
OpenFlow SDN testbed for Storage Area
Network

Oleg L. Sadov∗, Vladimir A. Grudinin∗, Dmitry V. Vlasov∗, Arsen B. Kairkanov∗,
Leonid N. Soms∗, Vladmir B. Titov∗, Sergey E. Khoruzhnikov∗,

Dmitry A. Chugreev∗, Andrey Y. Shevel∗, Alexander E. Shkrebets∗
∗ ITMO University, Russia

http://sdn.ifmo.ru

Abstract—The paper describes the testbed to
determine the effectiveness of an approach to build
network storage using Software-Defined networks
(SDN) OpenFlow. It is assumed that main protocol to
SAN is iSCSI over local area network. Prototyping
tools for managing network resources and data flows
on the basis of SDN and testing environments based
on Free and Open Source software. We describe
experiments with various modifications of OpenFlow
controller NOX and set out the specifics for the use of
various software and hardware OpenFlow switches.
The main tests goals are Data Center SAN specific:
implementation of QoS methods accordingly switch-
specifics, topology changing, measuring of trans-
mission parameters, simulating of large amount of
requesting hosts (up to 100 thousands hosts).

I. INTRODUCTION

One of the most important aspects of Data Cen-
ters functionality is a data transferring to storages.
Virtualization of servers, Ethernet speed growing
and lower cost make iSCSI SAN storages a se-
rious competitor to traditional for enterprise data
centers Fiber Channel storages [1]. Recommended
solutions for solving of iSCSI network transfer
stability problems is a dynamic rerouting, iSCSI
traffic segregation [2] and using of QoS poli-
cies [3]. OpenFlow SDN [4] is a very interesting
new approach for implementing of such mecha-
nisms. Such technologies used for Data Centers
by some well known companies, such as IBM [5],
Google [6], NTT [7], etc.

The aim of this work was to study the design
principles and performance of Software-Defined
Networks, as well as to develop prototypes of tools
for managing network resources and data flows

in SDN, the evaluation of the applicability of the
SDN for data centers and distributed storage. For
experiments were selected OpenFlow SDN and
evaluated the effectiveness of their use for the
management of iSCSI storage systems.

The requirements were specified for network
resources management tools and Quality of Service
(QoS) assurance.

II. TESTBED

Software:

• OpenFlow software switch based on
CPqD/of12softswitch [8] and Open
vSwitch [9];

• OpenFlow controllers based on
CPqD/nox12oflib [10] and NOX [11];

• OpenFlow network emulator Mininet [12];

• VirtualBOX and KVM Virtual Machines
with NauLinux 6.3/6.4 [13] distributions
and Ubuntu 11.10 pre-configured CPqD
OpenFlow-1.2 Virtual Machine [14].

Hardware OpenFlow switches – Pica8 3290 and
HP 3500-24G-PoE yl.

HP P4300 G2 7.2TB SAS Starter SAN
BK716A was used as the iSCSI SAN.

III. SPECIALIZED SOFTWARE MODULES

For testing purposes was created a number of
specialized Python modules and programs which
used for changing of topology, QoS policies, start-
ing/stopping of traffic generators and measuring of

transmission characteristics. Developed prototypes
were tailored for the hardware OpenFlow switches.

Specialized “switchqos” module was developed
based on NOX module “switch” to manage net-
work resources and data flows and to ensure QoS.

This module calculates routes for all pack-
ets in the testbed and generates flow tables for
every OpenFlow switch. These calculations and
flow tables modifications are performed after every
topology change or data flow interruption.

The traffic classification for QoS control is
based on TCP/UDP port numbers. Depending on
switch type and capabilities, the different QoS
control methods were used: OpenFlow queues, IP
ToS, and VLAN PCP modifications.

Special software tools for QoS policy configu-
ration of hardware switches were used to prioritize
SAN traffic. The different switches (for example,
Open vSwitch and HP ProCurve) had different
QoS control mechanisms, which made the creation
of a unified interface is quite a difficult task.

As the most important configurable parameters
of QoS assurance, the bandwidth and the priority
of the packet queues were selected.

The software prototypes for QoS control on HP
3500 and Pica8 in OVS mode were placed in the
repository [15]. They can be easily extended to use
different QoS settings.

Because different switches and controllers sup-
port variety versions of OpenFlow, several different
modules were developed for NOX classic [15],
NOX [11] and nox12oflib [10].

IV. NETWORK RESOURCES AND DATA FLOWS

MANAGEMENT

As a system for network resources and data
flows management, a set of software modules
was developed for attaching and detaching links
between switches.

In the emulation mode, this was carried out by
means of Mininets Python module.

For hardware switches this was done via CLI
commands over SSH connection, automated by a
Python script.

Fig. 1. Loop topology for experiments

A loop topology (Fig. 1) was selected for
experiments, consisting of 4 switches (nodes s2,
s3, s4 and s5), and two hosts for traffic generation
and reception (nodes h1 and h6).

SDN routing modules based on standard regular
MAC-learning NOX “switch” modules.

During the experiment, test traffic (ping) was
sent from the host h1 to host h6. In an initial state
all nodes were connected accordingly Fig. 1. The
controller was in an undefined state, it had no rout-
ing scheme, and the packets have not passed. After
detaching one link by test framework, the route
was constructed by NOX “switchqos” module, and
the pass of the packets was established. After that,
the restoring of the detached link (and loop) did
not break the traffic flow. Detaching the active
link led to an automatic topology rediscovery and
redirection of the traffic to a different route.

V. QOS ASSURANCE METHODS

Data flows prioritization was carried out with
the Python modules. These modules set bandwidth
for OpenFlow queues or ToS/PCP bandwidth. The
dpctl utility was used for the software switch
control. Hardware switches were managed by CLI
commands sent over SSH.

For the evaluation of a possible use of SDN
in data center, a data center model (Fig. 2) was
created. This model consisted of iSCSI SAN and
few VMs. The first VM acted as an OpenFlow
1.2 switch while the second one generated iSCSI
traffic; the others performed in generating and
receiving the load traffic.

During the experiment, the data were read from
iSCSI SAN with simultaneous load traffic genera-
tion.

IP diagnostic utility Iperf and VoIP test tool
SIPp were used to generate the load traffic.

Fig. 2. SDN data center model

TABLE I. SAN I/O SPEED THROUGH SOFTWARE
SWITCH DEPENDENCY ON QOS QUEUES BANDWIDTH

SHARE

Bandwidth share, in % of the total Load traffic,
Kb/sSAN I/O speed iSCSI traffic

100 0 35.1
100 0.1 31.6
100 100 8.3
0.1 100 5.4
0.1 0.1 9.2

It was observed that under heavy load condition
the iSCSI connectivity might be lost and later
recovered. After iSCSI connectivity recovery the
bandwidth is changing in arbitrary manner. To keep
the same bandwidth after recovery we changed
Linux Traffic Control dynamic bandwidth, which
is defined by CpqD/of12softswitch, to static band-
width setting. The modified module can be found
in [8].

The utility dpctl sets the share of total band-
width for selected QoS queues as percent of total
bandwidth. The sum of shares is not necessary
equal to 100

Table I shows the influence of the presence of
queuing on the resulting SAN I/O speed, but there
is a little difference.

The experiment with the HP hardware switch
has shown a correlation between the bandwidth
share set and the resulting I/O speed (Fig. 2).

Not comparing the absolute transmission rate,
it is possible, due to a priori restricted channel
throughput, to specify the advantages of QoS con-
trol in hardware switches: a high degree of accu-
racy, an impossibility of setting a total bandwidth
more than 100%.

TABLE II. SAN I/O SPEED THROUGH HARDWARE
SWITCH DEPENDENCY ON QOS QUEUES BANDWIDTH

SHARE

Bandwidth share, in % of total Load traffic,
Mb/sSAN I/O speed iSCSI traffic

100 0 10.0
80 20 8.4
20 80 2.1
0 100 0

VI. PROCESSING A LARGE NUMBER OF

REQUESTS

In the test program (rd test) SCSI command
“TEST UNIT READY” was sent to SAN in multi-
thread mode via ioctl system call with SG IO
code. The target characteristic was the number of
completed requests for a selected period of time.

The developed “switchqos” module was opti-
mized for speed of transmission of data passing
through controlled switches. This optimization in-
cluded a modification of the default NOX flow
matching scheme. It was necessary because the
used switches were unable to perform a flow match
based on source and destination MAC addresses
and VLAN PCP with the hardware acceleration.
The software processing was limited to 10 000
packets per second.

Another setting was in increasing the idle time-
out. It was found during the experiments that HP
3500 switch had not refreshed the flow packet
statistics frequently enough for the hardware pro-
cessed flows. Usually, after 5 seconds of idle time
(default for NOX “switch” module), the switch
erroneously removed the record from the flow
table. After increasing the idle time parameter in
“switchqos” module to 20 seconds, this behavior
was corrected and the necessity for repeatedly
creating records of flow matching was eliminated.
At the same time, an excessively large idle timeout
value could degrade the performance due to an
increased flow table size.

After these optimizations, the performance of
the system increased significantly, and the value
of 100 000 requests to SAN per second through
OpenFlow switch was surpassed. The example of
test program output is shown below.

./rd_test /dev/sdb 2 100

Fig. 3. Modeling the large number of requests to SAN in
data center infrastructure

Result: 130124 requests/sec (260248/2)

VII. SAN RESPONSE TIME

Read operations were used to measure SAN
response. SG IO ioctl was used to exclude the
buffering influence, instead of the generic read.

The test program has measured the average
latency and jitter performing SAN requests.

The results for 1000 packets and data block
sizes 512 and 1024 bytes are as follows (the
average latency and jitter are measured in seconds):

./rtt_iscsi_read /dev/raw/raw1 1000 \
512 1024
Size=512 Packets=1000 Latency=0.000844
Jitter=0.000084
Size=1024 Packets=1000 Latency=0.000860
Jitter=0.000104

VIII. DATA CENTER MODELING

Our modeling of a data center involved a trans-
mission of ICMP requests to SAN from different
MAC addresses.

The test network consisted of SAN, 2 hardware
OpenFlow switches from HP, VM with NauLinux
6.3 guest OS running NOX and 10 test nodes VMs
running Ubuntu 11.10 and Mininet. Each test node
launched 6 virtual hosts, 7 software switches Open
vSwitch, and a local controller NOX (Fig. 3).

The test program, running on the main host,
sent messages to the test nodes, starting local test
programs, written as xinetd services. The local
test programs on every virtual host pinged SAN
from every MAC address in a specified range. Re-
quests were forwarded to SAN through hardware

switches, controllable by NOX launched in multi-
thread mode (10 threads) on the main host.

This controller instance has logged the number
of different MAC addresses in the processed re-
quests and the requests distribution in the running
threads. After getting 100 000 different MAC ad-
dresses, test programs stopped.

IX. CONCLUSION

Described experiments have shown that devel-
oped OpenFlow testbed could be used for testing
the dynamic (re)configurations of the network ele-
ments, (re)setting various data transfer parameters
for different traffic types. It was shown the testbed
is able to serve the requests from large number of
hosts. Suggested inexpensive testbed might be used
for detailed investigation of OpenFlow approach
to the network architecture of data centers and
distributed storage.

Software repositories [8], [10] and [11] con-
tain developed software modules and tests. The
controller applications are packaged in binary and
source forms for NauLinux operating system distri-
bution [13], binary compatible with RHEL/Oracle
Linux/CentOS/Scientific Linux distributions.

REFERENCES

[1] Carol Sliwa. iSCSI SAN solutions getting boost
by shared storage, virtual servers. Available at
http://searchstorage.techtarget.com/feature/iSCSI-SANs-
getting-enterprise-boost-by-shared-storage-virtual-
servers

[2] David L. Stevens. Preparing a customer’s network
for iSCSI: Five points to consider. Available at
http://searchitchannel.techtarget.com/tip/Preparing-a-
customers-network-for-iSCSI-Five-points-to-consider

[3] Brian Peterson. Storage network bandwidth planning:
How to avoid network latency. Available at http:
//searchitchannel.techtarget.com/tip/Storage-network-
bandwidth-planning-How-to-avoid-network-latency

[4] OpenFlow specifications. Available at https:
//www.opennetworking.org/sdn-resources/onf-
specifications/openflow

[5] Renato Recio (IBM). OpenFlow in Enterprise Data Cen-
ters Products, Lessons and and Requirements. Avail-
able at http://www.opennetsummit.org/archives/apr12/
recio-wed-enterprise.pdf

[6] Google. Inter-Datacenter WAN with centralized TE
using SDN and OpenFlow. Available at https://www.
opennetworking.org/images/stories/downloads/sdn-
resources/customer-case-studies/cs-googlesdn.pdf

[7] NTT. Virtualized Data Center using OpenStack and
OpenFlow. Available at http://www.opennetsummit.org/
archives/apr12/site/pdf/ntt.pdf

[8] ITMO OpenFlow 1.2 software switch repository, avail-
able at https://github.com/itmo-infocom/of12softswitch

[9] Open vSwitch project, available at http://openvswitch.org
[10] ITMO OpenFlow 1.2 NOX repository, available at

https://github.com/itmo-infocom/nox12oflib
[11] ITMO NOX repository, available at https://github.com/

itmo-infocom/nox
[12] Mininet, available at http://mininet.github.com
[13] NauLinux distribution, available at http://downloads.

naulinux.ru/pub/NauLinux/
[14] CPqD OpenFlow-1.2-Tutorial, available at https://

github.com/CPqD/OpenFlow-1.2-Tutorial/wiki
[15] ITMO OpenFlow tests repository, available at https://

github.com/itmo-infocom/of-tests

