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ABSTRACT

In this paper we present our experiences with multipath TCP (MPTCP) in an intercontinental multipathed OpenFlow testbed.
We believe that multipathing will become an important network concept in the next few years. One of the major reasons is that
data sets in e-science are increasing exponentially in size. To transfer these huge data sets we need to make efficient use of
all available network capacity. This means using multiple paths simultaneously wherever possible. To get experience with this
concept we set up a testbed in which we transferred data between two servers. The testbed consisted of OpenFlow switches
and multiple link disjoint paths between the servers. An OpenFlow application provisioned multiple paths between the servers
and MPTCP was used on the servers to simultaneously send traffic across all those paths. Figure 1 shows the testbed that was
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Fig. 1. SC12 Multipath OpenFlow Network Topology

used for the SC12 demonstration in Salt Lake City in November 2012.



Multipathing can be done at L3 with Equal Cost Multipath (ECMP) routing or at L2 with protocols like TRILL (IETF
RFC 5556) [1] or IEEE 802.1aq (Shortest Path Bridging - P802.1aq-2012 [2]). In all these cases load balancing across the
paths is done based on flows by calculating a hash (based on e.g. Ethernet addresses, IP addresses and TCP/UDP port numbers)
of the packets. Each packet of such a flow follows the same path through the network, which prevents out of order delivery
within a flow. When the traffic has many different flows the traffic will be evenly spread across the various paths. But when
there are only a few flows, which is typically the case in large data e-science applications, this is not the case. Another
disadvantage of hashing is that usually all links get the same percentage of the hash values and therefore all the paths need to
have the same capacity.

Multipath TCP is a new approach towards efficient load balancing. Instead of letting the network do the load balancing by
using hashes and ECMP, MPTCP is doing the load balancing in the end nodes as part of the TCP process. Multipath TCP
(MPTCP) is described in RFC 6182 [3] and the *TCP Extensions for Multipath Operation with Multiple Addresses’ internet
draft [4]. MPTCP is an active working group in the IETF. Figure 2 shows how MPTCP works. In a MPTCP enabled kernel
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Fig. 2. Traditional TCP vs Multipath TCP

the TCP component is split in a MPTCP component and TCP subflow components for each interface. The MPTCP component
receives a byte stream from the application (MPTCP uses an unmodified socket API and TCP semantics northbound, so
applications do not need to be adapted). The MPTCP component splits the byte stream into multiple segments which are
handed to the TCP subflow components. Each subflow behaves as a normal TCP flow to the network. MPTCP can handle
paths of different bandwidth because there is a congestion control mechanism across the subflows. This congestion control
mechanism takes care that traffic on a congested path is moved to a path with less congestion. So it adapts the load balancing
according to the load of other traffic on the network.

The MPTCP component implements three functions. It takes care of path management by detecting and using multiple paths
to a destination. Packet scheduling splits the byte stream received from the application in multiple segments and transmits
these segments on one of the available subflows. These segments are numbered, so that the receiving MPTCP component can
put the segments in the correct order and reconstruct the original byte stream. Finally there is congestion control across the
subflows. This function spreads the load over the subflows. When a subflow becomes congested, traffic is moved to a subflow
that is less congested. This function also takes care of retransmissions on another subflow when one of the subflows fails.

In 2012 two demonstrations were given, one in October in Chicago during the GLIF meeting and one in November in Salt
Lake City during SC12. During the GLIF meeting we showed streaming from Geneva to Chicago over multiple 10GE paths. On
our servers we used the Linux MPTCP implementation of the IP networking lab of the Université de Louvain in Belgium [7].
Both servers had two 10GE NICs each. On these physical interfaces we configured two MAC VLAN virtual interfaces so that
we could give each virtual interface its own MAC address. In our testbed the various paths through the network are set up
by provisioning forwarding entries on the OpenFlow switches. Each of the four virtual interfaces was mapped to its own path
through the OpenFlow network and each path had it own IP subnet assigned to it. The OpenFlow forwarding entries matched
on destination MAC and IP address. There was no routing in our testbed, so four subflows (paths) could be used by MPTCP.
During the GLIF demonstration we were able to reach an aggregated end-to-end throughput of around 3 Gbit/s. Later analysis
showed that we used an MPTCP segment size of only 1400 bytes, which was probably one of the reasons for the relatively low
throughput. During SC12, we showed OLiMPS and MPTCP by streaming from Geneva to Salt Lake City as part of the SClInet
Research Sandbox. Figure 1 shows the topology used during SC12. Figure 3 shows the live monitoring website at SC12. We
have also streamed between Geneva and Amsterdam and by using four paths we were able to reach an aggregated end-to-end
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Fig. 3. Live monitoring website at SC12

throughput of around 13 Gbit/s. Each of the four subflows is mapped to one of the four paths and has its own colour in the
graphs (see figure 4). When the stream was started all four subflows were used. After a while only the red and green subflows
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Fig. 4. Four paths between Geneva and Amsterdam

were used. These are the only two link disjoint paths between the servers, so it makes sense that MPTCP would eventually
use only these paths. Figure 5 shows how initially all flows are used and after some time only the two link disjoint paths.
Figure 6 show the subflow usage after some time. In the first half of 2013 we will continue this work in several areas:

o« MPTCP throughput measurements between Geneva, Amsterdam and Chicago

e« MPTCP throughput on links of different bandwidth (e.g. 1GE and 10GE)

o Continue the development of the OLiMPS OpenFlow application

e« MPTCP and multipathing experiments on the Géant OpenFlow testbed

o Demo at Joint Techs in Hawaii

e Demo at TNC2013

The results of these activities will be presented at TNC2013.
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Fig. 5. Streaming between Geneva and Amsterdam, initial phase
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Fig. 6. Streaming between Geneva and Amsterdam, stable phase

Research (OASCR).
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