

SEEDS International Conference

Development of An Ecology-oriented SDN Framework

Chandra Satriana
1
, Oleg Sadov

2
, Vladimir Grudinin

2

1
Pervasive Computing and Communication for Sustainable Development (PERCCOM), Universite de

Lorraine, 34 Cours Léopold, 54000 Nancy, France

2
 Saint Petersburg State University of Information Technologies, Mechanics and Optics (ITMO

University), Birzhevaya liniya, 14, 199034 Saint-Petersburg, Russia

Keywords: Software-Defined Network, Energy, Green IT, OpenFlow.

Abstract

ICT contributed to about 0.83 GtCO2 emissions where the 37% comes from the

telecoms infrastructures. At the same time, the increasing cost of energy has been

hindering the industry in providing more affordable services for the users. One of the

sources of these problems is said to be the rigidity of the current network

infrastructures which limits innovations in the network. SDN (Software Defined

Network) has emerged as one of the prominent solutions with its idea of abstraction,

visibility, and programmability in the network. Nevertheless, there are still significant

efforts needed to actually utilize it to create a more energy and environmentally

friendly network. In this paper, we suggested and developed a platform for developing

ecology-related SDN applications. The main approach we take in realizing this goal

is by maximizing the abstractions provided by OpenFlow and to expose RESTful

interfaces to modules which enable energy saving in the network. While OpenFlow is

made to be the standard for SDN protocol, there are still some mechanisms not

defined in its specification, especially related to energy saving. To solve this, we

created REST interfaces for setting of QoS (Quality of Service) in the switches which

can maximize network utilization. We also created the interfaces for minimizing the

required network resources in delivering packets across the network. This is achieved

by utilizing redundant links when it is needed, but disabling them when the load in the

network decreases. While the amount of power saved by disabling a port on a switch

is not so much, this can be a huge saving when it is applied to real and bigger

network infrastructures.

INTRODUCTION

ICT currently contributed to about 0.83 GtCO2 emissions where the 37% of it comes from

the telecoms infrastructures [28]. Similarly, the network infrastructure in a data center

contributes to about 20% of power consumption [29]. While this number does not seem huge,

3 billion kWh was consumed by the networking elements in the data centers in the United

States [21]. Innovation in this area can certainly contribute to not only saving the

environment but also improve business by reducing energy costs.

Unfortunately, the rigidity of the current network infrastructures has been said to limit

innovations in the network. Nevertheless, Software-Defined Network (SDN) has emerged as

one of the prominent solutions with its idea of abstraction, visibility, and programmability in

the network. Basically, it is achieved via the separation between the control plane and the

forwarding plane of a network switch. The forwarding plane itself is programmable via the

interfaces specified by OpenFlow protocol. OpenFlow also specifies the mechanisms needed

to exist in SDN capable switches and how these switches can be programmed.

However, if the goal is to utilize SDN to create a more energy and environmentally friendly

network, then significant efforts are needed to actually realize it. Currently there is not yet a

framework in which users, specifically developers, can make use of to create ecology-related

applications. To solve this problem, we propose an ecology-oriented SDN framework in

which users can easily use to save energy in their network.

The developed Ecology SDN Framework is designed with idea of maximizing the abstraction

feature of SDN and to integrate researched mechanisms to save energy in a network. The

framework has some modules including REST API for setting of QoS in OpenFlow switch,

Adaptive Link Rate to accustom interface rate to network utilization, and network

optimization to increase performance while at the same time saving energy.

This framework is developed as a master thesis for a master degree of Pervasive Computing

and Communication for Sustainable Development (PERCCOM). PERCCOM is an Erasmus

Mundus Joint Master Degree (EMJMD) which focuses on building a green ICT system.

LITERATURE REVIEW

Software-Defined Network

According to [3] SDN is defined as the physical separation of the network control plane from

the forwarding plane, and where a control plane controls several devices. In other words,

SDN allows the network to be programmable.

The logical architecture of SDN is shown in Fig.1. On the bottom layer, the network of

physical switches are abstracted and centrally managed through an SDN controller at the

contol layer. Other than managing the current state of the underlying network, the controller

also provides Application Programming Interface (API) which can be used by SDN

applications to provide network services such as routing, traffic engineering, energy usage,

quality of service, and security.

Figure 1. Software-Defined Network Architecture

One particular attention on the architecture, is the protocol used for communication between

the infrastructure layer and control layer. Currently there is no standard protocol, but the most

used one is the OpenFlow. Basically it specifies the instructions or commands which can be

executed by the SDN controllers to modify the forwarding tables of the underlying

infrastructure layer (phisical or virtual switches). Fig.2 is an example of instruction which can

be set on the OpenFlow-enabled switches. Depending on the MAC destination address, MAC

source address IP address, and TCP port, a certain packet which match those fields will be

forwarded to port 1 of the switch or forwarded to the controller, based on the value on the

action field.

Figure 2. Example of OpenFlow Instruction Set []

Representational State Transfer (REST)

Representational State Transfer (REST) is a coordinated set of architectural constraints that

attempts to miimize latency and network communication while at the same time maximizing

the independence and scalibility of component implementations (Roy fielding). REST also

enables the caching and reuse of interactions, dynamic substitutability of components, and

processing of actions by intermediaries, thereby meeting the needs of an Internet-scale

distributed hypermedia system.

According to (REST Api design patters for SDN), adopting REST for SDN northbound API

has some benefits such as: decentralized management of dynamic resources, heterogeneous

clients, service composition, localized migration, and scalability.

RESEARCH REVIEW AND METHODOLOGY

The research approach adopted in this work is formulative research. This approach is

suggested by Morrison and George (1995) in which they also suggested other research

approaches including evaluative research, descriptive research, and developmental research.

Formulative research involves development and refinement of theories, models, or

frameworks that govern research activities, and support scientific progress through paradigm

shifts. Also, most of formulative work involves synthesizing and integrating information and

then developing guidelines, models, or frameworks.

Agile software development approach is followed in conducting this research. Pekka (2002)

explains that this development approach has some important characteristics such as

modularity on development process level, iterative with short cycles enabling fast

verifications and corrections, adaptive with possible emergent new risks, incremental process

approach that allows functioning application building in small steps, and collaborative and

communicative working style.

There are different agile software development methodologies, such as feature driven

development (FDD), scrum, rational unified process (RUP), and adaptive software

development. Out of these, RUP is chosen as it is more appropriate for iterative development

in object-oriented approach. RUP’s project lifespan consists of four phases: inception,

elaboration, construction, and transition, as depicted in figure 3.

Figure 3. RUP Phases

ECOLOGY SDN FRAMEWORK DESIGN AND IMPLEMENTATION

Inception

Inception phase which comprises of requirement gathering and analysis is the first step in

RUP. In our work, we analysed some of the important requirements:

1. Develop a solution that makes the network infrastructure to be ecology-friendly

2. The solution should be implemented in a form of framework which can be utilized by

other users or other developers in which to build upon more green solutions

3. It should use emerging technologies in SDN which provides abstraction, visibility,

and programmability in a network

4. It should have good quality requirements such as modularity, composability, and

scalability.

Elaboration

In this step, high level as well as detailed design and implementation is laid out.

There are two main ideas we apply in designing the framework is by maximizing the

abstraction provided in SDN through OpenFlow and to implement researched mechanisms to

save energy in a network.

Figure 3 shows the high level view of the framework. This framework sits on top of Ryu

SDN controller. The main idea is that this framework extends the capability of Ryu which

communicates with the underlying physical or virtual network.

Figure 4. Ecology SDN Framework Architecture

The idea of creating separate modules which serves their own individual functions is to

support composability in the framework. This is also an idea borrowed from Service-oriented

Architecture which supports in creating small functional services which can collaborate in

achieving bigger functionalities. This approach is also good for scalability because in the

system, any new application or functionality can get certain data from an already running

module instead of implementing its own mechanism.

The individual modules are described in the following subsections.

QoS REST API

OpenFlow defines the mechanisms to access the forwarding plane of a switch and the

features needed to be implemented in it through OpenFlow specification [2]. But it does not

specify the mechanisms for queue settings which can be useful in guaranteeing Quality of

Service (QoS) and in implementing the adaptive link rate feature. This certainly becomes a

problem when the network consists of switches from different vendors, physical or virtual

switch, where each has their own way to configure the queue, decreasing the abstraction

ECOLOGY SDN Framework

OpenFlow Controller (Ryu)

Physical/Virtual Network

Adaptive

Link Rate

Port Stats

Reporter

Host

Tracker

QoS REST

API

Energy Efficient

Redundant Links
Multiple

Flows

Route

Finder

nature of SDN itself. To overcome this, we create a RESTful API to set the queue settings in

CPqD OpenFlow 1.2 and 1.3 compatible software switch. REST (Representational State

Transfer) is chosen because it has some benefits such as: service composition and localized

migration [3]. The API we have implemented is described in Table 1.

Table 1. QoS REST API Endpoints

Endpoint Description

PUT /v1.0/conf/switches/{SWITCH_ID} Set switch address

POST /qos/queue/{SWITCH_ID} Set QoS settings with data : port-name, queues: min-

rate:, max-rate:

GET /qos/queue/{SWITCH_ID} Get all queues settings in the switch

DELETE

/qos/queue/{SWITCH_ID}/{PORT}/{QUEUE_ID}

Delete a specific queue

Port Stats Reporter

Port stats reporter is the component in the SDN framework which reports port statistics of

ports in OpenFlow switch. The statistics consists of data such the number of packets

received/transmitted, received/transmitted bytes, packets dropped and received/transmit

errors.

This data then will be used by other applications to monitor the bandwidth utilization of the

ports of switches. To communicate this data in the application, the application that wants to

use it only need to register to receive the event. In the implementation, this is achieved by

adding a decorator of ofp_event.EventOFPPortStatsReply to the python method inside the

application.

The application which receives the data then will calculate the utilization. The calculation of

the utilization is carried out with the following formula:

(∆𝑇𝑥 + ∆𝑅𝑥) × 8 𝑥 100

𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 × 𝑖𝑓𝐵𝑤

where Tx and Rx is the number of packets received and transmitted on that interface

respectively, Tmeasurement is duration since the previous measurement and ifBw is the

interface bandwidth or the maximum capacity of the interface.

Energy Saving in Redundant Links

Redundant links in a network are usually used either to increase performance by utilizing

both links, or as a backup mechanism when the normal link is down. In this framework we

created a sample application which utilized the redundant links when the load of the network

require more capacity and turn the redundant link off when such link capacity is not needed.

Figure 2 shows the example network we setup in Mininet. To avoid ARP broadcast storm, we

set flow rules so that only one of the ports is used to transmit these broadcast packets

S1 S2

H1 H2 H3 H4

1

2
3 4

App

Figure 5. Redundant Link Example Scenario

This is achieved by installing flow rules which will drop packets coming in from port 2 and

have Ethernet destination address of broadcast address. Then, to use both links we decided to

load balance the traffic. A simple selection mechanism is implemented. Hosts connected to

odd port number will go to port 1 and hosts connected to even port number will go to port 2,

that is when their destination is a host in another switch. At the same time, the Port Stats

module reports the number of transmitted and received bytes on the switch’s ports.

Then the module applies the rules depending on the policy specified, such as to disable port 2

when the utilization of port 1 + utilization port 2 is under 90%. The disabling of the port is

achieved by sending ofppc_port_down message to the port. Host Tracker module is used to

get information of the mac addresses connected to the switches and used in installing

balancing flows.

Adaptive Link Rate

According to [4], 1 Gbps Ethernet Links consume 4 W more than 100 Mbps links, while both

idle and fully utilized Ethernet links consume same amount of power. The suggested

mechanism to save the power is to use Adaptive Link Rate (ALR), which is by adaptively

varying the link rate based on the load or utilization in the network. In this framework we

provide a module which will decrease the link rate of the switches, when the utilization of the

network is under 10% or certain defined value. To implement this, firstly we setup several

queue settings in the switch. Using the REST QoS API we developed, queue 1 and 2 are set

up, where each has a rate of 10 Mbps and 100 Mbps respectively. When the utilization on a

port is low, a qos rule is installed to flow table 0 in which traffic flows which have the

destination of that host will be queued to queue id 1, and also to be forwarded to flow table 1

which has the exact information on which port to output this flow.

Multiple Flows

A trivial yet working approach in saving energy is by increasing the performance of network

itself during high utilization. By increasing the network performance, the required time to do

the work-- in this case transferring the data-- can be achieved faster, and the resources

involved may rest earlier once the work is done.

In our work we test the working of the module by sending data from H1 and H2 using BBCP

tool. BBCP is a tool to securely and quickly (approaching line speeds) from source to target.

The network architecture is depicted in figure 6.

Figure 6. Multiple Paths Network Example

A BBCP streams should be sent from H1 to H2 through the available paths. It is assumed

that the available paths are known to the SDN application. These are the paths from H1 to

H2:

1. H1 – (Port 3)S2(Port 15) – (Port 15)S5(Port 4)

2. H1 – (Port 3)S2(Port 14) – (Port 14)S3(Port 15) – (Port 13)S5(Port 4)

3. H1 – (Port 3)S2(Port 14) – (Port 13)S4(Port 15) – (Port 14)S5(Port 4)

4. H1 – (Port 3)S2(Port 16) – (Port 16)S4(Port 4)

To achieve the load balancing, BBCP streams from H1 are routed through the different paths.

Each BBCP stream can be identified by its TCP source port because each stream has the

same TCP destination port (5031), but different TCP source port. The activity diagram below

shows the logic used in the application to load balance the BBCP streams:

BBCP Stream 1
TCP Src A

TCP Dst 5031

BBCP Stream 2
TCP Src B

TCP Dst 5031

BBCP Stream 3
TCP Src C

TCP Dst 5031

FLOW TABLE:
Priority: 1

Match TCP Dst 5031
Forward to Controller

SDN Controller
Process packet-in:

Get TCP src

SDN Controller:
Insert New flow:

Priority: 2
Match TCP Dst

5031
Match TCP Src A
OUTPUT to PATH

1

BBCP FLOW 1

FLOW TABLE:
Priority: 3

Match TCP Dst 5031
Match TCP Src A

OUTPUT to PATH 1

FLOW 2...END

BBCP Stream 1
TCP Src A

TCP Dst 5031

BBCP Stream 2
TCP Src B

TCP Dst 5031

BBCP Stream 3
TCP Src C

TCP Dst 5031

FLOW TABLE:
Priority: 1

Match TCP Dst 5031
Forward to Controller

Figure 7. Multipathing Module Flow Diagram

The first incoming BBCP stream from H1 for example will be matched to the flow rule:

match tcp_dst 5031. This flow is then forwarded to controller where further processing takes

place. This process is to read the TCP source port of the flow and to insert a new flow rule

matching the TCP source port and TCP destination port. The next flow coming from this

same BBCP stream will then be matched to this new flow rule, for example will be output to

path 1, instead of matching the previous rule which will forward it to the controller, because

the new rule has higher priority.

Host Tracker

The application keep tracks of the hosts connected to the switches. The data that is stored is

MAC address of the host, IP address of the host, DPID of the switch and port number in

which the host is connected to, timestamp to store the time the mac address is stored to ensure

the freshness of the data,

Route Finder

The route finder finds all the available paths from node 1 to node 2. For example it is used in

multipath modules to find the routes from host 1 to host 2.

ARP Handler

ARP handler is used to prevent ARP broadcast storms in the network as well as helping in

answering ARP requests.

RESEARCH RESULTS

Identify the relevant question that is being answered and then provide the data and

experimental results that relate to the key topic. Figures, tables and graphs should be clearly

presented. Each time data is introduced there should be an opening sentences that informs

the reader the exact nature of the data and its relevance

DISCUSSION

The research results agree with the literature study.

CONCLUSION

The Ecology SDN Framework we developed is able to enforce some of the known

mechanisms to save energy in a network infrastructure. The programmability nature of SDN

has been important in making this possible. This has shown the potential of SDN in

supporting innovation in the networking areas to save the environment. The framework’s

code is open sourced and can be accessed at (Satriana, 2015)

Further direction on this research will be to conduct detailed measurement on the amount of

energy saved when using this framework. While the framework is made by implementing the

researched mechanisms to optimize energy usage in a network, it will encourage more people

to develop the framework when such measurements are available.

REFERENCES

The Climate Group, Global eSustainability Initiative (GeSI). (2008) “Smart 2020: Enabling

low carbon economy in the information age”

Open Networking Foundation. (2012) OpenFlow Switch Specification version 1.3.3.

Wei Zhou; Li Li; Min Luo; Wu Chou. (2014) "REST API Design Patterns for SDN

Northbound API," WAINA, 2014 28th International Conference on , vol., no., pp.358,365.

Gunaratne, C.; Christensen, K.; Nordman, B.; Suen, S.. (2008)"Reducing the Energy

Consumption of Ethernet with Adaptive Link Rate (ALR)," Computers, IEEE Transactions

on , vol.57, no.4, pp.448,461

Satriana, C. (2015) Open Source Code repository of EcoSDN. https://github.com/itmo-

infocom/EcoSDN

Brandon Heller, Srini Seetharaman, Priya Mahadevan, Yiannis Yiakoumis, Puneet Sharma,

Sujata Banerjee, and Nick McKeown. 2010. ElasticTree: saving energy in data center

networks. InProceedings of the 7th USENIX conference on Networked systems design and

implementation(NSDI'10). USENIX Association, Berkeley, CA, USA, 17-17.

Khondoker, R.; Zaalouk, A.; Marx, R.; Bayarou, K., "Feature-based comparison and

selection of Software Defined Networking (SDN) controllers," Computer Applications and

Information Systems (WCCAIS), 2014 World Congress on , vol., no., pp.1,7, 17-19 Jan.

2014

Shiraki, O.; Nakagawa, Y.; Hyoudou, K.; Kobayashi, S.; Shimizu, T., "Managing storage

flows with SDN approach in I/O converged networks," Globecom Workshops (GC Wkshps),

2013 IEEE , vol., no., pp.890,895, 9-13 Dec. 2013

M. Said Seddiki, Muhammad Shahbaz, Sean Donovan, Sarthak Grover, Miseon Park, Nick

Feamster, and Ye-Qiong Song. 2014. FlowQoS: QoS for the rest of us. In Proceedings of the

third workshop on Hot topics in software defined networking (HotSDN '14). ACM, New

York, NY, USA, 207-208

Roy T. Fielding and Richard N. Taylor. 2002. Principled design of the modern Web

architecture. ACM Trans. Internet Technol. 2, 2 (May 2002), 115-150.

DOI=10.1145/514183.514185 http://doi.acm.org/10.1145/514183.514185

Peter M. Vitousek 1994. Beyond Global Warming: Ecology and Global Change. Ecology

75:1861–1876. http://dx.doi.org/10.2307/1941591

Albert Greenberg, James Hamilton, David A. Maltz, and Parveen Patel. 2008. The cost of a

cloud: research problems in data center networks. SIGCOMM Comput. Commun. Rev. 39, 1

(December 2008), 68-73. DOI=10.1145/1496091.1496103

Andy Hanushevsky. BBCP https://www.slac.stanford.edu/~abh/bbcp/.

