski et al. have discussed

the feasibility of Software Defined Networking with multi-

domain architectures using both slice-based and connection

oriented approaches. The connection-oriented approach places

emphasis on using namespace to enable the use of connection-

related applications such as load-balancing, traffic monitoring

and packet inspection while the slice-oriented approach talks

about how slices maybe provisioned for different service

providers. Another work talks about implementing a backward

compatible algorithm to outsource control logic for BGP

routing using SDNs. The authors run real traffic data on a

simulated network to evaluate their approach [12].

During the last couple of years there has been a substantial

amount of work that discusses the feasibility of deploying

Software Defined Networks within the Internet. In [16], Nunes

et al. discuss programmable networks in detail. They present a

survey of several Software Defined Networks beginning with

Ethane [9] to OpenFlow and present-day SDN applications.

The authors of OSHI [18] describe the use of OpenFlow

for SDN based IP forwarding and routing and emulate such

a system on OFELIA [22], which is also an SDN-enabled

research testbed. The authors here use Mininet and examine

the effectiveness of different monitoring methods.

A large scale deployment for Software Defined Exchange

was setup by Gupta et al. [10]. Their paper contains details of

their SDX deployment at Southern Crossroads (SoX), which

is a part of the network we use to develop and test our

measurement architecture on. Here, they explain how their

SDX can be used to implement different peering policies,

efficient DNS-based load balancing and middle box traffic

steering. Cardigan is one of the first OpenFlow SDX net-

working environments that has been deployed in a production

setting [21]. The paper contains details about a real deploy-

ment of a ”distributed routing fabric” between Research and

Education Advanced Network of New Zealand (REANNZ) to

the Wellington Internet Exchange (WIX). RouteFlow [20], an

extension of Cardigan is an SDX deployment that carries real

Internet traffic. However, their production deployment limits

their ability to conduct performance characterisation.

While all of these papers have presented the advantages

of Software Defined Networking in several ways and some

also present production deployments of Software Defined

Exchange, we have not seen any work that presents the

performance analysis of actual applications. In this paper,

we present a measurement architecture which is targeted

to support experimenters in their research on SDXes. We

demonstrate a prototype of this architecture by using an SDX-

enabled GENI testbed and evaluate the performance of a short-

term weather prediction application to give some insight into

the capability of such a testbed for Future Internet.

III. SDX PROTOTYPES

In this section, we will describe an SDX in more detail and

present a prototype implementation.

A. Definition

Before we present the implementation of a prototype SDX,

we first give our definition of its functionality and purpose.

SDX is a relatively new topic and there are several versions

of it currently discussed among the research community.

Therefore, we believe that it is important that we first describe

our understanding of an SDX by describing its functionality.

The motivation for SDX is mainly driven by the fact that more

and more SDN domains have been instantiated in recent past.

Examples for such domains are Internet 2’s Advanced Layer

2 Service (AL2S) and Google’s B4. While SDNs have caused

significant traction in academia, the latter example shows that

this is a topic that is also of high interest to industry.

With the advent of several SDN domains the need for

exchange points between such domains becomes imminent.

Thus, first and foremost and SDX is an interconnect between

two or more SDN domains. One example that emphasizes

that need is NFS’ Global Environment for Network Innovation

(GENI) initiative, which is currently deploying a multi-domain

SDN federation at ∼50 campuses in the US. Since GENI

is build on the basis of a federation, there is a need for

SDN infrastructure to span multiple operating domains. This

is driven by the fact the GENI infrastructure is owned and

operate by the host (campus) institutions and that experiments

and services need to exert control across institutional borders

in a consistent and controlled way. This need also exists

at a larger scale where GENI federates with other national

and international peer infrastructures. To address this need

174

there are currently three active multi-domain SDN GENI

projects [4], [1] that are in the process of implementing SDX

prototypes. In Section III-B, we will present one of those

prototypes in more detail.

It is important to mention that our vision of an SDX goes

beyond the idea of it being an interconnect between two

or more SDN domains. Inspired by the GENI architecture,

we believe that software defined computation (i.e., cloud

computing) and software defined storage will significantly

improve the capabilities of such SDXes1. In Section V, we

will give an example that illustrated the benefits of such an

SDX.

B. SDX Prototype

Figure 1 gives a schematic overview of one of the three

SDX prototypes that are currently developed within the GENI

initiative. This SDX prototype is instantiated at the StarLight

facility in Chicago. In this specific example, the SDX pro-

totype connects three independent domains, Internet2 AL2S,

ESNet, and ORNL, respectively. Both AL2S and ESNet are

SDN domains, while ORNL is a plain layer 2 connection

to another SDX prototype at SoX in Atlanta. In addition to

the networking equipment shown in Figure 1 StartLight also

houses a GENI rack and offers direct layer 2 connectivity

to another one at Northwestern University. Thus, this SDX

prototype does also offer storage and computation resources.

In Section V, we will demonstrate how the latter resources

can support data intensive applications.

The StartLight OpenFlow switch as well as the North-

western and StarLight GENI racks interact with the GENI

Aggregate Manager, which allows GENI researchers to reserve

networking, computation, and storage resources. In essence,

this SDX prototype allows researchers to obtain a slice of this

SDX to perform their own multi-domain SDN experiments by

reserving resources using standard GENI tools (e.g, with Omni

as part of the GENI control framework or the GENI portal).

While SDXes are currently still in the very early devel-

opment stages we believe that it is important to develop

a measurement and monitoring infrastructure for these new

exchanges in parallel. This will allow researchers to char-

acterize the performance of SDXes which might lead to the

early on identification of potential design issues. This, in turn,

will support the rapid development of more sophisticated and

advances second generation SDXes.

IV. MEASUREMENT ARCHITECTURE FOR SOFTWARE

DEFINED EXCHANGES

In the following, we describe our proposed measurement

architecture for SDX in more detail. We start by identifying,

what we believe are, the most important requirements for such

an architecture.

1In some cases this has been also described as Software Defined Infras-
tructure (SDI) but we will stick with the term SDX throughout the paper.

Fig. 1: SDX prototype implementation at StarLight

A. Scalability

Scalability is a major concern for an SDX measurement

infrastructure. One can imagine that several 10,000s of flows

will be handled by a single SDX. It is yet unclear if it is even

possible to monitor each individual flow. Even the simple task

of obtaining flow statistics might overwhelm either the switch

or the controller of both.

While not all the flows traversing an SDX can potentially be

measured an experimenter should have the option to measure

a subset of flows. The measurement architecture has to give

the experimenter the ability to select a sub-group of the flows

traversing an SDX.

An open issue is the question if an experimenter can actually

observe flows that are not part of his or her slice. The approach

we would like to propose is that the measurement architecture

should definitively support the functionality to observes flows

that do not belong to an experimenters slice. An additional

feature is required that will enable or disable this functionality

based on policy. Each individual SDX can then have its

own set of policies to decide if and for which individual

experimenter this feature should be enabled.

B. Non-intrusive and Non-Interfering

One of the major challenges of measurement is to avoid

that the actual measurement activity impacts the outcome

of an experiment. For example, a measurement process on

a local computer could consume a significant amount of

processing power which could impact the performance of

the application that is analyzed in the experiment. Similarly,

measurement data that is transmitted from measurement points

back to a central aggregation point can impact the network

performance that is analyzed in an experiment. Since most

SDX related measurements will most likely focus on network

performance analysis it is important to design the architecture

with the premiss to avoid interference of the measurement

data transport as much as possible. The benefit of the current

GENI testbed is the existence of a “global” control plane,

175

which in the GENI case is the regular Internet. In this case,

measurement data will only be transmitted on the control plane

and not the data plane and, thus, not interfere with the actual

measurement. The experiment described in Section V makes

use of this infrastructure.
But it cannot always be assumed that such an infrastructure

exists. Especially, if one envisions that SDXes might move

from prototype, testbed environments into actual production

networks. Therefore, alternative approaches are needed to

prevent interference. Fortunately, SDN allows the separation of

measurement and experiment data. For example, in the case

of OpenFlow the measurement data can be transported via

a different flow. With the introduction of Quality-of-Service

in OpenFlow 1.3 [3] it will be possible to isolate flows and,

thus, avoid interference completely – even if only one plane

is available.

C. Ease of Use
To increase the likelihood that such an architecture and

the tools that are based on this architecture are adopted by

the research and experimenter community it is important that

using measurement tools is as easy as possible. Through

our experience with the development of a measurement and

instrumentation infrastructure for GENI (GIMI) we have de-

veloped tools that allow the execution and observation of

measurements in a straightforward manner, that also allows

experimenters to easily repeat experiments and to have third

parties also execute such experiments. We will re-use the tools

developed within the GIMI project where appropriate and also

apply our experience gained during the GIMI project for the

development of new tools.

D. Calibration
Calibration is an essential component of each measurement

infrastructure since it ensures the quality of the measurement

data and the analysis that is based on these data. Thus,

experimenters must be provided with means that allows them

to perform calibration. To support the ease of use approach

mentioned above, the architecture will provide calibration tools

that can be used by experiments. In addition, the architecture

will be designed such that experimenters can be easily create

their custom-designed calibration methods. E.g., the architec-

ture will provide mechanisms that will allow the injection

of specific traffic into the SDX. Since the characteristics of

this traffic are well known an experimenter can verify if a

measurement produces accurate data.

E. From SDX to SDI
As already mentioned in Section III our vision of an SDX

goes beyond the basic exchange point for SDN domains. We,

much rather, believe that SDXes will also offer a significant

amount of compute and storage resources. Thus, a measure-

ment architecture must also include means to measure compute

and storage performance. Fortunately, most of these tools

already exist and have been extensively used for measurements

in the GENI testbed. In Section V, we demonstrate how these

tools can be applied in and SDX measurement.

Fig. 2: SDX prototype implementation at StarLight

F. Legacy

We will base the SDX measurement architecture on existing

architectures and tools that have been in use for network and

distributed systems measurement in the past. A more detailed

example of the use of these legacy tools is given in Section V.

G. Control versus Data Plane

SDNs consist of a control and data plane which is therefore

inherent in an SDX. This requires a measurement architecture

that allows the observation of data and control plane. Only a

holistic analysis of an experiment can reveal certain artifacts

that cannot be revealed by measuring either the data or the

control plane. E.g., congestion on the link that connects the

SDN switch with the controller can influence the performance

of one or several flows in the data plane. Thus, an experiment

must be able to measure both and in Section V we will

describe one possible realization of this requirement based on

our existing measurement infrastructure.

V. MEASUREMENT PROTOTYPE

In this section, we give a description of our measurement

prototype by illustrating how it was used in an actual exper-

iment that included two SDX prototypes. We first describe

the resources used for this experiment and then give a brief

overview on the experiment itself. This section concludes

with a description of our measurement infrastructure and how

it meets or will address some of the requirements listed in

Section IV.

A. Infrastructure

For this experiment we used the SDX prototype at StarLight

and the AL2S and ESNet SDN domains and the ORNL layer

2 connection as described in Section III-B. In addition, we

also used the SDX prototype at SoX. This SDX is similar

to the one at StarLight and also offers compute and storage

resources through a GENI rack. A detailed overview of the

resources used for this experiment is shown in Figure 2.

176

1) Local Rack VMs: Nowcast application - It consists of a

network of 4 radars at each location where each radar sends

measured atmospheric data to a central processing location.

The application we run, called Nowcasting, is highly time-

sensitive and is used for short-term weather prediction. The

VMs that run on the Northwestern rack have previously

collected radar data stored on them, which is replayed just

as if it would come from a real radar.

2) SDXs: The SDX OpenFlow switches are at: (a) Southern

Crossroads (SoX) - This is located in Atlanta, Georgia and is

configured with a programmable FOAM/Flowvisor [10]. (b)

StarLight - This Exchange network is located in Chicago and is

the first provider to implement both national and international

communications exchange to provide better management and

control over provisioning resources within an Exchange net-

work [14].

3) Domains: The network domains are: (a) Oakridge Na-

tional Lab (ORNL) - This is a non-SDN domains that connects

the Northwestern rack to the SoX rack. (b) Energy Sciences

network (ESnet) - A large scale national network that offers

an alternative path between the two racks. (c) Internet 2 (I2)

- We use the Advanced Layer 2 Service link (AL2S) offered

by Internet 2, an SDN Domain, which provides us with a

VLAN between the Starlight Pronto switch in Chicago and

the SoX NEC Switch in Atlanta (see Figure 1). This offers a

third alternative path between the two SDXes.

All three domains provide 100Gbps bandwidth.

B. Experiment

1) Nowcasting: For the Nowcasting application, we do not

use actual radars but use virtual machines in the Northwestern

GENI rack to emulate radars. We load actual radar data that we

previously collected from four real radars in Oklahoma on four

virtual machines located in the Northwestern University GENI

rack (see Figure 2). The Nowcasting algorithm runs on a bare

metal server in the SoX rack. An Apache server is installed

in a Xen virtual machine that runs on the Georgia Tech GENI

rack. The Nowcasting algorithm processes the received radar

data to generate Nowcast images of weather data which are

transferred to the Georgia Tech rack to be displayed on a web

page hosted at the web server.

2) Trema Controller: We programmed our OpenFlow con-

trollers using Trema [5], a Ruby-based tool. Both controllers

are based on a general ”Learning Switch”. This is a simple

controller that is a part of the Trema package which floods the

interfaces of all switches connected to the controller and stores

a mapping of the interface and MAC address in a database that

is local to the controller. This controller runs in the Georgia

Tech rack also used to host the web server that makes the final

nowcast results available to the users. As shown in Figure 2,

the switches that connect to it are the SoX rack switch, GaTech

rack switch and the NEC OpenFlow in the SoXSDX Domain.

a) Load Balancer: This controller gathers the instanta-

neous throughput from the SDX Switch at Starlight through

flow statistics API provided by the Trema controller and

switches the flow to the least congested domain based on

cumulative throughput, which is an aggregate of the instan-

taneous throughput over time and provides a better controller

performance as compared to switching based only on the

instantaneous throughput. This is a good example for our

vision that in the long-term our measurement infrastructure

cannot only be used for analysis but also for feedback control

by having the OpenFlow controller changing its behavior

based on measurement data.

C. Measurement

To analyze the performance of the experiment we make

use of the tools that have been developed within the scope

of the Large-scale GENI Instrumentation and Measurement

Infrastructure (GIMI) project. For this experiment we make

use of the Orbit Measurement Framework (OMF) and Library

(OML) [17] and LabWiki which is a tool used to collect and

show live visualizations of network related experiments and

tightly integrated with OMF. In addition, LabWiki supports

the execution of large-scale experiments since the OMF Ex-

periment Description Language (OEDL) is used to “program”

an experiment. With OEDL experiments including several hun-

dred nodes can be executed, as has been shown in cases that

do not include SDXes [GEC18 Tutorial, GEC20 Demo]. This

combination of tools does not only allow the measurement of

an experiment, it also allows the automated execution of the

experiment and repetition, if desired. These tools will also

allow other experimenters to repeat this experiment. Keep

in mind that the resources for the experiment described in

Section V-B1 have all been requested with GENI tools and an

experimenter can use these tools and the resource description

(RSpec) to obtain a similar slice.

Especially for the measurement at SDXes we have instru-

mented the OpenFlow switch at StarLight with a measurement

library that allows the observation of flow statistics. This

information is gathered at the OF controller, stored in the OML

database, and can be displayed live in LabWiki. The latter

allows the experimenter to not only analyze an experiment

after it has finished but also while it is being executed.

This measurement component is automatically integrated in

the overall experiment execution, since not only the nowcast

experiment itself is described through and executed by the

OEDL script but also the tasks that have to be executed to

perform the measurement described above. For this specific

example, this means that a) the streaming of the radar data,

the nowcasting, and the distribution of the nowcasting results;

b) the initiation of the OpenFlow controller; and c) the

measurement of the flow statistics are all controlled through

the experiment script.

D. Future Steps

Our current plans are to further develop this SDX measure-

ment prototype with a focus on the following topics.

First of all, we would like to support long-term measure-

ments. Eventually, SDXes should operate reliably and with

high performance for very long periods of times. To verify

this requirement long-term measurements are necessary to be

177

able to monitor the performance of an SDX over time. We

will start performing long-term measurements on the prototype

SDXes mentioned in this paper to study how our measurement

prototype performs in such a scenario.

In Section V-B2, we mentioned that we used measurement

data as input for the load-balancer OpenFlow controller. While

executing this experiment we realized that the control loop

operates quite slow and we have to further investigate its cause

to be able to increase the response delay and make this an

operational option for SDXes.

After some further testing of the prototype architecture we

will make the measurement tools available to experimenters

such that they can be used by the larger community for

research on SDXes.

Finally, one could also think of using a selected group

of SDX measurement experiments for acceptance testing of

SDXes that might become online over time.

VI. CONCLUSION

Recently, several Software Defined Exchange prototypes

have been established. These SDXes are part of the larger

GENI testbed and have the goal to interconnect several SDN

and non-SDN domains and make them available to experi-

menters. We believe that next to the SDX infrastructure the

experimenter community needs tools to perform and analyze

the SDX-based experiments. Motivated by that need, this paper

presents the requirements for a measurement architecture that

is designed for SDXes. In addition to the requirements we pro-

pose an architecture and results from an experiment executed

and observed with a prototype measurement architecture.

REFERENCES

[1] GENI Science Shakedown. http://groups.geni.net/geni/wiki/sol4/
MultidomainShakedown.

[2] Multi-Domain SDN Deployment. https://tnc2014.terena.org/getfile/995.
[3] OpenFlow 1.3 Standard. https://www.opennetworking.org/

images/stories/downloads/sdn-resources/onf-specifications/openflow/
openflow-spec-v1.3.0.pdf.

[4] Prototype GENI Multi-Services Network Exchange (GMNE). http://
groups.geni.net/geni/wiki/sol4/GMNE.

[5] Trema. http://trema.github.io/trema/.
[6] Z. Arslan, A. Alemdaroglu, and B. Canberk. A traffic-aware controller

design for next generation software defined networks. In Communica-
tions and Networking (BlackSeaCom), 2013 First International Black
Sea Conference on, pages 167–171. IEEE, 2013.

[7] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaud-
huri, R. Ricci, and I. Seskar. Geni: A federated testbed for innovative
network experiments. Computer Networks, 61(0):5 – 23, 2014. Special
issue on Future Internet Testbeds ? Part I.

[8] D. Bhat, N. Riga, and M. Zink. Towards seamless application delivery
using software defined exchanges. In Proceedings of the Workshop on
Federated Future Internet and Distributed Cloud Testbeds (FIDC), 2014.

[9] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker. Ethane: Taking control of the enterprise. ACM SIGCOMM
Computer Communication Review, 37(4):1–12, 2007.

[10] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker,
N. Feamster, J. Rexford, and S. Shenker. Sdx: A software defined
internet exchange. In Proceedings of the ACM SIGCOMM 2014
Conference on SIGCOMM. ACM, 2014.

[11] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat. B4: Experience with a globally-deployed software
defined wan. In Proceedings of the ACM SIGCOMM 2013 Conference
on SIGCOMM, SIGCOMM ’13, pages 3–14, New York, NY, USA, 2013.
ACM.

[12] V. Kotronis, X. Dimitropoulos, and B. Ager. Outsourcing the routing
control logic: better internet routing based on sdn principles. In
Proceedings of the 11th ACM Workshop on Hot Topics in Networks,
pages 55–60. ACM, 2012.

[13] P. Lin, J. Hart, U. Krishnaswamy, T. Murakami, M. Kobayashi, A. Al-
Shabibi, K.-C. Wang, and J. Bi. Seamless interworking of sdn and ip.
In Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM,
pages 475–476. ACM, 2013.

[14] J. Mambretti, T. A. DeFanti, and M. D. Brown. Starlight: Next-
generation communication services, exchanges, and global facilities.
Advances in Computers, 80:191–207, 2010.

[15] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: Enabling innovation
in campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74,
Mar. 2008.

[16] B. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and T. Turletti.
A survey of software-defined networking: Past, present, and future of
programmable networks, 2014.

[17] T. Rakotoarivelo, M. Ott, G. Jourjon, and I. Seskar. Omf: A control
and management framework for networking testbeds. ACM Operating
Systems Review (OSR), 43(4):54–59, January 2010.

[18] S. Salsano, P. L. Ventre, L. Prete, G. Siracusano, and M. Gerola. Oshi
- open source hybrid ip/sdn networking (and its emulation on mininet
and on distributed sdn testbeds). CoRR, abs/1404.4806, 2014.

[19] V. Sivaraman, T. Moors, H. Habibi Gharakheili, D. Ong, J. Matthews,
and C. Russell. Virtualizing the access network via open apis. In
Proceedings of the Ninth ACM Conference on Emerging Networking
Experiments and Technologies, CoNEXT ’13, pages 31–42, New York,
NY, USA, 2013. ACM.

[20] J. P. Stringer, C. Corr?a, J. Bailey, D. Pemberton, Q. Fu, C. Lorier,
R. Nelson, and C. E. Rothenberg. Cardigan: Deploying a distributed
routing fabric. In 19th IEEE Symposium on Computers and Communi-
cations (ISCC), June 2014. IEEE, 2014.

[21] J. P. Stringer, Q. Fu, C. Lorier, R. Nelson, and C. E. Rothenberg.
Cardigan: Deploying a distributed routing fabric. In Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined
networking, pages 169–170. ACM, 2013.

[22] M. Su, L. Bergesio, H. Woesner, T. Rothe, A. Kpsel, D. Colle, B. Puype,
D. Simeonidou, R. Nejabati, M. Channegowda, M. Kind, T. Dietz,
A. Autenrieth, V. Kotronis, E. Salvadori, S. Salsano, M. Krner, and
S. Sharma. Design and implementation of the {OFELIA} {FP7}
facility: The european openflow testbed. Computer Networks, 61(0):132
– 150, 2014. Special issue on Future Internet Testbeds ? Part I.

178

	01 reg-paper16
	02 reg-paper51
	03 reg-paper47
	04 reg-paper1
	05 reg-paper11_A4
	06 reg-paper28
	07 1 Bjorner_paper48_A4
	08 reg-paper54
	09 reg-paper13
	10 reg-paper27
	10.1 reg-paper53
	11 SDNI_Paper49_A4
	12 reg-paper25
	12.1 SDN&NFV - Hierarchical SDN_A4_
	13 reg-paper42
	I. Introduction
	II. SOC platform architecture
	III. Resource allocation scheduler
	IV. Virtual networks description language
	V. Conclusion

	14 reg-paper20
	15 reg-paper29_A4
	16 reg-paper46
	17 reg-paper55
	18 reg-paper7
	19 reg-paper15
	20 reg-paper8
	I. Introduction
	II. Related works
	III. Errors of competition for switch tables
	IV. Error detection
	A. Existing methods
	B. Facts of competition for switch tables
	C. Error detection module

	V. Error localization
	A. Controller proxy
	B. Database server
	C. Logger

	VI. Implementation
	VII. Evaluation
	VIII. Conclusion
	IX. Future work

	21 reg-paper5
	x1-13x1
	x1-17x1
	x1-19x2

	22 reg-paper36
	23 reg-paper39_A4
	24 reg-paper32_A4
	25 reg-paper12
	26 reg-paper17
	27 reg-paper50
	28 reg-paper6
	29 reg-paper21
	30 reg-paper23_A4
	31 paper 43_A4

