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Международная научно-техническая конференция «Управление и виртуализация в современ-
ных сетях» (Сети 2014: SDN&NFV) посвящена двум наиболее перспективным трендам, про-
явившимся в последние несколько лет -  Программно Конфигурируемые Сети (SDN) и Виртуа-
лизация Сетевых Функций (NFV). Эти тенденции обещают сформировать эволюцию отрасли 
Интернета и облачной инфраструктуры в Программно-Конфигурируемые Инфраструктуры. Се-
тевые операторы и поставщики облачных сервисов уже начали освоение этих технологий, а 
наиболее смелые уже начали активно испытывать и разворачивать  решения на базе SDN и 
NFV. В конференции приняли участие видные представители международных научных кругов 
из различных международных проектов, направленных на создание новых способов и инстру-
ментов в области SDN&NFV для создания новой инфраструктуры для научных исследований. 
В трудах конференции представлены доклады, где широко обсуждаются различные аспекты 
SDN & NFV технологий. Конференция проводится при финансовой поддержке Министерства 
образования и науки Российской Федерации ГК №14.598.11.0012 и Университета Иннополис 
(г. Казань). Технический спонсор IEEE Computer Society, рег. конференции №34611. 

Ключевые слова: Программно-конфигурируемые сети (ПКС), Сетевая операционная система, 
Виртуализация Сетевых Функций (NFV), Программно-Конфигурируемая Инфраструктура 
(SDI), Программно-Конфигурируемые Точки Обмена (SDX), архитектура ПКС контроллера, 
производительность, масштабируемость, надежность, безопасность, верификация политики 
маршрутизации. 
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Preface 
 
International Science and Technology Conference «Innovative  Networking 

Technologies: SDN & NFV – The Next Generation of Computational Infrastructure» was 
organized under financial support of Ministry of Science and Education of Russian Federation 
(GK №14.598.11.0012) by Moscow State University together with a number of leading Russian 
universities and scientific centers of the Russian Academy of Sciences (RAS), which are 
currently joined in the consortium to develop novel SDN-technologies for research and 
educational environments. It was dedicated to the two main streams in modern Network 
Architecture – Software-Defined Network and Network Function Virtualization. 
 
Software-Defined Networking (SDN) has emerged as the hottest new networking trend of the 
past few decade. Network Function Virtualization (NFV) is a complementary trend and together 
they promise to shape the evolution of the Internet and Cloud infrastructure into a Software 
Defined Infrastructure while transforming the industry. Network and cloud providers are already 
embracing these trends and early adopters are aggressively trialing and deploying SDN and 
NFV. Established and new vendors are busy creating their own SDN and NFV technologies and 
solutions and are competing for leadership positions in this rapidly growing international market. 
 
The conference brought together SDN and NFV leaders of the international scientific 
community, research departments of corporations, and industrial enterprises of the Russian 
Federation, as well as academic institutions and public authorities where they have discussed the 
most urgent and promising technologies in the area of computer networking, virtualization and 
cloud computing, to share the latest developments and provide a platform for in-depth 
discussions on the state of the industry and how to move forward. The conference provided 
excellent opportunities to interact with and influence the rapidly developing ecosystem of 
researchers, telecom and cloud operators, vendors and other stakeholders in Russia. 
The conference gathered prominent representatives of industry and academia from various 
international projects focusing on SDN/NFV to discuss developing novel ways and tools for 
network-enabled scientific research. It was facilitate the exchange of information within 
individual scientific fields as well as inside interdisciplinary and international collaborations. 
 
The conference agenda has also included two-days School for young scientists, post-graduates 
and graduate students. Its goal is to develop and enhance the pool of available talent proficient in 
these technologies and solutions within the Russian Federation. 
 
The papers presented on the conference are collected in this proceeding 

 

October, 2014  Ruslan Smelyanskiy,  DrS,  
Prof., Сor.-member of  

Russian Academy of Science
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On real-time delay monitoring in 
software-defined networks 

V. Altukhov 
Lomonosov Moscow State University 

Moscow, Russia 
victoralt@lvk.cs.msu.su 

E. Chemeritskiy 
Applied Research Center for Computer Networks 

Moscow, Russia 
tyz@lvk.cs.msu.su

Abstract—The paper introduces a new loop-based method to 
measure end-to-end packet delay in software-defined network 
infrastructures. Although the method generates auxiliary service 
packets, it does not require any complementary support from the 
switching hardware. The prototype implementation shows the 
method is able to provide one-way delay values with microsecond 
precision on a steady load. Direct application of the method to 
each data flow in the network is straightforward, but can cause 
excessive hardware utilization. Thus, the paper proposes an 
algorithm to improve it by decomposing global end-to-end 
estimations into the set local ones whereas removing their 
redundancy. The algorithm makes it practically possible to 
monitor delay of each data flow in real-time. 

Keywords—One-Way Delay; Measurement; Software-Defined 
Networking; Quality of Service 

I. INTRODUCTION 

A steady growth in a number of interactive network 
applications and services originates an increasing demand in 
advanced control over the quality of connections through the 
network infrastructure. However, it is a hard problem to 
compute an appropriate data transmission path and configure 
network devices along this path to meet the requested end-to-
end requirements for the connection. It is even harder to 
establish such a cooperation of logically independent network 
devices to enable dynamic provisioning of the requested 
connections. Furthermore, network hardware evolved without 
sufficient attention to Quality of Service (QoS) issues, and 
support of corresponding functionality is often a subject to 
various restrictions. 

Surprisingly, all the listed obstacles have been successfully 
overcome by the systems focused on end-to-end bandwidth. It 
is due to its concavity bandwidth is guaranteed to be the 
minimum among the bandwidths of the links along the 
connection path. However, the most of the QoS metrics does 
not have this property, and their calculation cannot be easily 
decomposed. Quite the contrary, measurement, estimation and 
attuning of end-to-end delay are naturally hard in any 
asynchronous distributed system without global clock, and 
require accurate and precise coordination of network devices. 
As a result, no modern system for end-to-end delay 
measurement can improve the precision of a theoretical worst-

case estimation, and avoid exotic requirement to the switching 
hardware. 

In this paper we make a first step towards the QoS-aware 
routing by introducing a new method to measure end-to-end 
connection delay based on the centralized control and flexible 
management interfaces for the switching hardware provided by 
Software-Defined Networking (SDN). Our approach has the 
following features: 

 Measure end-to-end delay on a per-flow basis;
 Precise enough to cover the mutual flow influence;
 Work in SDN with general switching hardware;
 Update results up to several times in a second.

The paper has the following structure. Section II provides a 
brief review of related works. In section III we introduce a new 
method to measure packet transmission delay along any route 
in a network based on header looping. Section IV considers the 
algorithm to optimize application of our delay measurement 
method to all routes in a network. 

II. RELATED WORK

Back in the days of circuit-switched networks end-to-end 
delay was in a straight dependence on a length of the wire. The 
compliance with the delay requirements was naturally achieved 
by searching the network infrastructure for a short enough 
virtual channel. Since, the problem of delay control has 
complicated dramatically. With the emergence of packet-
switched networks, data flows started to compete with each 
other for network resources. The development of technology in 
accordance with Moore’s and Gilder’s empiric laws gradually 
shifted the bottleneck of data transmission from the wire to the 
switching devices. A considerable effort has been made 
towards the designing of an efficient network switch 
architecture that could provide maximum utilization to the 
connected links [1]. In the pursuit of throughput performance a 
contemporary switch utilizes a multistage engine for packet 
analysis and a mixture of packet buffers and switching fabric, 
managed by complicated dynamic packet scheduling 
algorithms. 

Each delay control tool relies on a certain method of end-
to-end delay estimation, and there has been suggested quite a 
number of them. On the one hand, a conservative estimation 
based on independent computation of the worst-case delay for 
each network node may be easily implemented and applied to This research is supported by the Skolkovo Foundation Grant N 79, July, 

2012 and Russian Foundation for Basic Research, project 14-07-00625. 
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any kind of a network. However, is known to inflate the actual 
delay value by several orders of magnitude. On the other hand, 
state-of-the-art achievements in Network Calculus make it 
possible to compute a tight upper bound for the worst-case end-
to-end delay with assumptions of traffic conditioning on the 
border network switches, fluid data flows, and their FIFO 
multiplexing [2]. Unfortunately, these limitations as well as a 
high computation complexity are not insensible. The diverse 
and intricate operating principles of switching devices 
obscured network-wide packet scheduling and made it hardly 
promising to build a method for end-to-end delay estimation 
with a wide scope, an appropriate precision, and an acceptable 
computation complexity at the same time. 

Inability to estimate network delay pushed forward an 
intention to measure it. Though, one-way delay measurement 
in an asynchronous system is challenging. A computation of a 
one way delay as a bisection of the round trip time seems to be 
natural, but this approach does not generally work as intended 
because both routes and network load of the forward and the 
backward paths of a flow may differ. Although it is possible to 
compute the one-way delay of a flow with higher precision 
with help of the complementary software modules installed on 
the end hosts [3], this method is either applicable only to 
protocols with some specific features or make the end hosts to 
generate a lot of secondary traffic. 

Less host-assuming approaches address the data 
transmission only through the network infrastructure. It is a 
tried-and-true method to bypath the asynchrony by setting up a 
global clock with Network Time Protocol (NTP), Global 
Positioning System (GPS), or Code Division Multiple Access 
(CDMA), and tagging the transmitted packets with timestamp 
on send. However, it implies each packet has a place for the 
timestamp in its headers, and the switches are able to handle 
this timestamp. The prevalent approach is to compute the delay 
non-intrusively by means of ad hoc service packets and avoid 
the tagging similar to [4]. However, this modification does not 
eliminate the need in the dedicated time server and the abilities 
of the switching devices to synchronize and generate the 
appropriate service packets automatically. 

SDN introduces a concept of a single centralized controller 
to rule all the switching devices and provided a convenient way 
to synchronize them. The paper [5] proposes to use this 
opportunity to measure the delay by the following outline. First, 
the controller reserves a certain header for the service purposes. 
Then, it installs a set of forwarding rules to route the packets 
with this header by the path of the flow of interest. However, 
the last rule along the path is modified to send outgoing 
packets to the controller. From time to time, the controller 
forges a probe packet with the reserved header and a relevant 
timestamp in its payload, and sends it through the ingress 
switch of the constructed path. When the packet comes back, 
the controller checks its timestamp and computes the packet 
delay. 

Packet probes do not require any complementary support 
from the hardware, nor the synchronization of switching 
devices. However, the probe comprises not only the route of 
the real packets, but also the routes from the controller to the 

ingress switch and from the egress switch back to the controller. 
Moreover, each probe packet experiences two passes through a 
network stack of the controller, and a pair of transitions 
between the Control Plane and the Data Plane at the switches, 
usually implemented by means of a slow software processing. 
As a result, the value of the target delay component often 
becomes smaller than the value of parasitic components, and 
the method is unable to provide the required precision. 

In this paper we propose a novel approach to establish 
packet probes, which copes the negative impact of the adverse 
delay components by increasing the share of the target 
component with packet iteration. 

III. ONE-WAY DELAY MEASUREMENT FOR A SINGLE PATH 

A. Rationale 

End-to-end packet transmission delay is equal to a sum of a 
network infrastructure delay and a delay between border 
switches and network applications at the ends of the route. It is 
not possible to measure the latter component due to a lack of 
information about configurations of the hosts. However, the 
delay of packet transmission through the network infrastructure 
is a large part of the end-to-end delay. In this paper we discard 
the delay between the network and the hosts, and consider the 
delay of the network infrastructure only. 

In SDN packets can pass through the network infrastructure 
with two types of routes: (1) slow path routes that imply 
processing of packets at the controller, and (2) fast path routes 
that are processed solely by the switching devices. In most 
cases, packets pass through the fast path, therefore, in this work 
we focus on measuring end-to-end delay for fast path. 

We assume each network switch implements Output 
Queuing and consists of the following components: 

 Packet analyzers (one per port), 
 Switching fabric, 
 Output queues (one per port). 
 

 
Fig. 1.   Scheme of switch interaction. 

Packet processing at a switch is organized as follows (fig. 
1). Upon receiving a packet, the switch analyzes its headers 
and produces an instruction to process it. Then, the switch 
fabric executes the instruction and transmits the packet to an 
appropriate set of output ports. However, the packet can arrive 
when the connected channel is already in use by packets from 
the other ports. In this case the packet is pushed into a FIFO-
queue of the port. The queue is polled every time the channel 
becomes ready to transmit. 

We assume the delay of packet processing at analyzers and 
switching fabrics as well as the delay of packet serialization 
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and propagation depends solely on packet length and some 
performance characteristics of the networking hardware. Thus, 
the listed components can be calculated statically without a 
regard to the network load. Note our assumption does not 
generally hold and some advanced hardware violates it. 
However, the value of calculation error is negligible compared 
to the delay of packet queuing. Thus, our method focuses on 
measuring of the latter one. 

Because of the dependence on mutual influence of the 
flows, queuing delay cannot be calculated a priori. Our method 
captures this dependency with help of a service packets forged 
by a network controller to follow the path of the usual data 
packets and experience all the appropriate delays. However, 
instead of making a single run along the path of interest, the 
packet iterates it back and forth in an endless loop. At the 
beginning of each iteration the first switch of the loop sends a 
copy of the packet to the controller as a pulse message. 

Note the interval between a pair of consecutive pulses 
provides a precise estimation for RTT over the path of interest. 
Its value does not capture any delays cause by interaction with 
the controller. The first pulse is sent after the service packet is 
already inside of the data path. Thus, the interval does not 
include the delay of transmission from the controller to the 
Data Plane. Next, although each copy of the service packet 
actually goes from the switch to the controller, the interval 
value is calculated with a subtraction which annihilates the 
corresponding delays and reduces their impact to a jitter. 

Our method uses aforesaid advantage and derives one-way 
delay along the path of interest from its RTT. However, direct 
application of the loop-based measurement results into a heavy 
load of the controller usually inadmissible in practice. Thereby, 
we focus on decrease in the performance requirements of the 
loop-based RTT measurement method in the first place, and 
consider the ways to divide RTT into one-way delays fairly in 
the second. 

B. Measuring RTT with Packet Looping 

Intensity of the pulse packet flow depends on a length of 
the underlying loop that generates it. The longer the loop, the 
fewer impulses reach the controller. It is not possible to expand 
the loop because it is tied to the path of interest. However, the 
controller can use the headers of a service packet to implement 
a counter and send pulse messages once per several iterations. 

Let a path of interest consists of N>1 switches S1,…, Sn. 
To set up an appropriate topology loop controller goes through 
the switches along the path and supplies i-th switch with a pair 
of forwarding rules to transmit service packets from the switch 
number (i-1 mod N) to the switch number (i+1 mod N) and 
back without any modifications. Controller identifies a packet 
with a predefined value in a certain field of its header (e.g. 
0xBEEF in Ethernet type) to be the service one disregarding 
the other fields. Thus, the installed rules contain a nonempty 
set of wildcard fields (e.g. Ethernet source and destination 
addresses). 

Controller interprets the values stored a certain subset of 
wildcarded fields as a encoding of a loop counter. To make the 
counter run, it selects any switch in the loop and replaces one 
of its transmission rules with a set of M similar rules that 

modify the value of stored a counter. The pattern of i-th rule 
matches the encoding of i while its actions sets the counter 
fields with the encoding of (i+1 mod M). Thereby, after being 
sent into a constructed loop, a service packet with a valid 
encoding of a counter in its headers restores the same set of 
headers and appears at the same location of a network at every 
M-th iteration. Note such a combination of packet location and 
headers is often referred as a packet state [6]. Using this term, 
it is correct to say the controller sets up a single loop in the 
space of packet states. 

The described approach requires M rules to set up a counter 
for M iterations and leads to a fast exhaustion of forwarding 
tables of the switches. Fortunately, it is possible to reduce it by 
modifying individual fields of a counter at different switches. 
For example, the switch S1 can increment the first field of a 
counter encoding and ignore its other fields. The switch S2 can 
increment the second field of a counter while passing through 
any packets with non-zero value at its first field. This cascade 
scheme factorizes the number of required rules. The controller 
installs M1 rules into the first switch and M2 rules at a second 
switch and set up a loop with an iteration number equal to their 
product M1*M2. In general, if the packet has k counter field of 
a sufficient size, it is possible to set up a loop of M iteration 
along the path of N≥K switches with K* M^(1/K) +N+1. The 
number of rules can be reduced even more, if the switches 
support some advanced actions for a certain set of counter 
fields (e.g. decrement TTL). 

Finally, controller selects any of the counter modification 
rules that is used by a single iteration of the loop and extends 
its instruction set with an action  to send an appropriate pulse 
message. As a result, the value RTT can be estimated as an 
interval between a pair of consequent pulses divided by the 
number of iterations in the constructed loop. 

Upon a loss of a service packet the described method stops 
the measurement. However, this problem can be solved by 
injecting of a new service packet to replace the previous one if 
no pulse message has been received for some period. Also this 
situation can be used to detect network congestion. 

Note a loop over the packet states improves the accuracy of 
the RTT measurement. Although intervals between the pulses 
include parasitic jitter of a switch-to-controller communication, 
its share may be reduced to an eligible value by increasing the 
length of the state loop. Suppose the switch-to-controller (SC) 
delay varies from 300 µs to 500 µs, and real RTT is about 5 µs. 
Then, SC jitter exceeds an actual RTT forty times. If we want 
the measured value to provide 90 percent accuracy, it is 
necessary to set up a loop with over 400 iterations. Thereby, 
we can get a suitable precision even in a network with a high-
latency controller. 

C. RTT measurement experiments 

We implemented our method to measure the RTT along the 
given path with the state looping as an application for POX 
controller [7] and validated it experimentally. We used a single 
hybrid OpenFlow switch NEC PF5200 with 48 1Gbit/s 
interfaces to create a network with 4 virtual switches (fig. 2). 
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The experiments were aimed to check the method accuracy 
in dependence on the network load. 

The path of interest is S3, S2, S1.Traffic generators and 
controller are deployed at a single server with 3 1-Gbit/s 
interfaces. We used pktgen [8] to generate and send 1000 byte 
packets over the paths S3, S2, S1 and S1, S2, S4, S3, S2, S1. 
During the generation, each packet was marked with a 
corresponding timestamp. Generated traffic was captured with 
wireshark [9]. A difference between the time of packet 
capturing and the timestamp inside of its body was considered 
as a reference approximation of the RTT at the network 
infrastructure. 

Under a steady load the reference delay was in range from 
500 to 560 μs with an average of 540 μs. The measurement 
with a loop running along the path of interest 1024 times 
estimated the RTT by a range from 500 to 600 μs, with an 
average of 560 μs. This assessment differs from the average 
reference estimation by 3.7 percent. 

The second purpose of the experiment was to show, that the 
results of the proposed method reacted the changes in network 
load. To simulate dynamically changing network load traffic 
we generated flows of 10000 packets with rate of 600 Mbit/s. 
Thus, the rate of data transmission in links along the path S3, 
S2, S1 changed from 0 to 1.2Gbit/s (some packets were 
dropped). 

Measurement results for proposed method showed that 
delay was in range from 500 μs up to 1.5 ms. Measured delay 
increase to 700 μs, until output port queues became congested. 
Upper bound values match packet loss. After output port 
queues became empty, measured delay decrease to normal 
value – from 500 to 600 μs. 

D. Deriving one-way delay of a route by RTT 

The calculation of a one-way delay by bisecting the RTT is 
often inaccurate. Note we can divide RTT over a single hop 
with more precision by taking into account the proportion of 
data transmitted in each link direction. 

Consider a pair of switches connected to each other by a 
link with a bandwidth of C (figure 1). For a given time interval 
T, X and Y denote a number of bytes, directed to queues Q1 
and Q2 of the switches S1 and S2 respectively. Controller can 
obtain actual values of X and Y by sending appropriate statistic 
requests to the switches. Note these values are usually 
measured at the stage of packet analysis. Thus, their 
accumulated size can exceed the number of bytes transmitted 
through the channel. 

There are three possible options: 
1. X/T≤C and Y/T≤C. Thereby, both output queues are 

empty and one-way delay in each link direction is 
equal to a half of RTT.  

2. X/T≥C and Y/T≤C. Q1 is congested and Q2 is empty. 
Thus, one-way delay from Switch1 to Switch2 can be 
calculated as (RTT+(X/C-T))/2 and one-way delay 
from Switch2 to Switch1 can be calculated as (RTT-
(X/C-T))/2. 

3. X/T≥C and Y/T≥C. Both Q1 and Q2 are not empty. 
One-way delay from Switch1 to Switch2 can be 

calculated as (RTT+(X/C-T)-(Y/C-T))/2 and one-way 
delay from Switch2 to Switch1 can be calculated as 
(RTT-(X/C-T)+(Y/C-T))/2. 

With these assumptions, we can divide target path into one-
hop paths, obtain their one-way delays by an advanced division 
of RTT and sum them up into a pair of resulted one-way 
delays. This method has a large overhead, especially if we want 
to measure multiple paths in the network. However, if the paths 
of interest have some common parts, it is possible to measure 
them only once. 

IV. DELAY MEASUREMENT FOR ANY ROUTE 

A. Divide and measure 

Proposed method allows us to measure RTT of single path 
in a network. However, the total number of paths depends 
exponentially on the number of switches and it is not possible 
to apply the proposed method for each of them directly. 

POX

S1 S2

S4

S3

Traffic generator

Traffic generator

Target route

First flow Second flow

 
Fig. 2.   Delay measurement experiment topology with generated flows and 

target flow. 

Suppose (fig.2) we know delays from S3 to S2 and from S2 
to S1. Then delay from S3 to S1, can be represented as sum of 
one-hop delays: d(3,1)=d(3,2)+d(2,1). Similarly, the delay for 
any route in network can be split into a sum of one-hop delays 
and the main target is to measure all one-hop delays in network, 
or to construct a network delay map - a structure, containing all 
one-hop delays. 

A straightforward approach is to measure all one-hop RTTs, 
using the proposed measurement method, and obtain one-way 
delays using the advanced method for RTT separation.  

Another approach is to organize so many loop 
measurements, which will allow obtain network delay map as 
the result of solving a system of linear equations with loops 
RTT. We propose an algorithm that construct network delay 
map and organize measurements with minimal controller load. 

B. Algorithm for constructing network delay map 

We need to organize measurements with minimal controller 
load. Header looping measurement method provides two 
approaches to minimize network load: increase length of the 
topological loops and increase the number of iterations over the 
headers. Second approach does not arrange us, because while 
minimizing number of PacketIn messages, it increases the 
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number of rules installed into the switches. We will use both 
approaches in proposing algorithm. 

The idea of the algorithm is to replace some measurements 
over single links with measurements over longer paths, and 
then derive the former from the latter. 

We set up the loop construction problem as follows. For a 
given network graph, find such a set of topology loops as to: 

1. Each one-way link must be included in at least one 
loop; 

2. Maximize the accumulated length of the loops in a set; 
Assign a variable directed edge in graph. Delay for any 

path can be calculated from the linear equation, where directed 
edges will represent each hop in path. Suppose we can measure 
delay for any path in graph. Then, we can construct such a 
system of linear equations, solving which will be obtained 
network delay map. Therefore, we need to find such a set of 
topology loops that will meet all listed requirements and may 
be used to construct a system of linear equations solving which 
will be obtained network delay map. 

Let two loops be dependent, if edges set of one loop 
contain edges set of another loop. Only set of independent 
loops can be used to construct a system of linear equations. 

Let one loop be sum of two another loops, if it’s set of 
edges contain every edge from summand loops and does not 
contain any other edge.  

We will call set of independent loops - objective, if it meets 
all the listed requirements. Any loop of the objective set can be 
represented as the sum of other loops of smaller lengths (if the 
objective loop includes more than two directed edges and it 
does not belong to the graph basis). Then the objective set of 
cycles can be constructed from the basis of all simple loops of 
the graph. The construction of simple loops sets requires 
finding a fundamental set of loops of the graph, which is a 
union of fundamental sets of all spanning trees of the original 
graph. 

The problem of finding a fundamental set is complicated, 
because the number of spanning trees of the graph can reach 

, where n is the number of vertices in graph. Therefore, to 
construct the independent set of loops we use an algorithm to 
find all the simple loops in the graph described in [10]. Its 
complexity – O((n+m)(c+1)), where c is the number of simple 
loops in the graph. The resulting set may contain linearly 
dependent loops and they should be filtered out with post 
processing. 

Next step is to construct objective set from set of basic 
loops. As mentioned before, any objective loop can be 
represented as sum of basic loops. We can construct objective 
set of loops as a linear combination of basic loops. But 
construction of the objective set of loops with maximum sum 
of length is a problem that cannot be solved without exhaustive 
search. Therefore, we propose a greedy algorithm that expands 
topological loops. In this algorithm, we use only independent 
simple loops from constructed system. For every loop in 
system, we try to combine it with other, and if combination is 
simple independent loop, longer than previous one, we save it. 
Thus, after every step of algorithm we get a correct 

(independent) system of loops with total topological length, 
bigger than the one at the previous step. 

Number of loops in the constructed objective set of graph 
does not exceed its cyclomatic number. Thus, we need to 
supplement it with more loops (total number of loops must be 
equals to number of one-way edges in network). To achieve 
this, we complete the system with measurements using the 
advanced RTT division. 

Now we just need to start measurements for every loop in 
system. Measuring RTT from this loops and solving linear 
system will give us network delay map. 

 

1

3

5 4

2

 

 
Fig. 3.  Delay map construction experiment topology. 

C. Delay map construction experiments 

Applied to an example network topology showed by figure 
3 our algorithm generates a set of seven loops listed in table I. 
However, there are five links and ten delay values to calculate. 
Thus, we had to derive one-way delays from the RTT at links 
1-2, 2-3, 2-5 (fig. 4). 

We have implemented the algorithm as an application for 
POX controller and have studied its performance in a network 
simulated by Mininet [11]. 

Experiments with our method showed the one-way delay 
for each link has been in range from 16 to 20 µs. For 
comparison, the value of RTT measured by pinging hosts, 
connected to switches 1 and 2 (which includes SC delay) is in 
the range of 40 to 60 μs, so we reached necessary accuracy of 
measurements. The number of iterations for each loop was 
2048. It used two counter-fields, that required to install 96 + k 
rules per loop (k is number of switches in loop). The number of 
PacketIn messages in a second is from 60 to 100. Such a low 
intensity should be acceptable for any modern controller. 

TABLE I.  SYSTEM OF NETWORK LOOPS, GENERATED BY ALGORITHM 

Loop number Switches in loop 

1 1, 2, 5, 4, 3, 2, 3, 4, 5, 2, 1 

2 1, 2, 5, 4, 3, 4, 5, 2, 1 

3 1, 2, 5, 4, 3, 2, 1 

4 1, 2, 5, 4, 5, 2, 1 

5 1, 2, 1 

6 2, 5, 2 

7 2, 3, 2 

5



Num\link 1 - 2 2 - 1 2 - 3 2 - 5 3 - 2 3 - 4 4 - 3 4 - 5 5 - 2 5 - 4
1 1 1 1 1 1 1 1 1 1 1
2 1 1 0 1 0 1 1 1 1 1
3 1 1 0 1 1 0 1 0 0 1
4 1 1 0 1 0 0 0 1 1 1
5 1 1 0 0 0 0 0 0 0 0
6 0 0 0 1 0 0 0 0 1 0
7 0 0 1 0 1 0 0 0 0 0
8 1 0 0 0 0 0 0 0 0 0
9 0 0 1 0 0 0 0 0 0 0

10 0 0 0 1 0 0 0 0 0 0  
Fig. 4.  System of linear equations, generated by algorithm. 

V. CONCLUSION 

We proposed a flexible method to measure one-way delay 
of any flow with adjustable trade-off between the accuracy and 
the load of network infrastructure it imposes. Using of loops in 
space of packet states allowed us to measure delay through fast 
path and make switch-controller delay negligible. Proposed 
method can be used out-of-the-box, and can be easily 
implemented as module of any SDN controller. 

We proposed an algorithm to construct a delay map suitable 
to estimate the infrastructure delay for all paths in a network 
with necessary accuracy in real-time. The algorithm allows our 
delay measurement method to scale without overloading of the 
controller. 
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Abstract—In this paper we present a VERifying MONiTor
(VERMONT) which is a software toolset for checking the
consistency of network configurations with formally specified
invariants of Packet Forwarding Policies (PFP). Correct and
safe management of networks is a very hard task. Every time
the current load of flow tables should satisfy certain require-
ments. Some packets have to reach their destination, whereas
some other packets have to be dropped. Certain switches are
forbidden for some packets, whereas some other switches have
to be obligatorily traversed. Loops are not allowed. These and
some other requirements constitute a PFP. One of the aims of
network engineering is to provide such a loading of switches
with forwarding rules as to guarantee compliance with the PFP.
VERMONT provides some automation to the solution of this
task. VERMONT can be installed in line with the control plane.
It observes state changes of a network by intercepting messages
sent by switches to the controller and command sent by the
controller to switches. It builds an adequate formal model of
a whole network and checks every event, such as installation,
deletion, or modification of rules, port and switch up and down
events, against a set formal requirements of PFP. Before a network
update command is sent to a switch VERMONT anticipates
the result of its execution and checks whether a new state of
network satisfies all requirements of PFP. If this is the case then
the command is delivered to the corresponding switch. Upon
detecting a violation of PFP VERMONT blocks the change, alerts
a network administrator, and gives some additional information
to elucidate a possible source of an error. VERMONT has a
wide area of applications. It can be attached to a SDN controller
just to check basic safety properties (the absence of loops, black-
holes, etc) of the network managed by the controller. VERMONT
may be also cooperated with software units (like FlowVisor) that
aggregate several controllers. In this case VERMONT checks
the compatibility of PFPs implemented by these controllers. This
toolset can be used as a fully automatic safeguard for every
software application which implements certain PFP on a SDN
controller.

Keywords—runtime verification, formal specification, model
checking, software defined network, controller, switch, packet for-
warding relation, Binary Decision Diagram, network update

I. INTRODUCTION

Runtime verification is an approach to computing system
analysis and verification based on extracting information,
checking required properties and possibly reacting to the vio-
lation of some requirements in the course of system execution.
Runtime verification can be used for many purposes, such
as security or safety policy monitoring, debugging, testing,
verification, validation, profiling, fault protection, behavior
modification (e.g., recovery), etc. Runtime verification avoids

the complexity of traditional formal verification techniques,
such as model checking and theorem proving, by analyzing
only one or a few execution traces and by working directly
with the actual system, thus scaling up relatively well and
giving more confidence in the results of the analysis. Runtime
verification can be performed when there is no access to the
software code of the computing systems to be verified.

No wonder that these nice features of runtime verification
make this approach much favor in using it for verification and
analysis of the behaviour of reactive systems, such as network
protocols. In this paper we present a VERifying MONiTor
(VERMONT) which is a toolset for runtime verification of
Software Defined Networks (SDNs) against formally specified
invariants of Packet Forwarding Policies (PFP). The paper is
organized as follows. In Section 2 we introduce a formal model
for SDN configurations, and in Section 3 we present a formal
language for PFP specification. In Section 4 we discuss three
main tasks to be solved for runtime verification of SDNs,
namely, model building, model checking, and model updating.
In section 5 we describe our runtime verification toolset, its
structure and functionality. And, finally, in the Conclusion we
compare our tool set with other SDN verification tools.

II. NETWORK MODEL

In this Section we presented a relational formal model of
SDN configurations which is used in VERMONT for SDN
data plane runtime verification. This formal model of SDN
has been introduced in [15].

Packet header is a binary vector h = (h1, h2, . . . , hN ). All
headers have the same length N and the set of all packet
headers is denoted by H. Components of a header h are
denoted by h[i], 1 ≤ i ≤ N .

Switch port is a binary vector p = (p0, p1, p2, . . . , pk). Its
components are denoted by p[i], 0 ≤ i ≤ k. If p[0] = 1
then p is an input port, otherwise it is an output port. All
switches in the network are assumed to be identical and have
the same number of ports. The set of all (input,output) ports
of a switch is denoted by P(IP,OP) respectively. The output
port p = (0, 0, . . . , 0) is viewed as a drop port. It is denoted
by drop; at arriving to this port the packets are dropped. The
output port p = 〈0, 1, 1, . . . , 1〉 is the control output port. It is
denoted by octrl; at arriving to this port the packets are sent to
a controller. The input port p = 〈1, 1, 1, . . . , 1〉 is the control
input port. It is denoted by ictrl; only commands from the
controller come to this port.
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All network switches are enumerated. The name of each
switch is a binary vector w = (w1, w2, . . . , wm). Its compo-
nents are denoted by w[i], 0 ≤ i ≤ m. The set of such vectors
is denoted by W .

Let h ∈ H, p ∈ P, w ∈ W . Then a pair 〈h,p〉 is called
a local packet state, a pair 〈p,w〉 is called a vertice, and a
triple 〈h,p,w〉 is called a packet state. The set of all packet
states is denoted by S.

A header pattern is a vector z = (σ1, σ2, . . . , σN ), where
σi ∈ {0, 1, ∗}, 1 ≤ i ≤ N . A port pattern is a vector y =
(δ1, δ2, . . . , δk), where δi ∈ {0, 1, ∗}, 1 ≤ i ≤ k. Patterns are
used for the selection of appropriate rules from flow tables as
well as for the updating of packet headers.

In our model of SDN we consider two types of actions:
forwarding actions OUTPUT (y), where y ∈ OP , and header
modification action SET FIELD(z), where z is a header
pattern. An instruction is any finite sequence of actions.

A rule is a tuple r = 〈(z,y), α, `〉), where z,y are header
and port patterns, α is an instruction, and ` is natural number
which is a priority of the rule. A flow-table tab is a pair (D,β),
where D = {r1, r2, . . . , rn} is a set of forwarding rules and β
is a default instruction. A switch applies rules from its flow-
table to those packets which arrive to the input ports of a
switch. If all rules from the set D are inapplicable to a packet
then the default instruction β takes effect. Usually in practice
β just sends the packets to the SDN controller. The set of all
possible flow-tables is denoted by Tab.

Unlike the SDN models introduced in [1], [2], [3] our
model deals with paths in the data plane routed by forwarding
rules (per flow model) rather than individual packets that
traverse a network of switches (per packet model). Therefore,
the semantics of the SDN model is defined in terms of packet
forwarding relations on packet states and vertices. These
relations are specified by Quantified Boolean Formulae. To
capture the effect of patterns in forwarding rules we use two
auxiliary functions Uσ(u, v) and Eσ(u), where σ ∈ {0, 1, ∗},
and u, v are binary vectors, such that

• if σ = ∗, then Uσ(u, v) is u ≡ v and Eσ(u) is 1,

• if σ ∈ {0, 1}, then Uσ(u, v) and Eσ(u) are u ≡ σ.

An action a = OUTPUT (y) sends packets without
changing their header to all output ports that match a pattern
y = (δ1, δ2, . . . , δk). It computes the relation

Ra(〈h,p〉,〈h′,p′〉)=
N∧
i=1

(h[i] ≡ h′[i]) ∧
k∧
i=1

Uδi(p
′[i],p[i])

on the set of local packet states H×P .

An action b = SET FIELD(z) uses a pattern z to
modify headers of packets: a bit h[i] in a header remains intact
if z = ∗, otherwise it is changed to z[i]. This action computes
the relation

Rb(〈h,p〉,〈h′,p′〉)=
N∧
i=1

Uσi
(h′[i],h[i]) ∧

k∧
i=1

(p[i] ≡ p′[i]) .

on the set H×P .

An instruction α computes the relation Rα which is a
sequential composition of the relations that correspond to its
actions. If α is empty then a packet by default have to be
dropped, i.e. sent to the port drop. Therefore, we assume that
every instruction always ends with a forwarding action.

A packet forwarding rule r = (〈z,y〉, α, `) applies the
instruction α to all packets whose port and header match the
patterns y and z. Its effect is specified by the relation Rr on
the set of local packet states H×P

Rr(〈h,p〉,〈h′,p′〉)=PRCr(〈h,p〉) ∧Rα(〈h,p〉, 〈h′,p′〉) ,

where PRCr(〈h,p〉) =
k∧
i=1

Eδi(p[i]) ∧
N∧
j=1

Eσj (h[j]) is a

precondition of the rule r.

The semantics of a flow-table tab = (D,β), where D =
{r1, r2, . . . , rn} is specified by a binary relation as follows.
Let n be the highest priority of the rules from tab. For every
i, 1 ≤ i ≤ n, denote by tabi the set of rules from tab which
have priority i: tabi = {r = (〈z,y〉, α, i) : r ∈ tab}. Then
define recursively (from n down to 1) the pairs of relations
Ritab and Bitab as follows:

Rntab =
∨

r∈tabn
Rr, Bntab =

∨
r∈tabn

PRCr;

Ritab = {(〈h,p〉,〈h′,p′〉) : there exists r in tabi such that
〈h,p〉 /∈ Bi+1

tab and (〈h,p〉,〈h′,p′〉) ∈ Rr}),
Bitab = Bi+1

tab ∨
∨

r∈tabi
PRCr.

Since the missed packets are managed by the default rule
β, we introduce also the predicate

R0
tab(〈h,p〉,〈h′,p′〉) = ¬B0

tab(h,p) ∧Rβ(〈h,p〉,〈h′,p′〉).

Finally, Rtab =
n∨
i=0

Ritab; it means that every packet arrived at

some port of the switch is either processed by the rule of the
highest priority that matches the local state of the packet, or
it is managed by the default rule β of the flow-table.

The topology of a network is completely defined by a
packet transmission relation T ⊆ (OP ×W)× (IP ×W). In
practice T is an injective function. Vertices that are involved in
the relation T are called internal vertices of the network; others
are called external vertices. We denote by In and Out the sets
of all external input vertices and external output vertices of a
network respectively. External vertices of a switch are assumed
to be connected to outer devices (hosts, servers, gateways, etc.)
that are out of the scope of the SDN controller. Packets enter a
network through the input vertices and leave a network through
its output vertices.

When a set of switchesW and a topology T are fixed then
a network configuration is a total function Net : W → Tab
which assign flow-tables to the switches of the network. The
semantics of a network at a configuration Net is specified
by the 1-hop packet forwarding relation RNet on the set of
(global) packet states S as follows:

RNet(〈h,p,w〉, 〈h′,p′,w′〉) holds iff

• either (〈h,p〉, 〈h′,p′〉) ∈ RNet(w), w = w′, and
〈p′,w〉 ∈ Out (a packet is forwarded to an outer
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device connected to an external output port p′ of a
switch w),

• or there exists a port p′′ such that (〈h,p〉, 〈h′,p′〉) ∈
RNet(w) and (〈p′′,w〉, 〈p′,w′〉) ∈ T (a packet is
delivered to an input port p′ of a switch w′).

Thus, a formal model of SDN configuration Net is a triple
MNet = (RNet, In,Out).

Network configurations alter at the expiry of forwarding
rules’ time-outs, at the shutting down or failure of links, ports,
or switches, and by the network updating commands received
from the controller. OpenFlow protocol [4] includes network
updating commands of the following types:

• add(w, r) to install a forwarding rule r in the flow-
table of a switch w;

• del(w, 〈z,y〉, `) to remove rules from the flow-table
of a switch w: a rule r = (〈z′,y′〉, α,m) is uninstalled
iff m = ` and the pattern 〈z′,y′〉 of the rule matches
the pair 〈z,y〉;

• mod(w, 〈z,y〉, β, `) to modify the rules in the flow-
table of a switch w: if pattern 〈z′,y′〉 of the rule r =
(〈z′,y′〉, α,m) matches the pair 〈z,y〉 and m = `
then the instruction α in such rule is changed to the
instruction β.

As a network updating command is delivered to a switch it
changes the flow-table of the switch by installing, removing or
modifying the appropriate forwarding rules. Formally, we write
com(Net) for the new configuration obtained at the execution
of a network updating command com on a configuration Net.

III. SPECIFICATION LANGUAGE

Usually a wide range of requirements is imposed upon
communication networks to guarantee their correct, safe and
secure behaviour. We consider only those requirements that
concern the reachability properties. Certain packets have to
reach their destination, whereas some other packets have to
be dropped. Certain switches are forbidden for some packets,
whereas some other switches have to be obligatorily traversed.
Loops are not allowed. These and some other requirements
constitute a Packet Forwarding Policy (PFP). One of the
aims of network engineering is to provide such a loading of
switches with forwarding rules as to guarantee compliance
with a given PFP. Since flow-tables of switches are updated
by the controller, this raises the problems of verification of
SDN configurations against PFPs. In order to apply formal
methods to this problem one needs a formal language to
specify forwarding policies.

PFPs refer to properties of network configurations at some
stages of the SDN behaviour. These properties mostly concern
the paths routed in a network by packet forwarding rules.
We choose first-order logic with two variables and transitive
closure operator (FO2[TC] in symbols) to specify the prop-
erties of network configurations. As for atomic formulae, we
use for this purpose Boolean formulae to specify relationships
between packet states and three basic predicates R, I , and O
to denote one-hop packet forwarding relation and the sets of
incoming and outgoing packet states. Now we consider this
PFP specification language in some more details.

Let V ar = {X,Y } be a set of two variables that are
evaluated over the set S = H × P × W = {0, 1}N+k+m

of packet states. A packet state specification is any Boolean
formula ϕ constructed from a set of Boolean variables {Xi[j] :
Xi ∈ V ar, 1 ≤ j ≤ N +k+m} and connectives ¬, ∧, ∨. A
PFP specification language L is the smallest set of expressions
which satisfies the following requirements:

1) if ϕ is a packet state specification then ϕ ∈ L;
2) if X ′, X ′′ ∈ V ar then R(X ′, X ′′), I(X ′), O(X ′′) are

in L;
3) if ψ(X,Y ) is a formula in L and it includes exactly

two free variables then TC(ϕ(X,Y )) ∈ L;
4) if ψ1 and ψ2 are formulae in L and X ∈ V ar then

the formulae (¬ψ1), (ψ1∧ψ2), , (ψ1∨ψ2), (∃X ψ1),
and (∀X ψ1) are in L.

A PFP specification is any closed formula in L.

The semantics of L is defined as follows. Let Net be a
network configuration, and s = 〈h,p,w〉 and s′ = 〈h′,p′,w′〉
be a pair of packet states. Then

1) Net |= R(X,Y )[s, s′] iff (s, s′) ∈ RNet;
2) Net |= I(X)[s] iff 〈p,w〉 ∈ In;
3) Net |= O(X)[s] iff 〈p,w〉 ∈ Out;
4) Net |= TC(ϕ(X,Y ))[s, s′] iff there exists a finite

sequence of packet states s0, s1, . . . , sn such that
s0 = s, sn = s′, and Net |= ϕ[si, si+1] holds for
every i, 0 ≤ i < n.

The satisfiability relation for other formulae in L is defined
straightforward as in the first-order logics.

Some simple examples show that L is rather expressive to
formalize PFPs.

1) No loop-holes are reachable from the outside of the
network:
¬∃X (I(X)∧ ∃Y (TC(R(X,Y ))∧ TC(R(Y, Y )));

2) Packet flows flow1 and flow2 do not pass the same
switch:
¬∃X (∃Y (flow1(Y ) ∧ I(Y ) ∧ TC(R(Y,X)))∧
∃Y (flow2(Y ) ∧ I(Y ) ∧ TC(R(Y,X)))),
where flow1 and flow2 are Boolean formulae which
specify the aforesaid flows.

There are several reasons to explain our choice of FO2[TC]
for PFP specification language. In the most papers that study
verification problem for SDN (see [8], [9], [10], [11], [14])
the authors use temporal logics (LTL or CTL) for PFP spec-
ification language. This choice is explicable when per-packet
abstraction is concerned since the movement of a packet may
be viewed as a process evolving in time. But as soon as
our model has a per-flow abstraction level, temporal logics
become inadequate formalism. Since we are interested in the
relationships between packet states and routs in the network
configurations, FO2[TC] expresses these more properties far
more explicitly. Moreover, as it was shown in [6], [7], LTL,
CTL, µ-calculus, and PDL can be translated in FO2[TC].
This fragment of 2-nd order logics is well-suited for model
checking. As it follows from the results of [5], model checking
problem for FO[TC] is NLOG-complete. The very structure of
FO2[TC] provides a possibility to evaluate it in straightforward
manner on any finite model.

9



IV. MODEL BUILDING, MODEL CHECKING AND MODEL
UPDATING

The aim of run-time verification is to check the correctness
of program behaviour in the course of program execution. In
the framework of our per-flow abstract model of SDN this
problem can be formalized as follows: given an initial network
configuration Net0, a list of PFP formal specifications Φ =
{ϕ1, . . . , ϕn}, and a sequence of network updating commands
α = com1, . . . , comi, . . . , check that for every i, i ≥ 1, a
network configuration Neti = comi(Neti−1) satisfies all PFP
specifications, i.e. all formulae from the list Φ are invariants
of the sequence α.

To cope with this problem one needs some means to solve
three individual tasks:

1) build a formal model MNet of SDN configuration by
the description of SDN topology T and the content
of SDN switch flow-tables Net,

2) check satisfiability MNet |= ϕ of a given formal
specification ϕ on a given formal model MNet of
SDN configuration, and

3) update a formal model MNet of SDN configuration
Net at the execution of a network updating command
com on this configuration.

We briefly discuss our approach to the solution of these tasks.

A formal model of SDN configuration MNet is completely
specified by the finite relations RNet, In,Out on the set of
binary vectors (packet states and vertices). Finite relations
can be represented symbolically by Binary Decision Diagrams
(BDDs) that are well-suited for set-theoretic manipulations
with such relations (see [17]). Nowadays many software pack-
ages for computations on BDDs are available; in our project
we used the toolset BuDDy due to its simple and convenient
interface.

Using packages for manipulations with BDDs it is quite
easy to solve the model building task. To this end it is sufficient
to compute step by step in a straightforward way BDDs for all
relations involved in the definition of RNet (see Section II),
namely for actions, instructions, rules, flow-tables.

As for the second task, model checking, it can be easily
solved as well with the help of BDD. Every formula ϕ from the
specification language L is presented by an Abstract Syntax
Tree (AST) Tϕ. The leaves of this tree are variables X and Y ,
whereas the inner nodes of this tree are basic predicates R, I,O
of L, Boolean operators and quantifiers, and transitive closure
operator TC. To check M |= ϕ it is sufficient to evaluate Tϕ
on a model M . Vertices marked with basic predicates invoke
the corresponding BDDs (with possible variable renaming). If
a vertex is marked with a Boolean operator or a quantifier then
the corresponding procedures for manipulations with BDDs is
used to assign a BDD to this vertex. The only type of vertices
that require some specific treatment are those that are marked
by transitive closure operator. To build a BDD for TC(R0),
given a BDD for a binary relation R0, we use the following
simple scheme: compute iteratively BDDs for relations

Ri+1(X,Y ) = ∃Z (Ri(X,Z) ∧Ri(Z, Y ))

until Ri+1 = Ri. This is the most time consuming stage of
AST evaluation and much efforts have been made to implement

it efficiently. Since every specification formula is closed then
BDD assigned to the root of Tϕ is a Boolean constant which
indicates (un)satisfiability of ϕ on M .

Some heuristics are used to reduce the cost of AST evalua-
tion. For example, in practice only some fields (VLAN, coun-
ters, etc.) in packet headers are subjected to SET FIELD
actions. Therefore, a packet header h may be split into two
components h = (h′,h′′), where h′ is composed of those bits
that are not changed. Then 1-hop packet forwarding relation
RNet may be viewed as RNet(h

′
1,h
′′
1 ,p1,w1,h

′′
2 ,p2,w2).

Such a presentation substantially reduces the size of BDDs.

An efficient solution of the third task — model updating
— is crucial for the utility of run-time verification, since the
performance of model updating procedure must be adequate
to the rate of configuration updatings occurred in real-life
networks. In some cases the basic relations in the SDN
configuration models can be modified rather quickly.

V. A TOOLSET VERMONT

An SDN run-time verification toolset VERMONT includes
four components (see Fig. 1):

1) a module for intercepting OpenFlow commands and
messages (Proxy-Server),

2) a model checking module (Verifier),
3) an initializing module (Feeder),
4) a PFP specification editor (Editor)

While operating the toolset interacts with OpenFlow controller
and SDN switches (when carrying out experiments we used
instead Mininet — a software system for SDN prototyping
[16]).

One of the aims of network engineering is to provide such a
loading of switches with forwarding rules as to guarantee com-
pliance with the PFP. VERMONT provides some automation
to the solution of this task. VERMONT can be installed in line
with the control plane. It observes state changes of a network
by intercepting messages sent by switches to the controller
and command sent by the controller to switches. It builds
an adequate formal model of a whole network and checks
every event, such as installation, deletion, or modification of
rules, port and switch up and down events, against a set formal
requirements of PFP. Before a network update command is sent
to a switch VERMONT anticipates the result of its execution
and checks whether a new state of network satisfies all require-
ments of PFP. If this is the case then the command is delivered
to the corresponding switch. Upon detecting a violation of PFP
VERMONT blocks the change, alerts a network administrator,
and gives some additional information to elucidate a possible
source of an error. VERMONT has a wide area of applications.
It can be attached to a SDN controller just to check basic
safety properties (the absence of loops, black-holes, etc) of
the flow-tables managed by his controller. VERMONT may
be also cooperated with software units (like FlowVisor) that
aggregate several controllers. In this case VERMONT checks
the compatibility of PFPs implemented by these controllers.
This toolset can be used as a fully automatic safeguard for
every software application which implements certain PFP on
a SDN controller.
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To achieve these tasks the modules of VERMONT operate
as follows.

Proxy-Server communicates with OpenFlow controller,
SDN switches and Verifier Server. It intercepts all commands
sent by the controller to SDN switches and all messages trans-
mitted from the SDN switches to the controller. Proxy-Server
is managed by the user of VERMONT (network manager) who
can turn on and off this module, select its operational mode
(SEAMLESS, MIRROR, INTRRUPT), set up and change
the operation parameters. Depending on the chosen operation
mode Proxy-Server may provide data (OpenFlow messages
and commands) to Verifier, suspend some commands sent
by the controller to SDN switches and block some of these
commands by the results of their verification.

Verifier communicates with Proxy-Server, Feeder and Ed-
itor. This module runs three main algorithms:

• an initialization procedure which, given a description
of a current network configuration (i.e. network topol-
ogy and the content of flow-tables of the network
switches) Net, builds a BDD representation of 1-hop
packet forwarding relation RNet;

• a model checking procedure which verifies a set of
PFP formal specifications Φ1, . . . ,Φn against a formal
model of network configuration Net.

• a model updating procedure which, given a BDD
representation of 1-hop packet forwarding relation
RNet for a current network configuration Net and a
network updating command com builds 1-hop packet
forwarding relation Rcom(Net) for the updating of
Net.

Verifier as a server receives from Proxy-Server a sequence
of OpenFlow network updating commands and messages on
forwarding rules time-out expirations, and (depending on the
operation mode of the toolset) it checks the correctness of
commands w.r.t. given PFP specifications, blocks incorrect
commands, and informs the user about the results of the
verification. Verifier as a client may send requests to Feeder for
the descriptions of a current network configuration. Verifier as
a server receives from Editor formal specifications of a current
PFP.

Feeder interacts with Verifier and with OpenFlow con-
troller. At the requests from Verifier it communicates with the
OpenFlow controller as a client and asks it about the necessary
data. At receiving the data on current network configuration
Feeder retransmits them to Verifier.

By means of Editor a user of the Toolset may input PFP
formal specifications, check their syntactic correctness, and
send these specifications to Verifier.

VERMONT admits three modes of operation.

1) SEAMLESS mode. In this mode VERMONT oper-
ates like a control flow channel between the Open-
Flow controller and the network of switches. Proxy-
Server does not invoke Verifier, updating commands
are not suspended and they are delivered to corre-
sponding switches without delay. VERMONT pro-
ceeds to this mode either by the request from its user
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6commands
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?

6commands
messages

SDN
network
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�
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Verifier:
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verification
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Editor

6PFP
specifications

Fig. 1.

(manually), or at the shutting down of communication
with Verifier (automatically).

2) MIRROR mode. In this mode Proxy-Server retrans-
mits without delay all OpenFlow commands and
messages to the corresponding parties (controller
and switches) but the copies of these control flow
data are delivered to Verifier. At receiving network
updating commands Verifier checks their correctness;
it informs a user about the results of the checking, but
does not block incorrect commands.

3) INTERRUPT mode. In this mode VERMONT carries
out a full-fledged run-time verification of network
configurations and handle the flow of network up-
dating commands sent to by the OpenFlow controller
to SDN switches. All updating commands and statis-
tics requests that depend on these commands are
suspended by Proxy-Server until their verification
is completed. The copies of suspended commands
are delivered to Verifier. It simulates the execution
of every such command on the current network
configuration and checks the resulting configuration
against the PFP specifications it received from Editor.
If all PFP requirements are satisfied then Verifier
allows Proxy-Server to sent the command to the
corresponding switch. Otherwise, Proxy-Server drops
the command and informs the network manager about
this event.

VI. CONCLUSIONS

We evaluate the performance of our run-time verification
toolset VERMONT on the model of Stanford University
Backbone Net. This network has 16 switches, and each of
them has three flow-tables. Totally, the flow-tables of this net
contain more than 750000 forwarding rules. Stanford has made
the entire configuration rule set public and it can be found
in [18]. This example is used in many papers [8], [9], [10],
[12], [13] on network verification as benchmark. The results
of comparative analysis of the performance of these tools is
presented in the table below (MB — Model Building, MUC
— Model Updating and Checking).
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Tool MB MUC Spec
(ms) (ms) Lang

VERMONT 4600 100 – 600 FO[TC]
(2013)
NetPlumber 37000 2 – 1000 CTL
(2013) [12]
VeriFlow > 4000 68-100 Fixed
(2013) [10] properties
AP Verifier 1000 0.1 Fixed
(2013) [13] properties
FlowChecker 1200000 350 – 67000 CTL
(2010) [8]
Anteater 400000 ??? Fixed
(2011) [9] properties

As it can be seen from this table VERMONT has the
most expressive PFP specification language and displays good
performance in building initial models of SDN configurations.
But some verification toolsets overcome VERMONT in the
efficiency of model updating. Nevertheless, we believe that
this feature of VERMONT can be substantially improved
with the help of new techniques similar to those used in
[13]. This is one of the lines of our further research on this
topic. Another important task to be solved is the designing
and implementation of a new module for generating counter-
example in those cases when a network configuration does not
satisfies some PFP requirement expressed by a ∀-formula of
specification language L.
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Abstract—Modern science presents a number of challenges to 
the cyber-infrastructure supporting it: heterogeneity of the 
required computational resources, problems associated with 
storing, preserving and moving large quantities of information, a 
collaborative nature of scientific activities requiring shared 
access to resources, continuously growing requirements for 
computational power and network bandwidth, and, last, but not 
least, ease of use. In this position paper we explore a new 
approach to creating and growing such infrastructure based on 
the principles of federation, enabled by deep programmability of 
individual infrastructure elements: Software-Defined 
Infrastructure (SDI). We describe the evolution of the science 
infrastructure, open research problems and the concrete steps we 
are taking towards its realization by building a unique, widely 
distributed science facility in Russia based on SDI and GENI 
technologies. 

Keywords—software-defined networking, infrastructure-as-a-
service 

I.  INTRODUCTIONS 
Modern scientific research is impossible without the 

sophisticated computational and data-processing 
infrastructure. Different science domains present a variety of 
challenges to the cyber-infrastructure, which today may 
consist of desktop computers, small institutional clusters, 
cloud resources and supercomputers purpose-built to address 
specific problems. These challenges can be summed up as: 

• Infrastructure heterogeneity. Different computational
solutions may require differently optimized computational 
and data-processing architectures. For example part of a 
given computational workflow may be executed using 
“map-reduce”, followed by calculations in a tightly-coupled, 
massively parallel MPI environment. Recent advances in 
many-core systems present new infrastructure optimization 
points by allowing the use of Intel MIC[1] or GPGPU [2] 
co-processors targeted at specific computational approaches.  

• Data processing. A number of science domains are
beginning to encounter a problem that is generically referred 
to as the “Big Data” problem, where the ability to generate 
the data by scientific instruments exceeds the ability of the 
computational elements to process them due to e.g. 
inadequate network bandwidth and/or insufficient 
computational power. Added to that are issues with long-
term data storage and provenance. 

• Distributed science. Today’s progress of science relies
on collaborative efforts by multiple institutions and requires  
cyber resources belonging to multiple organizations. The 
multi-disciplinary nature of science requires the 
participation of experts from multiple domains. For example 
bio-informatics brings together computer scientists and 
geneticists with the goal of designing efficient genotype 
processing algorithms. 

These challenges are compounded by the reductions in 
operating budgets of many scientific organizations, which 
require that the existing or newly constructed cyber-
infrastructure is utilized by many collaborative projects across 
multiple science domains to improve the economies of scale.  

In order to answer these challenges we need a new kind of 
cyber-infrastructure that will simultaneously 

• Be deeply reconfigurable, i.e. able to match the
requirements of a wide range of computational problems. 

• Be economical, i.e. support simultaneous uses by
scientists from multiple domains 

• Support easy formation of collaborations around
available institutional infrastructure by allowing their 
participants to flexibly ‘opt-in’ portions of their resources 
without relinquishing control over them. 

• Provide for ‘friction-free’ movement of data and
computation as determined by the dataset sizes and 
availability of computational resources. 

This research is supported by the Skolkovo Foundation Grant N 79, 
July, 2012 and Russian Foundation for Basic Research, project 
14-07-00743
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• Allow for connecting experimental devices and
instruments for the purposes of generating or processing 
data. 

In this position paper we explore a new approach to 
constructing such an infrastructure based on Software-Defined 
Infrastructure (SDI) technologies that combine performance 
with the required deep programmability. We also describe our 
efforts to construct a widely-distributed testbed called 
“GRANIT – Global Russian Advanced Network InitiaTive” in 
Russia to help answer the many architectural, deployment and 
usability questions that we expect to encounter while turning 
our vision into reality.  

II. RELATED WORK

The challenges outlined above have in some form or 
another been the focus of interest of the research community 
for some time.  

The first systematic approach to address some of them was 
attempted with the creation of the Grid, standardized via Open 
Grid Services Architecture (OGSA) [3]. The critical 
components of the architecture have been realized via Globus 
Toolkit [4] and Condor-G [5]. The combination of the two 
allows for distribution of computational tasks over multiple 
clusters that have Globus interfaces, as is done in many High-
Throughput Computing (HTC) and High-Performance 
Computing (HPC) facilities. Globus also provides some 
solutions for data movement via GridFTP software [6] that 
allows to efficiently move data between clusters by utilizing 
the available high-bandwidth connections through e.g. 
multiple parallel TCP sessions.   

There have also been attempts to unite under the common 
grid framework the scheduling of compute resources and on-
demand optical network paths that would support large data 
transfers, as, for example, was done in G-lambda [7] project.  

The commonly acknowledged shortcomings of these 
efforts are in 

• The complexity of the configuration and maintenance of
the certificate-based grid authorization system. 

• The fundamental assumption of the grid computing
paradigm that all elements of the grid are continuously 
connected by reliable high-bandwidth interconnects.  

• That the first-class object in the grid architecture is a
compute-job, which makes it difficult to attach dedicated 
networking bandwidth to a particular activity. 

• Difficulties in packaging the units of computation with
their environments (operating system, data), that lead to 
productivity lost to adjusting the environments of the 
executing clusters to run specific applications. 

• Difficulties in adapting the grid to conceptually new
computational paradigms, such as “map-reduce”. 

The typical way of achieving data movement in grid-based 
high-performance and high-throughput environments is by 
deploying Data-Transfer Nodes (DTNs) [20] - specially tuned 
hardware nodes that have an interface into the public Internet 
or a bandwidth-on-demand network and also have high-speed 

access into the shared filesystem of the grid resource. The data 
transfer software on the DTN (e.g. GridFTP) and the 
networking stack are specially tuned for sustained high-speed 
data transfers. It is the responsibility of the user to stage the 
data in and out of the HTC/HPC resource using the DTNs. 
The deployment of DTNs represents a form of a static Content 
Distribution Network (CDN) tuned for super-computing or 
grid applications.  

The cloud computing paradigm, which became popular in 
the recent years also promises to address many of the 
problems we identified. Originally introduced by several large 
commercial entities (largely Amazon) as a way to amortize the 
expense of maintaining their own computational 
infrastructure, they developed virtualization mechanisms to 
sell time on that infrastructure during off-peak hours to other 
customers. It has since become a entire new area of research 
by commercial and academic research organizations. Among 
cloud offerings that are of interest to the science community, 
we should note Amazon Elastic Compute Cloud (EC2) and 
Simple Storage Service (S3). These initial basic services 
opened the possibilities for resellers to tailor them to specific 
customer classes. For example, using EC2, Cycle Computing 
offers HTC and HPC services for domain scientists struggling 
to maintain their own infrastructure. Recently they 
demonstrated a 1.2 peta-flop system built out of EC2 
resources for the study of molecular structures of organic 
semiconductors [8]. Other offerings supporting new 
computational paradigms include Elastic MapReduce [9]. In 
parallel to these “public” clouds, new technologies were 
developed for creating “private” or “institutional” clouds. 
These include OpenStack[10],  Eucalyptus[11], 
CloudStack[12] and VMWare[13].  

Compared to the grid, cloud technologies offer several 
advantages: deep programmability — since the unit of 
computation is a virtual machine environment that packages 
the computation and data together — and massive scale, 
especially the public clouds, which provide the illusion of 
infinitely scalable resources. They do, however, have several 
shortcomings: 

• Difficulties with moving data in and especially out of the
cloud/vendor lock-in [15] 

• Opaqueness of internal cloud topology that does not
allow users to predict the performance of network links 
ahead of time [18] 

• Clouds are well suited to “pleasantly parallel”
computation paradigms that don’t require large amounts of 
inter-node communications via e.g. MPI 

• Difficulties in allowing external users access to specific
private cloud resources, which in the grid are resolved using 
Grid Security Architecture (GSI) 

What is required is a combination of some of the best 
features of grids and clouds with an additional support for 
programmability, federated access and programmatic control 
over network resources in a single elastic infrastructure. Due 
to its deep programmability, this paradigm has been termed 
“Software-Defined Infrastructure” (SDI) [14], which we 
examine in the following section. 
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III. SOFTWARE-DEFINED INFRASTRUCTURE

The move towards SDI began largely with the 
development of the OpenFlow [16] protocol and the 
concomitant emergence of the concept of Software-Defined 
Networking (SDN). Today SDN is understood to be broader 
than OpenFlow, however this protocol deserves to be called 
one of the first building blocks towards SDN.   

The broadest set of ideas defining SDI today originates 
from the project named GENI (Global Environment for 
Network Innovation) [17], initiated by the US National 
Science Foundation. GENI is an international federation of 
testbeds by now spanning several countries and offering its 
resources to many researchers across the globe. GENI 
resources include cloud compute and storage resources, 
OpenFlow switches and programmable wireless networks.  

GENI control software federates together multiple 
resource providers and allows users to create “slices” of 
infrastructure - programmable topologies of resources 
collected from those providers, connected by various network 
fabrics which offer bandwidth-on-demand services or higher-
level SDN services. These slices are, in effect, independent 
virtual systems or networks target-built for specific 
experimental or computational activities.  

The individual slices operate in parallel and independently 
from each other, with performance isolation provided by the 
specific virtualization or slivering technologies, that allow for 
programmatic partitioning of various resource types, such as 
compute hypervisors, individual network paths (VLANs and 
MPLS) or individually-addressable storage volumes.  

Resource slivers are mono-typed and user-programmable, 
i.e. a user may specify, for example, the specific operating 
system image or file system type in compute and storage 
slivers, respectively. The slivers within a slice are 
interconnected into a user-defined topology with dedicated 
network links of specified performance. Slices may connect to 
the commodity Internet via a variety of gateway technologies. 
Taken together, programmable compute, storage and 
networking form the foundation of the Software-Defined 
Infrastructure.  

We note that the technologies for low-level slivering and 
programming computational and storage resources are 
generally well-understood today, although open problems 
remain when it comes to proper isolation of these sliver types 
from each other and quantifying their performance in a multi-
user system. Network slivers, on the other hand, represent a 
relatively new idea, which with the emergence of SDN added 
a new level of programmability, not envisioned before. 

Specifically, SDN technologies allow the interposition of 
user control directly into the network elements within the slice 
topology, that belong to a specific network provider, thus 
creating new points for inserting user-specified network traffic 
forwarding policies. Prior to the introduction of OpenFlow, 
the level of virtualization and programmability of networks 
was limited to the creation of bandwidth on-demand paths 
through one or more network providers [19]. Now users can 
dictate not only the topologies of the slice interconnects, but 

actually affect the behavior of the network traffic inside those 
slices. 

These new capabilities coupled with the push by multiple 
vendors to create OpenFlow-compliant networking equipment 
capable of serving at different networking layers and different 
market segments, create new opportunities for extending the 
notion of SDI deeper into the networking domain. The 
development and extension of the concept of SDNs into new 
areas is actively continuing and, along with developing further 
abilities to orchestrate different resources together into 
complex slice topologies and behaviors is included as part of 
our vision in this paper. 

The tight coupling of network, computational and storage 
resources in GENI allows it to become a federated platform 
unifying multiple independent resource providers for the 
purposes of solving a variety of computational problems, 
whose solutions today are limited by their ability to move 
data, e.g. gene sequencing or processing of high-volumes of 
other kinds digital data from physics, astronomy, biology or 
other science domains. For us the problems of data movement 
within slices in service of science applications represent a 
critical area for advancement, in order to support the needs of 
domain sciences.  

III. KEY PROBLEMS FOR SCIENCE APPLICATIONS AND SDI

A. Use Cases 
We begin with a few examples of using SDI technologies 

for scientific computational research. Considering the strong 
connection between SDI and cloud technologies, one of the 
easiest areas to apply is to problems that are easily 
parallelizable. These types of problems are frequently 
encountered today, for example, in gene sequencing. In part it 
is because most of the software was originally written for 
analysis on personal computers, but it is also due to relatively 
small size of individual genetic datasets, so that they can be 
packaged together with applications into a virtual machine 
image.  

Using slices created out of institutional private clouds 
federated using GENI technologies, scientists gain access to a 
platform that can easily launch large numbers of parallel 
analyses. However, unlike with public clouds, the users are 
not limited to using datasets that are baked into the images: 
their applications may query databases or datasets stored 
inside or the slice, as necessary and still see predictable data 
transfer performance. Additionally, the slices may host other 
auxiliary resources that include, for example, graphical front 
ends for access by the users. All elements of these 
infrastructure configurations are completely dynamic, created 
on-demand as the users see fit. 

A more complex example includes a problem that requires 
elements of parallel computation, but also where some part of 
the computational process is tightly-coupled and requires MPI 
on a cluster or supercomputer with an MPI-friendly 
interconnect. In this case several collaborating organizations 
can create a virtual system or slice that includes not only cloud 
computational elements, but also portions or slivers of 
supercomputers belonging to them, which are connected to the 
slice when needed. The data needed for processing on the 
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supercomputer can be transferred via the slice network links 
into the supercomputer and afterwards saved into permanent 
storage or transferred elsewhere for further processing. 

B. Requirements and Open Problems 
As we mentioned, any virtual system or slice created for a 

science application consists of three basic sliver types: 
compute, storage and network. A science application may 
require heterogeneous computational and storage resources to 
be present in a slice for solving various steps within the 
computation. The topology of the slice must support the needs 
of the application by allowing the movement of data or 
computation to where it is most efficient, for example, 
transferring a dataset to available processing compute 
elements or saving the resulting datasets into permanent 
storage - all tasks that are difficult today, requiring manual 
user intervention, as with DTNs and making data sharing, 
especially in collaborative environments, a difficult task.  

In order to provide a predictable high-productivity 
environment for domain scientists this virtual system must be 
able to 

1. Guarantee the performance of individual slivers. A
user may formulate their requirement in the form of an 
SLE (Service Level Expectation), which quantifiably 
describes their expected behavior. For example for 
compute slivers it may be specified in the form of 
expected computational performance, size and I/O speeds 
for storage, bandwidth and latency for network links. 

2. Dynamically control the placement of virtualized
slivers into the physical infrastructure of federated 
providers in order to satisfy the SLE, the indicated 
topology connecting storage and compute slivers and the 
anticipated traffic forwarding policies within this 
topology. Also includes being able to easily recreate a 
slice configuration whenever a particular experiment or 
computational activity must be rerun. 

3. Be able to efficiently move data or computation,
which includes both provisioning links with sufficient 
bandwidth, as well as providing policies for in-slice 
control over traffic forwarding which optimize data 
movement in response to application objectives. 

Some of these questions are being answered in GENI and 
other research projects. Our focus is on broadening the 
application of SDI and its extension to new types of resources. 
Here we describe some of the research directions we plan to 
take in developing the GRANIT testbed as related to the three 
requirements formulated above. 

C. Heterogeneous Network Virtualization and Bridging 
As we mentioned, computational resources in GENI today 

are represented by cloud-like computational containers 
capable of launching easily parallelizable tasks. However 
many computational science domains reliy on tightly coupled 
models of computation, which require large amounts of inter-
node communications via e.g. MPI. The speed and 
effectiveness of the computations depends directly on the 
efficiency of the backplane network fabric connecting the 

nodes. Most supercomputer architectures today rely on 
InfiniBand interconnects to support these requirements.  

InfiniBand is architected for high-performance systems 
requiring delay-sensitive communications, while Ethernet is 
firmly entrenched in the data center and even metro-area and 
some wide-area networks. The popularity of InfiniBand is 
justified by its relatively low cost and the availability of 
software solutions that take advantage of it. At the same time, 
using Ethernet for time-critical communications is still 
challenging, although the vendor community is working on 
some converged solutions (like, for example, Data Center 
Bridging [802.1Qbb, 802.1Qaz etc.]).  

In the traditional static computing architectures this 
dichotomy between InfiniBand and Ethernet does not present 
a problem, since there is no need to bridge and control the two 
together - the data is transferred e.g. via DTNs using Ethernet 
from outside the cluster into the supercomputer filesystem, as 
we described in Section II, while the nodes inside the 
supercomputer communicate via InfiniBand.  

However, with the ability to federate various resources via 
GENI technologies, comes the opportunity to tightly 
interconnect nodes of multiple clusters for the purposes of 
marshaling their power for addressing a single problem. In this 
case the InfiniBand fabrics of the supercomputers must be 
virtualized and joined together with traditional MAN/WAN 
mechanisms using Ethernet. This would allow partitions of 
multiple supercomputers to be joined together in slices with 
other types of computational or data-generating resources.  

Thus efficient virtualization and bridging of InfiniBand to 
Ethernet is one of the problems we plan to address. This fits 
with the first requirement for satisfying user SLEs. The 
partitioning of the problem data and codes across the slivers 
belonging to different supercomputers also represents an 
interesting area of research we plan to investigate. This could 
take the form of several tightly coupled models launched on 
their respective supercomputer partitions and exchanging 
coupled data in real-time over the bridged InfiniBand/Ethernet 
fabric. Alternatively, it could be a single problem code and 
dataset launched on multiple partitions simultaneously as if 
they were a single supercomputer, with some links 
experiencing higher latencies due to bridging over Ethernet 
between different locations. Determining the efficient ways of 
achieving these partitions, benchmarking the results and 
devising strategies for determining resource allocation 
tradeoffs to achieve the best performance are part of our 
scope.  

D. Software-Defined Storage 
Software-Defined Storage or SDS represents an important 

component of the overall SDI system. The key problem to be 
solved here relates to extremely high expectations placed on 
data consistency and reliability in the traditional systems. 
These are a good match for a SAN local to a particular 
supercomputer, however in a distributed environment due to 
the CAP (Consistency, Availablity and Partition tolerance) 
theorem [21] we must find more flexible ways of operating 
storage in a slice, by making intelligent tradeoffs between 
those three attributes. Examples of the initial tradeoffs in this 
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area can be seen in the design and deployment of distributed 
NoSQL databases [22] or distributed storage systems like 
GlusterFS [23] and CouchDB [24].  

These tradeoffs, as applied to block and object storage as 
well as filesystems in a virtualized SDI environment will 
involve novel user-programmable behaviors that we plan to 
concentrate some of our research efforts. 

E. Description Languages 
A system for supporting scientific experiments and 

computation must offer its users a way of describing their 
requirements to the slice. Languages, suitable for describing 
the experiments are referred to as domain-specific languages 
(DSLs), and in this case are intended for describing the 
requests of creating the virtual infrastructure suitable for the 
experiment. Significant amount of work has been invested in 
this direction in GENI, where the declarative GENI RSpecs 
[25] are used for 

• Describing the requirements to the desired virtual system

• Describing the resources available within the federation
for allocation to virtual system 

• Describing the allocated resources back to the user
including details of allocation needed for accessing and 
using the resources. 

One key issue lies in the fact that GENI represents a kind 
of Infrastructure-as-a-Service (IaaS), thus focusing on the task 
of allocating and interconnecting together the resources in the 
desired topology. However, for serving science the IaaS 
paradigm may present abstractions that are too low level to be 
useful. The user must be able to specify not only the necessary 
resources, but also to some extent pre-define the behavior of 
the individual slivers by e.g. assigning and configuring 
applications in them, defining storage access policies for e.g. 
shared datasets and finally, determining the policies for 
forwarding traffic within the allocated virtual network, that 
answer the needs of the application (e.g. prioritize specific 
types of traffic, route different kinds of traffic in different 
ways across the topology and so on). All these configurable 
behaviors fall well within the SDI paradigm, however are not 
answered by existing GENI technologies. 

We plan to invest significant efforts in designing and 
implementing a family of domain-specific languages that 
answer the needs described above. The related effort would be 
to design algorithms that operate on these language 
representations in order to perform the allocation and 
placement of resources that go into the different virtual 
systems - a problem that combines aspects of resource 
scheduling, placement and authorization.  

F. Software-Defined eXchanges 
The final aspect of this problem area that represents 

interest to us is the ability to bridge together virtual systems 
created, for example, by multiple collaborations in order to 
join their efforts for further collaborative activities and allow 
the movement of data between their collaborative 

infrastructures. This requires that multiple virtual systems peer 
with each other in a controlled fashion.  

One of the emergent ideas in this area is the idea of a 
Software-Defined eXchange [26] - a virtual point location 
where peering networks can exchange traffic in a way that 
satisfies their internal policies. The simplest form of an SDX 
replaces the bulky and expensive to configure BGP protocol 
with a logical SDN-controlled fabric that can enforce the rules 
for traffic exchange between the peering partners.  

Considering the significant efforts being made by the 
vendors to extend OpenFlow into new areas of network 
control and management, we can expect this concept to mature 
and extend not only to Layer 3 IP networks, but also to Layer 
2 and, perhaps, transport networks. The flexibility provided by 
OpenFlow in terms of traffic matching allows to create 
sophisticated filtering and forwarding policies at SDXs that 
are easier to implement and, importantly, validate, than the 
existing BGP-based solutions.  

We plan to investigate the suitability of the SDX paradigm 
to peering virtual systems serving multiple science 
applications.  This idea also dovetails with our planned 
research activities into domain-specific languages, as SDXs 
present a new kind of application running in  a slice, which 
has specific configuration parameters and abstractions that 
will need to be incorporated into our DSL. 

IV. CONSTRUCTING GRANIT
We are in the process of constructing the infrastructure for 

running and studying distributed science applications in 
Russia (Figure 1), based on the principles describes in this 
paper and using SDI and GENI technologies. It has the dual 
goals of attracting science users to the new type of 
infrastructure, while at the same time providing a research 
testbed for addressing the issues of data movement within 
virtual networks built to serve specific domain science 
applications. 

The testbed is built around a consortium of Russian 
universities:  

1. Lomonosov Moscow State University;

2. Applied Research Center for Computer Networks
(ARCCN) ; 

3. Saint Petersburg National Research University of
Information Technologies, Mechanics and Optics; 

4. Moscow Institute of Physics and Technology;

5. The National research university "Higher school of
economics"; 

6. Nizhny Novgorod State Technical University;

7. A. Kharkevich Institute for Information Transmission
Problems; 

8. Lobachevsky State University of Nizhni Novgorod -
National Research University; 
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Figure 1: Map of the future testbed. 

9. Southern Federal University;

10. Orenburg State University;

11. National Research Tomsk Polytechnic University;

12. State Institute of Information Technologies and
Telecommunications. 

The core of the infrastructure will be built around cloud 
components deployed as individual racks of servers, with 
attached storage and networking capabilities. These racks will 
be deployed on the campuses of consortium members and 
interconnected with each other using Russian federal research 
and education network provider RUNNet. The racks will be 
controlled using ORCA software suite [27] - one of several 
control frameworks developed for GENI.  

Each rack represents a small private cloud with a selection 
of SDI technologies available to users and experimenters: 
compute virtualization via a hypervisor or provisioning of 
bare-metal nodes, software-sliverable iSCSI storage, onto 
which we can superimpose programmable high-level 
distributed storage policies and SDN-capable switches to 
support the greater degree of control over its networking 
functions. 

Network connectivity between the elements of this system 
is key to its performance and evolution. This becomes more 
critical as the scale of the system grows and as it involves 
more and more members. For example, in the US, the core 
GENI connectivity depends on Internet2 [28] and its 
bandwidth-on-demand services AL2S and ION. Internet2 is 
actively developing SDN-based services for its infrastructure. 
Similar projects are underway in other research networks 
around the world: GEANT, NORDUNet, SURFnet [29, 30, 
31].  

In Russia, RUNNet has points of presence in 63 regions of 
the country reaching over 2M users. RUNNet partners with a 

number of commercial providers, like “Rostelecom”, 
“Transtelecom”, “Megafon”, “Vympelcom” and others to 
utilize their available fiber and increase its reach. 

RUNNet connects to the rest of the world using a number 
of 10Gbps connections with peerings in Amsterdam and 
Stockholm with GEANT, NORDUNet, Internet2, GLIF and 
others. Some parts of RUNNet DWDM infrastructure now run 
at 100Gbps. RUNNet also peers with commercial providers 
in- and outside of Russia.  

Its infrastructure provides access to high-performance 
computational resources and instruments that generate large 
amounts of data in a number of top Russian universities and 
labs: several Top50 supercomputers, remote robotic protein 
crystallography stations, instruments for studying synchrotron 
radiation and so on.  

Using this capability we also plan to connect  the resources 
available via RUNNet to our testbed in order to create an 
environment in which a variety of computational problems 
with a mix of instruments and computational resources can be 
addressed. These connections will provide the ability for the 
users to run their experiments and computations on a 
heterogeneous set of powerful resources and at the same time 
enhance our research activities by providing a richer set of 
problems that need to be addressed. 

Selecting an appropriate topology for GRANIT 
deployment environment depends upon several factors:  

1. Scale of project, we planed on first stage to interconnect
up to 15 Racks.

2. Amount of traffic expected on the network, base on
similar projects in other countries we suppose that 10
Gbps will provide confortable conditions for holding
experiments.

3. Budget allotted for the project.
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4. Already existed network infrastructure that mentioned
above.

Based on all factors we consider to build the hybrid Star-
Ring topology. That will provide the scalability without 
disturbing existing architecture and fault detection and 
troubleshooting. 

Basic workflow for GRANIT user will consist of several 
steps: 

1. Define experiment;

2. Provision the resources;

3. Launch experiment and collect data;

4. Observe and analyze the results.

With the possibility of dynamically adding new 
computational and storage resources to already launched 
experiment, GRANIT will become the flexible and powerfully 
experimental testbad for researchers of natural scientific and 
computer science profile. 

V. CONCLUSIONS 
In this paper we presented our vision of a future distributed 

computational science infrastructure built on the principles of 
federation and using multiple software-defined technologies to 
support its performance objectives.  

We presented a set of open problems we plan to address in 
order to make our vision a reality. Part of the vision is 
constructing an advanced testbed connecting deeply 
reconfigurable compute, storage and networking resources 
with existing high-performance resource in Russia in a hybrid 
system that simultaneously serves as a blueprint for evolving 
the national cyber-infrastructure and a testbed for 
investigating a number of important problems related to 
different areas of scientific research. 

We are very thankful to GENI Project Office for their 
openness willingness to help, active support, as well as 
providing access to GENI toolkits and documentation. 
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I.  INTRODUCTION 

In real-time information and control systems (RT ICS), 
tasks execution and messages transfer must be performed in 
strictly defined time intervals. Violation of these intervals 
leads to RT ICS inoperability. To aircraft onboard RT ICS, 
besides timing constraints, constraints on weight and 
dimensions are applied, as well as increased reliability 
requirements. 

Traditionally, point-to-point channels and multiple access 
channels with centralized control were employed to perform 
data exchange in onboard RT ICS. This practice resulted in 
growth of the number of data exchange links according to 
growth of the number of functional units and subsystems of 
the aircraft, as well as to increase of requirements to speed and 
reliability of data transfer. Usage of copper cable for the 
physical links constrained the onboard network bandwidth and 
resulted in growth of weight and dimensions of RT ICS. 
Furthermore, cable shielding was required to protect the 
network from electromagnetic interference, which led to 
additional increase of the network weight. 

One of the promising approaches to reduction of the 
number of physical data exchange links is usage of switched 
data exchange networks based on packet switching. To 
increase the network bandwidth it is reasonable to widely use 
optical channels which are by order of magnitude lighter than 
copper ones and are insensitive to electromagnetic 

interference. 

In this paper we present a comparison of approaches to 
onboard switched networks design based on Fibre Channel 
(FC), Avionics Full Duplex Ethernet (AFDX) and Software-
Defined Networking (SDN). The networks are compared 
according to the following criteria: 

1) Ability to guarantee real-time messages transfer. This
criterion is described in the next section in terms of 
Service Level Agreement (SLA) requirements. 

2) Ability to maintain common time in the system.

3) Amount of extra hardware resources to ensure the
necessary reliability. 

4) Support for dynamic (during the RT ICS runtime)
alteration of message transfer routes without violation of 
SLA requirements for the other messages. 

To ensure the data transfer reliability, it is necessary that 
two non-intersecting routes for each message are present in the 
onboard network. For most modern RT ICS this equals to 
duplication of every physical data exchange channel [1, 2]. 

Possibility to dynamically alter the message transfer routes 
is determined by the extent to which the routing tables in the 
switches can be modified in runtime. In some cases these 
tables can be modified only before start of RT ICS operation; 
in other cases, the modification can be performed during the 
system operation. 

Dynamic alteration of message transfer routes is necessary 
in cases of: 

 network equipment and/or computational units failure;

 tasks migration during the RT ICS mode change.

Different RT ICS operation modes involve execution of 
different, but possibly intersecting, sets of tasks. Tasks 
migration is relevant for integrated RT ICS in which a 
common pool of computational resources is shared between 
different subsystems. Support for tasks migration increases the 
efficiency of computational resources utilization. 

This research is supported by the Ministry of education and science of 
the Russian Federation,  Unique ID RFMEFI60714X0070
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II. DATA FLOWS IN THE ONBOARD NETWORK 

Data flows between network nodes are specified as a set of 
messages MSG={msg}. For each message the following 
attributes are defined: 

 msgsize  – message size; 

 for periodic messages: msgT  – period of message 

transfer; for irregular (aperiodic) messages: 

)},{( msgmsg fs  – set of deadline intervals; 

 Asrcmsg   – message sender node (A is the set of all 

onboard network nodes); 

 Adstmsg }{  – set of message receiver nodes; 

 msgJ  – message generation jitter, i.e. fluctuation 

range for the message generation time in relation to 
some reference time within the message period or 
deadline interval. 

Message generation jitter emerges because the execution 
time of the message’s source task depends on the values of its 
input data. 

For each message the following SLA requirements are 
specified to guarantee real time message transfer: For each 
message the following SLA requirements are specified to 
guarantee real time message transfer: 

 for periodic messages: the message must be 
transferred no less than once per its period; for 
irregular messages: the message must be transferred 
no less than once per each deadline interval; 

 msg  – maximum allowed message transfer latency 

(duration between message generation on the sender 
node and message arrival to all receiver nodes); 

 

msgJ  – maximum allowed message transfer jitter 

(difference between the maximum and minimum 
message transfer latencies). 

III. AFDX NETWORKS 

The Avionics Full Duplex Ethernet (AFDX) standard [3] 
specifies onboard network design based on the Ethernet 802.3 
specification with some modifications to achieve real time 
operation. According to AFDX, the network consists of the 
following elements: 

 nodes which exchange messages; 

 end systems which provide interface between the 
nodes and the network; 

 packet switches connected by data transfer links. 

Meeting the constraints on message passing latency in 
AFDX networks is achieved by allocation of guaranteed 
bandwidth to connections between pairs of end systems. Such 

connection can pass through several packet switches and data 
transfer links. In AFDX, the connection between end systems 
is referred to as virtual link. All data exchange between nodes 
is performed through virtual links; routes of these links in the 
physical network are defined in advance. For each virtual link 
there is one sender end system and one or more receiver end 
systems. Several nodes connected to the sender end system 
can send data through the same virtual link. 

Reliability of data transfer through an AFDX network is 
provided by physical sparing. Each end system is connected to 
two identical independent AFDX networks. The frames are 
sent to both networks (in each network the frame follows 
identical routes). If a frame transfer error is detected in one of 
the networks (e.g. the received frame has incorrect checksum), 
the duplicate frame is taken from the other network, where 
there was no error. The receiver end system checks the 
integrity of the frames, and if a frame was already received 
from one network, the duplicate frame is discarded. 

Routing tables for the AFDX switch are configured for a 
static set of virtual links defined in advance and covering the 
set of RT ICS operation modes. Besides routing, AFDX 
switches perform traffic management and filtering. Filtering 
includes checking the correctness of frames transfer sequence 
as well as verification of frames integrity. Traffic management 
provides guaranteed bandwidth for every virtual link and does 
not allow the nodes to exceed the bandwidth. To perform 
traffic shaping in AFDX, the token bucket algorithm is 
utilized [4]. Bandwidth for each virtual link is specified during 
the switch configuration before the start of RT ICS operation. 
Therefore the routing settings for AFDX network, including 
virtual link routes and bandwidth allocation, are fixed during 
the RT ICS runtime, and the standard provides no option to 
dynamically modify the routing tables. 

Upon arrival to the sender end system, the messages from 
a node are split into frames in the link layer; the frames are 
placed in the appropriate virtual link’s queue and then 
transmitted into the physical data transfer link. Duration of a 
time interval between consequent frames of the same message 
(i.e. for the same virtual link) cannot be less than a specific 
lower bound. 

To ensure data transfer determinism, following attributes 
are specified for a virtual link: 

 minimum duration (start to start) between sending of 
consequent frames into the same virtual link; 

 maximum frame size; 

 maximum transfer jitter between two consequent 
frames. 

It should be noted that AFDX only accounts for jitter 
between two consequent frames (of the same virtual link) and 
does not account for message generation jitter within the 
message’s period. For instance, in the paper [5] a technique is 
presented for calculating the virtual link attributes according 
to data flow parameters and constraints on maximum message 
transfer latency. The paper assumes strictly periodic 
generation of messages. Operation with irregular messages in 
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AFDX networks, as well as accounting for message generation 

jitter msgJ  within the message period, is not considered. 

IV. FIBRE CHANNEL NETWORKS 

Fibre Channel (FC) standard [6] specifies data exchange 
protocols for high speed (1 to 20 Gbit/s) data exchange 
networks. This standard supports the following network 
topologies: point-to-point, arbitrated loop, switched fabric. In 
this paper we consider switched fabric topology for RT ICS 
networks, as point-to-point topology is not suitable for 
complex onboard networks, and FC arbitrated loop does not 
support concurrent data exchange between several pairs of 
nodes. 

Let us consider a simplest switched fabric network 
consisting of a single direct switch and a set of nodes 
connected to the switch (star physical topology). The 
statements made below can be generalized for a fabric of 
multiple switches. 

There are following existing approaches to provide 
guaranteed timings for data transfer over FC network: 

1) Master-slave approach in which a single dedicated 
node supervises data exchange in the network [7]. All 
the slave nodes transmit data only by command from 
this master node. This approach guarantees exchange 
determinism but leads to inefficient utilization of the 
network bandwidth, as at any time instant only a 
single pair of nodes can exchange data. 

2) Time shared access of nodes to the network according 
to a static schedule [8]. For each network node there is 
a data transfer schedule; the schedules are coordinated 
to avoid access collisions. A node can start data 
transfer only at time instants specified in the schedule. 
All nodes have synchronized clocks. The set of 
schedules allows concurrent data exchange between 
non-intersecting pairs of nodes. This approach utilizes 
the inherent concurrency of the FC switched fabric to 
greater extent than the first one, however is does not 
support bandwidth sharing between several data flows 
from the switch to a single node. Furthermore, this 
approach is not resilient to schedule violation by a 
single node, or to generation of abnormal data flows. 

3) Virtual link-based traffic management implemented in 
“Fibre Channel – Real Time” (FC-RT) profile which 
is considered in detail farther on. 

As noted above, the approaches 1 and 2 have several 
drawbacks. Therefore we will concentrate on the FC-RT 
approach which in fact introduces to FC networks most of the 
essential data exchange solutions supported in AFDX 
standard. 

According to the FC-RT profile, data are transferred 
through virtual links with bandwidth control. As in AFDX, for 
every virtual link there is a single sender node and one or 
more receiver nodes. The set of virtual links and their routes is 
fixed for each RT ICS operation mode, but FC-RT provides 
support for several virtual link configuration tables 

(configurations) on nodes and the switch, with transitions 
between configurations by commands from a dedicated 
configuration master node. Transition of the network to a 
different configuration (e.g. during RT ICS mode change) is 
initiated by the configuration master via sending a broadcast 
message containing the number of the new configuration. 
Consistency of data exchange through virtual links is not 
guaranteed during the transition between network 
configurations. 

Use of virtual links in FC-RT enables guaranteed message 
transfer timings. Like AFDX, FC-RT utilizes the token bucket 
algorithm for traffic shaping, however on the nodes this 
algorithm operates with whole messages, not with separate 
frames. Following traffic control parameters are specified for a 
virtual link in the FC-RT network configuration: 

 maximum message size; 

 period of message generation (i.e. by an application 
task); 

 message generation jitter; 

 parameters for the token bucket scheme used for credit 
allocation: bucket volume and filling speed. 

In contrast to AFDX, FC-RT does not implement “sparse” 
transfer of multi-frame messages, in which there are 
constraints on minimum start-to-start interval between 
consequent frames of a message. In the standard scheme for 
message transmission to the FC-RT channel, all frames are 
transmitted sequentially without delay. Interruption of 
message transmission from a node by another message 
(without interruption of current frame transmission) is possible 
only when the second message has higher priority. 

Reliability of data transfer is provided in FC-RT network 
by using two independent identical networks. In case of frame 
loss in the primary network, the receiver node uses the 
duplicate frame received from the secondary network. In case 
of successful arrival of both frames, the first arrived frame is 
used and the second one is discarded. 

To support irregular messages in FC-RT, the priority 
system can be used. Low priority irregular messages do not 
interfere with data exchange through virtual links, but the 
transmission latencies for such messages are hardly 
predictable. High priorities can be assigned to urgent irregular 
messages, however transmission of such messages can break 
data exchange through virtual links. 

The FC-RT profile provides a service for time 
synchronization between the network nodes. 

V. SDN NETWORKS 

The essence of Software-Defined Networking (SDN) 
approach is separation of data transfer management (Control 
Plane) and data transfer itself (Data Plane) in the networked 
devices. Data transfer is managed from a specific center [9, 
10]. 

One of the approaches to SDN implementation is based on 
the OpenFlow protocol [11]. In terms of OpenFlow, the 
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network consists of (a) switches responsible for packets 
transfer according to the routing and switching rules stored in 
the flow tables, (b) the controller responsible for centralized 
generation of rules and their transfer to all controlled switches, 
(c) physical data transfer links, and (d) optional dedicated 
physical links between the switches and the controller. If no 
dedicated links are present, regular data transfer links are used 
to exchange data between the switches and the controller. 

 The controller itself only provides a layer for interaction 
with the switches via OpenFlow protocol; network 
management and rules generation is essentially performed by 
the applications running on the controller. 

The OpenFlow network operates as follows. First packet of 
each new data flow (or a session) is sent to the controller by 
the boundary switch (i.e. the first switch of the network to 
receive the packet), as there is no corresponding record in the 
flow table of the boundary switch. The controller produces the 
necessary set of rules for the given flow and sends this set to 
the switches. All subsequent packets of the same flow are 
processed by switches according to these rules, bypassing the 
controller. This operation mode is called active. In the passive 
mode all rules are stored on the switches in advance and no 
additional processing on the controller is performed. 

In order to manage the onboard network according to 
SDN/OpenFlow approach, the controller must run a dedicated 
network application which implements following principles of 
network control: 

 In passive mode the application produces and loads 
the necessary rule sets to the switches in advance, 
according to SLA requirements specified for the 
messages. To ensure data transfer reliability, the rule 
sets must provide two non-intersecting routes for each 
message. A message is transferred by the secondary 
route only in case of transfer errors on the primary 
route, or to provide redundant transfer, in which case 
several copies of the message are delivered by 
different routes. It is not strictly necessary to duplicate 
the whole network to support redundant transfer; the 
sufficient solution is to provide at least two non-
intersecting routes for each message. 

 In active mode each message (whole or header only) 
is processed by the application running on the 
controller. The application monitors fulfillment of the 
SLA requirements (message size, period or deadline 
interval, jitter, addresses of receiver nodes) and 
reorders the messages if necessary. The main 
workload in this mode is assigned to the controller 
which may become a performance bottleneck. 
However, according to the analysis presented in [12, 
13], the performance of OpenFlow controllers is 
sufficient for processing the messages transferred with 
frequencies typical for onboard networks. 
Furthermore, in some cases there is no need for 
continuous processing of messages on the controller, 
as it is sufficient to configure the rules on the switch 
in order to enable it to check the messages arrival 
frequency for the given data flows. 

Presence of the centralized controller enables dynamic 
reconfiguration of the network in case of RT ICS operation 
mode change. 

In active network operation mode, a failure of the 
controller or a link connecting the controller to a switch leads 
to a failure of the whole network operation. So if the network 
operates in active mode, duplication of the controller and the 
links connecting the controller to the switches is critical for 
reliability of data transfer. If some of the “regular” data 
transfer links are used to connect the controller to the 
switches, and there are no alternate routes, these links also 
must be duplicated. 

To maintain unified time on the network nodes, the 
controller can regularly send time synchronization information 
to the nodes, e.g. according to PTP (Precision Time Protocol). 

As the data flows for most of onboard RT ICS operation 
modes are predictable or even predefined, passive controller 
mode looks preferable for onboard SDN networks. Ultimately, 
in this mode the controller application responsible for 
configuring the OpenFlow switches must perform following 
activities: 

 construction of the routes for message transfer 
between network nodes to provide the necessary 
quality of service, including predictable transfer 
latency and jitter; 

 dynamic adaptation of the routes in case of network 
failures; 

 generation of rules for switches, including: 

 rules for checking the traffic for conformance 
to the SLA requirements; 

 routing rules; 

 rules for distribution of network bandwidth 
between data flows. 

Another approach to application of SDN technology to 
onboard networks is integration of AFDX or FC-RT networks 
with OpenFlow networks to enable dynamic management of 
switches. In this case there is no need to control the message 
transfer timings on the OpenFlow controller. 

VI. CONSLUSION 

Table I presents a comparison of three above mentioned 
approaches to design of onboard switched networks. The set 
of requirements met by a specific approach determines the 
class of RT ICS to which the approach is applicable. 
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TABLE I.  COMPARISON OF APPROACHES TO DESIGN OF ONBOARD 

SWITCHED NETWORKS 

Requirement to the 

network 
AFDX 

Fibre 

Channel 

SDN/ 

OpenFlow 

Support for periodic 

messages 
+ + + 

Support for irregular 

messages 
_ + + 

Ability to maintain 

common time in the 

system 

_ + + 

Guaranteed maximum 

transfer latency ( msg ) 
+ + + 

Guaranteed maximum 

transfer jitter (


msgJ ) 

for 
frames 

only 

+ + 

Ability to provide reliable 

data transfer without full 
duplication of the network 

_ – + (a) 

Support for dynamic 

alteration of message 
transfer routes 

– – + 

a. In active operation mode of an SDN/OpenFlow network, duplication of the controller  
and the links connecting the controller to the switches is necessary. 

 

AFDX and Fibre Channel networks are widely used in RT 
ICS for modern aircraft. Use of AFDX is limited to civilian 
aircraft. A specific of AFDX-based RT ICS is presence of 
only periodic messages (irregular messages must be simulated 
as periodic ones, leading to bandwidth wasting). FC networks 
are used in both civilian and military aircraft, including 
unmanned ones. Like AFDX, FC networks do not support 
dynamic alteration of message passing routes without total 
reconfiguration of the network. Therefore, FC networks can be 
used only in RT ICS for which the set of modes is defined in 
advance. Applications of SDN networks are not known to the 
authors of this paper, however this class of networks is 

potentially applicable to a wider range of RT ICS than AFDX 
and FC due to higher flexibility. 
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Abstract—Software Defined Networks (SDN) are becoming a
trending technology in modern Internet. This technology helps to
solve a significant number of well-known engineering problems
in a effective and elegant way as they provide software-defined
centralized network control. An SDN controller can be extended
with application that effectively serve for concrete purposes and
provide flexible management of network flows. This opens a great
number of opportunities for a lot of network security problems
such as maintaining of privileges in a proper way, splitting control
and data planes, and attacks detection and mitigation. In this
work we consider the opportunities of SDN for a ”survival”
mitigation during DDoS attacks, the load balancing problem.
We propose two-level balancing solution in SDN networks, which
includes traditional balancing between servers and load balancing
between network devices as well. Experiments show that our
solution increase ”survival” time of a system during DDoS
attack in times compared to existing balancing solution in SDN
networks.

Keywords—load balancing; DDoS mitigation; SDN networks;

I. INTRODUCTION

Several years ago clouds made a computational revolution
in IT world. Clouds also can be considered as logical step
of computational evolution, starting from computations on
single machines and going through clusters and grids. The
idea behind the clouds is to migrate all computational, storage,
network, even some specific services requirements to a service-
oriented platform using virtual machines at data centers. This
idea provides great opportunities for variety of consumers:
from independed researchers, small and medium businesses to
big organizations. The trend of migrating computations to the
clouds continues to grow: according to recent statistics, about
60% of server workloads will be virtualized in 2013 [1], and
totally cloud service market is forecast to grow to 18.5% in
2013 [2]. Nowadays, a plethora of big organizations extend
their resources for cloud computing: Amazon EC2, Windows
Azure, Google Engine, etc.

But every story has two sides. Wide spread of cloud
technology leads to a number of interesting research prob-
lems, one of which is a load balancing among resources.
Load balancing is a problem of resource distribution which
guarantees that all available resources are used with maximum
utilization. Despite the fact that load balancing problem in
cloud considers different types of resources, in current work

we focus on traffic balancing and network resources utiliza-
tion. Network resources utilization typically includes L7 load
balancing which is balancing between computing nodes or L4
load balancing which is balancing between network equipment.
Existing approaches on load balancing typically describe L7
or L4 balancing, but not both.

Over the last few years we also can notice the wide adop-
tion of very new conception in networking - programmable
networks, or so-called Software Defined Networks. For ex-
ample, that technology is already adopted by Google and
a number of other significant players. In current work we
decided to consider load balancing problem in case of SDN
networks. SDN decouples control plane from data plane and
gives the functionality of network and resources management
to controller which can be programmable by user. That leads to
such advantages as, for example, flexibility of flows manage-
ment. In current work we ask ourselves a question: given the
opportunities of SDN networks, can we reconsider the problem
of load balancing? What can be improved and what can we
do better? As a result, we propose load-balancing solution
that examines only ip source and destination ip addresses.
In common terms, our approach may be considered as L4
solution, but in fact in works at even lower level of OSI model.

One of the interesting application of load balancer that
we consider in this work is the balancing in case of DDoS
attacks. Speaking of DDoS attacks, load balancing is one
of the significant mitigation survival techniques that typically
increase maximum capacity of defended system.

The contribution of the paper can be summarized as
following:

• We researched the opportunities to apply new concept
of networks, SDN, for solving a well-known problem
of load balancing during DDoS attacks. We found that
ideas that stand behind SDN serve for that purpose
natively;

• We proposed an efficient algorithm of two-level load
balancing which includes typical load balancing be-
tween servers and balancing between network devices
for SDN networks. Experiments show that our solution
significantly increase survival time of the system under
DDoS-attack;

• We implemented our algorithm as the part of DDoS
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detection and mitigation system, which is able to
detect the presence of attack and start different miti-
gation solutions automatically.

The paper is organized as following. In section II we
provide brief overview of existing load balancing techniques.
In section III we describe our load balancing solution for SDN
networks, including overview of main differences between
traditional networks and SDN networks, detailed description
of the proposed algorithms and overview of implementation
details. In section IV we provide evaluation results and in
section V we summarize our work.

II. LOAD BALANCING BACKGROUND

A. L7 Balancing

L7 load balancing usually decouples on server cluster load
balancing and server load balancing[3]. Server cluster load
balancing is typically produced between computing nodes.
The cluster load can be interpreted as client sessions or
running applications. In the first case, TCP sessions are evenly
distributed between servers and if some server is overloaded it
prohibits new incoming connections. The redirection of already
established connections are not usually performed due to the
TCP session transfer and applications synchronization over-
heads. Commonly used techniques for distribution of client
sessions between servers are using of DNS server or Network
Address Translation (NAT). In the case of running applications
servers are clustered by the type of their applications (database
server, Web applications, etc.) and every client request is
divided between several clusters [4]. The case of server load
balancing occurs when the system tries to decrease the load of
particular server. In our work we will not consider that case.

For both NAT and DNS distribution system should choose
the most appropriate server for the next session. All balancing
techniques typically fall into the classification, which includes
static and dynamic approaches.

Static load balancing algorithms use a-priori information
about the system state such that throughput or computation
power, or any other performance features of selected nodes.
Static approaches ignore current state of the nodes and their
load. The main advantage of static approaches is an easy
implementation, but the possibility of inefficient balancing is
high. Static load balancing typically presented by following
techniques [3], [5]: random selection; hash selection, where
hash is generally considered as a function of client ip ad-
dresses; and (weighted) round-robin which may or may not
consider performance of servers.

Dynamic load balancing distributes load between the
servers during runtime. Such balancers typically monitor the
load of every single server and when imbalance reaches
specified throughput they start balancing algorithms [6]. The
dynamic algorithms include such simple techniques as selec-
tion of server with fastest response time, server with the small-
est number of connections, dynamic round-robin techniques
and others. More sophisticated algorithms were observed and
compared in [7]. It includes description of Honeybee Foraging
Angorithm [9] that based on nature algorithm of honeybee self-
organization; Biased Random Sampling [8] that uses random
sampling of the system domain to achieve self-organization;

ACCLB which is load balancing mechanism that base on Ant
Colony and Complex network theory [10] and several others.

All described algorithms are suitable for different purposes,
typically in Cloud computing environment, but none of them
take into assumption the information about load of network
devices themselves which is significantly important in case of
SDN networks.

B. L4 Balancing

L4 balancing is the balancing between network devices and
equipment. In case of SDN network, algorithms describing L4
balancing focused at load distribution from different switches
between controllers . Such problem is very significant in terms
of reliability of SDN networks but do not has any connection
with traffic load balancing.

R. Wang at al [11] describes the load balancing between
servers solution under the OpenFlow protocol. That solution
may occasionally affect alternate routes between entry point
and selected server, but it is not studied in the paper.

The lack of load balancing between switches and alternate
routes in SDN networks studies has driven us to cover this
gap.

III. LOAD BALANCING SOLUTION FOR SDN NETWORKS

A. SDN background

Software-Defined Networking (SDN) is a rising approach
to networking that allows administrators to manage network
services through an abstraction of lower-level functionality.
SDN is based on decomposition of the network traffic in
two layers: the control plane and the data plane. The control
plane is the distributed system that actually makes decisions on
where and how the traffic on the data plane (the usual TCP-IP
stack user data) is sent.

SDN networks provide a simple and robust way to access
all levels of traffic management in the data layer of the
network through a simple interface and using software-based
mechanisms exclusively. When it comes to the task of load
balancing, this approach does provide some pros and cons,
including, but not limited to:

• A single point of failure (the SDN controller) that may
become a bottleneck of the whole setup if used in a
wrong way;

• There is a number of security concerns regarding the
complex interactions between the control plane and
the data plane using state-of-the-art SDN implemen-
tations;

• The ability to provide means for routing, splitting and
controlling traffic streams on all layers of TCP-IP
stack using a single software-based solution;

• Multiple ways to provide hardware duplication of used
lines and connections without any need to make an
account for it on the data layer;

• Ways to balance the traffic on OSI model layers 2 and
3 (as opposed to the usually employed levels 4 and 7).
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In this work we are trying to employ the benefits of
SDN while also avoiding the possible implications that can be
caused by negative effects. The security of SDN networking,
which is becoming a big concern the more this type of
networking gets widespread and can have negative implications
on the way load balancing works, is out of scope for this paper.

B. Proposed solution

The proposed solution to traffic load balancing generally
consists of two parts: the L7 load balancing using standard
means (DNS/NAT balancing) of splitting the traffic streams
between endpoint servers and the L4 load balancing to enable
splitting the packets between different paths in the network.
The first part does not consider the network which lies between
entry point and servers as it is shown at figure 1. Such
balancer operates in terms of entry point and servers. The
second part takes into consideration all information about local
network which includes the network topology (map), current
load of channels between different switches, throughput of
the channels and other significant parameters, as it shown
at figure 2. This approach assumes that the SDN network
between the server-level load balancer and the endpoint servers
is structurally excessive in order to have different paths to the
same servers to begin with. We do not describe the way to do
L7 load balancing in this paper, which can be found at [3],
[4], [7], [8]. It should be noted, however, that the approach we
describe in this section does assume that the traffic streams are
already distributed between endpoint servers as the algorithm
does not provide any kind of distribution between those itself.

Fig. 1. First level of balancing.

The basic advantage of having these two levels of load
balancing is that they can be made sufficiently independent
from each other. As the inner balancing algorithm operates
on layers 2-4 of the OSI model, it does not care for any of
the peculiar properties the outer balancer may introduce, and
vice versa. The fact that we use SDN control level to do the
job of inner load balancing and do not introduce any additional
modifications to the packets themselves, we can be sure that the

Fig. 2. Second level of balancing. αij stands for bandwidth of a channel
between switches i and j, ωij stands for current channel load.

two levels of load balancing do not interact in any unintended
way.

The algorithm itself is based on the fact that we can use the
SDN switch-level flows to redirect traffic based on destination
and source IP-address information. This allows for dividing
the traffic between different routes in the network regardless
of the packets’ actual contents. The algorithm goes as follows:

1) Acquire the load and topology information for the
network;

2) Override the routing for the network with static
routing information acquired by using Bellman-Ford
pathfinding algorithm;

3) Iteratively keep splitting (and reapplying) traffic paths
for routes that are:

• Overloaded;
• Have alternate routes available.

The splitting is done by using source IP address mask
as packet distinguishers.

Let the network contain switches 1−N . A channel between
switches i and j will be addressed as (i, j). We define the
bandwidth of this channel as αij and the current channel load
as ωij . We say the the channel is overloaded if ωij + ε ≥ αij ,
where ε is a constant small load value parameter. In current
implementation we define ε as an input parameter for the
algorithm. The impact of this parameter and the range of its
values has not been studied yet and is considered as a direction
of futher work.

Let the endpoint servers be defined as β1 . . . βK . Band-
width matrix Mmaxload is the matrix of size N×N containing
all the bandwidth values αij . Load matrix Mload is the matrix
of size N×N containing all the current load values ωij . Matrix
of available resources Mfree is defined as Mmaxload−Mload.

Phase 1 of the algorithm need to be executed before the
need for load balancing arises (e. g. if we apply the approach
to mitigate network attacks, we need to run it in a timed loop
without other phases for as long as the attack doesn’t begin
to keep the topology and load information updated). Phase 1
introduces and updates the network load mask Mload, where
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element ωij corresponds to the number of bytes coming from
switch i to switch j during a single update period.

Phase 2 is applied only once to override the default packet
routing mechanisms and use statically defined routes we can
later modify using network address masks. This is performed
by running the standard Bellman-Ford algorithm on the whole
network topology graph in order to acquire shortest paths from
the network entry point to the endpoint servers.

Phase 3 goes as follows. On the first iteration we build
the current path table Tpath based on the path information
acquired on Phase 2. Tpath is essentially a set of triples
{ipssrc, ipβi

, path} where each triple denotes a path path
from all addresses conforming to the address mask ipssrc to
the address ipβi

, which is the IP address of the server βi. On
the first iteration of phase 3 value of ipssrc for all the entries
in the table is 0.0.0.0/0, which is a wildcard accepting
all the possible IP addresses. On the second and subsequent
iterations, this table gets updated along with the corresponding
network flows:

1) Update Mload and Mfree with current load informa-
tion from SDN switches;

2) Find the first overloaded link in Mload: the link (i, j)
such that ωij + ε ≥ αij ;

3) Find the first path rq in Tpath such that it contains
link (i, j);

4) For the ipβi
part of rq , find a new shortest path from

entry to the server βi assuming that link (i, j) is
closed in current topology. If there is no such path,
we should go back to 3 and find a new path for the
same link. If there are no more paths containing this
link, we should go back to 2 and select a new link.
Let’s call the new path pathq;

5) Calculate the maximum available additional
load for pathq. For that, we look up every
link in pathq in Mfree: al = micrit,jcrit =
min (mij : (i, j) ∈ pathq) and note al and
(icrit, jcrit). If al < ε, go back to 4 and find
a new path that does not contain (icrit, jcrit).

6) Try to calculate the new sets of masks ipsold and
ipsnew such that they divide all the address space of
ipssrc into parts with coefficient al/ωij . Remove the
corresponding entry from Tpath, insert all the entries
{ipsold k, ipβi

, path} and {ipsnew k, ipβi
, pathq}

into Tpath.
7) Commit the changes in Tpath to all the switches

across path and pathq.
8) Wait for the timeframe and go back to 1.

Of course, it is not generally possible to introduce a set of
new network ip/mask pairs for a given one such that it divides
all the address space denoted by it to a particular fraction, but it
is possible to do it in a discreet manner, up to some number of
bits in a network address. For example, if we do the division
for 5 significant bits, we can divide the address space into
parts that are multiples of 1/(25). For all practical purposes,
this discreetness does not seem to introduce any significant
effect on the behavior of the algorithm.

For example, given a ip/mask 9.0.0.0/8 and a factor of
1/3, we do the following:

1) Introduce the 32 masks dividing the address space
given into 32 equal pieces by adding 5 bits to the size
of the mask (the ip/mask becoming 9.0.0.0/13)
and enumerating the now valid 5 bits in ip address
with values from 0 to 31;

2) Divide the space of 32 address/mask pairs into 2
parts by the ratio: that is, putting first 21 pairs
(9.0.0.0/13–9.160.0.0/13) into first part and
last 11 pairs (9.176.0.0/13–9.248.0.0/13)
into the second;

3) Collapse the pairs in each half that can be summa-
rized using a pair with a smaller mask size (e.g. all
pairs in (9.0.0.0/13–9.112.0.0/13) can be
collapsed into (9.0.0.0/9).

For the given pair 9.0.0.0/8 the result will create 6
address/mask pairs. It can be easily shown that for any N bits
used as a discretion factor, any ip/mask pair will produce no
more than N +1 new ip/mask pairs in each iteration, thus the
growing factor of introduced flows is constant. The ip address
space is finite, so this process will always terminate.

It should be noted that we produce flow management that is
based at source ip adresses due to the following reasons. First
of all, after the phase 1 traffic is already distributed uniformly
among available servers. Secondly, we want to distrubute at-
tacking traffic among available routes as uniformly as possible.
From that point of view, the worst case to the presented
algorithm is the case of DoS attack with one attacking ip
address.

C. Implementation

The proposed approach was implemented as a part of a
attack detection and mitigation system called Callophrys.
The system aims at both identifying, detecting and mitigating
DDoS attacks at early phases. It uses the Floodlight Openflow
controller[12] for both gathering information from the SDN
switches and applying the calculated paths and wildcards
by deploying them to the switches. Both tasks are achieved
through controller’s REST API.

Callophrys is a distributed software system employing
a number of asynchronous agents (actors[13]) communicating
using immutable messages both between processes and ma-
chines and inside them. This model of computation allows
for greater modularity and scalability of the whole system,
but also introduces some difficulties for implementation of
non-asynchronous algorithms, like the one introduced in the
previous section.

The biggest difference for the procedural description of
the algorithm found above is the fact that in an asynchronous
system there is no need to wait for the next timeframe to come
or for the other part of the system (i. e. the SDN controller) to
send in the next portion of data to perform useful work. The
asynchronous way of implementing the same algorithm is to
identify the important events (in this case, keeping the topology
and load information updated can be done independently from
the rest of the algorithm) and perform actions when they
happen. The load balancing algorithm is incapsulated into a
single actor (whether it can be further decomposed to employ
capabilities of the asynchronous computations is subject to
further research) that handles the following kinds of messages:
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• Timeframe message signaling that a timeframe is
reached (sent by the program scheduler):

1) Send a query message for the current network
topology;

2) Send a query message for the current load
information.

• Topology message signaling that the topology infor-
mation has changed (sent by Floodlight interface):

1) Update the topology information.

• Load message signaling that the periodic load infor-
mation is received (sent by Floodlight interface):

1) Validate and apply the current load informa-
tion;

2) If the balancer is in active mode, start per-
forming a single phase 3 iteration of the
algorithm.

• Alert message signaling that the attack has started
(sent by one of Callophrys detector programs):

1) Turn on active mode;
2) Force send a timeframe message to self.

An important property of an actor in the actor model is the
fact that message handlers are never run concurrently. All the
message-handling routines, other actions and receiving/sending
can be done in separate threads, but the message handlers
themselves are always run in an order and thus we don’t need
any kind of additional synchronization precautions. Thus this
asynchronous implementation is very similar to the procedural
one described in the previous section.

IV. EVALUATION

The prototype Callophrys system was evaluated using
the Mininet[14] network simulator and Floodlight SDN con-
troller. The simulation used a custom Mininet script for the
network topology. The test topology configuration is shown at
picture 3. The attacker nodes (signed with ”A”) are generating
high traffic towards the target nodes (signed with ”T”) using
the iperf tool[15], while the SDN switches (the rest of the
nodes) try to balance the load between themselves and data
links. For the purpose of this experiment, the links that are
always overloaded (the links coming directly to target nodes,
all the links coming to and from the entry node) are simulated
as having infinite bandwidth, while all the other links in the
setup have a thorough simulation with limited bandwidth and
latency.

The process of evaluated using Floodlight and its built-
in network-tracing mechanism. The preliminary experiments
using this setup show that the proposed approach does balance
the network load between switches, let the traffic take alternate
roots and does not overload the switches with static flows.

In this setup, the time between the start of the attack and
the full balance of traffic between available roots was from 10
to 60 seconds. Total number of flow rules generated is around
13000, while every single switch is subject to no more than
3000 different rules. Most of existing SDN switches can easily
handle number of rules up to hundreds of thousands. A more
thorough simulation using different topologies and testing on
a real physical network is a subject of further work, as well as

Fig. 3. The test network topology

introducing more accurate tools to measure the effect of the
algorithm.

V. CONCLUSION

In this work we were focused on studying of possible
impacts SDN networks could bring into traditional network
security related problems. As DDoS attacks remain one of
the most important security problems for a single hosts and
data centers as well, we decided to consider DDoS-mitigation
solution for SDN networks. DDoS mitigation solutions are typ-
ically divided into two classes: active techniques that include
filtering of an attacking traffic and ”survival” techniques that
include increase of resources under attacks and effective load
balancing.

We noticed that all existing load balancing solutions are
based on a load balancing between endpoint resources, such
as different servers in our case. Despite the fact that those
techniques serve well for that purpose in traditional networks,
SDN benefits help to increase survival time even more. Typical
SDN controllers select alternative route between entry point
and end point only when current route is not available. That
works well and helps to remain network reliability. Neverthe-
less, during DDoS attack it does not solve problem at all as
all attacking traffic will be forwarded to different route. There
is high probability of new route to be overloaded as well. In
our work we propose a solution for efficient traffic distribution
between all alternative routes in a SDN network.

Experiments show that our solution helps to increase sur-
vival time of defended system during DDoS attack, thus it is
effective as DDoS mitigation solution in SDN networks, but
it can also be used as a general load balancing system.
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Abstract—Future Internet and distributed cloud (FIDC) 
testbeds are rapidly becoming important research and 
educational resoures worldwide. While FIDC testbeds may be 
built on diverse technologies, they share the primary capabilities 
of slicing (virtualized end-to-end configurations of computing, 
networking, and storage resources) and deep programmability 
(experimenter programmability of all resources from low level 
hardware to virtualized components). FIDC testbeds often 
achieve their deep programmability through software defined 
networking (SDN) capabilities, which researchers employ both to 
construct per-application and per-experiment virtual networks, 
and to intelligently steer traffic throughout the virtual 
network/cloud environment. 

Increasingly, FIDC testbed developers and researchers 
worldwide are working together to create federated testbed and 
experiment configurations. Federation holds the promise of 
greater scale, geographic reach, and technical diversity, while 
controlling the cost and effort required to create and maintain 
each individual testbed. 

Federation is primarily a human endeavor. In the case of 
FIDC testbeds, the underlying agreements of trust and resource 
sharing are implemented technically via trusted identities, 
policies, and resource managers. 

The past two years have seen strong progress and 
international cooperation in defining many of the key application 
programmer interfaces (APIs) that enable the technical 
implementation of federated testbeds, at both the control plane 
and data plane levels. These APIs, and the implementation of the 
underlying services, rely on well-understood and open 
technology, such as public key cryptography, attribute based 
access control (ABAC), and dynamic circuit networking (DCN). 

These cooperative efforts have resulted in a number of 
exciting demonstrations and specific collaborations. There are a 
number of remaining challenges. Some of these are technical, 
(e.g., improving the semantic content of resource representation 
and exploring policy development and enforcement). However, 
the largest challenges in testbed federation are still on the human 
side – defining the best ways to build and share resources to meet 
the shared goals of the research community. 

Keywords — future Internet, distributed clouds, FIDC testbeds, 

federated testbeds, federation policy. 

I.  INTRODUCTION – WHY FIDC TESTBEDS? WHY FEDERATE? 

A. Motivation 
Future Internet and Distributed Cloud (FIDC) testbeds are 

rapidly gaining acceptance within the computer science 
research community. These testbeds create opportunities for 
experimental research and education that are difficult or 
impossible to conduct in individual laboratories, commercial 
clouds, or the public Internet. FIDC testbeds, which began with 
the Global Environment for Networking Innovation (GENI) 
project in the US [1] and the Future Internet Research & 
Experimentation (FIRE) project in the EU [2], are gaining 
acceptance. There is now a growing number of national and 
regional scale FIDC testbeds in use or development worldwide, 
as shown in Figure 1. 

Figure 1: Worldwide FIDC testbed activity 

These testbeds were originally conceived in response to 
researchers’ concerns over Internet ossification, a term that 
refers to the difficulty of performing innovative research within 
the public Internet [3]. For example, novel protocols that do not 
accord with current Internet standards are, by specification, 
discarded or ignored within the public Internet. Other 
experiments might disrupt the normal behavior of the Internet, 
and are therefore not ethical. Networking researchers found 
themselves in a dilemma. In general, they were forced to 
compromise by conducting their novel experiments in 
simulation or in small-scale, isolated laboratory conditions.  

More recently, cloud computing researchers found 
themselves in much the same situation. Commercial cloud 
providers do not typically grant researcher access to the 
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internal workings of their data centers, and with good reason – 
they are in the business of providing cloud services, not 
supporting research. However, researchers are out in the cold if 
they seek to conduct experiments affecting the network 
topology or protocols comprising a cloud computing 
environment. 

These researchers are increasingly choosing to conduct 
their experiments in FIDC testbed environments. As these 
testbeds grow in scale and capability, they are supporting a 
wide variety of research, not only in the original target 
communities of networking, distributed computing, and cloud 
computing, but also in computer science education and in data 
intensive domain sciences. 

In the past few years, the FIDC research, testbed developer, 
and testbed owner communities have begun to build 
federations of testbeds in order to better achieve their shared 
goals. A number of straightforward considerations have driven 
a desire for testbed federation. 

• In order to conduct the most realistic experiments, 
researchers want access to resources around the world, 
but testbeds are often limited to national or regional 
scope. 

• Federation extends the reach of each community of 
researchers supported by each participating testbed. 

• Federation preserves the unique capabilities of each 
participating testbed. 

• Federation enables participating testbeds to enter into 
multiple arrangements for specific purposes. 
(“Federation is not monogamous.”) 

In fact, federation is often an underlying architectural 
principle of a national or regional FIDC. GENI, for instance, is 
built as a federation of participating resource owners, some 
preexisting, and others deployed during the project [4]. 
Similarly, the Fed4FIRE (Federation for FIRE) effort is 
federating multiple FIRE testbeds [5]. 

This paper surveys recent progress towards worldwide 
federation, discusses some of the key technical underpinnings 
of federation, and identifies some of the important challenges 
confronting the growing international FIDC testbed 
community. 

B. Definitions 
The following terms will be useful to clarify a discussion of 

FIDC testbeds and federation. 

A slice is a group of physical and/or virtualized resources, 
potentially heterogeneous (e.g., computers, networks, and 
storage), that are reserved and connected into a single 
configuration on behalf of one or more slice owners. A slice 
differs from a bag of resources because it is constructed to 
preserve some degree of isolation that applies to the entire 
collection, rather than just its individual components. As with 
any type of virtualization, the quality and performance of 
isolation will vary according to the implementation. The intent 
is to give a slice owner the illusion that he or she enjoys 

exclusive use of the entire interconnected collection of 
resources. 

Deep programmability is the ability of an experimenter to 
exert programmatic control over all (physical or virtual) 
resources in a configuration, not limited to computing 
resources or to resources at the network edge. As with any 
programming model, the expressive power and performance 
will vary according to the implementation and is likely to vary 
across different resource types. The goal is that the slice owner 
can “program everything” in his or her slice. 

A FIDC testbed is a shared computing environment that 
enables future Internet and distributed cloud experiments by 
implementing the two key capabilities of slicing and deep 
programmability. 

A resource (or testbed) owner is the person or entity that 
has physical and administrative control over a particular 
resource (or testbed) and is presumptively responsible for its 
misuse. The various roles (ownership, administration, and 
accountability) may be separated, but such distinctions are not 
needed for the current discussion. 

A federation is a group of testbeds whose owners choose to 
share resources across their user communities, according to 
mutually agreed rules and limits. The intent of the federation 
participants is implemented by testbed hardware, software, and 
configuration. Federations whose participants are themselves 
federations are entirely possible. 

II. ADMINISTRATIVE AND POLICY STEPS TO FEDERATION 
Establishing a federation of testbeds is a fundamentally 

human endeavor. Before the technical processes get underway, 
the affected testbed owners and researchers should come to a 
clear understanding of their various goals in pursuing 
federation. Often the driving goal for all participants is the 
straightforward desire to provide more resources and broader 
geographic scope to researchers from the participating testbeds. 
However, there are several additional factors to be considered. 

A. Participant approval and access policies 
Perhaps the greatest benefit that a federation offers to its 

participants is to act as a trust broker. Resource owners trust 
the federation to grant access only to qualified users. Similarly, 
researchers trust the federation to admit only reputable and 
well-managed testbeds, where their work will be safe. By 
relying on these trust relationships, the number of agreements 
among m resource owners and n end users is reduced from the 
intractable m×n to a more reasonable m+n. Repeating this 
process to federate a group of existing federations is very much 
akin to investors trading derivatives – everyone’s leverage is 
increased, but it’s important that the participants understand 
what they are doing.  

While end users clearly reap the benefit of an extended 
collection of available resources, the testbed participants 
benefit as well. Testbed owners often have a strong interest in 
expanding their research user base and thereby maximizing the 
impact of their testbeds. In addition, exposure to a broader 
group of end users will place greater demands on the testbed, 
identifying additional potential uses and identifying areas for 
improvement and expansion. 
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Potential issues arise when different participants have 
varying policies for trust. This concern is typically less 
important for the end user than for testbed participants. An end 
user who is concerned about the trustworthiness of a particular 
testbed or resource can generally design slices that simply 
exclude any suspect resources. Participating testbed owners can 
face more complex policy challenges. 

In some cases, the membership policy of one federation 
participant may allow end user members who are not 
acceptable to another resource owner. For example, a testbed 
whose sponsor limits use to openly disseminated academic 
research may need to take special steps in order to enter into 
federation with another that encourages commercial, for-profit 
use. A similar challenge confronts testbeds that limit end user 
access by nationality. These challenges are not insurmountable. 
In fact, they are readily addressed by simple application of 
control plane policies discussed in section III.A below. 
However, the participant who admits the end user must collect 
the information needed to implement the relevant policies (e.g., 
“Is this researcher an academic?”) and must share this data 
within the federation. Advance planning makes this task much 
simpler. 

Another relatively common event is when different 
participating testbeds recognize different categories of end 
user. For example, one testbed may have Principal 
Investigators, while another has Project Leads. If there is a 
simple one-to-one correspondence, a policy to map 
terminology is quite simple. In other cases there is no clear 
correspondence. For example, one testbed often used for 
education may have the concept of a Teaching Assistant, who 
can gain access to student’s resources for grading or 
debugging, while a more research-focused testbed may not 
share this concept. In such cases, the latter testbed may need to 
craft a custom policy to recognize the new concept within the 
federation, or the federation participants may choose to forgo 
this particular capability. 

B. Resource allocation and limits 
Some testbed resources will be subject to quotas or to 

special limits to ensure broad availability or to avoid accidental 
or intentional misuse. Typically the resources in question are 
either in high demand or “dangerous” in some way. The goal of 
restrictions on high demand resources is to avoid a “tragedy of 
the commons” situation, where end users who perceive little or 
no cost in consuming resources take unfair advantage of lenient 
policies. Policies for the dangerous resources are intended to 
prevent undesired consequences and to ensure accountability in 
the event of an incident. 

Many of these policies are straightforward, but some can be 
quite sophisticated. As with membership policies, 
implementation is greatly facilitated if the participants are 
prepared to gather and disseminate the required information. 
Some example policies are listed below. 

• “Only end users with the Administrator attribute may 
shut down resources.” 

• “Only researchers whose code has been reviewed and 
approved may install an OpenFlow controller in the 
core network.” 

• “Researchers from testbed X may collectively consume 
no more than Y% of resources from testbed Z.” 

• “End users who leave scarce resources idle for X hours 
will not be permitted to renew their reservation on 
these resources beyond current expiration time.” 

III. CONTROL PLANE FEDERATION 
Armed with a clear understanding of the intent of the 

resource owners and the testbeds to be federated, it falls to the 
testbed developers and owners to complete the implementation. 
A central goal is to automate the largest possible fraction of 
federation functionality. Thus, capturing federation policy in 
configuration files is optimal; software is next best; and falling 
back to human intervention in the form of hardware 
configuration or administrative procedure is least desirable. 

Federating FIDC testbeds requires some level of 
coordination at both the control plane and data plane levels. 
Control plane refers to the functions associated with the 
creation, configuration, and management of testbed resources. 
Control plane functions are often implemented over the public 
Internet, to give experimenters ready access to their slices. Data 
plane refers to the experimental network resources that are 
allocated to slices. The data plane should generally not be 
implemented over the standard Internet for reasons discussed in 
section I.A above. 

A. Policy statements and enforcement 
Most policy should be enforced locally by each 

participating testbed. There are a number of benefits to this 
approach. Ultimately, it is the resource owner who is 
responsible for the correct administration of policy at each 
testbed. Furthermore, because a testbed may well be 
participating in multiple federation agreements, and serving its 
own local users outside of any federation, no other authority 
can be expected to have full knowledge of the complete set of 
policies to be enforced. Finally, a testbed will generally already 
have an existing admission and allocation procedure encoded 
in software, saving additional development. 

A concrete example used in the following discussion is 
provided by the growing international federation discussed in 
section V below. This federation has adopted certain central 
concepts from the GENI architecture. For example, the local 
testbed software component responsible for access control and 
allocation is called an aggregate manager (AM). The 
interactions among key components involved in policy 
enforcement are shown in Figure 2 and summarized below. 
More detailed discussions may be found in [4] and [6]. 

 
Figure 2: Key AAA Components in Federation Architecture 
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B. AAA – Authentication, Authorization, and Accounting 
Three vital services required to achieve adequate trust 

within the control plane are authentication, authorization, and 
accounting, collectively known as AAA. Authentication is the 
ability to validate the identity of the person (or entity) who is 
making a request. Authorization is the process of confirming 
that the person requesting an action is permitted to perform that 
action. Accounting is recording and retaining enough 
information about each transaction to carry out the business of 
the federation, which may include such functions as audit, 
billing, and incident response. Typically, participating testbeds 
will already have local AAA capabilities in place when joining 
a federation. These existing capabilities may be sufficient for 
the needs of the federation, or additional federation-level 
processes may be needed. In the GENI federation, for example, 
the GMOC (GENI meta-operations center) receives and retains 
accounting data logged by various federation participants. 

International federation efforts have worked to ensure that 
each of these functions is implemented using readily available 
open standards and software technology. This approach has the 
advantage of making federation accessible to all interested 
testbeds. Furthermore, using open technology encourages the 
development of a thriving community of tool developers, who 
can create software that facilitates end user access to federation 
resources. In current FIDC federation implementations, 
authentication is generally provided via X.509 certificates [7] 
and secure socket layer (SSL) [8]. Authorization generally 
follows one of two approaches. Role-based access control 
(RBAC) describes a person’s rights to perform actions on a 
particular slice and is implemented via the slice federation 
architecture (SFA) [9]. Attribute-based access control (ABAC) 
enables policy enforcement based on signed statements 
asserting attributes of a particular person or entity [10]. (E.g., 
“Resource owner X certifies that person Y is a principal 
investigator.”) Accounting data chiefly consists of transaction 
and resource status information, and may be managed by 
standard database software. Transaction reports are produced 
as a side effect of authorization actions. In the case of ABAC, 
which follows a theorem-proving approach to authorization, 
each approved transaction can be accompanied by the first-
order logic proof that justifies a particular authorization 
decision. Various resource managers in the federation generate 
a variety of status information, such as utilization and up/down 
condition, which can be used for alerting and to inform end 
users of the state of different participating testbeds and their 
resources. 

C. Common APIs 
Two key application programmer interfaces (APIs) are used 

for control plane federation. An international consortium is 
responsible for specification of these APIs, and open source 
reference implementations are available. Testbed developers 
who wish to participate in FIDC testbed federations based on 
these APIs may either adopt them natively or develop 
translation code, such as the slice exchange point SEP software 
[11]. 

The federation API [12] is used to coordinate the so-called 
“clearinghouse services” of the federation. These services are 
conceptually centralized, but may be implemented in a 

distributed fashion among federation participants. The 
federation API defines two types of entity, a member authority 
(MA) and a slice authority (SA), and the relationships between. 
Briefly, federation participants choose to trust a member 
authority to make assertions about end users. Similarly, a slice 
authority manages slice objects and generates credentials for 
members representing their authority to act on slices and their 
associated resources. A federation may include one or more of 
each type of authority. 

The aggregate manager API (AM API) is the lingua franca 
that connects end users (or the software tools acting on their 
behalf) to the aggregate managers that allocate, configure, and 
manage testbed resources. The central operations supported by 
this API include resource discovery, resource allocation, 
resource management, status inquiries, and resource 
reclamation. Current international testbed federations are 
implemented using the GENI AM API, with an open source 
reference implementation available from [13]. An 
internationalization effort is underway; its emerging open 
source implementation may be found at [14]. 

IV. DATA PLANE FEDERATION 
By contrast with control plane efforts, the work to federate 

FIDC testbeds at the data plane level seems comparatively 
simple, because it is not plowing nearly as much new ground. 
The chief challenge in data plane federation is to provide 
connectivity across the underlying research networks 
participating in the federation. A few specific capabilities are 
desirable to maintain and extend FIDC capabilities within the 
larger federation.  

• Data plane connections should be carried over research 
and education (R&E) networks or other assets suited 
for FIDC applications, rather than the public Internet.  

• In order to enable novel, non-IP-based research, 
researchers must be able to establish connectivity at 
layer 2. 

• To maintain slice isolation, the federated data plane 
must preserve a network virtualization model across 
participating federates. 

• To support deep programmability, the federated data 
plane should support a consistent programmability 
model for network resources, or at a minimum, not 
interfere with the network programmability model of 
diverse resources combined into a single slice. 

Fortunately, there are a number of existing technologies 
that support at least the first three of these requirements. The 
most accessible and familiar of these is simply to provision 
VLAN connections to create the data plane connectivity among 
federated resources. The VLAN approach has several benefits, 
but also suffers from a few drawbacks. On the positive side, 
VLANs are a well-understood network virtualization model, 
and are essentially certain to be supported by networking 
hardware in each federate. Similarly, most resource owners 
already have expertise in segmenting their networks by VLAN, 
so provisioning a distinct group of VLANs on behalf of data 
plane federation will be relatively easy. 
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Current FIDC testbed federations make frequent use of 
VLAN-based data plane federation. In its most rudimentary 
form, such federation can be achieved by manually 
provisioning a connection between federated resources. 
Clearly, this method is undesirable from a scalability 
viewpoint, because it requires human intervention to create 
each federated slice. The process of stitching the data plane of 
these slices is greatly accelerated by placing a statically 
provisioned group of VLANs under the control of an aggregate 
manager, which allocates them to slices as needed and reclaims 
them after use. The current implementation of stitching in most 
of the GENI federation uses this approach. A recent data plane 
federation effort connecting GENI and FIRE resources is also 
built on this model, using a group of fifty VLANs connecting 
iMinds in Ghent with the Manhattan Landing (MAN LAN) 
exchange point in New York. 

The next step evolution of stitching beyond dynamic 
allocation from a static pool is dynamic circuit allocation under 
aggregate manager control at slice creation time. One existing 
implementation of this approach in the GENI federation uses 
an aggregate manager to request dynamic virtual circuits in the 
Internet2 R&E network via the Internet2 ION service. A 
particularly promising technology for international federation 
using this strategy is the network service interface (NSI) 
connection service [15]. 

In situations where resource limitations do not permit true 
layer 2 connectivity via R&E network connections, it is 
possible to fall back to a tunneling approach. Existing 
implementations use generic routing encapsulation (GRE) or 
enhanced generic routing encapsulation (EGRE) to create a 
tunnel connecting federated resources. Although this tunnel is 
typically carried over the public Internet, it provides a degree 
of isolation encapsulates traffic sufficiently to permit non-IP 
experimentation. However, tunneling remains a less desirable 
solution, as it generally comes with undesired overhead and 
can introduce unwanted technical restrictions. Furthermore, 
when tunneled connections are carried over the public Internet, 
unpredictable performance variations are likely. 

The data plane federation approaches discussed above 
provide connectivity solutions, but they sidestep the question of 
deep programmability. In many cases, adequate 
programmability is achieved within the data plane of the 
participating testbeds, and the goals of the research end user 
can be met simply by interconnecting these collaborating 
resources within a slice. However, in some slice designs, the 
researcher may wish to program the federation data plane 
resources as well. There are a number of promising approaches 
currently in the investigation, development, and deployment 
stages. One approach is to use software defined networking 
(SDN) technology, such as OpenFlow, to implement data plane 
virtualization and interconnect federated resources. In addition 
to avoiding some of the negative aspects of VLAN-based data 
plane virtualization, the approach holds out the promise to 
extend SDN control uniformly throughout the slice, including 
core network resources. GENI and Internet2 are jointly 
pursuing this approach, through a two-pronged strategy. The 
first component is an aggregate manager that provisions virtual 
circuits within the network’s SDN-based core. The second, a 
“flow space firewall” multiplexes research OpenFlow 

controllers over the core network’s flow space, enabling 
uniform deep programmability. For the protection of the core 
network, it is likely that such research controllers will require 
detailed review and monitoring for the foreseeable future. 

Another promising line of inquiry for federation lies in the 
concepts of software defined exchange (SDX) and software 
defined infrastructure (SDI). These concepts are relatively new 
and their definitions, specifications, and implementations are 
likely to be the topics of debate for some time to come. A 
recent workshop [16] tentatively defined SDX as “a real or 
virtual ‘meet-me’ point, where [SDN-enabled] peers meet to 
communicate, each with its own policies.” Similarly, SDI was 
defined as “the collection of shared [resources] plus networks 
and SDXs that users / applications can utilize to build end-to-
end, multi domain software defined slices.” While SDX and 
SDI are clearly unproven technology, it is clear that any 
capability that emerges in this area will bear directly at least on 
data plane federation, and quite probably on control plane 
federation as well. 

V. INTERNATIONAL FEDERATION – RECENT PROGRESS AND 
UPCOMING CHALLENGES 

Initial application and validation of most technical 
capabilities supporting FIDC testbed federation take place 
within national or regional scale testbeds. Progress towards 
international federation of FIDC testbeds really began with a 
series of demonstrations of ad hoc multi-testbed configurations 
assembled for specific events. Key venues for such 
demonstrations included GENI engineering conferences 
(GECs) and SC (formerly Supercomputing) conferences, 
beginning in 2012. Understandably, these configurations 
typically focused on the data plane aspects of federation, 
validating the ability to assemble transoceanic collections of 
assets into slices for high performance networking or non-IP 
future Internet applications. While these experiments were 
valuable to illustrate the scientific potential of federation, the 
relative weakness of control plane coordination represented a 
significant shortcoming. Because little automation was 
available to support the setup and control of these ad hoc 
configurations, they required significant person-to-person 
coordination. As a result, these demonstration configurations 
were not generally available to typical end users of the 
federated testbeds. 

Early discussions on enduring international federation 
began in July 2012, with a focus on available resources and 
understanding the requirements for control plane and data 
plane federation. These plans matured into the July 2013 
“breakfast club” meeting, in which participants committed to 
devote testbed resources and staff time to build an enduring 
federation based on common APIs. In the year since that 
meeting, dramatic progress has been made towards an initial 
federation, although only limited resources have been 
dedicated to date, and general availability of federated 
resources is only now emerging. 

The trend towards FIDC testbed federation represents an 
exciting opportunity for testbed developers and the research 
and educational communities that they support. 
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However, there is still a long way to go, on both the human 
and technical sides of FIDC testbed federation. In many ways, 
the current state of activities is still very much in a Wild West 
(or perhaps Summer of Love) phase. Resource owners and 
testbed developers have relatively little experience with 
complex federation policies, even within at national scales. 
Existing implementations often make do with the unmodified 
default policies of individual participating testbeds. In some 
cases, these policies are trivial or nearly so. As membership 
grows beyond a tightly knit group of participants, the status 
quo is clearly not scalable and will lead to unintended 
consequences. Better tools for defining and enforcing 
federation policies are needed to remedy this situation. While it 
is tempting to press ahead with purely technical approaches, it 
is apparent that software implementations must be guided by 
clear understanding of the policies that are to be enforced. This 
guidance must come from the resource owners and testbed 
developers, based on their combined efforts to gain the greatest 
benefit from FIDC testbeds. 
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Network Verification: Calculus and Solvers
N Bjørner

Abstract—We examine calculus and solvers for Network
Verification. As starting point we take the SecGuru tool that
checks network access restrictions in the Microsoft Azure
public cloud infrastructure. The tool is based on the Sat-
isfiability Modulo Theories solver Z3. SecGuru is also used
for checking Network Invariants for data-centers that are
deployed using Azure’s network architecture. In both cases
SecGuru relies on a calculus of network configurations in
order to capture intent and check these statically. SecGuru
models network configurations using quantifier-free logical
formulas over bit-vectors. We recall also other scenarios
in the context of network verification. They use other frag-
ments of logic and specialized engines for Datalog and quan-
tifier reasoning in Z3. In each case, correctness assertions
can be modeled and solved using logics that are supported
in state-of-the art theorem provers.

Based on our experiences we claim that Network Verifi-
cation is an important and exciting new opportunity where
formal methods and modern theorem proving technologies
play an important role. Many formalisms that make it con-
venient to model scenarios from networking domain are al-
ready supported in modern solvers. On the other hand, net-
working provides an inspiration for additional formalisms
that can be supported using new efficient data-structures
and solving algorithms.

I. Calculus and Solvers

A. Network Verification Calculus: Routers, Access Con-
trol Lists and Protocols

Modern data-centers use routers from several vendors,
such as Cisco and Juniper networks. They expose dif-
ferent interfaces for configuration and newer routers also
ease programmability for open-stack style controller-based
software defined networking. The configuration formats
are on one hand very low level: the language resembles
a bare bones assembly format. On the other hand, con-
figurations are quite expressive, including Access Control
Lists (ACLs), Quality of Service contracts, and monitoring
directives. Furthermore, in large networks, configurations
are distributed among several routers and management de-
vices. The behavior of a full system is the effect of aligning
many configurations. Configurations are of course only a
means to an end: ACLs exist to enforce security policies
and routing policies exist to implement a routing architec-
ture. The task of bridging the actual configurations with
the original intent is inhumane: the complexity of large
scale deployments does not lend itself to manual inspec-
tion, even for masters of complexity 1.
We provide selected use cases where important features

of modern industrial network systems can be modeled us-
ing logical theories capturing the main intent of operators.

Microsoft Research

nbjorner@microsoft.com

Microsoft Azure

karjay@microsoft.com
1 Thanks to Nick McKeown for this fitting characterization

B. Solvers for Network Verification

The use of Satisfiability Modulo Theories, SMT, solvers
for software analysis, verification and testing has blos-
somed in recent years thanks to significant advances in
theorem proving technologies coupled with availability of
usable SMT tools that match closely the domains useful
in software analysis. The SMT solver Z3 [5] is the most
widely used SMT solver with applications ranging from
symbolic execution and test-case generation [6], program
verification [10], symbolic model checking [2] and many
other areas.

Network Verification is not unlike software or hardware
so it is possible to apply some of the tools developed with
other applications in mind for software defined networks.
We here provide instances where SMT solvers can be of sig-
nificant benefit for managing modern software defined net-
works. We also claim that the networking domain presents
its own features that inspire new efficient constraint solving
algorithms and data-structures.

II. Access Control Lists

1 remark Isolating private addresses
2 deny ip 10.0.0.0/8 any
3 deny ip 172.16.0.0/12 any
4 deny ip 192.0.2.0/24 any
5 ...
6 remark Anti spoofing ACLs
7 deny ip 128.30.0.0/15 any
8 deny ip 171.64.0.0/15 any
9 ...

10 remark permits for IPs without
11 port and protocol blocks
12 permit ip any 171.64.64.0/20
13 ....
14 remark standard port and protocol
15 blocks
16 deny tcp any any eq 445
17 deny udp any any eq 445
18 deny tcp any any eq 593
19 deny udp any any eq 593
20 ...
21 deny 53 any any
22 deny 55 any any
23 ...
24 remark permits for IPs with
25 port and protocol blocks
26 permit ip any 128.30.0.0/15
27 permit ip any 171.64.0.0/15
28 ...

Fig. 1. An Edge Network ACL configuration

The Azure architecture enforces network access restric-
tions using ACLs. These are placed on multiple routers and
firewalls in data-centers and on the edge between internal
networks and the internet. Miss-configurations, such as
miss-configured ACLs, are a dominant source of network
outages. The SecGuru [8] tool uses Z3 to check contracts
on firewall ACLs. It translates the ACLs into a logical
predicate over packet headers that are represented as bit-
vectors. These predicates are checked for containment and
equivalence with contracts that are represented as other
bit-vector formulas. SecGuru checks virtually all Microsoft

K Jayaraman
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routers on a continuous basis: each router is checked every
30 minutes against a data-base of contracts.
The routers that are dedicated to connect internal net-

works to the Internet backbone are called Edge routers
and they enforce restrictions using ACLs. Figure 1 pro-
vides a canonical example of an Edge ACL. The ACL in
this example is authored in the Cisco IOS language. It is
basically a set of rules that filter IP packets. They inspect
header information of the packets and the rules determine
whether the packets may pass through the device.
Each rule of a policy contains a packet filter, and typ-

ically comprises two portions, namely a traffic expression
and an action. The traffic expression specifies a range of
source and destination IP addresses, ports, and a protocol
specifier. The expression 10.0.0.0/8 specifies an address
range 10.0.0.0 to 10.255.255.255. That is, the first 8 bits
are fixed and the remaining 24 (= 32-8) are varying. A
wild card is indicated by Any. For ports, Any encodes the
range from 0 to 216 − 1. The action is either Permit or
Deny. They indicate whether packets matching the range
should be allowed through the firewall. This language has
the first-applicable rule semantics, where the device pro-
cesses an incoming packet per the first rule that matches
its description. If no rules match, then the incoming packet
is denied by default.
The meaning of network ACLs can be captured in logic

as a predicate ACL over variables src, a source address
and port, dst , a destination address and port, and other
parameters, such as protocol and TCP flags. For our ex-
ample from Figure 1, we can capture the meaning as the
predicate:

ACL≡
if src = 10.0.0.0/8 ∧ proto = 6 then false else
if src = 172.16.0.0/12 ∧ proto = 6 then false else
if src = 192.0.2.0/24 ∧ proto = 6 then false else
. . .
if dst = 171.64.64.0/20∧ proto = 6 then true else
. . .
if proto = 4∧ dstport = 445 then false else
. . .

For ease of readability, we re-use the notation for writing
address ranges. In bit-vector logic we would write the con-
straint src = 10.0.0.0/8 as src[31 : 24] = 10, e.g., a pred-
icate that specifies the 8 most significant bits should be
equal to the numeral 10 (the bit-vector 00000110).
Traffic is permitted by an ACL if the predicate ACL is

true. Traffic permitted by one ACL and denied by an-
other is given by ACL1 ⊕ACL2 (the exclusive or of ACL1

and ACL2). The SecGuru tool uses the encoding of ACLs
into bit-vector logic and poses differential queries between
ACLs to find differences between configurations. It also
checks contracts of ACLs by posing queries of the form
ACL ⇒ Property , where an example property is that UDP
ports to DNS servers are allowed. The main technological
novelty in SecGuru is an enumeration algorithm for com-
pactly representing these differences. Compact representa-
tion of differences help network operators understand the

full effect of a miss-configuration. Checking firewall con-
figurations is central to securing networks. Several other
tools address checking firewall configurations. These in-
clude Margrave [15], which provides a convenient formal-
ism for expressing rich properties of networks and firewalls
(but counter-examples are only available for one address
at a time), and the firewall testing tool in [4], which builds
upon Isabelle/HOL and Z3 for generating test-cases.

III. Routing tables

Figure 2 shows an excerpt of a routing table from an
Arista network switch

1 B E 0.0.0.0/0 [200/0] via 100.91.176.0, n1
2 via 100.91.176.2, n2
3

4 B E 10.91.114.0/25 [200/0] via 100.91.176.125, n3
5 via 100.91.176.127, n4
6 via 100.91.176.129, n5
7 via 100.91.176.131, n6
8 B E 10.91.114.128/25 [200/0] via 100.91.176.125, n3
9 via 100.91.176.131, n6

10 via 100.91.176.133, n7
11 ...

Fig. 2. A BGP routing table

Similarly to ACLs we can model routing tables as re-
lations Router over destination addresses and next-hop
ports that can be represented as atomic Boolean predi-
cates. Each rule in the routing table is either provisioned
based on static configurations specified in the device, or
derived based on BGP network announcements that the
device receives.
We here choose an encoding of Router , such that for

each destination address dst and next-hop address n:

Router [dst �→ dst,n �→ true] is true
iff

n is a possible next hop for address dst

The routing tables have an ordered interpretation,
wherein rules whose destination prefixes are the longest
applies first. The default rule with mask 0.0.0.0/0, listed
first, applies if no other rule applies. For our example, our
chosen encoding of the predicate Router is of the form:

Router ≡
if . . .
if dst = 10.91.114.128/25 then n3 ∨n6 ∨n7 else
if dst = 10.91.114.0/25 then n3 ∨n4 ∨n5 ∨n6 else
n1 ∨n2

Each Azure data-center is built up around a hierarchy of
routers that facilitate high-bandwidth traffic in and out as
well as within the data-center. Traffic that leaves and en-
ters the data-center traverses four layers of routers, while
traffic within the data-center may traverse only one, two
or at most three layers depending on whether the traffic
is within a rack, a physical partition called a cluster, or
between clusters. Routers close to the host machines be-
long to one of the clusters. Traffic in a correctly configured
data-center is routed without loops and along the shortest
path for cluster-local traffic. Azure checks these properties

38



NETWORK VERIFICATION: CALCULUS AND SOLVERS

as network invariants. Sample (slightly simplified from the
ones checked for Azure) network invariants are:

Network Invariant 1: Traffic from a host leaf directed
to a different cluster from the leaf is forwarded to a router
in a layer above. In other words, suppose that Router
belongs to a cluster given as a predicate Cluster , and that
RouterAbove is the set of routers above Router , then

dst 	∈ Cluster ∧Router ⇒
∨

n∈RouterAbove

n

On the other hand,

Network Invariant 2: Traffic from a host leaf directed to
the same cluster is directed to the local VLAN or a router
in the layer above that belongs to the same cluster as the
host leaf router:

dst ∈ Cluster ∧Router ⇒
VLAN ∨ ∨

n∈RouterAbove(n∧n ∈ Cluster)

The routing behavior of routers at the same level from
the same cluster should also act uniformly for addresses
within the cluster (they can behave differently for ad-
dresses outside of a cluster range).

Network Invariant 3: Let Router1, Router2 be two
routers at the same layer within the cluster Cluster , then

dst ∈ Cluster ⇒ Router1 ≡ Router2

IV. Differential Network Reachability

In the previous section we described how SecGuru per-
forms local checks on routers. These local checks often im-
ply global properties of the network. This approach works
fine in the context of the Azure architecture, which is fixed
and data-centers are deployed in cookie-cutter form. Find-
ing local invariants, however, is an entirely manual process
and the approach does not generalize to arbitrary networks
(though there is a really good point to capturing and check-
ing architecture based invariants for Azure). The behavior
of a router is commonly a combination of ACLs, forward-
ing rules, and packet rewriting. It is therefore not generally
possible to check global network invariants from a fixed set
of local network invariants. To check global network prop-
erties we developed a specialized tool in Z3 that handles
configurations for packet switching networks efficiently.

This time we represent forwarding logic and networks
as a set of constrained Datalog rules. Suppose that nr is
a predicate representing the current router from our ex-
ample, and n1, n2, . . . are the names of next-hop routers,
represented as predicates, then the rules for representing
the routing behavior can be written:

∀dst . n1(dst) ←
⎛
⎝ nr(dst)

∧ dst 	= 10.91.114.0/25
∧ dst 	= 10.91.114.128/25∧ . . .

⎞
⎠

∀dst . n2(dst) ←
⎛
⎝ nr(dst)

∧ dst 	= 10.91.114.0/25
∧ dst 	= 10.91.114.128/25∧ . . .

⎞
⎠

∀dst . n3(dst) ←

⎛
⎜⎜⎝

nr(dst)

∧
(

dst = 10.91.114.0/25∨
dst = 10.91.114.128/25

)

∧ . . .

⎞
⎟⎟⎠

. . .

Constrained Datalog with stratified negation provides logi-
cal expressitivity that makes it easy to encode queries over
pairs of paths. Thus, one can use Datalog to query for
packets that are dropped along one route but not another.
Header Space Algebra (HSA) [9] was introduced to rea-

son efficiently about reachability over sets of headers. The
basic data-structure used by HSA is a difference of cubes
(DOC) representation of three-valued bit-vectors. Three-
valued bit-vectors encode address masks compactly using
don’t cares. An example DOC is the expression:

1 ∗ 110 ∗ ∗ \ (∗1 ∗ ∗ ∗ 11 ∪ ∗0 ∗ ∗ ∗ 00)
It is shorthand for the set

{1011011, 1011001, 1011010, 1111000, 1111001, 1111010}.
In [11] we adapt DOC encodings as an underlying table
representations for a Datalog engine in Z3. For a set of
benchmarks extracted from Azure and Stanford networks
we observed that the DOC representation scales well be-
yond competing representations, such as BDDs, or SAT
based bounded model checking. Model checking tech-
niques for (software defined) networks is actively investi-
gated in several contexts, including the Anteater tool [12]
and in [18].

V. Programmable Controllers

Network controller programs operate at their core by re-
ceiving packets from routers. The packets are rewritten,
forwarded and used to update both local state and routing
tables. In [1] we developed a language, VeriCon, capturing
core features of network controllers relevant to verification
of network controllers. State, local and external routing
tables, are uniformly represented as predicates (Boolean
arrays). Proving invariants of the controllers turns out to
requite a limited expressive logical power close in style to
the Bernays-Schönfinkel-Ramsey, otherwise known as Ef-
fectively Propositional Reasoning (EPR). EPR formulas
are of the form: ∀�y . ϕ[�c,�y], where �c is a set of constant
symbols, and the formula ϕ is quantifier-free over equal-
ities and uninterpreted relations over the constants and
bound variables. Thus, EPR formulas do not have nested
functions.
The VeriCon verification conditions are discharged au-

tomatically by Z3, or in case of properties that are not
invariants, Z3 provides counter-examples. Furthermore,
invariants that were not already inductive are in some
cases inductive after conjoining the invariants with their
weakest pre-conditions. Weakest pre-condition strengthen-
ing is a folklore approach used in variations in deductive-
algorithmic model checking. While it is simple to imple-
ment it does not scale very well and current efforts in-
clude replacing the strengthening by more sophisticated
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approaches and also ensuring that the assertion language
remains within a decidable extension of EPR.

VI. The Logical Power of Networks

A common experience so far has been that network ver-
ification is matched well by logics and solvers that exploit
how ACLs, forwarding rules and controller programs han-
dle sets of packets the same way: Transitions are guarded
by predicates on bit-ranges and state updates copy or up-
date bit-ranges to constant values. In other words, the
tools exploit and support packet ranges and how the state
of controllers is updated based on a few enumerable at-
tributes. Yet, the underlying algorithms from our ex-
periences are orthogonal. The bit-vector solver used in
SecGuru reduces verification to propositional SAT; DNA
pairing requires a Datalog engine; controller verification
uses invariants expressed over quantified first-order logic
so it requires efficient quantifier instantiation. The Z3
SMT solver exposes much richer functionality than the
fragments we used here: Z3 supports reasoning about logi-
cal formulas using linear integer, linear and non-linear real
arithmetic, algebraic data-types and arrays. It contains
specialized engines for solving Horn clauses over arith-
metic [3], [7], [13] that so far target applications from sym-
bolic software model checking.
We believe the mutual exposure of formal methods to

modern packet switched network engineering is a signif-
icant area of opportunity for both camps. An indication
that this is broadly the case is that we are not the only ones
who apply SMT, SAT, QBF, finite state model checking
and other verification and synthesis technologies for pro-
grammable packet switched networks [14], [17], [19], [16].
More narrowly, the use of SMT solving and other theorem
proving technologies for Network Verification offers mutual
opportunities to improve scale and reliability of modern
(large scale) data-center networks. On the other hand, the
applications that emerge from Network Verification inspire
new algorithms and data-structures for theorem proving
and model checking.
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Abstract—The Quality of Service (QoS) management is one of 

the urgent problems in networking which doesn’t have an 

acceptable solution yet. In the paper the approach to this 

problem based on multipath routing protocol in SDN is 

considered. The proposed approach is compared with other QoS 

management methods. A structural and operation schemes for its 

practical implementation is proposed. 
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I.  INTRODUCTION 

QoS (Quality of Service) as a term is a general description 
of the performance of a network connection. This term is 
treated either as qualitative assessment of the connection 
performance by a user, or as a set of objective quantitative 
parameters characterizing the one. Qualitative evaluation of 
QoS is defined as the degree of satisfaction of a user by 
communication quality as for example in Skype – the sound 
quality, the presence of a distortion, the appearance of echo, 
jitter, quality of the picture etc. There are two basic methods 
for QoS qualitative evaluation: Mean Opinion Score and 
Quality of Experience [1]. These methods provide an 
integrated assessment of all subjective assessment of service. 

In this paper we are primarily interested in the second 
interpretation of the term QoS as a set of the parameters a 
network connection. Under term QoS requirements we will 
mean a set of the QoS parameters a network connection has to 
meet. The term QoS management we will treat as ability of 
network to maintain a set of connection parameters compliant 
with the QoS requirements of the application it is due to. 
Saying “connection” we mean end-to-end (e2e) connection. A 
set of QoS parameters includes: 

• Throughput – a part of the channel bandwidth
available to the particular connection; 

• End-to-end delay – time is needed to deliver a packet
from one source host to a destination host; 

• Jitter – a deviation of the end-to-end delay from its
mean value; 

• Error Rates - the share of packets lost or damaged
during a transmission through connection. 

Different parameters of QoS play a different role for 
different applications. For example, multimedia application 

requires high throughput, videoconferencing and real time 
simulation – small jitter and end-to-end delay, telemedicine 
(distance surgery) – high throughput and low error rate. 

Providing a connection with an appropriate QoS require a 
certain network resources. However, the network has only a 
limited amount of the resources to handle data flows. Thus we 
get a problem how to allocate network resources to meet QoS 
requirements of different applications operate at the same time? 
In practice usually there is problem connected to the previous 
one - what level of utilization (efficiency) of the network 
resources under allocation have been made? Thus, a network 
has to be selective while spreading bandwidths of its channels 
and capacities of its switching devices over the applications. 
Thereby, the solution for the quality of service problem we are 
looking for should meet the following criteria: (1) ensure 
compliance of granted e2e connections with the QoS 
requirements of applications, (2) provide a small resource 
fragmentation, and (3) to be a practical method delivering a 
suboptimal resource allocation. 

Although QoS issue has been addressed since the first 
attempts to transmit voice over a packet switched network [2], 
and the community has developed a set of diverse approaches 
to conquer it, none of them is successful enough to be 
implemented by default. They are either too expensive to 
deploy or provide insufficient increase to the admissible 
utilization of a network. Thereby, the existing practices of the 
network management advice to obtain the missing resources by 
a straightforward resource extension, rather than to invest into 
an intricate piece of hardware, gain better control over the 
resource distribution and attune the performance in an 
intelligent way. 

In this paper we propose a new approach to QoS 
management in SDN networks [3] based on Multi Path Routing 
(MPR) called MPRSDN with the following features: 

 MPRSDN refuses resource reservation in favor of their
efficient utilization. Thereby, it provides no strict
guarantees and implements a best effort approach.

 Although we propose to construct a QoS-compliant
resource allocation with a heuristic search, our
approach uses a considerably large search space to
allocate the resources for each of the requested
connections. Thus, if it fails to meet the requirements
of a given application, most likely, there are no more
suitable resources left.

 It does not require specialized hardware and may be
deployed in any SDN network with an appropriate
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control over the switches. The hosts have to be 
preinstalled with the software agent for multipath 
routing enabling to involve some idling resources. 

In section II we provide the comparative analysis of 
existing approaches to QoS management. Section III introduces 
the structural and operational schemes of the proposed QoS 
control toolset. 

II. RELATED WORK 

A. Conventional QoS management 

There are multiple well-known approaches to the quality of 
service management. Introduced by the model of Integrated 
Services (IntServ) [4], signaling protocol RSVP (and later 
NSLP [5]) provides applications with guarantees over 
throughput and delay of the granted connection by resource 
reservation at each router along the flow path calculated by a 
routing protocol. The reservation restricts schedule of packet 
handling at each affected router because the allocated resources 
are assigned to the flow exclusively and cannot be used even if 
the flow does not fully utilize them at that time. An application 
has to announce its QoS requirements before the connection 
setup and cannot modify them until the connection close. Thus, 
the application is forced to over pledge and reserve resources 
with a margin for the maximum traffic burst. 

IntServ relies on static resource reservation and brakes 
work-conserving operation of switching devices. This results 
into an unnecessary resource fragmentation, similar to the one 
in a computer with paged allocation of RAM. As a result, in 
some cases network fails to supply the connection with the 
requested QoS even if accumulative amount of the network 
resources is enough to make it. The similar problem may be 
also caused by the independence of the signaling and routing 
protocols. There might be a bypass route to avoid the 
overloaded network component, however reservation is 
separated from routing and cannot take this advantage. 

The model of Differentiated Services (DiffServ) [6] 
proposes to replace an awkward resource scheduling for end-
to-end connections with predefined qualities by a local flows 
grading at the network devices. Each device defines a set of 
service classes and attributes each class with a certain QoS. 
Although each flow has a right to request a class with an 
appropriate service, the model does not provide any guarantees 
over the provided packet processing quality. Instead, each 
switch undertakes to share its resources among the flows of 
different classes in accordance with their relative shares. If 
there are no flows for a certain class of service then the 
resources of this class are allocated among the other classes. 
Thereby, switches are work-conserving and never idle when 
there are some packets to process. Although the application 
may specify required class of service for its packets explicitly, 
it is optional. In practice switching devices often calculate the 
class of service for a packet automatically by a certain set of its 
attributes and a mapping preinstalled by the administrator. 

Differentiated Services introduce a way to deal with switch-
level resource fragmentation and increase the overall network 
performance. However, it manages only the network resources 
along the primary route of an application. Thus, some idling 

and suitable resources away from this route are unavailable. 
Moreover, the class of service of the flow is set statically for 
the whole path. Although it is possible to improve granularity 
by dynamic changing of class of service at some points in the 
network this interference into the switching logic is beyond the 
capabilities of the networks of ordinary switching devices 
without a centralized control. 

QoS-routing [7] was intended to improve allocation of 
network resources by constructing individual data transmission 
paths for each connection. Such a fine-grained routing is used 
to balance data flows among several paths, bypass congestion 
involve idling resources aside from heavy loaded channels, and 
take into account the QoS requirements of the application. For 
example, the delay sensitive traffic is usually routed along the 
shortest path, whereas the other flows may be forced to use the 
longer paths. However, a practical implementation of this 
method requires a low-level and centralized control over the 
switching devices unavailable back in time of its emergence. 
Moreover, QoS-routing algorithms tried to treat the problem of 
resource allocation as a global optimization problem with 
multiple constraints and their implementations were too slow to 
run on the fly. 

B. QoS management with SDN 

SDN supplies a complete control over the packet handling 
rules of each switch in the network, and an SDN controller may 
easily implement each of the mentioned approaches to QoS 
management without a regard to a complex distributed 
exchange algorithms for service data. Controller can mimic 
resource reservation by dynamic adjustment of traffic shaping 
parameters at its border switches of the network. It is also 
capable to collect a comprehensive set of the QoS metrics and 
implement a relevant QoS-aware routing on a per-flow basis, 
or improve capabilities of DiffServ with dynamic reassigning 
the class of service mark for any flow at any point of the 
network. Unfortunately, neither flexibility, nor convenience of 
SDN removes the inherent disadvantages of these methods. 

SDN provides a technical capability to gather the relevant 
information about the network, but it is a hard task to construct 
a comprehensive algorithm to dispose the collected data 
properly. This algorithm is expected to analyze a set of 
heterogeneous parameters and synthesize such a set of 
appropriate forwarding instructions for the switches to achieve 
a better network performance. It is hardly believable there are 
real opportunities to construct routing algorithm able to work 
on the fly [8]. 

SDN does not give us any advantage to cope the problem of 
how to transmit QoS requirements from the user application to 
the Control Plane. However, this problem has been realized. 
FLARE [9] proposes to enable such an interaction by 
appending of arbitrary data to the tail of a packet and 
introducing corresponding handlers for the piggy-backed data 
at both end-host and switches. PANE [10] considers direct 
communication of the end-host application and the controller. 
On the other hand, loosening of the separation between the 
Data Plane and the Control Plane leads to potential security 
breach, and there is a lot of skepticism about its overall 
advantage. 
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Another reason for controller to avoid interference in 
applications communication is Internet Architecture Principles 
[11, 12]. As an evolutionary development of the network 
architecture SDN should not violate these principles. End to 
End principle states “The network’s job is to transmit 
datagrams as efficiently and flexibly as possible. Everything 
else should be done at the fringes…” [11]. Clark explained this 
principle with the following words “The function in question 
can completely and correctly be implemented only with the 
knowledge and help of the application standing at the end 
points of the communication system. Therefore, providing that 
questioned function as a feature of the communication system 
itself is not possible. (Sometimes an incomplete version of the 
function provided by the communication system may be useful 
as a performance enhancement.)” [13]. 

C. Multi-Path Routing 

An SDN controller has a number of options to provide an 
application with a connection of an appropriate QoS: controller 
can route the flow through the underused links, reallocate the 
resources along the existing routes and/or impose stronger 
restrictions to the other flows. However, it requires too 
complicated algorithm to manage all the listed possibilities 
simultaneously. MPRSDN proposes to decompose this global 
resource management problem into a set of smaller problems 
with help of Multi Path Routing. 

MPRSDN associate each connection with a simple module 
to detect violations of its QoS requirements and request the 
controller to supply additional resources on their occurrences. 
The controller module handles the requests by constructing of 
additional data transmission paths through the network. The set 
of paths granted to a connection is used to balance its packets 
and gain a larger amount of the resources. If controller provides 
connection with a path, it has not used before, there is a good 
chance, this path improves accumulated QoS of the connection. 

There are multiple well-known approaches to implement 
the described splitting and balancing of a packet flow among a 
set of alternative paths. Routers often use Equal Cost Multi 
Path (ECMP) [14] to route the traffic addressed to the same 
destination along the different paths with equal cost. ECMP is 
simple to implement by distributing of the incoming packets 
with round-robin. However, such a naive approach to balancing 
results into packet reordering, the most of TCP congestion-
avoidance algorithms treat as a packet loss. As a result, the size 
of congestion window decreases, and the original non-split 
connection may even outperform the balanced one. Thereby, 
practical balancer implementations send all the packets of a 
single connection along the same route. So, they are often 
unable to split the “elephant” flows and overcome the problem 
of fragmentation at the data channels. 

In contrast to ECMP, Multi Path (MP) TCP [15] follows 
the End to End principle and proposes to split a single TCP 
session into smaller virtual sessions at the end hosts. MP TCP 
operates transparently for an application. Upon the setting up 
of the connection, it creates a static set of internal sockets. Each 
of these sockets is used to establish an individual connection 
trough the network. MP TCP balances the packets among this 
set of connections and uses an original congestion-avoidance 

algorithm to cope inter-connection packet reordering without a 
significant performance drop. 

Although MP TCP implements an automatic adjustment for 
the packet ordering, it does not provide any means to ensure 
the allocated internal connection use different paths. Existing 
implementations of MP TCP send the information about the 
original connection the packet within an optional L4 field the 
most of network devices unable to distinguish. Thereby, flows 
of the same application are most likely to take the same path. 
This fact cancels all the advantages of a multipath routing, until 
the sender or/and receiver has multiple interfaces connected to 
different networks. 

Fortunately, flexibility of SDN networks can surmount the 
disadvantages of MP TCP. Controller may easily detect a new 
connection is setting up by intercepting its first packet; get any 
of its attributes including the data stored inside of the payload; 
find out the original application connection it belongs to, and 
minimize intersection of its route with the other flows of the 
same connection. 

III. QUALITY OF SERVICE IN MULTI PATH SDN 

The paper refers a middleware designed to split a single 
Application Flow (AF) into a set of Sub Flows (SF) and 
multiplex these SFs into a single AF as a Multi Flow Agent 
(MPA). For a given AF, we will call the AF degree a number 
of SFs, carrying its data. 

Each SF establishes a connection between a pair of unique 
L4 addresses: one at the source and one at the destination host. 
Network switches are supposed to distinguish different SFs by 
their headers and treat each of them as an ordinary and 
independent flow. In particular, each SF may attribute its 
packets with a higher TOS/DSCP mark and get a better service 
as compared to the other SFs of the same AF. 

Although MP TCP agent may be considered as an example 
of MPA, we imply the latter to be a more general term. 
Different MPA implementation may go over TCP and provide 
the similar multi path transmission to other protocols, modify 
the number and intensity of SFs dynamically without the need 
to reestablish the parent AF, rate-limit or shape individual SFs 
with some arbitrary algorithms, and interact with an SDN 
controller explicitly or implicitly. 

 To design an efficient implementation of the MPRSDN 
one should answer on the following questions: 

 How to retrieve the QoS requirements for an 
application? 

 How to monitor and properly estimate the quality of 
the granted connections? 

 How to keep connection properties compliant with the 
QoS requirements of applications by MPA? 

 How should MPA and SDN controller interact? 

A. Deriving QoS requirements 

MPRSDN does not use the greedy approach. It requests 
extra resources dynamically and only when it founds that there 
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is a risk to violate the QoS requirements. Thus, it allows 
application to release the sparse part of the previously acquired 
resources and request the missing resources without 
reestablishing of the connection. For example, a network 
video-streaming application may loosen its requirements to the 
connection, while playing static scenes, and increase them at 
the moments of active motions. 

Thereby, there is an issue, how to retrieve the initial QoS 
requirements of the application and how to modify them during 
the MPA operation? There are two options to resolve this 
problem: (1) make application to specify its QoS requirements 
through a socket-level API, or (2) derive these requirements 
from some application profile. 

Using of the socket-level API results into a considerable 
complication of network programming for the application 
developer. Although this kind of effort may result into a 
reasonable benefit for applications with severe dependency on 
the connection QoS, in many cases this functionality will be 
considered as unnecessary and obscuring. 

Transparent deriving of the application requirements does 
not imply any extra effort by the developers, and has more 
perspectives to be generally accepted. However, the only 
connection characteristic that can be estimated transparently is 
its intensity. This kind of data may be sufficient to derive the 
required bandwidth, but it does not allow estimate the other 
QoS characteristics such as a transmission delay. 

B. Monitoring of a connection QoS 

SDN controller has comprehensive possibilities to monitor 
QoS of an e2e connection. There are some researches devoted 
to constructing and maintenance of a traffic matrix formed by 
an enumeration of bandwidths consumed by each of the end-
host applications [16] and measurement of one-way delay for 
an arbitrary flow while it moves through the network 
infrastructure [17]. However, a comprehensive fine-grained 
measurement imposes a frequent polling of the devices and 
results into excessive loading of both network devices and the 
controller. There are some attempts to reduce intensity of the 
controller requests to the devices by using the dead reckoning 
estimation [18]. The idea is to use a simple network model to 
approximate parameters of interest between the measurements 
and reduce their total number. However, the simulation of a 
network with an appropriate accuracy often results into even 
higher requirements to computation power of the controller. 

As a result, controller has to delegate part of its monitoring 
functions to MPAs. However, monitoring at hosts becomes 
rather challenging, especially in case of a UDP-like half-duplex 
connections. UDP sender does not know the amount of packets 
dropped and both the connected hosts are unaware of an actual 
network delay value. In practice, this problem is usually 
moderated by wrapping the raw application data into RTP 
protocol [19]. It establishes an additional RTCP connection to 
send periodic statistics backwards from destination to source, 
and reduces the case of half-duplex connections to the simpler 
full-duplex one. TCP-like connection allows the hosts to detect 
bandwidth shortage by the amount of the lost packets and infer 
a one way delay of the connection from the RTT provided by 
the underlying congestion avoidance algorithm. 

C. QoS management with MPRSDN 

MPRSDN provides two ways to meet QoS requirements: 
adjustment of the number of SFs in the AF and individual 
regulation of their service classes. Upon QoS violation MPA 
scales AF partitioning and/or steps up the service for some of 
its SFs. Upon detecting excessive overprovisioning MPA 
rollbacks the parameters to avoid unnecessary overhead and 
simplify the AF maintenance. 

The listed QoS management means are independent of each 
other, and may be applied in any order. However, one sequence 
may be superior in the first set of cases, while the other is more 
efficient in another set. Thus, it makes sense to develop a set of 
strategies to regulate the properties of some SFs and adjust 
their number for different types of requirement violations in a 
most efficient way. A set of appropriate MPA heuristics may 
include the following examples: 

 When accumulated bandwidth of the SFs subsides, 
some network channel is likely to become congested. In 
this case rise in classes of service for the SFs with the 
lower throughput is usually less efficient than increase 
in the number of the SFs. 

 If the estimated AF delay exceeds the allowed upper 
limit, MPA should accelerate the slowest of its SFs. 
One way to accomplish this task is to give up using this 
SF and reallocate its data among the others. 

 If the violation is due to a change in the requirements of 
an application, there are no reasons to increase the 
degree of AF partitioning. Thereby, MPA should cover 
the lack of resources by rising of QoS requirements for 
some of the existing SFs in the first place, and consider 
increasing of SF number to be an auxiliary leverage. 

D. Communication between an MPA and and SDN controller 

SDN provides two different ways to install forwarding rules 
into the network devices: the proactive and the reactive one. 
The former one implies an SDN controller foresees the need in 
some paths through the network and sets up appropriate rules 
in advance. Any packets that match these rules are transmitted 
by the devices autonomously without further involvement of 
the controller. Thus, it is unable to track the establishment of 
new connections directly. The reactive approach implies the 
border network devices request packet processing instructions 
from the SDN controller upon receiving a packet without a 
match among the existing rules. 

In order to support multipath routing an SDN controller 
should identify individual SFs of a single AF and provide them 
with different paths. This requires the controller to react MPA 
in dynamic. Thus, the controller either has to provide MPAs 
with ability to connect it directly through a dedicated channel, 
or operate in the reactive mode. Since the former one implies 
mixing of Data and Control planes and requires a fundamental 
change of the interaction between the host and the network, we 
give preference to a more practical second option. 

While requesting controller for instructions to process a 
packet of an unknown flow, switching device either provide 
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controller with a set of preprocessed headers, or supplement 
these headers with the original packet body. 

MPAs at the sender and the receiver hosts interact to each 
other through a certain set of L4 header options. These are used 
to initiate a new multipath connection, preserve correct relative 
ordering among the packets sent through the different SFs of a 
single AF, synchronize opening and closing of certain SFs, etc. 
Commodity switching devices cannot parse optional headers at 
a suitable speed. Therefore they are able to identify new data 
flows, and new SF in particular, but are unable to simplify 
matching against the existing AFs. Thus, to lower the threshold 
for the deployment the controller has to request the switches to 
send a full body of the packet and extract the multipath options 
from the packet by its own. 

After detection and identification, the controller should 
check validity of the new flow with regards to a certain set of 
policies. In this paper we restrict the term policy to a scope of 
QoS management and consider the following examples of the 
enforced restrictions: 

 AF may split into at most 10 SFs simultaneously; 

 AF may request at most 5 connections within a second; 

 SFs of a certain AF cannot request priority service. 

 Accumulated bandwidth of the AF must not exceed 10 
Mbps (this kind of restrictions implies monitoring). 

Next, the controller should generate an appropriate path to 
route the SF through the network and take into account the 
dependencies among the SFs of a single AF. 

The path should avoid the points of congestion. Otherwise, 
the new extra flow will not bring much gain, but subtract some 
resources from the other flows, who would probably try to take 
their resources back with their own extra flows. Thereby, the 
MPAs will compete to each other and request the controller to 
grant them more and more SFs. This kind of racing reveals no 
new resources but complicates packet processing and occupies 
the links with unnecessary headers. Thereby, the controller 
should banish appending of extra SFs, if there no appropriate 
path to set it up. 

Next, the controller has to minimize the number of links 
traversed by several SFs of a single AF. If an arbitrary subset 
of SF has similar paths, the congestion at any of its components 
is likely to affect both SFs, and the AF multiplexing does not 
increase its accumulated QoS. 

Note the controller should route as flows as SFs without 
regards to violation of the route restriction to preserve network 
availability under a heavy load. 

Taking into account these remarks, the routing library of 
the controller may calculate paths using the following logic: 

1. Identify the congested links using network monitoring 
and temporarily exclude corresponding edges from the 
topology graph. 

2. If the flow is not a subsidiary one, route it with some 
Shortest Path algorithm (such as the Dejkstra one). If 

there is no appropriate path, route the flow using the 
original topology graph; 

3. Otherwise, generate a set of alternative paths using one 
of K Shortest Path algorithms (such as [20]) and 
choose a path with high QoS and minimal intersection 
with other SFs of the same AF. 

If the new SF violates some multipath routing policies or 
the controller fails to construct an appropriate path to route it, 
the packets of this SF should be dropped. This behavior of the 
controller prevents MPA to increase the degree of partitioning 
for some AF, and the AF will likely violate QoS requirements 
of some application. However, the requested flow was unable 
to give more resources to the AF. 

IV. CONCLUSION 

MPRSDN method is a novel approach to manage QoS of 
the connections in SDN networks based on multipath routing. 
The primary focus of our approach is to meet the QoS 
requirements of network application. However, it does not 
coincide with the aims of the IntServ model. The latter 
considers QoS requirement as a dominant, and does not take 
much account to the capabilities of the network. As well as the 
DiffServ model, we tolerate QoS violations in favor of network 
efficiency. However, we do not rely on convenience of local 
resource reallocation at the switching hardware. Multipath 
routing allows our approach to increase the search space for the 
idling resources dramatically and to result into their better 
allocation. Although our approach is fully compatible with 
DiffServ model and they may supplement each other, it can 
also work independently. 

We have also proposed a possible scheme to implement the 
idea of QoS management with multipath routing in practice. 
Although the scheme provides conventional network services 
to any hosts, only the ones with the preinstalled multipath agent 
are capable to use all its advantages. Note the agent does not 
provide any interface to manage the host externally, and does 
not inject any additional security breaches. As for the network 
infrastructure, our approach does not impose any requirements 
to the hardware. The only modification of the Control Plane we 
need is the specialized routing application. Although controller 
interacts with agents at the hosts and reallocates resources in 
response to their request, this kind of communication does not 
break separation between the Control and Data plane. 
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Abstract—Designing of network update algorithms is urgent
for development of SDN control software. A particular case of
Network Update Problem is that of adding a set of forwarding
rules into flow-tables of SDN switches (say, to install new
paths in the network) or restoring seamlessly a given network
configuration after some packet forwarding rules have been
disabled (say, at the expiry of their time-outs). Some algorithms
provide solutions to these problems but only with the help of
tagging techniques. But is it possible to perform a consistent
network update without tagging? We study this problem in the
framework of a formal model of SDN, develop correct and safe
network updating algorithms, and show that in some cases it is
impossible to update consistently network configurations without
resorting either to tagging or to priorities of packet forwarding
rules.

Keywords—software defined network, network update, forward-
ing rule, updating command, packet forwarding relation, invariant,
post-condition

I. INTRODUCTION

Almost as soon as the concept of SDN emerged, a number
of projects on the development of languages and tools for SDN
programming have been launched: Frenetic [1], Maestro [2],
Procera [3], Nettle [4]. Although focusing on different aspects
of network management, they exploit the same principal idea
of multi-level programming: replace a low-level imperative
interfaces of OpenFlow commands and messages [5] with a
high-level abstractions for querying network state, defining,
updating and combining policies in a consistent way. In these
languages the application programs for SDN controllers could
be designed in highly abstract terms, like ”Maintain the current
configuration until an event E occurs”, or ”As soon as a
rate of the flow F exceeds the bound c change seamlessly
the route A to B”, etc. It is highly desirable to make these
constructs modular; then simple policies can be formed in
isolation and later composed with other modules to create more
sophisticated switch-level and net-level forwarding policies.
At the next stage these high-level constructs are translated
into appropriate sequences of low-level instructions that are
more adapted to OpenFlow protocol; they form some kind
of objective code. Finally, a composition of such low-level
instructions is transformed into a sequence of OpenFlow
commands to be delivered to SDN switches.

Certainly, a great deal of problems have to be solved
to implement this approach to SDN programming. Some of
them are usual tasks of system programming; in choosing
appropriate means to meet the challenge one would probably
more suffer from embarras de choix than from desolation.
But there are many problems that are totally specific for
network control. Some of them arose in the framework of

SDN paradigm and, therefore, have not been considered until
recently. The study of these network control problems is crucial
for the development of SDN programming, since algorithms
and techniques for their solution constitute the routine library
of high-level network programming systems.

One of such problems innate to SDN control is that
of correct and safe modification of network configurations
— Network Update Problem. The list of cases when net-
work update is necessary includes flow-table optimization,
maintenance of configurations at shutting down switches and
links, or the expiry of forwarding rules’ time-out, end host
migration, load balancing, changing access control lists, traffic
monitoring.

In the most general setting Network Update Problem
(NUP) is as follows: given a network configuration C – a
network topology coupled with an assignment of flow-tables
to switches, – and a pair of network specifications – an
invariant Φ and a post-condition Ψ – compute a sequence α
of flow-table updating commands such that by applying α to
C we finally obtain a configuration C ′ which satisfies Ψ while
every intermediate configuration satisfies Φ. In the early papers
[6], [7], [8], [9] researchers considered only some special
cases of this problem for specific protocols and operational
practices to prevent transient anomalies such as forwarding
loops, black-holes, disconnection, etc. A far more systematic
study of NUP was launched in [10] and continued in [11], [12],
[13], [14]. In these papers the authors studied the problem
of consistent global SDN update, namely, how to transform
a given configuration C into another given configuration C ′

in such a way that every packet traversing the network is
forwarded either by the rules of C or by the rules C ′, but
not by their mixture.

In [12] it was shown that consistent global update can be
achieved with the help of a three-phase commitment algorithm
which operates with meta-data — tags or labels attached to
every data packet. It is assumed that every stable network
configuration C is associated with some version number (tag)
LC . When a packet arrives at some ingress port of the net it is
stamped with this tag (e.g., it may be stored in a VLAN field).
Tag LC is included in the patterns of all forwarding rules and
the switches in configuration C process only those packets
that have a set version number. To alter from configuration
C to a new network configuration C ′ the update algorithm
first installs the forwarding rules of new configurations C ′

guarded by the next version number LC′ in the middle of the
network. At completing the first phase the algorithm enables
the new configurations C ′ by installing rules at the perimeter
of the network that stamp packets with the next version number
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LC′ . Finally, the the out-of-date rules of configuration C are
removed. In [13], [14] the authors considered the optimization
issues of implementation of their algorithms.

Network update problem has been studied in some other
papers. An algorithm offered in [11] redirects traffic through
the controller, introducing substantial overhead and limiting
packet-processing throughput. For the same purpose the au-
thors of [15] suggested to use scheduled execution time to
coordinate network updating. Some preliminary studies of
other variants of NUP have been carried out in [16] (syn-
thesis of network configurations) and in [17], [18] (flow-table
optimization).

Although network update algorithm presented in [12] gives
a universal solution to some variants of NUP, its safe and
correct implementation requires additional resources — extra
fields in packet headers. Therefore, it is also important to
study the cases of NUP that can be solved by means of
some tag-free techniques. In this paper we consider the case
of NUP when a new network configuration C ′ is obtained
from an initial configuration C by adding a finite set of packet
forwarding rules into flow tables of some switches. Or, in other
terms, this variant of NUP may be viewed as the problem of
restoring a SDN configuration after some packet forwarding
rules have been disabled. To the extent our knowledge, this
problem has not been considered yet in a formal setting. Our
contribution to the study of Network Recovering Problem
(NRP) is twofold. First, following [12] as the example, we
introduce an enhanced abstract model of SDN which is both
compatible with OpenFlow protocol [5] and suitable for setting
up formally all those variants of NUP that have been studied
in [10], [11], [12], [13], [14], [16], [17], [18]. Second, in the
framework of the said model of SDN we define formally NRP,
give solutions to some of its basic cases, and show that even
this simple variant of NUP is not quite trivial.

II. NETWORK MODEL

To build the formal model of SDN we take OpenFlow
protocol [5] as a standard and abstract from the internal
structure of packets, forwarding rules and reconfiguration
commands: packet headers and ports are considered as atomic
entities, match sections and action sections of forwarding rules
are specified by predicates on packet states. Unlike [12], we
define network semantics not in terms of packet-processing
transitions for individual packets in a network (per-packet
abstraction) but in terms of packet forwarding relations induced
by packet forwarding rules in the flow-tables of SDN switches
(per-flow abstraction). The similar approach is used in some
papers on network verification (see [19], [20]).

Denote by H the set of all packet headers, by W the set
of all switches in a SDN, and by P the set of data flow ports
of a switch (all switches are assumed to be of the same type).
The pairs from V = P × W are called network points, the
pairs from L = H × P are called local packet states, and the
triples from S = H×P ×W are called packet states. In every
switch two special ports Drop and Contr are distinguished.
Packets queued to Drop port (Contr port) have to be dropped
(sent to the controller). We denote by L0 the set H × (P ∪
{Drop,Contr}.

Network topology is defined by a topology relation T ⊆
V × V such that (v′, v′′) ∈ T iff there is a point-to-point link
between v′ and v′′. A point v is an egress point if it is not
linked to any point in the network. Networks communicate
with the outside world (environment) via egress points. We
denote by ET the set of all egress packet states 〈h, p, w〉, where
〈p, w〉 is an egress point of the network.

A forwarding rule is a triple r = (Gr, Ar,mr), where
Gr ⊆ L, Ar ⊆ L × L0, and mr is a positive integer. A
predicate Gr (guard) is an abstraction of a match section of
the rule, a binary predicate Ar (action) is an abstraction of an
action section of the rule, and mr is a priority of the rule. The
effect of r is specified by a relation Fr ⊆ L × L0 such that
(`, `0) ∈ Fr ⇐⇒ ` ∈ Gr ∧ (`, `0) ∈ Ar.

A flow-table tab of a switch w is a finite set of forwarding
rules {r1, r2, . . . , rN}. The semantics of tab is specified by
a packet forwarding relation Rtab as follows. Let k be the
highest priority of the rules from tab. For every i, 1 ≤ i ≤ k,
denote by tabi the set of rules from tab which have priority i:
tabi = {(G,A, i) : (G,A, i) ∈ tab}. Then define recursively
(from k down to 1) the pairs of predicates Ritab and Bitab as
follows:

Rktab =
⋃

r∈tabk
Fr, Bktab =

⋃
r∈tabk

Gr;

Ritab = {(`, `0) : ∃ r (r ∈ tabi ∧ ` /∈ Bi+1
tab ∧ (`, `0) ∈ Fr}),

Bitab = Bi+1
tab ∪

⋃
r∈tabi

Gr.

Assuming that missed packets are sent by default to the
controller, we introduce also the predicate

R0
tab = {(〈h, p〉, 〈h,Contr〉) : 〈h, p〉 /∈ B1

tab}

and define Rtab =
k⋃
i=0

Ritab which means that every packet

arrived at some port of the switch w is either processed by the
rule of the highest priority that matches the local state of the
packet, or sent to the controller.

SDN flow-tables must be unambiguous: no packets match
two rules of the same priority in the same table, i.e. for every
pair of rules r1 = (G1, A1,m1) and r2 = (G2, A2,m2) if
m1 = m2 then G1 ∩ G2 = ∅. Denote by Tab the set of all
possible unambiguous flow-tables.

A network configuration C on the set of switches W
is a pair (T, I), where T is a topology relation on V , and
I : W → Tab is a table assignment function which maps
a flow-table tabw = I(w) to every switch w. Given a
network configuration C = (T, I) we define a 1-hop packet
forwarding relation RC on the set of (global) packet states S as
follows: (〈h, p, w〉, 〈h′, p′, w′〉) ∈ RC if one of the following
requirements holds

1) there exists such a port p′′ that (〈h, p〉, 〈h′, p′′〉) ∈
RI(w) and (〈p′′, w〉, 〈p′, w′〉) ∈ T (packet transmis-
sion to the next switch);

2) w′ = w, (〈h, p〉, 〈h′, p′〉) ∈ RI(w) and p′ is an egress
port (packet transmission outside the network);

3) w′ = w, (〈h, p〉, 〈h′, p′〉) ∈ RI(w) and p′ = Drop
(packet drop);
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4) w′ = w, (〈h, p〉, 〈h′, p′〉) ∈ RI(w) and p′ = Contr
(PacketIn message to the controller).

The relation RC provides the semantics of a network
configuration C and completely specifies the behavior of
packets in a network. Nevertheless, sometimes only the con-
nectivity between egress ports via data paths may be of
particular importance. A sequence of packet states path =
s0, s1, . . . , si, si+1, . . . is called a path in a network config-
uration C iff s0 ∈ ET , and (si, si+1) ∈ RC holds for every
i, i ≥ 0. If a path ends with a packet state s = 〈h, p, w〉
such that either s ∈ ET , or p ∈ {Drop,Contr}, then it is
called a complete path. Denote the set of all complete paths in
a network configuration C (that begin with an egress packet
state s) by Path(C) (respectively, Path(C, s)).

Network configurations alter at the expiry of forwarding
rules’ time-outs, at the shutting down or failure of links, ports,
or switches, and by the commands received from the controller.
OpenFlow protocol [5] includes reconfiguration commands of
the following types:

• add(w, r) to install a forwarding rule r in the flow-
table of a switch w;

• del(w,G0,m) to remove rules from the flow-table of
a switch w: a rule r = (G,A,m) is uninstalled iff its
guard G is subsumed by a predicate G0.

We denote by com(C) the result of application of a re-
configuration command com to a configuration C. Given
a sequence of commands α = com1, . . . , comk we define
α(C) = comk(. . . , com1(C) . . . ).

Since SDN is a completely asynchronous distributed sys-
tem, any pair of reconfiguration commands (even though
addressed to the same switch) can be executed in an arbi-
trary order. OpenFlow protocol provides some synchronization
means to regulate partially the order of command execution.
Without going into details of such means we will assume that
every finite set of reconfiguration commands Com (in what
follows we call it a reconfiguration batch) is supplied with a
partial order ≺: if com′ ≺ com′′ then at every run of the batch
Com the command com′′ is executed after the completion
of com′. Given two reconfiguration batches (Com1,≺1) and
(Com2,≺2) we write (Com1,≺1); (Com2,≺2) to denote
their sequential composition which is a batch (Com1 ∪
Com2,≺) such that any pair of commands com′, com′′ is
ordered as com′ ≺ com′′ iff either both com′ and com′′

are in the same set Comi, i = 1, 2, and com′ ≺i com′′,
or com′ ∈ Com1 and com′′ ∈ Com2.

III. NETWORK RECOVERY PROBLEM

There are many ways to specify formally packet forwarding
policies. Since a pair (S,RC) may be viewed as a Labeled
Transition System, one may specify a desirable network behav-
ior by using Temporal Logics, µ-calculus, or some fragments
of the first-order logic (see [10], [12], [16], [19], [20]). Alter-
natively, a language of extended regular expressions introduced
in [21] may be used to specify packet forwarding policies in
terms of sets of paths in admissible network configurations.

In the most general case Network Update Problem (NUP)
can be set up as follows. Let Φ (invariant) and Ψ (post-
condition) be some formal specifications of packet forwarding

policies, and C be a network configuration. Then NUP is
the problem of computing a reconfiguration batch (Com,≺)
such that for every linearization α of the partially ordered set
(Com,≺) the following requirements hold: 1) α(C) |= Ψ, and
2) β(C) |= Φ for every prefix β of α.

Network Recovery Problem (NRP) is a particular case of
NUP. A network configuration C ′ may spontaneously turn into
a configuration C upon removing some forwarding rules from
flow-tables, say, due to the expiry of their time-outs, erroneous
execution of reconfiguration commands, switch faultiness, etc.
Let C ′ be an arbitrary configuration, and forwarding rules
r1, r2, . . . , rn are in the flow-tables of switches w1, w2, . . . , wn
respectively. Suppose that time-outs of all these rules expired,
the switches uninstalled them and notified the controller about
these events. Thus, the configuration C ′ degraded to config-
uration C. The aim of the controller is to restore seamlessly
C ′ from C. Here the ”seamlessness” requirement means that
in the course of network recovery any outside observer (an
end host or the controller) detects only minimal necessary
changes in the behaviour of the network. Namely, only those
complete data paths that are in Path(C) but not in Path(C ′)
dissolves, and only those paths that are in Path(C ′) but not in
Path(C) arise. In fact, a seamless network recovery assumes
that a reconfiguration batch should operate by the principle
”push-and-forget”: after being pushed to the SDN control flow
channel it neither cause network to transmit any unexpected
PacketIn message to the controller, nor generate any redundant
data routes in the network. In more precise terms this problem
may be regarded as a variant of NUP, where post-condition
Ψ(X) is X = C ′, and invariant Φ(X) is specified by the
conjunctive formula

Path(C) ∩ Path(C ′) ⊆ Path(X) ∧
Path(X) ⊆ Path(C) ∪ Path(C ′)

When configurations C and C ′ are fixed we denote this variant
of NUP as (C,C ′)-NRP.

We begin with the consideration of the case when all
rules in C and C ′ have the same priority. It should be
noticed that sometimes it is impossible to restore seamlessly
the configuration C ′ just by installing the lost rules in some
appropriate order in the corresponding flow-tables. Consider a
network configuration C ′ depicted on Fig. 1. Here H = {g, h},
and the rules r1 and r2 serve the packets of both types g and h.
Notations r1 : g, h and r3 : g mean that a rule r1 is applicable
to the packets of both types g and h, whereas a rule r3 is
applicable only to the packets of the type g. Clearly, there are
4 complete paths in C ′:
p′1 = (h, v11), (h, v31), (h, v21), (h, v41), (h, v43);
p′2 = (g, v11), (g, v31), (g, v32);
p′3 = (g, v22), (g, v41), (g, v12), (g, v31), (g, v32);
p′4 = (h, v22), (h, v41), (h, v43).
Suppose that the rules r1 and r2 disappeared and C ′ degraded
to a configuration C. Since no rules serve the packets of the
types h and g in the switches w1 and w2, these packets are
sent to the controller by default. Thus, there are 4 complete
paths in C:
p1 = (h, v11), (h,Contr); p2 = (g, v11), (g, Contr);
p3 = (h, v22), (h,Contr); p4 = (g, v22), (g, Contr).
But an attempt to restore C ′ by adding first the rule r1 to
the flow-table of w1 (see Fig 2.) brings a complete path
p0 = (h, v11), (h, v31), (h, v21), (h,Contr) which is neither
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in Path(C), nor in Path(C ′). A similar situation holds when
one tries to install first the rule r2.

This effect is due to the mutual dependency between the
rules r1 and r2: each of them is able to process packets
that have been forwarded by the other rule. To restore a
configuration seamlessly we need to break the loops in the
dependence of one rule upon another in a given configuration.
To this end we introduce auxiliary predicates on the set L of
packet local states.

Let Z be a arbitrary network configuration and r′ =
(G′, A′,m′), r′′ = (G′′, A′′,m′′) be a pair of rules from the
flow-tables of switches w′ and w′′ respectively. Denote by R+

Z
the transitive closure of 1-hop packet forwarding relation RZ .
Then a dependency predicate θr′r′′ on L is specified by the
formula

θr′r′′(x) = ∃s ∈ S, ` ∈ L0 [ET (s) ∧R+
Z (s, 〈x,w′〉)∧

G′(x) ∧R+
Z (〈x,w′〉, 〈`, w′′〉) ∧G′′(`)] .

which, intuitively, holds iff there exists a complete path
s
r0→ s1 → · · · si

r′→ si+1→· · · sj
r′′→ sj+1 → · · · such that

the rule r′ processes packets at the state si = 〈x,w′〉, and
the rule r′′ processes the same packets but after the rule r′.
Dependency predicates give rise to a binary relation vZ on
the set of forwarding rules in the flow-tables of configuration
Z: a rule r′′ depends on a rule r′ (r′′ vZ r′ in symbols)
iff θr′r′′ 6≡ false. The relation vZ in its turn induces a
binary relation ≺Z on the set of reconfiguration commands:
add(w′′, r′′) ≺Z add(w′, r′) iff a forwarding rule r′′ in the
flow-table of a switch w′′ depends on a rule r′ in the flow-
table of a switch w′ in a network configuration Z.

The most simple case of (C,C ′)-NRP is that of partially
ordered dependence on the set of removed rules.

Theorem 1. Suppose that a network configuration C ′

turns into a configuration C as some forwarding rules
r1, r2, . . . , rn have been disabled in the flow-tables of switches
w1, w2, . . . , wn. Suppose also that vC′ is a partial order on
the set of rules E = {r1, r2, . . . , rn}. Then a reconfiguration
batch (Com,≺C′), where Com is the set of commands
add(wi, ri) : 1 ≤ i ≤ n, provides a solution to (C,C ′)-NRP.

If a dependency relation vC′ is not a partial order on the
set of removed rules then priority mechanism becomes crucial
for the seamless restoration of C ′.

Theorem 2. Suppose that network configurations C and C ′

are the same as in Theorem 1 and vC′ is not a partial order on
the set of removed rules E , i.e. r′ vC′ r′′ and r′′ vC′ r′ hold
for some pair of rules r′, r′′ in E . Then any reconfiguration
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batch (Com,≺) composed of reconfiguration commands that
operate with forwarding rules of the same priority is not a
solution to (C,C ′)-NRP.

To resolve (C,C ′)-NRP for an arbitrary vC′ we will use
auxiliary forwarding rules with multiple priorities. For every
forwarding rule ri, 1 ≤ i ≤ n, such that ri = (Gi, Ai, 1)
we split this rule against the rules of the set E as follows:
for every binary tuple σ = (σ1, . . . , σn) we define a guard

Gi,σ = Gi∧
n∧
j=1

θ
σj

ij , where θ1ij = θij and θ0ij = ¬θij , and form

a set of forwarding rules Rules(ri) = {ri,σ = (Gi,σ, Ai, 2) :
σ ∈ {0, 1}n, Gi,σ 6≡ false}. Let Z be a configuration obtained
from C by inserting all rules from the set Rules(ri) to the
flow-table of every switch wi, 1 ≤ i ≤ n. Clearly, Z is an
unambiguous network configuration which has the same 1-hop
packet forwarding relation as C ′.

Lemma 1. If a network configuration C ′ is free from forward-
ing loops (i.e. R+

C′ is a partial order relation on the set of
packet states S) then the dependency relation vZ is a partial

order on the set of rules
n⋃
i=1

Rulesi.

Now we are able to introduce a three-phase solution
to (C,C ′)-NRP. Let Com1 be the set of reconfiguration
commands {add(ri,σ, wi) : ri,σ ∈ Rulesi}, Com2 be the
set of reconfiguration commands {add(ri, wi) : 1 ≤ i ≤
n}, and Com3 be the set of reconfiguration commands
{del(wi, Gi, 2) : 1 ≤ i ≤ n}.
Theorem 3. Suppose that configurations C and C ′ are
free from forwarding loops. Then a reconfiguration batch
(Com1,≺Z); (Com2, ∅); (Com3, ∅) provides a solution to
(C,C ′)-NRP.

This reconfiguration batch operates as follows. At first it
installs in the appropriate order the high-priority split rules
from Rules(ri), 1 ≤ i ≤ n, and, thus, seamlessly restores all
complete paths of C ′. Next it installs (in an arbitrary order)
the low-priority rules from E . Since every low-priority rule
ri from E is ”locked-out” by the set of high-priority rules
Rules(ri), this does not affect the 1-hop packet forwarding
relation. Finally, the split high-priority rules ri,σ are deleted
(in an arbitrary order). At the disabling of every such rule ri,σ
its functionality is immediately passed to the corresponding
low-priority rule ri. As the result the 1-hop packet forwarding
relation does not change in the course of such deletions.

Clearly, the solution provided by Theorem 3 is not optimal
since it requires to split all forwarding rules to be reinstalled. A
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more careful treatment of the dependency relation vC′ makes
it possible to reduce considerably the size of reconfiguration
batch.

Let E = {r1, r2, . . . , rn} be a set of forwarding rules to
be reinstalled to the flow-tables of the network. Consider a
transitive-reflexive closure v∗C′ of the dependency relation vC′

on the set of rules E . It is well known that v∗C′ is a quasi-
order, and the set E can be partitioned into equivalence classes
E1, . . . , Ek w.r.t. v∗C′ . Occasionally, some Ei may coincide with
the whole set E , but typically non-trivial equivalence classes
are rare and small. Now for every non-trivial equivalence class
Ej , 1 ≤ j ≤ k, we split each rule ri from Ej but only against
all rules from the same equivalence class Ej . Thus, we obtain
the set of auxiliary rules R̂ules(ri) for every rule ri, ri ∈ E ,
and this set is typically far smaller than Rules(ri).

Lemma 2. Suppose that a configuration Ẑ is obtained from
C by formally inserting all forwarding rules from R̂ules(ri)
to the flow-table of every switch wi, 1 ≤ i ≤ n. Suppose also
that a network configuration C ′ is free from forwarding loops.
Then the dependency relation vẐ is a partial order on the set

of rules
n⋃
i=1

R̂ulesi.

Following this lemma we may form a reconfiguration batch
in the same way as in Theorem 3.

However, if configurations C and C ′ include packet for-
warding rules with multiple priorities it is impossible to
guarantee the solution of (C,C ′)-NRP.

Consider a configuration C ′ depicted on Fig. 3 which
includes rules of high proirity (e.g., r1 : f : H) and low
priority (e.g., r2 : f : L). Let H = {f}. Since the high priority
rules suppress the low priority rules, there is only one complete
path in C:

p1 = (f, v11), (f, v31), (f, v51), (f, v52).

Suppose that high priority rules r1 and r3 were removed and
the configuration C ′ degraded to a configuration C depicted
on Fig. 4. Now the low priority rules in the switches w1 and
w3 recover their capablity and the path

p2 = (f, v11), (f, v21), (f, v31), (f, v41), (f, v51), (f, v52)

becomes active. Clearly, this is the only complete path in
configuration C. But there is no way to restore seamlessly
C ′ from C by means of ordinary reconfiguration commands.

Theorem 4. Suppose that configurations C ′ and C are those
as depicted on Fig. 3 and 4 respectively. Then (C,C ′)-NRP
doesn’t have a solution, i.e. for every reconfiguration batch
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α there exists a prefix β of α such that Path(β(C)) 6⊆
Path(C) ∪ Path(C ′).

IV. CONCLUSIONS

We introduced an abstract model of SDN as a uniform
framework for formal study of Network Update Problems and
consider one of the most elementary case of NUP — the
Network Recovery Problem. But as it can be seen from the
list below many other variants of NUP can be formalized in
the same way.

1). Network Configuration Synthesis. Given a post-condition
Ψ build a configuration C ′ such that C ′ |= Ψ. An initial
configuration C is of no importance since to achieve C ′ it
suffices to uninstall all previous rules and then insert new rules
of a target configuration C ′. The study of this variant of NUP
has been initiated in [16].

2). Global Consistent Network Update. Transform a network
configuration C into a configuration C ′ in such a way that
every packet traversing the network in the course of update is
processed either only by the rules of C, or only by the rules
of C ′. In this case the post-condition Ψ(X) is X = C, and
the invariant Φ(X) is specified by the formula

∀ s (ET (s) → ((Path(X, s) ⊆ Path(C))∨
(Path(X, s) ⊆ Path(C ′))) .

Some algorithms for Global Consistent Network Update has
been developed and studied in [10], [11], [12], [13], [14].

3). Local Consistent Network Update. Transform a network
configuration C by safely installing a set of complete paths
Padd and uninstalling a set of complete paths Pdel; the safety
constraint requires that in the course of updating only new
paths from Padd may appear and only paths from Pdel may
dissolve in the intermediate configurations. In this case Ψ(X)
is specified by the formula Path(X) = (Path(C) \ Pdel) ∪
Padd, and Φ(X) is specified by the formula

Path(C) \ Pdel ⊆ Path(X) ⊆ Path(C) ∪ Padd.

This problem has been considered in [6], [7], [8], [9].

4). Network Configuration Optimization. Given a configuration
C and some numerical characteristics of network configura-
tions f(X) (i.e. the total number or the maximal number of
rules in the flow-tables) build an optimal configuration C ′

which has the same 1-hop packet forwarding relation. In this
case Ψ(X) is (RX = RC) ∧ ∀ Y (RY = RC → f(X) ≤
f(Y )), and Φ(X) is RX = RC . Some preliminary studies of
this problem have been made in [18].
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While studying Network Recovery Problem we confine
ourselves with the case of network configurations that include
only forwarding rules of the same priority. Restoration of
network configurations that include forwarding rules with
multiple priorities is a far more complicated task. In a simple
case, when the removal high-priority rules does not uncover
hidden low-priority complete paths, it can be solved with a help
of techniques similar to that in Theorem 3. But in the most
extreme case the removal of high-priority rules may bring a
configuration C ′ to an arbitrary configuration C such that 1-
hop packet forwarding relations of C and C ′ have nothing
in common. In this case Network Recovery turns into Global
Consistent Network Update.

It is worth noticing that to restore network configuration
seamlessly it is inevitable to check dependency relation r′ vC′

r′′ between the forwarding rules r′, r′′ to be reinstalled. The
way to do this is through the using of the tools for verification
of network forwarding policies [19], [20], [21]. Thereby, the
designing of efficient network updating algorithms relies upon
the development of efficient network verification techniques.

Theorems 1 and 3 show that sometimes consistent network
update may be achieved merely by the use of forwarding
rule prioritization which is a far less restrictive reconfiguration
means than those brought into play in [10], [11], [12], [13],
[14]. We think that it is a challenging mathematical task to
give a complete characterization of all those cases of NUP
that could be solved by a particular network reconfiguration
means. Such classification would be very much helpful in the
development of efficient low-level procedures for SDN control.

V. ACKNOWLEDGMENTS

This research is supported by the Skolkovo Foundation
Grant N 79, July, 2012, and by RFBR Grant 12-01-00706.

REFERENCES

[1] N. Foster, M. Harrison, M.J. Freedman, et al., Frenetic: A Network Pro-
gramming Language // Proc. of the 16th ACM SIGPLAN International
Conference on Functional Programming, 2011, p. 279-291.

[2] T. S. E. N. Zheng Cai, A. L. Cox. Maestro: A System for Scalable
OpenFlow Control // Tech. Rep. TR10-08, Rice University, 2010.

[3] A. Voellmy, H. Kim, N. Feamster. Procera: A Language for High-Level
Reactive Network Control // Proc. of the First Workshop on Hot Topics
in Software Defined Networks, 2012, p. 43-48.

[4] A. Voellmy, P. Hudak. Nettle — a Language for Configuring Routing
Networks // Proc. of the IFIP TC 2 Working Conference on Domain-
Specific Languages, 2009, p. 211-235.

[5] OpenFlow Switch Specification. Version 1.4.0, October 14, 2013,
https://www.opennetworking.org.

[6] P. Francois, M. Shand, O. Bonaventure. Disruption-free topology re-
configuration in OSPF networks // IEEE INFOCOM, May 2007.

[7] P. Francois, P.-A. Coste, B. Decraene, O. Bonaventure. Avoiding
disruptions during maintenance operations on BGP sessions // IEEE
Transactions on Network and Service Management , v. 4, N 7, 2007,
p. 1-11.

[8] S. Raza, Y. Zhu, C.-N. Chuah. Graceful network state migrations //
IEEE/ACM Transactions on Networking, v. 19, N 4, 2011, p. 1097-
1110.

[9] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, O. Bonaventure.
Seamless network-wide IGP migration // ACM SIGCOMM Computer
Communication Review - SIGCOMM ’11 , v. 41, N 4, 2011, p. 314-
325.

[10] M. Reitblatt, N. Foster, J. Rexford, D. Walker. Consistent updates for
software-defined networks: change you can believe in! // HotNets, v. 7,
2011.

[11] R. McGeer. A safe, efficient update protocol for OpenFlow Networks
// Proc. of the First Workshop on Hot Topics in Software Defined
Networks, 2012, p. 61-66.

[12] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger. D. Walker. Ab-
stractions for Network Update // Proc. of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, 2012, p. 323-334.

[13] N. P. Katta, J. Rexford, D. Walker. Incremental Consistent Updates
// Proc. of the Second Workshop on Hot Topics in Software Defined
Networks, 2013, p. 49-54.

[14] R. McGeer. A Correct, Zero-Overhead Protocol for Network Updates
// Proc. of the Second Workshop on Hot Topics in Software Defined
Networks, 2013, p. 161-162.

[15] T. Mizrahi, Y. Moses. Time-based updates in software defined networks
// Proc. of the Second Workshop on Hot Topics in Software Defined
Networks, 2013, p. 163-164.

[16] A. Noyes, T. Warszawski, P. Cernyand, N. Foster. Toward Synthesis of
Network Updates //Proc. of the Second Workshop on Synthesis, July
13-14, 2013, Saint Petersburg, Russia.

[17] A. X. Liu, C. R. Meiners, and E. Torng. TCAM Razor: A systematic ap-
proach towards minimizing packet classifiers in TCAMs // IEEE/ACM
Transactions on Networking , vol. 18, 2010, p. 490-500.

[18] K Kogan, S.I. Nikolenko, W. Culhane, P. Eugster, E. Ruan. Towards
efficient implementation of packet classifiers // Proc. of the Second
Workshop on Hot Topics in Software Defined Networks, 2013.

[19] E. Al-Shaer, W. Marrero, A. El-Atawy, K. El Badawi. Network
Configuration in a Box: Toward End-to-End Verification of Network
Reachability and Security // Proc. of the 17th IEEE International
Conference on Network Protocols (ICNP’09), Princeton, New Jersey,
USA, 2009.

[20] E.V. Chemeritsky, R.L. Smeliansky, V.A. Zakharov. A formal model
and verification problems for Software Defined Networks // Proc. of
the 4-th International Workshop ”Program Semantics, Specification and
Verification: Theory and Applications”, 2013, Yekaterinburg, Russia, .
21-30.

[21] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, S.
Whyte. Real Time Network Policy Checking using Header Space
Analysis // 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 2013).

52



SDN‐based Innovation in New Zealand 

S. Cotter 
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Abstract—The innovation ecosystem is often seen as a 
‘pipeline’, or in other words, a linear commercialization model 
that goes from idea to the marketplace with stages in research, 
proof‐of‐concept development, prototype, product beta‐testing 
and market launch. This often works for ‘technology push’ 
projects that commonly begin not with a discovery, but with the 
identification of a market need that triggers industry‐led 
innovation. 

REANNZ, the Crown‐owned research and education network 
supporting New Zealand’s universities and research institutes, 
has been partnering with researchers and industry to identify 
market opportunities and develop SDN‐based technologies to 
address them. In this talk, I will highlight the experiences and 
lessons learned on the following projects:  

 SDN-Secured ScienceDMZ that uses ACLs on an
OpenFlow edge switch to whitelist authorized traffic, and
configures this through a web frontend. Recently deployed
at a NZ university.

 Distributed Routers that split a single control plane over
multiple data planes in different locations – a mesh of
devices behaving as a single router – in this on either side
of the Pacific Ocean.

 SDN Internet Exchange Point deployed by a commercial
carrier using OpenFlow-enabled devices. Intent is to have
several across the country acting as a distributed
exchange.

Keywords—SDN; OpenFlow; ScienceDMZ; Distributed 
Router; Exchange Point 

I.  SDN‐SECURED SCIENCEDMZ 

Campus infrastructures designed to support backend office 
systems and implementing strict firewall policies at the border 
are often incompatible with researchers' needs to regularly 
move large files. The “ScienceDMZ” architecture moves data-
transfer odes outside the firewall, solving part of the high-
speed data transfer problem, but reintroducing security 
problems that were “solved” by the firewall. Numerous 
approaches attempt to address these issues, from hardening the 
servers within the ScienceDMZ, to using short‐term virtual 
circuits (but only if these are supported by the network 
provider). 

REANNZ has developed a service for research‐focused 
institutions that uses an OpenFlow-enabled device at the edge 
of a ScienceDMZ with a clean web interface that lets 

researchers poke small holes into the ScienceDMZ as they 
need them. Using the POX OpenFlow controller, and Django, 
the open source web framework, this service provides many of 
the security benefits of virtual circuits without requiring 
support from the WAN. The end result markedly reduces the 
attack surface, while allowing data‐intensive science to enjoy 
maximum use of the network infrastructure. 

II. DISTRIBUTED ROUTERS

REANNZ worked with researchers from Google, the US 
Dept of Energy’s ESnet, and Victoria University of Wellington 
to demonstrate an OpenFlow-controlled hardware forwarding 
router handling a number of layer 3 routes that “challenged” 
the hardware and control plane (exceeding native hardware 
flow table resources so that FIB compression/other FIB 
management strategies had to be used). The primary goal was 
to demonstrate RIB/FIB scaling properties for future WAN 
projects, SDN-IX, edge router, etc. as a practical 
implementation. 

Figure 1: Distributed Router Setup 

The project leveraged community open-source packages, 
RouteFlow and Quagga, to establish the first BGP peering 
using SDN in production between two national-scale research 
networks. With the REANNZ switch in New Zealand and the 
ESnet switch in California, innovative FIB compression 
enabled commodity OpenFlow switches to achieve ~40% FIB 
compression: 13215 uncompressed routes, 7757 compressed 
routes. 
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III. SDN INTERNET EXCHANGE POINT

REANNZ worked with researchers from Victoria 
University of Wellington, Waikato University, CPqD in Brazil, 
and commercial Internet exchange point operator CityLink on a 
pilot deployment of a RouteFlow distributed router. This 
deployment connected the REANNZ offices to the Wellington 
Internet Exchange (WIX) in a production environment. 
RouteFlow was used to control two OpenFlow switches 
connected via a dark fibre link, located at border of each 
network. The controller was located at a third location, 
connected to both switches by an out-of-band layer 2 VLAN. 
BGP peer sessions were established with a router running 
within REANNZ and all WIX participants. Routes to the 
REANNZ network were advertised onto the WIX and traffic 
was forwarded through the two switches.  

Commercial carrier CityLink is continuing development 
using NoviFlow devices. Their intent is to deploy new features 
like application-specific peering or certain types of traffic 
engineering across a distributed exchange that spans the 
country. 
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The EXPRESS SDN Experiment in the OpenLab 
Large Scale Shared Experimental Facility 
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Abstract— In this paper we describe the design and 
implementation of an experiments dealing with SDN for Wireless 
Mesh Networks over the OpenLab Facility. The experiment is 
called EXPRESS: “EXPerimenting and Researching Evolutions 
of Software-defined networking over federated test-bedS”. 
EXPRESS aims at designing and evaluating a resilient SDN 
system able to operate in fragmented and intermittently 
connected networks as needed in a Wireless Mesh Networking 
environment. The experimental dimension of EXPRESS is to 
deploy the designed SDN infrastructure over a federation of 
three testbeds (PlanetLab, NITOS and w-iLab.t) from the 
OpenLab federation. The experiments consist in the evaluation of 
a designed solution for the selection of the SDN controller by the 
Wireless Mesh Routers in intermittently connected networks. 
The experiment is executed through the OMF framework 
(cOntrol and Management Framework). OMF provides the 
ability to describe the distributed experiment spanning over 
different physical testbeds. Following the experiment description, 
the OMF framework realizes the configuration of the resources 
(in our case the Wireless Mesh Routers) and their 
interconnection, runs the experiment and collects the results. 

Keywords—Software Defined Networking, Open Testbeds, 
Distributed Tesbeds, Testbed Federation, Wireless Mesh Networks 

I.  INTRODUCTION 
SDN is becoming a preferred networking paradigm for 

Enterprise Networks and Data centers. Since, the networking 
community is pushing the envelope of SDN to use it in many 
other type of environments. The expected benefit is mostly 
related to the possibility to perform dynamic traffic 
engineering. 

This paper explores the possibility to use SDN in a dynamic 
heterogeneous environment, such as fragmented and 
intermittently connected networks. The solution should be able 
to easily organize together isolated networks, as it may be 
needed in a dynamic Wireless Mesh Networking (WMN) 
scenario. We designed EXPRESS, which integrates the basic 
solutions necessary to discover the network topology and 
operate the routing protocols in WMNs with an SDN 
architecture meant to support advanced services (e.g. dynamic 
traffic engineering).  

The complexity of the environment under study makes the 
evaluation of EXPRESS a complicated task.  The OpenLab 
facility has been used for that purpose. Indeed, the 
experimental dimension consists in deploying the proposed 
SDN infrastructure (and the implemented software modules) 
over a federation of three testbeds (PlanetLab Europe, NITOS 

and w-iLab.t) from the OpenLab federation and collect 
performance measurements. OpenLab exploits the concept of 
federation of testbeds that allows a simplified access to diverse 
set of heterogeneous resources to the experimenter. The paper 
briefly presents the basic components and benefits of using 
OpenLab. It describes the experiments that were carried out 
and a set of results that demonstrate the ability of OpenLab to 
provide insight into the designed solution. 

II. THE OPENLAB FEDERATED TESTBED

OpenLab comes from a vision originated in 2005, built on 
several issues related to experimentally driven research. The 
networking community was facing a few successes in its 
ability to build testing tools (like PlanetLab or Emulab) but 
many more failures due to well-identified causes. In addition, 
a challenge that is still open to our community is to develop 
reproducible research, meaning that one should be able to 
reproduce the results that are published and supports a 
discovery.  

This vision considers that an experimenter, namely, the one 
that uses the facility, should have access to an ecosystem or a 
“market” of various resources managed by different 
authorities. For this purpose, the experimenter will register to 
one such authority that will act as a mediator towards its peers. 

The beauty of this model is grounded on the observation that 
there exist plenty of valuable resources out there that one can 
benefit if an open access is provided. Some of these resources 
might be unique, or the sum, or combination of them might be 
valuable. In addition, it became quickly evident there is not a 
single testbed that fit all needs and that, solely, a federated 
model will succeed to embrace the vision. 

Enabling this vision requires to define an architecture that 
supports the underlying concept of federation that was 
originally introduced in the OneLab EU funded project in 
2006. Therefore, it became instrumental to address the 
following questions: 
- What is the right level of abstraction, the minimum set of 
functionalities to be adopted to share resources owned by 
various authorities? 
- What is the governance model that best supports 
subsidiarity? 
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A. The Architecture for enabling an Internet of Testbeds 
We benefited from the experience in architecting the Internet 
to design our model. It is grounded on two principles: 
- The “Hourglass” model of the Internet that identifies the IP 
protocol as the convergence layer. We’ll define one such 
convergence layer for the Federation of testbed resources, 
- The peering model of the Internet that relies Customer sand 
Providers and define peering agreements in a way that there is 
not a single point of control. Here, we will clearly identify 
Experimenters, Testbed owners or providers and the Facility 
itself that rule them all. 
 
We therefore have defined the following abstractions: 
- Resource: Testbed ensures proper management of nodes, 
links, switches, ... 
- User/Experimenter: Testbed guarantees the identity of its 
users 
- Slice: A distributed container in which resources are shared 
(sharing with VMs, in time, frequency, within flowspace, 
etc.). It is also the base for accountability. 
- Authority: An entity responsible for a subset of services 
(resources, users, slices, etc.) 
 
SFA (Slice Facility Architecture) was designed as an 
international effort, originated by the NSF GENI framework, 
to provide a secure common API with the minimum possible 
functionality to enable a global testbed federation.  
 
The fundamental components for testbed federation were built 
incrementally, as the understanding about the requirements 
matured. The first international realization of federation arose 
in 2007, as a mutual investment from PlanetLab Central, 
managed by Princeton, and PlanetLab Europe, established by 
UPMC and INRIA in Europe. It then became of utmost 
importance to enlarge and extend the federation principle to 
other type of resources, a more scalable model of federation 
and an increased ease of use. In parallel, started the important 
effort to complement and populate the architecture with 
components mandatory for the entire experiment life cycle.  
 
The experiment lifecycle comprises the following steps: 
➊ User account & slice creation 
➋ Authentication 
➌ Resource discovery 
➍ Resource reservation & scheduling 
➎ Configuration/instrumentation 
➏ Execution 
➐ Repatriation of results 
➑ Resource release 
 
Step ➊ is handled by the Home Authority of the User, the one 
the user has registered with. Steps ➋ to ➍ and ➑ concern all 
involved authorities. Steps ➎ to ➏ are not in SFA but other 
components such as OMF have been developed for this 
purpose. OMF is a control, measurement and management 
framework that was originally developed for the ORBIT 
wireless testbed at "Winlab, Rutgers University". Since 2008, 

OMF has been extended and maintained by NICTA as an 
international effort.  
 
SFA provides a secure API that allows authenticated and 
authorized users to browse all the available resources and 
allocate those required to perform a specific experiment, 
according to the agreed federation policies. Therefore, SFA is 
used to federate the heterogeneous resources belonging to 
different administrative domains (authorities) to be federated. 
This will allow experimenters registered with these authorities 
to combine all available resources of these testbeds and run 
advanced networking experiments, involving wired and 
wireless technologies. The SFA layer is composed of the SFA 
Registry, the SFA AMs and drivers. The SFA Registry is 
responsible to store the users and their slices with the 
corresponding credentials. 
 
MySlice1 was introduced by UPMC as a mean to provide a 
graphical user interface that allows users to authenticate, 
browse all the testbeds resources, and manage their slices. 
This work was important to provide a unified and simplified 
view of many hidden components to the experimenter. The 
basic configuration of MySlice consists on the creation of an 
admin user and a user to whom all MySlice users could 
delegate their credentials for accessing the testbed resources. 
In order to enable MySlice to interact with heterogeneous 
testbeds, MySlice has to be able to generate and parse 
different types of RSpecs (Resource Description of the 
testbeds); this task is performed by plugins.  
 

B. The OpenLab facility 
 
The OpenLab2 federation of testbeds was launched in august 
2014 under the brand of OneLab Facility in order to avoid 
confusing the Openlab EU funded project that ended in august 
2014 with the Facility that we expect to be sustainable). For 
the sake of clarity, we continue to use OpenLab as the name of 
the facility in this paper. OpenLab started with the following 
set of initial federated testbeds: 
 
- Internet-overlaid testbeds: The public fixed-line Internet, at a 
global scale. 
PlanetLab Europe3, a platform offering virtual machines on 
over 300 servers located at over 150 locations across Europe. 
 
- Wireless, sensing, and mobility testbeds: Internet of things 
testing environments. 
These platforms offer both fixed nodes and mobile nodes with 
controlled mobility via robots or model trains. The first 
testbeds to fit this category are FIT-IoTLab4 (a French testbed 

                                                             
1	  http://www.myslice.info	  
2	  http://new.OneLab.eu	  
3	  http://www.planet-‐lab.eu	  
4	  https://www.iot-‐lab.info	  
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funded by ANR) and the NITOS5 testbed from the University 
of Thessaly. The w-iLab.t6 testbed from iMinds was added for 
the purpose of the EXPRESS experiment. 
 
As the need for networking research evolves, new testbeds 
appears or new requirements were expressed. This has been 
the case for instance for the OpenFlow/SDN developments 
that trigger new needs and emerging testbeds (such as 
OFELIA7 in Europe). The OpenLab project quite early 
developed a solution named OpenFlow in a Slice that provides 
the ability to run Openflow vswitches in a slice of a PlanetLab 
Europe set-up. Experimenters were then able to create an 
OpenFlow overlay8 network by specifying the links between 
PLE nodes, benefiting from the large number of PLE nodes 
deployed.  
 
Finally, the OpenLab Portal9 was developed and provides the 
generic access to the facility. The portal is implemented by the 
MySlice software component, which allows the users to 
manage their slices through SFA. The NOC (Network 
Operation Center) has been installed in the premises of UPMC 
and allows a full access to the federated testbed, users and 
experiments managed by the facility. OpenLab is freely 
accessible to the community at large. 
 

III. THE EXPRESS EXPERIMENT: SDN FOR  
WIRELESS MESH NETWORKS 

The EXPRESS experiment has been selected for funding in 
the 2nd OpenLab competitive call for additional project 
partners. EXPRESS stands for “EXPerimenting and 
Researching Evolutions of Software-defined networking over 
federated test-bedS” and it includes two main dimensions: 
scientific and experimental. The scientific dimension 
considered the design of an innovative, resilient SDN system 
able to keep operating in fragmented and intermittently 
connected networks. Such a system should be able to easily 
glue together isolated networks, as it may be needed in a 
dynamic Wireless Mesh Networking (WMN) scenario. 
EXPRESS integrates the basic solutions necessary to discover 
the network topology and operate the routing protocols in 
WMNs with an SDN architecture meant to support advanced 
services (e.g. dynamic traffic engineering). The experimental 
dimension consists in deploying the proposed SDN 
infrastructure (and the implemented software modules) over a 
federation of three testbeds (PlanetLab, NITOS and w-iLab.t) 
from the OpenLab federation and collect performance 
measurements. 

                                                             
5	  http://nitlab.inf.uth.gr/NITlab/	  
6	  http://ilabt.iminds.be/wilabt	  
7	  http://www.fp7-‐ofelia.eu/	  
8	  https://www.planet-‐
lab.eu/doc/guides/user/practices/openflow	  
9	  http://portal.OneLab.eu/	  

A. Scientific questions and technicall challenges 
The main scientific question behind the experiment is 

whether the SDN paradigm can be applied to networking 
scenarios where: 1) it is not feasible or reasonable to 
implement a separate out-of-band signaling infrastructure 
among nodes, therefore SDN signaling will be intermixed at 
packet level with user data flows following an in-band 
approach; 2) there is a relatively high probability of link 
failure, the network can become partitioned in disconnected set 
of nodes, the partitions can later merge back into larger 
partitions. These conditions may occur in Wireless Mesh 
Networks (WMNs), like Community Networks ([14]), in which 
some parts of the network are interconnected by long links that 
may temporary fail. The reference scenario for our work is 
shown in Fig. 1, as an example the link between the Wireless 
Mesh Routers A and B can partition the network in two parts if 
it goes down. Let us now consider the advantages and the 
criticalities of using SDN in WMNs. 

 
Fig. 1. Wireless Mesh Network reference scenario 

The advantage of introducing the SDN paradigm in such 
environment are mostly related to the possibility to perform 
dynamic traffic engineering to optimally distribute the traffic 
over the wireless resources and across the different gateways 
towards the Internet that could be available in the WMN. The 
IP best effort routing based on distributed shortest path (e.g. 
with OLSR [15] or OSPF routing protocols) may lead to poor 
utilization of the available capacity, with bottlenecks 
constituted by congested wireless links or gateway nodes. We 
expect that, using the SDN paradigm will make possible to 
optimally allocate the user traffic with the needed level of 
granularity. 

On the other hand, using SDN in the considered WMN 
scenarios has some criticalities. We have identified two main 
challenges. As for the first challenge, a SDN based approach 
requires a control connection between the controlled network 
nodes and the SDN controllers. In a fixed networking 
environment the control-plane communications between the 
switching nodes and the SDN controllers typically run over 
out-of-band channels, separated from the data-plane traffic. 
For example VLANs can be used in a layer 2 Ethernet network 
to establish a “signaling” network that will operate 
independently from the SDN mechanisms used to manipulate 
the data-plane traffic. Replicating this approach in the WMN 
scenario will not work, because: i) VLANs are not typically 
used in WiFi networks; ii) the basic connectivity among nodes 
of a WMN (referred to as WMR, Wireless Mesh Routers) is 
established using layer 3 routing protocols. The first challenge 

57



is therefore to design a SDN solution suited to the 
characteristics of WMNs. 

The second challenge that we addressed concerns the 
applicability of SDN in network partitioning and merging 
scenarios. Assuming that a SDN controller runs over a set of 
WMRs, if the network becomes partitioned a subset of WMRs 
will disconnect from the controller and will need to associate to 
a different controller (if available in the partition). On the other 
hand, if two network partitions under the control of two 
different SDN controllers merge into a single partition, it is 
desirable that all WMRs fall under a single SDN controller. 
Clearly, the service logic in the different SDN controllers needs 
to be coordinated, but as prerequisite we focused on the issue 
of the establishment of the connection between the WMRs and 
the most appropriate SDN controller. We can restate the second 
challenge as “SDN controller selection under network 
partitioning and merging scenarios”. The problem of assigning 
a SDN controller to each switch in a network with different 
SDN controllers has been already faced when considering 
“distributed” SDN solution with multiple controllers, see for 
example [2]. According to the OpenFlow specifications [4], 
when a switch is connected to multiple SDN controllers, one of 
these controllers can act as master. The procedure to select the 
master controller for a given switch is typically referred to as 
master election. The reason is that the procedure is distributed 
among the controllers that coordinate with each other in order 
to elect the master. The switch is slave in this approach and 
will be notified by the winner of the election. This procedure 
works well assuming that there is a stable connectivity among 
the controllers (in fact in the typical use case the procedure 
needs to elect a master controller among a set of “replica” 
controllers operating in the same data center). Using this 
procedure in the considered WMN scenario may easily lead to 
inconsistent results. The convergence time of routing protocols 
used in WMNs is in the order of seconds. During transient 
phases the different controllers may have different visions of 
network connectivity. For example two controllers could both 
believe to be the best candidates to take mastership of a given 
switch and can both start acting as master for the switch. 

A. Solutions to 1st challenge (SDN in WMNs) 
In order to address the first challenge identified above, the 

designed solution foresees to use the OLSR routing protocol 
[15] to establish the basic IP connectivity in the WMN. 
Coexistence mechanisms are defined between packets routed 
using classical IP routing tables (including the OLSR packets) 
and packets routed using the SDN approach under the 
instructions of SDN controllers. The forwarding of SDN 
signaling packets follows an in-band approach, i.e. the packets 
between the switching nodes and the SDN controllers are sent 
on the same network on which the data plane packets are sent. 
The signaling packets belonging to the SDN control plane 
(among WMN nodes and SDN controllers) are forwarded 
using the basic IP routing information established using OLSR, 
while the data packets can be forwarded using the basic IP 
routing or using arbitrary routing under the control of the SDN 
controller.  

 
Fig. 2. wmSDN node architecture 

The architecture of a node implementing the proposed 
solution is reported in Fig. 2, the solution was first proposed in 
[3], referred to as wmSDN (wireless mesh SDN). Then it has 
been improved and extended in [5] taking into account the 
OSHI IP/SDN framework [6]. We refer the reader to [5] for the 
technical details of the solution. In the context of EXPRESS, 
we have ported and deployed the solution on real wireless 
nodes in the NITOS and w-iLab.t testbeds. 

B. Solution to 2nd challenge (SDN controller selection in 
network partitioning and merging scenarios) 
Coming to the second challenge, the EXPRESS experiment 

has designed and implemented a solution for SDN controller 
selection by the Wireless Mesh Routers. The main idea is to 
assign more responsibility to the controlled nodes (WMRs), 
letting them take the decision about which switch has to take 
mastership of the node. Therefore we named this procedure 
controller selection rather than master election. The nodes will 
monitor a set of SDN controllers that can potentially assume 
the master role and will implement a selection algorithm to 
choose the preferred controller among the set of reachable 
controllers (see Fig. 3). Note that WMRs and controllers have 
the same information about the status of the network 
(excluding transient conditions), because they share the OLSR 
vision of the topology. In particular, the WMRs are directly 
involved in the OLSR topology dissemination while the 
controller extracts the topology information from a nearby 
WMR. Therefore, from the topology discovery point of view 
the WMR acquires topology information even before the 
controller. Moreover, a WMR can directly check the 
connectivity with potential controllers trying to establish TCP 
connections towards them (or monitoring the liveliness of 
established TCP connections). 
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Fig. 3. Controller selection by a Wireless Mesh Router 

In the designed procedure a WMR connects only toward a 
single controller at a given time. This is different from the 
classical approach where a switch connects in parallel with 
several controllers. The procedure is performed in the WMR 
with the help of the EFTM (External Flow Table Manager) 
entity shown in Fig. 2. The EFTM entity is in charge to 
perform the master selection procedure and will instruct the 
switch to connect to the selected controller at a given time. 

Performing the master selection on the WMR side has some 
advantages in our scenario. The first advantage is that each 
OpenFlow switch will be connected with a single controller at 
a time, and no conflicting rules can be injected. The second 
advantage is that a run-time coordination mechanism among 
controllers is not needed, each controller can operate on its 
own, obviously all the controllers should follow a consistent 
service logic. 

IV. EXPERIMENTING OVER THE OPENLAB TESTBEDS 
As described above, we designed and developed novel 

algorithms and procedures in order to address the 
aforementioned challenges, thus we needed to test them under 
real world settings and in the largest scale possible. To this end, 
we took advantage of the OpenLab facility that provides the 
unique capability to deploy and evaluate experiments easily in 
a mid-scale environment exploiting a plethora of different 
kinds of resources. 

A. Taking advantage of the tools provided by OpenLab 

The main issue when you conduct an experiment involving 
several heterogeneous resources is burden related to their 
control and configuration, as well as their synchronization 
during the experiment. This was addressed easily by using the 
OMF framework, which enabled us to configure and control 
the different kinds of nodes that were part of the experiment, 
through a single script. In this script, which is written in a 
simple, domain-specific language provided by OMF, namely 
the OEDL [7], we described the required initial configuration 
of the nodes and specified a list of events and associated tasks, 
as well. The list of tasks includes the drop of a link, the sleep 
for a specified time period or measurement points for 
collecting data.  

Another big issue that OpenLab tools assisted us to address 
is the gathering of the measurements generated during the 
experiment, in a unified way. The collection of all those data is 
handled by the OML [8], which is again provided by OMF. In 
this way, we defined measurement points in the experiment 
description script and OML handled the collection of the 

experimental results and their storage in a database for further 
processing. 

The necessary steps for conducting the experiment on the 
federated testbeds and the tools we used are: 

• The reservation of the resources through mySlice portal, 

• The development of the experiment description using 
OEDL, 

• The development of the experiment scripts through OMF, 

• The execution of the experiment through a single script 
and the collection of the measurements through OML. 

In the following subsection, we describe the main 
challenges faced and the methods followed towards the 
successful deployment of the EXPRESS experiment on the 
OpenLab federation. 

B. Main challenges during the deployment 

The experiment is performed across three different 
OpenLab testbeds, two wireless testbeds (NITOS [9] and 
w-iLab.t [10]) that supports different Wireless Mesh Networks 
and a wired testbed (PLE - Planetlab Europe [11]) that is used 
to emulate a “backbone” link interconnecting the two Wireless 
Mesh Networks. The backbone link was implemented through 
the establishment of an Ethernet over UDP tunnel across 
PlanetLab testbed (actually two UDP tunnels bridged with a 
Virtual Switch on a PLE node, as shown in Fig. 4). 

 
Fig. 4. Experiment over PlanetLab, NITOS and w-iLab.t 

In most cases, the description of the experiment in the OMF 
language is a straightforward procedure, so was in our case. On 
the other hand, one of the difficulties we faced during the 
deployment is that most of the wireless nodes in the testbeds 
are inside the coverage area of all the other wireless nodes in 
their testbed, making difficult to emulate topologies where 
nodes lie more than two-hops away from each other. In order to 
face this difficulty, we filtered the packets at the receiving node 
in order to emulate the desired experimental topology – thus all 
packets received by nodes that are not in the mutual 
communication range were discarded. Further details on the 
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aforementioned procedure can be found in the OpenLab 
Deliverable D3.11 [12]. 

Another problem we had to face is the private IP addressing 
that NITOS and w-iLab.t use for their wireless nodes. Taking 
under consideration the advantages and disadvantages of all the 
different options for dealing with this problem, we concluded 
that a solution based on NAT is the most appropriate and 
applicable one for our situation. Further details on the 
aforementioned procedure can be found in the OpenLab 
Deliverable D3.10 [13]. 

Since we successfully implemented all challenges during 
the deployment phase, we designed and developed two 
different types of experiments. 

C. Description of the experiments 

In the combined OpenLab testbed, we run two types of 
experiments, respectively denoted as “network merging” and 
“network partitioning” experiment. In the network merging 
experiment we start with two mutually disconnected network 
sets (each one with a SDN controller) and then reactivate a 
wireless link between two WMRs residing in different sets. In 
the network partitioning experiment we deliberately deactivate 
a wireless link that interconnects two sets of the networks, each 
one including (at least) a SDN controller. In both experiments 
the following simple control logic is run by the WMR nodes. 
Each WMR node has a list of SDN controllers that can 
potentially take control of the node, ordered by priority. The 
SDN controllers are listed with their IP address. The WMR 
will periodically check which controller IP addresses are 
reachable looking at the IP routing table established by means 
of the OLSR protocol. The WMR will try to connect to all 
reachable controllers (and will check the liveliness of the 
connection for the currently selected master SDN controller). 
Then it will select the highest priority controller among the 
ones to which it has successfully established a connection. In 
the experiment, the priority list of the preferred controllers was 
simply preconfigured in the nodes (using a configuration file). 
In a real life implementation the priority list could be 
transferred by a SDN controller to the WMR node and updated 
when needed. 

In both types of experiments, we measured the time needed 
for the WMRs to connect to the highest priority controller after 
the event that determined the network merging/partitioning. In 
the network merging experiment, this time interval can be 
decomposed into two phases: in the first phase the IP routing 
(OLSR) will properly reconfigure the connectivity in the 
control network (OLSR routing procedure). In the second 
phase our proposed controller selection algorithm will operate 
to select the highest priority controller (controller selection 
procedure). In the network partitioning experiment, the WMR 
node does not rely on OLSR to detect that a controller is no 
longer reachable, but it will perform its own connectivity 
check, achieving a faster reaction time. 

The rationale of the two experiments is to demonstrate that 
the controller selection procedure operates within the same 
time scale than the OLSR restoration procedure. If we accept 
the performance of OLSR in routing packets over the WMN, 
we will likely accept the performance of the proposed SDN 

based approach offering traffic engineering services in the 
WMN.  

D. Experiment setups 

To perform the network merging experiment, the tunnel 
between the two wireless testbeds is initially not active, and the 
WMRs are connected to their respective controllers available 
within their own local testbed. As soon as the tunnel across 
Planet Lab Europe is activated, messages start to flow from one 
wireless testbed to the other and the WMR nodes belonging to 
w.iLab-t testbed learn the IP route towards the remote 
controller in NITOS. The EFTM entity implemented into each 
of the WMR checks if a controller is actually active at that IP 
address by trying to establish an OpenFlow protocol 
connection. When this check is positive, the entity chooses to 
connect to the highest priority controller, in this case the one in 
the remote wireless testbed (NITOS). 

To perform the network partitioning experiments we drop 
the tunnel established through PlanetLab and measure the time 
needed by WMRs in each wireless testbed to connect to their 
local controllers. 

V. EXPERIMENTS RESULTS 
In this section we present the experiment results. We do not 

aim to provide an in depth technical analysis of the results. We 
only illustrate what results we obtained and show how they can 
support the answers to the questions we have identified in 
section III.  

A. Network merging experiment 
In this experiment we evaluate the time needed for the 

WMRs to connect to a higher priority controller after the 
merging of two network partitions. As shown in Fig. 5, this 
time is decomposed in two phases, network connectivity and 
master selection. The former one considers the time needed for 
the routing protocol to setup the IP routes in all WMRs taking 
into account the merged network topology. We measure it by 
trying to send ping requests from a WMR to the controller that 
was not reachable before the merging event. In our experiments 
it averages to 15 seconds. In fact, according to the OLSR 
routing protocol mechanisms, three “Hello” messages need to 
be received in order to declare a link up and the default interval 
for sending OLSR Hello messages is 5 seconds. Starting from 
this time instant we measure the interval needed for the WMRs 
to disconnect from old controller and connect to the one with 
higher priority. In our implementation the EFTM periodically 
tries to establish a connection with all controllers that have 
been discovered, starting from the highest priority one. The 
polling period is 3 seconds. In the experiment we measured an 
average of more than 1.5 seconds for the latest connected 
WMR, which is consistent with the expectations. 
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Fig. 5. Network merging experiment 

B. Network partitioning experiments 
In this second set of experiments we consider the 

partitioning of the network: starting from a connected network 
as shown in Fig. 4, we disconnect one of the tunnels across 
PlanetLab Europe. In Fig. 6 we report the evaluation of the 
time needed by the WMRs in the w-iLab.t testbed to 
disconnect from the remote controller in NITOS and connect to 
the local controller. In this case the WMRs does not rely on 
OLSR to discover that a controller is not reachable, as it would 
require more than 15 seconds considering the default OLSR 
configuration (3 Hello intervals of 5 s needed to declare the 
link down). The ETFM periodic controller polling procedure 
(running with a 3 seconds period) considers a 2 seconds 
timeout before declaring that a controller is down. With this 
procedure, an average master selection delay of 5.5 seconds is 
measured. 

 
Fig. 6. Network partitioning experiment: master selection delay 

VI. CONCLUSIONS 
This paper presents two major contributions. The first one 

is related to the question whether SDN can be efficiently used 
in a dynamic environment with intermittently connected 
networks. A solution has been designed for this purpose. 

Nevertheless, it is critical to evaluate such a proposal in a 
practical setting. The second value of the paper is to 
demonstrate that the OpenLab federation of heterogeneous 
testbeds provides the mean to configure and experiment the 
solution derived in order to assess its performance. The 
experiment was conducted with a reduced effort thanks to the 
tools provided by the OpenLab facility. Despites the fact that 
the experiment involved three different and heterogeneous 
testbeds, the performance of the proposed solution has been 
captured and the results helped to answer the suitability of 
SDN for this type of complex environments. 
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THE GEANT TESTBEDS SERVICE OVERVIEW

The GEANT Testbeds Service (“GTS”) is a new production 
service introduced by the GEANT Network to address 
experimental needs of the networking and distributed 
applications research community.   GTS allows network 
researchers to formally describe an experimental network 
environment using a domain specific grammar and then 
instantiate and manage that environment though its life cycle. 
Testbeds can be scheduled, i.e. set up at a pre-arranged time in 
the future, and they can be provisioned across geographically 
distributed locations.  The Service model is generic and highly 
extensible so that it can incorporate a wide array of 
experimental components.   This Service dramatically reduces 
costs, complexity, and lead times required to field experimental 
networks at scale and allows the research community to focus 
on the research topic rather than the scaffolding associated with 
conventional network engineering, contracting, procurement, 
installation, and operations of the physical facilities. 

Section 2 of this paper describes the GTS architecture – the 
conceptual model, and the processes and components that 
deliver the service and manage the underlying infrastructure 
upon which it operates.   Section 3 will address the specifics of 
GTS version 1.0 – the key feature set and the current 
deployment status.   Section 4 will provide a features and 
capabilities roadmap for GTS covering both the near term 
version 2.0 and the version 3.0 anticipated in early GEANT 4. 
Section 5 will address the longer term strategy towards 
interoperability and global scaling.  

II. THE GEANT TESTBEDS SERVICE ARCHITECTURE

The GTS architecture and service semantics are based in the 
proposition that all networks can be represented as graphs.   In 
conventional graphs, the graph vertices represent network 
processes that source or sink data flows, or make forwarding 
decisions about the data as it transits the vertex.   The graph 
edges represent data transport processes (e.g. circuits or links) 
that simply move data transparently and unmodified from one 
network vertex to the next.    However, GTS reduces and 
generalizes this conventional network graph one step further to 
create a derived resource graph (DRG.)  In the DRG, all data 
plane functions – transport, switching, forwarding, acquisition, 
storage, etc - are represented as “resource” objects, and these 

resources make up the vertices (the nodes) in the DRG.  The 
topology of the network is expressed separately through a set of 
“adjacency” relationships that constitute the edges in the DRG. 
This DRG representation allows GTS to treat all data plane 
functional components in a consistent object oriented fashion, 
and it allows the juxtaposition of those data plane components 
to be described separately via the adjacencies. 

 Just as in the conventional graph, the DRG model 
recognizes that any particular resource object may have 
multiple links to/from other resources, perhaps even multiple 
links between the same two resources.   There must be a means 
to identify and differentiate these links within the local context 
of each resource.   The DRG model defines “port” constructs to 
enumerate the I/O interfaces associated with a resource thus 
allowing each I/O interface to have its own unique port id 
within each resource.   The connectivity among resources, and 
therefore the topology of the network, is described by the 
adjacency relationships that indicate which resource-ports are 
connected to which other resource-ports.     The port construct 
allows attributes of each interface to be described separately 
from the   attributes of the resource itself. 

With these three basic constructs – resources, ports, and 
adjacencies – GTS can fully describe a network topology. 
And the DRG model neatly organizes and associates attributes 
of each of these key components in a consistent and generic 
manner regardless of the specific resource functionality.  This 
model simplifies many aspects of network analysis and 
management, enhances the extensibility of the overall service 
model, and aids in the reliability and maintainability of the 
software. 

Resources are not uniform – obviously a data transport 
circuit differs significantly in functionality and relevant 
attributes from, say, an OpenFlow switching fabric.   The GTS 
model organizes resources by their Type or class.   Resources 
of a given Type will have a common set of attributes or 
parameters that constrain or define resources of that type. 
For example, a resource definition of type “Host” may have a 
parameter “cpuClockRate” that defines the cpu speed of that 
class of resource.  Likewise, a reference to resource of that 
class may use cpuClockRate as a constraint that must be met 
when searching for (or manufacturing) a resource instance to 
satisfy a resource request.   Further, even resources of the same 
class may differ somewhat in their respective attributes within 
the context of a particular network.   For instance, two 
switching nodes that otherwise are identical in functional 
characteristics may have different numbers of ports.   These 
differing characteristics of a resource instance do not change 
the fundamental capabilities or function of the resource type or 
class.

So GTS supports a resource Class Definition that defines 
the fixed public attributes of a resource and the parameters that 
can be set/chosen by the user when requesting such a resource.  

The user interacts with the GTS service though a set of 
request/response messages that carry functional primitives 
(basic commands or requests) between the “user” agent and the 
“provider” agent.   The specific primitives themselves are 
defined as part of each resource class definition.   GTS requires 
all resource classes to support a base set of primitives: Reserve
and Release of the resource reservation,  Activate or Deactivate
of the resource (during its reserved window), and a Query
primitive that returns the state of the resource.   In addition to 
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these base primitives, the GTS model allows resources to 
define additional resource specific primitives that perform 
control function(s) that may be unique to a particular class of 
resource.  For instance, a VM resource may provide a 
“coldStart” primitive that reboots the VM as if the power had 
been cycled. 

The GTS software suite includes a web based GUI that acts 
as a user agent.   From the GUI, a user can login to the Service, 
import resource type definitions, instantiate one or more of 
those resources, and then access those resource instances via 
other control primitives or via console proxy or some another 
means (e.g. SSH).   The GUI can also display resource state 
information for a single resource or an entire testbed network 

TESTBED RESOURCES

At a very high level, the GEANT Testbeds Service (GTS) 
implements a simple virtual resource model that creates 
resource instances from underlying infrastructure facilities 
according to resource class descriptions.  The Service allocates 
these virtual resources to the user’s Project for a fixed time 
period (the reservation window.) The GTS virtualization model 
is highly scalable, secure, and extensible, and it allows GTS to 
efficiently share the underlying infrastructure among many 
potential users.    

From the user’s perspective, their testbed is comprised 
solely of virtual resources instantiated within an abstracted 
virtual private universe.   Resource instances have a lifecycle 
that extends from when the resource is first referenced as part 
of a Reserve() request until that reservation is Released() and 
the virtual resource is decomposed and returned to the 
infrastructure pool.   The initial GTS v1.0 supports four key 
resource types:  Composite resources are logical containers that 
contain other resources.  Composites enable an object oriented 
approach to testbed construction; Host resources are Linux 
virtual machines running on Dell server hardware and managed 
by the OpenStack software;   Link resources are ethernet 
framed data transport circuits provisioned over NSI circuit 
services;   And OpenFlowFabric resources are OpenFlow 
capable data plane switching fabrics provisioned over HP 5900 
hardware platforms.    These basic resource classes will be 
enhanced over time to provide more flavors of each resource 
type.  In general, the virtualization process simply allows the 
underlying physical infrastructure to be partitioned or 
timeshared and does not otherwise obscure access to the actual 
underlying physical hardware performance. 

A user creates a “Testbed” by first defining a composite 
resource class to contain all other resource, port, adjacency, and 
attribute specifications required to define the testbed.   When 
the user Reserves this top level (“root”) resource, the GTS 
service agent will process the root Testbed description, 
recursively locate and process the class descriptions for any 
composite children resources encountered, until only “atomic” 
resources are remaining.  “Atomic” resources are resources that 
contain no other resource references. Thus a resource tree is 
constructed that contains all of the information required to 
satisfy the user’s resource reservation request.    Once the 
resource tree has been constructed, and all port adjacencies 
resolved, the tree is processed once again to actually reserve the 
constituent atomic resources.    This resource tree is the 
complete internal representation of the user’s testbed and is 
stored in a persistent Resource DataBase.

The virtual resources in GTS are manufactured as needed 
from underlying infrastructure objects.   It is important to 
differentiate the Service layer virtualization processes from the 
Data Plane virtualization processes.  Functions such as API and 
primitive processing, resource allocation and mapping, life 
cycle management, book-ahead scheduling, policy application, 
etc  are performed by the Service layer software.   These
service layer functions typically only manage and orchestrate 
the resources from the sidelines, and are not involved directly 
in realizing the virtualized entities themselves.   Data Plane 
virtualization refers to processes that realize the virtual 
resource at the data plane.  Examples of these data plane 
processes include the hypervisor that allocates cpu cycles to 
VM instances and emulates low level VM systems calls, or the 
encapsulation processes in network elements that sort traffic 
into virtual circuits or shape that traffic accordingly as it 
transits a switch. 

“Dynamic” resources are manufactured on-demand from 
the infrastructure when a Reserve request is received by GTS 
core service agent.  For some commonly requested resources, 
the resources can be provisioned in advance with a fixed 
“static” configuration.  Such static resources sit in an available 
“running-but-idle” state until needed.   These static resources 
can be allocated and Activated very rapidly at the cost of some 
configuration flexibility.

Data flow among resources – and between the internal 
virtual testbed universe and the external real world- are 
explicitly defined using the resource port constructs.  The GTS 
virtualization model does not allow data to enter or exit a 
resource except through one of these explicitly defined ports. 
This feature allows the Service to identify all I/O flows, and 
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very carefully monitor interfaces that could [potential] pose a 
threat to external systems or services.   If/when necessary, the 
GTS port monitoring can trigger remedial action if those flows 
exceed certain thresholds.   As long as the data flow activities 
of a testbed remain internal, among the resources of that 
testbed, the Service does not interfere with the user’s 
experiment. 

GTS testbeds and all associated resources are described 
using a domain specific language – referred to as the GTS 
“DSL”.   The DSL is an object oriented grammar, implemented 
in the Groovy programming language, that provides a concise 
and very powerful means of describing complex resources. The 
DSL provides a number of novel capabilities such as iterators 
that allow the grammar to describe large networks using 
programmatically constructed resource specifications.   The 
DSL inherits many features of modern programming 
languages.   In this respect, it empowers the researcher to 
develop parametric network design specifications that can 
dynamically shape target testbeds to address goals of individual 
experiments.  

The GEANT Testbeds Service is a work in progress.  The 
GTS architecture is the product of much prior research and the 
developers believe this prior work is now showing benefit both 
in its simplicity for new users to be productive and in its 
adaptability and power to address new requirements into the 
future. 

III. KEY FEATURES OF GTS VERSION 1.0

The GEANT Testbeds Service first became available for 
users as a production service in August 2014.  It represents an 
initial implementation of a strategic vision for how future 
advanced network research can co-exists with and leverage 
shared production networking infrastructure.    

The initial deployment of GTS v1.0 offers some basic 
capabilities and resource types that act as building blocks –
allowing new users to experience the service and to become 
productive very quickly. As mentioned previously, version 1.0 
introduces Composite resources, Host and Link resources, and 
OpenFlowFabric resources.   The Composite, Host, and Link 
classes are general classes and will provide a broadbased 
capability for the user.  The OpenFlowFabric resource class is 

more specialized and is a good example of how the architecture 
can accommodate such novel resource classes. 

GTS v1.0 provides the researcher with a web based 
Graphical User Interface that interacts with the GTS service 
and allows the researcher (the user) to easily manage their 
testbed resources.   This is a basic functionality in v1.0 that 
allows the user to upload the DSL testbed descriptions, reserve 
resources, activate/deactivate resources, release resources, and 
display state and informational attributes of resources.    Since 
one important feature of GTS is its ability to create object 
oriented and/or geographically distributed virtual 
environments, the GUI can present the testbed details as either 
as a tree structured list (similar to a file directory listing) or 
project it onto Google Earth for geographical presentation. 
The GUI also provides service administrators with menus to 
create and manage projects and users associated with each 
project.   

The Testbeds Service supports book-ahead reservations for 
all resources.  This allows users to coordinate their experiments 
with other external events or to simply coordinate access to 
diverse resources within the Service itself. GTS treats a 
resource reservation as an important commitment to the user 
and does not overbook, prioritize, or preempt confirmed 
reservations except in the event of unavoidable and 
unanticipated hardware failures. Even then, in many cases a 
testbed reservation can be remapped to other infrastructure 
before the reservation is activated.   Book-ahead reservations 
also provide a not-so-obvious feature: they allow users to 
validate testbed or resource descriptions by reserving them in 
the far future – the service will book everything but will not 
actually activate the testbed.  This can reveal specification 
errors that might be related to resource constraints, topologies, 
scaling, authorization policy, etc. allowing the user to modify 
or correct the testbed description before it is actually required. 

The Testbeds Service will construct a testbed by 
interconnecting resources according to the DSL description. 
But interestingly, GTS does not actually produce a “network” 
per se.   GTS views networking within the testbed environment 
as an integral element of the researcher’s experiment and so 
GTS prefers to leave this alone. However, the Service 
recognizes that even disruptive experimental testbeds still need 
to allow the researcher to access their resources. IP networking 
is the defacto means of doing so.  Therefore, GTS v1.0 
constructs a general purpose IP subnet for each GTS project. 
This subnet is assigned a dedicated VLAN and IP CIDR block. 
This subnet can be used by any/all resources reserved under 
that Project. The Testbeds Service configures a gateway router 
on this subnet, provides DHCP services, NAT’d access to the 
real world Internet, and provides VPN server so that users can 
access the subnet from outside. In v1.0, “Host” resource 
instances (VMs) assign their eth0 interface to this general 
purpose subnet.   Other resources may also attach to this subnet 
depending on their nature. 

A network File System is created for each Project as well. 
This file system resides on a GTS managed NAS server.   This 
file system can be mounted by resources within the testbed –
most notably the virtual machines.  This persistent networked 
storage allows the user to save testbed state and be able to 
access and/or restore this state across testbed reservations.   The 
file system can also be mounted externally to allow researchers 
to pre-position software or data into their testbed environment 
or to extract data or logs from their testbed. 
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IV. DEPLOYMENT STATUS

The GEANT Testbed Service version 1.0 is currently 
deployed in four European cities – Copenhagen, Amsterdam, 
Bratislava, and Ljubljana.  Three additional locations - Paris, 
Hamburg, and Milan - are in progress and will be online in the 
fall of 2014.    As users migrate to the GTS environment from 
the predecessor GEANT3 OpenFlow test facility, the 
infrastructure serving this facility will be absorbed into the 
GTS expanding the reach to include Frankfurt, Zagreb, and 
Viena.   Indeed, as the service matures we expect to recreate 
the GOFF within GTS in order to simplify user migration. 

GTS is establishing data plane connectivity to the US GENI 
project.  The [initial] GTS demarcation point is planned to be at 
the MANLAN open exchange in New York City.   GTS and the 
ExoGENI project have begun initial efforts to construct 
Testbeds across these two facilities. 

The Service is currently in an introductory phase during 
which new users are invited to self register (gts.geant.net) and 
“kick the tires” by creating simple testbeds.   Introductory users 
are constrained to small testbeds and short reservations.   Users 
wishing to construct larger and more persistent testbeds should 
contact and register with the GTS Service Management.    

V. THE GTS EVOLUTION ROADMAP 

The development of GTS v1.0 defined the GTS 
Architecture and developed the initial key components and 
resources. 

Version 1.1, due in fall 2014, will provide a number of 
background enhancements such as restart and migration tools, 
additional local storage for VMs, enhanced operational 
monitoring capabilities, and “lightweight” VM resources (to 
enable substantially more “basic best effort” VMs to be made 
available.) 

Version 2.0 is targeted for deployment in early 2015-Q1. 
This release will deliver several key new capabilities:   1) 
“Multi-Domain” GTS capabilities.   MD-GTS will allow a 
user’s testbed to seamlessly span multiple GTS domains.  2) A 
much improved graphical user interface will provide drag-and-
drop graphical testbed editing.  The new GUI will let users 
graphically manage testbed topology, and configure or query 
attributes through interactive dynamic dialogs.  3)  Active  in-
situ modification of testbeds will be available allowing 
resources to be added or removed without releasing and re-
reserving the entire testbed.   4) New operational monitoring 
capabilities will provide more detailed insights into service 
state.  These tools will be integrated into the GUI and will 
provide greater visibility and more detailed control of the 
service for the GEANT NOC and for users.    

GTS 2.0 will introduce several additional resource classes 
including “Bare metal servers” that provide a user with an 
entire physical server as a resource, and VLAN-delineated 
virtual circuits which will enable multiple virtual circuits to be 
provisioned over an individual physical Ethernet interfaces. 
The latter, VLAN delineated VCs, will also introduce increased 
VC capacity to 10 Gbps [or possibly 100].   The GTS v2.0 
Service will peer with the GEANT Bandwidth-on-Demand 
service and will be able to leverage the GEANT BoD 
connectivity to deliver virtual circuit resources globally. 
Global reach for virtual circuits are key to delivering Multi-
Domain GTS testbeds.    Version2.0 is planned to demonstrate 

an initial “GTS-to-Cloud” integrated service capability that is 
hoped will enable GTS to acquire VM resources from cloud 
data centers and to provision virtual circuit resources into those 
cloud facilities to realize user topologies. 

The next stage, GTS version 3.0, will be developed as part 
of GEANT4 Phase 1 and will be begin development in 2015-
Q2.   Version 3 features are not fully defined as of this writing. 
However, some interesting new features are being discussed: 
“Smart” resources can react to events in the testbed – such as 
the addition or deletion of a resource instance somewhere in the 
topology.  A smart resource could, for example, analyze and 
reconfigure the topology to meet user resiliency goals.   “Soft” 
resources do not have a particular hardware analog.   Soft 
resources might include encryption/decryption modules, or 
framing adaptors/interworking modules, or a BGP routing 
instance.    There is interest in advanced timing capabilities as a 
virtual resource, and a new family of “optical/photonic” testbed 
resources to manage long haul optical/photonic infrastructure 
and make photonic testbeds facilities easily available to the 
research community.   Similarly, there is interest in wireless 
and mobile resources.    The final v3.0 feature set requires 
additional consideration which will also be weighed in terms of 
the growth of the user bases served as GEANT4 begins. 

V.  THE VISION

The long term vision is a ubiquitous and easily accessible 
service capability that can construct experimental networks 
spanning the globe.  Recent research efforts have developed a 
number of promising approaches over the last several years. 
However, interoperability and global scaling were not the 
primary research objectives, and so these frameworks exhibit 
only limited (if any) interoperability.  This is not atypical of 
early very advanced work in a field.   The most expedient 
approach to interworking two dissimilar systems is to develop 
software translation, or interworking, of the two service 
models.  Such translational approaches do not scale well when 
the interworking must address more than a very few different 
service models. Interworking often is just unable to convert 
service features from one model to the other – simulacrums do 
not exist.   The results are often only partially successful, or 
require excessive manual intervention to deliver services.  Even 
lack of common end-to-end operational continuity can make 
interoperability sketchy at best.  A more strategic and formal 
approach is needed.   

What is needed now is a common canonical service model
that all agree supports the necessary basic service concept, and 
that all agree to support and adopt.   Such a common model 
must identify the fundamental service semantics, normalize 
terminology, define principles for security, privacy, and 
scalability, identify common data objects/constructs, and agree 
to a set of common service primitives.    Operational 
implementation of such a common service model requires 
agreement on policy – at least at a high level – such that 
administrative control is retained in the domains offering the 
service, and service interconnections and peering relations must 
be worked out. 

Such a consensus service paradigm need not invalidate 
existing service models.  Indeed, the common model will likely 
have a strong resemblance to these predecessors. But a 
canonical model means that existing service domains need only 
develop a single interworking process between the canonical 
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model and their existing local model.  Inter-domain 
interoperability is achieved using the common canonical 
model, while internally each domain can retain their existing 
intra-domain service model.  The canonical model may also be 
implemented directly within a domain making the interworking 
unnecessary altogether.  

Agreement on a common canonical model will take time. 
There will inevitably be many  hard discussions as to which 
concepts should be implemented, how they should function, 
what terminology will be used, etc.  This is best progressed in 
stages. Simple shared concepts first, then more sophisticated 
features.  Time allows compromise, e.g. a topic that cannot 
gain sufficient support now can be held for later re-
consideration thus avoiding alienation of the contributors  and 
losing a potential supporter for the overall effort. 

The GEANT Testbeds Service will continue to evolve to 
incorporate more useability features, to provide the reliability 
of a production service, and to integrate into a global consensus 
service model. Long term commitment to services such as GTS 
will entice users to incorporate these capabilities into their 
ongoing research efforts, and this increasing usage lead to 
wider adoption and deployment.   The result will be a 
ubiquitous global facility for advanced networking and 
networked applications development. 
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I.  INTRODUCTION  

The work has been granted by the Russian Foundation for 
Basic Research, project 13-01-00215. 

Now access restriction methods mostly are based on the 
idea to isolate domain. There are such a kind of mechanisms 
built in OS and DBMS to provide them with discretionary 
access control. Switches, routers and firewalls implement 
domain isolation in networks. The concept of Software 
Defined Networks (SDN) opens new approaches in this area. 

The paper presents how to make use of SDN to guard hosts 
and networks. Also we consider newly opened perspectives in 
information security.  

SDN concept is to put network management functions into 
physically decoupled control plane. This enables a wide range 
of technical software and hardware means including artificial 
intelligence to enforce proactive guarding of selected nodes, 
LAN segments and IT infrastructure. Some of these means are 
as follows:  

 SDN allows to implement an architecture to 
secure distributed virtual systems. We consider  
principles of this idea in next chapter. One of 
practical use of such a secure architecture is a 
realization of so called process approach in 
information security. In other words that is to use 
patterns and dependencies between data flows, 
which are predefined by IT. So there is a new 
chance to build security facilities based upon 
information processes. 

 On-line tailoring security policies in Big Data and 
OLAP systems. Relations between data flows, its 
content and the subject can dynamically control 
an access to information and support multilevel 
security policy and mandatory access control. 

 The use of computationally complex, heuristic 
algorithms along with AI1 approaches, 
implementing a kind of “man-in-the-middle” 
systems enable on-line traffic analysis and 
preprocessing. This empowers withstanding to 
DDoS attacks and traffic anonymizing.      

 Parallel processing along with obfuscating in 
order to store information in a number of isolated 
independent domains. This essentially 
complicates unauthorized access. The approach is 
a new direction of information security. 

 Cryptography as a mean to authenticate and 
isolate domains. The problem resides in crypt 
algorithm implementations and key management 
system as well. 

II. THE SECURE ARCHITECTURE 

First of all we define what we mean under the architecture 
of a distributed virtual system 

If we denote V as a set of components belonged to this 
distributed virtual system, and E as a set of interactions 
between components, then G = (V, E) represents the 
architecture of the system. It’s also possible to consider time-
dependent architecture as G(t) = (V(t), E(t)). We consider 
time-independent systems just for the sake of simplicity. 

If we consider interactions E as communications in pairs 
then we can represent the architecture as an oriented graph 
where an edge identifies the data flow from a component to 
another one. Generally the interactions can be denoted as a 
complex architecture, which contains its own components 
with its own interactions in its turn. Similarly components can 
be also a combined structure of elements, which enclose other 
components with its interactions as well.  

We define the concept of the secure architecture as 
follows.  

Information security considers threats as a result of 
technical issues like vulnerability and exploits and social 
matters like classes of probable attackers and their potential 
targets. All of these issues  

                                                           
1 Artificial Intelligence 
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We define on the set V a function f: VL1. The function 
maps components into a scale L1 defining the level of a risk 
for a component to suffer from an attack for example with 
malware. Here L1 is a semiordered categorical hierarchy (a 
set) for determining of the risk (scalar value, i.e. a kind of a 
norm) mentioned above. Thus some components have got a 
lower risk, some ones map to a larger risk, e.g. components 
connected to Internet.  Similarly we can introduce a function 
h: EL1, which maps the set of interactions into categorical 
risk hierarchy L1, e.g. a channel inside a protected perimeter 
has a lower risk to be eavesdropped then a channel through-
passing an open unsecure territory. 

Also we categorize all components according their values 
by means of a function g: VL2, where L2 is a hierarchy 
structure, reflecting component value from the perspective of 
confidentiality, integrity and availability. For instance 
components containing crypto keys or digital signatures are 
more valued then components with open background 
materials. 

 Therefore the function f, the norm of L1 representing a 
scalar risk and a given threshold defines a subset V1 of 
components in some distributed (and/or virtual) system. We 
can assume those components have got heightened risk of 
unsafe impact. Alike we described above the function g, a 
threshold applied to V, L2 defines a subset V2 of hosts or 
components containing valuable information needed to be 
protected. We determine the system architecture as secure 
when there are no direct interactions between V1 and V2 

elements.  

If there is a need in such interactions then we have to  put 
an interface called SecS (Security Server) 

The Security Server is both to lower a risk of hazard effect 
on valuable hosts and to prevent of rising value level for risky 
hosts. 

Thus we’ve defined the model of a secure architecture for 
distributed (either virtual) system. This model can stand 
independently of other known concept in information security.  

One of the central requirements to distributed or virtual 
information systems is quick modernization, developing and 
implementing of new information technologies. It means a 
need for quick upgrading architecture of such systems and it’s 
possible that new components and requirements can be 
revealed. In order to keep the architecture secured it’s 
necessary to calculate functions f and g for these components 
and to check out the requirement mentioned above to have no 
interactions between subsets V1 and V2. 

One of solutions to this problem is to make use of SDN 
concept because it’s much faster and efficiently to customize 
configurations programmatically other than tuning up of 
traditional routing systems. 

Next, we deliberate problems of analyzing the secure 
architecture of systems considered in this chapter. There is too 
early to treat, say, some deliberated architecture as absolutely 
or assured secure one, but it’s worth to compare several 
architectures as more secure or less secure. Also it’s to build 
more secure systems from less secure. 

As an example of systems with different levels of security 
we appeal to a PC with Hyper-V processor feature. Also we 
assume the PC runs under a hypervisor with its manager and 
two virtual machine with OS’s working under this hypervisor. 
And a user can switch between those two OS’s as he (or she) 
wants. 

Then we assume, that a virtual machine (VM I) has 
connected with Internet, and the other (VM II) is not allowed 
to connect to Internet. A user can work with his confidential 
data on a VM II and has to switch to VM I in order to send 
these packages. Here we can state that just described 
architecture is more secure in comparison of situation when 
both virtual machines have been accessed to Internet. 

 On like occasions of traditional architectures it’s 
worthwhile to build safety architectural elements. For 
instance, when either a component with high risk and a 
component with high value access to common resources it’s 
worth to provide  every component with its own “common” 
resource with previously doubled information. Also these 
resources have to be placed into isolated domains along with 
its components. Correspondingly “common” resources have to 
synchronize data regularly. 

Enterprise information systems automate technological 
and/or business procedures in part or entirely. One of the first 
stages at implementing a system is a business analysis and 
modelling. This has data flow formalism as an artifact, 
describing traffic between servers, nodes, system components 
and workplaces. We can consider a business model as a 
number of graphs with vertices as information processors and 
edges as data flows. That means we consider an architecture 
which depends on time. Thus we can describe network 
security model as a domain of legal traffic at every moment of 
business processes. We treat legal traffic in general 
irrespective of professional area like industrial control systems 
or an office infrastructure. This security model along with 
legal traffic domain is being adjusted during implementing 
procedures.  

Having efficient high performance technical means placed 
in the control plane to analyze and control traffic of SDN we 
can manage on-the-fly alternating data flows in accordance 
with dynamic security policy and system informational model. 
This reflects the sense of process approach in information 
security methodology. 

III. INFORMATION SECURITY IN OLAP AND BIG DATA 

Enterprises have rigid requirements to guard confidential 
data when users work with analytical systems such as OLAP 
or Big Data. Very often these requirements imply the 
discretionary access policy for a certain type of aggregated 
data and monitoring of access policy fulfillment in real-time. 
It means a user or a software agent can have whether a full 
access to the whole data source (e.g. hypercube) or nothing. 
Populating a control plane with special technical means like 
DPI along with AI technology allows us to realize flexible 
security policy. This policy can on-line combine current data 
confidentiality, users’ credentials and his activity profile. 
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Let’s assume a user is collecting accessible structured 
(OLAP) and unstructured (Big Data) data from corporative 
sources. All facts and information fragments have markers, i.e. 
structures of information properties including confidential 
level. Aggregation procedures recalculate markers according 
to predefined rules. Also logged user (or program agent) 
activity results into operational recalculating of user’s 
credentials, which defines first of all his access level. Thus 
applications located in the control plane constantly recalculate 
information markers and users credentials in order to limit or 
grant an access on-line matching markers and user credentials. 

IV. WEB-TRAFFIC CONTENT ANALYSIS 

As common practice shows the usage of web applications 
and web-services can contain a lot of security threats. One of 
methods to withstand is web-traffic analysis. To implement it 
we have to solve two problems: 

 To get an access to the object of analysis, i.e. 
data flow from a web-service to a client, e.g. by 
“men-in-the-middle” method, realized via any 
available way. 

 To analyze data flow and make a decision on its 
content during the period defined by 
technological and business requirements. This 
problem needs effective fast algorithms and 
heuristic approaches accompanied with elements 
of AI technique. 

Both problems can be solved as SDN controller 
applications with proper functionality and performance. 
Realization of such an approach allows resisting DDoS attacks 
and anonymity in internet sessions. 

Such a kind of solutions regarding content-analysis shows 
up in firewall products of new generation and anti-bot systems 

V. SDN AS A MECHANISM TO GUARD 

When attacking computer systems with help of malware 
the toughest problems are to get an access to protected 
information and its processing. To create isolated domains of 
storing and processing data is a solution to defend systems 
against these attacks. For instance, modern OS process data in 
an isolated domain such as the kernel of OS. 

Nowadays techniques of data storage and virtualization 
provide a number of means of distributed storing and 
processing. Applying of SDN extends mentioned above 
solution with an ability to decouple a way to define storing 
and processing from storing and processing itself. Such a kind 
of detachment opens a perspective to develop new 
mechanisms to defend against malware attacks.  

Let’s consider the essence of this idea in details. 
Technically speaking SDN arranges a dynamically isolated 
domain for any task to link nodes. If this domain contains no 
built-in malware then an attacker needs to look over all 
components for valuable data. If this dynamically isolated 
domain contains a lot of components (irrespective they are 
virtual or real) of storing and processing data and malware has 
no access to SDN controller managing the domain then 

malware has to perform an exhaustive search. Nowadays 
malware can’t perform such a kind of search and it’s hardly 
possible that malware could do it in any future perspective. 

From another side, if a malware is already running in SDN 
controller but it has not connected with malware of data plane, 
then it also can’t arrange a dedicated, object-oriented search. 

For example, we have to protect a text of a length L. We 
can divide the text into sequential fragments of 512 bytes long, 
what are about a hundred words in Russian. Such a long 
fragments length can ensure a context search within bulk of 
data, but there are few chances for a deep inspections and data 
mining if the text is comparatively long. 

Our suggestion is (i) to furnish every fragment with two 
cryptographically protected marks; (ii) to store crypto keys for 
these marks in control plane; (iii) to place fragments into 
randomly chosen memory slices.  The first mark contains 
encrypted information about the address of previous fragment; 
the second mark contains the address of next one. Thus we can 
obfuscate all fragments and leave a possibility to look for 
information via open parts of fragments at the same time. 

For to retrieve obfuscated text as a whole a user has to get  
through an authorization at SDN controller and only then to 
place his request to obtain the text. In response a controller 
can swiftly restore a full text as a linked list according to 
requested fragment. From another hand malicious code or an 
unauthorized user have to complete an exhaustive search 
through whole memory storage with no guarantee to restore 
original information. 

As a result SDN can arrange storing information 
irrespective of computer systems which actually keep data, i.e. 
storing data system cannot effect on how and when to store 
either it cannot gather up the thread of obfuscated text. Also 
malicious code in control plane can’t help malicious code in 
data plane to reduce an exhaustive search as long as they are 
not connected with each other.  

Thus we’ve got a solution to a long-standing problem to 
build guaranteed secure system with unsecure, distrusted 
components. Such a type of protection is a new direction in 
information security.  

VI. SDN AND CRYPTOGRAPHY 

An enhancement of computing and intellectual power to 
process traffic by means of control plane facilities increases an 
efficiency of cryptographic security. This is grounded on two 
ideas. The first idea is that a secure usage of cryptography 
depends on the quality of isolating domain with cryptographic 
functions running. As mentioned above such isolation can be 
achieved by the instrumentality of SDN even in a case of 
components with built-in malware. The second idea regards 
with a need to carry out bulk computations at instantiating 
cryptographic protection of high quality. Applying specialized 
high performance technical means in control plane allows 
meeting the requirement of using dissimilar crypto keys in 
different data flows, generating these keys with usage of 
compound protocols of key sharing and fault protecting crypto 
systems. 
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VII. CONCLUSION 

SDN initiates new perspectives in the area of information 
security.  The possibility to populate a control plane with high 
performance intelligent facilities opens new directions in 
managing data flows and developing adaptive algorithms to 
protect computer systems.  
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Abstract—This paper presents a concept for 
hierarchical distributed control of SDN networks. 
The proposed architecture is based on a 
heterogeneous control plane with a hierarchical 
structure that offers a general framework for 
building non-classical SDN deployments. This control 
plane organizes a group of controllers nodes, into a 
hierarchy, with each tier containing one or more 
interconnected controllers. The hierarchical approach is 
intended to improve scalability and increase service 
flexibility by distributing functionality between 
multiple controllers.  A proof-of-concept 
implementation using the Floodlight SDN controller 
platform is described, and performance results 
demonstrating basic feasibility are given.   

Keywords—Software Defined Networking (SDN), Next 
generation networks, control plane  , distributed controller 

I. INTRODUCTION

The architecture of the Software Defined Networking 
(SDN) control plane has been a point of interest since its 
beginnings in OpenFlow, with the reference design [1] 
featuring a single physical controller. However, to manage 
larger or more disparate networks, a single controller can 
quickly become a point of failure, route inefficiency, and 
processing bottleneck. The ideas on distributed 
implementation of the control plane followed naturally in the 
SDN community to tackle these problems. This is typically 
achieved through the distribution of the controller across 
multiple compute resources as clones sharing a synchronized 
view of the network state. Figure 1 shows the organization of 
such a logically centralized, distributed control plane. 
Distributed control platforms, such as [2, 3, 4, 5, 6], often 
follow this archetype to scale to larger networks and traffic 
loads and/or to reduce flow setup latencies by reducing the 
distance between any given switch and the closest available 
controller. Most early efforts on the distributed control plane 
architectures have gone towards a functionally homogeneous 
layer of controllers. Every controller in such an architecture 

performs the same set of tasks, although for different parts of 
the network, or in different fail-safe conditions. A functional 
distribution of the control plane tasks, in addition to the 
topological distribution, is arguably a harder problem and the 
subject of this paper. 

Due to tighter delay bounds and rapidly changing network 
conditions, the single vs. distributed control plane debate is 
even more important for wireless networks. Efficiently 
operating a large wireless network requires the adaptation of 
numerous parameters (e.g., channel assignment, data 
transmission rate, client association, and transmit power) to 
network conditions. While the algorithms controlling some of 
the parameters are run directly on the APs, others are run on 
centralized controllers. Yet other functionalities such as policy 
management, authentication, and security needs to be 
implemented at the junction of the wired and wireless 
networks in order to ensure the same set of rules are used 
throughout the network. In such situations a single controller 
or a homogeneous set of controllers with an identical set of 
functionalities is clearly inefficient. 

For this deployment scenario and several others that we 
expand upon in the next section, a functionally distributed 
control plane is a better fitting solution. In this paper we 

propose a heterogeneous SDN control plane with multi-tier 
hierarchical structure through which different control plane 
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Figure 1:  Distributed SDN Control Plane 
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functions can be distributed between separate physical 
controllers. This architecture is lean and efficient in terms of 
the overhead of distribution and transparent to the underlying 
data plane. 

II. HIERARCHICAL HETEROGENEOUS CONTROL PLANE

Current SDN control planes were not designed for network 
deployments that do not uniformly centralize their control 
logic. A network stack, run in one or more controllers as a set 
of applications, typically assumes that it is the sole source of 
network control in a deployment. Several situations break 
down this assumption, including: 

• Shared networks: Multiple administrative groups may
configure various aspects of a service-rich network. 
Particularly, in active infrastructure sharing, multiple service 
providers share network elements such as switching, routing, 
and other telecommunications equipment, or, in case of 
wireless, shared access to spectrum for unlicensed bands, and 
individually provide support to their customer bases. Notably, 
there is interest for these providers to allow their customers (or 
controllers) to interact with one another to increase service 
utilization. In these cases, each administrative group or service 
provider may wish to maintain their own controllers, and in 
the latter case, have them coordinate with the global controller 
for the shared infrastructure. 

• Heterogeneous networks: Modern networks are built with
a mixture of technologies with various properties and feature 
sets that must coordinate seamlessly. For example, typical 
LANs combine wired and wireless components, which 
frequently require different traffic handling and host 
admission schemes. In another vein, service providers with 
adjacent infrastructures may wish to negotiate the handling of 
each other’s customers, e.g. different charging policies for 
roaming or negotiating traffic routing. Both cases involve 
potentially disparate service stacks that interact as 
collaborative peers. 

• Large-scale global policies applying to multiple spheres
of influence: large internetworks, even when managed by a 
single organization, will often be administered in pieces. 
Additionally, these local administrative domains may also 
implement their own local policies and services. This is seen 
in campus area networks, in which host authentication may be 
controlled by a set of global policies that span across multiple 
(W)LANs administered on a per-department/facility basis.  

In order to address these issues, we propose that a 
heterogeneous control plane with a hierarchical structure 
offers a general framework for building these non-classical 
SDN deployments. This control plane organizes a group of 
controllers, or nodes, into a hierarchy, with each tier 
containing one or more possibly interconnected (peer) 
controllers. The nodes of each tier behave as clients to the 
nodes in the tier above, and servers to the nodes in the tiers 
below. The client-server relationship stems from the notion of 
a service process chain, in which network events are ferried 
from low to high tiers. Events are processed incrementally at 
each hop, implementing network functions as they are handed 
off across the controllers. The nodes within the same tier host 

services that serve the same function or share operational 
scope; in this respect, a single tier of a heterogeneous control 
plane is roughly analogous to the classic distributed control 
plane. Figure 2 illustrates this with a simple network stack of 
three tiers and three categories of services, A, B, and C, and 
two peer links. The client and server relations are labeled with 
respect to node B1’s perspective. We point out that the service 
process chain corresponds to a network stack, and each service 

category is its subcomponent; that is, the full set of 
applications within a typical controller is dispersed across 
hierarchically arranged controllers.  

The ability to break network functions (service set) down 
into modular components introduces flexibility in terms of 
what functions are being used to handle a given event. The 
event process chain enables the control plane to 1) host 
functionalities from multiple network stacks without the need 
to rely on assistive tools such as hypervisors [7], and 2) allow 
services to share their functionalities with other interested 
parties, including those of other service sets. For 1), event 
process chains may exist side-by-side as higher tier services 
invoked on disjoint sets of events. For 2), events may be 
handled by process chains that incorporate nodes from 
separate service sets that reside in a hierarchy organized to 
merge the sets (i.e. different administrative domains, etc.). In 
other words, 2) enables the coordination of event handling 
between otherwise functionally disjoint control planes. 

There are several challenges in the design of such 
hierarchical control plane architecture including the fact that 
the distribution of functionality between different control 
plane elements has to be relatively transparent to data plane 
devices.  

III. RELATED WORK

Architectures in which varying controllers coexist on a 
single network have been rarely addressed outside of the topic 
of network virtualization. However, we acknowledge that the 
design of this control plane is influenced by several prior 
works. 

Figure 2:  A generic representation of a hierarchical, heterogeneous 
SDN control plane. 
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FlowVisor [7] is a specialized controller that serves as a 
virtualization layer between the data plane and multiple, 
functionally different controllers by overwriting control 
message contents to present a controlled portion of network 
resources to each controller. Save for specifically configured 
mirror slices with read-only access to other slices, controllers 
behind a FlowVisor are largely unaware of one another. 

Kandoo [8] is a hierarchical control plane that separates its 
service set into two tiers. Although closest to proposed 
architecture, Kandoo does not allow controllers within a tier to 
communicate directly with one another, and limits usage of 
the second tier to services requiring a global network view. 

Onix [9] is capable of limited federated operation, in which 
two Onix instances may share summarized views of the 
networks that they have control over. This sharing of 
information is contained to instances under the same authority, 
and serves to allow the compact representation of massive data 
planes within the Onix NIB. 

IV. CONTROL PLANE IMPLEMENTATION

There are several implications to a hierarchical design. The 
control plane must have a messaging scheme that member 
nodes can use to pass events amongst themselves. The scheme 
must also allow nodes to propagate service information that 
would allow others to determine available event handlers and 
the means to reach them. In addition, it is assumed that service 
sets can be broken down into functional subsets according to 
some policy. 

We recognize the control plane to have three distinct layers: 
• control channel handler : The control channel handler

interfaces the control channel, and is directly responsible for 
sending and receiving network control packets and listening 
for incoming connections from the data plane. We focus on 
OpenFlow as a widely-supported control protocol.  

• event dispatcher : The event dispatcher translates between
control channel messages and controller-internal events 
meaningful within the controller and to its services, and serves 
as an event dispatch/scheduling mechanism that passes events 
to various interested services. 

• applications : Applications implement the various services
that add functionality and usability to the controller. These 
functions range from network stack functions such as topology 
mapping and packet forwarding to interfaces such as RESTful 
APIs. Applications may also provide specialized functions 
such as synchronization elements of distributed controllers. 
In the following, we assume that our control plane would be 
given a dedicated control network physically separate from the 
data plane. This allows us to avoid the bootstrapping issues 
associated with in-band control. We also assume that state 
distribution can be performed through synchronization 
mechanisms well-explored by logically-centralized distributed 
control planes. This allows us to focus on the components and 
mechanisms that provide the features necessary for 
implementing the heterogeneous hierarchical control plane. 

A. Inter-controller (Control-plane-level) functions 

Each node in the control plane is identified by three attributes: 

1. A unique node identifier (UUID), a value assigned to
each node to serve as an address in the control plane

2. A service identifier (SID), a value assigned to the
services hosted at a node

3. Event subscriptions, the set of network events that a
service is capable of handling and that a server will
subscribe to a client for.

1) Controller Initialization and Discovery
The nodes participating in the control plane must be able to 
find one another in order to form the hierarchy. Our approach 
mirrors that of the OpenFlow control channel. Upon startup, a 

server begins listening for client connections on a pre-
established port, with clients periodically attempting to 
connect to them. For the purpose of simplicity, our 
implementation of the client is supplied with a list of servers 
to which it must attempt to connect to. The client attempts a 
limited number of reconnects if its server is initially 
unavailable. A successful connection attempt is followed by a 
handshake, in which the server informs the client of its event 
subscriptions. Peer links are bidirectional, containing two links 
connecting both ends as clients of the other. Controllers may 
make use of services similar to portmap or UPnP to facilitate 
more sophisticated forms of discovery.  
2) Service propagation
Each node must advertise the services that they provide, so 
that others may subscribe to them. This information is 
propagated in configuration messages that encode a 
controller’s attributes and location within the hierarchy. For 
the sake of simplicity, we implement a simple RIP-like 
distance vector algorithm with split horizon [10] which uses 
hop count as the distance metric. This allows recipients of 
these messages to build maps of service locations within the 
control plane in a structure similar to a route table. 

B. Context preservation 

Once the control plane enters the operating state, a node’s 
ability to preserve the context of an event being handled 
across the multiple hops in an event process chain becomes 
important. In situations where client nodes rely on results 
generated by nodes later in the process chain, each server in 
the process chain must be able to identify the client that it had 

Figure 3:  A timing diagram showing the handling of a message
event across a two-tiered, two-service event process chain. 
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received the event from, so that it may return the message to 
the correct client. We simply rely on the service map to route 
the messages back down the process chain. 

C. Event process chain execution 

In the initialization of client-server connections, the client’s 
local packet process chain is essentially configured by its 
servers so as to incorporate, and properly execute, their 
services. A client node’s service map contains mappings 
between services and server event subscriptions. An 
OpenFlow message received at a first-tier node is translated 
into an event, which is then used to search its map for 
matching entries. Matches return one or more SIDs that can be 
used to determine the next node in the process chain, to which 
the event should be dispatched. The current implementation 
attempts to handle an event locally if no match is found. A 
more sophisticated action may follow with a discovery process 
for servers capable of handling the event. In addition to SIDs, 
we define a set of actions that a client should take when it 
finds a match: 
• DENY: do not process the event further, returning a

DROP FlowMod to the sender switch if necessary. 
• ALLOW: handle with local packet process chain,

bypassing other event subscriptions associated with the 
event 

• DIVERT: dispatch the event to the service and halt the
process chain until the service returns a response 

• SPLIT: dispatch the event to the service, and continue
process chain execution 

One or more of these directives are assigned by the server to 
its event subscriptions. Given the example of the two-tiered 
control plane in Figure 2, a PacketIn triggered by a new 
device’s traffic will prompt the execution of a process chain 
containing both forwarding (client) and authentication (server) 
nodes. In this situation, authentication must first determine 
whether or not the host is allowed on the network before its 
traffic can be handled by the forwarding service. The 
configuration messages sent by the authentication module 

pairs message events, associated with new devices on the 
network, with the DIVERT action, causing the forwarding 
node to wait on the server to allow or deny the processing of 
the host’s traffic. Figure 3 illustrates this flow of execution for 
case of an unauthorized host. The event reaches the tier 1 
node, where it matches against the subscriptions of the 
authentication service, found to reside on the server with the 
UUID of 0xa. The client blocks on the DIVERT directive, 
waiting for the server response - in this case, a FlowMod to 

drop traffic associated with the host. The result, returned via 
the client node, is forwarded to the client’s peers as a rule to 
apply throughout the network. 

We develop the components of our controller as a series of 
modules and services on the Floodlight [11] SDN platform. 
Figure 4 shows the layered model of the architecture of our 
modified version of Floodlight, with our additions shown in 
green. Our implementation complies with the Floodlight API 
and is fully compatible with the base platform, and can be 
treated like any other Floodlight application. 

V. PERFORMANCE AND FUNCTIONAL EVALUATION

This section presents some of the performance evaluations that 
were done to test the functionality of distributed hierarchical, 
heterogeneous control plane. We run our tests on the ORBIT 
[12,13] network testbed. The nodes used for the evaluations 
have 8GB of RAM and Core i7 CPUs. Each node has two 
network interfaces, connected to dedicated VLANs that can be 
used to separate control and data plane traffic. Each interface 
connects to an aggregation switch with gigabit Ethernet links.  
We consider several factors when evaluating the performance 
of proposed distributed hierarchical control plane: 

1. Number of switches. Control packets and channels are
tracked in terms of switches and client nodes. As this 
value increases, a controller will have larger amounts 
of transaction and context mappings to maintain if it 
needs higher tiers to handle the events. 

2. Number of hosts. Unique host traffic that generates
misses at the switch flow table trigger message events. 
More hosts intuitively generate more events, as do 
hosts communicating across multiple datapaths. 

3. Number of control plane hops. Even with high-
throughput, low-latency links, a longer route to a 
particular service will incur processing delays in the 
form of network overhead (propagation, queueing, 
kernel buffer etc). 

4. Number of services. Larger numbers of services
(modules) handling a given event naturally incurs more 
processing overhead. 

5. Listener policy. Event traffic volume above tier 1 in the
control plane is directly related to listener 
subscriptions; a listen-to-any policy will dispatch every 
event from the data plane, whereas more stringent 
policies will dispatch events less frequently. Listeners 
may also request to divert process chains, in which case 
the dispatcher must wait for the listener reply before 
continuing to process an event. 

A. Overhead Analysis 

The most prominent feature of this control plane is its 
hierarchical control network and we measure the effect of 
control plane complexity on control packet processing times, 
focusing on the impact of route hop count and service 
subscriptions with DIVERT versus SPLIT directives. 
Using a custom OpenFlow client, a stream of PacketIns is 
injected into the control plane. The time between PacketIn 
transmission and the reception of the corresponding PacketOut 

Figure 4:  A Hierarchical Controller with Floodlight. 
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were measured at tier 1 using Tcpdump, and at the client using 
its logging functions. Two control plane topologies with three 
controller configurations were tested. 

For the first, a variable-length chain of controllers associated 
with each other as tiers was configured so that only the highest 
tier hosted the PacketOut service, and the rest escalated 
PacketIns to the service. In the second, a two-tiered topology 

with a variable numbers of servers in tier 2 was configured 
with servers that requested Divert directives in one test, and 
Split directives in another. For the second topology, each 
server was assigned a different priority to fix the dispatch 
order across multiple trials, with the last server in line hosting 
the PacketOut service and the rest, echo services that echo 
back a clone of a received PacketIn. For each of the three 
controller cases, ten trials of 10,000 PacketIns each were 
conducted for increasing tier height for the first topology, and 
increasing fanout for the second. Figure 5 shows the CDFs for 
the observed processing times of the three cases. The tests 
subject the control plane to the worst-case scenario where the 
higher tiers request escalation of every event.Discounting link 
delays, each additional tier adds an average of 0.32 ms of 
overhead. Similarly, each blocking and nonblocking server 
adds approximately 0.46 and 0.11 ms, respectively. The first 
two cases are similar, as the client must wait for the server to 
reply before taking action, with the differences in value due to 
each hop in the blocking server case handling the event with 
its modules.  

VI. CONCLUSION

In this paper, we have presented a concept for hierarchical 
distributed control of SDN networks.  The proposed 
architecture has the potential to improve scalability and 
increase service flexibility by distributing functionality 
between multiple controllers organized in a hierarchy.  A 
proof-of-concept implementation was developed using a 
Floodlight SDN controller platform, and the results 
demonstrate feasibility for an intra-domain usage scenario. 
Future work will focus on extensions to the control plane 
necessary for interactions between SDN controllers across 
multiple administrative domains. 
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Abstract—  Selforganizing  cloud  platform  (SOC)  to  deploy
virtual networks in DC is presented. The platform supports both
IaaS  mode  and  PaaS  mode.  The  paper  describes  Platform
architecture,  virtual  infrastructure  description  language,  the
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I.  INTRODUCTION

In this paper we consider a selforganizing cloud platform
(SOC) which allows one to deploy virtual networks to be used
for  a  data  center  both  in  Infrastructure-as-a-Service  (IaaS)
mode and in Platform-as-a-service (PaaS) mode [1]. In order to
provide  efficient  work  of  a  data  center  in  these  modes  and
ensure guaranteed levels of service specified in a service level
agreement  (SLA)  the  platform  must  conform  the  following
requirements:

1. Consistently distribute compute, storage and network
resources;  consider  these  resources  as  manageable.
Scheduling should be performed consistently in terms
of SLA compliance;

2. Allow virtual resource migration in order to eliminate
segmentation of  physical  resources  which  occurs  in
the process of data center operation. Administer local
network: for example,  specify certain routing policy
for data flows in virtual networks;

3. Allow  the  users  to  define  and  use  virtual  network
functions  (VNF)  for  purpose  of  virtual  network
organization, including VNFs which are managed by
external  providers  as  well  as  VNFs  which  are
managed by one cloud user for another one. Allow to
join  networks  managed  by  different  users  and
organizations  and  efficiently  transfer  data  between
these networks.

Existing commercial cloud platforms [2-8] and OpenStack
platform  [9]  do  not  possess  all  these  properties  in  the
aggregate.  Also,  none of  the  known algorithms [10-23]  that
map  requests  to  physical  data  center  resources  meet  the
requirements 1-2.

In this paper we propose a cloud platform for a data center.
This platform meets all of the above listed requirements and is
compliant with and based on OpenStack.

 This research is supported by the Skolkovo Foundation Grant N 79, July,
2012  and the Ministry of education and science of the Russian 
Federation,  Unique ID RFMEFI60714X0070.

II. SOC PLATFORM ARCHITECTURE

SOC  platform  uses  some  components  of  OpenStack
(Nova,  Cinder,  Keystone,  Rabbit  Message  Queue)  in
combination  with   the  original  specialized  components:
OpenFlow  controller,  orchestrator,  unified  scheduler  for
consistent resource allocation, graphical  user interface (GUI)
for  network  definition,  an  extensive  “sensor”  system  for
physical resources monitoring and management, and modified
OpenStack component Neutron. SOC platform architecture is
given on Figure 1.

Orchestrator  is  the  central  element  of  the  platform.  It
controls all other components and coordinates their interaction.
Orchestrator generates databases of physical resources which
keep track of actual load of the resources, accepts requests for
new virtual networks creation, for modification and deletion of
existing virtual networks. As soon as all data about actual state
of  the  data  center  are  collected  orchestrator  launches  a
scheduler. Based on the results provided by the scheduler the
orchestrator performs control function by means of OpenStack
components API and OpenFlow controller  API.  Orchestrator
uses  Rabbit  Message  Queue  to  interact  with  the  OpenStack
components. 

In  our  model  Network,  Compute  and  Storage  nodes  are
considered  as  roles.  These  roles  are  assigned  to  physical
servers  in  accordance  with  their  hardware  resources.  It  is
possible to assign several roles to one single physical server.

Network virtualization in the proposed platform has several
distinguished characteristics:

 Network owner can arbitrarily define virtual network
topology;

 It is possible to use VNF as a network element.  In
particular,  it  is  possible  to  provide  VNF  which  is
designed and supported in one user network and is
used in another user network;

 A user  can  specify  SLA  for  virtual  commutation
elements,  for  example,  virtual  channel  capacity,  as
well as for virtual servers, virtual storage elements, or
VNF elements.

OpenFlow  controller  integrated  into  the  SOC  platform
plays an important  role both in virtual  network organization
and in sensor system by providing actual data about physical
connections load and distribution of this load between virtual
networks.  Also  controller  provides  centralized  control  of
channel  aggregation  [24]  for  servers  connectivity  which
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ensures fault tolerance level not worse than for LACP protocol.
This  leads  to  the  decreasing  of  the  network  infrastructure
management costs.

Information  about  physical  resources,  virtual  network
description  and  mapping  of  virtual  resources  on  physical
resources is stored in SQL database. The database is used by

the orchestrator and the scheduler. In order to describe virtual
network  we  develop  OVF-like  data  format  language  [25].
Virtual network description can be provided either by means of
graphical tool (GUI) or by special file in the format described
above.

FIGURE 1. CLOUD PLATFORM ARCHITECTURE

III. RESOURCE ALLOCATION SCHEDULER

Mathematical  formalization  of  the  resource  mapping
problem   and  solution  algorithms  which  are  used  in  the
scheduler  are  described  in  details  in  [26,27,28].  Below  we
provide summary of these works.

A  model  of  physical  resources  of  the  data  center  is
represented by a graph

),( LKMPH  , 

where Р is a set of compute nodes, М – set of data storages,
К – set of commutation elements of data center's network, L –
set of physical data links. We define vector functions on sets P,
M, K and L.  Values  of these functions are characteristics  of
corresponding  compute  node,  data  storage,  commutation
element or data link:

Pppfphphphph n  ),(),,,( 121  ,

Mmmfmhmhmhmh n  ),(),,,( 221  ,

Kkkfkhkhkhkh n  ),(),,,( 321  ,

Lllflhlhlhlh n  ),(),,,( 421  .

Detailed description of these characteristics is provided in
Chapter IV.

A request for virtual network creation is defined by a graph

  ),( ESWG  , 

where W is set of virtual machines used by applications, S –
set of virtual data storages (storage elements), E – set of virtual
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data links between virtual machines and storage elements of the
request.  Commutation  elements  of  the  virtual  network  are
considered as virtual machines. We define vector functions on
sets  W, S and E. Values of these functions are characteristics
(required  SLA)  of  corresponding  virtual  machines,  storage
elements, or virtual links:

Wwwfwgwgwgwg n  ),(),,,( 121  ,

Sssfsgsgsgsg n  ),(),,,( 221  ,

Eeefegegegeg n  ),(),,,( 421  .

SLA  characteristics  of  an  element  of  request  match
characteristics  of  corresponding  physical  resource  (i.  e.  the
physical resource on which this element is assigned).

We define a request assignment as a mapping:

}},{,,{: LKEMSPWHGA  .

Let  us  distinguish  three  types  of  relations  between
characteristics of request and corresponding characteristics of
physical resource. Denote by xi  a request characteristic number
i and  yj as corresponding characteristic of physical resource  j.
Then these constraints can be written as follows:

1. Impossibility of physical resource overload:

j
Ri

i yx
j


 ,

here Rj is set of requests, elements of which are assigned on
physical  resource  j,  xi –  corresponding  characteristic  of  the
scheduled request.  As an example of such resources,  we can
consider number of cores, RAM, channel capacity.

 Correspondence  between  the  type  of  requested
resource and the type of physical resource: 

xi=yj.

In  this  case  we  consider  qualitative  characteristics,  for
example type of operating system or type of CPU.

 Availability  of  requested  characteristics  of  the
physical resource: 

ji yх  .

As an example, we can consider core frequency or cache
memory (i. e. technical characteristics).

As a characteristics of the requests and physical resources,
SLA criteria described in Chapter IV.

Let us call mapping

}},{,,{: LKEMSPWHGA   

to  be  correct,  if  for  all  physical  resources  and  their
characteristics corresponding condition from 1-3 is fulfilled.

Residual graph of the available resources is the graph Hres,
for which we redefine values of functions on the characteristics
to fulfill relation 1:

( ) ( ) ( )
p
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w W
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   , 

,

Here  Wp – set of virtual machines scheduled for compute
node p, El – set of virtual links mapped to physical link l, Ek –
set of virtual links passing through commutation element k, Sm

– set of storage elements allocated on data storage m.

Let  us  define  the  input  data for  the  request  allocation
problem:

1. Set of requests Z = {Gi}. Set }{ iG  is formed by the
orchestrator.  This set can contain both new requests
and  requests  which  are  in  progress  and  for  which
migration  is  allowed.  Also  orchestrator  defines  the
time when scheduler starts.

2. Residual graph of resources available:

),( LKMPH res  .

Required: schedule maximal number of requests from set Z
for which mapping A is correct.

In  order  to  map  requests  to  physical  resources  three
algorithms  were  developed:  two  algorithms  are  based  on
combination of greedy strategies and limited search strategies
[26,27],  and  the  third  algorithm is  based  on  the  use  of  ant
colony schemes [28]. For algorithms based on combination of
greedy strategies  and limited search  strategies  we set  search
depth parameter for limited search procedure. This parameter
allows to regulate computational complexity and accuracy of
the algorithm. The first algorithm is the most effective when
data exchange network is a critical resource,  second – when
compute capacity or size of data storage elements is a critical
resource [26]. Ant colony optimization algorithm provides best
solutions on the test examples for all classes of input data, but
has greater computational complexity [28]. 

The distinguished features of the problem formulated and
of algorithms proposed  are:

1. Mapping of  all  types  of  request  elements  (compute
resources,  data  storages  and  network  resources)  on
physical  resources  occurs  consistently   in  terms  of
SLA compliance.

2. In case when set  of SLA characteristics  is  changed
there is no need to modify algorithm.

In paper [26] it was shown that the algorithm used allows
to provide mapping of requests to physical resources results of
which substantially exceeds the results of algorithms provided
in OpenStack platform. In some cases this difference can be up
to 65%. In our experiments,  we compared the results of the
algorithms of  the OpenStack platform and of  the developed
algorithm,  which  is  used  in  the  SOC  platform.  The  most
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considerable difference between the results of the algorithms is
shown for a set of queries consisting of virtual machines that
require  more  than  90-95%  of  server  resources,  and  virtual
machines that require about 5-10% percent of server resources. 

FIGURE 2. RESULTS OF THE ALGORITHMS

Figure 2 shows the dependence of the number of assigned
requests  from  data  center  physical  resources  load  for  the
algorithm of SOC platform and the algorithm of OpenStack
platform “selection  of  random query  and  physical  resources
from a variety of appropriate resources”. Detailed description
of input data and results of experiments is presented in [26].
You can compare results of algorithms used in SOC platform
and  in  OpenStack  platform  on  your  own  input  data  using
experimental  system  of  investigation  of  the  properties  of
algorithms.  In  order  to  run  algorithms  and  check  their
applicability to your data center you need:

 Send a request indicating your name to email address
ev@arccn.ru;

 Install any VNC client;
 Read the manual.

Instrumental  system  allows  one  to  describe  data  center
resources, create set of requests and see how these requests will
be distributed on physical resources by the algorithm selected.

IV. VIRTUAL NETWORKS DESCRIPTION LANGUAGE

There  are  many  approaches  to  describe  requirements  to
cloud system configuration. OVF (Open Virtualization Format,
[25])  standard  is  an  open  universal  standard  for  declarative
description of virtual machines. This standard does not depend
on  virtualization  system  and  hardware  architecture.  OVF
standard allows to store the most complete information about
virtual machine. This standard is extendable.  First version of
OVF standard did not allow to describe such virtual network
elements as virtual data storages or virtual network  switching
equipment.  Starting  from  2.0  version  (January,  2013)  OVF

standard  supports  network  configuration  specification  and
network  data  storages  description.  OVF standard  is  actively
used by such companies as VmWare, Citrix, RedHat,  Cisco,
and others.

TOSCA  (Topology  and  Orchestration  Specification  for
Cloud Applications) [29] standard is designed to describe small
networks  taking  into  account  their  functionality,  roles  of
network applications, means and characteristics of  application
deployment.  This standard is relatively new:  first  version of
TOSCA  appeared  in  January,  2014.  TOSCA  standard  is
developed by such companies as IBM, SAP, HP, Rackspace.
Templates of this standard are supported in OpenStack Heat
project.  The  aim  of  TOSCA  is  to  standardize  interaction
between  cloud  platforms  and  to  provide  cross-platform
compatibility for applications and services. 

CIM  (Common  Information  Model,  [30])  standard  is
designed in order to provide uniform data exchange between
network  nodes  of  different  types  having  different  sets  of
parameters.  The aim of CIM standard is to  describe control
information  in  a  standard  way.  CIM maps  different  control
schemes,  including  SNMP  management  information  bases
(MIBs), to their data structure. CIM can be considered as a data
dictionary  used  to  manage  systems  and  networks  and  to
document how their features should correlate. To some extent
CIM can be considered as an SNMP protocol extension. CIM
is the basis for many other DMTF (Distributed Management
Task  Force)  standards  as  well  as  for   SMI-S  (Storage
Management Initiative — Specification, [31]) standard, which
is designed to manage data storage systems.

 One  more  language  which  is  designed  for  network
management, monitoring and modeling is  Yang  (RFC 6020)
[32],  the  add-on  for  NETCONF protocol  (RFC 6241)  [33].
NETCONF  protocol  provides  mechanisms  for  placement,
management and removal of network devices configuration by
using RPC (Remote Procedure Call) mechanisms. NETCONF
uses  XML  for  configuration  provisioning  and  message
generation. NETCONF protocol is used over transport protocol
(e.g.  SSH).  NETCONF  represents   extended  and  improved
model of network resources management and monitoring. Yang
is  a  language of  network  infrastructure  description  which is
rather  procedural  than  declarative.  It  describes  not  only
network  nodes and  their  parameters,  but  also  procedures  of
network  nodes  management.  Network  description  language
presented in this work realizes composite data types by means
of dictionaries and therefore in our case there is no need for
complex tools for new data types creation realized in Yang. 

In order  to manage resource allocation and provisioning,
Global Environment for Network Innovations (GENI) project
uses Resource Specification (RSpec) [34] standard. RSpec is a
language  for  resources  querying  (request)  and  resources
provisioning (manifest). Requests are provided as XML files of
predefined  format.  GENI  project  tools  allow  to  combine
computational, network, sensor, and authorization schemes as
well  as  configurations  of  preinstalled  software.   Request
description language RSpec is represented as an XML Schema
and is essentially similar to the network description language
proposed in this work. At the same time, in GENI RSpec there
is no description of virtual services (virtual network functions).
Also,  GENI  data  structure  is  not  fully  compliant  with
OpenStack data model. 

80



In our case  the goal is  to  provide a network description
which is based on unified elements, such as virtual machine,
data  storage,  virtual  network.  Structure  of  these  elements  is
fully  described  in  OpenStack  data  model  to  which  we  are
trying to fit as much as possible. Moreover, our virtual network
description language allows to describe such objects as virtual
network  functions  (VNF)  [35],  as  well  as  to  describe
interconnection between virtual networks and providing VNF
services from one virtual network to another. In order to solve
these  problems  we  developed  a  domain  specific  language
(DSL)  [36],  which  represents  a  declarative  description  of
virtual  network.  In  order  to  describe  the  grammar  of  this
language we use Backus-Naur Form (BNF) [37]. BNF notation
provides simple tools to describe grammar constructs and does
not  need  to  use  large  amount  of  syntax  rules.  BNF can  be
interpreted  using  standard  language  interpreter  generators
(lexers and parsers) [38], which are based on DSL grammar
definition provided in BNF notation. 

The node of virtual network can be one of the following:
virtual  machine,  VNF,  commutation  element,  data  storage
element, network domain. Nodes are connected to each other
by virtual links.

Every node is described by a list of parameters and by a set
of SLA criteria specific for this node type. A user can select
certain values of SLA requirements from allowed range or use
default values which are predefined by the provider.

For  virtual  machine  the  following  parameters  are  set:
unique name; identifier of the deployment image; network port
names; SLA criteria (number of virtual cores, frequency, core
type, RAM, number of mounted disks).

For VNF the following parameters  are set:  unique name,
identifier  from  a  predefined  set  to  describe  deployment
scenario, port names. Scenarios are provided in form of XML
files. A scenario XML file contains description of SLA criteria
which are needed for network function deployment.

For data storage element the following parameters are set:
unique name, port names, SLA criteria (required storage size
and data storage type).

SLA  parameters  for  commutation  element  are:  unique
name, commutation element type (e.g. switch or router), port
names.  For  a  router   commutation  element  ip  address  and
subnet mask are defined.

Domain is a nested L2 subnet in the virtual network. For
domain the following parameters are set: unique name, number
of physical  servers  and data storage elements, network type,
names of external  ports.  If network type is bus then at any
moment of time only one connection between domain elements
(virtual  machine,  data  storage  element,  external  port)  is
possible. If network type is switch then at any moment of time
it  is  possible  to  connect  any  domain  element  to  any  other
domain element. SLA criteria are equal for all virtual machines
and data storage elements of the domain and are set similarly to
appropriate virtual network nodes.

For  virtual  link  unique  name  and  SLA parameter  (link
capacity) are set. Link name is defined by names of nodes and
ports which are connected by this link.

Also,  for  any  element  of  the  network  the  following
parameters are set: creation time, update time, deletion time.

For virtual network we specify desirable SLA level:

 guaranteed  SLA for  all  network  nodes  and  virtual
links – to meet SLA at any moment of time;

 non-guaranteed SLA for all network nodes and virtual
links  –  preferred  by  non-mandatory  SLA  criteria
which can be provided.

The language proposed allows to provide services by one
network to another and get services either from other networks
or from provider network in form of secure VNFs.

Our network description language allows one to set routing
policies for virtual networks. Routing policy for non-managed
virtual  network  is  the  list  of  descriptions  of  allowed  and
forbidden  flows  in  the  network  (for  example,  set  of  nodes
through which all routes of the flow should or should not pass).
If the type of a virtual network is set to be manageable then the
owner of the network manages routing policies himself in the
process of network operation.

V. CONCLUSION

SOC  cloud  platform  considered  in  this  paper  allows  to
deploy both manageable and non-manageable virtual networks
in the data center.  Possibility of virtual  resources  migration,
consistent  scheduling  and   management  of  computing
resources allows one to ensure high load of physical resources
and guaranteed SLA compliance for the network as a whole.
Request for virtual network creation can be defined either by
means  of  the  network  description language or  by  means  of
GUI. The SOC cloud platform is consistent with OpenStack.

Especially one should note that this platform is neither pure
PaaS nor IaaS or SaaS. We intentionally escape from outdated
“anatomical”  approach  to  cloud  design  philosophy  when,
according to “purity of concept”, user was limited in obtaining
particular services and in abilities to deploy and use complex
functional blocks in virtual networks.
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Abstract—We introduce IP Fast Hopping, easily deployable 
network-layer software solution against DDoS attacks. Our 
approach enhances server’s SDN environment by providing an 
easy way for SDN controllers to protect servers against DDoS 
attacks and traffic interception by hiding of these servers behind 
a set of physical network switches. 
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I. INTRODUCTION 

A Denial-of-Service attack is characterized by an explicit 
attempt to prevent the legitimate use of a service. A 
Distributed Denial-of-Service attack deploys multiple 
attacking entities to attain this goal [1]. In such attacks, a 
single bot or a group of bots are sending a large number of 
packets that lead to exhausting of victim’s bandwidth capacity 
or software processing capabilities. 

According to [1], methods of DDoS attacks can be divided 
by the two groups: semantic attacks and brute-force (flood) 
attacks. A semantic attack exploits a specific feature or 
implementation bug of some protocol or application installed 
at the victim in order to consume excess amounts of its 
resources. For example, an attacker can send a specific 
sequence of packets initiating CPU time consuming 
procedures on the server. In case of a large number of such 
requests, the victim is unable to handle requests from 
legitimate clients. Undesirable impact from such attack can be 
minimized by protocol or software modifying and by applying 
of special filter mechanisms. In our paper, we introduce a 
DDoS defense mechanism that aims to filter all TCP traffic 
issued by unauthorized clients on network level. Therefore 
unauthorized malefactor is unable to perform semantic attacks 
based on TCP protocol on the victim server. 

A brute-force attack is an attack aimed to prevent 
legitimate service using by exhausting of bandwidth. E.g. it is 
a large number of short requests to the victim which initiates 
heavy responses sent by the victim. Together these streams 
overfills bandwidth of the victim server or it’s ISP. In contrast 
to semantic attacks, brute-force attacks abuses legal services 
so installing of filtering mechanisms for such requests will 
impact traffic from legitimate client too. During brute-force 
DDoS attacks a number of malefactor terminals (botnet) and 
legitimate users are connected to the victim at the same time 
(see Fig. 1). Each bot sends a big number of requests to the 
victim which creates heavy malicious traffic targeted at the 
server. Since the increase in the flow of requests is created 
here increase the number of terminals, then whichever level of 
server performance has not been achieved starting from a 
certain number of bots, they create the flow of requests 
exceeds the permissible level for any server. 

Size and frequency of DDoS attack is continuing to grow 
despite on the fact that a large number of defense mechanisms 
have been proposed. According to [2] application layer attacks 
rose approximately 42% in 2013 from 2012, infrastructure 
layer attacks increased approximately 30% at the same period. 

The infrastructure layer DDoS attacks are still most 
popular: around 77% of DDoS attacks in Q4 2013 were 
infrastructure layer attacks. The average size of attacks 
increased by 19.5% from Q1 2012 to Q1 2013 (up to 1.77 
GB/s) [3]. So, developing new DDoS prevention mechanisms 
is still a topical issue. 

Each new DDoS defense method should satisfy the 
following main principles: 

 Real world applicability. Now a number of different
approaches have been suggested in literature which
require a significant changes of the existing network
architecture of ISPs or entire Internet architecture. But
the main problem here that mostly DDoS attacks
threaten organizations which provide services to end
users [4], and so this problem is not very vital for
transit ISPs because they actually suffer very little
from such attacks. Thus, priority will be given to such
systems, which filters malicious traffic without
changing of global network architecture, into server’s
or edge ISP’s networks.

Legitimate client

The Internet

DNS server

...

Botnet

Internet‐service
(victim)

Bot #1 Bot #2 Bot #M

Fig. 1. Schema of brute-force DDoS attack. 

 The solution must be designed to prevent misuse. So,
it must be impossible to exploit the method to increase
impact issues by an attack or to filter legitimate traffic.
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Taking into account these principles, our work suggest 
DDoS prevention mechanism as software solution which does 
not require additional hardware equipment. Due to this fact, 
described approach can be implemented as part of Software 
Defined Infrastructure of a server. 

II. RELATED WORK 

The rise of DDoS attack frequency in recent years has 
resulted in many proposed defense approaches from the 
community. For example, patent [5] suggests solution on 
application level. According to the article, the server sends a 
special response on first connection attempt from a client. The 
client uses this response to identify new URL address, after 
that the client creates new requests and sends this new 
requests to this new URL. After receiving this second request, 
the server validates the new URL based on sent response. If 
the value does not exceed preset load threshold, the packet 
will be prioritized and processed by the server. Thus the 
solution is based on applying of special filter on server side; 
this filter controls prioritizing of client’s requests depending 
on load on the server at the moment of receiving of the first 
request from the client. 

Other high level approach was suggested under [6]. This 
method introduced special server responsible for creating and 
updating of cryptographically secured keys. Each client can 
access to the service only after successful legitimacy 
verification on this special server. Thus, client should be 
successfully authorized on the special server to get a secure 
key which should be used for processing of a special scenario. 
The aim of this scenario is identifying client’s legitimacy. 
These approaches purpose defense methods on application 
layer and does not impact IP packets exchange. So, a 
malefactor can perform brute force attack on the server. 

Also, the research community suggested a wide scope of 
different more low level approaches. For example, [7] 
purposes dividing of data stream transmitted between server 
and client into two consecutive segments on TCP level. This 
work suggested comparing of keys of two consecutive 
segments to detect possible segments from not legitimate 
source. In case of detection of such segments, data receiving 
will be blocked to prevent possible impact from attack. 

Paper [8] introduces DDoS defense mechanism based on 
dynamic change of server’s IP address. Server’s IP address is 
changing according to pseudo-random law which is known 
only for authorized clients. At the first sight the work [8] 
purposes a similar DDoS prevention mechanism (dynamic 
changing of IP address), but this contains some significant 
differences. Among others, are: 

 IP address of the victim is changing only during active 
DDoS attack on the server 

 The new IP address is assigned for all client sessions 
simultaneously on a relatively long time (suggested 
period is around 5 minutes) 

 Accurate time synchronization is required for 
calculation of each next IP address since external 
timestamp is using. 

III. IP FAST HOPPING METHOD 

In our paper, we introduce a DDoS prevention mechanism 
based on protocol level defense methods which was suggested 
under patent [9]. The main goal of this technique is 
counteraction to exhausting of server’s resources initiated by 
attackers and prevention of legitimate traffic filtering. To 
achieve these aims, the method is using real-time changing of 
server’s IP address according to a schedule which is available 
only for authorized clients. Attackers can’t get access to this 
schedule, so they cannot send requests to the correct IP 
address. Due to this effect, bots are unable to create enough 
high load on the server to prevent normal system behavior. 

In our work, we suggest to call this method as IP Fast 
Hopping. 

The method suggested in this paper is similar to radio 
systems with frequency hopping. In such systems, receiver 
and transmitter are switching from one frequency to other 
frequency synchronously during an ongoing data transmission 
session. A malefactor’s transmitter, which is going to 
introduce a noise into such session, has not an actual schedule 
of frequency hopping; therefore such attacker cannot create a 
noticeable harm for the legitimate transmitter defended by 
frequency hopping mechanism.  

In our case, frequency can be treated like IP address. So, 
the legitimate client must know schedule of server’s IP 
address changing. At the same time, the schedule should be 
unavailable for non-legitimate clients. 

The method of IP masquerading for received packets is 
utilized in Network Address Translation technology. In 
contrast to the technique suggested in this paper, such IP 
masquerading is permanent during the entire session, i.e. 
mapping of the internal constant address to a temporary 
external address is not changing during a session [10]. This 
approach provides a way to share limited external network 
resources between a large number of devices. In our paper, we 
propose to make such mapping dynamic. 

According to DDoS prevention mechanism based on IP 
hopping approach, DNS entries are equal to IP address of the 
authorization server instead of IP address of the protected 
server. To access the protected server, each client must be 
tested on legitimacy on this authorization server. 
Authorization process can cover validation of user’s 
login/password, user’s subscription on a service and so on. In 
case of successful client’s authorization, the client is 
redirecting to special server, IP Hopper Manager which can be 
a part of SDN controller, instead of to the protected server. 
This server is controller of enhanced secured sessions. In this 
paper, enhanced secured session is a communication session 
between client and server which is protected by IP Fast 
Hopping method. The legitimate client must establish secured 
connection to this controller. The IP Hopper Manager will use 
this connection to transmit a pool of IP addresses and unique 
identifier of the session to the client’s terminal. The IP Hopper 
Manager sends the same information to a set of edge switches 
randomly located in the Internet. These switches must support 
IP Fast Hopping method and the server must be signed on this 
service. In this paper, the edge switcher is high performance 
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switcher which is edge relatively to the suggested protection 
mechanism, because in the network sector between this 
switcher and the protected server the data stream has not any 
difference in comparison with the case when IP Fast Hopping 
was not deployed. The IP pool is unordered and each IP 
address must be related to this switches set. Also, this pool 
should not contain the real server’s IP and the “initial” IP. The 
initial IP is public virtual address of the protected server. All 
client’s applications use the initial IP address instead of real IP 
address of the server. 

After such handshake the client starts communication 
session with the server. During communication session 
between the client and the protected server, IP address of the 
server is hopping between addresses from this pool in real-
time. The client’s terminal is changing initial IP address in the 
destination address field of each outgoing packet on an 
address from the pool of IP addresses according to a special 
hash function. This hash function is mapping timestamps field 
of TCP header [11] and unique identifier of the session to an 
entry of the IP pool. This UID can be obtained for the private 
key of a certificate installed on the client’s equipment or can 
be received from IP Hopper Manager as was mentioned 
above. After such replacement of the initial address to a virtual 
address from the IP pool, the packet is transmitted over the 
Internet to one of edge switches according to common 
switching protocols. 

When the edge switcher received the packet from the 
client, the switcher calculates the same pseudo-random 
function with the same arguments as was done on the client 
side. If the result of this calculation is the same to the 
destination address field of IP header, the packet is forwarded 
to the real IP address of the server as legitimate packet. 
Otherwise, this packet will be dropped as malicious packet. 

The same procedures (but in reverse mode) will be applied 
for each server’s responses to the client. After receiving of 
such packets, client’s terminal changes server’s virtual IP into 
source field on initial IP address, after that the packet can be 
processed by client’s application by a common way. 

As the result, from the point of view of an external 
observer of the client-server communication session, the IP 
address of the server is changing regularly to a random 
address with each increment of timestamps field into TCP 
header of the packet (usually every millisecond). 

Prediction of destination IP of the next packet is very 
difficult for an external observer due to the fact that 
destination IP is changing according to pseudo-random 
function and this observer has not information about 
parameters of this function (UID or real server’s IP address). 

If the IP pool is not large enough, a botnet can start an 
attack on each IP address using masquerading of malicious 
traffic as legitimate data stream by IP spoofing technique [12]. 
In this case, edge routers redirects part of hateful traffic 
together with legal traffic to the protected server. In this paper, 
we suggest the following options to mitigate such risks: 

1. The IP pool which is used for IP Fast Hopping should be 
large enough to make such excessive attack very resource 
consuming and non-efficient for possible attackers. 

Obviously, the method will be more efficient in IPv6 
systems. In this case, IP pool can contain a thousands of 
addresses related to a number of different routers in the 
Internet. 

2. IP providers should apply IP spoofing filtering 
mechanisms, e.g. [13] 

The described particular qualities of introduced DDoS 
protection mechanism allow to use this method not only for 
DDoS prevention but also for defense of communication 
session between server and client. In this paper, all TCP 
packets in each client-server communication session 
transmitted via network according to IP Fast Hopping rules 
without depending on existing of active attack on the server. 
This fact causes the following effect: for an external observer 
close to the client, the communication session between the 
client and the Internet service does not look like packet stream 
between terminal of the client and a server on which this 
Internet server is hosted. This session is visible for an external 
observer as different communication sessions between the 
client and a large scope of different servers in the Internet and 
data stream is randomly mixed between these streams. From 
an external observer point of view, interpretation of these data 
stream into one logical data stream are difficult process. Also, 
due to the fact that one pool of virtual IP addresses is shared 
between different Internet services at the same time, such 
external observer close to the client is unable to identify server 
which established communication session. So, IP Fast 
Hopping could be used in cases when clients want to hide 
content of data stream and destination of this stream.  

IV. SYSTEM ARCHITECTURE 

Our paper introduces DDoS protection mechanism aims to 
prevent access to the server from a botnet by dynamic 
changing of IP address of the server. Such system can have a 
scope of different implementations, but our work takes into 
account the following requirement: the suggested approach 
should be easy deployable in real world conditions and should 
not require a significant changes of the existing network 
architecture or network equipment. Easy deployability means 
that switching to the suggested defense method does not 
require a considerable preparation or workflow changes for an 
Internet server or its clients. 

To achieve these goals, our work uses only existing 
commonly used technologies and protocols and also the 
logical core of the system is deployable into external (for the 
server and its clients) networks (e.g. into ISP networks). 

We can say that our work is a new point of view on using 
of existing abilities of TCP/IP protocols. Our paper introduced 
re-use of already used technologies for DDoS attacks 
prevention. An example of such alternative utilization, the 
timestamps field of TCP packet header, are suggested to be 
used not only to identify the correct packets order [11], but at 
the same time this field can be used to identify the correct 
destination address of the packet as was described above. 
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Legitimate client

The Internet

Authorization serverDNS server

ISP router #1

ISP router #N

ISP
or several separate ISPs

...

IP Hopper Manager

...

Botnet

Internet‐service
(victim)

Bot #1 Bot #2 Bot #M

 Fig. 2. IP Fast Hopping architecture. 

Also, our work introduced distributed DDoS defense 
mechanism: an Internet server is being hidden behind a large 
pool of virtual IP addresses which belong to a big number of 
routers in different sectors of the Internet. Since this IP 
address pool is public, botnets can initiate DDoS attacks on 
one or several of these IP addresses. But the pool is divided 
into groups of addresses which belong to various routers in 
various Internet sectors. So the stream of malicious packets 
initiated by a botnet is divided into several sub-streams 
directed to several Internet sectors by commonly used 
switching protocols. And, according to our work, this stream 
will be filtered into this different networks. This approach 
defends the victim server and also our method decreases load 
on network infrastructure of victim and it’s ISP during active 
DDoS attack. 

In case of deploying of the introduced defense mechanism, 
the original client-server architecture (see Fig. 1) contains 

some new blocks (see updated schema on Fig. 2). The 
suggested architecture has the following difference: 

1. As was mentioned above, the DNS server contains link to 
IP address of Authorization server instead of IP address of 
Internet-service 

2. Introduced Authorization server which validates 
legitimation of the client. If client successfully authorized 
and the client’s terminal has a special SSL certificate and 
supports IP Fast Hopping algorithm (i.e. installed special 
software – IP Hopper Core), Authorization server initiates 
handshake between the client’s IP Hopper Core and IP 
Hopper Manager 

3. IP Hopper Core is special system utility installed on 
client’s terminal and ISP routers #1 - #N (entire IP pool 
belongs to these routers). This utility is performing 
establishing of enhanced secured connection and real-time 
changing of initial IP address of the Internet-service on 
one address from IP pool according to rules of IP Fast 
Hopping. 

4. IP Hopper Manager is a server which is responsible for 
controlling the enhanced secure connections between 
Internet-services and clients. Can be implemented as part 
of SDN controller. 

Time chart of introduced defense mechanism can be found 
on Fig. 3. 

V. IMPLEMENTATION 

As was noted above, one of requirements for our work is 
real world deployability. Therefore, we implement IP Fast 
Hopping mechanism as kernel module of OS GNU/Linux. In 
this case, installing this module on routers based on 
GNU/Linux is enough to deploy the suggested system. In our 
work we build such routers based on Debian OS. 

Client
DNS 
server

Authorization 
server

Router #k: 
IP Hopper Core 

IP Hopper 
Manager

Internet‐
server

DNS lookup

IP address of Authorization server

Connection establishing

Client’s authorization

IP address of IP Hopper Manager

Client’s IP 
Hopper Core

Request on establishing of enhanced secured connection

IP pool, session UID

Initial IP address Of Internet‐server (IP0)

IP0 Destination IP address = f(timestamp, ID)
Destination IP = Server’s IP

Source IP = Server’s IP
Source IP address = f(timestamp, ID)IP0

IP0 Destination IP address = f(timestamp, ID)
Destination IP = Server’s IP

Source IP = Server’s IP
Source IP address = f(timestamp, ID)

IP0

Router #m:
IP Hopper Core

Connection established

Request on switching to enhanced secured session

 
Fig. 3. Time Chart of IP Fast Hopping 
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Linux kernel contains built-in firewall Netfilter [14], 
which is responsible on packet filtering and forwarding 
according to predefined rules by iptables utility. Netfilter 
architecture is scope of hooks of ordered rules. Netfilter 
performs a predefined action with a packet, which is passed to 
a hook, according to the corresponding rule. 

Netfilter supports 5 hooks: PREROUTING, INPUT, 
FORWARD, OUTPUT, POSTROUTING. When the packet 
comes to the system, the packet is processed by 
PREROUTING hook. If this packet is addressed to a local 
process, it is passed to INPUT hook, otherwise it is passed to 
FORWARD. All packets sent by local processes are processed 
by OUTPUT hook. The final processing of the packet 
outgoing from the system (forwarded under FORWARD hook 
or issued by a local process) is performing by 
POSTROUTING hook. 

In our work, Netfilter contains new module which is 
responsible for changing of IP address into destination field of 
outgoing packets and into source field of ingoing packets. This 
module is calculating the new IP address according to IP Fast 
Hopping rules (by timestamp field and session UID). During 
handshake, IP Hopper Manager adds new set of rules into 
POSTROUTING hook on client’s terminal and into 
PREROUTING each edge switcher. This rule activates the 
kernel module which implements the following algorithm: 

 On the client side this module calculates hash-function 
using timestamps field and session UID for each 
outgoing packet addressed to the initial IP address. 
After that the module uses this result as index of 
correct address into IP pool which should be put into 
destination field of the packet. For each ingoing 
packet from the same communication session, the 
module performs the same actions for source field: 
checks the current value of the field (by calculation of 
the same hash-function) and changes it on the initial 
address. 

 On switches side this module calculates hash-function 
using timestamps field and session UID for each 
ingoing packet addressed to IP addresses from IP 
pool. If the current destination address corresponds to 
the timestamps field and session UID, the real IP 
address of the server will be placed into the 
destination field. Otherwise, the packet will be 
dropped. For all ingoing packets issued by the server, 
the module will replace source field by one of virtual 
addresses according to current value of hash-function. 

VI. CONCLUSIONS 

We presented IP Fast Hopping, a new approach that can 
prevent exhausting of server’s resources during brute-force 
DDoS attacks and can be used to hide content and destination 
of client’s communication session. This method hides the real 
IP address of the server behind a big number of “virtual” IP 
addresses. The mapping of the real IP address on one of 
“virtual” is unique for each communication session and 
changes dynamically every millisecond. The introduced 
approach is distributed: it divides the traffic from legitimate 
users and botnets into a number of sub-streams. This leads to a 

decrease of load on network infrastructure during active DDoS 
attack. The method is easily deployable and can filter even the 
biggest malicious streams. 
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Categories and Subject Descriptors
[Sofware Defined Networking Exchanges (SDX)]: Software 
Defined Networking (SDN), Software Defined Infrastructure 
(SDI) and Highly Distributed Environments 
General Terms
Design, Experimentation,Theory,Verification. 

Software-Defined-Networking (SDN) has rapidly changed the 
how networks are designed, implemented, and operated. 
Traditionally, communication services and their underlying 
support infrastructure have been  designed and deployed in 
anticipation of their remaining fairly static for long periods of 
production. However, increasingly, this model has been made 
obsolete by continually changing demands at all levels. 

Consequently, a new architectural approach is required to enable 
more dynamic services and infrastructure. To date much progress 
has been made in this area by using programmable networking 
based on SDN/OpenFlow and other virtualization techniques. 
This approach has enabled significantly higher levels of 
abstraction for network services, control and management 
functions, and across foundation resource technologies.  These 
approaches are allowing network designers to create a much wider 
range of programmable services and capabilities than can be 
provided with traditional networks. Consequently, they are 
providing for a) many more dynamic provisioning options, 
including real time provisioning b) faster implementation of new 
and enhanced services c) enabling applications, edge processes 
and even individuals to directly control core resources; e) 
substantially improved options for creating customizable networks 
e) enhanced operational efficiency and effectiveness and f) many
more options for traffic engineering. 
These capabilities have been proven as especially important 
resources for services based on distributed clouds, particularly 
those that are distributed across multiple domains. In part, because 
SDN enables a more optimal dynamic networking and matching 
of communication service requirements and network resources. 
The demonstrated success of SDN techniques with distributed 
clouds has given rise to considerations of developing other types 
of Software Defined Infrastructure (SDI), including clouds, 
compute grids, storage devices, instruments, and many other types 
of edge devices. 
By now, the many benefits of SDN are fairly well known, 
particularly with regard to data center networks and private Wide 
Area Networks (WANs) interconnecting data centers. However, 
SDN architecture is single domain oriented, and, consequently, to 
date almost all of its implementations have been within single 
domains. Therefore, increasingly SDN deployments have created 
many isolated SDN islands. Also, currently, SDN 
implementations have also been somewhat isolated from non-
SDN environments. Both of these issues are challenges that 
require new capabilities for multi-domain, multi-service SDN 
provisioning that can be integrated with existing network services. 
One approach to addressing both these issues is a Software 
Defined Networking Exchange (SDX). Although the need for 
SDXs is recognized, no consensus exists about how their services, 
architecture, capabilities, and underlying technologies should be 
designed, implemented, and operated. Currently, much debate and 
discussion is taking place on all of these issues. Nonetheless, a 
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number of research communities are proceeding to develop 
models of SDXs. Therefore, today, although no production SDX 
exists, a number of SDXs are being planned, and several 
prototypes have already been implemented.  

One of these prototypes was designed and deployed by the 
International Center for Advanced Internet Research (iCAIR) and 
its research partners at the StarLight International/National 
Communications Exchange Facility, a major exchange facility for 
world-wide international, national, and regional research and 
education networks, data intensive science networks, federal 
agency networks, and large scale national and international 
network research testbeds. This prototype SDX is being used for 
research experimentation to explore various approaches to SDX 
services, protocols, and technologies. It is also being used to 
demonstration these approaches at a national and global scale. 
Three core issues being addressed are a) international and national 
multi-domain SDX interoperability enabling federated controllers 
in different domains to manage network resources across WANs 
using an integrated control planes b) multi-service SDX 
provisioning across and among network layers, including hybrid 
services and c) enabling interoperability among SDN 
environments and non-SDN environments.  

Programmable networking using SDN is generally based on the 
OpenFlow protocol, an architectural approach that separates the 
control plane from the data plane, abstracts the forwarding path, 
and enables a controller, connected by a secure channel to 
network devices to address network functions. [1] An OpenFlow 
switch has a flow table that stores cached information on traffic 
streams. This information can be interrogated and analyzedat a 
highly granulated level so that the results can initiate required 
responses to control the behaviors of specific individual flows 
supported by the switch. The controller can monitor the cached 
information, detect flow attributes and patterns and then react 
dynamically to the resulting analysis. This technique was initially 
developed and deployed for primarily for L2 services, and then 
was extended to both L2 and  L3 services.  It has also been used 
for L1 and L0 services.  

The SDN technique enables a detailed centralized overview of 
network services, configurations and resources. However, to date 
this view has been possible only within and across a single 
domain. However, there is a need to extend SDN capabilities 
across and among multiple domains. This requirement is a 
primary motivation for creating Software Defined Networking 
Exchanges (SDXs). However, SDXs also are being developed to 
provide bridges between SDN domains and non-SDN domains, 
and to enable multi-service networks, based on integrating traffic 
among all traditional network layers.  

As noted, the design, capabilities, and technologies of SDXs are 
under active discussion. Certainly, one objective is to address 
these requirements. However, there are many other requirement 
considerations, for example, providing for control and network 
resource APIs, precise techniques for multi-domain integrated and 
federated controller interoperability, controller signaling, 
including edge signaling, SDN/OF multi layer traffic integration, 
multi domain resource advertisement and discovery, topology 
exchange services, highly granulated policy based resource access 
including through edge processes signaling, rapid configuration 
and reconfiguration of resources, gateways to non-SDN/OF 
environments, integration of OF and Non-OF paths, including 3rd 
party integration, programmability for core resources including 

large scale large capacity transport streams, etc. To address these 
requirements, specialized facilities are required. 

A prototype SDX described has been implemented at the 
StarLight International/National Communications Exchange 
Facility in Chicago, which has direct access to over 130 private 
networks, including many large scale nation and international 
networks and twenty major experimental network research 
testbeds, including international testbeds. [2] StarLight was 
designed to allow for traffic exchange at all layers, and across all 
layers. The facility created innovative techniques for dynamic L2 
and lightpath provisioning. Because StarLight supports multiple 
data intensive science communities, it interconnects almost 30 
individual 100 Gbps paths as well as many 40 Gbps paths and 
several hundred 10 Gbps paths, all channels on optical fiber based 
lightpaths. StarLight supports connections among multiple 
communication exchanges and networks around the world. 
StarLight is a core component of a larger world-wide facility, the 
Global Lambda Integrated Facility (GLIF). (Ref Fig. 1) [3] This 
facility provides optical fiber based lightpaths that can be used to 
create customized production, prototype, and testbed networks 
among multiple GLIF Open Lambda Exchanges (GOLEs) around 
the world. StarLight is one of these GOLEs, all which provide 
multi-layer interconnection services for communities around the 
world. 

The design of the prototype SDX at StarLight was informed by 
several wider development contexts. One is the overall IT 
transition to virtualization at all levels, Software as a Service 
(SaaS), Platform as a Service (PaaS), Infrastructure as a Service 
(IaaS), etc. Another has been an interdomain architecture 
development project initially undertaken by the GLIF community. 
Almost all of these exchanges have adopted a different control 
framework architecture for the resources within those exchanges. 
Consequently, GLIF community, including iCAIR and the 
StarLight consortium has undertaken a project Open Grid Forum, 
a standards organization to develop an interface, the Network 
Services Interface Connection Service, or NSI CS (currently 
published as NSI CS 2.0) as an API for the various control 
frameworks that are used by GOLEs to manage services and 
resources. [4] A recent major current initiative is a project that is 
integrating NSI CS 2.0 with OpenFlow/SDN techniques and 
instantiating these services at exchange points within the GLIF. 
Another context has been the many years of development of 
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programmable networks for highly distributed Grid environments. 
[5] This capability has been showcase through multiple 
demonstrations at national and international conferences through 
the AutoGOLE initiative. The figure below shows the word wide 
individual VLANs that were directly addressable through the NSI 
SC API. 

Two other reference contexts have been the National Science 
Foundation’s (NSF’s) Global Environment for Network 
innovations (GENI) and the International GENI (iGENI), large 
scale, highly distributed infrastructure environments.  

Conceptually, the StarLight SDX can be considered an ultra large 
scale virtual switch comprised of a collection of resources that can 
be partitioned and integrated for use by external controllers within 
other domains. The real foundation consists of actual physical 
SDN/OpenFlow Switches. (Ref: Fig 2). The SDX resources can 
appear as components that are extensions of external domains. 
The architectural design is intended to remove middle processes 
among domains. Of course, this “removal” process is policy 
driven. Federation policies and processes are required to 
providing services based on this architecture.  

As programmable facilities, SDXs can be used to provide an almost 
unlimited range of services, including specialized new services, 
such as application specific peering exchanges and large scale 
encrypted stream exchanges. However, as noted a primary 
motivation is simply to provide a mechanism for interconnecting the 
growing number of single domain SDN islands. This capability is 
especially important for large scale services based on highly 
distributed clouds, which provide services from a small number of 
data centers located around the world and are connected through 
high performance WANs. Today, SDN capabilities have been 
extremely beneficial for dynamic provisioning to quickly respond to 
changing traffic flow attributes, and to optimize matching service 
requirements and network within and among such data centers, and 
to perform granulated traffic engineering. However, currently, there 
are no services to allow for interconnections outside those single 
isolated domains. Because SDNs have not been implemented in 
current exchanges, they prevent such extensions.  
Because of its virtualized resources, options for segmentation and 
partitioning, and resource programmability, an SDX provides an 
opportunity to address multi-domain and multi-services 
interoperability. For example, an SDX supports techniques that 
enable L2 resources to be discovered, acquired, and integrated by 
edge controllers in multiple different domains.  
Currently, L2 and OF implementations have almost all been 
deployed as separate environments. In contrast, the StarLight SDX 
provides support for L2 services, OpenFlow services, and integrated 
and hybrid L2/OF services.  
For SDX multi-services provisioning and integration, these 
techniques can be extended to any service layer, including L3, L0, 
L4-L8 and to hybrid services composed of multiple layers.  

To accomplish the design objectives described in the previous 
section, the StarLight SDX has implemented an SDN/OF/L2 
integrated path controller. This controller is essentially a link 
controller, which provides options for SDX resource management 
by other controllers, including federated controllers residing in other 
domains.  This architecture relies on abstracted capabilities to 
support services and functions, including path optimization, 
resource discovery, dynamic network resource provisioning, precise 
explicit data flow provisioning, static resource provisioning, 
resource monitoring operations and administrative management to 
be obtained by using signaling supported by a control framework to 
manipulate lower layer function  and physical and virtual resources.  
The basic resource used is an OpenFlow controller supporting the 
control framework as a programmable platform that has been 
extended to L2 paths.  Consequently, the  network programmability 
of SDN/OpenFlow is extended to L2 paths. Also, this technique 
enables L2 features to be integrated into SDN/OpenFlow 
environments, which generally are limited without access to those 
features. This approach also enables edge processes (as well as 
applications and external services) to customize network services 
and resources to meet highly specific and defined requirements.     
The StarLight SDX was developed with support from the NSF’s 
GENI program, which has developed a nationwide distributed 
environment for experimental network research. [6] Therefore, the 
StarLight SDX is based in part on GENI software.  
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One GENI component, implemented within the StarLight SDX is 
the Flowvisor OpenFlow Aggregate Manager (FOAM), which 
interacts with other GENI domains as a resource allocation 
interface. [7] The StarLight SDX has also implemented  Floodlight 
and other Open SDN controllers. The control functions for these 
controllers have been extended to L2 services.  

The StarLight SDX, in part, is an extension of an 
initiative established by an international network research 
consortium, which designed and implemented a world-wide 
OpenFlow/SDN testbed, extended the programmable environment  
termed the “International GENI” (iGENI). [8] For almost 5 
years, this international community of network research 
organizations been developing a large scale global advanced 
network research testbed based on OpenFlow/SDN, using the 
GLIF optical networking infrastructure. This programmable 
distributed environment has a large collection of network resources 
that can be discovered and integrated, as partitioned 
resources isolated from others within the environment. Different 
research groups have used it to conduct experiments, trials, 
prototypes, and demonstrations. For several years, 
this programmable testbed was showcased at international 
SC supercomputing conferences. (Ref: Figure 3) 

The different colors in these schematics designate different 
experiments and demonstrations, undertaken by separate groups 
of researchers . (Ref: Figures 4, 5, and 6). Topics included an 
array of L2 functions including a POX based VLAN translation 
service, a NOX based multi-domain LLDP (Link Layer Discovery 
Protocol service), a NOX based OAM  Continuity Check Message 
service (CCM), a Multipath TCP (MPTCP) integrated with 
Floodlight, and many other capabilities. [9, 10, 11, 12, 13]  
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One set of experiments and demonstrations was staged by the 
National Center for High Performance Computing (NCHC), 
which operates and maintains the Taiwan Advanced Research and 
Education Network (TWAREN), and which has developed the 
Future Internet Testbed in Taiwan based on OpenFlow and 
extended it to the StarLight/iCAIR facilities. The Future Internet 
Testbed actively supports many projects by multiple universities, 
including the integrated project “Research of NetFPGA-based 
testbed for Future Inter-Cloud Computing Systems” with 
participants of NCHC, NCKU, KUAS, NTUST (National Taiwan 
University of Science and Technology) and NCU (National 
Central University), “Computing and Communications on the 
Clouds: Applications and Platforms (C3AP)” initiated by NCTU, 
and the Cloud Test Center operated by Telecommunication Lab of 
ChungHwa Telcom. 

A particular challenge for intercontroller communications and 
interoperability is federated controller signaling. To address this 
issue, one of the research projects  is using this testbed to explore 
new techniques for multiple domain services, specifically methods 
that allow for  large scale, international, multi-domain automatic 
network topology discovery (MDANTD) and interactivity. [14] 
This technique is key for adding East West capabilities to the 
standard North South SDN/OpenFlow protocols. Other methods 
are being designed to anticipate ongoing changing information 
related to the availability and location of highly distributed 
network resources. This approach has been used with other 
innovative OpenFlow and NOX controller techniques, including 
multipathing with MPTCP. [15].  

Recently, the StarLight prototype SDX has been used to stage a 
number of demonstrations. In March of 2014, this SDX was used 
as one of the facilities for a showcase demonstration at the GENI 
Engineering Conference in Atlanta (GEC 19), illustrating 
distributed capabilities over five domains. For the demonstration, 
the StarLight SDX was interconnected to a prototype SDX being 
developed by Georgia Tech and the Southern Crossroads 
Exchange (SOX). The two SDXs were interconnected over three 
separate network domains provisioned on private optical fiber 
between Chicago and Atlanta. To demonstrate the utility of these 
two interoperable SDXs, a severe weather prediction application 
being developed by the University of Massachusetts at Amherst  
was demonstrated (Ref Image below) 

This application is based on small form factor Doppler radar, 
which generates extremely large volumes of data that cannot be 
stored, computed, analyzed, or visualized locally. It must be sent 
to remote facilities for processing and then results must be 
returned in real time. At the same time, the topology of the 
network must change continually.  For the TERENA Networking 
Conference in May 2014, an international interoperability 
demonstration was staged interconnecting the StarLight SDX 
with a prototype SDX at NetherLight in Amsterdam (Ref Figure 
9) 

The design, architecture, and technology for SDXs are currently 
being vigorously debated, because there are many potential 
opportunities for these types of facilities. Many SDX and SDI 
research topics are being explored, including semantic network 
descriptions (e.g., Network Description Language (NDL) 
initiative at the University of Amsterdam [16, 17], enhanced APIs, 
resource signaling, resource integration, mechanisms for topology 
exchanges, and closer integration with edge computers, clouds, 
storage devices, instruments, “Internet of Things” devices, etc. 
Several research communities are investigating Software Defined 
Internet Exchanges, with a focus on L3 traffic management, 
control, and optimization. [18] Also, the concept of designing a 
completely virtualized SDX is being discussed as is highly 
distributed SDXs  
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Software-Defined-Networking (SDN) is transforming all aspects 
of how networks are designed, implemented and operated. 
Programmable networking based on innovative virtualization 
techniques, including SDN, are enabling high levels of abstraction 
for network services, control and management functions, and 
underlying technology resources. Consequently, networks can be 
designed to provide many more services and capabilities than 
traditional networks. SDNs and SDN Exchanges (SDXs) enable a) 
many more dynamic provisioning options, including in real time 
b) faster implementation of new and enhanced services c)
enabling applications, edge processes and even individuals to 
directly control core resources; e) substantially improved options 
for creating customizable networks and e) enhanced operational 
efficiency and effectiveness. Also, these capabilities are being 
extended to other types of Software Defined Infrastructure (SDI), 
including clouds, compute grids, storage devices, instruments, and 
many other edge devices. 
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Abstract— This paper considers software tools and linguistic 

constructions of the network simulator TRIADNS. Nowadays 

network applications – especially in the area of wireless networks 

– are becoming more and more complex which makes the design

and the testing almost impossible without appropriate software. 

This software available to aid the user in simulating previously 

designed scenarios, scalable algorithms and changing structure of 

computer network. So it is necessary to have effective and flexible 

program tools for computer network design and simulation.  

Network simulator must design and investigate not only 

hardware, but software too, explore computer networks, 

considering in particular the specific characteristics of a variety 

of computer networks. Besides computer networks may include a 

lot of nodes. This paper discusses approaches allowing to decide 

the problems mentioned above: hierarchical model, using 

ontologies and Data Mining methods for the analyses of 

simulation results, using several computing nodes for computer 

network simulation (distributed and parallel simulation).    

Keywords— simulation, computer networks, ontologies, routing 

algorithms, Data Mining, distributed and parallel simulation  

I.  INTRODUCTION 

Computer networks are very wide spread now.  Indeed 
computer networks are used in information systems, Grid 
computing, cloud computing and so on.  

Widespread computer networks impose requirements to the 
speed and reliability of information transfer, to its effective 
treatment. For this reason, it becomes necessary to study 
traffic, to investigate new protocols, to design and develop new 
devices and new algorithms.  

It is not always possible to apply analytical methods to 
investigate computer network because of the complexity of 
modeling object and, moreover, natural experiments can‘t 
investigate all aspects of this object too.  

So the designers prefer to use simulation methods and 
appropriate program tools (network simulators). A lot of 
network simulators were developed recently [1]. We consider 
some of them below.  

Because of complexity of modeling object (computer 
networks) simulators should have the following properties: 

 Simulation experiment should be optimized in respect to
time. Indeed very often it is necessary to investigate
large-scale networks with a tremendous amount of
computing nodes. It is clear that the simulation of large-
scale networks must be terminated within a reasonable
time [2, 3]. But it is possible if one can perform
simulation experiment on a supercomputer (cluster and
so on). Besides, the investigators need the special
software tools implementing special synchronization
algorithm (conservative or optimistic), managing time
advancement [4, 5, 6]. Moreover it is necessary to solve
a problem of the equal workload on the computing
nodes [7, 8, 9]. And nowadays new class of computer
network simulators appears – there are simulators using
graphical processors (GPU) [10].

 A joint study of hardware and software of computer
networks. The computer network designers usually
consider separately the hardware and software.
However, the most appropriate solution would be to
have software tools for design and analysis hardware,
design and analysis of algorithms that control hardware,
and for the co-design of hardware and software [11].
For example, it is very important to analyze the
behavior of routing algorithm after the moment when
the topology of computer network is changed (new
computing node appears or some nodes become not
accessible).  In this case, the designer is interested in the
topological characteristics of the network. These
characteristics may affect the communication
complexity of the algorithm. The structure of network
may be represented as a graph. So it is important to
investigate the structure of network using known graph
algorithms (the shortest distance, for example).
Nowadays the adaptable routing algorithms are applied
in networks. These algorithms change their behavior
depending on the values of certain characteristics of the
network (overload of communication lines, for
example). So it is advisable to simulate routing
algorithm. Moreover it is important to simulate the
behavior of various devices of computer networks and
algorithms which control the behavior of these devices.

 Adaptability of software simulators to incorporate into
a simulation model new devices and new algorithmsThis work was supported in part by Russian Foundation for Basic 

Research (grants 12-07-00302, 13-07-96506). 
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that govern their work. There are various software tools 
to design the computer networks nowadays. The most 
popular are: NS-2 [12] (the design of the local and 
global networks, multiprocessor and distributed 
computing systems, the ability to assess the 
performance of the designed system , etc.); OpNet [13] 
(a discrete event simulator that allows investigators to 
explore all levels of computer networks and to include 
customer modules into simulation model), OMNeT ++ 
[14], etc. Each of these simulators has specific 
characteristics. Some tools are designed to manage local 
networks, while others permit the design and analyses 
of global networks. Some of these software tools allow 
network designing, but have limited modeling 
capabilities, others are able to perform complex analysis 
of specific networks (may be only global networks or 
local or sensor ones). Network simulators have to be 
able to design, simulate and analyze new types of 
computer networks, new devices, new algorithms and 
technologies because of rapid development of network 
technologies.  

The designers and developers of computer networks 
simulator TRIADNS tried to consider the experience of various 
software tools of this kind. This simulator is based on CAD 
Triad [15]. The ideas embodied in CAD system Triad allow it 
to adapt to rapid change of computer networks, new algorithms 
and technologies due to special linguistic and program tools: 

 Linguistic and program tools for the description of the
structure of computer networks and the behavior of the
devices and computing nodes;

 Advanced analysis subsystem, which includes a library
of standard information procedures (information
procedures are obtained to collect the information about
simulation model during simulation experiment and to
process it) and linguistic tools to create new procedures
and, therefore, new algorithms of analysis.

Furthermore, the effectiveness of the simulator is provided 
by distributed (parallel) simulation experiment (using the 
resources of several nodes of computer network, cluster or 
multiprocessor (the advantages of a distributed (parallel) 
simulation experiment are listed in [5, 16]). Optimistic 
synchronization algorithm (based on knowledge)(subsystem 
TriadRule) and load balancing subsystem (TriadBalance) are 
implemented in simulator TRIADNS. This software permits to 
reduce the time needed for simulation experiment.  

Moreover the effectiveness of simulation system may be 
achieved by the subsystem of collecting and processing of the 
simulation model characteristics (the processing of data may be 
partly carried out during simulation experiments) and 
intelligent analysis of simulation results (based on the methods 
of Data Mining).  

The flexibility of simulation software is achieved through 
the use of ontologies and the mechanism of redefining models, 
interoperability (including in the model components developed 
in the other modeling systems).  

First of all, we should talk about how the simulation model 
is presented in the simulator TRIADNS, the architecture of 
simulator and the description of each it‘s subsystem. 

II. SIMULATION MODEL REPRESENTATION IN TRIADNS

A. Simulation Model and Three Layers 

Simulation model in Triad.Net is represented by several 

objects functioning according to some scenario and interacting 

with one another by sending messages. So simulation model is 

={STR, ROUT, MES} and it consists of three layers, where 

STR is a layer of structures, ROUT – a layer of routines and 

MES – a layer of messages appropriately.  

The layer of structure is dedicated to describe objects and 

their interconnections, but the layer of routines presents their 

behavior. Each object can send a message to another object. 

So, each object has the input and output poles (Pin – input 

poles are used to send the messages, Pout – output poles serve 

to receive the messages).  

One level of the structure is presented by graph P = {U, V, 

W}. P-graph is named as graph with poles. A set of nodes V 

presents a set of programming objects, W – a set of 

connections between them, U – a set of external poles. The 

internal poles are used for information exchange within the 

same structure level; in contrast, the set of external poles 

serves to send messages to the objects situated on higher or 

underlying levels of description. Special statement <message> 

through <name of pole> is used to send the messages.  

B. The Layer of  Structure 

One can describe the structure of a system to be simulated 

using such a linguistic construction:   

structure <name of structure>  def (<a list of generic 

parameters>)  

(<a list of input and output parameters>)  

<a list of variables description> <statements>)   

endstr 

The investigator may not describe all the layers. So if it is 
necessary to study structural characteristics of the model, only 
the layer of structures can be described. The example of 
computer network (the layer of structure) is given below. This 
computer network consists of a server and several clients.  

Note, please, that the layer of structure is a procedure with 
parameters.  

Triad-model is considered as a variable. Initially it may be 
void and further may be constructed with the special statements 
of Triad-language (operations within the layer of structures). 

The structure of some computer network will include a 
different number of nodes and edges connecting them obtained 
as a result of operations on graphs. This number depends on the 
values of parameters of procedure structure or procedure 
routine. These parameters can indicate the range of the 
transceivers, current time, and so on in the representation of 
wireless ad hoc networks. Thus, the description of networks in 
TRIADNS is varying in time and space. So it is corresponds to 
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the idea of ad hoc computer networks, for example. Fig.1. 
gives the structure of network ―Client_Server‖. It consists of 
the node ―Server‖ and the attached array of nodes ―Client‖.  

The links between nodes are set within the cycle <for> with 
the help of arcs. Input and output poles have to be specified: 
(arc (Server.Send -- Client[i].Receive)). The number of nodes 
Client may be changed by formal parameter 
Number_of_Client. 

Structure Client_Server[ integer  Number_of_Clients] 

  def 
  Client_Server := node Server<Receive, Send> 

 + node Клиент[ 0 : Number_of_Clients - 1 ] 

 < Receive, Send >;  

   integer i; 

for i := 0 by 1 to Number_of_Clients  - 1 do 

Number_of_Clients := Number_of_Clients  + 

 arc ( Client[ i ].Send -- Сервер.Receive ) + 

 arc ( Сервер.Send -- Клиент[ i ].Receive ); 

endf; 

endstr 

Fig.1. The Structure of layer for Client-Server description 

C. Graphical Interface 

There are two ways to describe model in Triad: via text 
editor or via graphical editor. The description of a layer of 
structure being built with the help of graphical editor is given 
below (fig.2.).  

This description is a fragment of computer network. It 
consists of several workstations sending messages between 
them. Besides, the computer network includes the routers 
responsible for the searching of the route.  

Fig.2. The fragment of computer network.  Graphical editor 

The description of this fragment of computer network being 
built with the help of text editor is given on fig.3. 

Type Router,Host; integer i;  
M:=dcycle(Rout[5]<Pol>[5]); 
M:=M+node (Hst[11]<Pol>);  
for i:=1 by 1 to 5 do 

 M.Rout[i]=>Router; 
 M:=M+edge(Rout[i].Pol[1] — Hst[i]); 

endf 
for i:=1 by 1 to 3 do  
      M:=M+edge(Rout[i].Pol[2] — Hst[2*i-1]); 
endf; 
for i:=0 by 1 to 11 do M.Hst[i]=>Host; endf;  

Fig.3. The fragment of computer network in Triad language. 

D. Graph Constants 

Simulation model (see fig.3.) is built using graph constants. 
A set of special linguistic units - graph constants - presents the 
basic types of topologies of computer network. In the text 
given above the graph constant ―directed cycle‖ (Dcycle) was 
used.  

E. Semantic Type 

Besides, in above example the semantic types (Type 
Router,Host) were used. Namely they are ―router‖ and ―host‖. 
The semantic types are used for simulation model redefining. 
More details will be given later.  

F. Standard Procedures   

There are the several standard procedures in the structure 
layer. The investigator is able to take out from the structure of 
model a lot of characteristics: a set of nodes, a set of arcs, a set 
of edges and etc. Moreover one can find the shortest distance 
between two nodes or cfn find connected components 
(procedure  GetStronglyConnectedComponents(G)) or fulfill 
the selection of the structure layer (procedure 
GetGraphWithoutRoutines(M)) and so on.    

Besides, the investigator obtains the linguistic and 
programming tools enabling him to write the absent procedure 
by himself. The investigation of the structure layer only is 
static process. The simulation process may take place only after 
the definition of the behavior of all nodes.  

The behavior is determined by the statement Put. The 
example will be given later. The investigator may take the 
description of the node‘s behavior in repository (or via 
Internet) or may describe using special statements and 
linguistic construction of Triad-language.  

G. The Layer of Routines 

Special algorithms (named ―routine‖) define the behavior 
of an object. It is associated with particular node of graph P = 
{U, V, W}. Each routine is specified by a set of events (E-set), 
the linearly ordered set of time moments (T-set), and a set of 
states {Q-set}. State is specified by the local variable values. 
Local variables are defined in routine. The state is changed if 
an event occurs only. One event schedules another event. 
Routine (as an object) has input and output poles (Prin and 
Prout). An input pole serves to receive messages, output – to 
send them. One can pick out input event ein. All the input poles 
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are processed by an input event, an output poles – by the other 
(usual) event.  

So the formal rules of routine one can see here: 

 routine<name>(<a list of generic parameters>)(<a list of 
input and output formal parameters>)  

initial <a sequence of a statements> endi event <a sequence 
of a statements> ende 

 event <a name of an event> <a sequence of statements> 
ende …  

event<a name of an event><a sequence of a statements> 
ende   

endrout 

Let us return to the description of Client-Server model. 
Client behavior scenario is described with special linguistic 
unit which is named as ―routine‖. The syntax of routine is 
given above.  One can see that the routine consists of 
initialization part, input event (without name)  and several 
events (these events have names) scheduling one another. The 
description of the ―Client‖ behavior is given below: 

routine  Client ( input Receive; output  Send )[ real deltaT ] 
initial boolean Quiery_is_Send; 

 Quiery_is_Send := false; schedule  Quiery in 0; 
    Print "Client Initialization";  
Endi 
event Quiry; (* it is an event *) out "I send a quiry" through 
Send;  Print "A Client sends a quiry to Server"; 

  schedule ЗАПРОС in deltaT; 
ende 
endrout 

Fig.4. The Routine ―Client‖. 

The routine is a procedure with parameters too, it includes 
not only the interface parameters (input and output interface 
parameters ―Receive‖ and ―Send‖, but the parameter deltaT- 
the time interval between the queries of Clients to Server).  So 
the parameter deltaT may be changed during simulation 
experiment (in accordance with the behavior of real process, 
object or system of objects being investigated).  

The instances of routine are formed by the statement let 
Client (clientDeltaT) be Client. An instance of routine may be 
―put‖ on an appropriate node with the help of statement: 
put Client on Model.Client[i]<Receive=Receive,Send=Send>. 
The input and output poles of routine are matched to the poles 
of node here. Consequently, the program tools of simulator 
become more flexible because of that fact that the investigator 
can change the behavior of some node during simulation 
experiment (statement simulate, it will be described below). 

The simulation model is complete if all of nodes have 
appropriate routines and only complete model can take part in 
simulation experiment.  

The behavior of routines may describe the algorithm 
functioning in some computational environment. The 
computational environment is described with the help of 
parameterized procedure structure.  

It is possible to select only the layer of structure (the layer 
of structure usually describes hardware of computer network), 
the layer of routines.  

So TRIADNS permits to carry out the design and analyses 
of hardware (the layer of structure), the design and analyses of 
software (the layer of routines) and co-design of hardware and 
software (the complete model).   

The linguistic constructions of parameterized procedures 
structure and routine allow to incorporate new devices and 
algorithms in simulation model.     

III. SIMULATION EXPERIMENT

The objects of simulation model are managed by the special 
algorithm during the simulation run. Let us name it as 
―simulation algorithm‖ (CAD system Triad has distributed 
version and corresponding algorithm for distributed objects of 
simulation model too) [15]. CAD system Triad includes 
analyses subsystem implementing the algorithm of 
investigation - special algorithm for data (the results of 
simulation run) collection and processing.    

The analysis subsystem includes special objects of two 
types: information procedures and conditions of simulation. 
Information procedures are ―connected‖ to nodes or, more 
precisely, to routines, which describe the behavior of particular 
nodes during simulation experiment. Information procedures 
inspect the execution process and play a role of monitors of test 
desk. Conditions of simulation are special linguistic 
constructions defining the algorithm of investigation because 
the corresponding linguistic construction includes a list of 
information procedures which are necessary for investigator.  

The algorithm of investigation is detached from the 
simulation model. Hence it is possible to change the algorithm 
of investigation if investigator would be interested in the other 
specifications of simulation model. For this one need to change 
the conditions of simulation.  But the simulation model remains 
invariant. We may remind that it is not possible in some 
simulation systems.  

One can describe the information procedure as so: 

 information procedure<name> 
(<a list of generic parameters>) 
(<input and output formal parameters>)  
initial <a sequence of statements> endi  
<a sequence of statements>processing <a sequence of 
statements> 
endinf 

It is possible to examine the value of local variables, the 
event occurrence and the value of messages which were sent or 
received. A part of linguistic construction ‗processing‘ defines 
the final processing of data being collected during simulation 
run (mean, variance and so on).  

Let us present the linguistic construction conditions of 
simulation:  

Conditions of simulation<name> 
(<a list of generic parameters>) 
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(<input and output formal parameters>) 
initial <a sequence of statements> endi 
<a list of information procedures> 
 <a sequence of statements>  
processing <a sequence of statements>…endcond 

 The linguistic construction conditions of simulation 
describes the algorithm of investigation which defines not only 
the list of information procedures but the final processing of 
some information procedure and checks if conditions of 
simulation correspond to the end of simulation. The subsystem 
of visualization represents the results of simulation. One can 
see the representation of the results of simulation run at  fig.5.  

Fig.5. The results of simulation.  

Simulation run is initialized after simulation statement 
processing. One can pay an attention to the fact that the several 
models may be simulated under the same conditions of 
simulation simultaneously. 

simulate <a list of an elements of  models, being inspected> 
on conditions of simulation <name>  
(a list of actual generic parameters>) 
[<a list of input and output actual parameters>] 
(<a list of information procedures> 
<a list of statements>…) 
endsim 

IV. THE COMPONENTS OF SIMULATION SYSTEM  TRIADNS

Let us consider simulation modeling system TriadNS, its 
appointment, its components and functions of each component. 
TriadNS – it is simulation system dedicated for computer 
networks analysis. It is based on object-oriented simulation 
system Triad.Net. Simulation system Triad.Net is a modern 
version of previous simulation modeling system Triad [6] 
dedicated to computer aided design and simulation of computer 
systems. Triad.Net is designed as distributed simulation system 
(it may be consider as one of the class of PDES systems – 
parallel discrete event simulation), so various objects of 
simulation model may be distributed on the different compute 
nodes of a computer system. One more specific characteristic 
of Triad.Net – remote access, so several investigators may 
fulfill a certain project from different computers situating in 
different geographical points.  

Distributed simulation system Triad.Net consists of some 
subsystems: compiler (TriadCompile), core of simulation 
system (TriadCore), graphical and text editors, subsystem of 
testing and debugging (TriadDebugger), subsystem of 
distributed simulation (synchronization of simulation model 
objects which are situated on different compute nodes of 
computer system, conservative and optimistic algorithms 
realization)(TriadRule), subsystem for equal workload of 
compute nodes (TriadBalance), subsystem of remote and local 
access (TriadEditor), subsystem of automatic and 
semiautomatic simulation model completeness (TriadBuilder), 
the subsystem for remote access and a security subsystem from 
external and internal threats TriadSecurity), the subsystem of 
automatically extending the definition of the model 
(TriadBuilder), the subsystem of intellectual processing of the 
results of simulation experiment (TriadMining). Initially we 
address to the specific characteristics of simulation model in 
TriadNS. 

V. THE FLEXIBILITY OF THE SIMULATION TOOLKIT 

A. Using ontologies in TRIADNS 

It is important to involve into the simulation process not 
only the specialists in simulation but the specialist in specific 
domains and specialists in the other spheres of knowledge. 
That is why it is necessary to adjust a simulation system to 
specific domain. Indeed the investigator of computer network 
may use a graph theory while studying the structure of 
network, or a queue network theory, or the theory of Petri Nets. 
Ontologies are used in TriadNS to adjust the simulation system 
to specific domain.  

Ontologies can be applied on the different stages of 
simulation [17, 18]. Very often ontologies are applied for the 
simulation model assembly. So the simulation model may 
consist of separately designed and reusable components. These 
components may be kept in repositories or may be found via 
Internet. The ontologies keep the information about 
interconnections of simulation model components and other 
characteristics of these components. Ontologies enable 
investigators to use one and the same terminology. Ontologies 
allow to make the repositories of components to store not only 
an information about their characteristics, interfaces, but the 
information about their interconnections.  

The base ontology is designed in TriadNS. Its basic classes 
are: TriadEntity (any named logic entity), Model (simulation 
model), ModelElement (a part of simulation model and all the 
specific characteristics of a node of structure layer), Routine 
(node behavior), Message  (note, please, that structure layer 
nodes of simulation model can interchange with messages) and 
so on. 

The basic properties of base ontology are: (a) the property 
of ownership: model has a structure, a structure has a node, a 
node has a pole and so on; (b) the property to belong to 
somethin0g -– inverse properties to previous one. The structure 
belongs to the model, the node belong to strucrure, the pole 
belong to the node and so on; (c) the properties of a pole and 
an arc connection – connectsWithArc(Pole,Arc),
connectsWithPole (Arc, Pole); (d) the property of a node and 
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an appropriate routine binding-putsOn (Routine, Node); (e) 
The properties of a node and an appropriate structure binding: 
explicatesNode (Structure, Node), explicatedByStructure 
(Node, Structure); (f) The property of the model and conditions 
of simulation binding (Model, ModelingCondition). 

The simulator TriadNS has some additional special 
subclasses of the base classes (specific domain – computer 
networks): (a) ComputerNetworkModel (a model of a computer 
network); (b) ComputerNetworkStructure (a structure of a 
computer network model); (c) ComputerNetworkNode (a 
computer network element, it contain several subclasses: 
Workstation, Server, Router); (d) ComputerNetworkRoutine (a 
routine of a computer network) и т.д. This ontology includes 
two special properties of a pole. These properties are used to 
check the conditions of matching routine to a node, for 
example a property check if it is necessary to connect a pole 
with another pole or a property checking the semantic type of 
an element of a structure being connected.  

B.  Redefining of Simulation Model 

An ordinary simulation system is able to perform a 
simulation run for a completely described model only. At the 
initial stage of designing process an investigator may describe a 
model only partly omitting description of behavior of a model 

element r* = {STR, ROUT*, MES}). Simulation model may 
be described without any indication on the information flows 

effectin0g the model (s* = {STR*, ROUT*, MES}) or without 

the rules of signal transformation in the layer of messages (m* 
= {STR, ROUT*, MES}). However for the simulation run and 
the following analysis of the model all these elements have to 
be described may be approximately.  

For example, in a completely described model each 

terminal node vi V has an elementary routine ri  ROUT. An 
elementary routine is represented by a procedure. This 
procedure has to be called if one of poles of node vi receives a 
message. But some of the terminal nodes vi of partly described 
model do not have any routines. Therefore the task of an 
automatic completion of a simulation model consists either in 
―calculation‖ of  appropriate elementary routines for these 
nodes, i.e. in defining ri = f(vi), either in ―calculation‖ of a 
structure graph si = h(vi) to open it with (in order to receive 
more detailed description of object being designed). It was 
mentioned above that the routine specifies behavioral function 
assigned to the node, but the structure graph specifies 
additional structure level of the model description. And at the 
same time, all structures si must be completely described as the 
submodels.  

These actions have to be fulfilled by the subsystem 
TriadBuilder. Subsystem TriadBuilder [19] attempts to search 
the appropriate routine by the help of base ontology (it was 
described earlier). It may be found thanks to special semantic 
type (semantic type ―Router‖ and ―Host‖, for example). 
Model completion subsystem starts when the internal form of 
simulation model is built according to a Triad code. 

First, model analyzer searches the model for incomplete 
nodes, and marks them. Thus, the model analyzer will mark all 
Rout nodes. After the inference module starts looking for an 
appropriate routine instance for each of marked nodes 

according to specification condition (the semantic type of node 
and routine must coincide).Then the condition of configuration 
must be checked (the number of input and output poles of node 
and the number of poles of routine must coincide). After the 
appropriate instance has been found, it may be put on the node. 

C. Intellectual Analysis of the Simulation Experiment 

Results 

It is well known that the goal of a simulation experiment is 
to obtain the most accurate and adequate characteristic of the 
studied object. This stage of simulation deals with data 
collection and processing. The special syntax units such as 
information procedures and conditions of simulation are 
designed in TriadNS. Information procedures and conditions of 
simulation are described above. Note, please, that data 
collection and data processing with the help of information 
procedures permit to obtain more adequacy results. Information 
procedures monitor only these characteristics of simulation 
model which are interested for investigator. In contrary some 
other simulators able to monitor and to collect a set of 
predefined characteristics.   

But we can note another problem: the results of simulation 
experiment are not ordered and not structured. The processing 
of a simulation experiment results requires highly skilled 
analysts.  So we can state the appearance of several papers with 
the suggestion to make the additional processing of the results 
of simulation experiments [20] and to apply the methods of 
Data Mining for these purposes [21]. Usually investigators 
obtain standard report with the results of simulation. The 
additional processing allow to find dependences between 
characteristics of the modelling objects. 

  The analyses of these dependences allow to reduce the 
overall data capacity, dimension of problem and eventually to 
optimize the simulation experiment. 

The additional processing may be done with the special 
software tools of TriadNS (component TriadMining). 
TriadMining use the results of the information procedures, the 
results are processed with the help of regression analyses, time 
serious, Bayesian networks and so on. We mentioned above 
that an information procedure monitors the implementation of 
the sequence of events, the variables changing and so on. It is 
well known that the sequence of the predefined events allow to 
find crashes in nodes of telecommunication systems. Here is an 
example of information procedure.  

information procedure event_sequence (in ref event 
E1,E2,E3;out Boolean arrived)  
initial interlock (E2,E3); Arrived := false; 
  case of e1:available(e2); 

 e2:available( E3): 
 e3:ARRIVED:=true; 

  endc 
endinf 

Fig. 6. The information procedure to detect the proper sequence of events. 

So investigator may detect the arrival of the sequence of 
events E1→E2→E3. The statement interlock provides input 
parameter blocking (event E1 in this case). It means that 
information procedure doesn‘t watch parameters being marked 
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in interlock statement. The statement available allows 
beginning the marked parameter monitoring again. 

Information procedure monitors the changing of variables 
and the moments of appropriate time. So the time series may be 
formed. It is necessary to analyze the similarity of two or more 
time series. So it is possible to find dependences between the 
elements of simulation model and reduce the data capacity.   

VI. THE EFFECTIVENESS OF THE SIMULATION TOOLKIT

A. Distributed simulation model representation 

It is necessary to use several nodes of cluster, network or 

mainframe in order to design effective simulation toolkit. A 

distributed simulation model is presented as several logical 

processes carried out on different compute nodes in this case. 

Logical processes are functioning and interacting with one 

another sending and receiving messages. These messages have 

the time stamps – the local time of the event being carried out.  

B. Optimistic and conservative algorithms 

There are two main approaches to provide the causality of 
the events in parallel/distributed simulation: conservative and 
optimistic. Conservative algorithm defines the time of the 
―safety‖ event from the list of scheduled and not processed 
events. One may name the event as ―safety‖ if a logical process 
does not receive message with lower time stamp than the time 
stamp of event from the list of scheduled events. Conservative 
algorithm does not process event if it is not safety.  More 
details are given in papers [4, 5]. Optimistic algorithms allow 
carrying out the logical process without local causality 
restrictions.  One of the famous optimistic algorithms is a Time 
Warp [22]. When a logical process receives an event with the 
lower time stamp than the time stamp of processed event the 
process performs a rollback and processes this event again in 
the chronological order.   Time Warp algorithm uses the 
mechanism of anti-messages.  

The analysis of improved conservative and optimistic 
algorithms shows that their efficiency becomes higher due to 
increase of knowledge about the model (lookahead, lookback, 
time stamp of the next event and so on). So it is necessary to 
use the information about the model more precisely, the 
knowledge of a researcher about the behavior of specific model 
for increase of the simulation experiment efficiency. 

C. Knowledge Based Sinchronization Algorithm 

Usually a researcher has some knowledge about the specific 
behavior of the model. We propose to present this knowledge 
as production rules in the knowledge base. Rules may be 
presented as: IF e1 AND e2 AND e3 AND … AND en THEN 
ek  СF <0..100>. These rules show that the event ek depends 
on e1, e2, ,en. CF is a trust coefficient. 0 - no trust, 100 - 
maximum trust. The rules reflect the causality between events, 
but the events are not exact, that is why each rule is assigned a 
trust coefficient.  

However it is not enough to relay upon the knowledge of a 
researcher. Some knowledge has to be received within the 
simulation experiment in order to replenish and to improve 
rules in the knowledge base.   The authors have developed the 

specific program tools (TriadRule) to collect and to process the 
specific knowledge required to replenish and to improve the 
production rules in the knowledge base. The application of 
TriadRule shows that efficiency of the optimistic algorithm is 
actually increased.  

D. Load balancing subsystem 

Load balancing subsystem is dedicated to optimal 
distribution of program model among compute nodes (in 
multiprocessor computer or in network) and consequently to 
enhance the performance of these computers.  

Load balancing it is a problem of non-isomorphic vertex-

connected graphs mapping B: PM  NG, where PM – a set of 
graphs of program models, NG – a set of graphs – computer 

network configurations. Graph G  NG, G = {C, Ed}, can be 
defined by a set of calculating nodes C and a set of edges Ed 
(edges Ed are associated with communication lines). One can 
consider NG as a super graph, containing all eventual 

(admissible) graphs Gi as subgraphs. Graph M  PM 
represents program model.  

It is possible to use three kinds of load balancing: static Bs, 
dynamic (automatic) Ba and dynamic (controlled) Bc. 
Preliminary allocation of program objects (static Bs) is not 
effective. This is explicable from the following facts: (a) a 
program model can be changed due to new processes 
appearance, terminating some processes; (b) a compute 
environment can be changed because one or the several 
processors (or computers) are failed. In any case, the benefit of 
distributing the logical processes between compute nodes 
before the program execution is very often not seen. 

In regards to dynamic balancing Ba the graphs G and M are 
considered to be loaded. The nodes of the first graph have a 
parameter – performance, edges – data rate. The characteristics 
of nodes in the second graph – time complexity, the 
characteristics of edges – the intensity of a traffic flow. The 
weights of nodes and edges in graph NG are considered to be 
known. The corresponding graph M parameters must be 
defined during the program execution. The ―bottle neck‖ of the 
program model and computer system is determined in 
accordance with some algorithm, and migration of the program 
objects without interruption until the program is executed.  

There is a new approach of implementation of controlled 
dynamic load balancing based on knowledge in Triad.Net (Bc). 
Controlled dynamic load balancing subsystem includes expert 
component and information procedures developed by a model 
designer (nonstandard information procedures in other words). 
Expert component consists of optimization rules defined by the 
author of the given model (or of class of models).  Nonstandard 
information procedures are intended to estimate the events (or 
conditions) of rule applications.  

Restoring the balance of the workload is a well-known 
problem. There are several solutions of this problem and a lot 
of algorithms were developed. However, very often, these 
algorithms are applicable only for a specific simulation model. 
Researchers attempted to develop adaptable algorithms 
(SPEEDES[7] and Charm ++[8], for example). The 
experiments have shown that the effectiveness of these 
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algorithms maybe achieved only in special cases. Indeed, the 
development of some universal algorithm is almost impossible. 
The authors wish to solve at least partially this problem by 
applying a controlled balance. Controlled load balancing uses 
the knowledge of concrete simulation model. For example, the 
researcher knows that the intensity of data exchange between 
two compute nodes would be much higher after one hour from 
the beginning of computer network functioning. So a 
researcher may formulate the appropriate rule which can be 
used by load balancing subsystem.  

There are two ways to implement controlled dynamic load 
balancing subsystem: in centralized manner or in distributed 
one.  

The knowledge-based load balancing subsystem in 
Triad.Net includes: (a) Expert system with knowledge base, 
rules editor, inference engine and module of explanations. 
Knowledge base consists of rules for optimal distribution of 
program model objects among the calculating nodes. (b) 
Simulation model and computing environment analysis 
subsystem. Analysis subsystem consists of information 
procedures to collect data: a frequency of interchanges among 
the objects, a frequency of event occurrence and etc; to collect 
data on computational environment (flow capacity of 
communication lines, workload of computers). (c) Subsystem 
for simulation model and calculating environment 
visualization. (d) Migration subsystem which carries out 
program object migration from one compute node to another. 

Expert component carries out some operations on graph G 
(this graph represents the structure of program model) mapped 
on graph M – graph of computing environment.  

Rules imply operations on graph G. Rules are productions 
such as «if then else…» and could be described by Triad 
language.  

But this controlled load balancing uses centralized 
algorithm, all rules are in single knowledge base, simulation 
model and computing environment analyses subsystem is 
situated on a selected compute node too and interacts with 
other compute nodes. Authors of this paper propose multi-
agent approach in order to reduce the time needed to exchange 
the data.  

E. Multi-Agent approach 

Dynamic multi-agent load balancing subsystem 
TriadBalance consists of different agents: (a) Agent-sensor of 
compute node; (b) Agent-sensor of simulation model; (c) 
Agent of distribution; (d) Agent of migration; (e) Agent of 
analyses. Each agent works in accordance to its scenario, but 
together they carry out the load balancing algorithm.  

More precisely: (a) The agent-sensor of compute node 
permanently collects data about the state of a compute node 
(computational load on the node and link capacity). (b) The 
agent-sensor of simulation model permanently monitors a 
simulation model during the simulation run, recording the 
intensity of the exchange between the objects, the frequency of 
certain events, the rate of change of variables, etc. Agent-
sensor of the simulation model uses information procedures. 
The agent of analysis interacts with agents-sensors (these 

agents are reactive) and decide if it is necessary to distribute 
the load or not. It is a cognitive object and it uses the rules of 
expert system in order to make a decision. 

The agent of the distribution receives information from the 
agent of analysis. The purpose of the agent of the distribution is 
to define a portion of the load (it is needed to select some 
objects of simulation model located on compute node) which 
should be referred to other nodes in order to avoid imbalances, 
and to identify the target compute node for transfer a portion of 
load. 

In order to identify the target node it is necessary to check 
the load on the neighbor nodes. If the node with the lowest load 
is not found, the distribution agent tries to find the address of 
the node from its neighbors. If the load of the compute node is 
less than the limit then the agent of distribution informs its 
neighbors that compute node may place the additional load. 
Agent of distribution is a cognitive one and it acts in 
accordance to rules from the knowledge base. These rules are 
defined by a modeler and are corrected during the simulation 
run. The knowledge base includes the information about all 
neighbors of a concrete compute node and this information 
must be updated during the interaction with neighbors. 

The agent of migration must transfer the selected portion of 
load to a target node and perform it in optimal way. 

Cognitive agents have to be adapted to the conditions 
which could be changed during simulation run. For this 
purpose the meta rules were designed.   

The experiments show that multi-agent load balancing 
subsystem reduces the time of simulation run. One can see it in 
the figures 7 and 8. 

Fig.7. Static and dynamic multi-agent load balancing with 4 compute 
nodes. 

Fig.8. Static and dynamic multi-agent load balancing with 8 compute 
nodes. 
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VII. CONCLUSION

The paper discusses the problems of flexible and effective 
software for computer network simulation. Authors consider 
ontology approach application to automatic redefining of 
simulation model and to adjusting the simulation system to the 
specific domain.   

Simulator TRIADNS is provided with a convenient 
graphical interface. Simulator permits separate and joint 
hardware and software modelling. Another distinguished 
characteristic of the simulator is the ability to make a 
distributed simulation experiment.  

The Data Mining methods allow to simplify the analyses of 
the simulation experiment results. Ontologies enable to 
automate the simulation model construction and to achieve the 
interoperability of the software tools (to use components 
designed in the other simulation systems). 

Authors suggest special optimistic algorithm and load 
balancing based on knowledge in order to reduce the overall 
time of simulation experiment.  So software being under 
consideration is effective and flexible. 
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Abstract—In this paper, we apply the concept of 
software-defined data plane to defining new services for
Mobile Virtual Network Operators (MVNOs). Although
there are a large number of MVNOs proliferating all over the
world and most of them provide low bandwidth at low price,
we propose a new busi- ness model for MVNOs and empower
them with capability of tailoring fine-grained subscription
plans that can meet users’ demands, for example allocate
abundant bandwidth for some specific applications, but the
rest of the applica- tions are limited to low bandwidth. For
this purpose, we propose application and/or device specific
slicing that clas- sify application and/or device specific traffic
into slices and apply fine-grained quality of services (QoS).
We also intro- duce various applications of our proposed
system.

Keywords—Software-Defined Networking (SDN), Network 
Functions Vir- tualisation (NFV), Network Virtualization

1. INTRODUCTION
Software-Defined Networking (SDN) and Network Functions
Virtualization (NFV) have recently caught attentions from
industries as technologies for reducing capital expense (CAPEX)
and operational expense (OPEX), where software-defined
programmable network equipment dispenses with high main-
tenance cost of hardware appliances and enables rapid revi-
sions of functionalities and the automation of operation and
management (OAM) of network. While SDN primarily fo-
cuses on the programmability on the control of networking,
NFV aims at implementing data processing functions in soft-
ware on top of virtual machines (VMs) especially that exist
today as hardware network appliances. Data packets can
be programmatically redirected by SDN and can be program-
matically processed by NFV.

We have recently posited that software-defined data plane,
i.e., arbitrarily defining data plane by software program-

ming, significantly enhance the synergy between SDN and
NFV [7]. In carefully designed sandboxes such as virtual
machines inside network equipment, we should be able to
enhance the data plane functionalities, e.g., those related
to OAM, and publish the SBI for controllers to use them.
Such enhancement is only recently discussed in a few re-
search projects [1, 4]. Also, NFV is so far limited to imple-
menting network appliances in software, and deals neither
with crafting new protocols nor with OAM functionalities.
Since the current SDN’s data plane is not so much flexi-
bly programmable because it is still often implemented in
hardware, enhancing SDN with software-defined data plane
would fill the gap in the current NFV.

In this paper, we apply the concept of software-defined data
plane to defining new services for Mobile Virtual Network
Operators (MVNOs) that obtain network services from mo-
bile network operators and resell network services to cus-
tomers at their own prices without owning the wireless net-
work infrastructure on their own. There are a large number
of MVNOs proliferating all over the world and most of them
provide low bandwidth at low price. We propose a new
business model for MVNOs and empower them with capa-
bility of tailoring fine-grained subscription plans that can
meet users’ demands, for example, abundant bandwidth is
allocated for some specific applications, but the rest of the
applications are limited to low bandwidth. To this end, we
propose application and/or device specific slicing that clas-
sify application and/or device specific traffic into slices and
apply fine-grained quality of services (QoS).

The rest of the paper is organized as follows. Section 2 in-
troduces our design decisions for enabling application and/or
device specific slicing utilizing programmable software-defined
data plane. Section 3 discusses various applications of our
proposed system. Section 4 introduces our programmable
network node architecture called FLARE and shows our
preliminary prototype implementation and experiments. Fi-
nally, Section 5 briefly concludes.

2. DESIGN
This section introduces our preliminary design for applica-
tion and device specific slicing to enable Software-Defined
Networking and Network-Functions Virtualization for MVNO.

2.1 Overview
In order to realize application and/or device specific slicing,
we have designed trailer slicing [1] where meta information
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Figure 1: Application/Device Specific Slicing

on applications and devices at the end of packets (as dis-
cussed in more detail in Section 2.3.1.) Note that in our
design, the meta-information may include many other kinds
of information, but for the sake of brevity, we limit its scope
to applications and devices within this paper.

In generic trailer slicing, each packet may carry trailer bits
containing meta information of the packet, such as from
which application process and/or from which device a packet
has been transmitted. For example, we install our software
on smartphones for capturing the very first packet an ap-
plication transmits, i.e., a TCP SYN packet when the ap-
plication establishes a TCP session, and then for attaching
trailer. In more detail, we capture the header information
of a TCP SYN packet and examine the process table and
the socket table of the operating system to look for a corre-
sponding application process that uses the flow space (such
as IP addresses and port numbers) and attach the informa-
tion regarding the application process such as a name and
status as a trailer. Note that this approach can be easily ap-
plied also any other transport protocol such as UDP. Also we
can attach device information as well as that of application.

A programmable node, e.g., FLARE (explained in 4.1) at
the gateway to the MVNO backhaul network detects the
trailer attached to the unusual TCP SYN (with non-zero
payload size) or the packet that uses a flow space for the first
time, and decodes/removes the information in the trailer. It

also observes the flow space information of the packet at
the same time and maps the information on the application
processes and that of the flow. When the SDN controller
can receive this mapping information, the subsequent pack-
ets can be controlled by the SDN switches along the route
to the destination according to the flow space information
associated with application/device information. For exam-
ple, we can perform QoS traffic control such as bandwidth
throttling for particular applications/devices using the tra-
ditional flow-based traffic control.

2.2 Filling a Gap between Application/Device
and Network Programming

Although SDN and NFV are considered useful tools for pro-
grammable networking, we observe a gap between develop-
ment of applications, services and devices, and that of pro-
grammable networking, mainly caused by the gap between
abstractions defined in two worlds.

In the current Internet, applications and services implemented
on end systems use socket interface to utilize services pro-
vided by the communication infrastructures. Since socket
interface provides clear separation between end-systems and
networking, the context of applications, services and devices
are dismissed when packets are transmitted into the net-
work. In other words, unless performing deep packet in-
spection (DPI) on packets or inferring from various charac-
teristics such as packet length and timing, it is difficult to



tell which application context sends/receives those packets.

Operating systems on top of end-systems use processes and
threads as abstraction for programming applications and
services. The current SDN networking equipment uses flow
information as abstraction for programming network. In
a sense, our proposal for application/device specific slicing
bridges the abstractions used in operating systems and pro-
grammable networking.

2.3 Slicing Mechanism
2.3.1 Trailer-Slicing
The idea of trailer slicing is to attach a slice identifier at the
end of the packets under the agreement of the existence of
such bits among the users of the infrastructure, for example
in mobile backhaul networks, at cloud data centers, and in
any other administrative domains where the agreement may
be established. As briefly explained in 2.1, a slice identifier
may not just be an explicit number, but can be the meta
information to identify a slice such as application name or
device type under the agreement.

In SDN, we have been using the header information to de-
fine a slice, specifically, so-called flow information, which is a
combination of MAC addresses, IP addresses and port num-
bers. However, when we consider cooperation between op-
erating system entities and networking, we conclude that we
should use a more straightforward identifier, such as a pro-
cess name, an application name and a device type, etc. We
can define a name space so that within the name space a slice
can be identified uniquely, e.g., com.android.google.youtube
in case of the name space for process names in the Android
operating system.

The idea of trailer slicing is similar to MPLS in that we use
bits (that can be view as label) for switching, but the differ-
ence is that the position of bits in layers and in packets and
the length of the bits. We intentionally put a slice identifier
at the end of packets. With adjustment of header fields in L3
and/or L4, we can get packets through with trailers through
the existing network equipment, since they treat trailers as
L7 data bits. Of course, we need to remove trailers before
packets reach the destination, but that should be taken care
of by the agreement of trailer slicing among administrative
domain.

One may argue that we could use header option fields instead
of a trailer for storing a slice identifier. However, there is a
risk that non-standard header options may be removed or
may cause network equipment to malfunction. Also option
fields may be in short of bits, flexibility and extensibility. To
avoid pressing header handling on the part of legacy network
equipment, we decide to use a trailer since all the network
equipment along the route of a packet treats a trailer as a
part of payload data, so it keeps preserved till it gets parsed
and removed. However, our scheme could be easily imple-
mented in header options of course, when the concerns above
are not an issue.

Note that not all packets need to carry trailers, although
such design is certainly possible. As long as we agree on
which packet in a flow carries a slice identifier, we can estab-
lish mapping between the traditional flow information and

the slice identifier in network equipment. After the mapping
is created, from then on, flow information could be used for
the slice identifier.

As an aside, there is an interesting use case of trailer slic-
ing called TagFlow [5], where we push expensive complex
classification to the edge of the network and use one field
trailer to simplify the classification at the core of network.
In TagFlow, every packet is expected to carry a trailer.

2.3.2 TCP-SYN Piggy-backing
Some may argue that piggy-backing data in TCP SYN may
render incompatibility and security issues. However, such
unusual piggy-backing is not uncommon today. For exam-
ple, Google does this in TCP Fast Open (TFO) [8] for the
different purpose than ours, where they attempt to reduce
the number of packets and the delay in three-way handshak-
ing, storing“cookies” in newly emitted TCP SYN’s payloads
for already authenticated end systems via the past three-way
handshakes.

2.4 Signaling between End-Systems and Net-
work

2.4.1 Out-of-band Signaling
Even if applications keep track of their flow information,
they need to let the SDN controller know the flow informa-
tion out of band, that is, besides the application data traffic,
they must open control channels to convey such flow infor-
mation to the SDN controller so that they may be able to
control their flows. This approach is prohibitive for a large
number of small devices such as smartphones and sensors
since it may become significant overhead for them.

2.4.2 In-band Signaling
We propose a method to modify operating systems of the
end systems such as smartphones, so that we can find ap-
plication process information and convey such information
through an in-band communication. Our prototype system
attaches the application process information as a trailer on
the part of the end systems, and decodes the information
in it then removes it on the part of the programmable node
located in the backhaul, ideally at the first hop from the
gateway from a mobile network operator (MNO). In this
way, we learn the mapping of the information on applica-
tion processes and flows and inform the SDN controller so
that subsequent nodes can just perform the conventional
flow-based traffic control.

2.5 Deep Data Plane Programmability
We should note that in order to enable application/device
specific slicing for MVNO, data-plane functionality must be
extended from the current SDN model where data-plane el-
ements have limited pattern match capabilities and too few
actions. Especially note that the manipulation of the packet
trailer at Layer 7 (L7) is largely missing from the current
SDN data-plane elements and the extension to support such
manipulation is useful to enable new applications.

3. APPLICATIONS
3.1 Traffic Engineering
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Traffic engineering such as Quality of Service (QoS) and
route/switch control for specific applications and devices
is the immediate application of our proposal in this paper.
We can create slices according to (1) application names, (2)
application processes, (3) device types, and (4) device sta-
tus/location, etc. However, it is obviously possible to extend
a trailer to include much more information about applica-
tions, devices, the context of usage of them, etc.

3.2 Value-Add Services
After classifying application and/or device specific traffic
into slices, we can apply NFV virtual functions to perform
useful data processing such as compression and decompres-
sion and packet caching, etc. This application helps differ-
entiating competing applications such as web browsers. For
example, a certain browser can benefit from installing trans-
parent data cache near smartphones, while other browsers
may not. We expect more and more applications on smart-
phones can be empowered by small, yet smart functionalities
embedded in NFV for aiding the operations of the applica-
tions.

3.3 In-Network Security
Another interesting example application is in-network secu-
rity. Malware containment in a slice is one example appli-
cation. In our prototype, as long as malwares on the smart-
phones transmit packets, we can catch the traffic from those
processes and contain the traffic into a slice, by examining
the application process names associated with flows. Our
prototype system even raise alerts to smartphones that they
may have accidentally installed malwares on them once their
traffic get detected.

Also, in-network parental control is another example appli-
cation in the security area. Usually, parents would like to
restrict the usage of applications on their childrens’ smart-
phones by installing parental control software on them. How-
ever, in most of the cases, those applications may be removed
easily by the children. In our system, since application and
device specific traffic can be classified into a slice, we can
easily set policy and control bandwidth such traffic. For ex-
ample, the traffic from a specific application on a specific
device can be controlled on the part of network, not on the
device, for a determined period of time. The parental con-
trol enabled by this mechanism is not easily removed by the
hands of the children.

3.4 Big-Data Analysis
Neither capturing nor deeply inspecting users’ traffic are al-
lowed in several countries such as Japan. However, MVNO
operators are interested in collecting application specific band-
width usage to provide more fine-grained subscription plan.
We intentionally design our system so that the privacy of
user data (L7 payload data) may not be infringed. If users
are fine with their application usage being collected, we be-
lieve we can alleviate the dilemma between MVNOs’ de-
mands for bandwidth usage data and users’ privacy. Most
of the related work for identifying applications from the traf-
fic trace relies on deep packet inspection (DPI) of the user
data, which may not work if DPI is restricted by law or the
packet payload data is encrypted.

There are lots of MVNOs proliferating in Japan, but most
of them offer low bandwidth at cheap price, which causes
fighting for selling ever-lower-cost subscription plans among
those MVNOs. We believe an MVNO may be able to cre-
ate a fine-grained and tailored subscription plan that can
meet users’ demands, for example, provisioning bandwidth
for some specific applications, but the rest of the applica-
tions are limited to low bandwidth. In order to come up
with viable subscription plans, application traffic analysis
becomes a key.

4. PRELIMINARY EVALUATION
4.1 FLARE
FLARE is a deeply programmable network node architec-
ture [1] utilizing a hybrid of computational resources, such
as network processors, general purpose processors, (and op-
tionally GPGPU) hierarchically to extend data plane pro-
cessing functions easily by software program.

FLARE tackles three research challenges, (1) ease of pro-
gramming, (2) reasonable and predictable performance, and
(3) enabling multiple concurrent isolated logics. For (1),
we introduce Toy-Block networking programming model [6]
to facilitate drag and drop data plane programming. For
(2), we combine of high-frequency small-number-core pro-
cessors for control and management functionalities, and low-
frequency many-core processors for massively parallel pro-
cessing for a large number of flows. And finally, for (3), we
employ a lightweight resource virtualization technique called
resource container for isolation of multiple logics. For the
best isolation, we decide to partition many cores into groups
and deploy a resource container per group.

The goal of FLARE is similar in spirit to that of OpenDat-
aPlane [3], especially in that the purpose is to flexibly and
easily extend data plane. However, the key difference is that
we consider isolation of resources to support multiple con-
current data plane logics via virtualization. For example,
FLARE program multiple concurrent logics such as Open-
Flow 1.0 and OpenFlow 1.3 data plane elements in isolated
execution environments.

4.2 Preliminary Prototyping and Experiments
Utilizing FLARE prototypes, we have implemented our pro-
totype system to enable application and/or device specific
slicing for MVNO as shown in the overview of our design
depicted in Section 2.1. We have developed Android smart-
phone software to enable trailer slicing, i.e., embedding a
slice identifier at the trailer of TCP SYN packets and QoS
traffic engineering per slice on our FLARE platform [1]. We
have discovered that we can use TCP SYN trailers unless
ISPs do not filter unusual TCP SYN in fear of SYN Flood-
ing, which is not really performed in most MVNO services
of today.

In implementing our prototype, we reconsider southbound
API (SBI) for your application. As reviewed in Section 2.2,
we believe application users and developers, process-based
traffic control is more natural than flow-based one. Extend-
ing the Openflow model, the right abstraction for program-
ming in this case may be one such as,
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<Application/Device><Action><Stat>,

instead of

<Flow><Action><Stat>,

although we may not have to follow OpenFlow’s convention
for programming abstraction and also one could rather de-
fine one’s own programming abstraction, as long as it is open
and published as an API.

We also jointly operate our prototype system with an ISP in
Japan with 40 Android phones and successfully demonstrate
our prototype system works on top of an MVNO. We plan to
extend our experiments to enable various application ideas
shown in Section 3. Note that the same prototype but with
WiFi network has been demonstrated successfully at vari-
ous venues such as GEC20 [2]. We believe that empowering
MVNOs with application/device specific traffic engineering
would become the norm of the next generation MVNO busi-
ness.

5. CONCLUSION
Our contributions in this paper are four-fold.

First, we propose application and/or device specific slicing
applying the concept of software-defined data plane to defin-
ing new services for MVNOs. More specifically, we use
software-defined deeply programmable data plane to handle
trailer bits to attach a slice identifier, so that we can clas-
sify application and/or device specific traffic into slices and
apply fine-grained quality of services (QoS). Most MVNOs
of today provide low bandwidth at low price and thus, they
are forced into fighting for the market with ever-lower-cost
subscription plans. However, low flat-rate bandwidth ser-
vices may not be attractive to users any more, since cer-
tain applications, such as a YouTube browser needs more
bandwidth than low flat-rate bandwidth. Our solution can
provide pay-as-you-go bandwidth services for a specific set
of applications of customers’ choice, and low flat-rate band-
width services for the rest of applications. We expect our
proposed system change business models of MVNOs and en-
hance the market of the MVNO business.

Second, we also introduce various applications of our pro-
posed system, e.g., (1) traffic engineering based on applica-
tion names, application processes, device types, and device
status/location etc., (2) value-add services for specific ap-
plications and devices such as acceleration of content access
and traffic reduction through compression/decompression
and packet caching, (3) realizing in-network security such
as malwares containment in a slice, and in-network parental
control, and finally (4) big-data analysis to improve the
bandwidth utilization according to the statistical usage of
applications and devices.

Third, our contribution includes not only providing new ser-
vices for MVNOs, but also pointing out a compelling use
case of software defined data plane, which is extended from
the current SDN and NFV for allowing one (1) to define use-
ful data processing within data plane in SDN and (2) to pub-
lish the access method to them as a (sub)set of southbound

interface (SBI). We strongly believe that there are more and
more useful use cases of software-defined data plane.

At last, another contribution is, while most people are pay-
ing attention to OPEX/CAPEX reduction in SDN/NFV, we
attempt to create new values out of applications of SDN/NFV.
For this, we believe that it is important to think application-
driven programmable networking where starting from the ap-
plication that cannot be built without the help from the
in-network functions, i.e., the network functions embedded
inside the data plane of SDN solution. Developing generic
infrastructure to accommodate all the applications, that is,
bottom-up approach may not correctly define APIs. It is
important to think top-down, from applications that do not
exist today due to the limitation in the network, down to
defining what are necessary inside the data plane of SDN.

We strongly believe that enabling deeper programmability
in SDN data-plane with ease of programming and reasonable
performance surely open the door to bringing more innova-
tions.
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Abstract — Network traffic balancing is one of the major 

factors of building scalable and robust service oriented 

communication networks. A plethora of algorithms for traffic 

balancing exists for classical network architecture and for 

software-defined networks. Having spotted certain deficiencies of 

existing methods, we are presently developing a stateless 

transport protocol, one of key features of which is the possibility 

to use anycast for concurrent connection with several servers. In 

this article, we consider various methods of a stateless protocol 

application for enhancing traffic balancing in software-defined 

networks.  

Keywords — software-defined networking; asymmetric transport 

protocol; balancing algorithm; Internet Control Server; 

NewTrickles; Internet gateway

I.  INTRODUCTION 

Every year more and more companies and developers join 
the arena of software defined network (SDN) technologies. 
This happens due need to achieve significant economic 
benefit to organization by applying the SDN approach 
construction corporate network infrastructure. Financial 
component of savings expressed in reducing the cost of 
network equipment, energy consumption, as well as reduction 
of the number of staff serving the enterprise network 
infrastructure. The leading organizations in the development 
of SDN include CISCO SYSTEMS, International Business 
Machines, Hewlett-Packard, Nippon Electronics Corporation 
and others.  

It may seem in general, that vast area of research can 
described as development of a universal controller for SDN. 
Equally, important parts are switching technology and 
operating communication protocols. The latter play the most 
important role for operation of the network end nodes. Due to 
the increasing number of mobile devices, massive data 
processing systems, virtualization and cloud systems, as well 
as sensor networks arises the problem of efficient protocols 
directly operating at the network end nodes and the creation 
of new algorithms for balancing network traffic. One 
approach to solving this problem is to use the transport 
protocol we developed, which controls the connection settings 
and stores its state at only one end node. Thus, it is possible to 

use new ways of balancing network traffic. 

II. LOAD-BALANCING ALGORITHMS FOR SDN

Aster * x [2]. Developed at Stanford University 
specifically for NoX SDN controller. The algorithm based on 
the idea of balancing the type of traffic (for example, all http 
requests on a specific port are routed in pre-defined way). 
Aster * x also has the ability to disable balancing for certain 
types of queries. 

In [3] authors proposed and evaluated a novel load 
balancing mechanism leveraged by flow admission control. 
Seamless connectivity enabled with SDN is the bottom-line of 
their work which ultimately offloads core network, maximizes 
the per-flow capacity, and enhances the end-user experience 
by means of reduced waiting time and drop-rate. Most 
strikingly, the results revealed that probabilistic approach has 
reduced unsatisfied-user percentage almost by five times. 
Their model reveals a 237% of improvement in terms of per-
flow resource allocation. Furthermore, they have noticed a 
drastic reduction of drop-rate (300%) compared to the 
analytical model and almost 520% of reduction compared to 
no load-balancing. Overall, their findings in this paper have 
elaborated the ultimate gain of load balancing in the SDN 
context and verified the results based on an analytical model. 

Mentioned above are just some balancing algorithms. If we 
consider all of the algorithms, it is necessary to classify their 
intended use: energy saving, support of Quality of Service 
(QoS), for mobile solutions, for heavily loaded systems, 
trivial. Moreover, balancing algorithms can be divided into 
proactive (when balancing rules are set in advance) and 
reactive (rules are set for each newcomer flow). In this article, 
we consider the case of proactive balancing algorithm at the 
level of L4 for heavily loaded servers. 

III. ASYMMETRIC TRANSPORT PROTOCOL

The main task of transmission control protocol (TCP) is a 
reliable and efficient data transfer between end systems 
through unreliable transmission medium - the 

*The work was fulfilled at financial support of the Ministry of Education
and Science of the Russian Federation, unique ID RFMEFI57614X0105. 
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communications network that can lose, reorder, and distort the 
transmitted data. For simplicity, we assume that the 
transmission is in one direction, and call the server side, 
transmit data, and the client - the host. In addition, each byte 
of data transmitted uniquely numbered increasing sequence 
numbers. Data reliability is ensured through a mechanism of 
cumulative acknowledgement - the successful receipt of each 
piece of data (which is also called a segment), transmitted to 
the server needs to be validated by the client. In that case, if a 
confirmation for a certain time has not come, the server 
retransmits the data [4, 5]. The transmission strategy is to 
utilize all available resources of the communication network, 
not allowing its unnecessary downtime and possible overload. 
On the other hand, to ensure reliable and efficient data 
transfer server and client are required to maintain the 
connection information before it is completed. For this 
purpose, the transmission control block (TCB) containing 
numbers of local and foreign socket, flags and priority of 
security for this connection, pointers send and receive buffers, 
pointers and the current segment retransmission queue used 
both at server and at client. Such a distributed organization of 
interaction between server and client leads to the following 
problems: 

 For storage and processing of connection, status 
resources are required on both server and client side. 

 Number of simultaneously connected clients to a 
server, is limited due to limited resources. 

 There is possibility of Distributed Denial of Service 
(DDoS)-attacks on a server, which may cause 
undesired operation of the server. 

Thus, the problem arises of modifying the transport 
protocol for more efficient operation directly in the final 
nodes of the network as possible without significantly 
reducing the performance of data transmission. One approach 
to solving this problem is a protocol Trickles. 

The Trickles protocol was proposed in 2005 at Cornell 
University, USA [6].The main difference of Trickles protocol 
from TCP protocols is keeping of all of control parameters on 
the client side, while the backend does not store information 
about the transport connection. Transport protocol operating 
on this principle from server to client will be called 
asymmetric protocol or unallocated connection state.  

Trickles protocol server completely mimics the server 
TCP New Reno [7]. To control the connection, the server 
must have Trickles control information, but since it does not 
store its information on the connection status, client sends it 
in each new segment (Fig. 1). After processing the request, 
the server closes the connection. 

 

Fig. 1. Trickles segment. 

Trickles connection consists of client requests and server 
responses to the client and at the same time there may be 
several such requests. We will call the continuation of flow 

(continuation) segment, the segment travelling from server to 
client and back. Consistent continuation flow forms an 
elementary stream (trickle). Thus, we can say that during the 
data transfer parallel operation of several elementary streams 
(Fig. 2) occur. During transit in the network, each elementary 
stream is independent of the other elementary streams, their 
synchronization only occurs at the client side. 

 

Fig. 2. Continuation and trickle 

We describe flow control algorithm of Trickles protocol, 
since this part of the protocol has greatest influence on its 
performance. This algorithm runs for each elementary stream 
in the sense that when a segment belonging to a certain flow is 
in transit, it stores all the necessary parameters. At the same 
time server part of the protocol converts these parameters and 
takes further actions to control elementary streams. When a 
segment arrives at the server, there are three possible 
scenarios: the server sends a segment with the data in response 
to a request by continuing stream; server increases the number 
of elementary streams; server destroys the flow, not sending 
anything in response to the request. Since one elementary 
stream in the network is represented by one segment, the 
number of running elementary streams is a current assessment 
of network bandwidth by the protocol. 

Mechanism of elementary streams management has three 
modes; this mechanism seeks to comply with a similar 
algorithm in TCP New Reno: slow start / congestion 
avoidance, fast recovery and retransmit timeout. 

In the slow start / congestion avoidance, Trickles server [6] 
associates with each packet its request number k, and decides 
whether to continue the flow or separate it using TCPCwnd 
(k) function. 

Transition to fast recovery mode is done by the client 
because the server does not store information about the state 
of the connection. Client received packets with numbers k+1 
and k+2 believes that the package number k was lost and 
sends the server requests where SACK-blocks[9] not contain 
the number of k. Server receives such a request, halves the 
amount of trickle in the network. If the request is numbered k 
+1 and SACK-block does not contain a number k, then the 
server sends back the lost packet with the number k. After 
receiving confirmation that the loss has been restored, the 
server recalculates the control connection parameters and 
sends them to the client. Client received new connection 
settings, believes that fast recovery mode is finished, set the 
new connection settings and enters the slow start / congestion 
avoidance. Thus, fast recovery mode duration is equal to two 
Round Trip Time (RTT). 

If there are two or more losses, the client enters Trickles 
retransmit timeout. Thus, the server, receiving a package 
wherein the SACK-unit has two or more loss terminates 
inbound trickle. Once triggered by retransmission timer, the 
client sends a request to restore any lost segments. Having 
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recovered all the losses the client changes the control 
parameters and connections enters slow start / congestion. 

This change in the pattern of the transport protocol has 
several advantages: 

 The server part can be replicated across multiple 
physical devices, as transmitted segments contain all 
necessary information about the connection (i.e., there 
is an opportunity to work with several copies of the 
same server). 

 Increased number of clients because there is no more 
need to keep detailed information about the 
connections. 

 In mobile networks, it is possible to transfer transport 
connection from one network to another, which is a 
challenge when using the classical TCP. 

 Increased resistance to DDoS-attacks. 

It is evident that the class of asymmetric protocols can 
facilitate the operation of heavily loaded server that was 
shown in [6]. However, this work is not a comprehensive 
analysis of Trickles protocol performance, which is an 
important task in the development of any transport protocol. 

Most methodologies of performance analysis of transport 
protocols are a simulation-based or an implementation as a 
part of the operation system. We have chosen a simulation-
based analysis, since there exists the ns-2 [10] system which 
contains a fair number of built-in models of various TCP 
protocol versions. The ns-2 system is a de-facto standard for 
the performance analysis of protocols. 

The ns-2 [10] system uses an object-oriented approach. 
The kernel of the system is implemented in C++ and network 
models must be implemented in OTcl. This approach, which 
involves the usage of two programming languages, is based on 
two reasons: first, models must be executed fast and C++ 
usage helps us to achieve it; second, models must be 
developed quickly, so the scripting nature of OTcl is helpful to 
us in doing it. 

The central concept of the ns-2 system is the agent which 
is an entity executing on the endpoint. The Trickles protocol 
model is an example of a such an agent in the experiments. 
Typical workflow of the transport protocol model construction 
is the following procedure: 

 Implement a packet model for the protocol 
introduced. 

 Implement an agent C++ class, which models the 
protocol. For the sake of simplicity, most transport 
protocols are modeled with two kinds of agent: first 
one acts as a server, and the second one as a client. 

 The C++ language is used for implementing packet 
and agent models. The final step is to provide OTcl 
bindings, so the model is available for experiments. 

Our implementation of the Trickles protocol packet is 
based on the variant proposed in [6]. 

In the ns-2 system the parent class of all agents, the Agent 
class, encapsulates virtual methods which model the packet 
processing and triggering time-outs. The Trickles server 
model is implemented by deriving from the parent class Agent 
and redefining only the virtual Agent :: recv() method. The 
method accepts an incoming packet which contains the client 
request and immediately sends a response. The workflow for 
the client implementation is the same except for the fact that 
now we have to redefine the virtual Agent :: timeout() method 
for modeling time-outs. 

 

Fig. 3. Network configuration which is used for experiments. 

IV. EXPERIMENTAL RESULTS 

After a thorough analysis of the paper [6] we have 
implemented the original model of the Trickles protocol. This 
model was used for constructing the network model, which is 
shown in Fig. 3. This network contains two intermediate nodes 
N0 and N1, each of which has a queue with the maximum size 
of 50 segments. The segment size is 1540 bytes. Traffic is 
transmitted from nodes, which are labelled as servers to nodes, 
which are labelled as clients. Acknowledgements are 
transmitted in the opposite direction. 

We are interested in the performance of the protocol 
instances which are shown in Fig. 3 as TCP1 Server,…, TCPM 
Server. These instances are variants of transport protocols 
under consideration including built-in ns-2 models: TCP 
Reno, TCP SACK, TCP Vegas, TCP NewReno which were 
compared with the original Trickles model. During every 
experiment, we simulate 600 seconds long data transfer. In 
addition to competition of TCP1 Server,…, TCPM Server 
protocol instances for network resources there exists a traffic 
which discomforts acknowledgement transmission process. 
This traffic is generated by ten instances of TCP NewReno 
protocol. They start at the same time and transmit data from 
150 to 300 seconds and from 450 to 600 seconds of the model 
time. The experiment has two parameters. First, one is M, the 
number of working protocol instances; M is changed from 10 
to 50 with step 1. The second parameter r is the delay for data 
link between nodes N0 and N1. The delay is changed from 10 
to 120 ms with the step 10 ms. 

We calculate two performance metrics. The goodput 
metric shows us how much data were transferred from a server 
to a client, and can be calculated for a single connection as 
follows: 

goodput = (send_data - retransmitted_data) / t, 

where send_data is the total amount of data segments 
which were transferred by the protocol, retransmitted_data is 
the number of retransmitted segments, and t is the time of the   

110



 

Fig. 4. Results of experiments. Goodput values are on the left side, Jain fairness index values are on the right side.
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experiment. The second performance metric is the Jain 
fairness index [11], which can be calculated as follows: 

 

where bi is a goodput of i-th connection and M is the total 
number of connections which share the same networking 
resource. 

The experimental results are shown in Fig. 4. The y axis 
shows the total goodput of all connections in the experiment 
and the x axis is the value of the delay r between nodes N0 and 
N1. As we can see, the Trickles protocol transmitted the 
comparable to other protocols amount of data. The Jain 
fairness index shows that Trickless share network resources 
quite fairly. Thus, experimental results show us that the 
Trickles protocol is a quite efficient transport protocol in 
comparison with common variants of the TCP protocol. 
However, the experiments indicated some shortcomings of 
Trickles protocol, mainly its instability. 

V. NEWTRICKLES AND SDN 

Analysis of data obtained during the experiments showed 
that the fast recovery mode works for time equal to 2 * RTT in 
Trickles protocol, whereas in most versions of TCP, this mode 
works for time equal to RTT [12]. Therefore, for large values 
of RTT, or a large number of trickles, the probability of packet 
loss and frequent retransmit timeout transition becomes 
critical, which in turn affects the performance of the transport 
protocol in general. 

We proposed a new algorithm of the fast recovery mode 
for asymmetric protocols. Transition to fast recovery mode is 
done by the client. Client received packets with numbers k+1 
and k+2 believes that the package number k was lost. It 
regenerates the lost data request and sends it. This ensures 
compatibility of our algorithm with the Trickles protocol, in 
contrast to which the client decides to reduce the amount of 
trickle's network. When resent segment arrives, the client 
calculates the new connection settings and enters the slow start 
/ congestion avoidance. Thus, we get recovery time equal to 
RTT. Other modes work as in the Trickles protocol. 

We have proposed and developed a model of asymmetric 
transport protocol that uses this recovery algorithm, which we 
called - NewTrickles. This model has all the advantages of 
Trickles protocol, and also reduces the load on the 
communication network, and reduces the number of 
calculations run on the server and has recovery time equal to 
the RTT. Currently NewTrickles is being modeled in the 
network simulator. 

Explosive growth in the number of network applications 
and devices in recent years has led us to the fact that it is 
necessary not only store information, but also have a copy of it 
on the network. Since asymmetric protocol does not require a 
rigid connection to the server, the method using anycast 
(delivery to any nearest) can simultaneously work with 

duplicates of a single server. Such interaction of server with 
client gives: 

 More balanced load on the network that will be able to 
reduce the number of dropped segments in the network. 

 Reducing the workload of servers and increase the 
number of clients due to the uniform redistribution of 
requests. 

 Immunity to DDoS-attacks. 

Now, we see two variants of the application of asymmetric 
protocols with SDN technology. The first involves the 
introduction of new rules on OpenFlow switches and in 
OpenFlow protocol. It is assumed that if the controller, 
inspecting the first packet consisting new flow, sees the 
reference to asymmetric protocol or application of anycast, the 
packet will be assigned to asymmetric protocol class. Then the 
controller will need to invoke anycast method on the switch / 
switches for the current flow. To implement this a specific 
option should be added in the operation of the OpenFlow 
protocol, as well as network equipment to support the change. 
We do not have the possibility of changing hardware or 
protocol specifications. 

Second application, presumes existence of network edge 
device, which is able to assess the network bandwidth, 
network latency and dynamically adapt to the changing 
situation in the network, and the ability to split incoming 
stream into two. An SDN border gateway can be used in this 
role. In this case, the gateway must use the SDN controller as 
a tool for managing communication channels between clients 
and servers. Applying asymmetric transport protocol for 
clients and servers in the network SDN, we obtain an 
additional tool for balancing SDN, as well as improve its 
resiliency. 

VI. CONCLUSION 

In this paper we describe the principles of asymmetric 
transport protocol called Trickles. Considered it an advantage 
over using TCP. Learned the basic principles of creating a 
protocol model in the ns-2. Shown results of one of the 
experiments, and identified the main drawback of the protocol 
Trickles. On the basis of the identified deficiencies have 
developed a new mechanism of fast recovery. At the moment, 
we have created a module asymmetric transport protocol 
NewTrickles for network simulator. 

At present, we are cooperating closely with the developers 
of the universal Internet gateway “Internet Control Server” 
produced by “A-Real Consulting” Inc. This gateway provides 
the following features: firewall, proxy server, mail server, 
built-in virus scanner, supports VoIP, multi-level traffic 
filtering, DNS, DHCP and various traffic counters. We expect 
to develop functions linking this universal Internet gateway 
with SDN controller, providing efficient solution for small and 
medium enterprises. This solution will provide all the 
necessary functionality to the enterprise, and the use of an 
asymmetric protocol for the relationship of clients and servers, 
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will further increase efficiency and stability of an SDN 
network managed by this solution. 
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Abstract—In SDN network based on OpenFlow a controller 

performs logically centralized control of enterprise network 

infrastructure, network policies, and data flows. At the same time 

the controller is a single point of failure which can cause a very 

serious problem (e.g. network outage) for network reliability and 

production use cases. To address this problem, we consider 

different active/standby strategies to provide a controller failover 

in case of controller failure. We propose a high-available 

controller (HAC) architecture, which allows to deploy a high-

availability control plane for enterprise networks. We develop a 

HAC prototype to demonstrate the efficiency of our solution and 

also describe initial experimental results. 
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Design; Controller Architecture; Fault-Tolerance; Redundancy. 

I.  INTRODUCTION 

SDN is a new approach in networking, which significantly 
improves the programmability and flexibility of network 
management, simplifies the logic of network devices and 
reduces the cost of the network infrastructure deployment and 
the cost of its maintenance in comparison with traditional 
approaches [1, 2]. SDN separates the control plane and the data 
plane, which enables their independent deployment, scalability 
and maintenance. SDN involves centralized management of 
network infrastructure and data flows, but this approach can 
lead to network resilience and scalability problems. 

The control plane can be deployed on one or several SDN 
controllers, which is running on dedicated servers [3]. The set 
of hardware and software components for providing of 
centralized network management in SDN is a control platform. 
The controller supports an actual global network view (GNV), 
which is stored in its network information base (NIB). Using 
network view controller applications control network devices 
states and data flows. That is why SDN network performance, 
reliability and scalability is defined by control platform 
characteristics. 

In spite of the SDN advantages, one of the serious problems 
of SDN is that the controller is a critical point of failure and, 
therefore, the controller decreases overall network availability. 
A Controller failure can be caused by various reasons: failure 
of the server where a controller is running, the server operating 
system failure, power outage, abnormal termination of the 
controller process, network application failure, network attacks 
on the controller and many others. 

In this paper we address to control plane for OpenFlow 
networks, as the one of the most promising implementations of 
SDN approach [4].  OpenFlow protocol is the open interface 
between the control plane and the data plane. The control plane 
in OpenFlow includes a controller (or NOS — network 
operating system) to monitor and control the state of OpenFlow 
switches, a set of network applications for network traffic and 
policy management, OpenFlow communication channels 
between the controller and switches and OpenFlow protocol for 
their interaction. OpenFlow controller can install rules in 
OpenFlow switches for data flows supporting predictive, 
reactive, and proactive or hybrid flow installation modes. 

At the present time there are about 30 different OpenFlow 
controller implementations [5, 6]: NOX, POX, Beacon, MUL, 
Floodlight and the others. However most of them do not 
support the control plane restoration mechanisms in the case of 
controller failure. Only distributed control platforms Onix [7], 
Kandoo [8] and some proprietary controllers with OpenFlow 
1.0 [4] support restoration procedure in case of a controller 
failure. Thus, a controller failure in the control plane of 
SDN/OpenFlow is a pressing issue. 

 An approach for improving the SDN control plane 
availability in case of a controller failure in the enterprise 
software-defined networks is presented in the paper. 

In summary, in this paper the following points are 
presented: 

 comparative analysis of the different active/standby
strategies to provide a controller failover;

 a fault-tolerant control plane architecture for enterprise
software-defined networks;

 a High-Available Controller (HAC) architecture that
provides the network ability to fast recovery of the
control plane;

 the control recovery procedure and the procedure for
network view synchronization between active and
standby controller instances;

 the HAC prototype implementation with supporting
OpenFlow version 1.3.

This research is supported by the Skolkovo Foundation Grant N 79, 
July, 2012 and the Ministry of education and science of 
the Russian Federation, Unique ID RFMEFI60914X0003
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II. BACKGROUND

A. Typical SDN controller architecture 

A typical SDN/OpenFlow controller [6, 9, 10 and 11] 
includes: 

 Controller core which handles and supports
connectivity with switches and translates control
protocol messages (e.g. OpenFlow) into internal
controller events and vice versa.

 Controller network services which control, form and
monitor network view, states of network devices,
provide an interface (Northbound API) for controller
applications. Usually network services include event
dispatching, device managing, topology managing and
the others.

 Controller network applications which configure
network infrastructure and manage data flows to solve
some business use cases.

The interaction between Network, controller services and 
applications is based on the publish-subscribe model. 

B. Active/Standby strategies analysis for control platform 

Let us consider the basic redundancy approaches to 
improve control platform availability for enterprise software-
defined networks. The controllers can be active or standby 
mode in the control plane. An active controller directly 
receives and processes OpenFlow messages from network 
devices. A standby controller duplicates the functionality of the 
active controller, but receives and processes OpenFlow 
messages from network devices only in case of active 
controller failure. The number of standby controllers may be 
increased to tolerate more than one failure at a time. The 
primary controller for a network segment is a controller which 
configures network devices of its segment and installs the rules 
for data flows in this segment. 

There are active/standby strategies and active/active 
strategies for controller redundancy. In case of active/standby 
strategies control platform has only one active primary 
controller. In case of active/active strategies control platform 
can have multiple active controllers. But in this paper we 
consider only active/standby strategies with one active primary 
controller in the control plane. 

In case of primary controller failure the standby controller 
automatically takes over network infrastructure control and 
data flows management. This procedure is called controller 
failover. Controller failback is the reverse procedure to 
failover. This procedure is used when the primary controller is 
restored. 

The active/standby strategies based on the operational 
status of standby controllers (switch on/off and loading on/off 
before the start of work) and failover transparency are: 

 no standby;

 cold standby;

 warm standby;

 hot standby.

«No standby» strategy. The control plane has a single 
active primary controller without standby controllers 
connectivity. In case of primary controller failure the network 
administrator manually resets the controller or replaces it. 
Thus, the control plane recovery time is significant and 
unpredictable and depends on the efficiency of support service. 

«Cold standby» strategy. The control plane has an 
additional unloaded server connected to a server of the primary 
controller. The «cold standby» strategy uses automatically 
failover procedure. The standby controller is stateless. In case 
of primary controller failure a standby server runs the standby 
controller and its services and applications (including topology 
discovery service to form network view) from scratch. This 
strategy is preferable to use for stateless services and 
applications. Recovery time is determined by the controller 
start and time to restore the actual standby controller state. 

In the case of cold standby strategy a redundancy hardware 
component is often unloaded, that is why it can be used for any 
optional extra work: for testing, debugging, maintenance and 
other services (e.g. testing of the new versions of controller 
network services and applications). 

«Warm standby» strategy includes periodically primary 
controller state replication to standby controllers and 
automatically failover procedure. The «warm standby» strategy 
is usually provided by hardware and software redundancy. In 
case of primary controller failure the standby controller 
replaces a failed controller and continues to operate on the 
basis of its previous state. Control plane services for network 
devices are interrupted and some state is getting lost. The lost 
part of the control plane state is those state changes which were 
between the last state synchronization procedure and the 
primary controller failure. 

«Hot standby» strategy includes full state synchronization 
of the primary and standby controllers and automatically 
failover procedure. No loss of the controller state provides the 
minimum recovery time. State of the primary controller is 
replicated to the standby controller for any change in it. In case 
of primary controller failure the standby controller replaces a 
failed controller and continues basing on the current state. The 
«hot standby» strategy is implemented by software and 
hardware redundancy. 

TABLE I.  COMPARATIVE ANALYSIS OF THE ACTIVE/STANDBY 

STRATEGIES 

Criterion 
Active/Standby strategies 

No Cold Warm Hot 

Redundancy hardware hardware 
hardware 

and 

software 

hardware 
and 

software 

Active 
controllers 

1 1 1 1 

Failover 

procedure 
manually 

auto-

matically 

auto-

matically 

auto-

matically 

State loss 
complete 

loss of 

the state 

complete 
loss of the 

state 

partial loss 

of the state 

without 
loss of the 

state 

State and no no regularly up-to-date 
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Criterion 
Active/Standby strategies 

No Cold Warm Hot 

data syncro-

nization 

(any 

change) 

Redundancy  
rate 

1 1+N 1+N 1+N 

Failover 
time 

unpre-
dictable 

from 

minutes to 

seconds 

seconds 

from 

seconds to 
mille-

seconds 

Cost 
no cost to 
low cost 

moderate 
moderate to 

high 
moderate to 

high 

Network 

user impact 
high moderate low none 

C. Key metrics 

Key metrics which characterize a fault-tolerant control 
platform are the following:  

Controller redundancy degree is a number of standby 
controller instances included in the control platform. It 
determines the cost of the control platform and the number of 
failures that can be avoided. 

Controller delay in the worst case is the maximum delay 
for processing the network device flow installation request by 
the controller which is attained in the control recovery process. 

Controller failover time is the time during which network 
device requests can be lost due to absence of the primary 
controller in the network, i.e. the time during which the 
network is not the primary controller. 

Thus, the SDN control platform should have controller 
redundancy degree at least one, delay in the worst case no more 
than 150 milliseconds as recommended maximum time delay 
for services. Failover time should be as low and close to zero. 

D. Fault-Tolerant control plane requirements 

To support redundant controllers the control platform must 
meet the following requirements: 

 there are to be at least two servers;

 identical hardware and software server configuration;

 internal network between servers to decouple control
platform communications from OpenFlow
communication channels and for accessing to data
store;

 each server must have access to SDN network segment
with independent links;

 identical controller instances (with identical versions of
controller network services and applications).

These requirements are due to the following reasons: 

 to avoid single point of failure;

 standby controller must have sufficient computing
resources for network infrastructure and data flows
management in case of primary controller failure;

 standby controller must provide the same set of
functions as the primary controller.

III. PROPOSED APPROACH

A. Proposal 

Since we have previously discussed the active/standby 
strategies it is very important to define controller state. 

Controller state includes states of controller services and 
applications, event queue state, controller network view and 
controller data. The state of the controller service or application 
includes values of internal service/application significant 
variables. 

Service/application snapshot is a service/application state at 
a particular time. Controller snapshot is controller services and 
applications snapshots and current network view. 

For solving the controller failure issue using active/standby 
strategies we need to define the basic modes for control 
platform: an initial mode which describes the order of launch 
controller instances, an operational mode which describes 
controller instances synchronization procedure and a primary 
controller failure mode which describes failure detection and 
failover procedures. 

Initial controller mode. Running the primary controller of 
the control plane: 

 The controller starts in accordance with the
configuration file.

 The controller launches a timer for connecting standby
controllers.

Running the standby controller of control plane: 

 The controller starts in accordance with the
configuration file.

 Standby controller establishes a connection to the
primary controller via the internal control network
between controllers.

 Standby controller requests a list of network services
and applications of the primary controller and launches
a similar set of applications and services.

 Standby controller requests the current Network view
and network interfaces list for control channels
connections, current states of network services and
applications.

 Standby controller launches primary controller state
monitoring service.

Operational controller mode. In this mode primary 
controller processes OpenFlow messages from network devices 
and controls network data flows, the standby controllers 
monitor the primary controller state and synchronize with it. 

Controllers state synchronization includes: 

 network view synchronization;

 controller network services and applications states
synchronization;

 controller data synchronization.
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In this paper we use two strategies for controllers. 

For network view redundancy and synchronization we use 
hot active/standby strategy. Primary controller pushes up each 
network view change to all standby controllers. 

For controller network services and application redundancy 
and synchronization we use warm active/standby strategy. 
Primary controller periodically or conditionally pushes up 
snapshots of services and applications to all standby 
controllers. 

For controller data synchronization we use reliable shared 
data storage between controllers. 

Primary controller failure mode. The control plane 
recovery procedure consists of two stages: 

 Failure detection stage. Primary controller failure
detection mechanism is based on the heartbeat. The
main parameters are: heartbeat interval — the time
interval between heartbeat messages, and dead interval
— the time interval through which standby controller
fixes primary controller failure.

 Recovery stage. The recovery stage starts after
primary controller failure detection. It includes the
following steps:

o Defining a new primary controller. The new
primary controller is a standby controller with
the highest ID (or IP).

o The new primary controller informs the other
controller about its status change.

o Controller network services and application
restoration.

o Control network interfaces up.

B. High-Available Controller Architecture 

High-available controller (HAC) architecture is based on 
adding of additional cluster middleware between the controller 
core and controller network services and applications (see 
Figure 1). 

To provide fault-tolerance of the control platform the HAC 
cluster middleware includes the following managers and 
services: 

 Controller Manager to coordinate start/restart/stop
controller network services and applications and up
and down control interface for network devices
connections.

 Cluster Manager to control the operation of the
controllers cluster and distribute responsibilities
(primary or standby) in accordance with the cluster
configuration file.

 Sync Manager to control controller network services
and applications synchronization between controller
instances in the cluster.

 Recovery Manager to coordinate the recovery process
(failover and failback) in case of controller instance
failure in the platform.

 Message Service to provide control message
distribution to other controller instances in the
controller cluster.

 Event Service to provide filtering, distribution and
processing to or from other controller instances.

 Heartbeat Service to monitor the operational status of
the controllers and detects controller failures in the
controller cluster.

Fig. 1. High-Available Controller architecture 

C. Control Plane Design with HAC 

In order to avoid single point of failures in the control 
platform we propose the following design of the control 
platform (see Figure 2). 

Primary 
controller

Primary 
controller

Standby 
controller

Standby 
controller

Controller Data 
Storage

Network

Services and apps
snapshots

Restoration 
from snapshots

Heartbeat
messages

Control
messages

Network view
events

Fig. 2. Fault-tolerant control plane design with HAC controller 
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D. HAC Imlementation 

Based on the review of modern open-source SDN control 
platforms [5] as a base controller for HAC controller we 
choose NOX13oflib from the laboratory CPqD [12]. This 
controller supports OpenFlow control protocol version 1.3.0 
[13]. 

All HAC cluster middleware managers and services have 
been implemented in C++ with using Qt 4.8.1 and Boost 
libraries. Applications and services snapshots are formed using 
boost serialization mechanism. Interaction between the 
middleware services and managers provides through the Qt 
signal-slot mechanism to ensure the independence from the 
base controller.  

IV. EVALUATION

The HAC controller prototype implementation has been 
deployed on a Linux virtual machine for functional and 
performance testing. Our experimental evaluation includes two 
parts: synchronization overhead evaluation and controller 
failover time evaluation. In the first part we evaluate 
performance overhead connected with primary and standby 
HAC controller synchronization. Using cbench we evaluate 
throughput of NOX13oflib and throughput of two-node fault-
tolerant HAC cluster.  

Fig. 3. HAC controller synchronization performance overhead 

Synchronization overhead range is from 5 to 23 percent of 
the nox13oflib controller throughput (see Figure 3). 

Fig. 4. Response time during HAC failover 

Figure 4 shows the change of response time depending on 
the packet-in message index during primary controller failure 
and controller failover procedure. Initial experimental results 
showed that average failover time for two-node HAC cluster 
are from 40 to 50 ms, which is less than the maximum delay 
for services and that is why network services for end users will 
not be interrupted during controller failover. 

V. CONCLUSION AND FUTURE WORK 

 Controller is a critical component of enterprise software-
defined networks. In this paper, we showed the relevance and 
significance of the control plane availability problem for SDN 
in case of controller failure. 

We considered and carried out a comparative analysis of 
active/standby strategies for their applicability to the control 
plane. We formulated a set of necessary requirements for 
controller redundancy. 

Moreover, we presented control plane design, HAC 
controller architecture and tools for controller network 
applications and services synchronization and network view 
synchronization between controllers in the control plane. We 
implemented the HAC cluster middleware that can be easily 
adapted to other more productive basic controller 
implementation. We showed that our initial evaluation results 
are quite encouraging. 

Thus, in this paper we proposed approach to solve 
controller failover problem for SDN control platform, we 
proposed middleware implementation which provides 
opportunities for active/active strategies studies and distributed 
controller development. 

We are continuing the implementation of the HAC cluster 
middleware with focus on developing controller state 
synchronization algorithms and adding of load balancing 
mechanisms between controller instances. We plan to extend 
the list of failures that the control platform can prevent. 
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Abstract—Modern networks are complex. The great number 
of  network tasks  require  a  complex  structure  of  controller.  A 
promising  approach  to  this  challenge  is  modularity.  The 
controller runs many applications, each responsible for a specific 
task. Each application can disrupt the operation of another one 
thus  causing  errors.  Such  errors  cannot  be  detected  during 
development  of  a  particular  application.  We  discuss  errors  of 
competition for switch tables, i.e. disruption of the routing policy 
installed by one application due to operation of another one. In 
this  work we propose an approach to detection of  such errors 
including the integration with a specific controller. 

Modern  network  troubleshooting  tools  cannot  help 
administrators correct errors in controller applications.  In this 
paper we propose the Error Localization Tool (ELT) which helps 
in fixing errors. Given the faulty rules, it finds the place in code 
of applications responsible for each error.  With these data the 
administrator can eliminate errors more quickly and make the 
complex system of controller applications work correctly.

We  describe  an  implementation  of  these  approaches.  We 
carry out an experimental research to evaluate the performance 
of our prototype.

Keywords—Software-Defined  Networks;  OpenFlow;  network  
troubleshooting

I.  INTRODUCTION

Errors in computer networks are constantly arising. If not 
detected  and  eliminated  in  time,  the  error  can  force  the 
consequences various in impact on users from lost connectivity 
between specific hosts up to security vulnerability threatening 
loss of important data. Thus the methods of error detection and 
debugging are of great importance.

Administrators  today are  doomed to use ad hoc network 
troubleshooting tools such as tcpdump[19] and traceroute[6]. 
These  tools  give  the  vision  of  end-to-end  connectivity  and 
traffic  routes.  They  help  administrators  much  but  do  not 
completely eliminate the need for more complex and powerful 
tools.

Software-defined  networking  (SDN)  is  a  paradigm  of 
computer  network  construction  that  separates  control  layer 
responsible  for  routing  from  data  layer  transmitting  traffic. 
SDNs provide the opportunity of more transparent and flexible 
network control when compared to legacy networks. A typical 
SDN  consists  of  special  software  (can  be  distributed,  e.g. 
Onix[10])  called  controller  (or  network  OS),  and  a  set  of 

switches.  Controller  interacts  with  switches  being  managed 
using  a  specific  protocol  (e.g.  OpenFlow[16]).  Due  to 
centralization  of  network  management  on  the  controller 
network troubleshooting becomes simpler. The existence of a 
single  device  having  all  the  information  about  the  network 
(topology, routing rules, traffic) helps the developer to detect 
and localize an error.

The SDN approach  can  introduce  new kinds of  network 
errors  as  well.  Here  we consider  an error  as  a  deviation in 
network functioning (rules in switch tables, traffic routing etc.) 
from what is expected by administrator. A promising approach 
in controller  construction is modularity[1][14].  According  to 
this  approach,  several  separate  modules,  called  applications, 
can run simultaneously on controller. Controller provides high-
level interface for applications to communicate with switches. 
Applications can specify a routing policy for a class of traffic 
(the actions to be applied to packets with specific header) by 
installing, modifying or deleting rules from switch tables. We 
assume that applications can share the flow space, i.e. there can 
be  headers  operated  by  multiple  applications.  Each  of 
applications can cause errors in operation of other ones[13][14]
[18]. In this work we introduce a class of errors called errors of 
competition  for  switch  tables  and  propose  a  method  for 
detecting and localizing them.

II. RELATED WORKS

Existing SDN troubleshooting tools can be divided into two 
groups: static tools and dynamic ones.

We call static the tools which use different techniques of 
source  code analysis.  An example  of  such  tool  is  NICE[2]. 
NICE uses symbolic execution of controller applications and 
model  checking  to  explore  the  state  space  of  an  OpenFlow 
network.  This  approach  is  too  slow to  be  used  in  complex 
cases.

Dynamic  tools  operate  as  a  superstructure  over  a  real 
network  or  use  the  data  acquired  from  a  real  network. 
NetPlumber[7]  uses  control  messages  and  network  state 
updates to incrementally check for network policy compliance. 
VeriFlow[9] uses forwarding plane modifications to check for 
reachability  invariants.  Anteater[11]  and  HSA[8]  use  data 
plane snapshots to detect violations in key network invariants. 
OFRewind[20]  records  and  reproduces  sequences  of 
OpenFlow  commands.  ATPG[21]  generates  and  sends  test 
packets  against  router  configurations.  ndb[5]  uses  packet 
postcards to reconstruct the path of a specific packet.  It does 
not care about rules set by controller.

This research is supported by the Skolkovo Foundation Grant N 79, 
July, 2012 and Russian Foundation for Basic Research, project 
14-07-00743
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Current dynamic tools use only the functionality provided 
by OpenFlow protocol, and the set of installed rules. They are 
abstracted  from  network  OS.  This  approach  simplifies  the 
transition from one network to another but reduces usability. 
As a result  of  operation  of  such tools  a  user  will  receive  a 
conclusion about routing policy compliance; in case of a policy 
violation he may also receive the rules leading to this error.  
Afterwards he should select from a set of applications the ones 
responsible for this particular error, localize a snippet of source 
code where these rules were installed and correct this snippet. 
With the number of applications on a controller growing, this 
task becomes more difficult.

III. ERRORS OF COMPETITION FOR SWITCH TABLES

Let  each  switch  have  a  single  table.  According  to 
OpenFlow, when a packet arrives at a switch, the latter looks 
for rules with appropriate pattern in its table. If there are none 
of  them,  the  switch  sends  the  packet  to  the  controller. 
Otherwise, the appropriate rule with highest priority is chosen, 
and the packet is processed according to it. If there are more 
than one rule with highest priority, the behavior of the switch is 
undefined.

A set of all rules in switch tables we call network state. A 
set  of rules with maximum priority for each header on each 
switch we call effective network state. Each application routes 
packets  with  specific  headers.  These  headers  we  call 
application  traffic  class (for  simplicity,  we  consider  the 
application traffic  class  to be the same on all  switches).  By 
adding,  modifying  and  deleting  rules  the  application  can 
change the effective network state.

Each application expects the rules installed by it to remain 
unmodified and be executed for appropriate packets unless this 
application explicitly modifies them, adds other rules or these 
rules expire.  A set  of rules with maximum priority for each 
header on each switch from the rules installed and operated by 
a specific application is called expected effective network state 
for this application. In case of a single application, it will match 
the real one. In case of multiple applications running on top of 
a controller,  each application can modify or delete a foreign 
rule or install a new rule preventing the old one from being 
executed.  As a result,  the effective  network state  will  differ 
from  the  one  expected  by  an  application  i.e.  the  expected 
effective  network state  will  not  be a  subset  of  the real  one. 
Errors of  competition for switch tables (CST errors) are the 
errors occurring due to the deviation of the effective network 
state  projected  to  application  traffic  class  from the effective 
network state expected by this application. An example of this 
error  can  be  two  routing  protocols  which  run  in  the  same 
network and install contradictory rules.

More formally, CST error is defined as following. Assume 
we have a network specification: a predicate 

Correct(tables, netgraph), 

describing the requirements to packet routing in network, and 
the packets cannot be routed through controller (from switch to 
controller,  then from controller to another switch).  Since the 
packets  cannot  be  processed  according  to  rules  with  lower 
priority  while  there  are  rules  with  higher  priority  in  switch 
table,  this  specification  describes  the  requirements  to  the 

effective network state. A network  satisfies a specification if 
for each network state which can be generated by a specified 
system of applications the specification  is  satisfied.  Assume 
there is a system of applications and we want the network to 
satisfy specification while running these applications. Assume 
there  is  a  subsystem of  applications  such  that  the  network 
really satisfies  the specification.  Such a dead-end subsystem 
we  call  the  kernel of  the  system in  terms  of  specification. 
Error of competition for switch tables is a situation when the 
specification is not satisfied while running the full system of 
applications.  As the subsystem satisfies the specification,  its 
expected effective network state also satisfies the specification, 
thus such errors are caused by the deviation of the effective 
network state from the expectations of the applications from 
kernel due to operation of other applications.

In this case we can simply remove all the application but 
kernel ones. Practically important is the case where 

Correct  ∼ Correct1 ∧ Correct2 ∧ ... ∧ Correctn (1)

and  there  is  no  subsystem  of  applications  that  satisfies  all 
Correcti although a specific subsystem exists for each Correcti. 
The task is to modify applications so that the system satisfies 
the  specification  (we  assume  that  specification  is  non-
contradictory). From the user's point of view, each application 
is responsible for its own part of the specification and we need 
to  remove  the  disruption  of  one  application's  operation  by 
another one.

CST errors cannot be detected during the development of a 
particular  application,  since  they  depend  on  system  of 
controller  applications.  Since  such  system  is  arbitrary,  the 
probability  of  CST  errors  occurring  is  high  in  case  of 
independent controller applications. In controller, applications 
can ask the controller to generate table modification messages 
or  generate  such messages themselves.  In  the first  case,  the 
controller  should  run  CST  error  detection  module  prior  to 
message generation to avoid conflicts. In the second case, such 
module  is  still  necessary  although  it  may  not  be  a  part  of 
controller.  In  any  case,  methods  of  detecting  and  localizing 
such errors are important. An alternative approach to CST error 
troubleshooting is  rejection  of  application independence  and 
transition to centralized decision-making, as in [1],  [13] and 
[14].

In  this  paper  we focus  on  application  conflicts  within  a 
single  controller  instance.  More  difficult  cases,  such  as 
multiple  controllers  in  a  single  network  and  distributed 
controllers, are left for future work.  

IV. ERROR DETECTION

Before formulating the CST error detection task, we must 
consider  the  following.  Routing  tables  can  be  filled  before 
network  starts  or  during  the  operation.  An empty table  can 
satisfy the specification or not. Thus the specification can be 
violated  at  a  specific  moment  or  never  be  satisfied  (e.g.  an 
error  before the table is  filled while an empty table is  non-
satisfactory). To satisfy different conditions, we use the time T 
so that the network must satisfy the specification at any time 
after  T.  Moreover,  CST errors  are  caused  by the system of 
controller  applications  and  the  number  of  specification 
violations strongly depends on the traffic,  so it  is  useless to 
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count errors.  We check whether  the specification is violated 
after T or not. 

For  (1),  CST  error  detection  task  is  formulated  as 
following: 

For any non-contradictory specification, topology, traffic,  
time T after which the specification should be satisfied, and  
such system of applications so that for each Correcti exists a 

subsystem that satisfies the specification after T, if the  
specification is not satisfied at time t>T, the error message  

must be generated.

The task does not  include the precision  of  detection but 
only the recall[22].  The reason is that the main topic of this 
paper is error debugging. The simplicity for user to fix errors 
and the detection precision seem to not go together,  as it  is 
shown below. These criteria we use to compare different CST 
error troubleshooting methods.

A. Existing methods

OpenFlow describes a flag that tells the switch to check for 
overlaps of new rule with existing ones. However, this checks 
only  the  rules  with  equal  priority  and  does  not  have 
information  about  rule  owners  (the  same  application  or 
different ones).

Static  tools  can  detect  CST  errors.  But  their  high 
complexity makes them practically inapplicable. Dynamic tools 
do not have access to controller applications so they have two 
possible approaches to detection of CST errors.

Firstly, dynamic tools can signal about the effect of all table 
modification messages to existing rules. This approach has a 
high rate of false positives because an application can affect its 
own rules, which is a correct behavior.

Secondly, they can check the specification. In general, such 
specification can be inaccessible. The user desiring to eliminate 
CST  errors  has  to  create  the  full  specification  of  network 
routing, what  is  a  difficult  task. As a result  of  specification 
checking the user receives the answer "yes" or "no". Probably 
he  will  get  the  rules  violating  the  specification  or  the 
specification may never be satisfied. A search for the cause of 
these violations is complex and is put on user. This approach 
does not help user to eliminate errors.

B. Facts of competition for switch tables

We propose signaling about the occurrence of  potentially  
dangerous  situations.  From the definition of  CST errors  we 
know that there is a deviation of effective network state from 
the expectations of one application due to operation of another 
application. Such a deviation we call a fact of competition for  
switch table (CST fact). In terms of OpenFlow protocol there 
are four types of such facts:

• Foreign  rule  deleted occurs  while  an  application 
deletes  a  set  of  rules.  This  application can delete the 
rules installed by another application as well. Although 
the  second  application  can  acquire  such  information, 
this  can  be  an  error  and  cause  additional  overhead 
(sending a packet to the controller is expensive).

• Foreign  rule  modified occurs  while  an  application 
modifies a set of rules or install a new rule with pattern 
and priority equal to an existing rule. By modification, 
the application can modify foreign rules as well. In that 
case,  the owner of  modified rules  cannot  acquire  the 
information  about  such  modifications.  It  will  remain 
certain  its  rule is  correct  while  the effective  network 
state differs from the expected one. 

• Foreign  rule  masked occurs  when  a  switch  table 
contains two rules with different owners and priorities 
but  intersecting  patterns  (there  are  headers  matching 
both).  For  the set  of  common headers,  the  rule  with 
lower  priority  will  not  be  executed  for  common 
headers. This type of CST facts occurs when a new rule 
is installed. If the new rule has higher priority, the old 
rule will not be executed. Otherwise, the new rule will 
not be executed. In both cases,  the owner of the rule 
with lower priority cannot acquire such information and 
expects  the  effective  network  state  to  match 
expectations while that is not true. 

• Rule undefined occurs  when a switch table  contains 
two rules with equal priorities and intersecting patterns. 
According to OpenFlow, switch behavior is unexpected 
in  this  case,  so  the  effective  network  state  will  not 
match  the  expectations  of  the  owners  of  both  rules. 
Such CST fact occurs when a new rule is added if the 
new  rule  has  equal  priority  and  intersecting  patterns 
with an existing one. This error can occur in case of a 
single application as well.

The definition of CST errors implies that for occurrence of 
such error, there must be a CST fact between a kernel and non-
kernel  application,  at  least  for  one  of  Correcti(1).  The 
construction  of  a  kernel  is  impossible  in  the  absence  of 
specification. So we will not separate the application to kernel 
and non-kernel ones. By detection of all CST facts we detect 
all possible CST errors. Moreover, CST facts can occur before 
the network violates the specification. Thus for elimination of 
errors, CST facts are more important than errors themselves.

CST facts do not always lead to errors. Some applications, 
e.g. a traffic monitoring system, can modify foreign rules on 
purpose. This fact will lead to a considerable number of false 
positives. We expect the overhead on processing of them to be 
lower  then  the  creation  of  a  specification.  The  alternative 
approach is to explicitly specify, which application can choose 
whose rules.

The main advantage of detecting CST errors through CST 
facts is the list of participating rules. For every CST fact, there 
are two or more rule or table modification messages. This can 
be used to find the root cause of errors, as described below.

C. Error detection module

The  described  approach  cannot  be  implemented  without 
integration with a specific controller. This integration improves 
the  precision  of  this  approach  in  comparison  with  the  first 
described  in  section  IV.A.  We  detect  only  the  table 
modification messages affecting foreign rules.

The detection of CST errors is performed by a controller 
module. This module must check each message being sent to a 
switch for the possibility of CST facts. If it is necessary, this 
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module can prevent a message from being sent to a switch. Our 
prototype stores switch table models in controller module. Each 
rule is tagged by a set of applications which affected this rule. 
When it  receives  a table modification message it  checks for 
overlaps in table using application tags and updates the table. 
When a CST fact is detected, this module stores type of CST 
fact  and  participating  rules  and  messages  to  a  report.  To 
provide consistency of table model contents with switch tables 
our module should receive the messages about rule expiration 
from switches.

V. ERROR LOCALIZATION

CST  errors  are  caused  by  conflicts  in  controller 
applications.  Therefore  these  errors  should  be  debugged  in 
integration  with  controller.  This  is  why  dynamic  tools 
operating as a proxy on OpenFlow channel are not useful in 
troubleshooting such  errors.  But  there  are  different  types  of 
errors  which  can  be  debugged  easily  using  the  vision  of 
controller  operation. In  [23] it  is  proposed to use traditional 
source code debuggers.  We expect  them to add unnecessary 
overhead  and  propose  the  creation  of  a  controller  module 
collecting  necessary  data.  The  integration  of  controller-
independent  error  detection  module  operating  as  a  control 
channel  proxy  with  debugging  module  bound  to  a  specific 
controller we call complex debugging.

In case of CST errors, the user wants each application to 
fulfill its function without disturbing other applications. This is 
not  always  possible  so  it  is  required  to  slightly  modify  the 
application to eliminate such disturbance. The search for the 
code snippet to be modified is wholly put on user.

While using a dynamic network troubleshooting tool which 
outputs faulty rules, the search for the responsible application 
and code snippet is user's task as well. 

To simplify these tasks we propose Error Localization Tool 
(ELT). ELT cannot operate at the level of abstraction provided 
by  OpenFlow  and  is  bound  to  a  specific  controller  (e.g. 
POX[17]). Due to this it receives the ability to trace the inner 
state  of  controller.  In  our  prototype,  we  use  the  call  stack 
leading to a particular message being sent. By collecting such 
traces  ELT  can  find  the  application  and  its  approximate 
execution path responsible for a faulty message or rule. This 
approach will work in the case where each processing step calls 
the next step as a function. In the case where the processing 
steps  are  called  one  after  another,  we  can  only  find  the 
applications using a call stack. To reproduce the logic of an 
application we need other information, e.g. the values of global 
variables.

In a simple case, an SDN consists of multiple switches and 
a  single  controller  with  several  applications  running  on  it. 
During the debugging process we put a proxy on the OpenFlow 
channel.  This  proxy  should  detect  errors  and  send  a  report 
including error type and flow modification messages or rules 
involved to the network administrator. The main task of ELT is 
the creation of an extended error report. The final error report 
includes call stack for each message or rule (call stack for each 
message leading to this rule having specific fields). To provide 
such data ELT must record call stacks for flow modification 
messages and retrieve them by on request. Here we present our 
architecture  of  ELT  consisting  of  three  modules:  controller 
proxy, database server and logger.

A. Controller proxy

The controller proxy is integrated with a specific controller. 
When  a  controller  application  sends  flow  modification 
message  to  switch,  the  proxy  sends  a  copy  of  message  to 
database server.  Saving messages with call  stacks cannot be 
implemented  without  integration  with  a  specific  controller. 
Modern programming languages used for writing controllers 
(Python, Java, Ruby) support accessing call stack from inside a 
program.

B. Database server

The database server is the central point of ELT architecture. 
It saves flow modification messages received from a client on 
the controller proxy. When a request for particular message is 
received, the database server looks through the database and 
responds with the call stack for the latest equal message. Here 
the  messages  are  considered  equal  if  they  have  the  same 
patterns,  action  lists,  priorities  and  target  switches.  When  a 
request  for a rule is received, the database server selects the 
sequences of messages which could shape this rule and returns 
call stacks for the latest possible sequence.

Database is put on a remote computer to provide controller 
independence.  Proxies  at  different  controllers  can 
communicate with database using the common protocol. Thus 
we  only  need  to  write  a  new  controller  proxy  to  provide 
interaction with a new controller.

Each debugging module should be augmented by adding 
database  clients  and  modified  logging  subsystem  including 
stack traces.

C. Logger

Imagine  we  multiple  error  detection  modules.  There  are 
two  possible  approaches  to  error  logging:  distributed  and 
centralized.

In the distributed approach, each debugging module detects 
its errors, queries database to get call stack for each message 
and writes the output to its own log. The administrator then has 
to inspect all the logs, find different and duplicated errors and 
eliminate them using the call stacks saved before.

The centralized approach includes a single logging server 
responsible  for  logging  all  the  errors.  Debugging  modules 
should  connect  as  clients  to  logging  server  and  send  error 
reports using specific protocol. Then the logging server queries 
the database server for call stacks. The administrator is able to 
get all the error logs in a single place so this approach is easier 
for  administrator.  The database server  can also benefit  from 
communicating  with  a  single  client  instead  of  a  couple,  by 
caching duplicate requests. Furthermore, it is possible to only 
modify  debugging  module  logging  for  compatibility  with 
logging server protocol without database client addition.
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VI. IMPLEMENTATION

Here  we  present  our  implementation  of  ELT[4].  This 
prototype we use to evaluate the performance and applicability 
of our approach. We have chosen POX controller because of 
simplicity  of  python it  is  written  in.  Our  whole  system are 
written in python for easier compatibility with controller.

Database server uses a simple MySQL[15] database to store 
and  retrieve  table  modification  messages.  The  usage  of 
database  tables  in  3NF[3]  leads  to  complex  queries  and 
multiple indexes slow down  message insertion but also speed 
up message retrieval. However, it may be faster to use custom 
trace files instead of general-purpose database.

We used a set of JSON-formatted set of messages as client-
server protocol.

VII. EVALUATION

We have tested  our  implementation  on a laptop  running 
Ubuntu  Linux  with  4GB of  RAM and  a  Core  i5  2.1  GHz 
processor.

To evaluate the performance of our prototype we created a 
testing environment using Mininet[12] network simulator. We 
used pox's l2_learning routing module as controller application 
because  it  is  simple  and  fast  enough  to  not  affect  our 
experiments  much.  We  measured  the  maximum  relative 
slowdown  in  network  operation  between  the  presence  and 
absence  of  our  prototype.  If  the  complexity  of  controller 
applications increases  and the prototype remains  unchanged, 
the relative slowdown decreases. Thus it is correct to take the 
fastest application. To induce errors in our network we wrote 
the  application  called  Interrupter.  When  a  packet  arrives  at 
controller, it randomly selects a pattern  P: one field more or 
less precise or equal to the pattern created by l2_learning (we 
have  intentionally wildcarded the VLAN field in l2_learning's 
pattern). Then  with  a  given  probability  it  sends  one  of  the 
following  messages  (using  pattern  P):  delete  rules,  modify 
rules  (with random output port) or  add a rule (with random 
output port). These messages conflicted with the network state 
installed by l2_learning. CST facts were detected and localized 
by our prototype.

We  used  average  end-to-end  ICMP-echo  delay  as  the 
measure  of  the  influence  of  our  prototype  to  network.  This 
value  includes  Echo Request/Reply and  ARP Request/Reply 
delays. 

We used the following prototype operation modes:

• No proxy. Only l2_learning is working, Interrupter is 
idle. Information about messages is not stored. Switch 
table  models  do  not  work.  This  mode  is  a  normal 
network functioning without our prototype.

• Saving. Only  l2_learning is  working,  Interrupter is 
idle. Information about messages is stored. Switch table 
models do not work.

• Table model no errors. Only l2_learning is working, 
Interrupter is  idle.  Information  about  messages  is 
stored. Table modification messages are checked using 
table models.

• Errors  X  (X  ∈  {0.01,  0.1,  0.5}). l2_learning is 
working,  Interrupter takes  the described  actions with 
probability  X.  Information  about  messages  is  stored. 
Table  modification messages  are  checked using table 
models. When a CST fact is detected, the information 
about the messages/rules taking part is extracted from 
database and written to log file.

The topology used in this experiment is shown in Fig. 1. 
After the network is started, each host sequentially sends ICMP 
requests  to each  host  on the other  side of the network.  The 
hosts work in parallel.  The experiment results are  shown in 
Figure  2.  From  the  results  acquired,  we  can  derive  the 
following estimates of our prototype's influence on the end-to-
end delay in the network (in % from the mode without our 
prototype):

• Saving  the  information  about  table  modification 
messages increases the latency not more than by 200%.

• Checking  table  modification  message  correctness 
increases the latency not more than by 100%.

• When the errors occur rarely (1%) their impact on the 
latency is negligible.

• When the errors occur with the probability of 10%, the 
latency increases by 100% due to processing of them.

We chose a simple and fast routing application to evaluate 
maximum delay  growth.  In  case  of  slower  applications,  the 
overhead (in %) is lower.

In  comparison  with  the  absence  of  our  prototype  in 
network, the fully functional version increases the end-to-end 
delay  of  the  first  packet  for  each  new flow by 300%.  The 
transmission time of the following packets remains unchanged. 
This overhead  is less  than the overhead  of  static  debugging 
tools,  but  still  requires  controller  load  reduction  when  a 
network operates in debug mode with our prototype.

VIII.CONCLUSION

In this paper we described CST errors. We found out that 
there is no effective approach to troubleshooting this kind of 
errors. We proposed the method of detection of such errors that 
includes  a  controller  module  analyzing  table  modification 
messages.

The  overview  of  existing  methods  of  troubleshooting 
control layer errors showed that they do not help the developer 
to eliminate errors in applications. To help the developer, we 
need integration of error detection modules, which can operate 
using OpenFlow level  of  abstraction,  with error  localization 
modules,  which  must  have  an  access  to  controller.  As  an 
example  of  such  module  we  present  ELT,  which  can  find 

Fig. 1. Stress test topology.
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application and call stack responsible for an error using table 
modification messages and faulty rules.

We developed, implemented and evaluated a prototype of 
ELT.  We  found  out  that  it  successfully  localizes  errors  in 
controller  application  execution.  The  tests  showed  that  the 
addition of debugging modules increases the end-to-end delay 
of the first packet not more than by 300%, including 100% due 
to CST error detection module.

IX. FUTURE WORK

On the results of this paper we identified three promising 
directions for further research.

Integration with network slice manager. Network slice 
manager  (e.g.  FlowVisor[18])  is  a  tool  that  helps  many 
controllers work simultaneously. For each controller it handles 
a network slice including a subset of switches, ports and traffic 
classes. For each table modification message the network slice 
manager projects this message on the appropriate traffic class 
and  sends  the  modified  message  to  the  switch.  Modified 
messages can differ from the source ones and that makes ELT 
unable to find them in database.  A module to slice manager 
will help in tracing such message transformations.

More  accurate  methods  to  troubleshoot  CST  errors. 
The  proposed  approach  gives  a  certain  number  of  false 
positives. Network administrator is the only one to know which 
application  should  affect  which  rules.  Using  the  application 
interference  specification  provided by an  administrator,  it  is 
possible to create a more accurate method to detect CST errors. 

Debugging  modules  for  controller. The  complex 
debugging approach implemented in ELT involves integration 
of  error  detection  modules  and  debugging  modules  for 
controller. Debugging modules for controller include a part of 
functionality of traditional source code debuggers. It is useful 
to research, which source code debugger's capabilities may be 
useful for network debugging.
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Abstract—In this paper we present a data center resource 
mapping algorithm based on the ant colony optimization 
approach. The algorithm considers data centers to present IaaS 
model and can be used in a joint scheduler for all resource types. 
The algorithm uses ant colony optimization approach to map 
resource requests to physical computational nodes and data 
storages. The shortest path algorithm is used to map virtual 
channels to the data center’s physical network channels and 
network switches. We then present a comparison of the 
developed algorithm with an algorithm based on greedy and 
limited exhaustive search strategies. 

Keywords—Ant Colony Optimization, Data Centers, 
Virtualization, Cloud Platforms 

I.  INTRODUCTION 
We consider a resource usage efficiency problem which is 

a crucial problem in Infrastructure-as-a-Service datacenters 
with physical resources load as en efficiency metrics. The 
problem consists of different resource placement subproblems, 
where each virtual resource has its own related physical 
resource. Each virtual resource requests certain SLA, and each 
physical resource has parameters related to this SLA. The 
problem of resource placement is to map virtual resources 
onto physical resources with all SLA to be guaranteed. 

Existing algorithms either don’t consider mapping of all 
three resource types [1-7] or can only be used for a fixed data 
center network topology [8,9]. In this paper we will show how 
we can implement multitype resource mapping for any 
network topology using an algorithm based on the ant colony 
optimization approach. 

Ant colony optimization approach is used to map virtual 
machines on the computational nodes and to map virtual 
storages on the data storages. On mapping completion virtual 
channels are mapped on the physical ones using a Dijkstra 
shortest path algorithm. The advantage of this scheme is that 
ant colony optimization approach allows the algorithm to 
automatically adjust itself for a particular problem by 
additional input data marking up that is used to build a 
solution on each iteration. The solutions are improving as the 
number of iterations is growing. This mechanism can provide 
high quality solutions on a wide class of the input data [10].1 

This research is supported by the Skolkovo Foundation Grant N 79, July, 2012 
and the Ministry of education and science of 
the Russian Federation, Unique ID RFMEFI60714X0070

II. PROBLEM DEFINITION
Data center physical resource model is defined as a 

weighted graph [11]: 

),( LKMPH   
where P is a set of computational nodes, M is a set of data 

storages, K is a set of network switches, L is a set of network 
channels. The weights are defined as follows. 

 Weights vh(p) and vr(p), defined on the set Р, are the
number of the CPU cores and the amount of the
operational memory of the cpu node Pp  .

 Weight uh(m), defined on the set М, is a capacity of the
data storage Mm  (bytes).

 Weight bh(k), defined on the set K, is a bandwidth of
the network switch Kk  (bytes per second). The
network switch bandwidth is defined as a maximum
total bandwidth of the virtual channels coming through
the switch. We consider all input and output switch
ports to have an equal priority.

 Weight rh(l), defined on the set L, is a bandwidth of the
network channel Ll  (bytes per second).

Resource request is defined as a weighted graph: 

( , )T W S E  

where W is a set of virtual machine requests, S is a set of 
virtual storage requests, E is a set of virtual channel requests. 
The weights are defined as follows. 

 Weights v(w) and r(w), defined on the set W, are the
requested number of CPU cores and the requested
amount of operational memory of the virtual machine
request Ww ;

 Weight u(s), defined on the set S, is a required capacity
for the virtual storage request Ss  (bytes);

 Weight r(e), defined on the set E, is a bandwidth for
the virtual channel request Ee  (bytes per second).

Resource request mapping is defined as follows: 
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Given: 

 A set of requests Z = {Ti} received by the data center 
scheduler.  

 Data center physical resource model 
),( LKMPH res  . 

The problem is to define resource request mappings {Ai} 
for as much requests as possible (target function  iF A ). 
The mappings should meet the following constraints:  
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Here Wp is a set of virtual machines mapped on the 
computational node p, El is a set of virtual channels mapped 
on the physical channel l, Ek is a set of virtual channels 
mapped on the switch k, Sm is a set of virtual storages mapped 
on the physical storage m. These constraints mean that 
capacity of physical resources cannot be exceeded. This 
guarantees the SLA to be satisfied. 

The algorithm is supposed to be used inside a cloud 
platform [12]. There is a controller which gathers incoming 
requests for a certain time span and decides when to launch 
the scheduler. Round of scheduling should last at least 15 
minutes due to the algorithm requiring around 15 minutes to 
complete on a set of 100 requests. There are also additional 
constraints defined by the platform: 

1) CPU cores cannot be shared between virtual machines. 

2) Virtual channel should be mapped onto a path in the 
physical network 

III. PROPOSED ALGORITHM 

A. Algorithm Common Scheme 
The initial problem can be divided into three subproblems: 

1) Mapping virtual machines to physical computational 
nodes. 

2) Mapping virtual storages to data storages. 

3) Mapping virtual channels to physical network channels. 

We can solve the subproblems 1 and 2 by an algorithm 
based on the ant colony optimization approach. Since the ant 
colony optimization approach is intended for optimization 
problems represented in the form of the shortest path problem, 
subproblems 1 and 2 should be reduced to it (target reduction 
graph  is denoted as G). The reduction process is described in 
section 3.2.1. 

After steps 1 and 2 are complete we can solve the problem 
of mapping the virtual channels to physical ones by a greedy 
algorithm. 

The algorithm’s scheme is: 

1) Build the graph G. The graph form is chosen so that 
path in the graph determines mapping of virtual machines and 
virtual storages 

2) Build paths Bi in the graph G. The path is built 
according to the restrictions on maximum computational node 
performance vh(p) and maximum data storage memory 
volume uh(m). 

3) For each Bi map virtual channels to physical ones given 
that virtual machines and virtual storages are mapped 
according to path Bi. 

4) Calculate the target function Fi for each path Bi. 

5) Update the pheromone values on the arcs of the graph 
A depending on the target function values Fi. 

6) If the stop condition isn’t satisfied, go to stage 2. 

B. Basic Algorithm Operations 
1) Building Graph 
Let N be the number of computational nodes in the data 

center and S be the number of data storages, and let R be the 
number of resource requests to be mapped. Each request 
consists of Rini ..1,   virtual machine requests and 

Risi ..1,   virtual storage requests. The vertices NVV ,...,1  and 

SSS ,...,1  are added where the vertex Vi corresponds to the 
computational node with the number i, and the vertex Sj 
corresponds to the data storage with the number j. For each 





R

i
innnk

1

,..1  let one graph vertex to correspond to k-th 

virtual machine request: this vertex V0
k is connected to each of 

the vertices NVV ,...,1  by two differently directed arcs. 

For each nk ..1  vertex V0
k is connected to each of the 

vertices klnlV l  ,..1,0  by two differently directed arcs 
(figure 1). 

Similarly, for each 



R

i
isssk

1
,..1  let one graph 

vertices to correspond to k-th virtual storage request. For each 
sk ..1  vertices S0

k are connected to each of the 
klslS l  ,..1,0  by two differently directed arcs (fig. 1). 
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Fig. 1. Graph G structure 

Let’s also add vertex O connected to each of the 
nmV m ..1,0   and slS l ..1,0   by two differently directed arcs. 

This vertex will be the starting vertex for each ant. Ants can 
only choose this vertex when they have no other vertices to 
choose. 

The following two values correspond to each arc in the 
graph: τij is the amount of pheromone on the arc (i,j) and ηij is 
a heuristic function set for arc (i,j). The current value of i-th 
computational node load corresponds to each of the vertices 

N
k

i VVV ,...,,...,1  and the current amount of free memory on the 
i-th data storage corresponds to each of the vertices 

Si SSS ,...,,...,1 . 

2) Building Paths in the Graph 
Each ant starts its path in the vertex О. The same ant can’t 

go on the same arc twice. The ant chooses the next vertex by a 
probabilistic rule. The probability for the k-th ant to travel 
from vertex i to vertex j on the iteration t depends on the list of 
visited arcs, amount on pheromone and heuristic values on the 
available arcs (1). 
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Here τij(t)is the amount of pheromone of the arc (i,j), ηij(t) 
is a heuristic function on the arc (i,j), 0  and 0  are 
algorithm’s parameters determining the importance of the 
pheromone and heuristic in the process of choosing the arc, Lk 
is the list of visited arcs of the k-th ant. 

When building a path from the vertex S0
k to the vertex Su 

the type of the virtual storage request that corresponds to the 
vertex S0

k, is compared to the type of the u-th data storage that 

corresponds to the vertex Su. If the types aren’t match, the ant 
can’t choose this arc.  

When building a path from the vertex V0
k to the vertex V0

u 
the ant can’t choose the arc if he has already visited the vertex 
V0

u. 

After the ant has chosen a vertex Vu, the virtual machine 
request that corresponds to the vertex V0

k is added to the Wu 
set. The current value of u-th computational node load is 
increased by the value v(k). Same actions are performed with 
the Su set when a virtual storage request is chosen. 

One of the possible ways to set the ηij(t) function is as 
follows: 

  

Wm

ij mv
wvt



))(max(

)()(  for nkiVj k ..1,,0   

 

Sr

ij ru
sut




))(max(

)()(  for skiSj k ..1,,0   

Here v(w) and u(s) are, respectively, the requested 
performance of the virtual machine request and the capacity of 
the virtual storage request.  

If nkNmVjVi m
k ..1,..1,,0   the function ηij(t) 

is calculated as shown in (2). 
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If skSmSjSi m
k ..1,..1,,0   the function ηij(t)  

is calculated as shown in (3). 
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Here Wj (Sj) is the set of currently mapped virtual 
machines (the set of currently mapped virtual storages) to the 
computational node (to the data storage), corresponding to the 
vertex j.  If, respectively, ηij(t) < 0 then ηij(t)  is set to zero.  

If the corresponding virtual machine (virtual storage) can’t 
be mapped to the computational node (data storage) due to 
performance (memory) restrictions violation the probability 
for the ant to choose the arc is zero.  If the probability is zero 
for all the available arcs at the moment, ant skips the step and 
the entire resource request is considered as a non-mapped 
request, and all the virtual machine requests and virtual 
storage requests corresponding to the same resource request 
are removed from the mapping. After the function ηij(t)  is 
calculated for all the arcs of one vertex, ηij(t) values for these 
arcs are normalized (4). 
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3) Virtual Channel Mapping Algorithm 
Let vl be the virtual channel to map and let i and j be the 

vertices of the physical resource graph H where the virtual 
resources connected by vl are mapped to. 

Physical resource graph H is temporarily modified before 
vl is mapped: 

 All the arcs (p,q) where vertex q is a network switch 
and p isn’t, and p ≠ i are deleted.  

 All the arcs (p,q), where vertex p is a network switch 
and q isn’t, and q ≠ j are deleted. 

 Arcs connecting two network switches are duplicated 
and set to different directions. 

 Arcs connecting a computational node or a data storage 
to a network switch are directed towards the network 
switch. 

Let’s consider a connected component C in the modified 
graph H containing the vertex i. This connected component 
also contains vertex j and contains no other vertices that aren’t 
a network switch by construction. The connected component 
C is used to map vl as follows: 

 A weight is assigned to all the remaining arcs (p,q) in 
the graph C. The weight equals to 
( ( ) ( )) ( ( ) ( ))pqh q r vl rh l r vl     if vertex p is a network 

switch, and equals to ( ) ( )pqrh l r vl  in other cases, 
where lpq is a physical channel connecting the arcs p 
and q. If one of the weights or the summands in the 
formula is below zero, the corresponding arc is 
temporarily deleted from the graph. The weights are 
chosen so all the arcs which the channel can’t be 
mapped to are deleted. The less capacity remains on 
the network channel after the virtual one is mapped, the 
less the weight of the corresponding arc. 

 Dijkstra’s algorithm is used to build the shortest path 
from the vertex i to the vertex j in the weighted graph. 

4) Pheromone Update Rule 
After the target functions are calculated the pheromone 

values for each arc in the graph are updated. The additional 
pheromone value for an arc depends on the target function 
value that corresponds to the path this arc is included in (5). 
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Here Bk(t) is the path built by the k-th ant and Fi is the 
target function equals to the number of the successfully 
mapped requests divided to the total number of the requests. 

 

Fig. 2. Network topology used for research 

A pheromone evaporation coefficient ]1;0[p  defines 
how much pheromone will be left after previous iterations. So 
the total value of the pheromone on the arc (i, j) after iteration 
t is calculated as shown in (6). 
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IV. EXPERIMENTAL RESEARCH 
The purpose of the research is to compare the results of the 

developed algorithm and an algorithm combining greedy and 
exhaustive search strategies (heuristic algorithm) [13] on one 
of the typical data center physical network topologies using 
modelled data. Papers [11,12] also show that the number of 
mapped requests by this algorithm greatly exceeds the number 
of mapped requests by algorithms currently used in 
OpenStack. 

A. Research Metodology 
The research was conducted using the following input data 

parameter values: 

 Standart data center topology “fattree” (fig. 2) with 60 
computational nodes (each with 16 CPU cores and 
1000 arbitrary units of operational memory) and 60 
data storages (each with the capacity of 1000 arbitrary 
units). 

The following patterns were used to generate the set of 
requests: 

 The pattern with a small number of virtual channels: 
seven virtual machines, five virtual storages, and 
eleven virtual channels (on the average, two virtual 
channels for one virtual storage). 

 The pattern with a large number of virtual channels: 
five virtual machines, two virtual storages, and eight 
virtual channels (four virtual channels for each virtual 
storage); 

 The pattern with a small number of virtual machines: 
three virtual machines and two virtual storages. One of 
the virtual storages was connected to all virtual 
machines and the other one was connected to one 
virtual machine (four virtual channels in total); 
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Fig. 3. Algorithm comparison on the first class of data, – ant colony
algorithm,  – heuristic algorithm.

 The pattern with high requirements for the network
bandwidth: two virtual machines, one virtual storage
and two virtual channels between them. The requested
virtual channel bandwidths were chosen so that their
sum was 900 arbitrary units (with the bandwidth of
1000 arbitrary units for a channel connected to a data
storage).

The sets of requests were divided into two basic classes 
and were generated using the following schemes. 

 In the first class the potentially possible load of the
channels (with the optimal mapping) connected to data
storages varied from 0.3 to 1.0. The load of the
computation nodes and data storages was fixed to 0.75.
In this class only requests generated by the first and
second patterns were used.

 In the second class only requests generated by the third
and fourth patterns were used. In this class, the number
of requests generated by the fourth pattern varied from
0 to 30; in this case, the potentially possible load of the
network varied from 0.5 to 0.8. The load of the
computation nodes and data storages was fixed to 0.75.

The number of requests in each set was 100. 

B. Research Results 
Fig. 3 demonstrates the percentage of mapped requests 

depending on the network load (the first class of data). 

The graph shows that when the network load is greater 
than 0.6 the developed algorithm maps more requests and the 
difference reaches 14% as the network load grows. 

Fig. 4 demonstrates the percentage of mapped requests 
depending on the number of requests generated by the fourth 
pattern (the second class of data). 

Unlike the first class of data, the maximum difference 
between the algorithms is 6% and barely change as the 
number of the fourth-type requests grow. 

Also note that the first class of data is mainly focused on 
proper mapping of the virtual channels: there are a large 
number of channels with a low requested bandwidth. The 
second class of data requires the algorithms to properly map 
the virtual machines and virtual storages: in case of ineffective 
mapping of these elements it becomes impossible to map the 
virtual channels with high requested bandwidth.  

Since the heuristic algorithm maps virtual machines and 
virtual storages separately and uses exhaustive search to 
improve the mapping it does fairly well on the second class of 
data. This advantage does not apply to the first class of data 
though: even if virtual machines and virtual storages are 
mapped effectively, there might be no way to map virtual 
channels. The ant colony algorithm bypasses this problem as it 
considers more ways to map resources and improves the best 
mappings from iteration to iteration. 

The developed algorithm shows about the same results on 
both classes of the input data which means that it is more 
universal than the heuristic algorithm. 

V. CONCLUSIONS 
The paper proposes a data center resource mapping 

algorithm based on the ant colony optimization approach. The 
algorithm allows to map virtual machines, virtual storages and 
virtual channels and is not bound to a certain data center 
network topology.  

The experimental research showed that the developed 
algorithm is more universal than the heuristic algorithm. The 
algorithm maps 98-100% requests when the network load is 
less than 70% and 90-95% requests on higher network load on 
the considered classes of input data. 

Fig. 4. Algorithm comparison on the second class of data, – ant 
colony algorithm,  – heuristic algorithm.
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Abstract—This paper describes application features of 
software defined networks (SDN) to build educational resource 
datacenters (ERD), which are intended for shared remote access 
to paid software for students from different educational 
institutions. We proposed a virtual classroom scheduling 
algorithm based on simulated annealing heuristic, a genetic 
algorithm for traffic routing and providing QoS for data flows. 
We have implemented these algorithms using C++ and partially 
tested them on the ERD simulator, which is still under 
development. Preliminary experimental studies have 
demonstrated their efficiency. The main feature of the proposed 
solutions is an interrelation between the virtual classroom 
scheduling algorithm and the algorithm for proactive routing 
and providing QoS parameters. The first algorithm reports the 
information about an assignment of virtual classroom’s machines 
to the physical servers and its communication pattern to the 
second algorithm. 

Keywords—SDN; educational resource datacenter; virtual 
classroom scheduling; traffic routing 

I. INTRODUCTION 

At present the majority of educational institutions in the 
Russian Federation are not sufficiently funded for purchasing 
software required in the educational process. It results in lower 
quality of education and in illegal software use. This problem 
can be solved by creating educational resource datacenter 
(ERD) with the possibility of remote access to shared paid 
software for educational institutions [1]. The ERD can be built 
on the base of cloud datacenter (fig.1).  

  Cloud

SDN 

Virtual 
classroom 1

VM1.1 VM1.n1...

Virtual 
classroom m

VMm.1 VMm.nm...

………

License
servers

VM1 VMk...

Physical classroom 1

……….
Internet

Physical classroom L

Individual devices

Educational resource datacenter

Fig. 1. Logical structure of educational resource datacenter 

The cloud system provides the DaaS (Desktop as a 
Service) with the access to virtual machines (VM) including 
all essential free and paid software for each student. VMs are 
grouped into virtual computer classrooms created by a 
coordinator for each educational institution. Access is granted 
to students over Internet using the computers from actual 
classrooms or their own devices as notebooks, smartphones 
and tablets. Additionally the ERD includes several virtual 
machines containing the license servers for paid software 
limiting the number of active applications at same time.  

Note that educational institutions can use outdated low-
performance computers for access to software with browser. 
The ERD allows using expensive software in the learning 
process for study researches, distance learning, access to 
virtual laboratories. 

Using the ERD can be organized as follows. An 
educational institution shall appoint a responsible coordinator 
for working with the ERD. The coordinator gathers 
information on planned lessons and for each of them 
determines the number of required VMs and the list of needed 
software. The educational institution and the ERD conclude a 
contract about services, the institution transfers money to its 
prepaid account. The coordinator creates the needed number 
of virtual classrooms with needed software through the ERD 
control system, determines the lessons for each classroom, and 
accepts one of the schedule variants offered by the ERD 
control system. Then the control system creates virtual 
machines for virtual classrooms with automatic installation of 
the selected software and updates schedule of the ERD. 
During the academic year, teachers use virtual classes at 
lessons according to the schedule. If it is necessary, the 
coordinator can change the time of lessons, install additional 
software, and create new virtual classrooms; if the schedule of 
the ERD allow it. Payment is done from prepaid account in 
accordance with the consumption of the ERD resources and 
the use of paid software. This concept implies the solution of a 
number of tasks.  

A. Automatic creation and setting of virtual classrooms 

The coordinator has to be able to create and set up virtual 
classrooms with the use of ERD web-site choosing the virtual 
machine characteristics, setting the number of their copies and 
determining the essential software, further settings performed 

This work is supported by the Russian Foundation for Basic Research
(grants 13-07-97046 and 14-07-97034) and by the Foundation for Assistance
of Development of Small Businesses in the Field of Science and Technology
(grant UMNIK 2628GU1/2014). 
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automatically. To achieve this we propose to integrate cloud 
management tools for creating and controlling virtual 
machines and software configuration management system 
automatically installing and configurating software. For silent 
software installation the scripts have been developed.  

B. Virtual classroom and machine scheduling 

The ERD scheduling algorithms should be developed to 
consider: predetermined time intervals for sessions, weekly 
schedule cyclicity, actual server restrictions, and software 
license restrictions. The existing studies on cloud scheduling 
[2-8] and cloud resource control systems, such as OpenStack 
[9], OpenNebula [10], Eucalyptus [11], Amazon EC2 [12], 
VMWare vCloud Suit  [13],  Oracle Enterprise Manager 
Cloud Control [14], Moab Cloud Suite [15], Citrix Cloud 
Platform [16], don’t consider the above factors. An ERD 
simulator is being developed for estimation of the algorithm 
efficiency for different hardware configurations of datacenter, 
software restrictions and administrator request flows. Further 
on the best algorithm variations are to be studied within an 
actual ERD at our University.  

C. Efficient routing within ERD with required QoS  

To provide acceptable response time for remote desktops 
the QoS characteristics have to be configurated as the 
minimum guaranteed bandwidth and the maximum guaranteed 
delay. The data flow routing should not violate the QoS 
requirements for the other flows and should provide dynamic 
route changes in case of virtual machine migration.  

II. PROBLEM OF VIRTUAL CLASSROOM SCHEDULING 

The ERD is a cloud-based system, A cloud system can be 
described by the triple 

)Software,Flavors,Nodes(Cloud  ,               (1) 

where m,1ii}Node{Nodes   is a set of nodes (servers), 

q,1ii}Flavor{Flavors   – set of typical virtual machine 

configurations, h,1ii}ogram{PrSoftware   – set of available 

software. 

Each server iNode  is determined by the following 
parameters: 

)D,M,C(Node node
i

node
i

node
ii  ,                      (2) 

where node
iC  is the number of its computational cores, 

node
iM  and node

iD  are accordingly sizes of its RAM and local 
HDD. 

Each typical virtual machine configuration iFlavor  is 
characterized by the same parameters: 

)D,M,C(Flavor flavor
i

flavor
i

flavor
ii  .                  (3) 

Let the ERD serves r  educational institutions. Each of 
them is represented by coordinator and is characterized by 

)Classrooms,w(K iii  ,                          (4) 

where ]1;0[wi   is his priority and 

ip,1jiji }Classroom{Classrooms   are his virtual classrooms. 

Each virtual classroom ijClassroom  is characterized by the 

following parameters: 

)s,g,flavor,n(Classroom ijijijijij  ,                  (5) 

where ijn  is the number of its virtual machines, 

Flavorsflavorij  – their typical configuration, 

)g,...,g(g ijR1ijij   – coordinator’s requests representing a 

vector of preferred time slots for classes, )s,...,s(s ijH1ijij   – a 

vector describing software installed on virtual machines 
( 1sijz  , if software zogramPr  is installed on virtual 

machines of ijClassroom , otherwise 0sijz  ).  

The ERD schedule is developed for the period of one or 
two weeks, the period is divided into equal intervals (time 
slots) for classes. All the time slots are numbered from 1 to 
R . 1gijk  , if i -th coordinator prefers to allocate k -th time 

slot for his j -th virtual classroom, otherwise 0gijk  . The 

sum 


R

1k
ijkg  represents the number of classes for 

ijClassroom planned by i -th coordinator. 

The ERD schedule can be defined by the set of tuples: 

 )}r,l,j,i,k{(S  .                              (6) 

Each tuple )r,l,j,i,k(  describes the assignment of one 

virtual machine from ijClassroom  to the r -th computational 

core of the l -th server for the k -th time slot. 

Schedule S is feasible, if it satisfies the following 
constraints: 

1) Physical constraints for the assignment of virtual 
machines to servers (for each node its RAM, HDD and 
computational cores are not overused in each time slot): 
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       (9) 

2) Licensed software constraints (restriction on parallel 
execution of software instances in virtual machines for each 
time slot and each software): 
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where zI  is the maximum allowed number of instances for 

software zogramPr . 

We formalize the virtual classroom scheduling problem as 
the optimization of the following function: 

  max,w)s(F iii

r

1i
i 



          (11) 

where   is an encouragement for assignment of one core 
of virtual machine to some server’s core for a preferred time 
slot for corresponding coordinator, i  – the number of such 

cores for the i -th coordinator,   – the penalty for assignment 
of one core of virtual machine to some server’s core for a not 
preferred time slot for corresponding coordinator, i  – the 

number of such cores of  the i -th coordinator,  – the penalty 
for not assigning any core of virtual machine to any available 
physical server of the ERD during one required time slot 
(considering that all the cores of all the virtual machines of 
each virtual classroom should be assigned simultaneously to 
the servers for any selected time slot), i – the number of such 

cores for the i -th coordinator, i , i , i  are the 
characteristics of the ERD schedule s . 

III. PROPOSED SIMULATED ANNEALING ALGORITHM FOR 

VIRTUAL CLASSROOM SCHEDULING 

The optimization problem on constructing a schedule 
maximizing the function (11) and satisfying the constraints (7-
10) can be solved by a simulated annealing heuristic 
algorithm. It is based on the physical process of substance 
crystallization involving controlled cooling (see detailed 
information in [17]). 

The proposed algorithm has the following steps (see 
algorithm 1): 

Algorithm 1 – Simulated annealing algorithm for virtual 
classroom scheduling in the  ERD 

Step 1. Create an initial 1Schedule . Let 1L  be a set of not 
assigned virtual classrooms for necessary classes due to the 
lack of free resources. 

Step 2. Set the initial temperature max1 t:t  , set the initial 
number of iteration 1:i  .  

Step 3. While mini tt   and maxIi  , do the following: 

Step 3.1. Set ic Schedule:Schedule  . Select a random 
value ]1,0[r . 

Step 3.2. If qr   then do the following: 

Step 3.2.1. On the basis of iSchedule  create iM – the list 
of assigned virtual machines of virtual classrooms, which can 
be moved from one server to another one in the same time slot 
of the schedule considering resource constraints of the servers.  

Step 3.2.2. If 0Mi   then go to the step 3.3.1. 

Step 3.2.3. Select a random number iM,1k . 

Step 3.2.4. Select the best fit server jNode  for virtual 

machine ik MVM   in its time slot. The following criteria 
should be used for selection (to minimize remaining 
resources): 
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where 1,,0 CDM   are weight coefficients 
describing the fitness degree of RAM, HDD and the number 
of computational cores. 

Step 3.2.5. Update cSchedule  to apply the move of kVM  

to jNode . 

Step 3.3. If qr   then do the following: 

Step 3.3.1. On the basis of iSchedule  create iM  – the list 
of virtual classrooms, which can be moved from one time slot 
to another one in the schedule considering resource and 
licensed software constraints.  

Step 3.3.2. If 0Mi   then go to the step 3.6.1 

Step 3.3.3. Select a random number iM,1k  . 

Step 3.3.4. Select ik MClassroom  . 

Step 3.3.5. If the schedule has preferred and suitable time 
slots, where  kClassroom  can be moved, then move it to any 
random of them and assign to the random servers which 
satisfy resource constraints. Else, move kClassroom  to any 
suitable random time slot. 

Step 3.3.6. Update cSchedule  to apply the move of 

kClassroom  between time slots. 

Step 3.4. Set i1i L:L  . 

Step 3.5. Select a random value ]1,0[r  . 

Step 3.6. If qr   then do the following: 
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Step 3.6.1. On the basis of iL  and cSchedule  create 

ii LM   – the list of virtual classrooms, which has classes 
not assigned to any time slots in the schedule, but which can 
be assigned to the servers of at least one time slot. 

Step 3.6.2. If  0MMM iii   then do the following: 

Step 3.6.2.1. Select a random number R,1k . 

Step 3.6.2.2. Remove from cSchedule  all the classes 

assignments to the k -th time slot and add them to 1iL  . 

Step 3.6.2.3. Go to the step 3.7. 

Step 3.6.3. Select a random number iM,1k  . 

Step 3.6.4. Select ik MClassroom  . 

Step 3.3.5. If the schedule has preferred and suitable time 
slots, where  kClassroom  can be assigned to, then assign it to 
any random of them and to its random servers which satisfy 
resource constraints. Else, assign kClassroom  to any suitable 
random time slot.  

Step 3.3.6. Update cSchedule  to apply the assignment of 

kClassroom  to the selected time slot and to remove it from 

1iL  . 

Step 3.7. If )Schedule(F)Schedule(F ic   then set 

c1i Schedule:Schedule  , else: 

Step 3.7.1. Select a random value ]1,0[r  . 

Step 3.7.2. If i

ci

t

)Schedule(F)Schedule(F

er




  then set 

c1i Schedule:Schedule  . 

Step 3.8. Decrease the temperature by the formula 

i

t
:t 1

1i


 . 

Step 3.9. Increment number of iteration  1i:i   and go to 
the step 3. 

Step 4. Return the resulting iSchedule  and set iL . 

 

The first step of the algorithm includes the creation of an 
initial schedule satisfying resource and licensed software 
constraints. It is created randomly by selecting coordinators’ 
requests with the probabilities equal to the weight iw . Then in 
the cycle, under condition of decreasing the temperature, the 
schedule is changed randomly by moving one virtual machine 
between servers in the same time slot or by moving one virtual 
classroom between different time slots. After that, random 
virtual classroom with classes have not yet been assigned to, 
probably can be assigned to free resources in the new 
schedule. A new schedule is accepted as the schedule for the 
next iteration, if it improves optimizing function F , otherwise, 

it can be accepted with the probability 

i

ci

t

)Schedule(F)Schedule(F

e




. Algorithm ends when the minimum 
temperature is reached, or when the maximum number of 
iterations is exceeded. 

This algorithm has the following parameters having effect 
on its work: 

 maxt , mint  are the maximum and the minimum 
temperature. They have influence on the number of 
iterations and on the decisions at step 3.7.2. 

 maxI is the maximum number of iterations. 

 q  is a probability of new schedule to be constructed by 
moving virtual machine between servers in the same 
time slot. Accordingly,  q1  is a probability of new 
schedule to be constructed by moving virtual classroom 
between time slots. 

 q  is a probability of attempt to assign virtual 
classroom with classes have not yet been assigned to. 

 CDM ,,   are weighting coefficients describing 
fitness degree of RAM, HDD and number of 
computational cores. 

We plan to study the proposed algorithm by the ERD 
simulator for different values of these parameters and 
coefficients  ,   and   in the optimized function F . 

IV. PROBLEM OF ROUTING AND PROVIDING QOS  

Papers [18], [19], [20] solve the problem of routing 
network traffic using SDN. The proposed algorithms do not 
consider the need to provide QoS parameters for the current or 
previously installed data flow routes. The existing algorithms 
[21], [22] for providing QoS in SDN are not efficient enough. 
The approach for dynamic routing of multimedia data flows is 
described in [21]. It provides the maximum guaranteed delay 
by LARAC (Lagrangian Relaxation Based Aggregated) 
algorithm. However, the authors consider the only case of unit 
delays for each network link and do not take into account the 
minimum guaranteed bandwidth. Similar approach is 
described in [22], the authors formalize and solve the 
optimization problem for lossless multimedia traffic 
transmission using alternate routes and leaving short routes for 
the general data flows. However, they optimize the delays and 
do not consider the need to ensure guaranteed bandwidth.  

In this paper, we propose the approach based on the 
combination of routing and providing two QoS parameters for 
data flows – minimum guaranteed bandwidth and maximum 
guaranteed delay.  

Let )E,V(GT   is an oriented multigraph describing 
current network topology of the ERD at time t . The set of its 
vertices NetDevicesNodesV   is the union of the ERD 
nodes (servers) set and other network devices (switches, 
gateways, data storages, and so on).  
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Each directed edge Ee  corresponds to a specific 
network link between the vertices V)e(beg   and 

V)e(end  . e  has opposite directed edge due to duplex 
connection. In addition, several parallel edges can connect two 
vertices, for example, parallel network links between switches. 
They provide many alternate routes for the data transmission 
and providing QoS parameters. 

Two following function are defined on the edge set E :  

 }0{RE:b    – current bandwidth of the link at 
time t . 

 }0{RE:d    – current delay on the link’s output 
port at time t . 

Let us denote by )C,V(GP   an oriented graph 
representing the communication pattern of some virtual 
classroom. This pattern is reported by virtual classroom 
scheduling algorithm to algorithm for routing and providing 
QoS. It is possible due to their close integration. NodesV   
is a set of servers used for virtual classroom assignment (its 
VMs are assigned to them), C  is a set of directed edges, 
which correspond to existing data flows between servers.  

It should be noted, that, if necessary, the set V  may also 
include other network devices, for example, gateways in the 
case when the most of the traffic comes from remote users to 
the servers. 

Three following functions are defined on the edge set C : 

 }0{RC:b    – minimum guaranteed bandwidth of 
data flow. 

 }0{RC:d    –  maximum guaranteed delay of 
data flow. 

 }0{RC:d̂    – estimation of average delay that 
arises as a result of data flow’s packets processing on 
the ports of network devices. 

The algorithm for routing and providing QoS must 
construct a function )G(PC: t , which relates each data 
flow Cc  to its route r  leading from the vertex )c(beg  to 

)c(end . Here )G(P t  denotes a set of routes between any two 

vertices in topology graph TG . 

The function   can be represented by a vector 

)r,...,r(R C1 , where )c(r ii  is the route for data flow 

Cci  . 

Let C2E:   is the function relating each network link 
Ee  to the set of data flows Cc , for which corresponding 

routes are pass through e : 

}re&)c(r|Cc{)e(  .                (13) 

The vector R  must contain the routes satisfying the 
following constraints for providing QoS: 

1) The bandwidth of each route ir  with the influence of 
other data flows should not be less than the guaranteed 
bandwidth for the flow ic : 

)c(b})c(b)e(b{minr i
}c{\)e(c

re
i

i
i

 



.             (14) 

2) The summary delay of each route ir  with the influence 
of other data flows should not be greater than the guaranteed 
delay for the flow ic : 

)c(d))c(d̂)e(d(r i
}c{\)e(cre

i

ii

 


.             (16) 

It should be noted, that these constraints are flexible. They 
can be violated for some data flows, for example, when the 
ERD is overloaded. Hence, the optimized function has the 
following equation: 

.max)c(d̂)e(d)c(d
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(17) 

Here 0b   and 0d   are the encouragements for 
upholding of corresponding constraints on bandwidth and 
delays, 0b   and 0d   are the penalties for their 
noncompliance. 

In addition, there are strict constraints for the routes  
)e,...,e(r

iin1ii  : 

1) ir  is indeed a route: 
)e(beg)e(end1n,1jr 1ijijii  .            (18) 

2) ir  should begin at the first vertex of  the edge ic  and 
end at the second vertex of ic : 

)c(end)e(end&)c(beg)e(begr iini1ii i
 .   (19) 
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3) ir  shoud not pass several times through the same 
vertex: 

)e(beg)e(begkjn,1k,jr ikijii  .     (20) 

V. PROPOSED GENETIC ALGORITHM FOR ROUTING AND 

PROVIDING QOS 

The described optimization problem can be solved by a 
genetic algorithm (see detailed information on this heuristic in 
[23]). The problem solution is encoded by the chromosome 
representing a route vector )r,...,r(R C1 . Population has a 

fixed size N . 

The crossover operation is a single point crossover for two 

parent chromosomes )r,...,r,r,..,r(R A
C

A
k

A
1k

A
1

A
  and 

)r,...,r,r,..,r(R B
C

B
k

B
1k

B
1

B
 . It selects a random number 

1C,2k   and creates two daughter chromosomes by 

combining parent genes separated at selected point: 

)r,...,r,r,..,r(R B
C

B
k

A
1k

A
1

AB
1  ,  

   )r,...,r,r,..,r(R A
C

A
k

B
1k

B
1

AB
2  .                    (21) 

The mutation operation for the chromosome 
)r,...,r(R C1  represents the selection of a random number 

C,1k  and a random transformation of the route kr . For the 

transformation it selects two vertices )e(beg kj  and )e(beg ks  

( knsj1  ) (if there is alternate route between them) and 

replaces the subsequence 1kskj e,...,e   in kr with the alternate 

subsequence kpkj e,...,e  .  

The selection operation for each generation combines the 
choice of topP  percent the best chromosomes (elite selection) 

with the roulette selection of remaining chromosomes. In the 
last case, chromosomes are selected proportionally to a fitness 
value of the optimized function. 

Stopping criteria for the genetic algorithm are the 
exceeding of the maximum time and the lack of significant 
improvements in the average fitness value for several 
generations. The last criteria can be written by the following 
inequality: 




)R(HHmax jGi
i,1Gij

,                          (22) 

where G  is a number of controlled generations, GiH  – the 
average fitness value for the last G  generations, )R(H j  – the 

average fitness value for the j -th previous generation,   – the 
preferred tolerance degree.  

The proposed genetic algorithm has the following steps 
(see algorithm 2): 

 

Algorithm 2 – Genetic algorithm for routing and providing 
QoS in ERD 

Step 1. Save the current time to variable startT . 

Step 2. Create an initial 1Population  of a fixed size N  
including the chromosome R  which has routes calculated by 
Dijkstra's algorithm launched from each vertex from V .  It 
should minimize summary delays of the routes. Generate 
randomly other chromosomes of 1Population . 

Step 3. Let 1:i   be the number of iteration. 

Step 4. While maxstartcurrent TTT   and ( Gi   or 




)R(HHmax jGi
i,1Gij

) do the following steps: 

Step 4.1. Combine the parent chromosomes from 

iPopulation  in random pairs and perform the crossover 
operation for them with probability P . Save the resulting 
child chromosomes to inPopulatio  . 

Step 4.2. Perform the mutation operation for the 
chromosomes from inPopulatio   with probability Q . 

Step 4.3. Join parent and child populations: 

iii nPopulatioPopulation:nPopulatio  .       (23) 

Step 4.4. Perform the selection operation for inPopulatio  , 

save the selected chromosomes to 1iPopulation  . 

Step 4.5. Increment iteration number 1i:i   and go to 
step 4. 

Step 5. Install all the routes from iPopulation  as a rules to 
the tables of OpenFlow switches. 

 

For this algorithm currentT  means the current time of 
system clock. 

This algorithm is only run for proactive calculation of data 
flow routes implementing communication patterns of virtual 
classrooms. Patterns are reported by virtual classroom 
scheduler of the ERD. Other traffic (which is not critical to 
delays and bandwidth restrictions) is routed by standard 
shortest path algorithms.  

In addition, it should be noted, that the proposed algorithm 
also works in particular situation, when PG  contains two 
vertices. It corresponds to a single route calculation. 

It is planned to study the proposed algorithm by the ERD 
simulator for different values of parameters b , d , b , d , 

maxT , topP , G ,  , P  and Q . 

VI. CONCLUSIONS 

The virtual classroom scheduling problem was formalized 
as an optimization problem for the ERD. It considers resource 
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and software constraints, schedule cyclicity and time division 
into classes (time slots). For the solution of this problem we 
have proposed the scheduling algorithm based on a simulated 
annealing heuristic.  

In addition, the optimization problem of proactive routing 
and providing QoS in the ERD was formalized. It takes into 
account flexible constraints on providing QoS parameters for 
data flows as the minimum guaranteed bandwidth and the 
maximum guaranteed delay. We have proposed genetic 
algorithm for solving this problem. It is based on SDN 
technology, which is used for gathering information on current 
network state and installing rules in the tables of OpenFlow 
switches to implement calculated routes. 

We have implemented these algorithms using C++ and 
partially tested them on the ERD simulator, which is still 
under development. Different configurations of ERD were 
chosen for preliminary studying. They differ by the hardware 
configuration and the size of the ERD. Coordinators’ requests 
for virtual classrooms with different configurations of VMs 
were randomly generated for the virtual classroom scheduling 
algorithm. Randomly generated communication patterns (All-
to-All, One-to-All, Grid and etc.) were used for routing and 
providing the QoS algorithm. The preliminary experimental 
studies have demonstrated the efficiency (reduction of free 
windows in the virtual classrooms schedule, decreasing of 
QoS parameters violations for data flows) of proposed 
algorithms for different test scenarios. In the future, we plan to 
conduct a series of experiments on the ERD simulator and to 
describe in detail the obtained results. 

The main feature of the proposed solutions is an 
interrelation between the virtual classroom scheduling 
algorithm and the algorithm for proactive routing and 
providing QoS parameters. The first algorithm reports the 
information about an assignment of virtual classroom’s 
machines to the physical servers and its communication 
pattern to the second algorithm.  
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Abstract—The paper describes the testbed to determine the 
effectiveness of an approach to build network storage using 
Software-Defined networks (SDN) OpenFlow. It is assumed that 
main protocol to SAN is iSCSI over local area network. 
Prototyping tools for managing network resources and data flows 
on the basis of SDN and testing environments based on Free and 
Open Source software. We describe experiments with various 
modifications of OpenFlow controller NOX and set out the specifics 
for the use of various software and hardware OpenFlow switches. 
The main tests goals are Data Center SAN specific: implementation 
of QoS methods accordingly switchspecifics, topology changing, 
measuring of transmission parameters, simulating of large amount 
of requesting hosts (up to 100 thousands hosts). 

Keywords—OpenFlow; SDN; SAN; network; NOX; QoS 

I. INTRODUCTION 

The aim of this work was to study the design principles and 
performance of Software-Defined Networks, as well as to 
develop prototypes of tools for managing network resources and 
data flows in SDN, the evaluation of the applicability of the SDN 
for data centers and distributed storage. For experiments were 
selected OpenFlow SDN and evaluated the effectiveness of their 
use for the management of iSCSI storage systems. 

The requirements were specified for network resources 
management tools and Quality of Service (QoS) assurance. 

II. TESTBED

A. Software: 

OpenFlow software switch based on 
CPqD/of12softswitch [1] and Open vSwitch [2];

OpenFlow controllers based on CPqD/nox12oflib [3]and
NOX [4];

OpenFlow network emulator Mininet [5];

VirtualBOX and KVM Virtual Machines with NauLinux
6.3/6.4 [6] distributions and Ubuntu 11.10 pre-configured
CPqD OpenFlow-1.2 Virtual Machine [7].

B. Hardware 

OpenFlow switches – Pica8 3290 and HP 3500-24G-PoE
yl.

HP P4300 G2 7.2TB SAS Starter SAN BK716A was used
as the iSCSI SAN.

III. SPECIALIZED SOFTWARE MODULES

For testing purposes was created a number of specialized 
Python modules and programs which used for changing of 
topology, QoS policies, starting/stopping of traffic generators and 
measuring of transmission characteristics. Developed prototypes 
were tailored for the hardware OpenFlow switches. 

Specialized “switchqos” module was developed based on 
NOX module “switch” to manage network resources and data 
flows and to ensure QoS.

This module calculates routes for all packets in the testbed 
and generates flow tables for every OpenFlow switch. These 
calculations and flow tables modifications are performed after 
every topology change or data flow interruption.

The traffic classification for QoS control is based on 
TCP/UDP port numbers. Depending on switch type and 
capabilities, the different QoS control methods were used: 
OpenFlow queues, IP ToS, and VLAN PCP modifications.

Special software tools for QoS policy configuration of 
hardware switches were used to prioritize SAN traffic. The 
different switches (for example, Open vSwitch and HP 
ProCurve) had different QoS control mechanisms, which made 
the creation of a unified interface is quite a difficult task.

As the most important configurable parameters of QoS 
assurance, the bandwidth and the priority of the packet queues 
were selected. 

The software prototypes for QoS control on HP 3500 and 
Pica8 in OVS mode were placed in the repository [8]. They can 
be easily extended to use different QoS settings. 

Because different switches and controllers support variety 
versions of OpenFlow, several different modules were developed 
for NOX classic [8], NOX [4] and nox12oflib [3]. 

IV. NETWORK RESOURCES AND DATA FLOWS
MANAGEMENT 

As a system for network resources and data flows 
management, a set of software modules was developed for 
attaching and detaching links between switches. 

In the emulation mode, this was carried out by means of 
Mininets Python module. 

For hardware switches this was done via CLI commands over 
SSH connection, automated by a Python script. 
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Fig. 1. Loop topology for experiments 

A loop topology (Fig. 1) was selected for experiments, 
consisting of 4 switches (nodes s2, s3, s4 and s5), and two hosts 
for traffic generation and reception (nodes h1 and h6). 

SDN routing modules based on standard regular MAC-
learning NOX “switch” modules. 

During the experiment, test traffic (ping) was sent from the 
host h1 to host h6. In an initial state all nodes were connected 
accordingly Fig. 1. The controller was in an undefined state, it 
had no routing scheme, and the packets have not passed. After 
detaching one link by test framework, the route was constructed 
by NOX “switchqos” module, and the pass of the packets was 
established. After that, the restoring of the detached link (and 
loop) did not break the traffic flow. Detaching the active link led 
to an automatic topology rediscovery and redirection of the 
traffic to a different route. 

V. QOS ASSURANCE METHODS 

Data flows prioritization was carried out with the Python 
modules. These modules set bandwidth for OpenFlow queues or 
ToS/PCP bandwidth. The dpctl utility was used for the software 
switch control. Hardware switches were managed by CLI 
commands sent over SSH. 

For the evaluation of a possible use of SDN in data center, a 
data center model (Fig. 2) was created. This model consisted of 
iSCSI SAN and few VMs. The first VM acted as an OpenFlow 
1.2 switch while the second one generated iSCSI traffic; the 
others performed in generating and receiving the load traffic. 

During the experiment, the data were read from iSCSI SAN 
with simultaneous load traffic generation. 

IP diagnostic utility Iperf and VoIP test tool SIPp were used 
to generate the load traffic. 

 
Fig. 2. SDN data center model 

It was observed that under heavy load condition the iSCSI 
connectivity might be lost and later recovered. After iSCSI 
connectivity recovery the bandwidth is changing in arbitrary 
manner. To keep the same bandwidth after recovery we changed 
Linux Traffic Control dynamic bandwidth, which is defined by 
CpqD/of12softswitch, to static bandwidth setting. The modified 
module can be found in [1]. 

The utility dpctl sets the share of total bandwidth for selected 
QoS queues as percent of total bandwidth. The sum of shares is 
not necessary equal to 100. 

Table I shows the influence of the presence of queuing on the 
resulting SAN I/O speed, but there is a little difference. 

The experiment with the HP hardware switch has shown a 
correlation between the bandwidth share set and the resulting I/O 
speed (Fig. 2). 

TABLE I.  SAN I/O SPEED THROUGH SOFTWARE SWITCH 
DEPENDENCY ON QOS QUEUES BANDWIDTH SHARE 

Bandwidth share, in % of the total Load traffic, 
Kb/s SAN I/O speed iSCSI traffic 

100 0 35.1 
100 0.1 31.6 
100 100 8.3 
0.1 100 5.4 
0.1 0.1 9.2 

TABLE II.  SAN I/O SPEED THROUGH HARDWARE SWITCH 
DEPENDENCY ON QOS QUEUES BANDWIDTH SHARE 

Bandwidth share, in % of total Load traffic, 
Mb/s SAN I/O speed iSCSI traffic 

100 0 10.0 
80 20 8.4 
20 80 2.1 
0 100 0 

Not comparing the absolute transmission rate, it is possible, 
due to a priori restricted channel throughput, to specify the 
advantages of QoS control in hardware switches: a high degree of 
accuracy, an impossibility of setting a total bandwidth more than 
100%.  

VI. PROCESSING A LARGE NUMBER OF REQUESTS 

In the test program (rd test) SCSI command “TEST UNIT 
READY” was sent to SAN in multithread mode via ioctl system 
call with SG IO code. The target characteristic was the number of 
completed requests for a selected period of time. 

The developed “switchqos” module was optimized for speed 
of transmission of data passing through controlled switches. This 
optimization included a modification of the default NOX flow 
matching scheme. It was necessary because the used switches 
were unable to perform a flow match based on source and 
destination MAC addresses and VLAN PCP with the hardware 
acceleration. The software processing was limited to 10 000 
packets per second. 
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Another setting was in increasing the idle timeout. It was 
found during the experiments that HP 3500 switch had not 
refreshed the flow packet statistics frequently enough for the 
hardware processed flows. Usually, after 5 seconds of idle time 
(default for NOX “switch” module), the switch erroneously 
removed the record from the flow table. After increasing the idle 
time parameter in “switchqos” module to 20 seconds, this 
behavior was corrected and the necessity for repeatedly creating 
records of flow matching was eliminated. At the same time, an 
excessively large idle timeout value could degrade the 
performance due to an increased flow table size. 

After these optimizations, the performance of the system 
increased significantly, and the value of 100 000 requests to SAN 
per second through OpenFlow switch was surpassed. The 
example of test program output is shown below. 

# ./rd_test /dev/sdb 2 100 

 

Fig. 3. Modeling the large number of requests to SAN in data center 
infrastructure 

Result: 130124 requests/sec (260248/2) 

VII. SAN RESPONSE TIME 

Read operations were used to measure SAN response. SG IO 
ioctl was used to exclude the buffering influence, instead of the 
generic read. 

The test program has measured the average latency and jitter 
performing SAN requests. 

The results for 1000 packets and data block sizes 512 and 
1024 bytes are as follows (the average latency and jitter are 
measured in seconds): 

# ./rtt_iscsi_read /dev/raw/raw1 1000 \ 512 1024 

Size=512 Packets=1000 Latency=0.000844 Jitter=0.000084 

Size=1024 Packets=1000 Latency=0.000860 Jitter=0.000104 

VIII.  DATA CENTER MODELING 

Our modeling of a data center involved a transmission of 
ICMP requests to SAN from different MAC addresses. 

The test network consisted of SAN, 2 hardware OpenFlow 
switches from HP, VM with NauLinux 6.3 guest OS running 
NOX and 10 test nodes VMs running Ubuntu 11.10 and Mininet. 
Each test node launched 6 virtual hosts, 7 software switches 
Open vSwitch, and a local controller NOX (Fig. 3). 

The test program, running on the main host, sent messages to 
the test nodes, starting local test programs, written as xinetd 
services. The local test programs on every virtual host pinged 
SAN from every MAC address in a specified range. Requests 
were forwarded to SAN through hardware switches, controllable 
by NOX launched in multithread mode (10 threads) on the main 
host. This controller instance has logged the number of different 
MAC addresses in the processed requests and the requests 
distribution in the running threads. After getting 100 000 
different MAC addresses, test programs stopped. 

IX. CONCLUSION 

Described experiments have shown that developed OpenFlow 
testbed could be used for testing the dynamic (re)configurations 
of the network elements, (re)setting various data transfer 
parameters for different traffic types. It was shown the testbed is 
able to serve the requests from large number of hosts. Suggested 
inexpensive testbed might be used for detailed investigation of 
OpenFlow approach to the network architecture of data centers 
and distributed storage. 

Software repositories [1], [3] and [4] contain developed 
software modules and tests. The controller applications are 
packaged in binary and source forms for NauLinux operating 
system distribution [6], binary compatible with RHEL/Oracle 
Linux/CentOS/Scientific Linux distributions. 
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Abstract—This paper presents the novel approach on offload-
ing the most time consuming and frequently used functionality
of the SDN/OpenFlow controller to the Linux kernel space.
This speeds up network applications in 2.5 times together with
possibility of using the all userspace libraries and programming
tools.

I. INTRODUCTION

SDN/Openflow is already a mainstream in the area of
computer networks [1]. It allows us to automate and to simplify
network management and administration: fine-grained flows
control, observing the entire network, unified open API to
write your own network management applications. All control
decisions are done first in a centralized controller and then
moves down to overseen network’s switches. In other words,
the controller is a heart of SDN/OpenFlow network and
its characteristics determine the performance of the whole
network. The controller throughput means how big and active
our network can be in terms of switches, hosts, and flows.
The response latency directly affects network’s congestion time
and end-user QoE. Moreover, as faster controller we have as
more reactive network we can introduce: faster reaction on host
migration and topology changes, more granular flow control,
advanced network application like load balancing techniques,
security features, and so on.

The recent SDN/OpenFlow controllers performance eval-
uations show that the throughput of the controllers are not
enough for modern datacenters’ networks and large scale
networks [5], [6]. There are two complimentary ways to cover
this performance gap. The first way is to use multiple instances
of a controller collaboratively managing the network and
forming a distributed control plane. But this way brings a lot of
complexity and overheads on maintaining a consistent network
view between all instances. The second way is to improve
single controller itself by leveraging ability of contemporary
multicore systems and by reducing existing bottlenecks and
overheads in data communication path in operating systems.
Note these two ways can and should be used together to create
high efficient distributed control plane.

In this paper, we presents an extended approach on offload-
ing of frequently used SDN/OpenFlow controller functions
down to Linux Kernel to create high performance network
applications. The paper is structured as follows. Section 2
describes related works and motivation. Section 3 contains the
main idea of the proposed approach on in-kernel offloading of
an SDN/OpenFlow controller. Section 4 explains implementa-
tions details of our in-kernel offload engine. Section 5 shows
the result of performance evaluation of the proposed approach.

II. BACKGROUND

At present, there are a more than 30 different SDN/Open-
Flow controllers created by different vendors/universities/re-
search groups, written in different languages (Python, Java,
C/C++, Haskell, Erlang, Ruby), using different runtime multi-
threading techniques, showing different performance num-
bers [4]. These controllers are implemented as ordinary ap-
plications running in Linux userspace.

From the system point of view, implementation in Linux
userspace have several performance drawbacks. Every system
call (malloc, free, read and write packet(s) from the socket,
etc) leads to context switching between userspace and kernel
space that requires additional time. Approximately this time for
FreeBSD Linux is 0.1ms and takes 10% time for whole system
call [3]. Under the high load this leads to significantly time
overhead. Moreover, the userspace programs work in virtual
memory that also require additional memory translation and
isolation mechanism: hierarchical vs linear address translation.

In our previous work [7], to avoid above mentioned over-
heads we have implemented the OpenFlow controller as a mod-
ule inside the Linux kernel space. Our experiment evaluation
shows that it has 5 times higher performance than all existing
controllers. But, as we understood later in practice, it’s very
hard to write our own application for Linux kernel space. There
are several programming challenges: low-level programming
language (object C), limited number of libraries and tools, high
risk to corrupt the whole system. Thus, we need to find out
a way to simplify network applications programming for the
in-kernel controller.

III. PROPOSED APPROACH

As already mentioned, the Linux kernel allows us to
significantly speed up the SDN/OpenFlow controllers and pro-
vides abilities to create high performance network management
applications. The idea is to use kernel space to accelerate the
most time consuming functionality of the controller. We call
our approach as in-kernel offloading.

There are several important tasks: determine what func-
tionality should be offloaded, what northbound programming
API we should provide for a user, and how to implement this
command and data passing interfaces between kernel and user
space.

Usually a controller consists of three main layers:

• OpenFlow network layer is responsible for commu-
nication with OpenFlow switching devices. It imple-
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ments TCP server listening new switches connections
and OpenFlow library for parsing incoming OpenFlow
messages from TCP streams.

• Service layer contains the most frequently used net-
work functions like link discovery, topology, and rout-
ing.

• Application layer represents user-written network ap-
plications that might use services and subscribe on
events from the network layer (for instance, L2 learn-
ing switch, firewall, DDOS).

Figure 1 shows the basic scheme of the proposed idea.
Figure 1(a) and Figure 1(d) represent two opposite situations
where the all layers of the controller reside fully either in
the userspace or in the kernel space, correspondingly. In the
userpace, the controller has wide range of applications and
libraries but low performance. In kernel space, the controller
has fastest performance but limited number of applications.

During offloading procedure the controller is gradually
been dipping down to the kernel space. The offload scheme
supports two operational modes: pass-through mode and driven
mode. Both modes describe which functions run inside the
kernel. In the pass-through mode, the in-kernel part receives
new OpenFlow messages, parses them, and puts into shared
queues (figure 1(b)). In the driven mode, the in-kernel part
also runs services inside the kernel (figure 1(c)). In this
case, it notifies the userspace applications about changes (e.g.,
topology) and provides an high level interface to manage the
network.

IV. OFFLOAD ENGINE

Fig. 2. The SDN/OpenFlow controller offloading architecture.

The figure 2 shows the offload engine architecture. Log-
ically there are three main levels in the offload architecture:
in-kernel controller that is responsible for communication with
switches, shared data structures that are used to pass informa-
tion to the userspace, and an userspace network application
itself.

The in-kernel has three-tier architecture:

• Server. Server thread listens to a socket, accepts new
connections from switches and distributes connections
between frontend and backend threads.

• Frontend. Frontend threads initialize connections and
check their correctness: openflow version, hello, fea-
tures reply. The correctness of headers are checked for
every messages in the input buffer until a features re-
ply OpenFlow message will be sent. If all verification
is done, connections move to backends.

• Backend. Backend threads work with switches and
applications. They do the main job on sending and re-
ceiving OpenFlow messages. Inside the thread we use
poll() to wait for changes in the sockets’ descriptors.

Applications running in the userspace communicates with
backends through shared data structures. Each backend thread
has its own shared data structures. So, to get full speed
the userspace application must be multithreaded with the
number of threads equal to the number of backends threads
in the kernel space, N threads app = N threads kernel.
If N threads app < N threads kernel an application will
not able to show full power and to process all events coming
from the network. If N threads app < N threads kernel
an application would need to have additional locking mech-
anism to access to shared backends data structures and thus
don’t get the full speed either.

Currently multiple applications have to subscribe to dif-
ferent type of OpenFlow messages because we don’t store
multiple copies of the messages.

Fig. 3. Packet In queue organization scheme

There are two types of shared data structures in backend
threads:

• Buffer. All incoming and outgoing raw OpenFlow
messages are stored in input and output buffers
correspondingly. All buffers are reachable from the
userspace through memory mapped regions.

• Queues. The data queue is designed to hold pre-parsed
OpenFlow messages (see figure 3). For instance, for
PacketIn message it holds the following information:
source port, xid, bufferid, dpid, ethernet frame (offset
and size). An ethernet frame itself resides in input
buffer. The control queue is used for communication
between kernel and userspace part. In the driven mode,
this queue is also used for passing information from
the services.
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Fig. 1. The basic offload procedure: (a) userspace mode, (b) pass-through mode, (c) driven mode, (d) kernel mode.

From the programming prospective an application’s threads
open /dev/ctrl and issue an ioctl() to register in controller.
Controller queues and OpenFlow packets are in an mmap()
region with well defined ownership, so that lock free access is
possible.

The poll() returns the following flags:

• POLLIN indicates new events in the data queue (e.g.,
new packet-in message)and the control queue.

• POLLRDNORM means there are events only in the
data queue.

• POLLRDBAND means there are events only in the
control queue.

• POLLOUT says all input events have been processed.

A kernel thread reads data from socket and fills buffers,
while user application thread reads data from queues and fills
output buffer. The kernel thread waits while user application
processes all input messages. When the application is done, it
calls write() function. After that the kernel thread wakes up and
finally sends output messages to appropriate switches. Note to
speed on application and to decrease network overheads the
output message buffer are flushed either by timer in the kernel
space or by the application itself. The last option is preferable
for fast I/O throughput.

The example below shows the userspace L2 learning
switch application that communicated with in-kernel controller
through memory API.

fds.fd = open("/dev/ctrl", O_RDWR);

fds.events = POLLIN|POLLOUT;

// get memory mapped region size

mem_size = get_memory_size(fds.fd);

// mapping the memory

p = mmap(NULL, size, PROT_READ|PROT_WRITE,

MAP_SHARED, fds.fd, 0);

// registering the application

app_thread_registration(p->thread_number);

// subscribing to packet-in messages

subscribe_packet_in();

// communicating with in-kernel controller

rx_q = &(p->rx_q);

while (1){

// reading latest events from the kernel space

ret = poll(&fds, 1, 2000);

// nothing to do, wait

if (ret == 0) continue;

if (ret > 0){

// new packet_in messages, process them as

l2 learning

if (fds.revents & POLLIN){

for (; rx_q->avail > 0 ; rx_q->avail--){

l2(rx_q->id, p->thread_number, rx_q->cur);

rx_q->cur++;

}

continue;

}

// the output buffer is full, then send all

data to switches

if (fds.revents & POLLOUT){

write(fds.fd, &p->thread_number,

sizeof(int));

continue;

}

// kernel space is off

if (fds.revents & POLLERR)

error("userpace-kernelspace

communication failed")

}

The driven mode becomes possible when we have im-
plemented pass-through mode and measured that while the
userspace thread is 100% loaded, the dedicated kernel thread
is only 25% loaded. This observation shows the kernel threads
might perform some additional useful functions. This list in-
cludes topology discovery, endpoint tracking, dynamic routing,
working with some dataplane control protocols like ARP. We
add additional type of data and control messages in order
tu push changes and information to applications’ threads.
Applications can send requests through control queues or read
push in changes from data queues [service, type, data].
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V. EXPERIMENTAL EVALUATION

Our experimental evaluation consists of two parts. The first
part is performance evaluation of pass-through mode of the
OpenFlow controller where the goal is to measure I/O over-
heads on offload engine and kernel/userspace communications
based on L2 learning application. The second part is for driven
mode based on L3 forwarding application in order to use a
topology service.

A. Pass-through mode evaluation

For performance evaluation we use the methodology de-
scribed in [4]. There we used only one 10Gb channel and
on cbench because no one controller was able to process all
messages from the channel. In our case, we need two 10Gb
channels and two cbench’es. Finally, the test-bed consists of
two servers connected with two 10Gb links and two cbench’es
generating the packetin messages over these two links.

Figure 4 and Table 1 shows the renewed throughput and
latency numbers for the existing controller against the pure in-
kernel controller and the in-kernel controller in pass-through
mode. The throughput of the pure in-kernel controller is almost
30M flow per second that is 5 times faster than all others. The
throughput of the pass-through in-kernel controller is lower
with 15M flow per second but it’s still 2.5 times faster than
others. The latency of the pure in-kernel controller and the
pass-through controller are 45us and 50us, respectively.

Fig. 4. The average throughput achieved with different number of threads
(with 32 switches, 105 hosts per switch)(Intel(R) Xeon(R) CPU E5645
2.40GHz)

In-Kernel 45
Pass-through 50
NOX 91

POX 323

Floodlight 75

Beacon 57

MuL 50

Maestro 129

Ryu 105

TABLE I. THE MINIMUM RESPONSE TIME (10−6 SECS/ FLOW)

B. Driven mode evaluation

The controller run L3 forwarding application (calculating
the path between two hosts using Dijkstra algorithm) in the
userspace and topology discovery services in the kernel space.

We measured the time required for initial topology dis-
covery in the driven mode and the userspace mode. We used
mininet to create an OpenFlow network with a tree topology
of depth 3 and fanout 3 (i.e 27 hosts, 13 switches, 39 links).
It takes 24ms in the userspace mode and 5ms in the driven
mode to find out the whole topology. The Beacon controller [8]
requires almost 55ms to discover this topology.

We also tried to use the ten physical servers running two
instances of Open vSwitch connected with different topologies.
The times are slightly less but still different in 4 to 5 times.

Comparing path calculation procedure we measured the 3-
4 times difference: 10ms in the userspace mode and 2ms in
the driven mode.

VI. CONCLUSIONS

Such offloading mechanism accelerates the most time con-
suming and frequently used parts of the OpenFlow controller
using the Linux kernelspace. This allow us to easily create high
performance network application. The proposed architecture
can be easily extended with other services like verification,
link status monitoring, etc. Further work will include the
development of new services and simplify API between the
kernel space and the userspace.

Our in kernel offloading implementation shows high per-
formance number comparing with existed controllers. The
userpace application is still 2.5 times faster with 15M flows per
second. Services might be speed on up to 5 times by moving
them into the kernel side.

Our approach is the future of previous approaches to
inkernel HTTP servers that were only able to return static data
to user requests [9].

ACKNOWLEDGMENT

This research is supported by the Skolkovo Founda-
tion Grant N 79, July, 2012 and the Ministry of edu-
cation and science of the Russian Federation, Unique ID
RFMEFI60914X0003.

REFERENCES

[1] M. Casado, T. Koponen, D. Moon, S. Shenker. Rethinking Packet
Forwarding Hardware. In Proc. of HotNets, 2008

[2] T. Benson, A. Akella, D. Maltz, Network traffic characteristics of data
centers in the wild, IMC, 2010

[3] Netmap, info.iet.unipi.it/∼luigi/netmap/

[4] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, R. Smeliansky,
Advanced Study of SDN/OpenFlow controllers, Proceedings of the CEE-
SECR13: Central and Eastern European Software Engineering Confer-
ence in Russia, ACM SIGSOFT, October 23-25, 2013, Moscow, Russian
Federation

[5] A. Shalimov, R. Smeliansky, On Bringing Software Engineering to
Computer Networks with Software Defined Networking, Proceeding of
the 7th Spring/Summer Young Researchers’ Colloqium on Software
Engineering (SYRCoSE 2013), May 30-31, 2013, Kazan, Russia

[6] Advait Dixit, Towards an Elastic Distributed SDN Controller, Proceeding
of the ACM SIGCOMM HOTSDN 13, Hong Kong.

[7] P. Ivashchenko, A. Shalimov, R. Smeliansky, High performance in-kernel
SDN/OpenFlow controller, Proceedings of the 2014 Open Networking
Summit Research Track, USENIX, 2014, Santa Clara

[8] David Erickson, The Beacon OpenFlow Controller, Proceeding of the
ACM SIGCOMM HOTSDN 13, Hong Kong.

[9] kHTTPd - Linux HTTP accelerator, http://www.fenrus.demon.nl/

146



Queuing Systems with Multiple Queues and Batch 

Arrivals for Cloud Computing System Performance 

Analysis 

S. Shorgin, A. Pechinkin 

Institute of Informatics Problems 

Russian Academy of Sciences 

Moscow, Russia 

sshorgin@ipiran.ru, apechinkin@ipiran.ru 

K. Samouylov, Y. Gaidamaka,  E. Sopin, E. Mokrov

 Telecommunication Systems Department 

Peoples’ Friendship University of Russia 

Moscow, Russia 

{ksam, ygaidamaka}@sci.pfu.edu.ru,  

{sopin-eduard, melkor77}@yandex.ru 

Abstract— Cloud computing became a popular computing 

technology, that provides efficient resource utilization to deliver 

IT services. Each user requests cloud computing system for use of 

resources. If the system is busy, then user needs to wait until 

current user finishes the job. This may result in waiting time 

increase and drop of request Thus, cloud computing service 

provider needs tools to evaluate and reduce waiting and 

processing times. In the paper, each request is assumed to consist 

of several independent sub-requests according to the number of 

virtual cloud servers in the system. All sub-requests of the same 

request arrive simultaneously and each server receives exactly 

one sub-request in its queue. One of the main performance 

measures of cloud computing system is a maximum waiting and 

processing time of all sub-requests, which is called response time 

of the request. In order to evaluate this characteristic, we develop 

a model in terms of queuing system with multiple queues and 

batch arrivals. We provide algorithm to obtain steady-state 

probabilities that allow evaluating various performance 

measures.   

Keywords—cloud computing, batch arrivals, queuing system. 

I.  INTRODUCTION 

Cloud computing is a new approach to computing 
infrastructure formation. Investment to computing resources 
was one of the main items of expenses for majority of 
organizations so far. Using cloud computing services, these 
expenses may be considered as operational costs. Cloud 
computing system includes network devices, computing 
resources and data repositories that may be located faraway 
from each other. Operator of cloud computing system 
combines all these components to form unified computing 
infrastructure [1-4]. 

In the paper, we propose mathematical model of cloud 
computing system is terms of multiple-server multiple-queue 
queuing system with batch arrivals. Similar model with focus 
on optimal power balancing and ordinary arrival of requests 
was investigated in [5]. Under the assumptions of Poisson 
arrival process and exponentially distributed service times we 

derive two computing method for steady-state probabilities. 
First one is based on transition rate matrix of corresponding 
random process [6]. It is shown that transition rate matrix has 
block-diagonal structure that allows solving system of 
equilibrium equations using well-known numerical methods. 
Second algorithm is based on elimination method described in 
[7]. Finally, we provide evaluation of system response time, 
which is one of the most important performance measures of 
cloud computing system. 

The rest of the paper is organized as follows. Section II 
gives brief description of mathematical model. Section III 
provides computing methods for steady-state probabilities. In 
Section IV numerical analysis results are presented and Section 
V concludes the paper. 

II. MODEL DESCRIPTION

We study a cloud computing system with K  vendors 
included. A request sent by user to the system, is split into K  
sub requests and each vendor serves one sub request. As soon 
as vendor finishes sub request processing, it reports user. It is 
considered that the system responded to a request when all 
vendors finish processing their sub requests. 

 In order to analyze cloud computing system behavior, we 
consider K -server queuing system with separate queue for 
each server. Customers arrive in batches with exactly K  
customers in a batch. Batch arrival process is assumed to have 
Poisson distribution with rate   and customer service time to 

be exponentially distributed. Denote k  response time of 

subsystem k, and according to [5] the total response time of the 
whole system can be calculated by the following equation: 

 k
Kk





1
max  

Let us denote kr  - buffer capacity of server k and k  - 

service rate of server k. Figure 1 illustrates the proposed model. 

This work was partially supported by the RFBR, research project No. 14-
07-00090. 
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Fig. 1.  Multiple-server queuing system with batch arrivals. 

Let )(tnk  be the number of customers in subsystem k at 

time 0t , kk Rtn  )(0 , where 1 kk rR  is capacity of 

subsystem k, 1,k K . System behavior is described by 

random Markov process  ))(,),(()( 1 tntnt КN  with the 

following state space: 
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Denote  mnm  : n  - a subspace of states with 

exactly m customers  Rm ,1 . It can be easily proved that the 

state space of Markov process  )(tN  can be expressed in the 

following form: 
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where k
nC  is binomial coefficient. 

III. STEADY-STATE PROBABILITIES 

In this section, we provide computing method for steady-
state probabilities of the considered system. 

A. Transition Rate Matrix Based Method 

Let A  be a transition rate matrix for the Markov process 

)(tN  and k
Kk

R
,1

max


  - maximum possible value of vector 

n  elements. Denote   121 ),,,(1   Knnnn  - a 

number composed of vector n  elements and expressed by 
numeration system with number base 1 . It can be shown 

that value of  1n  in decimal number system can be 

calculated as follows: 
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We introduce following lexicographic order on state space 
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Fig. 2.  Transition rate matrix A  with block-tridiagonal structure 
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Considering lexicographic order (4), transition rate matrix 
has block-tridiagonal structure (Fig. 2), where  
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Steady-state probabilities ),,,( 21 
 R

T
pppp  can be 

obtained by solving system of equilibrium equations, which 
can be written in following form considering block-tridiagonal 
structure of matrix A : 
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where  

),,,( 1-)1(1)()(   mxmxmx
T
m pppp  mmx )( 

Numerical solution of equations (5)-(8) and normalizing 
condition give steady-state probabilities distribution for the 
considered model. 

B. Elimination method 

Let ,2,1, ntn , be instants, at which arrival or departure 

of a customer occurs. Then system states at 

  ,2,1,0  ntn , instants form an embedded Markov chain 

)(
~

tN  with same state space M , . Let π  be a vector of 

steady-state probabilities of )(
~

tN . 

Transition probability matrix Q  of the Markov chain )(
~

tN  

can be obtained from the transition rate matrix A  of process 

)(tN  using following equations: 
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Then we start to eliminate spaces of the original Markov 

chain )(
~

tN  sequentially, beginning with the greatest number 

state. At the first step, we receive a new Markov chain )(
~ )1( tN  

with state space 1, )1()1(  M  and a modified transition 

probability matrix 
)1(

Q : 
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At the s-th step, we have a Markov chain )(
~ )( ts
N  with 

state space sMss )()( ,   and following matrix )(s
Q : 
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The transformation is repeated 2M  times, until there is 
only two states left. Stationary probabilities of the Markov 

chain )(
~ )2( tM
N  satisfy the balance equation  
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It is shown in [7] that steady-state probabilities of )(
~ )( ts
N  

and )(
~ )( tv
N  are same accurate within a constant. Therefore, 

assume 1~
1   and using relations between stationary 

probabilities of Markov chains 2,1),(
~ )(  Msts
N , we can 

calculate stationary probabilities of initial chain )(
~

tN  accurate 

within a constant: 
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Then, we use normalizing condition to calculate stationary 

probabilities of initial Markov chain )(
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IV. NUMERICAL RESULTS 

In this section, results of numerical analysis are presented. 

We set 8,1 ,6,1 ,4,1 ,3,3 321321  µµµrrrK  and 

calculate mean value of cloud computing system response time 

E  for various load intensities k
Kk





1
max , where 

Kkkk ,1,/   . Mean response time kE  of subsystem 

k can be evaluated using Little’s formula: 




 k
k

N
E   

where kN  is mean number of customers in subsystem k, and 

system response E  time is calculated by equation (1). 

Computing results for our model are compared with results 
of simulation model of finite capacity queuing system with 
batch arrival. Figure 3 shows that computational algorithm 
described in Section 3 provides almost the same mean response 
time value as simulation model. 

Figure 3 also provides mean response time for infinite 

capacity system ( Kkrk ,1,  ). Infinite capacity model 

gives lower bound of response time for low load intensities 
( 5.0 ), but at higher values of   response time sharply 

increases. The reason of this effect is absence of customer loss 
in infinite system. 

Fig. 3. Cloud computing system mean response time. 

V. CONCLUSION 

In our work, we developed analytical model of cloud 
computing system in terms of multi-server queue with batch 
arrivals. For the considered model, two computational 
algorithms for stationary probability distribution are provided. 
Numerical analysis showed that stationary probabilities and 
performance measures calculated according to these algorithms 
are close to simulation results. 

Our further research will be devoted to development and 
analysis of cloud computing model with dynamic scaling and 
nondeterministic batch size. 
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Abstract—This paper comprehensively reviews the paradigm 

of mobile cloud computing, which comprises advantages of 

mobile computing, cloud computing, and networking. We 

systematically overview the major benefits offered to mobile 

cloud computing by the anticipated fifth-generation wireless 

technology, including the aspects of heterogeneous connectivity, 

device-to-device and machine-to-machine communications, as 

well as energy efficiency. Our work concludes by revealing open 

challenges as well as attractive directions for further research 

and may be useful for initial orientation in this field. 
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I.  MODERN MOBILE CLOUD COMPUTING 

Today, increasingly capable mobile devices, represented by 
advanced smartphones and tablets, are employed to aid people 
in their daily routines, from communication and social 
interaction to storing and processing their important private 
information. With handheld device industry now becoming a 
150-billion-dollar business, we witness an unprecedented 
diversity of mobile applications and services across both 
consumer and enterprise markets. To this end, mobile 
computing has already developed into a crucial technology 
allowing us to access information and data anytime, anywhere. 
However, given limited bandwidth, battery life, and storage 
capacity of current user equipment, cloud computing has 
recently emerged as the aggregation of computing capability to 
augment the contemporary computing infrastructure. 

A. The potential of cloud computing 

Cloud computing generally offers on-demand provisioning 
of various applications, platforms, and heterogeneous 
computing infrastructures [1]. Given the scale of its use today, 
from entertainment, gaming, travel, and news to healthcare, 
business, and social networking, we expect cloud computing to 
eventually evolve into the Internet of Services (IoS) [2]. With 
IoS, everything that exists on the Internet today may be 

represented as a service and then delivered to the end user. 
Together with Internet by and for the people and the Internet of 
Things (IoT), the IoS is believed to pave the way for the future 
networked society, where “people, knowledge, devices, and 
information are networked for the growth of society, life, and 
business” [3]. 

The important structural components of the IoS are (i) 
Software as a Service (SaaS), enabling on-demand access to 
any application, (ii) Platform as a Service (PaaS), providing 
platform for construction and delivery of applications, and (iii) 
Infrastructure as a Service (IaaS) offering on-demand 
computing networking, and storage infrastructures. Ultimately, 
diverse applications will be delivered as services over the IoS 
infrastructure, whereas the hardware and systems software of 
data centers will be used to provide those services. Here, a vital 
ingredient for the cloud providers to maintain the scalability of 
their services as well as to improve the associated operational 
efficiency is the virtualization of cloud resources. 
Consequently, cloud operators increasingly rely on commodity 
hardware implementations by means of network function 
virtualization (NFV) and software defined networking (SDN). 

B. Towards mobile cloud computing 

Located at the intersection of mobile computing, cloud 
computing, and networking, mobile cloud computing (MCC) 
inherits the attractive benefits of mobility, communication, and 
portability [4]. It promises to significantly extend the battery 
lifetime of mobile user devices, improve their data storage 
capacity and processing power, as well as augment the 
reliability [5]. Therefore, it comes as no surprise that cloud-
based mobile solutions have grown into a 10-billion-dollar 
market having applications in image and language processing, 
sharing Internet data, crowd computing, multimedia search, 
sensor data applications, and social networking.  

Unfortunately, unpredictable user movement in mobile 
clouds may lead to frequent reconnections and hence brings 
along the major limitations of MCC, such as unstable 
connectivity, resource scarcity, and finite energy supply [6]. 
Therefore, considerable progress has to be made in 

This work was partially supported by the RFBR, research project No. 14-
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communications technology before the MCC challenges could 
be met satisfactorily. Many, however, believe that recent 
advances in wireless connectivity hold a promise to mitigate 
the most pressing demands of MCC [7]. In what follows, we 

review the latest developments in wireless communications 
technology and concentrate on its capabilities to unveil the 
full potential of future MCC. Our ultimate goal is thus to 
provide a comprehensive overview suitable for initial 
orientation in this exciting area, as well as speculate on 
associated research challenges that lie ahead. 

II. FIFTH GENERATION COMMUNICATIONS TECHNOLOGY 

 Current wireless systems are struggling to meet the 
anticipated acceleration in user traffic demand aggravated by 
the rapid proliferation in cloud-based services and applications. 
With the expected 13-fold growth of mobile data over the next 
five years, mobile network operators are challenged with the 
need to significantly improve capacity and coverage across 
their wireless deployments. To augment the existing cellular 
technology, mobile industry is taking decisive steps in many 
aspects of fifth generation (5G) wireless system design; some 
of them summarized in the course of our review. 

A. Heterogeneous multi-radio multi-cell connectivity 

It is a common belief that 5G wireless systems will not be a 
universal one-size-fits-all solution, but rather become a 
converged set of various radio access technologies (RATs), 
integrated under the control of the operator’s cellular network. 
Along these lines, the paradigm of heterogeneous networks 
(HetNets) has been introduced as a next-generation networking 
architecture (see Figure 1) enabling aggressive capacity and 
coverage improvements towards future 5G networks [8]. 
Today, HetNets already comprise a hierarchical deployment of 
small cells, on various scales and by different RATs, for 
capacity together with macro cells for ubiquitous coverage, 
control coordination, and seamless mobility [9]. 

 

Fig. 1. Envisioned architecture of a 5G wireless system. 

An important recent trend in HetNets is the increasing co-
existence between cellular (e.g., 3GPP LTE) and local area 
networks (e.g., IEEE 802.11 a.k.a. WiFi) [10]. By contrast to 
cellular technology residing in expensive licensed spectrum, 
WiFi employs unlicensed frequency bands and thus may be 
preferred for opportunistic offloading of the cellular network 
traffic [11]. Additional benefits of WiFi stem from the fact that 
it exists in the multitude of forms (from conventional IEEE 
802.11n and high-rate 802.11ac solutions, to mmWave 
802.11ad systems, to low-power 802.11ah technology). 
Motivated originally by the operators’ desire to relieve 
immediate congestion on their networks, the use of WiFi is, 
however, likely to remain in the mainstream of 5G 
development, with integrated small cells (employing co-located 
LTE and WiFi interfaces) flooding the market soon.  

To facilitate integration of WiFi under the control of the 
cellular network, the 3GPP standards community is developing 
flexible lower-layer coordination mechanisms already for the 
Release 12 of LTE technology. Such control procedures reside 
on the radio access network (RAN) level and allow to, e.g., 
dynamically balance the loading of the associated RATs and 
even enable their simultaneous operation, when user equipment 
transmits on several radio interfaces [12]. The fine-grained 
control schemes employing RAN-level assistance are expected 
to deliver improved performance to future HetNets by 
enhancing them in many ways, from advanced RAT discovery 
and real-time network selection [13] to multi-RAT radio 
resource management, mobility, and session transfer functions. 

B. Network-assisted device-to-device communications 

Whereas deploying an increasing density of multi-radio 
small cells becomes the mainstream direction toward the 5G, 
network densification naturally implies considerable capital 
and operational expenditures to install and manage the extra 
base stations. Therefore, dense HetNets may sometimes require 
prohibitive investment from the network operators thus making 
them seek for alternative methods to offload cellular network 
traffic. Moreover, handling a network with multi-RAT small 
cells of different sizes may incur significant challenges in 
cross-cell interference coordination, as well as result in very 
complex control procedures for network assistance. 

Fortunately, there is an alternative solution to offload some 
of the cellular traffic onto direct device-to-device (D2D) radio 
links as these are typically shorter and thus more spectrally 
efficient than the conventional small cell connections [14]. 
With much of the current mobile traffic growth coming from 
peer-to-peer applications and services, which typically involve 
people in close proximity, the benefits of D2D communications 
for data offloading are becoming increasingly attractive [15]. 
While D2D-based operation does not employ broadband 
infrastructure for transferring user data, cellular connectivity 
may still help by providing assistance with device discovery, 
D2D connection establishment, and service continuity. All in 
all, D2D technology can alleviate cellular congestion without 
the cost of additional networking infrastructure thus having the 
potential for new service revenues [16]. 

Direct connectivity may potentially exist in two different 
forms: as licensed-bands D2D (a.k.a LTE-Direct), when direct 
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links between devices employ cellular spectrum, and 
unlicensed-bands D2D, utilizing other RATs than cellular for 
direct connections (e.g., over WiFi-Direct). The former 
solution is attractive as the cellular network has full control 
over the in-band D2D links [17], but it also requires significant 
intelligence to coordinate simultaneously running user 
transmissions and mitigate harmful interference between them, 
which does not exist in the standards today. Given the slow 
progress of respective study and work items in 3GPP (as the 
result of numerous technical challenges), we do not expect 
LTE-Direct technology on the market for several years to 
come. However, research on this topic becomes very timely 
and is steadily getting momentum worldwide. 

An alternative to licensed-bands D2D communications is to 
connect proximate devices over the unlicensed frequencies, 
that is, by employing WiFi or Bluetooth technologies. Whereas 
there is a possibility to communicate over WiFi/Bluetooth also 
without centralized assistance, there are numerous ways in 
which cellular infrastructure may help improve otherwise 
uncoordinated connectivity [18]. Indeed, given that the lion’s 
share of current user equipment is multi-radio devices capable 
of running simultaneous LTE and WiFi connections, the 
control coming from the cellular network may improve session 
continuity, reduce user contention, and facilitate security 
procedures. Therefore, investigation of unlicensed-bands D2D 
connectivity remains an attractive research area. 

C. Convergence with Internet of Things 

The complications of HetNets and D2D connectivity 
between people are aggravated today by the challenges coming 
from the integration with the IoT infrastructure [19]. As 
numerous unattended wireless devices (sensors, actuators, 
smart meters, etc.) connect to the 5G network, preventive 
measures are needed to ensure that their uncontrolled 
transmissions do not disrupt conventional communication [20]. 
Along these lines, wireless industry has been designing 
overload control mechanisms to protect priority human-centric 
communication. With respective procedures standardized 
previously for Release 11 of 3GPP LTE, the research 
community has now moved forward with the goal to enable 
efficient IoT operation [21]. 

Accordingly, it is widely known that the characteristics of 
machine-to-machine (M2M) or machine-type communications 
(MTC) are drastically different from those of human-generated 
traffic. With small and infrequent data patterns typical for 
MTC, the network needs additional mechanisms to carry such 
traffic with low overheads and high energy efficiency. This 
need is becoming especially pronounced in cellular systems, 
such as LTE, which have been historically optimized for 
streaming session-based traffic [22]. To make matters worse, 
the stringent delay and reliability requirements of industrial-
grade MTC applications accentuate the need for further 
aggressive improvements, which are currently an extremely 
active discussion topic in the standards. 

D. Energy-efficient and green networking 

Both human- and machine-centric communication require 
efficient mechanisms to improve energy efficiency over the 
current levels due to the limited battery lifetime of mobile 

handheld devices. Whereas spectral efficiency has been the 
dominant topic in network optimization over the past decades, 
the focus of the recent research efforts has been shifting toward 
“bits-per-Joule” and “throughput-per-Joule” metrics, as 
demanded by small form-factor user equipment, where wireless 
power consumption contributes the most to the overall power 
budget [23]. Correspondingly, the emphasis of the latest 
investigations has been put onto accounting for the transmit 
power consumption, together with the associated circuit power 
expenditures, across a multi-radio multi-cell wireless 
environment to improve over existing power allocation 
mechanisms and approach green networking [24]. 

III. SUMMARY AND OPEN CHALLENGES 

In the course of this work, we have reviewed the essential 
improvements offered by the next-generation wireless 
communications technology to enable ubiquitous MCC 
applications and services. Our study reveals that despite the 
fact that significant progress has already been made along these 
lines, additional steps are required to improve heterogeneous 
connectivity, mindful of multi-radio access technology, before 
it may efficiently satisfy the stringent MCC requirements. 
Below we briefly conclude with important directions for future 
innovation in this area. 

On the mobile communications side, further progress is 
necessary in enabling higher-bandwidth MCC architectures 
(including, but not limited to integrating mmWave access, 
massive MIMO, and ultra-dense networking technologies). 
Service quality and availability (connectivity, latency, 
mobility, energy-efficiency, etc.) need to be improved as well 
by offering more adequate mechanisms to handle heterogeneity 
in mobile devices, clouds, and wireless networks. On the 
computing side, additional challenges remain in enhancing the 
efficiency of data access, building effective context-aware 
mobile cloud services, offering more advanced architectures 
for mobile computation offloading, as well as upgrading 
security, privacy, and trust. To successfully pursue these 
challenges, the analytical modelling, by e.g., employing the 
mathematical teletraffic theory and queueing theory, is 
regarded as one of the important ways of understanding the 
effects of MCC [25-30]. 
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Abstract—Software Defined Networking, SDN, is the 

programmable separation of control and forwarding 

elements of networking that enables software control of 

network forwarding that can be logically and/or physically 

separated from physical switches and routers. The 

following important question is considered in this paper: 

to what extent can SDN–based networks address network 

security management problems? The new opportunities 

for enhancing network security brought by this separation 

are considered in the paper 
Keywords — SDN, NFV, VNF, control plane, data plane, 

network infrastructure, security, software, protocols. 

I. INTRODUCTION 

Traditionally, networks are defined by their physical 
topology i.e. how servers, switches and routers are cabled 
together. That means that once you have built out your 
network, changes are costly and complex. This type of 
networking is not compatible with the notion of a “lights-out” 
datacenter or a cloud environment that needs the flexibility to 
support varying workload demands.  

Security in networks is usually treated as а consistent 
solution of three problems: confidentiality, integrity and 
availability of resources. The term "resources" is interpreted in 
the broadest sense. It could be physical resources, it may be 
logical resources (software) and it can be information resources 
(data). 

Under the Software Defined Networking approach, the 
software can dynamically configure the network, allowing it to 
adapt to changing needs. An SDN-based solution can 
accomplish several tasks: 

 Create virtual networks that run on top of the physical
network. In a multi-tenant cloud virtual network might
represent a tenant’s network topology complete with the
tenant’s own IP addresses, subnets, and even routing
topology. Through SDN virtual networks can be created
dynamically, and can support VM mobility throughout
the datacenter while preserving the logical network
topology abstraction.

 Control the traffic flow within the network. Some
classes of traffic may need forwarding to a particular
appliance (or VM) for security analysis or monitoring
(so-called Virtual Network Function (VNF)). One may
need to provide bandwidth guarantees or enforce

bandwidth caps on particular workloads. Through SDN, 
you can create these policies and dynamically change 
them according to the needs of your workloads. 

 Create integrated policies that span the physical and
virtual networks. Through SDN, you can ensure that
your physical network and endpoints handle traffic
similarly. For example, you may want to deploy
common security profiles or you may want to share
monitoring and metering infrastructure across both
physical and virtual switches.

In summary, SDN is about being able to configure end 
hosts and physical network elements, dynamically adjust 
policies for how traffic flows through the network,   

Fig. 1. Software Defined Network organization1 

and create virtual network abstractions that support real-

time VM instantiation and migration throughout the 

datacenter. SDN programmability includes not only the 

configuration of physical network elements. It is much 

broader and includes programmability of end hosts, 

enabling end-to-end software-based automation and 

ensuring the reliability in a network [1]. SDN allows to 

split the solid Data-Control Plane of a Traditional 

Architecture Network (TAN), make the network behavior 

control robust and fine grained. In the paper we will 

1Nick McKeown Moscow talks 2012. 
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examine what influence this split has on a security of 

infrastructure, software and protocol of network. 

In the following sections we consider the potential impact of 

applying SDN architecture. We begin by comparing the 

security of traditional networks (TANs) to those based on 

SDN, then go on to consider the security implications for the 

network infrastructure, software stack and network protocols.  

II. SECURITY IN TRADITIONAL ARCHITECTURE NETWORKS 

There are many areas that may be under different kinds of 

threats in TAN [14]: infrastructure, software, protocols. In 

those networks even a single compromised router can cause 

serious damage to the network and its customers. 

In a TAN where Control Plane and Data Plane are 

inextricably intertwined an intruder can attack the control 

plane from the data plane by flows of faked requests or by 

address spoofing and many others ways. So, the control plane 

isolation enhances the robustness and provides for a reliable 

network behavior. At the same time this isolation will not help 

us avoid the typical threats in the data plane like malware, 

exploring software vulnerabilities, protocols vulnerabilities in 

data plane.       

The number of geographically distributed locations with 

network equipment is growing in large heterogeneous 

networks. There are customers, who are engaged in a strong 

competition with each other. So, there is a need not just to 

protect the network from misbehavior of applications and 

customers, but to protect customers from each other, which 

implies the isolation of data plane of one customer from the 

data plane of the others. 

The term “protect” is versatile. It implies the integrity and 

confidentiality of customer’s data, protection from the 

degradation of network services (due to e.g. DDoDs) etc. 

Spurred by the rapid evolution of networking technologies, we 

are witnessing the enormous growth of Internet throughput 

and a shift from the fixed client devices towards mobile 

devices (since 2003 the number networked devices, sensors 

etc. exceed the number of PCs. We had over 1 billion 

connected smartphones already in early 2013, and only about 

200 million fixed devices). At the same time the efficiency of 

existing access control solutions is reduced [11, 12]. In terms 

of client device mobility, network configurations are changing 

rapidly and the information on network topology changes can 

no longer be used directly for access control. So the problem 

of network access control based on the information about the 

expected behavior of network applications (flows) is 

becoming more and more important. 

III. INFRASTRUCTURE 

One of the main threats in the area of infrastructure 

security is the physical access to the network devices. For 

example, in a large airport it’s impossible to guarantee the 

physical inaccessibility to the network devices. Once the 

intruder gains a physical access to the device, he/she can 

modify, replace the internal firmware of that device. An 

intruder can gain access to the network cabling as well. This is 

another example of the threat in this area. It is impossible to 

completely prevent such accesses. For example if a provider 

needs to exchange some network equipment in their network, 

no one can guarantee that the equipment on its way from a 

factory to the provider location was not modified. 

In an SDN network, the situation is different. All 

intelligence resides away from the routers and switches, inside 

SDN network controllers (see Fig. 1). The server with the 

controller can be moved into a well protect environment. 

Programmable controllers can support a set of so-called 

applications (c-application or control program on Fig. 1) 

which will supply both ordinary, traditional network services 

like routing, load balancing for congestion avoidance or DDoS 

attacks mitigation, QoS management, filtering (as ordinary 

firewalls) etc. as well as new ones such as virtualization, 

resources provisioning, monitoring etc. In the security context, 

virtualization services mean separation, e.g. one virtualized 

entity which belongs to the one virtual space, should be 

strongly separated from the other virtualized entity even the 

same type but belong to another virtual space.  We can treat 

“strongly” in two ways, depending on whether these 

virtualized entities share the same physical resources or not. 

This adds extra complexity to the routing or provisioning 

algorithms running as SDN controller applications. The source 

of this additional complexity is the dimension of the problem 

that introduces restrictions on mapping virtual entities onto 

physical resources. 

IV. SOFTWARE 

In order to evolve the Internet architecture forward, SDN 

should absorb and meet the basic principles of today’s Internet 

[7, 8]. One of the key questions here is what services should 

be placed in the control plane and which ones should be left in 

the data plane? There is no clear answer to this question yet. 

SDN would not be able to significantly enhance the security 

applications for the attacks exploiting application 

vulnerability, unauthorized code penetrations and changes i.e. 

typical attacks in data plane, which don’t involve the control 

plane.  

In an SDN network the control software (c-applications) 

is concentrated in the controllers. So, another key question is 

where SDN controller should be placed [2]. As it can be seen 

today the likely deployment presents a hierarchy of controllers 

with different responsibilities. This hierarchy should have at 

least two levels: intra-domain and inter-domain [9, 10] (see 

Fig.2). On the intra-domain level it should be a controller for 

internal domain infrastructure management, resources 

virtualization and routing. Controllers on this level issue the 

approval for resource allocation under user requests and route 

the approved flows. They play the role of infrastructure 

resource managers. For example at an airport a new airline or 

a new company may issue a request for resources. In this 

request it may describe what kind of recourses are needed, 

amounts for each kind of resources and the desired QoS. The 
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Fig.2. Multidomain SDN Architecture 

mapping of virtual resources onto physical ones is 

implemented by controllers of another kind. They issue a set 

of proper rules for the corresponding switches.  

 

At the inter-domain level the Controller and its c-

applications should support services for specific peering, 

redirections to middleboxes, traffic offloading, inbound traffic 

engineering etc. [10]. From the security point of view the most 

important services would be the dropping of flows that do not 

correspond to inter domain routing policy even if there are 

some advertised routes, as well as the blocking of DDoS 

traffic etc. 

A controller should meet the following: 

1) Controllers at the same level should have a  set of 

compatible c-applications; 

2) C-applications should be reusable by different controllers 

placed near each other; 

3) Different controller instances should be able to share the 

same instance of a c-application; 

4) A controller should be placed in a trusted environment 

and be a trusted environment for c-applications.  This 

means  

 

 as the centralized decision making point the controller 
needs to be closely monitored; 

 the c-applications and managed devices should be 
trusted entities; 

 there should be a way to make sure the controllers are 
doing exactly what the administrator actually wants 
them to do; 

 when an incident happens the administrator  must be 
able to determine what it was, recover, report the 
incident etc.; 

5) A controller should be scalable; it means that if the 

workload is growing beyond the current computational 

power of the controller, it should be able to get more 

computational power, for example by splitting its activity 

with another controller instance, placed on another 

physical resource. If a controller goes down, e.g. because 

DDoS attacks, the network goes too therefore a controller 

should be high available.  

6) If some controller instance shuts down, then some 

other controllers placed nearby should be able to take on 

those network switches, which were managed by the 

controller that was shut down. 

 

A secure c-application is another problem. Here we are 

faced with the same problem, as developers of applications for 

iPhone, Android etc. A good solution for such problem could 

be a formal description of c-application behavior [3]. It seems 

this approach will be more effective, not resource consuming 

like formal verification e.g. Model checking [4]. 

Monitoring activities in control plane and in data plane is 

another crucial function for network security which can be 

improved by SDN. As SDN switch extracts headers of all 

layers from a packet at once, the c-applications on SDN 

controller can do cross-layer analysis and monitoring of the 

traffic. This opens a way to application aware load balancing, 

fine grain security policy, application-aware flow sampling, 

routing, congestion control etc. Monitoring can help in 

separation and isolation of the virtual data planes by sampling 
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the data flows to ensure that virtualization has separated data 

flows properly, e.g. the data flows of competitors never share 

the same physical resource. It can help develop a feedback 

control loop like RTT monitoring is used in TCP congestion 

control mechanism. The close coupling and cross-layer 

awareness of the SDN-based monitoring allows to create  

novel network control applications that rapidly respond to new 

multi-vectored threats. Monitoring is an important function for 

the IPS within the enterprise network... Once an intruder is 

detected such a system should react properly up to restore the 

controller operation. It doesn’t matter what form an intrusion 

takes, e.g. unauthorized software, misbehavior c/d-application
2
 

etc. 

SDN has also strengthens security in the data plane by 

Network Function Virtualization (NFV) which is synergetic 

with SDN.  Virtualized Network Function is controlled and 

placement managed by SDN controller from the control plane.  

SDN controller can route a flow through a VNF to filter the 

content of the data flow, for example to determine the level of 

malware propagation based on the monitoring information.  

To achieve this it is possible to build a chain from several 

properly selected VNFs. 

V. PROTOCOLS 

We will define protocol security as confidentiality and 

authentication. When discussing the protocol security in SDN 

environment, we will split the discussion into the following 

parts: 

 Switch-controller protocol security; 

 c-Application Protocol security; 

 Controller-controller protocol security. 

Switch-controller protocol security. According to Open 

Flow specification [15] in a typical SDN network segment 

between a switch and a controller an SSL secure connection is 

used. SSL provides the basic level of security and that may not 

be sufficient in a real world SDN deployment (requiring for 

example, more advanced cryptographic protocols:  IPsec, 

Kerberos and etc.). These encryption techniques may be 

sufficient for Data Centers, but would not be appropriate for 

WAN networks or Autonomous Systems. We must note that 

Open Flow protocol does not meet the AAA requirements – 

Authentication, Authorization and Accounting. SDN 

controller has to be sure that it communicate with a proper 

SDN switch and vise verse. This is an example of the 

Authentication problem. SSL as a solution is bulky and 

awkward. It has all the problems related to key management, 

which are added to increased costs and delays associated with 

encryption [5, 6]. Because of that this mechanism of 

authentication in Open Flow protocol is turned off in many 

switches. What is needed is a more light-weight and easy-to-

use mechanism. The possible candidate could be mpOTR 

protocol [16] which satisfies the following requirements: 

                                                           
1  d-application means an application which operate in data plane. 

message encryption - no one else will be able to read the 

message; authentication buddies - confidence in the peer 

identity; perfect forward secrecy - if you lose the secret keys, 

the previous correspondence is not compromised; possibility 

of repudiation - a third person cannot claim that the messages 

to another recipient were written by someone else. The last 

point is important, as  to not let a third party discover where 

the SDN controller is placed.  

The authorization problem means the SDN controller is 

allowed to apply specific commands to the switch. There is 

currently no such mechanism in the OF specification.. The 

role of authorization mechanism should play a tool, which 

controls and validates the rules loaded into the OF switch for 

correspondence to forwarding policy of an appropriate tenant. 

Accounting can be described as a way of classifying, 

recording, and reporting events to facilitate effective 

monitoring activity. OF specification requires to support 40 

counters for monitoring purposes. There are  32 counters 

treated as optional from them. It is impossible to change the 

semantics of these counters or add some new one if you need. 

For example, there is only one way to get application 

awareness through port number. But it is unlikely to be a 

reliable and secure way to do this. 

c-Application protocol security. One of the problems is 

whether the existing solutions are sufficient and are they 

different for SDN c-applications? One such point is how 

encryption keys could be bootstrapped into a proper place in a 

secure way [13]? As another example, at first it may appear 

that a native place for traffic analysis is the c-application over 

the controller. But controller applications focus only on 

network packet header analysis. Since it requires forwarding 

the entire packet payload to controller over the typically low-

bandwidth control channel, it is not recommended to put deep-

packet inspection functions on the controller. The payload 

must never be inspected on a controller side because there is a 

risk that the controller will be the victim of an attack, for 

example, on the mechanisms of main memory manipulation 

like shell code. Instead, it should be done by a VNF in the data 

plane, to which a controller directs selected traffic. Another 

question here is, should the consideration of c-application 

protocol security include the communications with 

applications in the data plane (d-application)? On the one 

hand, the answer should be NO, because then we lose the 

separation of control plane from the data plane, which is one 

of the important points of SDN approach towards security. 

With the separation in place, there is no way to attack control 

plane from the data plane. However the communication 

between c-applications and d-applications can be desirable e.g. 

to let d-applications supply the requirements for QoS to c-

application. 

Controller-controller protocol security. In the near future 

SDN controllers will run in a local distributed computer 

environment like server clusters. In such cases SSL/TLS 

protocols could be used to protect the communication channel. 

The major component of a distributed controller is the 

protocol used for coordination among several controllers 
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instances in a local environment. Such a protocol can operate 

in one of two ways: out-of-band, and in-band. In the out-of-

band case, a dedicated control network among controllers is 

used and there is no need for additional network protection. In 

the in-band case, it is important to provide a secure logical 

channel to forward data among controllers. In the case of 

WAN or MAN environment, the controller communications 

will have two cases mentioned above. If the protocol runs in 

the data plane it will require new sophisticated security 

techniques which come with performance and configuration 

overhead penalties. We must always keep in mind, that 

simplicity is power. 

When considering SDN security in the case of a WAN, 

we have to understand that a controller would be an extremely 

desirable target for an intruder. This brings us to the 

fingerprinting problem, which asks if it is possible to know, 

whether you  operating in TAN or in SDN environment based 

on e.g. delays, experienced by packets or other indirect 

measurements of the behavior of the flows traversing the 

network [16]. There is no the clear answer on this question so 

far. If the answer will be positive then the next question would 

be what way to identify the SDN controller location?  

VI. CONCLUSION

 Software Defined Networking (SDN) has developed 

rapidly and is now used by early adopters mostly in data-

centers. It offers immediate capital cost savings by replacing 

proprietary routers with commodity switches and controllers; 

computer science abstractions in network management offer 

operational cost savings, which also bring performance and 

functionality improvements. 

An SDN network has a lot of advantages for network 

security especially in physical security of network equipment. 

Splitting data plane and control plane allows for robust and 

fine-grained control of the applications. However a lot of 

additional research has to be done, especially in SDN software 

area. The example of one such area is the security of the 

protocols in switch-controller and controller-to-controller 

communications. 

The major opportunity for the SDN approach is 

convenient and flexible configuration of packet forwarding 

policies. Using the functionality of OpenFlow protocol, we 

can configure forwarding of specific traffic types to go 

through special network points and also to verify that all the 

network packets come through these specific points. This 

feature promises a lot of opportunities for network security, 

but still requires additional research. 
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Abstract—The emergence of virtualization and security 

problems of the network services, their lack of scalability and 

flexibility force network operators to look for “smarter” tools for 

network design and management. With the continuous growth of 

the number of subscribers, the volume of traffic and competition 

at the telecommunication market, there is a stable interest  in 

finding new ways to identify weak points of the existing 

architecture, preventing the collapse of the network as well as 

evaluating and predicting the risks of problems in the network. 

To solve the problems of increasing the fail-safety and the 

efficiency of the network infrastructure, we offer to use the 

analytical software in the SDN context.  

Keywords—software-defined networking; sdn; software system; 

application programming interface; smart tool; big data; analitics; 
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I.  INTRODUCTION 

In recent years the explosive growth of the number of 
subscribers in computer and mobile networks, the emergence 
of new smart devices and applications have led to a significant 
increase of the network traffic. The growth of the mobile 
traffic proportion, network connection speed and many other 
factors result in qualitative changes in the Internet [1]. 

The existing architecture of the global network was not 
designed for the actual volumes of information. New 
technologies and network services complicate network 
structure and impose heavy demands on the communication 
channels organization and the network resource management. 
A list of these requirements is being expanded and updated, 
gradually creating a gap between the currently applied 
solutions and real needs of customers. The advent of 
virtualization and security problems of the network services, 
their lack of scalability and flexibility force operators to look 
for more "intelligent" tools for network design and 
management. 

The traditional model of operator networking is static. It 
aims to solve common tasks and cannot provide a flexible 
approach to the implementation of individual schemes of the 
network service providing [2]. With the software-defined 
networks (SDN), a new approach to networking, providers 
received a powerful tool for the network infrastructure 
realization. The key idea of separating the control plane and 
the data transmission eliminates the traditional model in favor 

of efficient and flexible solutions. The use of the SDN will 
reduce the cost of deploying and maintaining the networks and 
intranet services, enhance the ability to provide unique 
services, making a technological basis for new business 
interactions. 

With the continuous growth of the number of subscribers, 
the volume of traffic and competition at the 
telecommunication market it is extremely important for 
operators to promptly respond to various changes in the 
infrastructure and the network topology. It rouses interest for 
finding new ways to identify the weak sides of the existing 
architecture, to prevent the collapse of the network by correct 
load balancing, to evaluate and predict the risks of any 
problem situations in the network. In recent years, with the 
growth of computing power and technology in the field of 
processing big data, the development of software tools for 
analyzing various systems and processes is significantly 
accelerated. 

The software system designed for the German national 
team to the World Cup 2014 can serve as an abstract example 
of success in this area. With the help of various means of 
monitoring this system collects all sorts of information about 
the players: the number of taps, the average time of ball 
possession, distance, running speed and changes of movement 
direction, and much more. The data collection results in a 
report on the effectiveness of the players, allowing to identify 
their strong and weak points. Thanks to the conclusions, the 
concrete and tangible result has been produced - the average 
time of possession has been reduced from 3.4 seconds in 2010 
to 1.1 second in 2014. 

To solve the problems of increasing the fail-safety and the 
efficiency of the network infrastructure, we offer to use an 
analytical software in the SDN context. The presence of a 
convenient tool for checking the current state of the topology, 
the existence of "bottlenecks", opportunities and conditions for 
the connection of new subscribers will reduce the cost of the 
maintenance of the network and increase its reliability. 

II. OVERALL DESCRIPTION

Based on the described problem, we came to the 
conclusion that there is a need to develop a software system 
that enables a comprehensive analysis of the state of a 
software-defined network. The key points that allow creating 
tools, that perform the network configuration and its 
monitoring from the outside, are an open application 
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programming interface (API) and a centralized control plane 
in the SDN which contains information about all network 
resources and fully controls their distribution [3]. 

With the OpenFlow protocol, the application can obtain 
information about the flow tables from all switches and 
construct a graph of the network topology for further analysis 
of its properties and specifications. Various parameters of the 
network devices and connections can be objects for analyzing 
and monitoring: 

 the number of processing flows, 

 the number of packets in a given flow, 

 the number of bytes in a given flow, 

 the number of packets that pass through a given port, 

 the lifetime of a given flow [4]. 

The result of this analysis should be a set of rules and 
heuristics dynamically created by the system that allow an 
administrator to receive early warning of any network 
problems, perform its safe reconfiguration and its 
optimization. Taking this into account, we can identify a 
number of possible applications of the tool for the analysis in 
the SDN area. 

III. COLLECTING NETWORK STATISTICS 

One of important network characteristics is its numerical 
parameters: the traffic volume, the number and speed of 
connections. The ability to monitor these parameters allows to 
create a flexible system of reporting and collecting statistics 
both in the entire network and its individual segments in a 
given time period. In turn, the analysis of these parameters in 
real time enables the administrator to control the network.  

The collection of the detailed statistics is provided by the 
OpenFlow protocol opportunities. When writing this article, 
the authors relied on version 1.4 of this protocol [4]. 

The controller can interrogate the controlled switches and 
to obtain the necessary information. For example, to obtain 
data on the work of a single flow, you can use the multipart 
request OFPMP_FLOW, which is offered by the OpenFlow 
specification. The number of bytes in the flow and the lifetime 
of the flow in seconds are among the return parameters. 
Through the regular request of this data we can form the full 
statistics of the flow rate and the amount of the transferred 
traffic. This will result in a clear detailing of the channel use 
by a particular user [4]. 

The use of this detailing can be different: from calculations 
of reporting charts of the load distribution of the channel in 
relation to a specified period prior to the formation of 
individual client proposals based on the frequency and 
intensity of the channel use. 

The collected statistic is essential for the correct formation 
of network reconfiguration and routing policies in case of 
creating a channel for the new user. The OpenFlow allows 
collecting statistics not only in relation to the logical flow of 
data, but also in the context of specific switch ports. For 

example, through the multipart request 
OFPMP_PORT_STATS, it is possible to obtain information 
on the port lifetime, the number of transmitted packets and 
bytes, including dropped packets and errors [4]. Having 
collected statistics, in other words, the detailing of a specific 
port, we can check the possibility of its use for the 
transmission of a new data flow for the given connection 
conditions. An example of using this data will be presented 
below. 

IV. A DYNAMIC NETWORK MODEL 

As noted, an outer software system is able to collect and 
analyze information about the contents of flow tables, request 
detailed statistics on ports and data flows. 

Based on these data, the system can build a dynamic 
network model, presented by a weighted graph. The 
calculation of graph weights depends on a number of 
parameters and changes dynamically on the base of the 
collected statistics and in accordance with the network 
changes. 

Among the model parameters should be noted: 

 the number of the flows for a specific port, 

 the average value of the enabled bandwidth for a 
particular port, 

 the peak statistics (if available - a rule) of the required 
bandwidth for a specific port. 

The formation of such a network model allows automating 
a number of tasks of the network configuring, to inform the 
administrator, to carry out proactive support and verification 
of the changes in the configuration process. Below are a few 
examples of possible application of the intelligent system for 
the SDN analysis. 

V. SETTING UP A NEW CONNECTION WITH SPECIFIED 

PARAMETERS 

For clarity, we give an example: an administrator received 
a request to create a new connection. The connection 
parameters (edge devices, speed) are fixed in the system 
which analyzes the existing topology and offers a network 
administrator to choose (approve) one of the channel options 
compiled by the system. 

In this case, the program of the analysis has the following 
general workflow algorithm: 

 Search all possible routes from point A to point B. 

 Apply to the resulting options set of heuristics based on 
specified parameters (e.g. bandwidth and prioritization) 

 Generate the final channel set for the network 
administrator. 

The second step of the algorithm discards the routes that 
are unacceptable or ineffective. All parameters and threshold 
values the filter triggering can be changed in the application 
settings. 
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Thanks to the collected statistics the system will take into 
account the level of the data ports load while selecting a 
particular channel. If the requested bandwidth exceeds the 
difference between maximum allowable and average values 
for a specific port, it should be deleted from consideration. In 
the case of borderline situations when the bandwidth is wide 
enough, but the network can have a bottleneck in high load 
cases, it will be made one of the following steps, depending on 
the settings of the system heuristics: the route will be either 
dropped, or it comes to the final set with an appropriate 
warning. 

VI. THE LOAD BALANCING IN THE EXISTING NETWORK 

Checking an existing network or its individual segments 
for the presence of bottlenecks is also possible after the 
collection of the relevant statistics. Similarly to the previous 
example, heuristics will be applied to possible routes and then 
optimization variants will be generated. 

VII. THE USE OF THE FALLBACK CHANNEL 

The use of the collected statistics can be very useful from 
the view point of the fail-safety task in the network. 

Dynamic changes in the model allow to track the 
problematic situation in which the partial or complete failure 
in customer service are possible. For example, it can be the 
breaking of the link between two nodes in the graph topology. 
To prevent such failures, the system calculates a fallback route 
for the connection. In case of the current route failure, an 
automatic switch reconfiguration will be made by using the 
fallback routing policies. 

VIII. CONCLUSION 

In today's world of technology we can clearly see the 
tendency to simplify the external side of the software, to lower 
the threshold of entering. This is due to the increase of the 

internal complexity of software systems, when an application 
takes more and more responsibility for the processes control. 

The emergence of expert and analytical systems 
corresponds to this trend in various areas of the software 
systems support and maintenance. 

By summarizing all the preceding, we can conclude that 
the development of systems for collecting network statistics 
and further analysis is an important step in the SDN evolution. 
It will reduce the risks of network failures, increase the 
administrator efficiency, reduce the cost of the network 
maintenance. 

Our current task of creating the system of the network 
analytics is of interest together with tools for formal 
verification of the SDN. The consideration of formal models 
of the SDN, their verification, reviewing and comparing the 
existing solutions is beyond the scope of this article and is a 
theme for the future research.  

The work was supported by the grant of the Ministry of 
Education and Science of the Russian Federation, unique ID 
RFMEFI57614X0105. 

REFERENCES 
[1] Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic 

Forecast Update, 2013–2018”, February 2014 

[2] S. Darbha, M. Shevenell, J. Normandin, “Impact of software-defined 
networking on infrastructure management”, CA Technology exchange: 

Disruptive technologies, vol. 4, issue 3, November 2013, pp 33-43. 

[3] Active Broadband Networks, “Software-defined networking (SDN) 
transforms broadband service management”, September 2013. 

[4] Open Networking Foundation, “OpenFlow Switch Specification Version 

1.4.0”, October 2013 

 

162



Network utilization optimizer for SD-WAN 

L. Vdovin, P. Likin, A. Vilchinskii 

MERA 

Nizhny Novgorod, Russia 

{lvdovin, plikin, avilchin}@mera.ru

Abstract— the question how to use the maximum of network 

possibilities is still open. ISPs and large distributed companies 

use only 40-50% of total network bandwidth. Technology that 

helps to increase network bandwidth utilization and redundancy 

is crucial and there is still no generic and simple solution for this 

problem. The SDN architecture advocates the separation of data 

and control plane, and helps to simplify the network 

management and maintenance due to logically centralized 

software. Basing on this approach, our team has implemented a 

simple solution solving network utilization issue. Remote SDN 

controller runs on high performance server and this enables to 

apply relatively complex per-flow global routing algorithms.  An 

application tracks network state. In case of link fault, the flows 

affected by outage are re-routed over alternative path. A whole 

network acts as the single distributed L2 switch from external 

connections perspective, but solution architecture allows to 

change a whole network representation from L2 switch to 

distributed L3 router. Application was developed by using 

OpenFlow technologies at data plane devices. The application 

uses modified Dijkstra algorithm. The algorithm searches for the 

route with the best spare capacity based on actual network 

utilization. Also the algorithm allows to control route length over 

per-hop penalty. So the developed application allows to apply 

per-flow policing in terms of bandwidth and latency. Nowadays 

OpenFlow controllers don't have a standardized API and it 

makes it impossible to change a controller for your application. 

To avoid this issue an OpenFlow independent Controller-

Application specific interface has been developed. Interface uses 

application specific proprietary message format optimized to 

increase configuration performance. So our application is flexible 

in choosing OpenFlow controller. Characteristics for our 

prototype have been defined based on performance 

characteristics of Yarnet ISP located in Yaroslavl and it should 

work with 30 nodes (each node has at least 3 connections per 

switch) and establish 5000 flows per second and has traffic 

outage less than 1 second. The characteristics were measured 

using simulated and target test environment. Developed 

application will be used as the framework to implement traffic 

policing features, QoS, bandwidth and latency reservation. 

Keywords—Software-defined networking; Software-defined-

WAN; OpenFlow; Floodlight 

I.  INTRODUCTION 

Majority of Internet users travel between city areas during 
the day, so that they log in from different areas, but keep 
producing large amount of network traffic (Figure 1). 

Figure 1: Benefits of using multi path instead of single path. 

Traditional star and ring ISP routing network topology is 

not so flexible from subscribers’ distribution perspective 

(Figure 2). In case majority of users are located in specific 

areas, network connection to this area may be oversubscribed, 

but other connections won’t be used. 

Figure 2: Start network topology. 

Enterprise clouds, video calls and other peer-to-peer 

application apply new requirements for ISP network capacity. 

High bandwidth is required to connect subscribers’ networks 
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directly to each other. Mesh routers topology together with 

multipath routing technic may increase tolerance of the 

network capacity towards subscribers’ geographical 

distribution. SDN approach may simplify deployment for 

these solutions sufficiently [1].  

Our team set the goal to design a SDN application 

managing city scale ISP network with mesh connectivity as 

single forwarding media. Traffic flows should be equally 

distributed along the network based on actual links utilization 

and should develop the application prototype which meets 10% 

of system characteristics requirements. The following system 

requirements have been defined: 

 managed network must act as single virtual 

forwarding equipment from external connections 

perspective (L2 learning switch, extendable to L3 

router) 

 packets from the same flow should be forwarded over 

the same route, flows are matched by defined user 

criteria (source/destination IP) 

 in case of link failure, affected flows should be re-

routed over alternative path. 

 system should be prepared for QoS, DiffServ and 

bandwidth reservation features [2]. 

 it should be possible to integrate feature with 

different types of OpenFlow controllers [3]. 

 system architecture should be scalable to support big 

networks.  

The system characteristics were based on characteristics 

of the one of Yaroslavl`s ISP [4]: 

 network size: 300 nodes (30 for prototype) 

 connectivity topology: each node has direct 

connection to 20% of nodes in the topology (at least 

3 connections per switch for small topologies) 

 flow establishing rate: 50k flows/s (5k flows/s for 

prototype) 

 Traffic outage due to link fault: < 1s. 

 Maximal number of flows per edge forwarding node: 

300k flows (30k flows for prototype) 

II. IMPLEMENTATION DETAILS 

Network Utilization Optimizer (NUO) is standalone 

application communicating with one or more OpenFlow 

controllers over proprietary interface (App-Control interface). 

We used to extend NOX OpenFlow controller for the very 

first prototypes. Unfortunately it was observed that NOX 

development had been stopped on GitHub. Hence it was 

decided to migrate to Floodlight controller whose 

contributors’ community is more active. We should state that 

it is quite hard to forecast which of OpenFlow controllers will 

be the most suitable for our purposes next day. Also 

OpenFlow controllers don't have a standardized API 

nowadays, so that it is impossible to change a controller for 

your application. To avoid this issue we developed an 

OpenFlow independent Controller-Application specific 

interface. Interface uses application specific proprietary 

message format optimized to increase configuration 

performance. 

So our application is flexible in choosing OpenFlow 

controller. Currently the solution with independent Controller-

Application interface allows us to migrate to another 

OpenFlow controller again. It will be rapidly extending and 

we have chosen perspective OpenDaylight controller. 

“Switch state control” system functions collect and track 

network topology information (network graph), switch ports 

operating modes (link bandwidth), switch states and 

bandwidth utilized by every flow. Meta Forwarding system 

functions process packets on external port as L2 learn switch 

(may be extended to support L3 routed functions).  

As soon as a new flow is detected by the application at 

network external port, it is processed by Meta Forwarder logic 

according to L2 learning switch functions. Meta Forwarder 

logic stores the source address and then examines the 

destination address. If it is not found in forwarding database, 

the frame is to be flooded on all external ports from virtual 

equipment point of view. In case destination host for the flow 

is known – new internal route is calculated towards destination 

switch using modified Dijkstra to secure maximal network 

utilization (Figure 3). Packet flows for internal routing are 

classified based on Source IP address – Destination IP 

addresses pair. Flows are expired due to packet inactivity. In 

case port or switch goes down OF, controllers and application 

are notified about outage. 

 
Figure 3: The NUO high level structure. Two new traffic 

flows have been routed through network with different 

paths.  

All flows routed over faulty link are re-routed over 

alternative path. During link outage packets are forwarded 

over controller until new route is created.  
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OpenFlow controller polls PM counters for every created 

internal flow with fixed polling rate (Figure 4). In case packet 

rate crosses discreet threshold, “utilization change” indication 

is sent towards NUO application. NUO application uses the 

latest received values to calculate spare bandwidth for link in 

case new flow is being created. 

 
Figure 4: The NUO application makes it possible to poll 

PM counters and to change the discreet threshold for the 

flow. 

It is reasonable to consider OpenFlow specification 

extension to support similar features at switch side. OpenFlow 

1.3 meter functions may be extended with new meter type 

sending notification towards controller as soon as threshold is 

crossed [5]. The NUO application uses modified Dijkstra 

algorithm (Figure 5):  

 Next hop is selected in order to secure maximal 

residual capacity along all links in the path. 

 Each hop adds additional penalty in order to take into 

account the route length by using route “aspect ratio” 

 Route “aspect ratio” controls balance between route 

length and capacity AR=0 – 1 hop. AR=1 - highest 

bandwidth.  

 Route score directly depends on route residual 

capacity available at the route and hop count.  

 

Figure 5: The NUO application modified Dijkstra 

algorithm. 

The main parts of NUO application are (Figure 6):  

 Application-controller interface (A-C). It is TCP 

based interfaces towards OF controller and control 

app. Proprietary message format is a subset of 

OpenFlow protocol however it has reduced message 

size.  

 The application implements the main logic and 

includes A-C interface server with multi-client 

feature support. The application does not depend on 

the specific OpenFlow controller and may be split 

into parts for better scalability.  

 Floodlight controller with stateless adaptations. 

Includes A-C interface client to convert A-C message 

into OpenFlow and vice-versa. Also polling logic of 

PM counters was implemented on the controller side 

[6].  

 OAM tools Nuoctrl and FlowTrack. The tools 

provide CLI to control and supervise NUO 

application and GUI for network and flow 

visualization.  

 
Figure 6: The NUO application main parts and its 

interaction. 

III. THE NUO APPLICATION CHARACTERISTICS 

An application performance was verified on all levels by 

unit, component and system tests. System testing had very 

limited capabilities due to low performance characteristics of 

mininet [7] and Tp-Link 1043ND switches with OpenFlow 

enabled OpenWRT software [8] used in the system. 50 flows 

with 50 pps was originated during the test, control and data 

path packet latency were measured based on OF PDU and A-

C interface PDU timestamps (Figure 7). 
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Figure 7: NUO application end-to-end latency. 

 

Two main tests to compare the characteristics with classic 

networks have been performed. In the first test scenario test 

host originates 35 ICMP traffic streams with constant 60 pps 

rate, test server responds to ICMP requests [9, 10]. All streams 

run over the same link. Timestamps for ICMP requests and 

response are collected at host originating traffic (Figure 8). 

Ostinato network packet crafter was used to generate and 

analyze ICMP traffic streams.  

 
Figure 9: The NUO application forwarding characteristics. 

 

Timestamps for OF control messages are collected at OF 

controller. Link is disabled, flows are re-routed by controller. 

During failover some packets are forwarded over OF 

controller. We got the following results after the test:  

 Latency increment 30 msec for 3 flows.  

 Traffic disturbance time 45 msec.  

 Failover time 53 msec.  

The second test case was developed to make sure NUO 

application is able to increase network throughput in case 

subscribers relocate between access points. Test covers the 

case when all subscribers are located near single access point 

or equally distributed between access points. Two Iperf 

sessions running simultaneously were used in order to 

measure traffic bandwidth improvement. 

CONCLUSIONS 

In conclusion we would like to say that SDN approach 

together with OpenFlow technology allows simple 

deployment of solutions providing global network control. Big 

companies, for example Google, are interested in effective 

resource management and already have production ready 

applications to manage scale networks [11].  

     Proposed approach for OpenFlow applications architecture 

allows to concentrate on functions development without 

dependency on specific controller. OpenFlow based approach 

delivers high level of redundancy and good failover 

characteristics in comparison with traditional L2 redundancy 

schemas. SDN technology allows to move complicated 

algorithms (e.g. routing) from network devices to high 

performance data centers, to reduce network deployment costs 

and to increase system performance. OpenFlow hardware 

performance characteristics are crucial to leverage SDN based 

solution into the market. 
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Abstract—Significant efforts have been devoted to creating 
large scale compute and network testbeds for studying future 
Internet challenges. Besides large geographic span, the common 
emphasis is programmability, allowing researchers to reserve or 
create, via software, flexible sets of compute and network 
resources over specified topologies to execute research prototypes 
of new protocols, processes, and applications. Also emphasized 
are virtualization, instrumentation, and software defined 
networking (SDN) capabilities of the infrastructure. SDN in 
particular stimulated significant interests in academia, industry, 
and public sectors to re-imagine the future computing and 
networking infrastructure landscape and roadmap while it 
becomes increasingly utilized in production environments. 
Amidst these interests, one can start to capture desirable 
characteristics to glimpse the potential architecture of the future 
Internet. In this paper, we discuss the significance of compute-
network interaction across complex, highly customized federated 
architecture in the future Internet. 

Infrastructure federation has been happening across multiple 
dimensions. Federation expands the scope of infrastructure, 
geographically and administratively, for use by members of 
different organizations. For example, federation initiatives are 
underway among: 1) US Global Environment for Network 
Innovations (GENI), Europe Future Internet Research and 
Experimentation (FIRE), and future Internet testbeds in Asia, 
South America, and Canada, 2) university production 
infrastructure, 3) US cities, 4) US public research institutes, and 
5) commercial infrastructure. While requirements and objectives
differ, they must all address a common set of issues. Such 
federation suggests the fundamental needs of applications to 
interact with compute and network resources across a generic, 
federated, future Internet environment. 

Index Terms— applications, software, hardware, network 
architecture, network federation, network testbeds, SDN, SDI, 
virtualization, future Internet. 

I. INTRODUCTION 
Around the globe, research communities have commonly 

acknowledged the need of persistent, large-scale physical 
experimental facilities to study significant challenges facing 
Internet and to evolve the Internet to meet future requirements. 
One of the primary challenges is the wide range of diversity in 
the network quality of service expected by applications. The 

challenge poses itself in several aspects.  First, the reduced 
core-to-edge bandwidth ratio due to the introduction of gigabit 
wireless edge networks and the increasing dominance of 
wireless and mobile traffic across Internet require on-
demand, topology-, mobility-, and application-specific quality 
of service control across Internet. Second, the growing 
applications requiring access, processing, and exchange of 
large and often real-time data require persistent connectivity 
among data centers and devices potentially at a global scale. 
Third, the increasing use of Internet for critical applications 
with specialized security requirements requires customized 
processing and monitoring of application-specific traffic.  
With these requirements in mind, future Internet testbeds 
developed across the globe have emphasized deep 
programmability via software in the infrastructure to create a 
“software defined infrastructure” (SDI), encompassing 
elements from SDN to compute nodes, sensors, instruments, 
storage, and others. At the same time, researchers are looking 
into the federation of such SDIs to allow research at a truly 
global scale close to that for the future Internet. 

In fact, federation is an inevitability considering the 
numerous Internet services, processes and other activities that 
are global in scope and must utilize resources in and across 
multiple domains. Furthermore, as most SDI testbeds are 
realized as part of production networks, decisions of the 
federation approaches among these testbeds have direct 
implications to the federation of the production infrastructure 
of the future Internet. This paper overviews a number of 
ongoing and proposed community efforts in SDI federation 
and explores open questions to be discussed and investigated. 

II. FEDERATION DEFINED

As defined in the Merriam-Webster dictionary, “federation 
is  “…an organization that is made by loosely joining together 
smaller organizations”. Put into the specific context of SDI, 
the US Global Environment for Network Innovations (GENI) 
project [1] defines: “A federation is a set of agreements 
among people or organizations, representing the policies and 
terms under which they will trust, collaborate, share resources 
or engage in other common activities” [2]. Indeed, federation 
defines the policies and terms of usage of resources based on 
the preferences and needs of the people and organizations 
involved. The primary stakeholders and their needs can then 
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be identified to be its entities, actions, and interfaces. 
Entities: In a federation, three types of logical entities are 

essential – resource users, resource providers, and the trust 
providers.  In the GENI example, it defines itself as a research 
testbed; therefore, its users are research experimenters, its 
resource providers are operators of GENI compute and 
network resources on participating universities and research 
institutes. As far as the trust provider, GENI adopts a simple 
single-clearinghouse approach, based on the umbrella 
permission granted by participating universities to offer access 
to all users that can be formally identified as a member of a 
GENI-participating institution via InCommon [3]. Figure 1 
illustrates the three roles. Mapping to our terminology, 
“experimenter tools” are users, “aggregates” are resource 
providers, “identify providers and slice authority” 
approximately map to the trust providers. 

Actions: Actions are applied to resources to fulfill users’ 
reservation requests. Each resource provider must, based on 
resource type and policy, define what available actions for the 
resource are exposed for user requests. For example, network 
resources may expose isolated or shared access at different 
scopes (e.g., optical circuit, layer 2, or layer 3), standard or 
customized packet switching, and different levels of quality of 
service; compute resources may expose physical or virtual 
machines with different operating system and storage; other 
resources may include special instruments, sensors, software 
services (e.g., firewalls, load balancers, encryption services) 
with respective customizable actions. 

Interfaces: Per our definition, federations are created based 
on “human” interests. Nevertheless, their intentions and 
actions are manifested in policies expressed as software 
constructs that must be communicated among the federated 
entities via agreed interfaces.  

Agreeing on the choice of interfaces across resources is just 
as challenging as agreeing on the choice of common human 
languages in international settings. The eventual selection will 
have to be the result of natural selection, i.e., the ones that 
become most popularly used would be the ones that persist. 
This is beyond the scope of this paper. Just as an example, we 
introduce the GENI Resource Specification (Rspec) language 
[4,5] and the Network Service Interface [6] as two currently 
widely used interfaces. The former is used by the GENI 
infrastructure to communicate compute and network (both 
SDN and non-SDN) resources. The latter is used by global 
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3. AM Requests 

4. AM Responses 

Identity 
Provider Slice Authority 

1. Certified Identity 
and Attributes 

2. Authorized
Slice Credentials 

3. AM Request3. AM Request
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utesbui

2. Authorize
Slice Crede

Figure 1. Key entities and actions in GENI federation [2]. 

optical research networks as a standard for provisioning cross-
domain optical network lightpaths and and L2 circuits.  

For SDN, the interfaces have so far been diverse and 
specific to respective implementations. Just to name a few, 
open source SDN implementations such as the Floodlight 
controller project, the OpenDayLight controller project, and 
the OpenVswitch project have all defined interfaces for 
external applications to request the setup of static network 
paths based on specific attributes. In order to federate among 
SDNs of different types, obviously additional “translation” 
among them must be done. Various communities have made 
attempts to suggest such a translating interface. In the 
OpenStack [7] and Cloudstack [8] open source cloud 
computing projects, networking plugin architectures are 
defined to provide a common interface for different SDN 
providers to offer the same sets of logical service for the 
cloud. Similarly, the Open Networking Foundation (ONF) has 
created a Northbound API working group [9], and the Object 
Management Group (OMG) has created a SDN working group 
[10] to attempt the creation of a standard interface for SDN. 
Recent papers also presented example interfacing of SDN with 
the legacy BGP-based IP network based on a HTTP RESTful 
interface of the Floodlight controller and a BGP router [11]. 

Another recent community effort has begun to focus on the 
Software Defined Exchange (SDX) concept as the means of 
interfacing different SDN networks, and to also incorporate 
other resources in SDIs such as compute, storage, and so on. 
The design of SDX necessarily must address the “interface” as 
well as the “body”, such that it has the interfaces as well as the 
resources needed to orchestrate the interfacing action of 
different SDIs of different authorities. Later in the paper we 
describe a suggested SDI federation approach based on a 
proposed SDX framework that incrementally incorporates 
interfaces such as GENI Rspec, NSI, and other interfaces for 
established resources (such as Internet2 AL2S service [11]2]) 
and new resources (such as emerging policy-based SDN 
services [13]) based on participating organizations’ needs and 
policies. 

III. WHAT RESOURCES TO FEDERATE

In an SDI, the typical resources are physical and virtual 
compute servers, storage, and network connectivity. When 
cyber-physical systems are involved, sensors and actuators are 
also considered. Increasing emphasis is placed on software 
services as resources; e.g., software firewalls, encryption 
services, transcoding agents, and data transfer services. These 
types of software services are usually deployed on compute 
servers in the applications’ data paths, often conveniently at 
the network gateway. Emerging cloud-computing systems 
such as OpenStack are looking into insertion of such services 
in arbitrary points in the network based on SDN [14]. 

The majority of resources in a federated SDI environment 
will be virtualized/shared. Full access to physical resources by 
a single user would be the rare use case and can be considered 
a special case equivalent to a virtualized resource request at 
full capacity. As an example, consider an organization 
operating an SDI with various resources shared by different 
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application providers and users: 1) a point-to-point data 
request by a remote user to the organization’s big data archive: 
composed of a data retrieval service, an application-specific 
data processing service, a firewall service, and high 
throughput data transfer agents on both ends – all over a user 
requested cross-domain SDN path; 2) a point-to-multi-point 
multicast live video streaming service: composed of a 
streaming server, quality of service monitors, and transcoder 
agents as needed at distributed points in a multicast tree 
spanning multiple federated domains; 3) a novel “connected 
vehicle” mobile connectivity proxy: composed of a cluster of 
data proxies distributed along the trajectory of moving users to 
assist reliable communication with remote data centers for 
real-time services, and 4) a monitored highly available smart 
grid connection: composed of sensor data handler service at a 
smart grid control center, distributed monitoring service, and 
physical sensors across vast geographic areas spanning more 
than one federated domains. 

Analyzing the example above, a number of observations can 
be made about the resources involved:  
1) Software services are instantiated as part of the

application end-to-end data path.
2) Software services run on virtualized compute host.
3) Resources can be persistent or launched each time a

service request is initiated.
4) Resources can be in different federated domains.
5) All federated domains need not provide the same range of

services.
6) An application can operate as long as any traversed

federated domain meets its required resources.
The example above is in fact quite representative of the 
majority of Internet applications today.  As a result, a sensible 
approach towards identifying a federation framework would 
be starting with a simple framework that can reserve compute 
and network resources effectively, and incrementally 
incorporate interfaces and reservation methods for new types 
of resources as they emerge. Recognizing that the primary 
focus of federation should be the policy and preferences of 
people and organization, the underlying framework, i.e., the 
resource API, should be kept as simple as possible, and as 
expressive as possible. This allows SDI operators to easily 
register new resources as well as integrate existing identity 
and resource management systems into the framework by 
adding simple API wrappers.  In fact, in the GENI 
architecture, “aggregates” serve as such a common API 
wrapper that can be used to contain and allocate ANY 
resource (network connectivity, bandwidth, VLAN, 
computation, storage, etc.) using a common interface and 
common foundations for trust and identity. 

Below we propose such a framework based on the GENI 
Rspec framework for compute and basic/SDN network 
reservation, integrated with the NSI API for wide area light 
path reservation, and the Internet2 AL2S API for L2 circuit 
reservation. 

IV. FEDERATION FRAMEWORK

Figure 2 is an illustration of the current GENI federation 
architecture [2].  The “clearinghouse” represents the set of 

Figure 2. Current GENI Federation Architecture [2]. 

authentication and authorization services that provides users 
with the necessary credentials to request service from 
individual resource aggregates. Given the clearinghouse-
approved credentials, the user can send resource requests with 
resource specific attributes to each resource aggregate.   While 
each resource aggregate can subsequently approve/deny 
requests given the specific attributes, resource availability and 
user types, the clearinghouse can be seen as the anchor of all 
resources within a federation. Based on this concept, we 
propose a federation framework as illustrated in Figure 3. By 
allowing clearinghouses to communicate with each other, 
mutually share information and grant access of the available 
resources (based on customizable pairwise agreements, of 
course), federations can be infinitely extensible.  This model 
is, in fact, not far from today’s Internet architecture, where 
such clearinghouses are synonymous with the Internet Service 
Providers (ISP) and the mutual agreements are based on ISP 
peering relationships. In a federated SDI, a richer range of 
resources is being “peered”. The resource instantiation, 
however, is not limited to a single federation.  Instead, once a 
request is certified, applications have the flexibility to 
communicate directly with resource aggregates, enabling a 
more scalable and flexible implementation. 

A. The Framework 
The very factors that enable the creation of a single federation 
have parallels to those required in developing cross-federation 

Figure 3. An extensible federation framework based on 
clearinghouse peering. 
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cooperation, though perhaps at a larger scale with additional 
parameters. 

Each federation has its own set of trust roots, which 
represent a set of identities (typically certificate authorities or 
delegated authorities) whose signed statements of identity and 
attribute are accepted by members of the federation. Such trust 
roots allow for both federation-wide authentication (using 
SSL certificate verification, e.g.) and authorization by 
matching federation-authorized credentials against federation 
and aggregate-local policies. The representation of credentials 
have been standardized in these major categories:  
• Identity Credentials: Typically X.509 certificates signed by

a Member Authority 
• Role-based access-control (RBAC) credentials: typically in

SFA format [15] 
• Attribute-based access-control (ABAC) credentials:

typically in ABAC format [16] 

The APIs are the basis for communicating with authorities 
for signed credentials. The GENI Federation API v2 [2] and 
the GENI Aggregate Manager API v2/v3 [3,4] are becoming 
de facto standard for negotiations between tools and 
aggregates for the allocation and management of resources. 

A federation, be it individual or a federation-of-federations, 
typically requires a set of policies that control the issuing of 
credentials, the limits on resource allocations based on 
different kinds of requests and the attributes of the requesting 
user. These policies must be agreed upon, encoded and 
disseminated to all federate authorities and aggregates. 

Finally, accountability procedures (e.g. monitoring, alerting, 
shutdown, forensics, credential revocation) must be extended 
and agreed to by all federating domains in order to assure that 
a cross-domain topology will be safe to use (from the user’s 
perspective) and to contribute resources to (from the resource 
provider’s perspective). These mechanisms may range from 
integration of monitoring and response automated processes to 
human processes to coordinate across operations centers. 

B. Federating Wide Area Networks – Network Service 
Interface (NSI) 
The Network Services Interface (NSI) initiative developed 
initially within a worldwide community of international 
research and education network providers. Over ten years ago, 
this community decided to design, implement and operate a 
Global Lambda Integrated Facility (GLIF), based on light 
paths over trans-oceanic and terrestrial optical fiber and 
DWDM edge switches hosted at GLIF Open Lambda 
Exchanges (GOLEs) [17] (Figure 4). The GLIF infrastructure 
is not a network, but rather a distributed facility within which 
it is possible to design and implement international 
customized networks, including those required by data 
intensive science.  The GOLEs are exchange facility for GLIF 
network participants. These GOLEs not only exchange 
international network traffic but also traffic from national and 
regional research and education networks. Although initially 
the GLIF project was focused on dynamic light path 
switching, it was extended to include L2 switching and 
dynamic control of L3 based paths.  
As GOLEs were implemented, almost all adopted a different 

Figure 4: Global Lambda Integrated Facility (GLIF) 

control framework for resource management and control, e.g., 
DRAC, Autobahn, Argia, OSCARS, G-Lambda, and many 
others. The development of the GLIF model required a 
mechanism to enable a common interface to interact with 
these control frameworks. Consequently, the GLIF community 
formed a partnership with the Open Grid Forum (OGF), a 
standards organization, to develop a defined standard for such 
interfaces.  

This initiative created a working group that addresses a 
range of architectural issues under the Network Services 
Framework (NSF) as described in OGF GWD-R-P “Network 
Service Framework v2.0” [6]. Within this framework a suite 
of protocols are being defined. The NSF approach assumes 
that resources and capabilities are presented externally through 
a set of defined Network Services. The NSF presents a unified 
model for how various processes interact with these services. 
These network services include those for creating connections 
(Connection Service), sharing topologies (Topology Service) 
and performing other services required by a federation of 
software agents (Discovery Service).  

The discussion here focuses on NSI, which is an 
intermediate process between a software agent that requests a 
network service and the software agent that fulfills that 
network service.  Specifically, it describes the NSI Connection 
Service (CS) 2.0 protocol, which enables the reservation, 
creation, management and removal of connections, under 
appropriate policy based authentication and authorization 
processes. 

NSI has been designed to allow for the creation of network 
paths (termed “connections” in the NSI architecture) that can 
cross multiple network domains operated by separate network 
providers [18], effectively creating a federation. This approach 
is a major departure from common practice, which closely 
specifies service plane attributes within individual data plane 
implementations, and statically maps attributes to control 
plane protocols. 
The old model works for single domain networks with 
minimal service interactions with other domains (e.g., limited 
to L3 peering). In contrast, NSI was designed as an API to 
support multi-domain services over many provider network 
and facility boundaries and many different implementations of 
data plane technology. This API can be used by organizations, 
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Figure 5. STPs interconnecting at a SDP. 

applications, edge processes, and even individual users to 
invoke network services. NSI is agnostic to any specific 
technology. Consequently, NSI provides for the concept of a 
“connection,” as an abstracted entity decoupled from any 
specific physical technology or configuration.  The NSI 
architecture provides for a messaging function that includes a 
customizable schema that can be used to describe service-
specific attributes, including constraints. NSI processes 
determine how these attributes can be mapped to resources in 
the various domains across which the paths are implemented. 
The NSI architecture incorporates the concept of a pathfinder 
function to determine the most optimal path that matches the 
requirement attributes of the request, across all reachable 
domains, regardless of technologies used in those domains. 
The architecture incorporates a two-phase commit function 
and options for advanced reservations. 

The NSI architecture describes Service Termination Point 
(STP) objects, which are core components that are used by a 
connection request to determine key attributes of the 
connection, namely, its source, destination and intermediate 
points. An STP is identified with a network ID, a local ID and 
a label. Two or more STPs owned by different network 
domains interconnect at a Service Demarcation Point (SDP), 
which is a virtual point, not a physical component. 
Connections are implemented across domains by 
concatenating connection segments by selecting STPs so that 
the egress STP of one interlinks with the ingress STP of 
another as shown in Figure 5. 

The NSI architecture defines an explicit set of messages and 
describes the state machines that are the foundation of the 
service. For over five years NSI has been showcased through 
successful demonstrations at multiple major national and 
international conferences, including the Supercomputing (SC) 
conferences. Almost all of these recent exhibitions have 
demonstrated the NSI utility for implementing L2 paths across 
multiple domains. However, dynamic L1 provisioning has also 
been demonstrated at multiple conferences. Below is an image 
of a dynamic international L2 path demonstration with 
participating sites around the world at SC13 in Denver in 
November 2013. Each of the points depicted, almost all are 
exchange facilities in different countries, is interconnected 
with individually controlled L2 paths using NSI.  

Currently, NSI is being placed into production within a 
number of national research and education networks and at 
GLIF GOLEs. Several data intensive science research 

Figure 6. Demonstrated global AutoGOLE topology at SC’13. 

communities are also considering or experimenting with NSI 
implementations [19]. 

C. Federating SDNs 
To date the majority of SDN deployments are research 
demonstrations, of which most have been based on a single 
network domain by a single controller. On the one hand, the 
prime motivation of SDN is to explore the extent of 
controllability achievable by a single SDN controller.  On the 
other hand, it is an inevitable reality that the Internet will not 
be made of a single SDN but a myriad of SDNs operated by 
different authorities. Before then, even interfacing a SDN with 
today’s non-SDN Internet poses substantial design challenges. 
In [20], researchers demonstrated one such possibility of 
interfacing an OpenFlow SDN with a BGP router to 
demonstrate SDN-IP interfacing. 

Interfacing two networks can be viewed as a basic form of 
federation. In today’s Internet, autonomous systems (ASs) 
interface with each other based on exposed topology info 
exchanged in the standard BGP routing protocol. With SDN, 
there is currently no agreed standard to exchange such 
information. However, once such a standard takes shape, it 
will obviously allow much richer information to be exchanged 
among different SDN domains.  GENI offers a mechanism for 
researchers to control traffic switching in different network 
domains via FlowVisor [21].  A FlowVisor at each network 
aggregate delegates control of the local Ethernet switches’ 
switching to one designated OpenFlow controller, thereby 
allowing the controller to have visibility to the topology and 
control of the traffic switching at all aggregates. This 
demonstrates a basic form of federation at the switch-to-
controller interface via the OpenFlow protocol. Going 
forward, the industry is also looking at network description 
languages at a higher layer of abstraction – namely the policy 
layer (see the Cisco OpFlex project [13]) – to prescribe 
desired network composition via logical policies that can be 
implemented by different underlying technologies. 
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D. Compute and Storage 
Open source cloud computing software stack projects have 
brought together vibrant communities looking into ways to 
automate, customize, and scale data center implementations in 
open source software. OpenStack [7] and CloudStack [8] are 
two such projects among the largest ones. In both projects, 
plugin architectures are defined to allow instantiation and 
management of network, storage, and security resources to be 
utilized by virtual compute hosts in a data center.  These stack 
management software provides APIs for users to instantiate, 
monitor, migrate, and terminate resources within, making 
them a form of federated infrastructure that can be readily 
integrated into a federated SDI environment. 

E. Software Defined Exchange (SDX) for Federation 
The notion of software defined exchange (SDX) was initiated 
in the recent work of [22] discussing how SDN can be used to 
implement the Internet Exchange Point (IXP) facilities to 
provide existing and new services. Since then, the discussion 
has expanded its scope as the community brainstorms about a 
wider range of possible scope and realization of SDXs.  In this 
paper, we see SDX as a means of interfacing SDIs of multiple 
distinct authorities.   Instead of just sharing network 
connectivity, SDXs facilitate sharing of any willingly exposed 
resources of each participating domains. We believe an SDX 
should be a logical entity that can be realized in one or across 
multiple facilities: 
1) In one facility: In the same model of today’s IXP, the

SDX operator facilitates pass through of resource sharing
information among interconnecting organizations;

2) Multiple facilities: As an end-to-end path in a federated
SDI environment spans multiple authority domains, a
single IXP is insufficient in orchestrating all resources;
moreover, there can be resources that need to be
instantiated in the source, intermediate, or destination
domains rather than a single IXP facility.

Regardless of either option, the SDX logical abstraction will 
be the same, closely mirroring the proposed federation 
architecture. 

In the 3rd quarter of 2013, iCAIR established a prototype 
Software Defined Network Exchange (SDX) at the StarLight 
International/National Communications Facility, as part of the 
GENI program [23]. This SDX was successfully demonstrated 
interoperating with the Georgia Tech prototype SDX in 
Atlanta at the GENI Engineering Conference (GEC19) and 
with a prototype SDX in Amsterdam for the TERENA 2014 
conference in Dublin in May 2014. iCAIR currently is 
extending NSI capabilities by integrating its functionality, 
including federation options, with SDN/OpenFlow techniques. 

It is our belief that the most important challenge is to engage 
operators of the production infrastructure today to guide the 
incremental integration of existing identity management and 
infrastructure operation tasks into a federated SDI API as a 
simple lightweight wrapper. As of right now, NSI has 
demonstrated success in integrating NSI with GENI, while 
Internet2 has also been integrating its advanced layer 2 service 
(AL2S) to the GENI Rspec API. We are actively working in 
this direction with our ongoing research projects. 

V. SUMMARY 
Software defined infrastructure (SDI) offers a new way of 
customizing deployment of applications across Internet. 
Federated SDI addresses the need of most Internet 
applications to be conducted across end-to-end paths crossing 
multiple authority domains. The key challenges reside in the 
policy and needs perceived by “human” stakeholders, while 
they can be translated into simple software constructs to be 
handled by different resources. A simple, extensible 
framework based on GENI Rspec is proposed as a first step to 
tackle the federated SDI, or SDX, problem. 
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Abstract—Prototype deployments of Software Defined Ex-
changes (SDX) have recently come into existence as a platform
for Future Internet architecture to eliminate the need for core
routing technology used in today’s Internet. In this paper, we
motivate the need for an adequate measurement architecture for
such SDXes to be able to evaluate their performance and inform
further development. We present the major requirements for this
architecture, introduce the idea of SDX and its first prototypes,
and give an overview on a SDX measurement experiment we
recently conducted.

I. INTRODUCTION

Software Defined Networking (SDN) which, in contrast

to traditional IP-based routing, decouples the data and the

control plane is seen as a promising approach to enable new

functionalities in the future Internet. While single-domain

SDNs have been around for a few years (e.g., data centers,

research networks [7] [22], and WANs of organizations [11]),

inter-domain deployments that involve SDN implementations

for inter-AS routing using BGP and MPLS have only come

into existence in the recent past [13].
Recently, the research community is proposing the introduc-

tion of so-called Software Defined Exchanges (SDXes) [10]

[21], which can be seen as the SDN equivalent to an Internet

Exchange Point (IXP). The basic idea of an SDX is to

connect several domains, allow traffic exchange and provide

a platform for implementation of new policies through third-

party control in future Internet architectures. Since SDN is

radically different from today’s Internet technology it has to be

further investigated to understand what functionalities an SDX

must provide. Some of the aspects that have to be further in-

vestigated are flow management between autonomous systems

(similar to BGF, OSPF, etc. in today’s Internet) and higher-

level ones like peering policies, peak-usage scheduling and

route-based prioritization [6]. An SDX should also incorporate

SDN advantages such as complete resource virtualization,

real-time traffic analysis, centralized control, plug-and-play

hardware integration, security and third-party control services.
In addition to new functionalities that have to be provided

by SDXes, it is also important to observe the performance of

these new exchanges. As with any new technology, SDXes

will be thoroughly studied by the research community before

commercial versions might be deployed in the future Internet.

In this paper, we present a measurement and monitoring

architecture that is tailored for the performance analysis of

SDXes.

The measurement architecture for SDXes has to fulfill the

following requirements:

• Scalability. A measurement approach for SDXes has to

be scalable since there is the potential of many flows

crossing an SDX. Not only the shear amount of flows but

also the detail of information that should be measured or

monitored can put significant load on such a system. We

have already seen such challenges in measurement and

monitoring approaches for today’s Internet.

• Non-intrusive and Non-interfering. The measurement

and monitoring architecture has to be designed such

that ongoing measurement activities do not impact the

performance of the actual SDX processes (e.g., data

forwarding).

• Ease of Use. The architecture should result in tools

that will make it straight forward for researchers and

developers to observe and analyze the performance of

an SDX. Researchers should also be able to share their

results in an easy and straight forward manner.

• Calibration. The quality of a measurement very much

depends on the accuracy and performance of the measure-

ment mechanisms and tools applied. To allow users of the

architecture to determine the accuracy of a measurement

the architecture will provide calibration mechanisms.

E.g., the architecture will provide mechanisms that will

allow the injection of specific traffic into the SDX.

• From SDX to SDI. While the main focus on SDXes is

currently on the interconnection of different, independent

SDX domains, we believe that the second generations of

SDXes will also offer access to virtualized computation

and storage. Therefore, it is our goal to develop an

architecture that is not only capable of monitoring the

network performance of an SDX but also the performance

of its compute and storage capabilities.

• Legacy. Measurement and monitoring have been an es-

sential component of the Internet and distributed systems

since their inception. Our architecture will be based

on proven mechanisms and approaches. We will build

this architecture based on the GENI Measurement and

Instrumentation Infrastructure (GIMI), which we built for

the GENI project.

• Monitoring and Measuring Control versus Data
Plane. Compared to the traditional Internet which only
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has one transport plane there exists a control and a

data plane in SDNs. Therefore, it is important that a

measurement and monitoring infrastructure for SDXes

offers the ability to monitor both planes and is able to

identify potential interdependencies between the two. For

example, a bottleneck in the control plane can easily lead

to performance impairments in the data plane.

While a production deployment of SDXes in New Zealand

has proven that SDX is a pragmatic approach for traffic

exchange, our proposed architecture is complementary since

it will allow researchers and developers to analyze the perfor-

mance of this infrastructure. We will use SDXes that have been

recently set up as part of the GENI project [8] to evaluate our

measurement and monitoring architecture. In the long-term, it

is our goal to make this architecture available to the research

community.

The remainder of this paper is outlined as follows. In Sec-

tion II, related work in the area of Software Defined Exchanges

is presented. Section IV gives an overview on the measurement

architecture for SDXes, and Section V introduces a prototype

of such a measurement architecture. The paper finishes with

conclusions and a look at future work in Section VI.

II. RELATED WORK

OpenFlow [15] has been successfully deployed in several

production data centers today. B4 [11] by Google is one of the

first large scale deployments of a Wide Area Network that uses

OpenFlow. Following this, there is some work that discusses

network virtualization using Open APIs defined for Software

Defined Networking [19]. In [2], Podleski et al. have discussed

the feasibility of Software Defined Networking with multi-

domain architectures using both slice-based and connection

oriented approaches. The connection-oriented approach places

emphasis on using namespace to enable the use of connection-

related applications such as load-balancing, traffic monitoring

and packet inspection while the slice-oriented approach talks

about how slices maybe provisioned for different service

providers. Another work talks about implementing a backward

compatible algorithm to outsource control logic for BGP

routing using SDNs. The authors run real traffic data on a

simulated network to evaluate their approach [12].

During the last couple of years there has been a substantial

amount of work that discusses the feasibility of deploying

Software Defined Networks within the Internet. In [16], Nunes

et al. discuss programmable networks in detail. They present a

survey of several Software Defined Networks beginning with

Ethane [9] to OpenFlow and present-day SDN applications.

The authors of OSHI [18] describe the use of OpenFlow

for SDN based IP forwarding and routing and emulate such

a system on OFELIA [22], which is also an SDN-enabled

research testbed. The authors here use Mininet and examine

the effectiveness of different monitoring methods.

A large scale deployment for Software Defined Exchange

was setup by Gupta et al. [10]. Their paper contains details of

their SDX deployment at Southern Crossroads (SoX), which

is a part of the network we use to develop and test our

measurement architecture on. Here, they explain how their

SDX can be used to implement different peering policies,

efficient DNS-based load balancing and middle box traffic

steering. Cardigan is one of the first OpenFlow SDX net-

working environments that has been deployed in a production

setting [21]. The paper contains details about a real deploy-

ment of a ”distributed routing fabric” between Research and

Education Advanced Network of New Zealand (REANNZ) to

the Wellington Internet Exchange (WIX). RouteFlow [20], an

extension of Cardigan is an SDX deployment that carries real

Internet traffic. However, their production deployment limits

their ability to conduct performance characterisation.

While all of these papers have presented the advantages

of Software Defined Networking in several ways and some

also present production deployments of Software Defined

Exchange, we have not seen any work that presents the

performance analysis of actual applications. In this paper,

we present a measurement architecture which is targeted

to support experimenters in their research on SDXes. We

demonstrate a prototype of this architecture by using an SDX-

enabled GENI testbed and evaluate the performance of a short-

term weather prediction application to give some insight into

the capability of such a testbed for Future Internet.

III. SDX PROTOTYPES

In this section, we will describe an SDX in more detail and

present a prototype implementation.

A. Definition

Before we present the implementation of a prototype SDX,

we first give our definition of its functionality and purpose.

SDX is a relatively new topic and there are several versions

of it currently discussed among the research community.

Therefore, we believe that it is important that we first describe

our understanding of an SDX by describing its functionality.

The motivation for SDX is mainly driven by the fact that more

and more SDN domains have been instantiated in recent past.

Examples for such domains are Internet 2’s Advanced Layer

2 Service (AL2S) and Google’s B4. While SDNs have caused

significant traction in academia, the latter example shows that

this is a topic that is also of high interest to industry.

With the advent of several SDN domains the need for

exchange points between such domains becomes imminent.

Thus, first and foremost and SDX is an interconnect between

two or more SDN domains. One example that emphasizes

that need is NFS’ Global Environment for Network Innovation

(GENI) initiative, which is currently deploying a multi-domain

SDN federation at ∼50 campuses in the US. Since GENI

is build on the basis of a federation, there is a need for

SDN infrastructure to span multiple operating domains. This

is driven by the fact the GENI infrastructure is owned and

operate by the host (campus) institutions and that experiments

and services need to exert control across institutional borders

in a consistent and controlled way. This need also exists

at a larger scale where GENI federates with other national

and international peer infrastructures. To address this need
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there are currently three active multi-domain SDN GENI

projects [4], [1] that are in the process of implementing SDX

prototypes. In Section III-B, we will present one of those

prototypes in more detail.

It is important to mention that our vision of an SDX goes

beyond the idea of it being an interconnect between two

or more SDN domains. Inspired by the GENI architecture,

we believe that software defined computation (i.e., cloud

computing) and software defined storage will significantly

improve the capabilities of such SDXes1. In Section V, we

will give an example that illustrated the benefits of such an

SDX.

B. SDX Prototype

Figure 1 gives a schematic overview of one of the three

SDX prototypes that are currently developed within the GENI

initiative. This SDX prototype is instantiated at the StarLight

facility in Chicago. In this specific example, the SDX pro-

totype connects three independent domains, Internet2 AL2S,

ESNet, and ORNL, respectively. Both AL2S and ESNet are

SDN domains, while ORNL is a plain layer 2 connection

to another SDX prototype at SoX in Atlanta. In addition to

the networking equipment shown in Figure 1 StartLight also

houses a GENI rack and offers direct layer 2 connectivity

to another one at Northwestern University. Thus, this SDX

prototype does also offer storage and computation resources.

In Section V, we will demonstrate how the latter resources

can support data intensive applications.

The StartLight OpenFlow switch as well as the North-

western and StarLight GENI racks interact with the GENI

Aggregate Manager, which allows GENI researchers to reserve

networking, computation, and storage resources. In essence,

this SDX prototype allows researchers to obtain a slice of this

SDX to perform their own multi-domain SDN experiments by

reserving resources using standard GENI tools (e.g, with Omni

as part of the GENI control framework or the GENI portal).

While SDXes are currently still in the very early devel-

opment stages we believe that it is important to develop

a measurement and monitoring infrastructure for these new

exchanges in parallel. This will allow researchers to char-

acterize the performance of SDXes which might lead to the

early on identification of potential design issues. This, in turn,

will support the rapid development of more sophisticated and

advances second generation SDXes.

IV. MEASUREMENT ARCHITECTURE FOR SOFTWARE

DEFINED EXCHANGES

In the following, we describe our proposed measurement

architecture for SDX in more detail. We start by identifying,

what we believe are, the most important requirements for such

an architecture.

1In some cases this has been also described as Software Defined Infras-
tructure (SDI) but we will stick with the term SDX throughout the paper.

Fig. 1: SDX prototype implementation at StarLight

A. Scalability

Scalability is a major concern for an SDX measurement

infrastructure. One can imagine that several 10,000s of flows

will be handled by a single SDX. It is yet unclear if it is even

possible to monitor each individual flow. Even the simple task

of obtaining flow statistics might overwhelm either the switch

or the controller of both.

While not all the flows traversing an SDX can potentially be

measured an experimenter should have the option to measure

a subset of flows. The measurement architecture has to give

the experimenter the ability to select a sub-group of the flows

traversing an SDX.

An open issue is the question if an experimenter can actually

observe flows that are not part of his or her slice. The approach

we would like to propose is that the measurement architecture

should definitively support the functionality to observes flows

that do not belong to an experimenters slice. An additional

feature is required that will enable or disable this functionality

based on policy. Each individual SDX can then have its

own set of policies to decide if and for which individual

experimenter this feature should be enabled.

B. Non-intrusive and Non-Interfering

One of the major challenges of measurement is to avoid

that the actual measurement activity impacts the outcome

of an experiment. For example, a measurement process on

a local computer could consume a significant amount of

processing power which could impact the performance of

the application that is analyzed in the experiment. Similarly,

measurement data that is transmitted from measurement points

back to a central aggregation point can impact the network

performance that is analyzed in an experiment. Since most

SDX related measurements will most likely focus on network

performance analysis it is important to design the architecture

with the premiss to avoid interference of the measurement

data transport as much as possible. The benefit of the current

GENI testbed is the existence of a “global” control plane,
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which in the GENI case is the regular Internet. In this case,

measurement data will only be transmitted on the control plane

and not the data plane and, thus, not interfere with the actual

measurement. The experiment described in Section V makes

use of this infrastructure.
But it cannot always be assumed that such an infrastructure

exists. Especially, if one envisions that SDXes might move

from prototype, testbed environments into actual production

networks. Therefore, alternative approaches are needed to

prevent interference. Fortunately, SDN allows the separation of

measurement and experiment data. For example, in the case

of OpenFlow the measurement data can be transported via

a different flow. With the introduction of Quality-of-Service

in OpenFlow 1.3 [3] it will be possible to isolate flows and,

thus, avoid interference completely – even if only one plane

is available.

C. Ease of Use
To increase the likelihood that such an architecture and

the tools that are based on this architecture are adopted by

the research and experimenter community it is important that

using measurement tools is as easy as possible. Through

our experience with the development of a measurement and

instrumentation infrastructure for GENI (GIMI) we have de-

veloped tools that allow the execution and observation of

measurements in a straightforward manner, that also allows

experimenters to easily repeat experiments and to have third

parties also execute such experiments. We will re-use the tools

developed within the GIMI project where appropriate and also

apply our experience gained during the GIMI project for the

development of new tools.

D. Calibration
Calibration is an essential component of each measurement

infrastructure since it ensures the quality of the measurement

data and the analysis that is based on these data. Thus,

experimenters must be provided with means that allows them

to perform calibration. To support the ease of use approach

mentioned above, the architecture will provide calibration tools

that can be used by experiments. In addition, the architecture

will be designed such that experimenters can be easily create

their custom-designed calibration methods. E.g., the architec-

ture will provide mechanisms that will allow the injection

of specific traffic into the SDX. Since the characteristics of

this traffic are well known an experimenter can verify if a

measurement produces accurate data.

E. From SDX to SDI
As already mentioned in Section III our vision of an SDX

goes beyond the basic exchange point for SDN domains. We,

much rather, believe that SDXes will also offer a significant

amount of compute and storage resources. Thus, a measure-

ment architecture must also include means to measure compute

and storage performance. Fortunately, most of these tools

already exist and have been extensively used for measurements

in the GENI testbed. In Section V, we demonstrate how these

tools can be applied in and SDX measurement.

Fig. 2: SDX prototype implementation at StarLight

F. Legacy

We will base the SDX measurement architecture on existing

architectures and tools that have been in use for network and

distributed systems measurement in the past. A more detailed

example of the use of these legacy tools is given in Section V.

G. Control versus Data Plane

SDNs consist of a control and data plane which is therefore

inherent in an SDX. This requires a measurement architecture

that allows the observation of data and control plane. Only a

holistic analysis of an experiment can reveal certain artifacts

that cannot be revealed by measuring either the data or the

control plane. E.g., congestion on the link that connects the

SDN switch with the controller can influence the performance

of one or several flows in the data plane. Thus, an experiment

must be able to measure both and in Section V we will

describe one possible realization of this requirement based on

our existing measurement infrastructure.

V. MEASUREMENT PROTOTYPE

In this section, we give a description of our measurement

prototype by illustrating how it was used in an actual exper-

iment that included two SDX prototypes. We first describe

the resources used for this experiment and then give a brief

overview on the experiment itself. This section concludes

with a description of our measurement infrastructure and how

it meets or will address some of the requirements listed in

Section IV.

A. Infrastructure

For this experiment we used the SDX prototype at StarLight

and the AL2S and ESNet SDN domains and the ORNL layer

2 connection as described in Section III-B. In addition, we

also used the SDX prototype at SoX. This SDX is similar

to the one at StarLight and also offers compute and storage

resources through a GENI rack. A detailed overview of the

resources used for this experiment is shown in Figure 2.
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1) Local Rack VMs: Nowcast application - It consists of a

network of 4 radars at each location where each radar sends

measured atmospheric data to a central processing location.

The application we run, called Nowcasting, is highly time-

sensitive and is used for short-term weather prediction. The

VMs that run on the Northwestern rack have previously

collected radar data stored on them, which is replayed just

as if it would come from a real radar.

2) SDXs: The SDX OpenFlow switches are at: (a) Southern

Crossroads (SoX) - This is located in Atlanta, Georgia and is

configured with a programmable FOAM/Flowvisor [10]. (b)

StarLight - This Exchange network is located in Chicago and is

the first provider to implement both national and international

communications exchange to provide better management and

control over provisioning resources within an Exchange net-

work [14].

3) Domains: The network domains are: (a) Oakridge Na-

tional Lab (ORNL) - This is a non-SDN domains that connects

the Northwestern rack to the SoX rack. (b) Energy Sciences

network (ESnet) - A large scale national network that offers

an alternative path between the two racks. (c) Internet 2 (I2)

- We use the Advanced Layer 2 Service link (AL2S) offered

by Internet 2, an SDN Domain, which provides us with a

VLAN between the Starlight Pronto switch in Chicago and

the SoX NEC Switch in Atlanta (see Figure 1). This offers a

third alternative path between the two SDXes.

All three domains provide 100Gbps bandwidth.

B. Experiment

1) Nowcasting: For the Nowcasting application, we do not

use actual radars but use virtual machines in the Northwestern

GENI rack to emulate radars. We load actual radar data that we

previously collected from four real radars in Oklahoma on four

virtual machines located in the Northwestern University GENI

rack (see Figure 2). The Nowcasting algorithm runs on a bare

metal server in the SoX rack. An Apache server is installed

in a Xen virtual machine that runs on the Georgia Tech GENI

rack. The Nowcasting algorithm processes the received radar

data to generate Nowcast images of weather data which are

transferred to the Georgia Tech rack to be displayed on a web

page hosted at the web server.

2) Trema Controller: We programmed our OpenFlow con-

trollers using Trema [5], a Ruby-based tool. Both controllers

are based on a general ”Learning Switch”. This is a simple

controller that is a part of the Trema package which floods the

interfaces of all switches connected to the controller and stores

a mapping of the interface and MAC address in a database that

is local to the controller. This controller runs in the Georgia

Tech rack also used to host the web server that makes the final

nowcast results available to the users. As shown in Figure 2,

the switches that connect to it are the SoX rack switch, GaTech

rack switch and the NEC OpenFlow in the SoXSDX Domain.

a) Load Balancer: This controller gathers the instanta-

neous throughput from the SDX Switch at Starlight through

flow statistics API provided by the Trema controller and

switches the flow to the least congested domain based on

cumulative throughput, which is an aggregate of the instan-

taneous throughput over time and provides a better controller

performance as compared to switching based only on the

instantaneous throughput. This is a good example for our

vision that in the long-term our measurement infrastructure

cannot only be used for analysis but also for feedback control

by having the OpenFlow controller changing its behavior

based on measurement data.

C. Measurement

To analyze the performance of the experiment we make

use of the tools that have been developed within the scope

of the Large-scale GENI Instrumentation and Measurement

Infrastructure (GIMI) project. For this experiment we make

use of the Orbit Measurement Framework (OMF) and Library

(OML) [17] and LabWiki which is a tool used to collect and

show live visualizations of network related experiments and

tightly integrated with OMF. In addition, LabWiki supports

the execution of large-scale experiments since the OMF Ex-

periment Description Language (OEDL) is used to “program”

an experiment. With OEDL experiments including several hun-

dred nodes can be executed, as has been shown in cases that

do not include SDXes [GEC18 Tutorial, GEC20 Demo]. This

combination of tools does not only allow the measurement of

an experiment, it also allows the automated execution of the

experiment and repetition, if desired. These tools will also

allow other experimenters to repeat this experiment. Keep

in mind that the resources for the experiment described in

Section V-B1 have all been requested with GENI tools and an

experimenter can use these tools and the resource description

(RSpec) to obtain a similar slice.

Especially for the measurement at SDXes we have instru-

mented the OpenFlow switch at StarLight with a measurement

library that allows the observation of flow statistics. This

information is gathered at the OF controller, stored in the OML

database, and can be displayed live in LabWiki. The latter

allows the experimenter to not only analyze an experiment

after it has finished but also while it is being executed.

This measurement component is automatically integrated in

the overall experiment execution, since not only the nowcast

experiment itself is described through and executed by the

OEDL script but also the tasks that have to be executed to

perform the measurement described above. For this specific

example, this means that a) the streaming of the radar data,

the nowcasting, and the distribution of the nowcasting results;

b) the initiation of the OpenFlow controller; and c) the

measurement of the flow statistics are all controlled through

the experiment script.

D. Future Steps

Our current plans are to further develop this SDX measure-

ment prototype with a focus on the following topics.

First of all, we would like to support long-term measure-

ments. Eventually, SDXes should operate reliably and with

high performance for very long periods of times. To verify

this requirement long-term measurements are necessary to be
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able to monitor the performance of an SDX over time. We

will start performing long-term measurements on the prototype

SDXes mentioned in this paper to study how our measurement

prototype performs in such a scenario.

In Section V-B2, we mentioned that we used measurement

data as input for the load-balancer OpenFlow controller. While

executing this experiment we realized that the control loop

operates quite slow and we have to further investigate its cause

to be able to increase the response delay and make this an

operational option for SDXes.

After some further testing of the prototype architecture we

will make the measurement tools available to experimenters

such that they can be used by the larger community for

research on SDXes.

Finally, one could also think of using a selected group

of SDX measurement experiments for acceptance testing of

SDXes that might become online over time.

VI. CONCLUSION

Recently, several Software Defined Exchange prototypes

have been established. These SDXes are part of the larger

GENI testbed and have the goal to interconnect several SDN

and non-SDN domains and make them available to experi-

menters. We believe that next to the SDX infrastructure the

experimenter community needs tools to perform and analyze

the SDX-based experiments. Motivated by that need, this paper

presents the requirements for a measurement architecture that

is designed for SDXes. In addition to the requirements we pro-

pose an architecture and results from an experiment executed

and observed with a prototype measurement architecture.
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