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Preface

This book and its companion volumes, LNCS vols. 9140, 9141, and 9142, constitute
the proceedings of the 6th International Conference on Swarm Intelligence in con-
junction with the Second BRICS Congress on Computational Intelligence (ICSI-CCI
2015) held during June 25–28, 2015, in Beijing, China.

The theme of ICSI-CCI 2015 was “Serving Our Society and Life with Intelligence.”
With the advent of big data analysis and intelligent computing techniques, we are
facing new challenges to make the information transparent and understandable effi-
ciently. ICSI-CCI 2015 provided an excellent opportunity for academics and practi-
tioners to present and discuss the latest scientific results and methods as well as the
innovative ideas and advantages in theories, technologies, and applications in both
swarm intelligence and computational intelligence. The technical program covered all
aspects of swarm intelligence, neural networks, evolutionary computation, and fuzzy
systems applied to all fields of computer vision, signal processing, machine learning,
data mining, robotics, scheduling, game theory, DB, parallel realization, etc.

The 6th International Conference on Swarm Intelligence (ICSI 2015) was the sixth
international gathering for researchers working on all aspects of swarm intelligence,
following successful and fruitful events in Hefei (ICSI 2014), Harbin (ICSI 2013),
Shenzhen (ICSI 2012), Chongqing (ICSI 2011), and Beijing (ICSI 2010), which
provided a high-level academic forum for the participants to disseminate their new
research findings and discuss emerging areas of research. It also created a stimulating
environment for the participants to interact and exchange information on future chal-
lenges and opportunities in the field of swarm intelligence research. The Second
BRICS Congress on Computational Intelligence (BRICS-CCI 2015) was the second
gathering for BRICS researchers who are interested in computational intelligence after
the successful Recife event (BRICS-CCI 2013) in Brazil. These two prestigious con-
ferences were held jointly in Beijing this year so as to share common mutual ideas,
promote transverse fusion, and stimulate innovation.

Beijing is the capital of China and is now one of the largest cities in the world. As
the cultural, educational, and high-tech center of the nation, Beijing possesses many
world-class conference facilities, communication infrastructures, and hotels, and has
successfully hosted many important international conferences and events such as the
2008 Beijing Olympic Games and the 2014 Asia-Pacific Economic Cooperation
(APEC), among others. In addition, Beijing has rich cultural and historical attractions
such as the Great Wall, the Forbidden City, the Summer Palace, and the Temple of
Heaven. The participants of ICSI-CCI 2015 had the opportunity to enjoy Peking
operas, beautiful landscapes, and the hospitality of the Chinese people, Chinese cuisine,
and a modern China.

ICSI-CCI 2015 received 294 submissions from about 816 authors in 52 countries
and regions (Algeria, Argentina, Australia, Austria, Bangladesh, Belgium, Brazil,
Brunei Darussalam, Canada, Chile, China, Christmas Island, Croatia, Czech Republic,



Egypt, Finland, France, Georgia, Germany, Greece, Hong Kong, India, Ireland, Islamic
Republic of Iran, Iraq, Italy, Japan, Republic of Korea, Macao, Malaysia, Mexico,
Myanmar, New Zealand, Nigeria, Pakistan, Poland, Romania, Russian Federation,
Saudi Arabia, Serbia, Singapore, South Africa, Spain, Sweden, Switzerland, Chinese
Taiwan, Thailand, Tunisia, Turkey, UK, USA, Vietnam) across six continents (Asia,
Europe, North America, South America, Africa, and Oceania). Each submission was
reviewed by at least two reviewers, and on average 2.7 reviewers. Based on rigorous
reviews by the Program Committee members and reviewers, 161 high-quality papers
were selected for publication in this proceedings volume with an acceptance rate of
54.76 %. The papers are organized in 28 cohesive sections covering all major topics of
swarm intelligence and computational intelligence research and development.

As organizers of ICSI-CCI 2015, we would like to express our sincere thanks to
Peking University and Xian Jiaotong-Liverpool University for their sponsorship, as
well as to the IEEE Computational Intelligence Society, World Federation on Soft
Computing, and International Neural Network Society for their technical co-sponsor-
ship. We appreciate the Natural Science Foundation of China and Beijing Xinhui Hi-
tech Company for its financial and logistic support. We would also like to thank the
members of the Advisory Committee for their guidance, the members of the interna-
tional Program Committee and additional reviewers for reviewing the papers, and the
members of the Publications Committee for checking the accepted papers in a short
period of time. Particularly, we are grateful to Springer for publishing the proceedings
in their prestigious series of Lecture Notes in Computer Science. Moreover, we wish to
express our heartfelt appreciation to the plenary speakers, session chairs, and student
helpers. In addition, there are still many more colleagues, associates, friends, and
supporters who helped us in immeasurable ways; we express our sincere gratitude to
them all. Last but not the least, we would like to thank all the speakers, authors, and
participants for their great contributions that made ICSI-CCI 2015 successful and all
the hard work worthwhile.

April 2015 Ying Tan
Yuhui Shi

Fernando Buarque
Alexander Gelbukh

Swagatam Das
Andries Engelbrecht
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Abstract. Continuous opinion dynamics optimizer (CODO) is an algorithm 
based on human collective opinion formation process for solving continuous 
optimization problems. In this paper, we have studied the impact of topology 
and introduction of leaders in the society on the optimization performance of 
CODO. We have introduced three new variants of CODO and studied the effi-
cacy of algorithms on several benchmark functions. Experimentation demon-
strates that scale free CODO performs significantly better than all algorithms. 
Also, the role played by individuals with different degrees during the optimiza-
tion process is studied. 

Keywords: Human opinion dynamics · Opinion dynamics optimizer · Scale 
free · Swarm intelligence · Topology 

1 Introduction 

Researchers have been using the multi-agent models to investigate collective phe-
nomenon in human societies such as crowd behaviour [1], consensus formation [2, 3] 
and wisdom of crowds [4]. Recently, it has been shown that human group thinking  
or opinion dynamics can be used to solve complex mathematical optimization prob-
lems [5–8]. The optimizer for continuous problems is based on Durkheim theory of 
social integration [9] and referred to as Continuous Opinion Dynamics Optimizer 
(CODO) [8]. Unlike other population based meta-heuristics, the main advantage of 
this algorithm is the presence of few tuning parameters and an intuitive relation to 
collective human decision making. Also, it was proven to be efficient and better than 
a structurally similar algorithm, local best PSO on the CEC 2013 benchmark real 
parameter optimization problems [10]. This algorithm entails two important aspects 
i.e. updating dynamics and underlying societal structure  

The updating dynamics, based on theory of social integration, has two components 
namely, integrating and disintegrating forces. The former represents the need of  
belongingness of an individual to the society and binds the individuals together in a 
society. The latter component represents the individualism which tends to threaten the 
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social integration. Individualism, in general represents an individual’s need to be  
distinct or unique from others, and it is incorporated as an ‘adaptive noise’ in the al-
gorithm. The integrating forces tend to increase with increase in the number of indi-
viduals having the similar opinion in the society. Intuitively, the integrating forces are 
responsible for exploitation of the search space, whereas disintegrating forces contri-
bute towards exploration of the search space. Together, these two components contri-
bute towards finding an optimum solution of a problem. 

Another aspect of this algorithm is the societal structure or topology. The topology 
may be regular, fully connected, random or scale free in nature. It is evident from the 
previous works on other optimization algorithms [11–14], that the topology can sig-
nificantly improve the optimization performance. Such type of study has never been 
performed before in case of CODO and it is intuitive to assume that in the case of 
human opinion dynamics, that the societal structure and its formation strategies may 
improve the optimization performance.  

In the previous work [8], a society was considered to be a 2D square grid structure 
with Moore neighbourhood. But in real world, the networks are not this simple. In this 
paper, an investigation of the impact of network topology on the performance of 
CODO has been conducted. Here, we propose two variants of CODO having scale 
free topology based on two different network generation mechanisms i.e. Barabasi 
Albert (BA) model and Bianconi-Barabasi (BB) model (also known as fitness model). 
These variants are referred to as BA-CODO and BB-CODO henceforth.  Further, a 
variant of CODO with leaders (L-CODO) has also been developed, where leaders 
carry the best information and act as super spreaders in a society by connecting to all 
the individuals. The optimization performances of these three variants of CODO have 
been compared with fully connected CODO (F-CODO, where all individuals are con-
nected to each other) as well as basic CODO algorithm (2D grid topology with Moore 
neighbourhood). 

2 Continuous Opinion Dynamics Optimizer 

The society has M number of individuals representing candidate solutions to the prob-
lem in D-dimensional space. Each individual i is characterized by its opinion  

vector , fitness fi and social rank SRi  at particular time or 

iteration t. The opinions are real valued and initialized randomly using a uniform 
distribution. Individuals are placed on a 2D grid topology with Moore neighbourhood 
as shown in Fig. 1(a). 

For every individual i, its fitness value fi, which is the output of the function to be 
minimized, is calculated depending upon its opinion vector. Further, each individual 
is ranked by the fitness value. The individual with the minimum fitness value is  
assigned the highest Social Rank (SR).  The individuals with the same fitness values 
have the same SR. The highest possible SR is equal to the total number of individuals 
in a society. At each iteration t, individuals update their opinion vector as follows. 

DD
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                       (1) 

where N is the no. of neighbours of individual i, oj(t) is the opinion of the neighbour j, 

wij(t) is the social influence exerted by neighbour j on individual i and  

represents the ‘adaptive noise’.  
The first component of this equation represents the integrative forces of a society, 

which bind the individuals together. It is the weighted average of the opinion differ-
ences of an individual from its neighbours, and the weights represent the social influ-
ence, which are defined as wij = SRj(t)/dij(t). Here, dij is the Euclidean distance  
between individual i and j in topological space. So the better-fit and nearby individu-
als will have more social influence on others.  

The second component of (1) stands for the disintegrative forces in a society. It is 
the normally distributive random noise with zero mean and a standard deviation of 
σi(t)  defined as follows 

                     
                       (2) 

where S is the strength of the disintegrating forces and |fij(t)| denotes the difference in 
fitness value of an individual i and its  neighbour j. As the fitness values of individu-
als get closer to the fitness value of individual i, σi(t) increases and leads to more 
individualization in a society. 

The pseudo code for CODO is as follows: 

1. society.opinion = GenerateInitialSociety(Xmin, Xmax); 
2. iter = 0; 
3. while (iter < max_iter && error >= min_error ) do 
4.   society.fitness =EvaluateFitnessFcn(society.opinion); 
5. society.ranking = CalcRank(society.fitness); //It ranks  

the individuals based on society fitness 

6.   iter = iter + 1; 
7.   for each individual i and each dimension d do 
8. Calculate w

ij
 of neighbours j of individual i with re-

spect to dimension d.  
9.      Update opinion of individual i as defined in (1). 
10.    end (for)  
11. end (while) 

3 CODO with Leaders (L-CODO) 

Every society is characterized by some leaders, followers and agnostics [16]. We 
focus on the leaders and exploit its various characteristics to design a variant of 
CODO for mathematical optimization. Leaders are normally highly connected, social-
ly active individuals [17], which leads them to play an important role in opinion  
dissemination in a society. A leader can be autocratic or democratic, an autocratic 
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commodating. In this study
developed our algorithm ba

1. A leader is fully co
2. Leaders may chang

The topology adopted fo
shown in Fig 1(b). Each in
diffusion of solutions in a 
defined as an individual wi
more than one leader in the
viduals in the society, the S

                SR

The original opinion updati

where, L is the number of 
noted that the leader can als

The pseudo code for L-C
1. society.opinion =
2. iter = 0; 
3. while (iter < max
4. society.fitnes
5. society.rankin

l = FindLeader
6. iter = iter+1;
7. for each indiv
8. Calculate 

leaders l 
9. Update opi
10. end (for) 

11. end (while) 

Fig. 1. Society structur

oi =Δ


σ

t influenced by others, whereas, a democratic leader is 
y, we have considered only autocratic leaders, and h

ased on the following assumptions: 

onnected  
ge with time/iterations 

or L-CODO is also 2D grid with Moore neighbourhood
ndividual is connected to leaders. This may help in fa
society resulting in faster convergence. Here, leader (l
th a minimum fitness value or maximum SR. There can
e society depending upon the social ranking. With M in
R of a leader at particular iteration t can be defined as  

Rl(t) = max(SRi(t))   i = 1,2,... ,M                       
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leaders in a society apart from the neighbours. It is to
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CODO 
= GenerateInitialSociety(Xmin, Xmax); 
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4 Scale Free CODO 

This section provides an overview of scale free networks, its generation mechanisms 
and finally discusses the optimizers based on those mechanisms.   

4.1 Scale Free Networks 

Their degree distribution, which is defined as the probability of finding a node with 
degree k, follows a power law i.e. p(k) = k-γ and 2 ≤γ≤ 3. Following subsections de-
scribe the two different models proposed to simulate a scale free topology.   

Barabasi and Albert Model. According to this model, the emergence of scale free 
nature of a network depends upon two co-existing mechanisms[18]: 

Growth: Real world networks are not fixed but they grow with time. Starting with a 
small number of initial nodes m0, network continuously expands by connecting a new 
node in every time step to a fixed number of existing nodes (m). 

Preferential Attachment: The probability that a new node connects to existing nodes 
is proportional to their degree k and is given by following equation  

                                      (6) 

New nodes are more likely to connect to existing nodes with more number of connec-
tions, i.e. “rich-gets-richer” phenomenon which gives rise to the formation of hubs in 
a network. 

Bianconi and Barabasi Model. Another variant of BA model was proposed by  
Bianconi and Barabasi [19] where the probability of connection depends upon the 
product of node’s degree k and as well as its fitness f. It follows “fit-gets-richer” phe-
nomenon. 

                                  (7) 

4.2 Scale Free Opinion Dynamics Optimizers (BA-CODO and BB-CODO) 

The above mentioned models result into a scale free topology, but they follow  
different generation principles. In this work, these models have been used to develop 
two scale free opinion dynamics optimizers, namely, BA-CODO and BB-CODO.  
It may provide us interesting insights about how evolution of topology can affect the 
optimization performance. The optimization process of these algorithms involves two 
stages.  

Firstly, the topology of a society is constructed, in which, initially there are m0 
number of individuals fully connected with each other. At each iteration, a new indi-
vidual connects to m existing individuals depending upon the model (either BA or BB 
model). After creation of these m new links, the individuals collectively search in the 
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space and update their opinions. This process keeps on repeating till the number of 
individuals has reached the maximum society size (M). In this stage, the topology 
generation and optimization take place simultaneously. Secondly, the individuals are 
connected to each other in a scale free topology and they collectively search in the 
opinion space for the optimum position.  The total number of function evaluations is 
the summation of function evaluations of stage 1 and stage 2.  
The pseudo code for BA-CODO and BB-CODO  

1. society.opinion = GenerateInitialSociety(Xmin, Xmax) 
2. Initialize society.network  
3. // stage 1: Topology construction & search  

society.network = GenerateTopology(society.network, socie-
ty.opinion, generation_mechanism);  

4. //stage 2: Search   
iter =0 

5. while (iter < max_iter && error >= min_error )  do 
6. society.opinion =CODO(society.opinion,society.network) 
7. end(while) 

 
society.network = function GenerateTopology (society.network, 

society.opinion, generation_mechanism) 

1. iter = 0 
2. while ( iter < M-m0) do 
3. society.opinion = CODO (society.opinion, society.network) 
4. if generation_mechanism == BA  

5. // perform equation (6) 
6. else 

7. // perform equation (7) 
8. end (else) 

9. iter = iter+1 
10. end(while) 
11. return society.network  
end (function) 

 
society.opinion = function CODO(society.opinion, socie-

ty.network) 
1. society.fitness = EvaluateFitnessFcn(society.opinions); 
2. society.ranking = calcRank(society.fitness);  
3. for each individual i and each dimension d do 
4. Calculate wij of neighbours j of individual with respect to 

dimension d. 
5. Update opinion of individual i as defined in equation (1). 
6. end (for) 
7. return society.opinion 
end (function) 
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5 Experimental Results 

The experiments were performed for five algorithms namely, CODO, L-CODO,  
BA-CODO, BB-CODO and F-CODO. The benchmark functions used to test the per-
formance, parameters of the algorithms and finally the results are discussed in this 
section. 

5.1 Benchmark Functions 

The initialization range, optimum solution (x*) and the optimum fitness value f(x*) of 
the benchmark functions used have been listed in Table 1 

Table 1. Benchmark Functions 

Function Name Initialization Space x* f(x*) 

F1 Sphere [-100, 100]D [0, 0, …, 0]D 0 

F2 Rosenbrock [-2.048, 2.048]D [1, 1, …, 1]D 0 

F3 Rastrigin [-5.12, 5.12]D [0, 0, …, 0]D 0 

F4 Griewank [-100, 100]D [0, 0, …, 0]D 0 

F5 Ackley [-10, 10]D [0, 0, …, 0]D 0 

5.2 Parameterization 

Table 2 summarizes the parameters used for the algorithms. For every function, all the 
algorithms were initialized with same society in each run for fair comparisons. The 
parameters of algorithms were not tuned specifically for each function. It has been 
ensured that the average degree of scale free society is same as 2D grid society for 
CODO and their comparison is independent of average degree number. 

5.3 Results 

For analyzing and comparing the performance of algorithms, the fitness values of the 
best individuals were recorded. Table 3 lists the mean, standard deviation and mini-
mum fitness value attained by the best individual over 25 independent runs for 10 and 
30 dimensions for all benchmark functions. Further for detailed statistical study, the 
unpaired Wilcoxon tests [21] were conducted between CODO and other algorithms 
for every function. It is two sided test with the null hypothesis that the results of two 
algorithms come from identical distribution with equal median. The significance level 
was set to be 5%. In Table 3 the statistically insignificant results are asterisk (*) 
marked.  

It can be observed from Table 3 that BA-CODO and BB-CODO out-performed 
other algorithms for 10D problems in a statistically significant manner, except for 
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function F2. The L-CODO has also performed significantly better than CODO and F-
CODO. The F-CODO performed the worst in this case except for function F5 where 
its performance is statistically not different from CODO. In case of 30D problems, 
again BA-CODO and BB-CODO out-performed other algorithms except for F3, 
where L-CODO has performed the best. Surprisingly, for F3 the performance of BB-
CODO and BA-CODO is similar to CODO. Also, F-CODO has maintained the 
previous trend and showed the worst performance for 30D problems. The poor 
performance of F-CODO can be attributed to the fact that since in such type of net-
work, every node is connected with each other, hence the diversity of society reduces 
to the point that the individuals get stuck in local minima. 

Fig. 3 shows the convergence rate i.e. average fitness value of the best individual 
achieved over 25 runs vs the number of function evaluations for 10D functions. It can 
be observed that the initial convergence rate for BA-CODO and BB-CODO is slower 
than other algorithms (prominently visible in F1), but eventually it achieves  better 
fitness or higher quality solutions, whereas the other algorithms converge to poorer 
regions. This slow convergence is may be due to the additional stage where evolution 
of network takes place. F-CODO shows the fastest convergence in the initial stage, 
but then it gets trapped in local optimum. 

Table 2. Parameters used in algorithms 

Parameters Value 
Dimension [10, 30] 
Society Structure 2D cellular grid for CODO, CODO with 

leaders and fully connected CODO 
Scale free for CODO-BA and CODO-BB 

Max number function evaluations (MaxFES) 10000*No of features 
Strength of disintegrating forces (S) 8 
No of runs 25 

Stopping criterion 
Max number function evaluations 
(MaxFES) 

Initialization Uniform random distribution 
Society Size (M) 100 
Moore Neighbourhood 1 
m 4 
m0 4 

 
It can also be observed that in some cases, BA-CODO and BB-CODO show  

decreasing trend at function evaluation limit, whereas the other algorithms have con-
verged/stabilized. It may mean that with more number of function evaluations,  
BA-CODO and BB-CODO can achieve better solutions. It may be noted that perfor-
mance of BB-CODO and BA-CODO is similar, which leads us to conclude that gen-
eration mechanisms may not have any effect on the optimization performance, 
though, it requires further investigations.  
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6 Conclusion 
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Abstract. We introduce a swarm design methodology. The methodol-
ogy uses a seven step process involving a high-level phase space to map
the desired goal to a set of behaviors, castes, deployment schedules, and
provably optimized strategies. We illustrate the method on the stick-
pulling task.

1 Introduction

Swarms are continually interacting groups of autonomous agents whose interac-
tions at least partially shape their behaviors. Different modalities of interaction
range from direct communication to avoidance to stigmergy, or communication
through environmental manipulation, to cooperation and competition. Swarms
tend to amplify the impact that a single agent can have by leveraging the accu-
mulated actions of a group. Swarms are, too, capable of accomplishing com-
plex actions together that individuals cannot. What makes them interesting and
exciting is the possibility of taking on complex tasks that the individual agents
couldn’t possibly do, using interaction and dynamics to extend individuals’ capa-
bilities.

As an engineering tool the application of swarms has been limited. While
many swarms have been designed for a variety of different tasks, it is not yet
clear that the tasks to which swarms have been applied cannot be done in other
ways as well or better. Given a task that one wishes to accomplish, no prov-
able methodology exists which indicates that the task is appropriate for and
achievable by a swarm.

Swarm engineering is, loosely speaking, the process of taking a task together
with a list of available technologies and constraints and using these to develop
(1) a provable, minimalist plan to accomplish the task, (2) a list of requisite
technologies, (3) a minimal set of agents, (4) the agent capabilities, and (5)
the agent deployment schedule. We’d like to achieve the full design of the swarm
aside from the design of the available technologies (which are assumed to already
be in existence). This clarifies whether a swarm is an appropriate tool for the
task as well as if and how it can be achieved.

In this paper we present a seven step swarm design framework. The frame-
work is designed to help the swarm designer decide whether a swarm is the
c© Springer International Publishing Switzerland 2015
Y. Tan et al. (Eds.): ICSI-CCI 2015, Part I, LNCS 9140, pp. 14–29, 2015.
DOI: 10.1007/978-3-319-20466-6 2
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appropriate solution or not. Our framework begins with a problem description
which describes the problem in terms of things that agents within the system can
measure. An abstract phase space representation of the problem is generated.
The initial and final points in the phase space are determined, and feasibility
tests are carried out. Next pathways through phase space resulting from the use
of available technologies and techniques are generated. The pathways are used
to analyze the number of agents needed (if a swarm is needed), which technolo-
gies must be deployed and how they will be deployed, and how subtasks can be
handled (agent number / technologies). Castes and swarm teams, or subsets of
the swarm which comprise cooperating agents, can be developed. We show that
the swarm’s sufficiency is provable; any swarm enabling the movement in phase
space along any generated path will achieve the task. The task requires a swarm
only if the minimal number of agents required on any path exceeds one.

2 Seven Steps

We propose the following framework for the design of a swarm of agents aimed
at accomplishing a specific task.

1. Define the set of measurables that the swarm is working on. These are
{si}Ns

i=1. These are quantities that describe the state of the system and can
be measured by individual agents within the swarm.

2. Define the set of global measurables that one wants to achieve. These
are {Pk}Ng

k=1 as functions of the measurables {si}. That is, Pk =
fk (s1, s2, . . . , sNs

).
3. Define the initial point or set of initial points and the final point or set of

final points for the
(
P1, P2, . . . , PNg

)
. That is, define

(
P i

1, P
i
2, . . . , P

i
Ng

)
and

(
P f

1 , P
f
2 , . . . , P

f
Ng

)
.

4. Define the transitions one might go through in travelling through phase
space. These are also called the requisite technologies

5. Define the path through phase space while avoiding the unfeasible areas of
P -space.

6. Determine whether these technology levels and costs require a swarm. If so,
determine the swarm requirement. If not, determine the agent requirement.

7. Design behaviors that satisfy the swarm requirements and agents that carry
out these behaviors.

This methodology adds steps to the swarm design process that focus on the
phase space describing the task. Most swarm design efforts use only the last
two steps. This approach focuses attention on the technological levels available
and their effect on the swarm’s possible deployment. Differing technology will
connect the phase space differently. The path through phase space must enable
the application of the technological levels in a way that minimizes the path
length.
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3 System and Problem Description

As indicated in Steps 1 and 2, we must carry out a description of the system’s
agent-level measurables. Agents are individual autonomous actors in the system
endowed with a location and the capability of independently interacting with
one or more parts of the system. Let us define local measurables as the the set
of things that can be measured by swarm agents as {si}Ns

i=1. These are distinct
from things that can be measured by external individuals, such as omnipotent
observers or thinking users that employ other techniques than those available
in the swarm’s environment. For instance, minimalist puck clusterers [3] cannot
know that a single cluster has been formed; an external observer can.

The functions need not be simple or have pre-determined dimensionality; they
can have any form practically capable of being calculated. Let the set of these
functions be denoted as {Pi (s1, . . . , sNs

)}NP

i=1. We define the design goal of the

swarm as the creation of a dynamics that changes
−−−−→
P initial = (P initial

1 , P initial
2 ,

. . . , P initial
Np

) to the desired final state
−−−−→
P final =

(
P final

1 , P final
2 , . . . , P final

Np

)
.

The effect of the swarm is to create a change in the state of
−→
P . The swarm

must control
{

∂Pi

∂sj

dsj

dt

}NP

i=1
through designed control of ∂Pi

∂sj
. Yet, this defines any

control algorithm, not specifically that accomplished by a swarm. In fact, many
of the control algorithms designed in this way function equally well if a single
agent is performing the task as if a group of agents is performing the task. Such
a system does not indicate the need for a swarm-based solution; it cannot be a
“killer ap”.

4 Requisite Technologies (Phase Space Connectivity)

The phase space is defined as the set of all points that are definable by the global
measurables. That is, Ψ =

{−→
P |−→P = (P1 (s1, . . . , sNs

) , . . . , PNP
(s1, . . . , sNs

))
}
.

The states of the elements
−→
P are constrained by their functional relationship

to (s1, . . . , sNs
). The points that might actually be in the phase space might be

significantly smaller than the cross products of the ranges of the functions Pi.
Those elements in the cross product space that are not in the phase space are
said to be unfeasible.

4.1 Feasibility

The swarm task is feasible if we can “connect” the initial points to the final
points using a path through phase space that is feasible at each point along
the path. Different points within the phase space are connected to one-another
by the behaviors of the swarm agents. These behaviors are generated by the
technologies available and the method of using them. In order to determine the
connectedness of the phase space, we need to understand the technologies that
are being used and their method of use.



Utilizing Abstract Phase Spaces in Swarm Design and Validation 17

Any point in phase space is a representation of the state of the system. Each
point in phase space can be represented as

−→
P = (P1, P2, . . . , PNP

). We define
a point as feasible if the point represents a system state that can be achieved
given the constraints imposed upon the global properties {Pi}NP

i=1. Given a point(
P ◦

1 , . . . , P
◦
NP

)
, we define the inverse set ι

(
P ◦

1 , . . . , P
◦
NP

)
as the set of all points−→s = (s1, . . . , sNs

) in the cross product space of the local measurables such that
Pi (−→s ) = P ◦

i ∀i. A point is feasible if ι
(
P ◦

1 , . . . , P
◦
NP

) �=.

First pass feasibility test. We define a task as a set of initial and final
points for the set in phase space. We define a first pass feasibility test as a
test to determine whether the starting and ending points of the phase space are
feasible. Let the initial point in the phase space be

−→
Pi and the final point in the

phase space be
−→
Pf . Then the task is unfeasible if either ι

(−→
Pi

)
= or ι

(−→
Pf

)
=.

Otherwise, the task is feasible.

Path feasibility. We define a path through phase space as an ordered set
of points Γ in the phase space. These points may be parametrized by a variable
t with the property that Γ (t = 0) =

−→
Pi and Γ (t→∞) =

−→
Pf . Given the agent

behaviors as defined by
{

∂Pi

∂sj

dsj

dt

}NP

i=1
in the continuous case and

{
ΔPi

Δsj

Δsj

Δt

}NP

i=1
in the discrete case, we have that

Γ (t+ dt) = Γ (t) +
(
∂P1

∂sj

dsj

dt
,
∂P2

∂sj

dsj

dt
, . . . ,

∂PNP

∂sj

dsj

dt

)
dt (1)

(continuous) and that

Γ (t+Δt) = Γ (t) +
(
ΔP1

Δsj

Δsj

Δt
,
ΔP2

Δsj

Δsj

Δt
, . . . ,

ΔPNP

Δsj

Δsj

Δt

)
Δt (2)

(discrete). Equations (1) and (2) illustrate the requirement that the path in
phase space must be connected and linked by behaviors of the agents; it cannot
be disjoint or occur by any means other than by the actions of the agents. The
actions of the agents are, in turn, limited by the available technologies.

Let us suppose that we have a path Γ . The path Γ is said to be feasible if
(1) ι (Γi) �= and (2) for each Δs associated with the transition from Γi to Γi+1,
a technology exists that can achieve this change. The path through phase space
defines the required transitions and the transitions define what technologies the
agents must be able to deploy.

Suppose that two points in phase space are Γi =
(
P i

1, . . . , P
i
NP

)
and Γi+1 =(

P i+1
1 , . . . , P i+1

NP

)
. In order for this transition to be feasible, there must first

be a nonempty set ι (Γi) and a second nonempty set ι (Γi+1). A total set of
transitions Ni,i+1 = |ι (Γi)| |ι (Γi+1)| exist which make this transition possible.
Ni,i+1 different technologies are therefore possible which might generate the
phase space transition.
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The importance of this lies in the identification of the necessary and sufficient
technology set required to enable the task. Without having a priori knowledge
of the technology set required, we can generate a technology list that must be
in existence in order to achieve the task.

Task feasibility. A task is said to be feasible if it passes the first pass feasibility
test, there exists at least one path that connects the initial and final points of the
system through a connected feasible subset of the phase space, and the requisite
technologies are in existence and can be deployed on existing agents.

4.2 Energy, Time, Agents, Swarm Teams, and Teams of Swarms

Carrying out any task requires consumption of resources, including energy and
time. These can be included in the global measurables vector

−→
P by assigning the

measures to two vector components. Making the assignment places restrictions
on the energy consumption and the execution time of the tasks, as the beginning
and ending points now have associated finite energy and time and each step
consumes a finite amount of each.

Another resource that is used in any task is agents. This is a familiar con-
cept among military planners; “spending men” is part of warfare. Let us define a
number of states including “active”, “fully functional”, “executing behavior #k”,
“defective”, “inactive”, and “nonfunctional”. If we limit the states to “active”
and “inactive”, agents transitioning between states is equivalent to “consump-
tion” or “generation”. The differences between transitions are defined by the
behaviors Δs that the agents are able to execute. As an example, it is clear that
“nonfunctional” is appropriately defined a Δs = 0. Agents using their bodies to
form a static structure transition from a state of “moving” to “nonmoving”. The
measurables include the number of agents in each state, and the consumption of
agents is then encoded as an appropriate definition of one or more components
of the

−→
P vector.

In order to appropriately choose a path through phase space, we must cor-
rectly determine the costs of the use of individual technologies. For each technol-
ogy Ti is defined as Ti =

(−−→
ΔP,ΔE,Δt,ΔA

)
where

−−→
ΔP represents the change

in position in phase space, ΔE represents the energy consumption of the action,
Δt represents the time required to accomplish the task, and ΔA represents the
number of agents required for the task to be accomplished.

Once a path has been specified, we can define the running agent tally as
Ri (Γ ) =

∑i
j=1 |ΔAj | . This is the number of agents required to accomplish the

task along this path up to the ith point along the path. In order to accomplish
the task along this path, the minimal number of agents required S (Γ ) is given
by S (Γ ) = max|Γ |

i=1Ri. This is the minimal swarm size of the swarm required to
accomplish the task along this path.

Let us define the steps of the path Γ as independent or dependent according
to the value of Ri. If both Ri and Ri−1 are zero then the step Γi is independent
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of all other steps (if i is 1, we need only consider Ri). Otherwise, the step
is dependent on previous steps. Each set of steps Ri that are dependent are
bordered by independent steps. These set of steps must be accomplished by
multiple agents; these steps are appropriate for swarms. We call these steps
subtasks. Note that these subtasks are defined by the path Γ , and can change
according to the path utilized to move through the phase space. We can also
define swarm teams as the minimal swarm required to accomplish a specific
subtask of the overall phase space task along the given path. Let γk be the kth

subtask in the path Γ . Then γk ∈ Γ . We can define the size of the swarm team
required for the subtask γk as rk = maxi

∣
∣
∣
∑i

j=1ΔAj

∣
∣
∣ where i runs over all the

steps of the subtask and ΔAj is inherited from the task Γ . Clearly,

S (Γ ) =
|{γk}|
max
i=1

rk. (3)

Each of the swarm teams is a smaller subset of the overall swarm that must be
deployed in order to accomplish the task. Each agent must employ a technology
that enables it to accomplish the transition indicated in the subtask step; these
technologies need not be identical. If the technologies are different the swarm
team can utilize different castes of agents having differing technologies or designs.

The same analysis may be performed within a subtask, identifying progres-
sively smaller swarm teams and teams within teams. The examination of these
cases is beyond the scope of this paper and will be addressed in a later paper.

In the case that multiple subtasks are independent, the swarm may be
made up of multiple swarm teams that act independently. Such an organiza-
tion might increase the speed with which a swarm accomplishes its task without
interference.

4.3 Choosing Paths, Minimizing Swarm Size

The choice of the path through phase space indicates a swarm’s strategy. The
technologies deployed at each of the steps define what technologies we must
use. The technology sets that must be employed by the individual agents during
subtasks define the minimal capabilities, order of deployment, and number of
agent castes. In most phase spaces multiple paths connect the start point to the
end point. We define in this subsection a process adapted from [4] which enables
us to choose a path according to a number of criterion of potential importance
in the design of a swarm.

The algorithm proceeds as follows.

1. Create a linked list containing a single point which contains the following
information:
(a) Path in phase space up to this point (initially it will be the starting

point)
(b) Total energy expended (initialized to zero)
(c) Total time expended (initialized to zero)
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(d) Total number of agents required (Ri) (initialized to zero)
(e) Ordering measurable (energy, time, agent number, or some real function

of the three)
2. Set the linked list pointer to the first element. Set a flag to -1 indicating that

a feasible path has not yet been found.
3. Using the record pointed to by the list pointer to calculate new points in

phase space by applying, independently, each transition enabled by the set
of technologies within our technology set to the record. In each case, create
another record for placement on the linked list recording the resulting point
in phase space and the updated totals of energy, time, and agent number
as well as the updated ordering measurable (energy, time, agent number, or
some real function of the three). Store the new point in the stored path for
this record. Place each record in the linked list if the new point is feasible,
making sure to order them from least to greatest according to the value of
the ordering measurable.

4. Move the linked list pointer forward.
5. If the linked list pointer is NULL, end.
6. If the linked list pointer is pointing to a record whose position in phase space

is in the set of final points, go on to step 7. Otherwise, go to step 3.
7. If the flag is -1, go to step 8. Otherwise, go to step 9.
8. Assign the minimum ordering measurable to that of the current record. Set

the flag to 1.
9. If the ordering measurable exceeds that of the minimum ordering measurable,

end.
10. Output the path, energy, time, agent number and ordering measurable.
11. Go to step 3.

It can be demonstrated that one of two outcomes will happen. In one case, there
will be no output path. In this case, there is no feasible path from the initial
state to the final state using the technology currently available. In the second
case, one or more paths will be output. These will be degenerate in terms of the
minimal ordering measurable. Once these paths are determined (and there may
be only one), swarm teams can be designed according to the process indicated
in Section 4.2. These will indicate how many teams are required, what size they
should be, what their capabilities and castes will be, and how they are deployed.

5 Stick Pulling Problem as an Example Problem

In [5] Martinoli et. al. introduced the stick-pulling problem. In this problem, a
group of agents must remove sticks from holes. The sticks initially sit in holes
in the floor, partially protruding upward. The agents must grasp the sticks, pull
them up out of the hole, and return them to a collection location. The situation
is depicted in Fig. 1.

Complications occur when the agents are assumed to be incapable of pulling a
stick out individually. In this case, they require assistance of other agents, adding
the need for communication and/or cooperation if the task is to be accomplished.
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Fig. 1. A diagram of the stick-pulling problem. (Reprinted with permission of the
author. [5])

5.1 Step 1

We first define the local measurables – things that can be measured by the agents
within the system. In our system, the states correspond to those of the sticks.
These sticks have four potential states: (0) in the hole, (1) pulled up, (2) pulled
out, and (3) stored.

We can define the local measurable space by an Ns − dimensional space
(s1, s2, ..., sNs

) where si ∈ {0, 1, 2, 3}. This is illustrated by Figure 2.

Fig. 2. A 3-dimensional representation of S − space

As a result of this, the feasible S-space is defined as {(s1, s2, ..., sNs
)

|si ∈ {0, 1, 2, 3}}.

5.2 Step 2

Now, we define the global functions – functions of the local measurables that will
define the state of the system. We choose four natural measurables: P1 – sticks
fully in their hole, P2 – sticks partially lifted, P3 – sticks fully pulled out, P4
– stored sticks. The four functions define the phase space of the system which
defines its state. The phase space is a four-dimensional cartesian product space
of integers between 0 and Ns, the number of sticks in the system. It is illustrated
in Figure 3.
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Fig. 3. The four-dimensional phase space describing the stick-pulling problem

Unlike the S space, the P-space is four-dimensional no matter the number
of sticks in the system. Mathematically, we can relate the properties in S and P
space by

Pj =
Ns∑

i=1

δSi,j−1 (4)

5.3 Step 3

It is clear that the initial point in S-space is (0, 0, . . . , 0) and in P-space is
(Ns, 0, 0, 0). It is also clear that the final point in S-space position is (3, 3, . . . , 3)
and a P-space is (0, 0, 0, Ns).

5.4 Step 4

Now, we examine the transitions needed. The transitions between the different
states of P-space are limited only by the constraint that

4∑

i=1

Pi = Ns (5)

which communicates the conservation of the sticks. Therefore

ΔP1 = −ΔP2 −ΔP3 −ΔP4. (6)

Some sample transitions one might create (and their associated agent
costs) are
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– Δ
−→
P = (−1, 1, 0, 0)
• This transition indicates that the stick has been located and pulled

halfway out of the ground. Required technological and strategic
capabilities include the ability to locate the stick and the ability to extract
it halfway and hold it there. ΔA = 1

– Δ
−→
P = (0,−1, 1, 0)
• This transition indicates that the stick being held halfway out of the

ground has been located and that it has been fully extracted from the
ground. Required technological and strategic capabilities include the abil-
ity to locate a held stick and fully pull it out of the ground. ΔA = 0

– Δ
−→
P = (0, 0,−1, 1)
• This transition indicates that the stick, having been removed from of the

ground, is moved back to some storage location. Required technological
and strategic capabilities include the ability to find and to directly trans-
port the stick from its location to a storage location. ΔA = −1

– Δ
−→
P = (−1, 0, 1, 0)
• This transition indicates that the stick is pulled directly out of the ground

and held out of the ground in one step. Required technological and strate-
gic capabilities include the ability to find the stick and pull it completely
out of the hole in one step. ΔA = 0

– Δ
−→
P = (−1, 0, 0, 1)
• This transition indicates that the stick is moved directly from its location

in the hole to the storage facility without being moved halfway out of
the hole and held or being lifted from halfway out of the hold and held.
Required technological and strategic capabilities include the ability to
move the stick directly from the hole to storage. It is not likely that this
technological capability is in our repository of technologies. ΔA = 0

– Δ
−→
P = (−n, 0, n, 0)
• This transition indicates that multiple sticks are lifted directly out of their

holes simultaneously in one move. Required technological and strategic
capabilities include the ability to locate and move sticks from their holes
simultaneously. This technological capability is significantly different from
the strategies given in [5]. ΔA = 0

These transitions correspond to a movement on the three-dimensional hyper-
plane defined by equation (5).

Notably, also, in these strategies is that location of the target, either a stick or
a half-pulled stick, is part of the technological and strategic capability require-
ment of many of the steps. As a result, strategies for minimizing the cost of
accomplishing this part of the task will ultimately reduce the cost of completing
the overall task. This is an important part of the task optimization.

The costs of the steps of the task can be determined once the specific tech-
nology and strategy are identified. This too may require further optimization
after the technologies are settled.
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5.5 Step 5

After identifying the technological and strategic capabilities, a feasible path
through phase space using them can be generated. The methodology developed
in Section 4.3 will generate a minimal feasible path.

In the stick-pulling problem, moving from one feasible state to another
requires that the constraint given in equation (6) is respected. Movements are
thereby restricted to the three-dimensional hyperplane defined in (5).

We are asserting is that any point
−→
P on the hyperplane has the property that

ι
(−→
P

)
�=. We can prove this in the following way. Let Pi =

∑n
j=1 δSji. If a point

−→
P is on the hyperplane, this means that

∑
i Pi = Ns. This also means that the

phase space condition is satisfied if
∑

i δsij−1 = Pj . Since this is trivially true

of the first point on the path
−→
P 0 and each transition also maintains the same

relation, each point on the hyperplane has the desired property. Therefore our
path through phase space has to only require this property.

We applied the algorithm of Section 4.3 to stick pulling tasks involving one,
two, and three sticks. The following paths through phase space resulted:
One stick

(1, 0, 0, 0) (0, 1, 0, 0) (0, 0, 1, 0) (0, 0, 0, 1) �A = 2
Two stick

(2, 0, 0, 0) (1, 1, 0, 0) (1, 0, 1, 0) (0, 1, 1, 0) (0, 0, 2, 0) (0, 0, 1, 1) (0, 0, 0, 2)
�A = 3
(2, 0, 0, 0) (1, 1, 0, 0) (1, 0, 1, 0) (0, 1, 1, 0) (0, 1, 0, 1) (0, 0, 1, 1) (0, 0, 0, 2)
�A = 2
(2, 0, 0, 0) (1, 1, 0, 0) (1, 0, 1, 0) (1, 0, 0, 1) (0, 1, 0, 1) (0, 0, 1, 1) (0, 0, 0, 2)
�A = 2
(2, 0, 0, 0) (1, 1, 0, 0) (0, 2, 0, 0) (0, 1, 1, 0) (0, 0, 2, 0) (0, 0, 1, 1) (0, 0, 0, 2)
�A = 3
(2, 0, 0, 0) (1, 1, 0, 0) (0, 2, 0, 0) (0, 1, 1, 0) (0, 1, 0, 1) (0, 0, 1, 1) (0, 0, 0, 2)
�A = 3

Three stick
(3,0,0,0)→ (2, 1, 0, 0), (1, e, t)→ (2, 0, 1, 0), (0, e, t)→ (2, 0, 0, 1), (−1, e, t)→

(1, 1, 0, 1), (1, e, t, )→ (1, 0, 1, 1), (0, e, t)→ (1, 0, 0, 2), (−1, e, t)→ (0, 1, 0, 2),
(1, e, t)→ (0, 0, 1, 2), (0, e, t)→ (0, 0, 0, 3), (−1, e, t)
�A = 2
(3,0,0,0)→ (2, 1, 0, 0), (1, e, t)→ (2, 0, 1, 0), (1, e, t)→ (2, 0, 0, 1), (−1, e, t)→

(1, 1, 0, 1), (1, e, t, )→ (1, 0, 1, 1), (0, e, t)→ (0, 1, 1, 1), (1, e, t)→ (0, 1, 0, 2),
(−1, e, t)→ (0, 0, 1, 2), (0, e, t)→ (0, 0, 0, 3), (−1, e, t)
�A = 3
(3,0,0,0)→ (2, 1, 0, 0), (1, e, t)→ (2, 0, 1, 0), (1, e, t)→ (2, 0, 0, 1), (−1, e, t)→

(1, 1, 0, 1), (1, e, t, )→ (1, 0, 1, 1), (0, e, t)→ (0, 1, 1, 1), (1, e, t)→ (0, 0, 2, 1),
(0, e, t)→ (0, 0, 1, 2), (−1, e, t)→ (0, 0, 0, 3), (−1, e, t)
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�A = 3
(3,0,0,0)→ (2, 1, 0, 0), (1, e, t)→ (2, 0, 1, 0), (1, e, t)→ (2, 0, 0, 1), (−1, e, t)→

(1, 1, 0, 1), (1, e, t)→ (0, 2, 0, 1), (1, e, t)→ (0, 1, 1, 1), (1, e, t)→ (0, 1, 0, 2),
(−1, e, t)→ (0, 0, 1, 2), (0, e, t)→ (0, 0, 0, 3), (−1, e, t)
�A = 3
(3,0,0,0)→ (2, 1, 0, 0), (1, e, t)→ (2, 0, 1, 0), (1, e, t)→ (2, 0, 0, 1), (−1, e, t)→

(1, 1, 0, 1), (1, e, t)→ (0, 2, 0, 1), (1, e, t)→ (0, 1, 1, 1), (1, e, t)→ (0, 0, 2, 1),
(0, e, t)→ (0, 0, 1, 2), (−1, e, t)→ (0, 0, 0, 3), (−1, e, t)
�A = 3
(3,0,0,0)→ (2, 1, 0, 0), (1, e, t)→ (2, 0, 1, 0), (0, e, t)→ (1, 1, 1, 0), (1, e, t)→

(1, 0, 2, 0), (0, e, t)→ (1, 0, 1, 1), (−1, e, t)→ (1, 0, 0, 2), (−1, e, t)→ (0, 1, 0, 2),
(1, e, t)→ (0, 0, 1, 2), (0, e, t)→ (0, 0, 0, 3), (−1, e, t)
�A = 3
(3,0,0,0)→ (2, 1, 0, 0), (1, e, t)→ (2, 0, 1, 0), (0, e, t)→ (1, 1, 1, 0), (1, e, t)→

(1, 1, 0, 1), (−1, e, t)→ (1, 0, 1, 1), (0, e, t, )→ (1, 0, 0, 2), (−1, e, t)→ (0, 1, 0, 2),
(1, e, t)→ (0, 0, 1, 2), (0, e, t)→ (0, 0, 0, 3), (−1, e, t)
�A = 3
(3,0,0,0)→ (2, 1, 0, 0), (1, e, t)→ (1, 2, 0, 0), (1, e, t)→ (1, 1, 1, 0), (0, e, t)→

(1, 0, 2, 0), (0, e, t)→ (1, 0, 1, 1), (−1, e, t)→ (1, 0, 0, 2), (−1, e, t)→ (0, 1, 0, 2),
(1, e, t)→ (0, 0, 1, 2), (0, e, t)→ (0, 0, 0, 3), (−1, e, t)
�A = 3
(3,0,0,0)→ (2, 1, 0, 0), (1, e, t)→ (1, 2, 0, 0), (1, e, t)→ (1, 1, 1, 0), (0, e, t)→

(1, 1, 0, 1), (−1, e, t)→ (1, 0, 1, 1), (0, e, t, )→ (1, 0, 0, 2), (−1, e, t)→ (0, 1, 0, 2),
(1, e, t)→ (0, 0, 1, 2), (0, e, t)→ (0, 0, 0, 3), (−1, e, t)
�A = 3
(3,0,0,0)→ (2, 1, 0, 0), (1, e, t)→ (1, 2, 0, 0), (1, e, t)→ (0, 3, 0, 0), (1, e, t)→

(0, 2, 1, 0), (o, e, t)→ (0, 2, 0, 1), (−1, e, t)→ (0, 1, 1, 1), (0, e, t)→ (0, 0, 2, 1),
(0, e, t)→ (0, 0, 1, 2), (−1, e, t)→ (0, 0, 0, 3), (−1, e, t)
�A = 4
(3,0,0,0)→ (2, 1, 0, 0), (1, e, t)→ (1, 2, 0, 0), (1, e, t)→ (0, 3, 0, 0), (1, e, t)→

(0, 2, 1, 0), (o, e, t)→ (0, 2, 0, 1), (−1, e, t)→ (0, 1, 1, 1), (0, e, t)→ (0, 1, 0, 2),
(−1, e, t)→ (0, 0, 1, 2), (0, e, t)→ (0, 0, 0, 3), (−1, e, t)
�A = 4
(3,0,0,0)→ (2, 1, 0, 0), (1, e, t)→ (1, 2, 0, 0), (1, e, t)→ (0, 3, 0, 0), (1, e, t)→

(0, 2, 1, 0), (o, e, t)→ (0, 1, 2, 0), (0, e, t)→ (0, 1, 1, 1), (0, e, t)→ (0, 1, 0, 2),
(−1, e, t)→ (0, 0, 1, 2), (0, e, t)→ (0, 0, 0, 3), (−1, e, t)
�A = 4
(3,0,0,0)→ (2, 1, 0, 0), (1, e, t)→ (1, 2, 0, 0), (1, e, t)→ (0, 3, 0, 0), (1, e, t)→

(0, 2, 1, 0), (o, e, t)→ (0, 1, 2, 0), (0, e, t)→ (0, 1, 1, 1), (0, e, t)→ (0, 0, 2, 1),
(0, e, t)→ (0, 0, 1, 2), (−1, e, t)→ (0, 0, 0, 3), (−1, e, t)
�A = 4
(3,0,0,0)→ (2, 1, 0, 0), (1, e, t)→ (1, 2, 0, 0), (1, e, t)→ (0, 3, 0, 0), (1, e, t)→

(0, 2, 1, 0), (o, e, t)→ (0, 1, 2, 0), (0, e, t)→ (0, 0, 3, 0), (0, e, t)→ (0, 0, 2, 1),
(0, e, t)→ (0, 0, 1, 2), (−1, e, t)→ (0, 0, 0, 3), (−1, e, t)
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�A = 4
(3,0,0,0)→ (2, 1, 0, 0), (1, e, t)→ (1, 2, 0, 0), (1, e, t)→ (1, 1, 1, 0), (0, e, t)→

(1, 1, 0, 1), (−1, e, t)→ (1, 0, 1, 1), (0, e, t)→ (0, 1, 1, 1), (1, e, t)→ (0, 1, 0, 2),
(−1, e, t)→ (0, 0, 1, 2), (0, e, t)→ (0, 0, 0, 3), (−1, e, t)
�A = 4
(3,0,0,0)→ (2, 1, 0, 0), (1, e, t)→ (1, 2, 0, 0), (1, e, t)→ (1, 1, 1, 0), (0, e, t)→

(1, 0, 2, 0), (−1, e, t)→ (0, 1, 2, 0), (0, e, t)→ (0, 1, 1, 1), (1, e, t)→ (0, 1, 0, 2),
(−1, e, t)→ (0, 0, 1, 2), (0, e, t)→ (0, 0, 0, 3), (−1, e, t)
�A = 4
(3,0,0,0)→ (2, 1, 0, 0), (1, e, t)→ (2, 0, 1, 0), (1, e, t)→ (1, 1, 1, 0), (0, e, t)→

(1, 0, 2, 0), (−1, e, t)→ (0, 1, 2, 0), (0, e, t)→ (0, 1, 1, 1), (1, e, t)→ (0, 1, 0, 2),
(−1, e, t)→ (0, 0, 1, 2), (0, e, t)→ (0, 0, 0, 3), (−1, e, t)
�A = 4

In each case, the minimum number of agents is two. It can be shown that in the
n−stick case, the minimal number of agents is still two; the “swarm” must have
at least two agents. In these cases each subtask also requires at least two agents.
We can infer that swarm teams of size two may be utilized to accomplish each
subtask individually, resulting in a superior overall performance if each team can
act independently.

5.6 Step 6

In this step, we determine whether a swarm is required to accomplish the task.
The paths identified in the Step 5 have a minimal swarm team size of 2. We
conclude that a swarm containing at least two agents is required to accomplish
this task. Moreover, a swarm made up of multiple swarm teams of size two can
accomplish this task in parallel without interfering with one another.

As the task can only be carried out by pairs of agents, one of the agents
must be able to locate the stick and execute the first transition. The second
agent must be able to locate the half-raised stick/agent assembly and assist in
removing the stick. It must also be able to return the stick to home. As a result,
it must be able to locate home and carry the stick as well. It is not necessary
for both agents to have both ability sets, enabling the task to be accomplished
by two castes of agents.

It has been noted that, when a larger swarm is evolved with two castes of
agents so a to determine an optimal proportion of one type to another, the
swarm generates two different castes of equal numbers[5]. The considerations of
this Section would seem to indicate a possible reason for this outcome.

5.7 Step 7

A variety of behaviors may be created in order to achieve the goals set out in
Section 5.6. We illustrate these with the following behaviors:
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– Caste 1
• If a Caste 2 agent is in sight carrying a stick, follow it.
• If a Caste 2 agent carrying a stick isn’t in sight and a stick is in sight,

lift the stick.
• Otherwise, wander randomly.

– Caste 2
• If at home and carrying a stick, drop stick in storage.
• If not at home and carrying a stick, locate home and move toward it.
• If not at home, not carrying a stick, and a Caste 1 agent is in view not

holding a stick, follow it.
• If not at home, not carrying a stick, and a Caste 1 agent is in view and

holding a stick, move to the agent and lift the stick.
• Otherwise wander randomly.

The basic capabilities that the agents must be able to are: identify other agents
in a variety of states; identify home; determine the direction to home; lift the
stick from the ground; lift the stick when held by another agent; and move
unboundedly while holding or not holding the stick. These basic capabilities
can be developed individually and when coupled with the behaviors that satisfy
the swarm condition and a two-by-two deployment of agents of differing castes,
the stick-pulling swarm will have been designed. It is easy to verify that these
capabilities exist in stick-pulling studies in the literature.

6 Discussion

One of the early investigations of swarm engineering centers around a task called
puck clustering[1,3]. This task involves pushing objects known as pucks1 around
an arena and eventually getting them to cluster in one big pile. The task is
generally approached using a swarm of identical robots, but it can be shown using
the analysis given above that the task requires only one agent. The situation is
identical for the three-dimensional construction swarm described in [8]. While
the task is accomplished by many agents in practice, it only requires one agent.
As a result, the task itself is not a swarm task; it can be accomplished without
a swarm.

Other tasks, such as the self-organization of the kilobot swarm described in
[6,7], require the entire swarm of agents for completion; they are indeed swarm-
based tasks. Moreover, they may be easily be modeled using the seven-step
system. In both cases, every agent put through the system is “consumed”, indi-
cating the reason these are swarm-based tasks.

Using this analysis, subtasks and swarm teams become clearly elucidated and
can be utilized to improve the swarm’s effectiveness. The effect of adding new
technology to the swarm design “soup” can be examined in a way that provides
insight into how technology affects swarm-based strategies. The tool also enables

1 The original experimental studies used hockey pucks; the name stuck.
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the examination of constraints including money, time, and energy; some of these
constraints can be overcome only by using multiple agents.

By analyzing the cost distribution and energy consumption throughout the
pathway, one can determine the costliest parts of the task. This is helpful in deter-
mining focus areas of technological development. Improving technology deployed
in a specific area of a task can ultimately reduce costs, complexity, and energy
usage.

7 Conclusions

We have described a task and technology-based swarm design methodology. This
methodology requires that the task be mapped to a phase space where the global
measurables are captured as functions of local measurables based on agent sen-
sory capability. The phase space is then traversed by paths reaching between
the start and desired end point of the swarm. The paths are constructed via an
algorithm that can be used to deliver paths with minimal agent counts, minimal
energy usage, time consumption, cost, or any other constraint applied to the
system. Analysis of the agent pathways enables determination of minimal agent
counts required for the task, characterization of the technologies used, identifica-
tion of the different agent castes, development of a deployment schedule, design
of swarm teams which carry out subtasks, and tally of time, cost, energy usage,
and other measurables associated with the task completion. The method was
applied to the stick pulling problem. The application supported a conclusion of
[5] that the optimal ratio of the two castes in the stick-pulling problem was 1:1.

Future work will investigate the algorithm’s application to varied problems
from the literature and others of interest to the broader swarm engineering
community. A number of extensions will be applied enabling simultenaiety and
continuity of action under perturbations to be modeled and designed.
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Abstract. The problem of obtaining a discrete curve approximation
to data points appears recurrently in several real-world fields, such as
CAD/CAM (construction of car bodies, ship hulls, airplane fuselage),
computer graphics and animation, medicine, and many others. Although
polynomial blending functions are usually applied to solve this prob-
lem, some shapes cannot yet be adequately approximated by using this
scheme. In this paper we address this issue by applying rational blending
functions, particularly the rational Bernstein polynomials. Our method-
ology is based on a memetic approach combining a powerful meta-
heuristic method for global optimization (called the electromagnetism
algorithm) with a local search method. The performance of our scheme
is illustrated through its application to four examples of 2D and 3D
synthetic shapes with very satisfactory results in all cases.

1 Introduction

This paper deals with the problem of obtaining a curve providing an accurate
approximation to a finite set of data points. This problem, mathematically for-
mulated as an optimization problem, arises in many theoretical and applied
domains. Classical fields for the former case are numerical analysis and statistics,
with computer aided-design and manufacturing (CAD/CAM) and medicine as
good examples for the latter. In many cases (particularly, for real-world applica-
tions), data points are usually acquired through laser scanning and other digitiz-
ing devices and are, therefore, subjected to some measurement noise, irregular
sampling, and other artifacts [2,36,37]. Consequently, a good fitting of data
should be generally based on approximation schemes. In this case, the approxi-
mating curve is not required to pass through all input data points, but just near
to them, according to some prescribed distance criteria.

A number of approximating families of functions have been applied to this
problem. Among them, the free-form parametric curves such as Bézier, B-spline
and NURBS, are widely applied in many industrial settings due to their great
flexibility and the fact that they can represent smooth shapes with only a few
c© Springer International Publishing Switzerland 2015
Y. Tan et al. (Eds.): ICSI-CCI 2015, Part I, LNCS 9140, pp. 30–40, 2015.
DOI: 10.1007/978-3-319-20466-6 3
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parameters [2,30,31,34,35]. Some previous papers addressed this problem by
using Bézier curves [15,18,32], which are given by a linear combination of polyno-
mial basis functions (the Bernstein polynomials). Although they obtained good
results for a number of shapes, this polynomial approach is still limited, as it
cannot adequately describe some particular shapes (such as the conics). As a
consequence, there is still a need for more powerful blending functions.

An interesting extension in this regard is given by the rational basis func-
tions, which are mathematically described as the quotient of two polynomials.
A remarkable advantage of this rational scheme is that the conics can be canon-
ically described as rational functions. In this paper, we take advantage of this
valuable feature to solve the finite curve approximation by using rational Bézier
curves. Unfortunately, this rational approach becomes more difficult than the
polynomial one, since new parameters are now introduced into the problem.
Consequently, we are confronted with the challenge of obtaining optimal values
for many (qualitatively different) parameters, namely, data parameters, poles,
and weights. This leads to a difficult over-determined multivariate nonlinear
optimization problem.

In this paper, we address this optimization problem by applying a memetic
approach. It is based on the combination of a powerful physics-based algorithm,
called electromagnetism algorithm and aimed at solving global optimization
problems, and a local search procedure. This memetic approach can be effec-
tively applied to obtain a very accurate approximation of a finite set of data
points by using rational blending functions.

The structure of this paper is as follows: in Section 2 previous work in the
field is briefly reported. Then, the fundamentals and main steps of the memetic
electromagnetism algorithm are briefly explained in Section 3. Our proposed
approach for curve approximation with rational Bézier curves is described in
Section 4. To check the performance of our approach, it has been applied to
four illustrative examples of 2D and 3D curves, as described in Section 5. Our
experimental results show that the presented method performs very well, being
able to replicate the underlying shape of data very accurately. The paper closes
in Section 6 with the main conclusions of this contribution and our plans for
future work in the field.

2 Previous Work

The problem of finite approximation with free-form parametric curves has been
the subject of research for many years. First approaches in the field were mostly
based on numerical procedures [5,6,38]. However, it has been shown that tra-
ditional mathematical optimization techniques fail to solve the problem in its
generality. Consequently, there has been a great interest to explore other pos-
sible approaches to this problem. Some recent approaches in this line use error
bounds [34], curvature-based squared distance minimization [40], or dominant
points [35].
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On the other hand, interesting research carried out during the last two
decades has shown that the application of artificial intelligence and soft comput-
ing techniques can achieve remarkable results for this problem [1,23,24]. Most
of these methods rely on some kind of neural networks, such as standard neural
networks [23], RBS networks [28], and Kohonen’s SOM (Self-Organizing Maps)
nets [24]. In some cases, this neural approach is combined with partial differential
equations [1] or other approaches [29]. The generalization of these methods to
functional networks is also analyzed in [7,25–27]. The application of support vec-
tor machines to solve the least-squares B-spline curve fitting problem is reported
in [30].

Other approaches are based on the application of nature-inspired metaheuris-
tic techniques, which have been intensively applied to solve difficult optimization
problems that cannot be tackled through traditional optimization algorithms. A
previous paper in [21] describes the application of genetic algorithms and func-
tional networks yielding pretty good results. Genetic algorithms have also been
applied to this problem in both the discrete version [39] and the continuous
version [22,41]. Other metaheuristic approaches applied to this problem include
the use of the popular particle swarm optimization technique [8–10], artificial
immune systems [18–20], firefly algorithm [12–14], cuckoo search [16], simulated
annealing [32], estimation of distribution algorithms [42], memetic algorithms
[17], and hybrid techniques [11,39].

3 Our Memetic Approach

During the last two decades, there has been an increasing interest upon the appli-
cation of soft computing approaches (particularly, metaheuristic techniques) to
solve hard optimization problems. Among them, the memetic algorithms - based
on a metaheuristic strategy for global optimization coupled with a local search
procedure - have shown a great potential for solving difficult nonlinear optimiza-
tion problems such as that in this paper. Owing to these reasons, in this work
we consider a memetic approach combining the electromagnetism algorithm and
a local search method, as described in next paragraphs.

3.1 The Electromagnetism Algorithm

The electromagnetism algorithm (EMA) is a metaheuristic introduced by Birbil
and Fang in [3] for optimization problems. This method utilizes an attraction-
repulsion mechanism to move sample points towards optimality. Each point
(called particle) is treated as a potential solution and an electric charge is
assigned to each particle. Better solutions have stronger charges and each par-
ticle has an impact on others through charge. The exact value of the impact is
given by a modification of original Coulomb’s Law. In EMA, the power of the
connection between two particles is proportional to the product of their charges
and reciprocal to the distance between them. In other words, the particles with
a higher charge will force the movement of other particles in their direction more
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strongly. Beside that, the best particle in this electromagnetic mechanism will
stay unchanged. The charge of each particle relates to the objective function
value, which is the subject of optimization. The reader is also referred to [4] for
a comprehensive study about the convergence of the EMA approach.

The electromagnetism algorithm was originally proposed to study a special
class of optimization problems with bounded variables in the form:

minψ(Θ) such that Θ ∈ [L,U] (1)

where [L,U] := {Θ ∈ R
ν/lk ≤ Θk ≤ uk, k = 1, . . . , ν}, ν is the dimension

of the problem, L = {lk}k and U = {uk}k represent respectively the lower
bound and upper bound in R

ν , and ψ(Θ) is the function to be optimized. The
algorithm consists of four main steps, which are summarized in next paragraphs.
The corresponding pseudocode is depicted in Table 1. Note that in this paper
vectors are denoted in bold.

Step 1: Initialization. In this step, μ sample points are selected at random
from the feasible region, which is an ν-dimensional hypercube. To this purpose,
each coordinate of the sampled point is assumed to be uniformly distributed
between the corresponding lower and upper bound. Then, the objective function
value of each sampled point is computed, and the point that has the best global
value is stored in Θbest.

Step 2: Local Search. In this step, a local search is carried out to gather the
local information for each point Θi and exploit the local minima. To this aim, a
LocalSearch procedure similar to that in [3] is applied. The procedure depends
on a multiplier δ which is used to compute the maximum feasible step length
for the local search. The search is performed for each coordinate and for a given
number of iterations. In case a better point is obtained (according to the fitness
function), the current point is replaced by this new (better) alternative. Note
that this procedure does not require any gradient information. Note also that
any other local search procedure might be alternatively used, opening the door
for other hybridized schemes.

Step 3: Calculation of Total Force. In this step, the vector of the total force
exerted on each particle from all other particles is computed. Firstly, a charged-
like value ξi is assigned to each particle. The charge of a particle i determines
its power of attraction or repulsion, and is evaluated as:

ξi = exp

⎛

⎜
⎜
⎝−ν

ψ(Θi)− ψ(Θbest)
μ∑

k=1

[ψ(Θk)− ψ(Θbest)]

⎞

⎟
⎟
⎠ (2)

Then, the attraction/repulsion force between two particles is computed using
a mechanism inspired in the electromagnetism theory for the charged particles.
According to [3], the computation of this force is given by:
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Table 1. General pseudocode of the electromagnetism algorithm

INPUT:
μ: number of sampled points
ν: dimension of the problem
max iter: maximum number of iterations for global loop
max lsiter: maximum number of iterations for local search
δ: multiplier for local search

Step 1: Initialization
for i=1 to μ do

for k=1 to ν do
Θi

k ← lk + σ(uk − lk) // σ ∼ U(0, 1)

end for
end for

Θbest ← BestFitting({Θi}i=1,...,µ) // initial best

iter ← 1
while iter< max iter do // global loop

Step 2: Local Search
liter ← 1
for i=1 to μ do

for k=1 to ν do
while liter< max lsiter do

Θi
k ← LocalSearch(δ) // local search improvement

liter ← liter +1
end while

end for
end for
Step 3: Total Force Computation
for i=1 to μ do

ξi ← ChargeEvaluation() // given by Eq. (2)

end for
for i=1 to μ do

Ξi ← ForceEvaluation() // given by Eq. (3)

end for
Step 4: Movement According Total Force
for i=1 to μ do

if i �=best then
Θi ← Movement() // given by Eq. (4)

end if
end for
iter ← iter +1

end while

OUTPUT:

Θbest: best global solution
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Ξi =
μ∑

j=1,j �=i

ξi ξj

||Θj −Θi||2

⎧
⎨

⎩

(Θj −Θi) if ψ(Θj) < ψ(Θi)

(Θi −Θj) if ψ(Θj) ≥ ψ(Θi)
(3)

Note, however, that the force computed in this way does not follow exactly
Coulomb’s law, where the force is inversely proportional to the square of the
distance. Note also that, unlike electrical charges, there is no sign on the charge
of individual particles in Eq. (2). Instead, the direction of a particular force
between two particles is determined by comparing the objective function values
at such particles. Then, the particle with a better fitness value attracts the other
one, while the particle with a worse fitness value repels the other, as indicated
by Eq. (3).

Step 4: Movement According to the Total Force. The force vector com-
puted in previous step determines the direction of movement for the correspond-
ing particle according to Eq. (4):

Θi+1 = Θi + λ
Ξi

||Ξi|| ◦Ψ (4)

where Ψ is the vector of the feasible movement toward the upper/lower bound
for the corresponding dimension, λ is a random variable following the uniform
distribution, and ◦ denotes the Hadamard product.

3.2 Local Optimization Method

The EMA is improved by its hybridization with a local search procedure. We
apply the Luus-Jaakola local search method, a heuristic for optimization of real-
valued functions [33]. This method starts with an initialization step, where ran-
dom uniform values are chosen within the search space. Then, a random uniform
value in-between boundary values is sampled for each component. This value is
added to the current position of the potential solution to generate a new can-
didate solution, which replaces the current one only if the value of the fitness
is improved. Otherwise, the sampling space is multiplicatively decreased by a
self-adaptive size of a factor whose strength depends on the difference between
consecutive parameters, with the effect of speeding up the convergence to the
steady state. This process is repeated iteratively. With each iteration, the neigh-
borhood of the point decreases, so the procedure eventually collapses to a point.

4 The Proposed Method

We assume that the reader is familiar with the main concepts of free-form para-
metric curves [6]. A free-form rational Bézier curve Φ(τ) of degree η is defined as:
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Φ(τ) =

η∑

j=0

ωjΛjφ
η
j (τ)

η∑

j=0

ωjφ
η
j (τ)

(5)

where Λj are vector coefficients called the poles, ωj are their scalar weights,
φη

j (τ) are the Bernstein polynomials of index j and degree η, given by:

φη
j (τ) =

(
η

j

)
τ j (1− τ)η−j

and τ is the curve parameter, defined on a finite interval [0, 1]. By convention,
0! = 1.

Suppose now that we are given a set of data points {Δi}i=1,...,κ in R
ν (usually

ν = 2 or ν = 3). Our goal is to obtain the rational Bézier curve Φ(τ) performing
finite approximation of the data points {Δi}i. To do so, we have to compute
all parameters (i.e. poles Λj , weights ωj , and parameters τi associated with
data points Δi for i = 1, . . . , κ, j = 0, . . . , η) of the approximating curve Φ(τ)
by minimizing the least-squares error, Υ, defined as the sum of squares of the
residuals:

Υ = minimize
{τi}i
{Λj}j

{ωj}j

⎡

⎢
⎢
⎢
⎣

κ∑

i=1

⎛

⎜
⎜
⎜
⎝

Δi −

η∑

j=0

ωjΛjφ
η
j (τi)

η∑

j=0

ωjφ
η
j (τi)

⎞

⎟
⎟
⎟
⎠

2⎤

⎥
⎥
⎥
⎦
. (6)

Our strategy for solving this problem consists of applying the memetic elec-
tromagnetism method described in the previous section to determine suitable
values for the unknowns of the least-squares minimization of functional Υ accord-
ing to (6). All these parameters are initialized with random values within their
respective domains. Application of our method yields new positions and charges
of the particles representing the potential solutions. The process is performed
iteratively until the convergence of the minimization of the error is achieved.

5 Experimental Results

The method described in previous section has been applied to several exam-
ples. Unfortunately, the lack of a standardized benchmark in the field forced us
to choose the examples by ourselves. It also prevented us from making a com-
parative analysis with other metaheuristic methods in the literature. We think,
however, that the examples reported here will be useful to determine the good
applicability of our method to this problem. To keep the paper in manageable
size, in this section we describe only four of them, corresponding to 2D and 3D
curves and shown in Figure 1.

First example corresponds to a set of 150 data points, approximated with a
rational Bézier curve. Our results are depicted in Fig. 1(top-left), where the orig-
inal data points are displayed as red × symbols whereas the reconstructed curve
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Fig. 1. Application of our memetic electromagnetism algorithm to four illustrative
examples of finite approximation with rational Bézier curves: (top-left) epicycloid; (top-
right) a spinning top; (bottom-left) a 3D curve; (bottom-right) a collection of curves
representing a crane bird. In all cases, the original points are displayed as red × symbols
and the approximating curve as a blue solid line.

appears displayed as a blue solid line. This example is particularly challenging
because it contains a number of difficult features such as several self-intersections
and turning points, where the curve is continuous but not differentiable. Note
however the good visual matching between the original data points and the
approximating curve. Despite of all these difficult features, the method performs
very well, being able to replicate the original shape with high accuracy.

Second example corresponds to a set of 100 data points from the free-form
shape of a spinning top, depicted in Fig. 1(top-right). Once again, we obtained
a very good matching of data points. Third example corresponds to a 3D curve
obtained from 200 data points (see Figure 1(bottom-left)), while the fourth
example (Figure 1 (bottom-right)) corresponds to a collection of 7 different
curves (with 50 data points each) from a free-form shape representing a crane
bird. As the reader can see, our method obtained a very good approximating
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curve of the original sets of data points in all cases. Note particularly the ability
of the rational curves to capture the different changes of curvature in all our
examples. These examples show that the method performs very well for both 2D
and 3D curves even in presence of difficult features and very complex shapes.

6 Conclusions and Future Work

This paper introduces a new memetic electromagnetism method for finite
approximation with rational Bézier curves. Given a set of data points, the
method computes all relevant parameters (poles, weights, and data parameters)
of the rational Bézier fitting curve as the solution of a difficult over-determined
nonlinear optimization problem. Our approach is based on the combination of a
global optimization method (the electromagnetism algorithm) to obtain a very
good approximation of the optimal solution and a local search procedure (the
Luus-Jaakola local search method) for further solution refinement. To check the
performance of our approach, it has been applied to some illustrative examples of
2D and 3D curves. Our results show that the method performs very well, being
able to yield a satisfactory approximating curve with a high degree of accuracy.
Our approach generalizes a previous method in [15] - based on polynomial basis
functions - to rational blending functions, thus expanding the potential range of
applications to include more difficult shapes.

Our future work includes the extension of this method to the case of sur-
faces. We are also interested to analyze the application of this method to some
industrial processes and other interesting real-world problems. Finally, a the-
oretical analysis about the convergence of this method, its parameter tuning,
and a comparative analysis with other alternative approaches on a standardized
benchmark (when available) are also part of our future goals.
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Project Ref. #TIN2012-30768, Toho University, and the University of Cantabria.
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immune systems. In: Plemenos, D., Miaoulis, G. (eds.) Intelligent Computer Graph-
ics 2012. SCI, vol. 441, pp. 59–75. Springer, Heidelberg (2013)

19. Gálvez, A., Iglesias, A., Avila, A.: Immunological-based approach for accurate fit-
ting of 3d noisy data points with Bézier surfaces. In: Proc. of Int. Conference on
Comp. Science-ICCS 2013. Procedia Computer Science, vol. 18, pp. 50–59 (2013)

20. Gálvez, A., Iglesias, A., Avila, A., Otero, C., Arias, R., Manchado, C.: Elitist clonal
selection algorithm for optimal choice of free knots in B-spline data fitting. Applied
Soft Computing 26, 90–106 (2015)

21. Gálvez, A., Iglesias, A., Cobo, A., Puig-Pey, J., Espinola, J.: Bézier curve and
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Franklin Johnson1,6, and Fernando Paredes7
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Abstract. The Set Covering Problem is a formal model for many prac-
tical optimization problems. It consists in finding a subset of columns
in a zero–one matrix such that they cover all the rows of the matrix
at a minimum cost. To solve the Set Covering Problem we use a meta-
heuristic called Binary Cat Swarm Optimization. This metaheuristic is
a binary version of Cat Swarm Optimization generated by observing cat
behavior. Cats have two modes of behavior: seeking mode and tracing
mode. We are the first ones to use this metaheuristic to solve the Set
Covering Problem, for this the proposed algorithm has been tested on
65 benchmarks instances.

Keywords: Binary Cat Swarm Optimization · Set Covering Problem ·
Metaheuristic

1 Introduction

The Set Covering Problem (SCP) [5,8,23] is a classic problem that consists
in finding a set of solutions which allow to cover a set of needs at the lowest
cost possible. In the field of optimization, many algorithms have been developed
to solve the SCP. Examples of these optimization algorithms include: Genetic
Algorithm (GA) [30], Ant Colony Optimization (ACO) [25] and Particle Swarm
Optimization (PSO) [15,28]. Our proposal of algorithm uses cat behavior to solve
optimization problems, it is called Binary Cat Swarm Optimization (BCSO) [27].

BCSO refers to a serie of heuristic optimization methods and algorithms
based on cat behavior in nature. Cats behave in two ways: seeking mode and
tracing mode. BCSO is based in CSO [12] algorithm, proposed by Chu and Tsai
recently [24]. The difference is that in BCSO the vector position consists of ones
and zeros, instead the real numbers of CSO.
c© Springer International Publishing Switzerland 2015
Y. Tan et al. (Eds.): ICSI-CCI 2015, Part I, LNCS 9140, pp. 41–48, 2015.
DOI: 10.1007/978-3-319-20466-6 4
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2 Set Covering Problem

The SCP [13,14,21] can be formally defined as follows. Let A = (aij) be an
m-row, n-column, zero-one matrix. We say that a column j can cover a row
if aij =1. Each column j is associated with a nonnegative real cost cj . Let
I={1,...,m} and J={1,...,n} be the row set and column set, respectively. The
SCP calls for a minimum cost subset S ⊆ J , such that each row i ∈ I is covered
by at least one column j ∈ S. A mathematical model for the SCP is

v(SCP)= min
∑

j∈J

cjxj (1)

subject to
∑

j∈J

aijxj ≥ 1, ∀ i ∈ I, (2)

xj ∈ {0, 1},∀ j ∈ J (3)

The objective is to minimize the sum of the costs of the selected columns,
where xj = 1 if column j is in the solution, 0 otherwise. The constraints ensure
that each row i is covered by at least one column.

The SCP has been applied to many real world problems such as crew schedul-
ing [3], location of emergency facilities [31], production planning in industry [32],
ship scheduling [18], network attack or defense [6], assembly line balancing [19],
traffic assignment in satellite communication systems [9], simplifying boolean
expressions [7], the calculation of bounds in integer programs [10], information
retrieval, political districting [20], stock cutting, crew scheduling problems in
airlines [22] and other important real life situations. Because it has wide appli-
cability, we deposit our interest in solving the SCP.

3 Binary Cat Swarm Optimization

Among the known felines, there are about thirty different species, e.g., lion, tiger,
leopard, cat, among others [2]. Though many have different living environments,
cats share similar behavior patterns. For wild cats, this hunting skill ensures
their food supply and survival of their species [17]. Feral cats are groups with
a mission to hunt their food, are very wild feline colonies, ranging from 2-15
individuals. Domestic cats also show the same ability to hunt, and are curious
about moving objects [16]. Watching the cats, you would think that most of
the time is spent resting, even when awake [1]. This alertness they do not never
leave, they may be listening or with wide eyes to look around [26]. Based on
these behaviors we known BCSO.

Binary Cat Swarm Optimization [27] is an optimization algorithm that imi-
tates the natural behavior of cats [11,29]. Each cat is represented by catk, where
k ∈ [1, C], has its own position consisting of M dimensions, which are composed
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by ones and zeros. Besides, they have speed for each dimension d, Mixture Ratio
(MR), a percentage for indicating if the cat is on seeking mode or tracing mode
and finally a fitness value that is calculated based on the SCP (Eq. 1). The
BCSO keeps the best solution until the end of iterations. Next is described the
BCSO general diagram (Fig. 1):

Fig. 1. Cat Swarm Optimization

3.1 Seeking Mode

This sub-model is used to model the situation of the cat, which is resting, looking
around and seeking the next position to move to. Seeking mode has essential fac-
tors: PMO, Probability of Mutation Operation; CDC, Counts of Dimensions to
Change, it indicates how many of the dimensions varied; SMP, Seeking Memory
Pool, it is used to define the size of seeking memory for each cat.

The following pseudocode describe cat behavior seeking mode. In wish FSb =
FSmax for finding the minimum solution and FSb = FSmin for finding the
maximum solution.

Step1: Create SMP copies of catk
Step2: Based on CDC update the position of each copy by randomly accord-

ing to PMO
Step3: Evaluate the fitness of all copies
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Step4: Calculate the selecting probability of each copy according to

Pi =
FSi − FSb

FSmax − FSmin
(4)

Step5: Apply roulette wheel to the candidate points and select one
Step6: replace the current position with the selected candidate

3.2 Tracing Mode

Tracing mode is the sub-model for modeling the case of the cat in tracing targets.
In the tracing mode, cats are moving towards the best target. Once a cat goes into
tracing mode, it moves according to its own velocities for each dimension. Every
cat has two velocity vector are defined as V 1

kd and V 0
kd. V 0

kd is the probability
of the bits of the cat to change to zero while V 1

kd is the probability that bits of
cat change to one. The velocity vector changes its meaning to the probability
of mutation in each dimension of a cat. The tracing mode action is described in
the next pseudocode.

Step1: Calculate d1
kd and d0

kd where Xbest,d is the d dimension of best cat, r1

has a random values in the interval of [0,1] and c1 is a constant which is defined
by the user

if Xbest,d = 1 then d1
kd = r1c1 and d0

kd = −r1c1

if Xbest,d = 0 then d1
kd = −r1c1 and d0

kd = r1c1
(5)

Step2: Update process of V 1
kd and V 0

kd are as follows, where w is the inertia
weight and M is the column numbers.

V 1
kd = wV 1

kd + d1
kd

V 0
kd = wV 0

kd + d0
kd

d = 1,...,M (6)

Step3: Calculate the velocity of catk, V
′
kd, according to

V
′
kd =

{
V 1

kd if Xkd = 0
V 0

kd if Xkd = 1 (7)

Step4: Calculate the probability of mutation in each dimension, this is
defined by parameter tkd, tkd takes a value in the inverval of [0,1]

tkd =
1

1 + e−V
′

kd

(8)

Step5: Based on the value of tkd the new value of each dimension of cat is
update as follows

Xkd =
{

Xbest,d if rand < tkd

Xkd if tkd < rand
d = 1,...,M (9)

The maximun velocity vector of V
′
kd should be bounded to a value Vmax. If

the value of V
′
kd becomes larger than Vmax. Vmax should be selected for velocity

in the corresponding dimension.
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4 Solving the Set Covering Problem

Next is described the Solving SCP pseudocode:

Algorithm 1. Solving SCP ()
1: Initialize parameters in cats;
2: Initialization of cat positions, randomly, with values between 0 and 1;
3: Evaluation of the fitness of the population (Eq. 1);
4: Change of the position of the cat based in seeking mode or tracing mode;
5: If solution is not feasible then repaired. Rows have not yet been covered and choose

the needed columns for coverage must be determined to make a solution that is
feasible. The search for these columns is based on: (the cost of a column)/(number
of not covered row that can cover column j). Once the solution has become feasible
applies a step of optimization to eliminate those redundant columns. A redundant
column is one that if removed, the solution remains feasible;

6: Memorizes the best found solution. Increases the number of iterations;
7: Stop the process if the completion criteria are met. Completion criteria used in this

work are the number specified maximum of iterations. Otherwise, go to step 3;

5 Results

The BCSO performance was evaluated experimentally using 65 SCP test
instances from the OR-Library of Beasley [4]. The algorithm was coded in Java
in NetBeans IDE 7.1 and executed on a Computer with 2.53 GHz and 3.0 GB
of RAM under Windows 7 Operating System. In all experiments the BCSO was
executed with 200 iterations and 30 times each instance. The parameters in the
Table 1 were selected empirically so after a large number of tests. This number
was determined by the rapid convergence to a near local optimum to the global
optimum.

Table 1. Parameter values

Name Parameter Value

Number of Cats C 20

Mixture Ratio MR 0.5

Counts of Dimensions to Change CDC 0.001

Seeking Memory Pool SMP 20

Probability of Mutation Operation PMO 1

Aleatory Variable rand ∈ [0,1]

Inertia weight w 1

Factor c1 c1 1

The table 2 shows the results of the 65 instances. The Zopt reports the best
known solution for each instance. The Zmin, Zmax and Zavg report the lowest,
highest and the average cost of the best solutions obtained in 30 runs respectively.
The quality of a solution is evaluated in terms of the percentage deviation relative
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(RPD) of the solution reached Zmin and Zopt (which can be either the optimal
or the best known objective value).

RPD =
(

Zmin − Zopt

Zopt

)
∗ 100 (10)

Table 2. Computational results on 65 instances of SCP

Instance Zopt Zmin Zmax Zavg RPD

4.1 429 459 485 479.6 11.79

4.2 512 570 599 594.2 16.05

4.3 516 590 614 606.8 17.6

4.4 494 547 585 578.3 17.06

4.5 512 545 558 554.2 8.24

4.6 560 637 655 649.9 16.05

4.7 430 462 469 467.4 8.7

4.8 492 546 571 566.9 15.22

4.9 641 711 741 725.0 13.10

4.10 514 537 556 552.1 7.41

5.1 253 279 283 281.6 11.30

5.2 302 339 340 339.9 12.55

5.3 226 247 252 250.5 10.84

5.4 242 251 254 253.2 4.63

5.5 211 230 231 230.4 9.19

5.6 213 232 244 242.7 13.94

5.7 293 332 343 338.0 15.36

5.8 288 320 331 329.9 14.55

5.9 279 295 299 298.6 7.03

5.10 265 285 288 286.9 8.26

6.1 138 151 166 159.9 15.87

6.2 146 152 160 157.4 7.81

6.3 145 160 166 164.3 13.31

6.4 131 138 143 141.7 8.17

6.5 161 169 176 172.8 7.33

A.1 253 286 287 286.9 13.40

A.2 252 274 280 276.3 9.64

A.3 232 257 264 263.1 13.41

A.4 234 248 252 251.3 7.16

A.5 236 244 244 244 3.31

B.1 69 79 79 79 14.49

B.2 76 86 90 88.5 16.18

B.3 80 85 87 85.4 6.5

B.4 79 89 89 89 12.66

B.5 72 73 73 73 1.53

C.1 227 242 243 242.4 6.7

C.2 219 240 244 240.8 9.86

C.3 243 277 279 278 14.40

C.4 219 250 250 250 13.24

C.5 215 243 247 244.3 13.63

D.1 60 65 66 65.7 9.50

D.2 66 70 71 70.1 6.21

D.3 72 79 81 80.8 12.22

D.4 62 64 67 66.6 7.42

D.5 61 65 66 65.6 7.54

NRE.1 29 29 30 29.9 3.1

NRE.2 30 34 35 34.2 14

NRE.3 27 31 32 31.5 16.67

NRE.4 28 32 33 32.9 17.5

NRE.5 28 30 31 30.3 8.21

NRF.1 14 17 18 17.1 22.14

NRF.2 15 18 19 18.2 21.33

NRF.3 14 17 18 17.2 22.86

NRF.4 14 17 18 17.1 22.14

NRF.5 13 15 16 15.9 22.31

NRG.1 176 190 194 192.7 9.49

NRG.2 154 165 167 166 7.79

NRG.3 166 187 191 187.7 21.1

NRG.4 168 179 185 183.2 9.05

NRG.5 168 181 186 184.3 9.7

NRH.1 63 70 74 71.2 13.02

NRH.2 63 67 67 67 6.35

NRH.3 59 68 74 69.6 17.97

NRH.4 58 66 68 66.6 14.83

NRH.5 55 61 66 61.5 11.82

6 Conclusions

In this paper we use BCSO to solve SCP using its column based representation
(binary solutions). In binary discrete optimization problems the position vector
is binary, this causes significant change in BCSO with respect to CSO with real
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numbers. In fact in BCSO in the seeking mode the slight change in the position
takes place by introducing the mutation operation. The interpretation of velocity
vector in tracing mode also changes to probability of change in each dimension
of position of the cats. As can be seen from the results, metaheuristic performs
well in most all cases. This paper has shown that the BCSO is a valid alternative
to solve the SCP, with its primary use is for continuous domains. The algorithm
performs well regardless of the scale of the problem.

We can see the premature convergence, a typical problem in metaheuristics,
which occurs when the cats quickly attain to dominate the population, con-
straining it to converge to a local optimum. For future works the objective will
be make them highly immune to be trapped in local optima and thus less vulner-
able to premature convergence problem. Thus, we could propose an algorithm
that shows improved results in terms of both computational time and quality of
solution.
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algorithms for the set covering problem. In: Dorigo, Marco, Birattari, Mauro, Blum,
Christian, Gambardella, Luca Maria, Mondada, Francesco, Stützle, Thomas (eds.)
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Abstract. In this paper, a structural damage detection approach based on bird 
mating optimizer (BMO) is proposed. Local damage is represented by a pertur-
bation in the elemental stiffness parameter of the structural finite element mod-
el. The damage parameters are determined by minimizing the error derived 
from modal data, and natural frequency and modal assurance criteria (MAC) of 
mode shape is employed to formulate the objective function. The BMO algo-
rithm is adopted to optimize the objective and optimum set of stiffness reduc-
tion parameters are predicted. The results show that the BMO can identify the 
perturbation of the stiffness parameters effectively even under measurement 
noise. 

Keywords: Damage identification · Bird mating optimizer · Frequency domain 

1 Introduction 

The identification of structural damage is a vital part of structural health monitoring 
during the period of construction and service. The objective of structural damage identi-
fication is to localize and quantify the deterioration in a physical structural system from 
the measured response or modal parameters. In the past few decades, more and more 
researchers have applied global optimization techniques to the problem of structural 
damage identification [1,2,3]. Swarm intelligence methods, such as particle swarm  
optimization (PSO) and ant colony optimization (ACO), are highly adaptive methods 
originated from the laws of nature and biology. The usual swarm intelligence methods 
minimize an objective function, which is defined in terms of the discrepancies between 
the vibration data identified by modal testing and those computed from the analytical 
model. In recent years, PSO [4,5,6] is a novel population-based global optimization 
technique developed. Mohan et al. [4] evaluated the use of frequency response function 
with the help of particle swarm optimization technique, for structural damage detection 
and quantification. An immunity enhanced particle swarm optimization algorithm with 
the artificial immune system is proposed for damage detection of structures by Kang  
et al. [5]. A two-stage method, including modal strain energy based index (MSEBI) and 
PSO, is proposed to properly identify the site and extent of multiple damage cases by 
Seyedpoor [6]. In recent literature, several applications of ACO [7,8,9] are observed to 
solve problems successfully such as in traveling salesman problem, vehicle routing 
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problems etc. Kaveh et al. [7] proposed ACO for topology optimization of 2D and  
3D structures, which was to find the stiffest structure with a certain amount of material. 
Yu and Xu [8] proposed an ant colony optimization based algorithm for continuous 
optimization problems on structural damage detection in the SHM field. Majumdar et al. 
[9] presented ant colony optimization algorithm to detect and assess structural damages 
from changes in natural frequencies. 

Recently, a novel heuristic algorithm named bird mating optimizer (BMO) was 
proposed by Askarzadeh and Rezazadeh [10]. It is a population-based optimization 
algorithm which employs mating process of birds as a framework. Detail of the BMO 
algorithm is presented in [11]. BMO algorithm has been utilized to extract maximum 
power of solar cells by Askarzadeh and Rezazadeh [12]. The researches show that 
BMO is an efficient algorithm for multimodal optimization. And it can be applied on 
different fields. 

In this paper, a structural damage identification method based on BMO algorithm 
is proposed. The damage parameters (i.e. stiffness reduction parameters) are deter-
mined by minimizing a global error derived from modal data. In order to employ the 
BMO algorithm, an objective function in frequency domain is introduced. Two nu-
merical examples are utilized to verify the effectiveness of BMO, including a simply 
supported beam and a planar truss. The identified results indicate that the BMO algo-
rithm is practical and efficient. The multiple local damages can be identified accuracy 
even under measurement noise. 

2 Methodology for Damage Detection 

2.1 Damage Model in Frequency Domain  

Neglecting the damping of the structure, the eigenvalue equation for an n degree-of-
freedom structural system can be expressed as 

 2( ) 0j jω φ− =K M  (1) 

where M , K  are the mass, stiffness matrices, respectively. jω  is the jth natural 

frequency and jφ  is the corresponding mode shapes. 

When a structure is damaged, the reduction of the stiffness can be evaluated by a 
set of damage parameters ( 1, 2, , )i i nelα =   and the loss in mass is ignored. The 

damaged stiffness matrix can be written as 

 
1

nel

i
i

α
=

=  e
d iK k  (2) 

where dK  is the stiffness matrix of the damaged system, and e
ik  presents the ith  

elemental stiffness matrix in the global form. The parameter iα  ranges between 0 and 

1. 0iα =  represents the complete damaged status. Base idea of damages identification 

in a structure is equal to identify the values of the damage parameter vector { }α . 
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2.2 Objective Function in Frequency Domain 

It is known that the changes of stiffness will lead to changes of the structural proper-
ties, such as vibration frequencies and mode shapes. For damage detection our task is 
to minimize the difference between the measured data and the calculated one. 

Taking account of mode shape data and natural frequency data, the objective func-
tion used for damage detection can be defined as 

 2 2 2

1 1

(1 )
NF NM

R
j j j j

j j

f w w MACω φω
= =

= Δ + −   (3) 

where jwω  is a weight factor of the output error of the jth natural frequency, jωΔ  is 

the differences of natural frequencies. jwφ  is a weight factor of the output error of the 

jth mode shape. And R
jMAC  represents the jth MAC  obtained by incomplete mode 

shape data. NF  and NM  are the numbers of frequencies and mode shapes.  

3 Brief of BMO Algorithm 

Bird mating optimizer (BMO) imitates the behavior of bird species metaphorically to 
breed broods with superior genes for designing optimum searching techniques. The 
concept of BMO is very easy and it can be effectively employed in damage detection. 

In BMO algorithm, a feasible solution of the problem is called bird. There are male 
and female birds in the society. And the females represent the better solutions. Based 
on the way by which birds breed broods, females are categorized into two groups (i.e. 
polyandrous and promiscuous) while males are categorized into three groups (i.e. 
monogamous, polygynous and promiscuous).  

Monogamous birds are those males that tend to mate with one female. If a mono-
gamous bird Mx


 wants to mate with his interesting female ix


. The resultant brood 

is produced by 

 

M M
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 (4) 

where bx


 is the resultant brood, w  is a time-varying weight factor from 1.9 to 0.1., 

r
  is a vector with elements distributed randomly in [0,1], mcf  is a mutation con-

trol factor varying, which is set to be 0.9 in this paper. u  and l  are the upper and 
lower bounds of the elements, respectively.  
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Polygynous birds are those males that have a tendency to couple with multiple fe-
males. The resultant brood is given as follows: 

 

Pg Pg
1

1

2

. ( )

( ) ( ) ( ( ) ( ));

in

b ij
j

b

x x w r x x

if r mcf

x c l c r u c l c

end

=

= + × × −

>
= + × −

    

 (5) 

where in  is the number of interesting birds, and ijx
  represents the jth elite female. 

ir  is the random number between 0 and 1. 

Polyandrous birds are those females seek for superior males to breed a brood with 
high-quality genes. And the resultant brood is produced as same as Eq. (5). 

Parthenogenesis birds represent the best solutions. Each parthenogenetic bird pro-
duces a brood by the following process 
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b

for i n

if r mcf

x i x i r r x i

else

x i x i

end

end

μ

=
>

= + × − ×

=
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where pmcf  is the parthenogenetic mutation control factor, which changes from  

0.15 to 0.8 and μ  is the step size taken as 39.0 10−× . 

Promiscuous birds are produced by a chaotic sequence. At the initial generation, 
each promiscuous bird is produced using Eq. (7), where z is chaos variable and its 
initial value is a random number between 0 and 1. And the way by which they breed 
is same as that of monogamous birds, i.e. Eq. (4). 
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end
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 (7) 

Fig. 1 shows the flowchart of BMO algorithm using in this paper. More details can be 
consulted in Askarzadeh’s studies [10,11]. In BMO, the percentage of each type is 
determined manually. 
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Fig. 1. Flow chart of the detection process 

4 Numerical Simulation 

4.1 A Simply Supported Beam 

A simply supported beam shown in Fig. 2 is used as the numerical example to illustrate 
the effectiveness of the proposed method. The geometrical parameters of the simply 
supported beam are Length 1.2mL = , Cross section 0.05 m 0.006 mb h× = × , Young’s 

modulus 70GPaE = , and Density 3 32.70 10 kg/mρ = × .  

 

Fig. 2. A simply supported beam 

It is assumed two damages located at elements 4 and 19 with reduction of 15% and 
20% in each stiffness, i.e. 4 0.15α = , 19 0.20α = , respectively. The first four natural 

frequencies and modes shapes are used in the identification. The society scale is 100. 
And the number of monogamous, polygynous, promiscuous, polyandrous, and par-
thenogenetic birds is respectively set at 50, 30, 10, 5 and 5. The maximum generation 
in this case is 500. 
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damages even under measurement noise. However, false alarms exist and the damage 
extents are not accurate enough under noise. 

In order to find a way to improve the accuracy of identified result under noisy cir-
cumstance, detection results using different number of modal data under measurement 
noise are shown in Fig. 7. The comparison indicates that the accuracy of the identifi-
cation increase as the number of adopted modal data increase. Apparently, the first ten 
frequencies and mode shapes are sufficient under the presupposed noise level in this 
case. 

 

Fig. 5. A 31-bar truss structure 

 

Fig. 6. Identified results of the 31-bar truss structure 

 

Fig. 7. Comparison of identified results obtained from different number of modal data 
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5 Conclusions 

Making use of the frequency and mode shape data, a damage identification method 
based on BMO algorithm is proposed. The effectiveness of the proposed method is 
verified by a simply supported beam and a 31-bar truss structure. The evolution 
processes shows that the proposed procedure can search the solution rapidly. And the 
simulations indicates the proposed method can identify the damage parameters suc-
cessfully even under measurement noise. It can be seen that the accuracy of the detec-
tion can be improved by increasing the adopted modal data.  
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Abstract. Based on firefly algorithm (FA), a structural damage detection 
(SDD) and moving force identification (MFI) method is proposed in this paper. 
The basic principle of FA is introduced, some key parameters, such as light  
intensity, attractiveness, and rules of attraction are defined. The moving forces-
induced responses of damage structures are defined as a function of both dam-
age factors and moving forces. By minimizing the difference between the real 
and calculated responses with given damage factors and moving forces, the 
identified problem is transformed into a constrained optimization problem  
and then it can be hopefully solved by the FA. In order to assess the accuracy 
and the feasibility of the proposed method, a three-span continuous beam sub-
jected to moving forces is taken as an example for numerical simulations. The 
illustrated results show that the method can simultaneously identify the struc-
tural damages and moving forces with a good accuracy and better robustness to 
noise. 

Keywords: Firefly algorithm (FA) · Structural damage detection (SDD) ·  
Moving force identification (MFI) · Structural health monitoring (SHM) 

1 Introduction 

Both structural damage detection (SDD) and moving force identification (MFI) are 
the crucial problems in the field of bridge structural health monitoring. Many scholars 
have paid attention and proposed effective methods on either one of them. Most of the 
proposed methods are established when either structural damage or moving force is 
known. However, in practice, the unknown damages and unknown moving forces are 
usually coexisted, and the studies on coexistent identification of damage and moving 
forces seems not to be so much. Based on the virtual distortion method, Zhang et al. 
[1] have carried out systematic study of identifying both the coexistent unknown 
damages and unknown loads. Naseralavi et al. [2] presented a technique for damage 
detection in structures under unknown periodic excitations using the transient dis-
placement responses. Similar to SDD and MFI, identification of coexistent structural 
damage and moving forces is a typical inverse problem, therefore, it is inevitable to 
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solve the ill-posed problem on them. If the inverse problem is considered as a con-
strained optimization problem, the above problem can be solved to some extent. 

Nature-inspired algorithms are among the most powerful algorithms for optima-
zation [3]. Some of them have been successfully applied to the field of SDD [4-6]. As 
an important member of nature-inspired algorithm, although the firefly algorithm 
(FA) has successfully solved many problems from various areas, such as the applica-
tion in economic dispatch [7], structural optimization [8], software testing [9], MFI 
[10] and so on, unfortunately, the FA has not been applied to the SDD yet. This study 
will introduce the FA into the SDD and MFI field and explore the applicability of FA. 
A FA-based method is proposed for both SDD and MFI, the feasibility and robustness 
of new method are also studied in this paper. 

2 Firefly Algorithm 

Firefly algorithm (FA) is a new swarm intelligence (SI) optimization algorithms  
inspired by nature fireflies flashing behavior. For simplicity in describing the new 
firefly-inspired algorithms, three idealized rules are allowed to use as follow: 1) All 
fireflies are unisex so that one firefly will be attracted to other fireflies regardless of 
their sex; 2) Attractiveness is proportional to their brightness, thus for any two flash-
ing fireflies, the less brighter one will move towards the brighter one. The attractive-
ness is proportional to the brightness and they both decrease as their distance increas-
es; 3) For a specific problem, the brightness of firefly is associated with the objective 
function.  

The light intensity of a firefly will decrease with the increasing distance of viewer. 
In addition, light is also absorption by the media. Therefore, it can be defined as: 

( ) 2

0
γrI r I e−=  (1) 

where 0I  is the original light intensity ( 0r = ) and its value is determined by the 
objective function. γ  is the absorption coefficient for simulating the environmental 
characteristics of the weakening light. Generally, a firefly’s attractiveness is propor-
tional to the light intensity seen by adjacent fireflies, therefore, it can be defined as:  

( ) 2

0
γrβ r β e−=  (2) 

where 0β  is the attractiveness at 0r =  and it can take 0 1β =  for most cases. Be-

cause the differences of light intensity and attractiveness existed, the fireflies will try 
to move themselves to the best position. It means that the lower light intensity one 
will be attracted by the higher one, and this step can be expressed as: 

( ) ( ) ( )( )1 (t) (t) ( 0.5)j j ij i jt t β r α+ = + − + ⋅ −x x x x rand  (3) 
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where ( )1j t +x  is the j-th firefly position after ( )1t +  times generations. α  is a 

step factor and usually taken a constant. rand  is a random number generator un-

iformly distributed in [0, 1]. ijr  is the distance between firefly i and firefly j, and it 

can be defined as the Cartesian distance as: ij i jr = −x x .  

 

 

Fig. 1. A continuous beam subjected to moving forces 

3 FA-Based SDD and MFI 

In practice, the bridge-vehicle system is a very complicated system. Therefore, an 
appropriate simplified model is always assumed for analysis [11]. A continuous beam 

subjected to moving forces ( )1,2, ,iF i n=   is shown in Fig. 1. The beam is re-

garded as the assembly of the BEAM element and the magnitude of each moving 
force is assumed to be a constant during the duration when the moving forces pass 
across the bridge. The structural damage is simulated by element stiffness reduction 
and quantified by the damage factor iμ at i-th element of finite element model as: 

( )1i i iμ= −K K  (4) 

where iK , i
K  are the stiffness matrix of i-th element for the intact and damage 

structures, respectively. Therefore, the motion equation of damage structure subjected 
to moving forces can be expressed as: 

( )1 i i i i
i i

μ F+ + − =  Mx Cx K x D  (5) 

where M , C  are the mass and damping matrix of the structure, respectively. iF  

denotes the i-th moving force. iD  is a transfer matrix corresponding to i-th moving 

force, it can transfer the moving forces to the related nodes. Eq. (5) can be solved by 
Wilson-θ method. For a linear system, the responses of a damage structure subjected 
to moving forces can be expressed as: 

( )j iji
i

f=y H μ  (6) 

where jy  denotes the structure responses measured by sensor j. ( ) ji
H μ  is the 

structure responses of j-th sensor when the structure is only subjected to i-th moving 
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force with an unit load. if  denotes the magnitude of i-th moving force. It can be seen 

from Eq. (6) that the responses of the damage structure can be expressed as a function 
of both damage factors and moving force magnitudes.  

For an optimization problem, the essence of SDD and MFI is to find group of dam-
age factors and moving forces, which can minimize the difference between real and 
calculated responses. Therefore, by minimizing the difference with given damage 
factors and moving forces, the objective function can be expressed as: 

( ) ( ),1
min , ;

: 0 0 1

R C
N

n n i j

i j R
n n

i j

f μ
val f μ

N

subject to f and μ

−
=

> ≤ <


y y

y  (7) 

where R
ny  is the real responses at sensor n. ( ),C

n i jf μy  is the calculated responses at 

sensor n under given moving force if  and damage factor jμ . N  is the number of 

sensors. If the problem is considered as a maximization problem, then Eq. (7) can be 
rewrote as: 

( ) ( ),1
max , 1 ;

: 0 0 1

R C
N

n n i j

i j R
n n

i j

f μ
val f μ

N

subject to f and μ

−
= −

> ≤ <


y y

y  (8) 

Eq. (8) can be solved by the FA method. Actually, the magnitude of moving force if  

is considerably larger than damage factor jμ , therefore, the searching space will be 

very ‘long-narrow’. In order to improve the computational efficiency, a reference 

moving force reff  is introduced into the objective function. The ratio /i i refλ f f=  is 

used as the optimization variable, thus, the objective function can be rewrote as: 

( ) ( ),1
max , 1 ;

: 0 0 1

R C
N

n n i j

i j R
n n

i j

λ μ
val λ μ

N

subject to λ and μ

−
= −

> ≤ <


y y

y  (9) 

Some special aspects should be noted in implementation. 1) The displacement  
responses of structures contain system information mainly in the lower frequency 
bandwidth, while the acceleration responses contain system information in the higher 
frequency bandwidth. It should be noted that the magnitude of moving force does not 
vary with the time, therefore, the responses caused by the moving force are mainly in 
the lower frequency bandwidth. However, the damage factors are more sensitive to 
the higher frequency bandwidth than the lower one. It would be beneficial to use both 
the displacement and acceleration measurements. 2) The locations of damages are 
known before SDD and MFI, therefore, both levels of damage elements and magni-
tudes of moving forces will be identified by the proposed method. 3) The reference 
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moving force reff  should be estimated before SDD and MFI. For simplicity in im-

plementation, one assumption can be used as: the displacement responses are caused 
by one moving force passing across the intact bridge. It means that the responses can 
be expressed as: 

( )0R
reff=y H  (10) 

where Ry  is real responses and ( )0H  is system matrix. The reference moving force 

reff  can be estimated as: 

( )0 R
reff

+= H y  (11) 

Here, ( )0
+

H  is the Moore–Penrose pseudo inverse of ( )0H . Generally, the opti-

mization value iλ  can be taken as: 0 2iλ< ≤ . 

4 Numerical Simulations  

In order to check the correctness and effectiveness of the proposed method, a three-
span continuous beam subjected to moving forces, as shown in Fig. 2(a), is taken an 
example for numerical simulations. The system is represented by a three-span conti-
nuous bridge with the following parameters: 30m 30m 30mL = + + , 

11 21.274916 10 N mEI = × ⋅ , 112,000 kg mρA −= ⋅ . The bridge is equally divided into 

18 elements. The first two damping ratio are both set to be 0.002. Rayleigh damping
α β= +C M K is used, and assuming that ,α β  will not change for the damage struc-

ture. 
 

 

Fig. 2. A three-span continuous beam model 

The real responses of structures can be calculated by the Wilson-θ method. Both 
displacement and acceleration responses at the middle of each span are used. The 
sampling frequency is 500Hz and 0%, 5%, 10% noise level are studied with: 

( )c p c oiseE σ= + × ×y y y N , where cy ， y  are the responses with no noise and noise, 
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respectively. pE  denotes noise level. ( )cσ y  is the standard deviations of cy . oiseN  

is a standard normal distribution noise vector with zero mean value and unit standard 
deviation. Four cases are studied as follows (Fig. 2): 

Case 1: single moving force with single damage. 

6 110%; 35000N; 40 m / s;μ F v= = =  

Case 2: single moving force with two damages. 

6 16 110%; 20%; 35000N; 40 m / s;μ μ F v= = = =  

Case 3: two moving forces with single damage. 

6 1 210%; 15000N; 20000N; 40 m / s; 4 m;sμ F F v l= = = = =  

Case 4: two moving forces with two damages. 

6 16 1 210%; 20%; 15000N; 20000N; 40 m / s; 4m;sμ μ F F v l= = = = = =  

For both SDD and MFI, the FA is used with the parameters: number of fireflies 
10n = , absorption coefficient 1γ = , original attractiveness 0 1β = , step factor 
0.05α = and max generation max 50G = . The initial positions of fireflies are distri-

buted randomly. The final identified result is taken by the mean value of 5-times run-
ning results. 

 

 

Fig. 3. SDD results under (a) Case 1; (b) Case 2; (c) Case 3 and (d) Case 4 

The SDD results are shown in Fig. 3. It can be seen that: 1) Under two single mov-
ing force cases, i.e. Cases 1 and 2, the SDD results are accurate for single damage in 
Fig. 3(a) and two damage cases in Fig. 3(b), respectively. 2) Under two two-moving 
force cases, i.e. Cases 3 and 4, the SDD results from Figs. 3(c) and 3(d) are accurate 
except the white spike in Fig. 3(d), which is corresponding to the 10% noise level 
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under Case 4. This mainly because that the searching space is too large, while  
the swarm size or the generations are not enough to enhance the convergence.  
Further, Fig. 4 shows the results when the swarm size and max generation are  
taken as: 20n = , max 80G = , respectively. It clearly shows that the SDD results are 
accurate. 3) The identified damages will be affected by the noise level.  

 

 

Fig. 4. SDD results under Case 4 with 10% noise level 

The MFI results，as shown in Table 1，show that the forces identified by the pro-
posed method from both the displacement and acceleration are accurate, except under 
Case 3 with noise level 5%. This mainly because that the searching space is too large, 
while the swarm size or the generations are not enough to enhance the convergence. If 
the max generation is set to be 80, the MFI results will be more accurate. The identi-
fied results are shown in Table 1 with bracket. 

Table 1. MFI results under four cases 

Case Noise 
level 

Moving 
forces 

Real rf

(kN) 

Identified if (kN) Error

/ (%)r i rf f f−  

1 0% F1 35 35.01 0.03 
5% F1 35 34.96 0.11 
10% F1 35 35.08 0.23 

2 0% F1 35 34.97 0.09 
5% F1 35 36.01 2.89 
10% F1 35 33.98 2.91 

3 0% F1 15 14.76 1.60 
F2 20 19.98 0.10 

5% F1 15 18.37 (15.06) 22.47 (0.40) 
F2 20 24.89 (20.04) 24.45 (0.20) 

10% F1 15 13.42 10.53 
F2 20 19.38 3.10 

4 0% F1 15 15.71 4.73 
F2 20 20.65 3.25 

5% F1 15 15.76 5.07 
F2 20 19.30 3.50 

10% F1 15 15.24 1.60 
F2 20 19.69 1.55 
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5 Conclusions 

A novel firefly algorithm (FA)-based method is proposed for structural damage detec-
tion (SDD) and moving force identification (MFI) in this paper. The basic principle of 
FA is introduced. The inverse problem on SDD and MFI is transformed into a  
constrained optimization problem and has been solved by the FA. A three-span conti-
nuous beam subjected to moving forces is used to assess the accuracy and the feasibil-
ity of the proposed method. The following conclusions can be made. 1) The FA-based 
method can exactly identify structural damages and magnitudes of moving forces 
when the structural responses are used only. 2) It can enhance the identified accuracy 
by increasing the swarm size and max generation for the case with many optimization 
variables. 3) The proposed method has a strong robustness to noise. 
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Abstract. This paper presents an intelligent economic operation of unit com-
mitment (UC) incorporated with electric vehicles (EV) problem. The model of 
UC with EV is formulated, which includes constraints of power balance, spin-
ning reserve, minimum up-down time, generation limits and EV limits. An im-
proved harmony search, namely NPAHS-M, is proposed for UC problem with 
vehicle-to-grid (V2G) technology. This method contains a new pitch adjustment 
which can enhance the diversity of newly generated harmony and provide a bet-
ter searching guidance. Simulation results show that EVs can reduce the run-
ning cost effectively and NPAHS-M can achieve comparable results compared 
with the methods in literatures. 

Keywords: Unit commitment · Electric vehicles · Vehicle-to-grid · Harmony 
search 

1 Introduction 

Unit Commitment (UC), which is a key step for power system operation, refers to the 
optimization problem of determining the on/off states and real power outputs of ther-
mal units that minimize the operation cost over a time horizon, however, energy crisis 
and environment problems arises at the same time [1]. Therefore, electric vehicle 
(EV), which is economical and eco-friendly, attracts more and more countries to de-
velop it. Vehicle-to-grid (V2G), as an important technology in this field, makes EV 
become a portable distributed power facility to give feedback to grid when needed 
and increases the flexibility for the power gird to better utilize the renewable energy 
sources. Incorporating EV to UC lightens the load of thermal units so that the opera-
tion cost and emission is reduced, however, the introduction of EV also brings more 
constraints such as minimum and maximum number of charging/discharging vehicle 
limit, state of charge and inverter efficiency. This makes the scheduling of UC-EV 
become more complex. If a reasonable scheduling can reduce the cost by little as 
0.5%, millions of dollars can be saved per year for large utilities [2].Therefore, it is 
meaningful to investigate UC incorporated with EV problem.  

In the past few decades, various approaches were proposed to solve unit commit-
ment problems. Unit commitment, as a NP-hard, large scale and complex mixed  
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integer combinatorial optimization problem, is addressed mostly by classic methods 
[3-5] and intelligent evolutionary techniques [6-8]. The nature and biologically  
inspired techniques always provide a better way for reaching the optimal solutions 
than traditional methods. With economic and environmental problems concentrating 
more and more attention, some researches about unit commitment incorporated with 
EV were presented. A model of unit commitment with vehicle-to-gird for minimizing 
total running cost in addition to environmental emissions was formulated in [9]. 
Ahmed et al. [10] presented a cyber-physical energy system containing EVs, renewa-
ble energy and conventional thermal units. In [11], load-leveling model and smart 
grid model for gridable-vehicles were optimized with an improved PSO. Shantanu  
et al. [12] showed a fuzzy-logic-based intelligent operational economic strategy for 
smart grid. In [13], a UC model with integrating EVs as flexible load was designed to 
analyse the effects of EVs on generation side. Ehsan et al. [14] proposed a charging 
and discharging schedule of EVs and a combination of GA and LR was used to solve 
this problem. Although these methods were proposed, some new optimization  
approaches should be explored due to the complexity of the UC-EV problem. 

In this paper, an improved harmony search (HS) with a new pitch adjustment 
called NAPHS-M is proposed for solving UC-EV problem, where it is assumed that 
EVs can be discharged via electric smart grid. UC-EV is a non-convex, non-linear and 
mixed integer optimization problem that has more variables and constraints than UC 
problem. NPAHS-M extends NPAHS [16] to the area of mixed integer programming 
problems. In NPAHS-M, the simplicity of HS is kept and exploration ability is  
improved. Considering the characteristic of UC-EV problem, integer handling me-
chanism is introduced in NPAHS-M. Analysis in two cases and comparisons between 
different algorithms are also presented. 

2 UC-EV Problem Formulation 

2.1 Objective Function 

Unit commitment with electric vehicles is a cost and emission minimization problem 
that determines the on/off state and power outputs of all units and the number of dis-
charging vehicles during each hour of the planning period T while considering a set 
of equality constraints and inequality constraints. The objective function consists of 
fuel costs, start-up costs and emission and it is formulated as follows [9]: 

 , , , 1 , ,
1 1

min [ ( (1 )) ]
T N

c fuel i start i i t e i em i i t
t i

Obj C C S epf E Sλ λ−
= =

= + − +  (1) 

where T  is the number of hours and N  is quantity of units. cλ  and eλ  are weight 

factors between cost and emission. iepf  is unit’s emission plenty factor. ,i tS  

represents the on-off state of thi unit in t  hour. Similar to literature [14], emission is 
not considered in this paper so the value of eλ  is zero and the value of cλ  is one. 



 Unit Commitment with Electric Vehicles 67 

(a) Fuel costs: It is a quadratic function related to the output power of unit at each 
hour. ia , ib  and ic  are the fuel cost coefficients of units. ,i tP  is the output power of 

thi unit in t  hour. 

 2
, , ,( )fuel i i i i t i i tC a b P c P= + +                  (2) 

(b) Start-up costs: Due to the temperature of boiler, hot-start cost and cold-start 
cost should all be considered. So the start-up cost is given as equation (3). m in

,off iT  is 

the minimum shutdown time and ,off iX  is the continuous shutdown time. icshour  is 

the cold-start hour of unit. 

 

min
, , ,

,

, ,

min
, ,

cos

cos
i off i off i off i

start i

i off i off i

off i off i i

h t T X H
C

c t X H

H T cshour

 ≤ ≤= 
>

= +

 (3) 

(c) Emission: iα , iβ  and iγ are emission coefficients of units. 

 2
, , ,( )em i i i i t i i tE P Pα β γ= + +  (4) 

2.2 Constraints 

Main constraints in this paper are power balance, spinning reserves, minimum up-
down time, generation limits and EV limits. Prohibited operating zones and ramp rate 
limits are not considered. Constraints which should be met are given as follows: 

(a) Power balance: At each hour, output power of on-state units with the sum of 
V2G power must satisfy the load demand named as tPD . EVP is the vehicle’s average 

output power and EVN  is the number of discharging vehicles in period t . 

 , , ,
1

N

i t i t EV EV t t
i

P S P N PD
=

+ =                      (5) 

(b) Spinning reserves: To maintain the system reliability, sufficient spinning re-
serves must be satisfied before considering power balance. max

,i tP  is the maximum 

output of unit i  and max
EVP  is the vehicle’s maximum output power. SR  is spinning 

reserves rate and is 10% in this paper [15]. 

 
max max
, , ,

1

*

N

i t i t EV EV t t t
i

t t

P S P N PD PR

PR SR PD
=

+ ≥ +

=

               (6) 

(c) Minimum up-down time: Estimating whether there are enough continuous 
on/off hours before changing an unit’s state is important. 
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, , , 1 ,

(1 ) 1

0

on i on i i t i t

off i off i i t i t

X T S S

X T S S

+

+

 ≥ − =


≥ =
          (7) 

(d) Generation limits: Every unit should generate between its maximum output and 
minimum output, which is represented as equation (8). 

 ,min , ,maxi i t iP P P≤ ≤                        (8) 

(e)  EV limits: Number of discharging electric vehicles has a range and sum of 
them in all hours must satisfy total vehicles as displayed in (9) and (10). 

 ,min , ,maxEV EV t EVN N N≤ ≤                        (9) 

 , ,
1

T

EV t EV total
t

N N
=

=               (10) 

3 NPAHS-M for UC-EV 

Harmony search (HS) originally proposed by Geem et al. imitates the music pitch 
adjustment process employed by musicians [15]. The structure of HS is simple and it 
has fewer control parameters. Although HS shows high performance on many optimi-
zation problems, its applications in mixed integer programming are fewer. Therefore, 
an improved HS is proposed for solving UC-EV problem in this paper. 

NPAHS in [16] is a novel harmony search algorithm with new pitch adjustment 
rule, which is only used to solve continuous problem. In this paper, NPAHS-M is 
proposed to solve mixed integer programming problem based on NPAHS. For integer 
variables, a 0-1 variation mechanism [17] and integer processing are introduced. Con-
tinuous, 0-1 and integer variables are separated when updating. The new pitch  
adjustment rule combines random perturbation and mean value of HM in it, which 
can give better diversity to the new produced harmony and make the search direction 
go for better. NPAHS-M remains the simplicity and easy implementation with respect 
to the conventional HS. Meanwhile, no new parameters are introduced. The computa-
tional steps of the proposed NPAHS-M for UC-EV are as follows: 

• Step 1: Input system data and parameters of algorithm HMS, HMCR, PAR, BW 
and Max iteration. 

• Step 2: Initialize the state of units, output power of units, and number of discharg-
ing vehicles in harmony memory. 

 , * ,

1 0.5
, , ,

0 0.5s i t i t

if rand
HM state S s HMS i N t T

if rand

<
− = = ∈ ∈ ∈ ≥

    (11) 

 , * , ,min ,max ,min ,( * ( ))*s i t i t i i i i tHM power P P rand P P S− = = + −             (12) 

 , , ,min ,max ,min(( ) * )s t EV t EV EV EVHM EV N N round N N rand− = = + −       (13) 
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• Step 3: Adjust the HM EV− , HM state−  and HM power−  in turn to make 

them satisfy the electric vehicles limits, spinning reserves constraints, power bal-
ance constraints. 

• Step 4: Calculate the objective value for HM EV− , HM state−  and HM power−  

and pick out the global optimal solution. 
• Step 5: Execute iteration and update the solution of UC-EV. The detailed process 

is presented as follows: 
 

(1, )

1 *

1 ( * );

(1, ) ( 1, );

(1, ) (1, ) *(2* 1)*( ( _

(:, )) int) ;

1 / (1 );new

new

new new

state j

j N T

rand HMCR

r ceil rand HMS

state j HM state r j

rand PAR

state j state j BW rand mean HM

state j rand

EX e

st

−

=
≤

=
= −

≤
= + −

−

= +

for

if

if

/*new pitch adjustment*/

to

1 0.5
(1, ) ;

0 0.5

(1, ) int;

new

new

EX
ate j

EX

state j rand

≥
=  <

=

/*0-1variation mechanism*/

end if

else

end if

end for

 

Generate newpower  within generation limits according to newstate  and then update 

newpower  by the same way of newstate  while the 0-1 variation mechanism is not 

used. Update newEV  by the same method of newpower . Then adjust newEV , newpower  

and newstate  for satisfying all constraints. Calculate the objective value of  newHM  

and update the harmony memory. 

( ) ( )

;

;

new worst

worst new

obj HM obj HM

HM HM

HM HM

<
=

=

if

else

end if

 

• Step 6: If iteration number is within the max iteration number, return to step 5 for 
continuing.  
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4 Simulation and Discussion 

A standard IEEE 10-unit system with 50000 EVs [14] was simulated on a personal 
computer with Intel Core i5-3470 CPU and 8G RAM. All the codes were compiled on 
MTLAB R2008b. The load demand, spinning reserve rate, characteristics of EV and 
the data of 10-unit system were got from [14]. It was assumed that electric vehicles 
were charged from solar, wind or other renewable energy, so the cost of vehicle to 
grid is ignored in this paper. The control parameters of NPAHS-M are HMS=5, 
HMCR=0.99, PAR=0.01 and BW=0.001, which are same with [16]. The number of 
maximum fitness evaluations FES is 12000 in this paper. All the experiments in this 
paper were executed 10 independent runs for an overall presentation. 
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Fig. 1. Hourly cost comparison between UC with and without V2G 

In this section, Results of unit commitment with and without V2G are all analyzed 
and the consequences of NPAHS-M are compared with other algorithms. Solution of 
10-unit system with V2G is shown in Table 1. Due to the restriction of space, solution 
of 10-unit system without V2G is not listed. As shown in Fig. 1, UC with V2G can 
save considerable cost from an overall perspective especially in peak period. Total 
running cost of UC with V2G is $551,715.4, and UC without V2G’s is $563,977.3. 
Therefore, $12,261.9 is saved one day with the introduction of V2G. It follows that 
electric vehicles share a portion of power outputting and reduce heavily money every 
day.  
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Fig. 2. Convergence curves of different methods in UC with and without V2G 
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Table 2 shows different results of UC with and without V2G obtained by traditional 
and intelligent optimization methods. ‘ - ’ represents that results are not reported in 
the reference. As is shown in Table 2, performance of the proposed NPAHS-M is 
superior to PSO, GA-LR and LR while the FES of NPAHS-M is a little less than oth-
ers’. According to compare the variance of these methods, it can be seen that 
NPAHS-M has a better stability for multiple runs. Basic HS [15] and a Global best 
harmony search (GHS) [18] are also compared and it presents that NPAHS-M can 
produce better results compared with different HS versions. Moreover, NPAHS-M 
also shows better results in dealing with UC without V2G problem. 

Table 1. Best schedule and dispatch of generating units and V2G (Total Cost=$551,715.4) 

T 
(h) 

P1     P2    P3    P4   P5    P6    P7   P8    P9   P10    
(MW) 

No. of 
EVs 

Hourly 
Cost 
 ($) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

455    245    0      0      0      0      0      0      0      0 
455    293    0      0      0      0      0      0      0      0 
455    381    0      0      0      0      0      0      0      0 
455    455    0      0      38    0      0      0      0      0 
455    455    0      0      66    0      0      0      0      0 
455    455    130   0      43     0      0      0      0      0 
455    411    129   130    25    0      0      0      0      0 
455    455    130  130     30    0      0      0      0      0 
455    455    130  130     85    20    0      0      0      0 
455    455    130  130     155  20    25     0      0      0 
455    455    130  130     162  51    25    10      0      0 
455    455    130  130     162  80    25    21      10    0 
455    455    130  130     155  20    25    0       0      0 
455    455    130  130     76   0      25    0      0      0 
455    455    130  130     28    0      0    0      0      0 
455    310    130  130     25    0      0    0      0      0 
455    260    130  129     26    0      0    0      0      0 
455    360    130  110     25    20     0    0      0      0 
440    455    130  130     25    20     0    0      0      0 
455    455    130  130     158   20     25   0      0      0 
455    455    130  130     86    0      25    0      0      0 
455    455    0      0      136   0      25    0     0      0 
455    419    0      0      25    0      0      0     0      0 
455    344    0      0      0      0      0            0      0 

18 
253 

2237 
293 

3802 
2745 

5 
77 

3955 
4785 
5000 
4983 
4666 
4569 
251 
123 
15 
21 
53 

4279 
2932 
4591 
151 
196 

13681.1 
14526.4 
16052.3 
18560.3 
19116.5 
21539.7 
23261.9 
24140.5 
26073.0 
28686.4 
30472.0 
32372.3 
28702.4 
26247.5 
24118.4 
21500.1 
20644.0 
22862.6 
24613.8 
28754.2 
26459.7 
21725.8 
17667.8 
15405.5 

Table 2. Comparison of total cost between proposed method and others 

Total 
cost/$ 

Methods PSO 
[10] 

GA-LR 
[15] 

LR HS GHS NPAHS-
M 

 (with 
EV) 

Best 
Worst 
Ave 

554,509 
559,987 
557,584 

552,427 
553,765 
552,965 

557,920 
560,208 
558,751 

554,852 
556,747 
555,658 

554,254 
555,514 
555,042 

551,715 
552,024 
551,925 

(with-
out 
EV) 

Best 
Worst 
Ave 

563,741 
565,443 
564,743 

- 
- 
564,703 

565,825 
- 
- 

567,797 
569,286 
568,459 

566,723 
567,776 
567,286 

563,977 
564,029 
564,007 
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5 Conclusion 

This paper proposed NPAHS-M to solve unit commitment with vehicle-to-grid prob-
lem. Comparisons between UC with and without V2G show that EVs could bring 
enormous economic benefits for power system operation. By comparing the results of 
different intelligent and traditional methods, NPAHS-M shows the better global 
searching ability and effectiveness in solving this problem. In the future, NPAHS-M 
would be explored to solve more complex real world MILP problems.  
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Abstract. Physarum can form a higher efficient and stronger robust
network in the processing of foraging. The vacant-particle model with
shrinkage (VP-S model), which captures the relationship between the
movement of Physarum and the process of network formation, can con-
struct a network with a good balance between exploration and exploita-
tion. In this paper, the VP-S model is applied to design a transport
network. We compare the performance of the network designed based
on the VP-S model with the real-world transport network in terms of
average path length, network efficiency and topology robustness. Exper-
imental results show that the network designed based on the VP-S model
has better performance than the real-world transport network in all mea-
surements. Our study indicates that the Physarum-inspired model can
provide useful suggestions to the real-world transport network design.

Keywords: Physarum polycephalum · Physarum-inspired model ·
Transport network design · Network analysis

1 Introduction

Physarum polycephalum is a unicellular slime mold with many diploid nuclei. It
has a complex life cycle. The vegetative phase of Physarum is the plasmodium,
which is the most common form in nature. The plasmodium lives in a dark and
moist environment and feeds on the bacteria or fungal spores [1]. The intelligence
of the plasmodium lies that it can form a high efficient, self-adaptive and robust
network connecting distributed food sources without central consciousness [2].
Nakagaki et al. [3] have evaluated the characteristics of networks generated by
the plasmodium based on some measurements. Statistical analyses in response
to several different arrangements of food sources show that networks generated
by the plasmodium have short total length, close connections among any two
food sources and high robustness of accidental disconnection of tubes [4–7].

Inspired by the self-adaptive and self-organization abilities of Physarum,
researchers have proposed lots of effective computing models [8–13]. In par-
ticular, Gunji et al. [14] have proposed a vacant-particle model with shrinkage
c© Springer International Publishing Switzerland 2015
Y. Tan et al. (Eds.): ICSI-CCI 2015, Part I, LNCS 9140, pp. 74–81, 2015.
DOI: 10.1007/978-3-319-20466-6 8
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(shorted as VP-S model) to explore the relationship between the process of net-
work formation and the movement of Physarum for the first time. The VP-S
model evolves by updating the grid state and can be thought of as a generalized
cellular automaton. It focuses on the construction of complex networks with a
good trade-off between exploration and exploitation. In this paper, we utilize the
VP-S model to solve network design problems. We compare the network designed
based on the VP-S model (shorted as VP-S network) with the real-world trans-
port network (shorted as real network) in terms of average path length, network
efficiency and topology robustness.

The rest of this paper is organized as follows. Sect. 2 presents the working
mechanism of the VP-S model. Sect. 3 compares the performance of the VP-S
network with the real network based on some measurements. Sect. 4 summarizes
the main results and contributions.

2 The Vacant-Particle Model with Shrinkage

2.1 Basic Idea of the VP-S Model

The VP-S model uses an agent-based system to simulate the evolution mech-
anism of Physarum (Fig. 1), which consists of three parts: environment, agent
and its behaviors. An environment represents a culture dish with M×N planar
grids. Each grid has four neighbors. The regions corresponding to the positions
of food sources are defined as active zones, which are some grids surrounded by
dotted lines in Fig. 1(a). During the evolving process of the VP-S model, grids
are divided into two groups: internal grids and external grids. An agent has three
behaviors: generation, movement and adaptation. Fig. 1 shows a life-cycle of an
agent in an environment, which can be described as follows.

Fig. 1. The environment of the VP-S model and the life cycle of an agent in the
environment
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Step 1 Generation behavior: An agent is randomly generated from active
zones (Fig. 1(b)) with probability Q (0<Q<1) or it is randomly generated from
external grids that are adjacent to one-grid-width paths with probability 1−Q.
One-grid-width paths are consisted of internal grids whose north-south or east-
west neighbors are external grids. Especially, if an environment doesn’t have
one-grid-width paths, an agent is randomly generated from external grids that
are adjacent to internal girds (Fig. 1(e)) with probability 1−Q.

Step 2 Movement behavior: The agent randomly chooses an internal grid
from its neighbors to reside, which has not been resided by itself (Fig. 1(c) and
Fig. 1(f)). Step 2 is iterated until there is no internal grid for the agent to reside.

Step 3 Adaptation behavior: If the agent has been generated from external
grids, it updates the state of the initial grid from external to internal (Fig. 1(g)).
Otherwise the state of the initial grid is internal, which will not be changed (Fig.
1(d)). If the agent does not stop in active zones, it adapts the state of the current
grid to external (Fig. 1(d)). Otherwise the state of the current grid will not be
changed (Fig. 1(g)). After that, a new agent is randomly generated again.

Adaptation behavior makes sure that the internal grids in active zones
will never lost, which implies that there is highly concentrated protoplasm of
Physarum at food sources [14]. These three steps are repeated until a route
connecting active zones appears (e.g., Fig. 2(h)). The final route is consisted of
internal grids and approximates an efficient network produced by Physarum.

However, it’s hard to measure the characteristics of a VP-S network since it
is composed of grids. In Sect. 2.2, we present how to transfer a disordered VP-S
network to a common network with weights.

2.2 Transformation Strategy

The VP-S network can be regarded as a maze. Taking Fig. 2(a) as an example,
the gray grids, white grids and black grids represent the paths, walls and gates,
respectively. Specially, each gate is composed of four grids.

Two gates x and y in a maze are defined to be adjacent if the Condition 1 is
satisfied. The minimum number of grids x1, x2,..., xn connecting gates x and y
is set as the distance between gates x and y. If the Condition 1 is not satified,
gates x and y are not adjacent.

Condition 1 There is a finite set of grids x1, x2,..., xn connecting gates x
and y, and grids x1 and xn are the neighbors of one of grids that composed
of gates x and y, respectively. Meanwhile, x1 �= x2 �= ... �= xn and xi = xi−1 +
f(xi−1, ki−1), where ki−1 represents whether the four neighbors of xi−1 are paths,
and f(xi−1, ki−1)→ {(0, 1), (0,−1), (1, 0), (−1, 0)}.

In a common network with weights, there is an edge between two nodes if
they are adjacent, and the weight of the edge is the minimum number of grids
connecting these two nodes, as shown in Fig. 2(b).
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(a) (b)

Fig. 2. (a) The VP-S network, which can be seemed as a maze. (b) The common
network with weights based on (a).

3 Empirical Study

3.1 The Experimental Setup

In this section, the VP-S model is used to design the Sichuan transport net-
work. The internal grids of the VP-S model is initialized as a square aggregation
consisting of 53×53 grids. Each grid has the size of 10×10 square-millimeters.
Active zones in the VP-S model are corresponding to cities in the real-world
map. Hence, the positions of active zones in the environment are setup accord-
ing to the geographical locations of cities, i.e., we first get the longitude and
latitude of each city in the real-world from Google Maps. Then, we convert the
longitudes and latitudes to screen coordinates (X,Y ) according to (1) and (2),

X =
(lon−minLon)× w

maxLon−minLon
(1)

Y =
(maxLat− lat)× h

maxLat−minLat
(2)

where lon is a city’s lonitude, and lat is a city’s latitude. minLon, maxLon,
minLat and maxLat are the minimum longitude, the maximum longitude, the
minimum latitude and the maximum latitude among the set, respectively. w is
the width of the screen, and h is the height of the screen, they are both set as 50
in the experiments. Lists from 3 to 6 in Table 1 show the longitudes, latitudes
and screen coordinates (X,Y ) of 17 cities in Sichuan province, respectively.

How many grids that an active zones occupied are set based on the resident
population in the city. We acquire the resident population of each city in Sichuan
province from the website Sichuan Statistics Yearbook1, as shown in the list 7
in Table 1. Let Ai represent the resident population in a city i (i ∈ [0, 16]). The

1 http://www.sc.stats.gov.cn/tjcbw/tjnj/2013/index.htm
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number of girds that occupied by the active zone i (list 8 in Table 1) is calcu-
lated as the round number of Ai/max{A0, ..., A16}×20, where max{A0, ..., A16}
represents the maximum value among the set.

Table 1. The data in the real-world and their corresponding values in the VP-S model

NO. City longitudes latitudes X Y Resident Popula-
tion (2012 year)
(10000 persons)

Grids occupied
by active zones

0 Mianyang 104.6791 31.4675 19 13 464.02 7
1 Guangyuan 105.8434 32.4354 32 0 253.00 4
2 Nanchong 106.1107 30.8378 35 22 630.03 9
3 Bazhong 106.7475 31.8679 42 8 330.79 5
4 Dazhou 107.4680 31.2096 50 17 549.27 8
5 Ya’an 103.0133 29.9805 0 33 152.65 2
6 Luzhou 105.4423 28.8718 27 48 425.00 6
7 Deyang 104.3979 31.1269 16 18 353.13 5
8 Suining 105.5929 30.5328 29 26 326.77 5
9 Guangan 106.6332 30.4560 41 27 321.64 5
10 Meishan 103.8485 30.0754 9 32 296.64 4
11 Ziyang 104.6276 30.1289 18 31 358.85 5
12 Leshan 103.7656 29.5521 8 39 325.44 5
13 Neijiang 105.0584 29.5802 23 39 371.81 5
14 Zigong 104.7784 29.3390 20 42 271.82 4
15 Yibin 104.6434 28.7518 18 50 446.00 6
16 Chengdu 104.0665 30.5723 12 25 1417.78 20

The distance of each path in the real network is measured from Google maps.
Then, a traditional data normalization method is used to unify the dimension.
That is, y(k) = x(k)−min(x(n))

x(k) , where k = 1, 2, ..., n, and min(x(n)) means the
minimum value among the data set that to be normalized. x(k) is the original
data and y(k) is the value of x(k) after being normalized.

3.2 Evaluation Measurements

For a comlete weighted network G = (V,L), let V = {1, 2, ..., n} represent the
set of N nodes, L = {(i, j)|i, j ∈ V, i �= j} represent the set of edges. Then, we
introduce three measurements to evaluate the characteristics of the network G.

(i) Average path length (APL). APL is calculated based on (3). The distance
dij between two nodes i and j in a network is defined as the shortest path length
connecting two nodes.

APL =
1

N(N − 1)

∑

i�=j
dij , (i, j ∈ V ) (3)
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(ii) Network efficiency (NE). NE defines the average proximity between all
nodes in a network, which is defined as (4).

NE =
1

N (N − 1)

∑

i�=j

1
dij

, (i, j ∈ V ) (4)

(iii) Topological robustness (TR). TR is defined as (5):

TR =
∑N

k=1
s(k) (5)

where s(k) is the fraction of nodes in the largest connected subgraph after remov-
ing k nodes. This measure of robustness considers the size of the largest compo-
nent during all possible attacks.

3.3 Experimental Comparison and Analysis

The VP-S model has been run 30 times. In each run, we construct a VP-S
network. What’s more, we have built the VP-S network with probability p. For
example, the VP-S network with probability 0.6 means that edges which occurred
in over 60% of experiments be reserved.

Firstly, Fig. 3(a) plots the average path length (APL) against the network
efficiency (NE). We select 10 VP-S networks for the clear presentation. As shown
in Fig. 3(a), APL of VP-S networks are all shorter than that of the real network,
and NE of VP-S networks are no less than that of the real network. These mean
that VP-S networks will cost less time if traverse each pair of cities than that of
the real network.

Secondly, Fig. 3(b) plots the average path length (APL) against the topolog-
ical robustness (TR) under malicious attacks. To simulate a malicious attack,
we first remove the most connected nodes, and continue selecting and removing
nodes in decreasing order of their connectivity [15]. As shown in Fig. 3(b), APL

(a) (b)

Fig. 3. The performance comparison among the real network, 10 VP-S networks and
the VP-S network with probability 0.6: (a) APL against NE and (b) APL against TR
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and TR of the real network are 1.45 and 3.59, respectively. APL and TR of the
VP-S network with probability 0.6 are 1.19 and 6.41, respectively. That is, the
VP-S model can construct network whose APL is shorter than that of the real
network. In particular, TR of the VP network is more than 1.78 times higher
than that of the real network.

Based on the above experiments, we can conclude that the performance of
the VP-S model network is better than the real network by comparing APL, NE
and TR. The results show that the construction of high performance transport
network based on the VP-S model is a working approach.

4 Conclusion

In this paper, we proposed to use the Physarum-inspired model, i.e., the VP-S
model, for the transport network design. With regard to the disorder of a VP-S
network, we presented how to transfer it to a common network with weights.
The experimental results showed that the network designed based on the VP-
S model has shorter average length, higher efficiency and stronger robustness
than the real network. Our study showed that it might be worth to consider
the Physarum-inspired model for the problem of designing high performance
transport networks.
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Abstract. Many complex self-adaptive phenomena in the nature often give us 
inspirations. Some scholars are inspired from these natural bio-based phenomena 
and proposed many nature-inspired optimization algorithms. When solving some 
complex problems which cannot be solved by the traditional optimization 
algorithms easily, the nature-inspired optimization algorithms have their unique 
advantages. Inspired by the transmission mode of seeds, a novel evolutionary 
algorithm named Bean Optimization Algorithm (BOA) is proposed, which can 
be used to solve complex optimization problems by simulating the adaptive 
phenomenon of plants in the nature. BOA is the combination of nature 
evolutionary tactic and limited random search. It has stable robust behavior on 
explored tests and stands out as a promising alternative to existing optimization 
methods for engineering designs or applications. Through research and study on 
the relevant research results of biostatistics, a novel distribution model of 
population evolution for BOA is built. This model is based on the negative 
binomial distribution. Then a kind of novel BOA algorithm is presented based on 
the distribution models. In order to verify the validity of the Bean Optimization 
Algorithm based on negative binomial distribution model (NBOA), function 
optimization experiments are carried out, which include four typical benchmark 
functions. The results of the experiments are made a comparative analysis with 
that of particle swarm optimization (PSO) and BOA. From the results analysis, 
we can see that the performance of NBOA is better than that of PSO and BOA. 
We also conduct a research on the characters of NBOA. A contrast analysis is 
carried out to verify the research conclusions about the relations between the 
algorithm parameters and its performance. 

Keywords: Swarm intelligence · Bean optimization algorithm · Negative 
binomial distribution · Function optimization 

1 Introduction 

Many complex self-adaptive phenomena in nature often give us inspirations. For 
example, organisms and natural ecosystems can solve many highly complex 
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optimization problems through their own evolutions. Some scholars have been inspired 
from these natural phenomena and many nature-inspired optimization algorithms have 
been proposed to solve complex optimization problems. The idea of the novel 
optimization algorithms which simulated the natural ecosystem mechanisms is different 
from the idea of the classic optimization algorithms. Their appearances greatly enriched 
the optimization technology and brought new life and hope for the solution of complex 
optimization problems which traditional optimization methods are difficult to deal with. 

Nature-inspired optimization algorithm refers to the computing technology and 
algorithms which based on the functions, characteristics and mechanism of the nature 
to solve the optimization problems, such as genetic algorithms (GA) [1], particle 
swarm optimization (PSO) [2], ant colony optimization (ACO) [16], artificial fish-
swarm algorithm [3], free search algorithm [4], human evolution model algorithm [5], 
group search optimization algorithm [6], Bees Algorithm [17] etc. Because the 
structure of nature biology is complex and sophisticated, they have a high degree of 
adaptive capacity and strong collaborative capabilities both in the evolutions and 
behaviors. Through collaboration, they can get the best environment for survival. 
Therefore, most of the nature-inspired algorithms have the character of self-
organizing, self-adaptive and self-learning. When solving some complex problems 
which the traditional optimization algorithm cannot solve easily, the nature-inspired 
optimization algorithms have its own unique advantages. At present, the nature-
inspired optimization algorithms have been used to solve complex optimization 
problems in many fields successfully, for example in task assignment [7], 
classification [8], and gene selection [9]. 

In 2008, inspired by the transmission mode of seeds, a novel evolutionary 
algorithm named Bean Optimization Algorithm (BOA) is proposed [10] [18] [19], 
which can be used to solve complex optimization problems by simulating the adaptive 
phenomenon of plants in nature. BOA is the combination of nature evolutionary tactic 
and limited random search. It has a stable robust behavior on explored tests and stands 
out as a promising alternative to existing optimization methods for engineering 
designs or applications. At present, two algorithm models have been constructed for 
BOA, including piecewise function model and normal distribution model. BOA has 
been successfully applied in solving TSP [11] [12], materials scheduling [13], 
earthquake recovery and reconstruction planning of China [14]. 

2 Overview of the Negative Binomial Distribution 

In probability theory and statistics, the negative binomial distribution is a discrete 
probability distribution of the times of successes in a sequence of Bernoulli trials 
before a specified (non-random) number of failures occur. Now we give the definition 
of negative binomial distribution. Suppose there is a sequence of independent 
Bernoulli trials, each trial having two potential outcomes called “success” and 
“failure”. In each trial the probability of success is p and of failure is (1 − p). We are 
observing this sequence until a predefined number r of successes has occurred. Then 
the random number of successes we have seen, f, will have the negative binomial 
distribution: 
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It is possible to extend the definition of the negative binomial distribution to the 
case of a positive real parameter r. Although it is impossible to visualize a non-integer 
number of failures, we can still formally define the distribution through its probability 
mass function. 

The main characteristics of negative binomial distribution are listed in table 1. 

Table 1. Characteristics of Negative Binomial Distribution 

Parameters 0

0 1

r

p

>
≤ ≤

 

Support {0,1, 2,...k ∈
Mean (1 )

.
p

r
p

−  

Variance 
2

(1 )
.

p
r

p

−  

Negative binomial distribution is relatively common in the biological cluster 
distribution. It can be used to reflect the aggregations (like groups, clusters, or the 
plaque aggregations) of individuals in biological populations. In the nature, due to the 
environmental heterogeneity and biological clustering, the spatial distributions of 
most of the animals (especially insects) and a large proportion of plants are often 
negative binomial distributions [15]. 

3 Population Distribution Model Based on the Negative 
Binomial Distribution 

The main idea of the population distribution model based on the negative binomial 
distribution is that each offspring individual distributes around the father bean 
according to the negative binomial distribution. The number of successes of the 
negative binomial distribution which the distribution pattern of individuals uses is 
according to the value of the current father bean’s position coordinate. The setting of 
corresponding probability of successes changes dynamically according to the domain 
of target problem and the solving progress of the problem. If the number of success 
times is set to be the value of the current father bean’s position coordinate, the 
corresponding probability of successes can be set 0.5. Similarly, the worst result of 
the father bean get, the smaller population size of the corresponding offspring is. 

In the actual design of the model, we combine the negative binomial distribution 
model with the normal distribution model. The threshold of population reproduction 
should be set first. Before reaching the threshold value, bean population will multiply 
in line with the normal distribution. Otherwise, they will multiply in line with the 
negative binomial distribution.  
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The flowchart of parent beans generating offsprings is shown as follows： 

 

Fig. 1. Flowchart of Generating Offsprings 

Because negative binomial distribution is a kind of discrete distribution and the 
problems to be solved by bean optimization algorithm are always continuous, so when 
constructing the population distribution patterns which are based on the negative 
binomial distribution, we need to do the following process: 

Based on nbinrnd (R, P) in MATLAB (nbinrnd (R, P) is a matrix of random 
number generated by negative binomial distribution in line with the parameters R and 
P), parameter R is the times of successes, and P is the probability of success in a 
single experiment. Both R and P may be vectors, matrix, or multidimensional arrays 
with the same dimension. 

To generate each parent bean’s offsprings according with negative binominal 
distribution, it should be processed as follows: 
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                R = abs(FthPop(1,:)*(100/FthPop(1)))；                  (2) 

Parameter P can be set a random float number in [0, 1] theoretically. But it is better 
to set according to the problems to be solved. In the experiments of this paper, p is set 
to be 0.5, because the number of success times is set to the value of the current parent 
bean’s position.  

4 Experiments and Analysis 

4.1 Test Functions 

In order to facilitate experimenting and comparing, we use 4 benchmark test 
functions(Sphere(F1), Schwefel 2.22(F2), Schwefel 2.26(F7), Rastrigin(F8)) to test 
the performance of BOA algorithm based on negative binomial distribution model 
(NBOA). The dimension of every function is 30. 

4.2 Experimental Results 

Each algorithm for each experimental function is carried out for 50 times. The 
number of generations for each experiment is 500. For functions F1, F2, F7, F8, table 
2 lists the optimal solutions, average results and the corresponding standard deviation 
of BOA-6, NBOA-3, NBOA-6, and PSO. 

Table 2. Experimental Results 

Experimental 
Functions 

Algorithms 
Optimal 

Solutions 
Average 
Results 

SD 

F1 

BOA-6 1.29E-14 1.21E-04 4.09E-4 

NBOA-3 3.42E-67 1.04E-14 7.37E-14 
NBOA-6 1.31E-33 3.84E-08 2.18E-07 

PSO 6.97E-03 3.09E-02 1.88E-02 

F2 

BOA-6 2.42E-12 3.45E-04 2.01E-3 

NBOA-3 5.21E-68 8.44E-17 5.97E-16 
NBOA-6 8.28E-21 1.81E-07 9.12E-07 
PSO 5.99E-01 1.99 1.04 

F7 

BOA-6 -9.091E3 -7.94E+03 6.41E2 

NBOA-3 -8.99E3 -7.28E+03 7.04E2 

NBOA-6 -1.11E4 -7.80E+03 7.55E2 

PSO -7.69E03 -6.09E03 6.39E02 

F8 

BOA-6 1.61E-08 1.62E-03 3.07E-3 

NBOA-3 2.11E-07 8.04E-04 1.97E-3 
NBOA-6 1.36E-09 5.27E-04 1.41E-3 
PSO 9.63 2.79E01 8.74 
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4.3 Experiment Analysis 

We will analyze the experimental results from two aspects as follows.  
(1) Optimal Results 

Optimal result is the best result of the algorithm running 50 times. SD in Table 7 is 
standard deviation. It measures the amount of variation from the average result. We 
can see from the above results in table 2 that NBOA-3 obtains the relatively optimal 
values of the two functions: F1 and F2. NBOA6 obtains relatively optimal value of 
two functions: F7 and F8. The performance of BOA-6 is relatively poor. But 
compared with PSO and BOA-3 [15], there is an evident progress.  
(2) Average Results 

Average result is the average result of the algorithm running 50 times. Considering 
the average results of the experiments, NBOA-3 obtains the best average results of the 
two functions: F1, F2. NBOA-6 obtains the best average results of function F8. BOA-
6 obtains the best average results of function F7.  

5 Summaries 

Inspired by the transmission mode of seeds in nature and the adaptive phenomenon of 
plants, a novel evolutionary algorithm named BOA is proposed. This paper firstly 
introduces a discrete distribution named negative binomial distribution. By processing 
the distribution variable, the distribution can be converted into a model of population 
distribution for solving the continuous optimization problems. Combined with the 
normal distribution, a novel kind of BOA named NBOA is proposed. Four benchmark 
function optimization experiments are carried out to test its performance. By 
comparing and analysis of experimental results of four algorithms, we can see that the 
negative binomial distribution model is effective. 

In the research of BOA, three kinds of population distribution models have been 
designed to improve the performance of BOA algorithm. But in the area of 
Biostatistics research, this is only a very small part of numerous natural biological 
population distributions. There are lots of distribution functions which can be used to 
construct population distribution models of BOA, such as Neyman distribution, 
Polya-Eggenberger distribution. In addition, at present, the study of combining with 
other intelligent algorithm is very popular. But it is not carried out in BOA, such as 
individual cross thought based on GA, chaos theory. In the future research, we will 
continue to explore BOA. We also hope researchers to pay more attention to BOA 
and carry out related research work. 
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Abstract. A co-operative method based on five biology-related optimization 
algorithms is used in solving crystal structures from X-ray diffraction data. This 
method does not need essential effort for its adjustment to the problem in hand 
but demonstrates high performance. This algorithm is compared with a 
sequential two-level genetic algorithm, a multi-population parallel genetic 
algorithm and a self-configuring genetic algorithm as well as with two problem 
specific approaches. It is demonstrated on a special crystal structure with 7 atoms 
and 21 degrees of freedom on which the co-operative swarm optimization 
algorithm exhibits comparative reliability but works faster than other used 
algorithms. Perspective directions for improving the approach are discussed. 

Keywords: Co-operation of biologically inspired algorithms · Genetic 
algorithms · Crystal structure solution · X-ray diffraction data 

1 Introduction 

One of the most important tasks in the material sciences is the explanation and 
prediction of the physical and chemical properties of materials that can be done on the 
background of information about crystal structure. This information is accumulated in 
the crystal structure databases (DB) [1, 2] and includes the coordinates of atoms in the 
symmetrically independent part of the crystal cell and some additional parameters. 
The structure of polycrystalline materials is studied using different methods of X-Ray 
powder diffraction [3]. Structural investigation includes the definition of an 
approximate model of the atomic crystal structure and its optimization. The initial 
data are the chemical formula, unit cell parameters, space group symmetry and the X-
Ray powder diffraction pattern of the material. Typically, the optimization of the 
crystal structure model is performed using the method of Rietveld [4], which consists 
in the full-profile fitting of the calculated diffraction pattern to an experimental one 
using a nonlinear least squares method. The main problem here is the finding of a 
crystal structure as an appropriate model.  
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Today, in order to achieve this objective, global optimization methods are used as an 
effective and useful tool. With computing power increasing, the number of structures 
solved by these methods is rising [5]. The main options are variations of a simulated 
annealing method [6]. Their disadvantage is the sequential approach, based on a large 
number (~ 107-108) of structural configuration evaluations that allows the efficient full-
profile structure refinement with the Rietveld method at the final stage only. Methods of 
the crystal structure model search based on genetic algorithms [7] immediately generate a 
lot of trial structural models (population) and carry out its evolution, but the Rietveld 
refinement is also used only at the final stage. The disadvantage of global optimization 
methods, including GA, is the stagnation of the convergence process in the local minima. 
An additional problem is the complexity of the adjustment of genetic algorithm operators 
that requires significant computational effort or a high level human expert in 
computational intelligence. Besides, genetic algorithms work with a binary representation 
that makes necessary the binarization of real-valued problem variables (atom 
coordinates) and bring additional troubles. In this study we use the self-configuring 
genetic algorithm [8] that allows us to avoid the problem of genetic algorithm adjustment 
and compare its performance with a co-operative bionic algorithm [9] that works with 
real variables and is also a self-tuning tool. 

The remainder of this paper is organized as follows. Section 2 explains the ideas of 
conventional genetic algorithms used for solving crystal structures. Further, in Section 
3, a self-configuring genetic algorithm is described that does not need human effort to 
be adjusted to the problem in hand. In Section 4, the meta-heuristic of the co-
operative method based on swarm optimization algorithms is described. Results of 
numerical experiments and a comparison of algorithm performance is given in 
Section 5. Finally, the conclusion follows in Section 6. 

2 Conventional Genetic Algorithms for Crystal Structure 
Solution 

In [10], a two-level hybrid evolutionary method for determining the crystal structure 
has been described. The algorithm was based on the iterative use of two genetic 
algorithms (GA): one for the structural model search and another one for their local 
full profile optimization with the Derivative Difference Minimization method - DDM 
[11] (analogue of the Rietveld method). Level 1 and level 2 GAs are executed 
cyclically until a convergence of the R-factor to the expected value (the R-factor is a 
relative difference between the calculated and experimental X-ray diffraction 
profiles). The resultant structure can be finally refined by the DDM. The two-level 
GA evolutionary mechanism provides the accelerated convergence described in [12]. 
However, this algorithm (2LGA) was not reliable enough and worked very slowly.  

The work [13] was dedicated to the multi-population parallel evolutionary 
modelling of atomic crystal structures based on a two-level GA (MPGA) with the 
organization of the evolution of different populations performed on the different units 
of the computing cluster with the following exchange of the best structural models. 
Populations of trial structures are evolving on the computational units P1 - Pn (where 
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n>4) during several cycles of the 1st level GA and the 2nd level GA. Then, the trial 
structures with a low R-factor value from these units are transmitted and accumulated 
at the main unit Pmain. Further, these best structures from Pmain are selectively 
transmitted to those Pk units, which have the GA convergence slowed down, in an 
amount inversely proportional to the rate of convergence. The application of MPGA 
needed significant time and effort for the choice of appropriate settings and tuning 
parameters. This work involved human experts in crystallography as well as in 
evolutionary computations [13]. 

3 Self-configuring Genetic Algorithm 

For the aim of genetic algorithm self-configuration in [8] the dynamic adaptation on 
the level of population with centralized control techniques was applied to the operator 
probabilistic rates. Setting variants, e.g. types of selection, crossover, population 
control and level of mutation (medium, low, high) were used to avoid real parameter 
precise tuning. Each of these has its own probability distribution. During the 
initialization phase all probabilities are equal and they will be changed according to a 
special rule through the execution of the algorithm. No probability could be less than 
a predetermined minimum balance.  

When the algorithm has to create the next offspring from the current population, it 
firstly must configure settings, i.e. form the list of operators with the use of 
probability operator distributions. Then the algorithm selects parents with the chosen 
selection operator, produces an offspring with the chosen crossover operator, mutates 
this offspring with the chosen mutation probability and puts it into an intermediate 
population. When the intermediate population is complete, the fitness evaluation is 
executed and the operator rates (probabilities to be chosen) are updated according to 
the performance of the operator. Then the next parents’ population is formed with the 
chosen survival selection operator. The algorithm stops after a given number of 
generations or if a termination criterion (e.g., the given error minimum) is met. 

As was reported in [8], this algorithm (SelfCGA) exhibits a high level performance 
without the necessity of its adjustment by a human expert and can be used in black-
box like problems, i.e. directly without incorporating any problem-specific 
knowledge. The applicability of the algorithm to complicated real-world problems 
was later demonstrated [14]. 

4 Co-operation of Biology Related Algorithms 

The meta-heuristic of Co-Operation of Biology Related Algorithms (COBRA) was 
developed in [9] on the base of five well-known optimization methods such as 
Particle Swarm Optimization Algorithm (PSO) [15], Wolf Pack Search Algorithm 
(WPS) [16], the Firefly Algorithm (FFA) [17], the Cuckoo Search Algorithm (CSA) 
[18] and the Bat Algorithm (BA) [19]. These algorithms are biology related 
optimization approaches originally developed for continuous variable space. They 
mimic the collective behaviour of the corresponding animal groups which allows the 
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global optima of real-valued functions to be found. However, these algorithms are 
very similar in their ideology and behaviour. This brings end users to the inability to 
decide in advance which of the above-listed algorithms is the best or which algorithm 
should be used for solving any given optimization problem [9]. The idea of a 
developed meta-heuristic was the use of the cooperation of these algorithms instead of 
any attempts to understand which one is the best for the current problem in hand. 

The proposed approach consists in generating five populations (one population for 
each algorithm) which are then executed in parallel cooperating with each other. The 
proposed algorithm is a self-tuning meta-heuristic that allows the user to avoid an 
arbitral (i.e., badly justified) choice of the population size for each algorithm. The 
number of individuals in the population of each algorithm can increase or decrease 
depending on whether the fitness value is increased or decreased. If the fitness value 
was not improved during a given number of generations, then the size of all 
populations increases. And vice versa, if the fitness value was constantly improved, 
then the size of all populations decreases. Besides, if the average fitness of some 
population is better than the average fitness of all other populations then this 
population “grows” by adding a number of randomly generated individuals. The 
corresponding number of individuals are then removed from another population by 
rejecting an equal number of the worst members of the population. 

The result of this kind of competition allows the biggest resource (population size) 
to be presented to the most appropriate (in the current generation) algorithm. This 
property can be very useful in the case of a hard optimization problem when, as is 
known, there is no single best algorithm on all stages of the optimization process 
execution. 

Another important driving force of the meta-heuristic is the migration operator that 
creates a cooperation environment for component algorithms. All populations 
communicate with each other: they exchange individuals in such a way that a part of 
the worst individuals of each population is replaced by the best individuals of other 
populations. It brings up to date information on the best achievements to all 
component algorithms and prevents their preliminary convergence to its own local 
optimum which improves the group performance of all algorithms. 

The performance of the proposed algorithm was evaluated on the set of benchmark 
problems from the CEC’2013 competition [9]. This set of benchmark functions 
included 28 unconstrained real-parameter optimization problems. The validation of 
COBRA was carried out for functions with 10, 30 and 50 variables. The experiments 
showed that COBRA works successfully and is reliable on this benchmark. The 
results also showed that COBRA outperforms its component algorithms when the 
dimension grows and more complicated problems are solved. It means that COBRA 
can be used instead of any component algorithm.  

The applicability of the algorithm to complicated real-world problems was also 
demonstrated [20]. 
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5 Modelling Crystal Structure from X-Ray Diffraction Data 
with Adaptive Search Algorithms 

We demonstrate the applicability and compare the performance of the described 
adaptive search algorithm to the solution of crystal structures with the example of 
orthorombic Ba2CrO4 with 7 independent atoms in the general positions. This choice 
could be explained as follows. This structure is not so easy to solve as it has 21 
degrees of freedom of atomic coordinates, the cell parameters are a=7.67, b=5.89, 
c=10.39 angstroms and the cell angles are α=90, β=90, γ=90 degrees. However, it is 
also not so complicated and can be solved within a reasonable time, which is 
important for our approach as we use randomized search algorithms and must apply 
multiple runs for statistical evaluations of the algorithms performance. Additionally, 
this structure was solved many times by other techniques, the results of which can 
serve us as reference points for better evaluation.  

First of all we fulfil the solving of the crystal structure by means of the latest 
available versions of specialized software FOX [21] and DASH [22]. This software is 
specially designed for the problems being solved and incorporates human experts’ 
knowledge that gives the possibility, in particular, to evaluate very quickly the current 
model. This is not the case for direct search algorithms operating with a problem in 
black-box mode.  

The comparison of results is fulfilled with three criteria. One criterion is the 
algorithm reliability which is the proportion of successful runs when the right solution 
has been found. Another criterion is the average number of structure models 
generated by the algorithm before the right structure was found. The last criterion is 
the average amount of computing time needed to find the solution. Here we should 
say that MPGA should be considered separately as it is executed on a computing 
cluster with a number of used computing units unknown in advance that was between 
4 and 8. One should realize that the average time here has not the same meaning as in 
other cases. All parameters of algorithms were adjusted in order to have reliability not 
less than 50 %. The results averaged after 20 runs are given in Table 1 below. 
Statistical significance was evaluated with the t-test.  

Table 1. Summary of results for Ba2CrO4 

Index\Tool FOX DASH 2LGA MPGA SelfCGA COBRA 
Reliability 0.80 0.50 0.70 1.00 0.80 0.80 

Number of structures  106 107 39000 30000 75000 29500 
Average time (min) 14 5 30 1.5 1.6 1.15 

 
As one can see, the simulations show that the cooperation of bionic algorithms is 

the fastest tool with a high enough reliability. A reliability higher then COBRA was 
demonstrated only by MPGA which uses much more computational resource. One 
should mention as well that both SelfCGA and COBRA outperform both kinds of 
specialized software. This could be explained through the relatively simple crystal 
structure used for evaluation. At the same time one can see that specialized software 
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Figure 2 shows that COBRA works faster, constantly improves the fitness and 
finds solution much earlier. At the same time, it does not support the individuals’ 
variation that can explain the fast convergence but also could be a problem in case of 
more complex structures to be solved. This question should attract developers’ 
attention in further investigations. 

Nevertheless, results of numerical experiments allow us to conclude that the most 
perspective algorithm here is COBRA which works fast, does not require so many 
models for estimation and does not need any human expert level knowledge in 
computational intelligence for its adjustment. COBRA is also a very suitable 
approach for parallelization on cluster computing systems. 

6 Conclusions 

The stochastic genetic algorithm provides an ab initio search of the atomic crystal 
structure of chemical compounds from powder diffraction patterns. It can be easily 
automated and does not require high skills in the field of structural analysis. This 
makes possible the performing of structural studies by investigators who have 
synthesized new chemical compounds. The structure search reliability depends on the 
complexity of the crystal structure, i.e. on the number of degrees of freedom of the 
atomic coordinates.  

In this work, it is suggested to use the co-operative method based on swarm 
optimization algorithms. It resolves usual troubles of binary string based GA as the 
suggested algorithm works with strings of real numbers and uses self-adjustment to 
the given problem. The usefulness of the suggested approach is demonstrated on the 
special problem of the solution of Ba2CrO4 crystal structure that contains 21 real 
variables within an unconstrained optimization task. The co-operative method 
demonstrates high reliability and speed and outperforms alternative approaches. 
Additional observation gives a hint for the further development of the approach that 
should be directed to a hybridization of the suggested optimization techniques with 
the way of structure model estimation used in specialized software as it could give a 
higher speed of problem solving.  

Acknowledgements. The study was fulfilled with the financial support of the Ministry of 
Science and Education of the Russian Federation within the state assignment 2014/71 to the 
Siberian Federal University, project 3098. 
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Abstract. When particle swarm optimization (PSO) solves multimodal
problems, the loss of swarm diversity may bring about the premature con-
vergence. This paper analyses the reasons leading to the loss of swarm
diversity by computing and analyzing of the probabilistic characteristics
of the learning factors in PSO. It also provides the relationship between
the loss of swarm diversity and the probabilistic distribution and depen-
dence of learning parameters. Experimental results show that the swarm
diversity analysis is reasonable and the proposed strategies for maintain-
ing swarm diversity are effective. The conclusions of the swarm diversity
of PSO can be used to design PSO algorithm and improve its effective-
ness. It is also helpful for understanding the working mechanism of PSO
theoretically.

Keywords: Particle swarm optimization · Premature convergence ·
Swarm diversity

1 Introduction

Particle swarm optimization (PSO) algorithm is originally proposed by Kennedy
and Eberhart [1] in 1995 as a member of the wide category of swarm intelligence
methods for solving global optimization problems. PSO algorithm performs well
on many optimization problems [2]. However, when solving complex multimodal
tasks, PSO may easily get trapped in premature convergence. As particles share
information in PSO, a single gbest spreading among them usually leads to par-
ticle clustering which results in swarm diversity declining quickly in the search
prophase [3].

Maintaining swarm diversity can decrease the possibility of PSO getting into
the premature convergence. Therefore, many schemes have been proposed to
keep the swarm diversity during the evolution. Ratnaweera [4] developed PSO
with linearly time-varying acceleration coefficients to adjust the local and global
search ability. He also introduced mutation operation to increase the swarm
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diversity. Mutation operation is helpful in increasing the swarm diversity and is
often used to improve PSO variants [5]. Besides the mutation operation, other
auxiliary operations are also introduced, such as selection [6], crossover [7], per-
turbation [8], and collision operator [9]. Zhan [10] proposed an elitist learning
strategy. Jie [3] developed a knowledge-based cooperative particle swarm opti-
mization by multi-swarm to maintain the diversity and a knowledge billboard
to control the search process. With the aim to improve the performance in mul-
timodal problems, Liang [11] presented a comprehensive learning strategy to
preserve the diversity.

Though empirical results show that the auxiliary operations and the design
of topological structures are effective for preserving swarm diversity, these tech-
niques increase the complexity of PSO framework. This paper analyzes reasons
leading to the loss of swarm diversity from the view of information processing. By
the way of computing and analyzing the probabilistic characteristics of learning
factors in information processing mechanism, we obtain relationships between
the loss of swarm diversity and two characteristics of the learning parameters
which are the probabilistic distribution and dependence. In order to verify the
swarm diversity analysis of PSO, two experiments are designed in which several
learning strategies without additional operation are proposed to keep swarm
diversity. The experimental results show that the strategies proposed in this
paper are effective. The conclusions of the swarm diversity on PSO can be used
to design and improve PSO algorithm.

The rest of this paper is organized as follows. The original PSO is introduced
in Section 2. The swarm diversity analysis of PSO is described in Section 3.
Section 4 presents experimental design, results and discussions. Conclusions are
given in Section 5.

2 The Original PSO

In PSO, each particle has a position and a velocity in a variable space. Assuming
a D-dimensional search space and a swarm consisting of N particles, the current
position Xi and the velocity Vi of the i -th particle are D-dimensional vectors, i.e.
Xi = (xi1, xi2, ..., xiD) and Vi = (vi1, vi2, ..., viD) . Pbi = (Pbi1, P bi2, ..., P biD) is
the best previous position yielding the best fitness value for the i -th particle and
Gb = (Gb1, Gb2, ..., GbD) is the best position discovered by the whole population.
Each particle updates its velocity and position with the following equations.

Vid(t+1) = wVid(t)+c1r1,id(t)(Pbid(t)−Xid(t))+c2r2,id(t)(Gbd(t)−Xid(t)) (1)

Xid(t+ 1) = Xid(t) + Vid(t+ 1) (2)

Where w is an inertia weight; c1 and c2 are acceleration coefficients reflecting
the weighting of stochastic acceleration terms that pull each particle toward pbest
and gbest, respectively. Random factors r1 and r2 are independent and uniformly
distributed random numbers in [0, 1].
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3 The Swarm Diversity Analysis of PSO

Swarm diversity can reflect the exploration ability of particles and higher swarm
diversity can decrease the possibility of PSO suffering from premature conver-
gence. In order to improve the exploration ability of the particles of the original
PSO, it is necessary to analyze the reasons leading to the loss of swarm diver-
sity. From the view of information-processing of the particles, this paper analyzes
reasons leading to the loss of swarm diversity.

3.1 Transformation of Updating Equation

As particle i is chosen arbitrarily, the result can be applied to all the other
particles. Since it appears from Eq. (1) and Eq. (2) that each dimension is
updated independently, we can reduce the algorithm description into the one-
dimensional case without loss of generality. By omitting the notations for the
particle and its dimension, update equations (3) and (4) can be stated as follows:

V (t+ 1) = wV (t) + c1r1(t)(Pb(t)−X(t)) + c2r2(t)(Gb(t)−X(t)) (3)

X(t+ 1) = X(t) + V (t+ 1) (4)

By substituting Eq. (3) into Eq. (4), the following relation is obtained:

X(t+ 1) = X(t) + c1r1(Pb(t)−X(t)) + c2r2(Gb(t)−X(t)) + wV (t) (5)

In order to analyze conveniently, we need to transform the velocity updating
equation. According to Eq. (5), the following equation can be obtained.

X(t+ 1) = X(t) + wV (t) + (c1 + c2) ∗
[

c1r1
(c1 + c2)

+
c2r2

(c1 + c2)

]

∗
[

c1r1Pb(t)
(c1r1 + c2r2)

+
c2r2Gb(t)

(c1r1 + c2r2)
−X(t)

] (6)

Let k = c1/(c1 + c2). By substituting k into Eq. (6), the following equation
is obtained:

X(t+ 1) = X(t) + wV (t) + (c1 + c2) ∗ [kr1 + (1− k)r2]

∗
[

kr1Pb(t)
(kr1 + (1− k)r2) +

(1− k)r2Gb(t)
(kr1 + (1− k)r2) −X(t)

]
(7)

Let Y = kr1 +(1−k)r2, Z = kr1/(kr1 +(1−k)r2), then from eq.(7), we gets

X(t+ 1) = X(t) + wV (t) + (c1 + c2)Y [ZPb(t) + (1− Z)Gb(t)−X(t)] (8)

where Y and Z are functions with respect to random factors r1,r2 and undeter-
mined parameter k. Y and Z are correlative random variables in [0, 1]. Given
Pb, Gb and X in Eq.(8) and Y and Z traverse an interval value of [0, 1], the
second part of Eq. (8) can be viewed as a 2-dimension search space. For the
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convenience of elaboration, this search space is called one-step search space. The
distribution of searching points in this space dependents on the probabilistic
characteristics of Z and Y. Z is the weighting coefficient for the synthetic of
pbest and gbest, its value can reflect the differences of exploitation for pbest and
gbest. The learning attitude of the particle drifts toward pbest when the value of
Z approaching 1 and it drifts toward gbest when the value of Z approaching 0.
The value of Y can influences the size of the one-step searching space.

3.2 Computation and Analysis of the Probabilistic Characteristics
of Learning Factors

We calculate the probability density of Z (fZ(z)) and joint density of Z and Y
(f(y, z)) under general situations that c1=c2 (i.e. k=0.5)

fZ(z) =

⎧
⎨

⎩

1/(2(1− z)2), 0 ≤ z < 0.5
1/(2z2), 0.5 ≤ z ≤ 1

0, other
(9)

f(y, z) =

{
4y, 0 ≤ y ≤ 1, max(0, 1− 1

2y
) ≤ z ≤ min(1, 1

2y
)

0, other
(10)

From Eq. (9) and Eq. (10), we can calculate fY |Z(y|z) the conditional prob-
ability density of Y given Z

fY |Z(y|z) =

{
8y(1− z)2, 0 ≤ z < 1

2
, 0 ≤ y < 1

2(1−z)

8yz2, 1
2
≤ z < 1, 0 ≤ y < 1

2z

(11)

Eq. (9) shows that f(z) is a unimodal function and is symmetrical at z equals
to 0.5. The function f(z) obtains its maximum value at this point. In Eq. (11),
f(y|z) shows that the range of Y depends on the value of Z. Moreover, f(y|z) is
symmetric at z=0.5. When z=0.5, the value of Y falls into [0, 1] and it decreases
gradually with the changing of the value of Z. When Z equals to 0 or 1, the value
of Y falls into [0, 0.5].

The probability characteristics of the learning parameters Z and Y can be
used to analyze the change of swarm diversity. There are two reasons that may
lead to the loss of population diversity. On one hand, each particle tends to learn
from gbest with the probability that P (0 < z < 0.25) = 1/6 in every iteration.
When z ∈[0, 0.25) the maximum range of Y is restricted to [0, 2/3] and when
z=0 the range of Y decreases to [0, 0.5].

On the other hand, the probability of the random variable z lies in the range
of [0.5-δ, 0.5+δ] (δ is a small value) is equal to 0.182, where δ=0.05. When z=0.5,
the value of Y should fall into its maximum range. But the probability that z
lies in the range of [0.5-δ, 0.5+δ] (δ=0.05) is equal to 0.182, which means that
the probability that Y cannot fall into its maximum range is about 0.818 and
then the one-step search space of a particle is constrained.
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4 Experimental Design and Simulation Results

4.1 Experimental Design

In order to verify the analysis of swarm diversity of PSO, two kinds of experi-
ments are designed. In these experiments, particles update their velocity accord-
ing to Eq.(6) in which the learning parameters adopt different strategies. The
purpose of the first kind is to test the effect of the probability distribution of
Z on swarm diversity. Two learning strategies are introduced, named strategy 1
and strategy 2.

Strategy 1: z ∼ U(0.4, 0.6), and y ∼ fY |Z(y|z),where z subjects to the
uniform distribution on [0.4, 0.6] and y follows the conditional density fY |Z(y|z)
according to eq. (11) in which z and y are correlated.

Strategy 2: z ∼ U(0.4, 0.6), and y=0.5*y1,(y1 ∼ fY |Z(y|z)), where learning
strategy 2 is similar to strategy 1 and the value range of y is compressed. The
second kind is to test the effect of the value range of Y on swarm diversity. Two
learning strategies are designed, named strategy 3 and strategy 4.

Strategy 3: z ∼ fZ(z), and y ∼ fY |Z(y|z = 0.5), where z follows the density
function of eq. (9)and y subjects to the conditional density fY |Z(y|z) given z=0.5
in which z and y are independent.

Strategy 4: z ∼ fZ(z), and y ∼ U(0, 1). Where z follows the density function
according to eq. (9) and y is subject to the uniform distribution on [0, 1] in which
z and y are independent.

4.2 Measurement of Swarm Diversity

We measure the swarm diversity according to the average distance around the
swarm center. A small value indicates swarm convergence around the swarm
center while a large value indicates particles dispersion from the center. The
measure of the swarm diversity (Div) is taken as the equation in [12]:

Div(S(t)) =
1
Ns

Ns∑

i=1

√√
√
√

Dx∑

j=1

(xij − xj(t))
2

(12)

where S is the swarm, Ns = |S| is the size of the swarm, Dx is the dimensionality
of the problem, xij is the j -th value of the i -th particle and xj(t) is the average

of the j -th dimension over all particles, i.e. xj(t) = (
Ns∑

i=1

xij(t))/Ns .

4.3 Experiment Settings

We test four benchmark functions to illustrate the variation of swarm diversity in
PSO algorithms with different learning strategies during the search process.The
properties and the formulas of these functions are presented below.We set the
parameters as follows: inertia weights equals to 0.7298 and c1=c2 = 1.49618; 20
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particles are used in all the experiments; the reported results are averages over
30 simulations; all functions are tested on 30 dimensions. All the test functions
are minimized.

Sphere function f1(x) =
D∑

i=1

x2
i , x ∈ [−100, 100]

Griewanks function f3(x) =
D∑

i=1

x2
i

4000 −
D∏

i=1

cos( xi√
i
) + 1, x ∈ [−600, 600]

Rastrigins function f4(x) =
D∑

i=1

(x2
i − 10 cos(2πxi) + 10), x ∈ [−5.12, 5.12]

Schwefels function f6(x) = 418.9829×D −
D∑

i=1

xi sin(|xi|0.5), x ∈ [−500, 500]

4.4 Experimental Results

Experiment 1 The evolutionary trends of the swarm diversity indicator in
PSO with learning strategy 1 and 2 for the four functions are shown in Figure 1.

As we can see from Figure 1, the swarm diversity indicator of the original
PSO dropped faster than the PSO with learning strategy 1 and strategy 2 in
all the four functions, which means that the value of z in the interval [0.4, 0.6]
is beneficial for keeping swarm diversity. This simulation results show that the
value range of z has effect on swarm diversity. In addition, from Figure 1 (a), (b),
and (c), the swarm diversity indicator of PSO with learning strategy 1 dropped

Fig. 1. The variation of swarm diversity with time in experiment 1 (a) Sphere
function. (b) Griewank function (c) Rastigrin function (d) Schwefel function
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Fig. 2. The variation of swarm diversity with time in experiment 2 (a) Sphere
function. (b) Griewank function (c) Rastigrin function (d) Schwefel function

slower than the PSO with learning strategy 2. In learning strategy 1, the value
range of y is form 0 to 1, while the value range of y is form 0 to 0.5 in learning
strategy 2. Simulation results show that under same probability distribution of
z, the size of value range of y has effect on swarm diversity and the bigger value
range of y is helpful for keeping swarm diversity.

Experiment 2 For four functions, the evolutionary trends of the swarm diver-
sity indicator in PSO with learning strategy 3 and 4 are show in Figure 2.

In the learning strategy 3 and 4, z and y are independent, and z follows the
density function of original PSO and the value range of y is form 0 to 1. In the
original PSO, the value rang of y is dependent on the value of z. As can be seen
from Figure 2, original PSO drops fast in swarm diversity indicator, and the two
PSO algorithms with learning strategy 3 and 4 keep higher swarm diversity. This
simulation results show that the value range of y has effect on swarm diversity.
The swarm diversity indicator in PSO with learning strategy 3 is slightly higher
than that of PSO with learning strategy 4, which means the uniform density
distribution of y is helpful for maintaining swarm diversity.

5 Conclusion

This paper analyzes the reasons leading to the loss of swarm diversity by the
way of the probabilistic characteristics of learning factors in PSO. It provides
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relationship between the loss of swarm diversity and two characteristics of the
learning parameters which are the probabilistic distribution and dependence.
Several learning strategies without additional operations are proposed to keep
swarm diversity. Experimental results show that the proposed strategies are
effective. The higher swarm diversity does not mean the high performance of
optimization. Our further work is to improve PSO algorithms on complex mul-
timodal problems by using the conclusions of the swarm diversity analysis.

Acknowledgments. This work was supported by National Natural Science Foun-
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Research for Anhui Colleges of China (KJ2012Z031, KJ2012Z024).
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Abstract. In order to solve the premature convergence of BBPSO, this
paper proposes a self-learning BBPSO (SLBBPSO) to improve the explo-
ration ability of BBPSO. First, the expectation of Gaussian distribu-
tion in the updating equation is controlled by an adaptive factor, which
makes particles emphasize on the exploration in earlier stage and the con-
vergence in later stage. Second, SLBBPSO adopts a novel mutation to
the personal best position (Pbest) and the global best position (Gbest),
which helps the algorithm jump out of the local optimum. Finally, when
particles are in the stagnant status, the variance of Gaussian distribu-
tion is assigned an adaptive value. Simulations show that SLBBPSO has
excellent optimization ability in the classical benchmark functions.

Keywords: BBPSO · Mutation · Premature convergence

1 Introduction

Bare-bones particle swarms optimization (BBPSO) was first proposed by
Kennedy in 2003 [1]. In BBPSO, the item of speed is removed and Gaussian
sampling with the information of personal and global optimal position is used
to update particles position. Pan proved that BBPSO can be mathematically
deduced from the standardized PSO [11]. Compared with traditional PSO [2],
BBPSO is simpler because it does not involve some parameters, including inertia
weight, acceleration factor, velocity threshold and so on. Because of its simplic-
ity and efficiency, BBPSO is applied to some application areas such as image
feature selection [3] and gene selection and classification [4].

Although BBPSO has showed its potential to solve practical problems but
there exists the premature convergence. In order to improve search performance,
Krohling and Mendel proposed a jump strategy for BBPSO to prevent the pre-
mature convergence in 2009 [5]; Blackwell and Masjid presented another jump
strategy [6]; Orman and Haibo adopted the mutation and crossover operations
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of differential algorithm to enhance BBPSO [7]; Zhang proposed an adaptive
BBPSO which is based on cloud model in 2011 [8]. Meanwhile, Zhang developed
a disturbance to keep swarm diversity in each dimension of each particle [9].

In order to maintain the relative balance between swarm diversity and con-
vergence speed, this paper proposes a self-learning BBPSO (SLBBPSO). In
SLBBPSO, the expectation of Gaussian distribution is not the arithmetic mean
of the personal best position (Pbest) and the global best position (Gbest), but
is the weighted average of Pbest and Gbest in which an adaptive factor is used
to harmonize exploration and exploitation. In order to jump out of the local
optima, the mutation operation is introduced to Pbest and Gbest. If the posi-
tion of a particle is the position of Gbest, and then this particle is in the stagnant
status in the next iteration as the variance of the Gaussian sampling is zero. In
order to solve this problem, the variance of Gaussian sampling of this particle is
assigned an adaptive value.

The structure of the remaining part of this paper is as follows: the second
section briefly introduces the bare-bones particle swarms optimization (BBPSO).
The self-learning bare-bones particle swarms optimization (SLBBPSO) presents
in the third section. The fourth section focuses on the specific performance of
SLBBPSO by contrast with other improved algorithms in BBPSO. Finally, the
conclusion is given in the fifth section.

2 Bare-Bones PSO

Bare-bones particle swarms optimization (BBPSO) does not consider the item
of speed, but use the information of Pbest and Gbest to update the position of
the particles. The specific formula is as follows:

Xi,j(t+ 1) = N (μ, δ)
μ = (Pbesti,j(t) +Gbesti,j(t))/2
δ = |(Pbesti,j(t)−Gbesti,j(t)|

(1)

where the particles position subjects to a Gaussian distribution in which the
mean is μ = (Pbesti,j(t) + Gbesti,j(t))/2 and the standard deviation is δ =
|(Pbesti,j(t)−Gbesti,j(t)| .

Furthermore, Kennedy proposed a alternative BBPSO, named exploiting
bare-bones PSO (BBPSO-E) [10]. The formula 1 is replaced by following for-
mula 2:

Xi,j(t+ 1) =
{

N(μ, δ) rand < 0.5
Pbesti,j(t) otherwise

μ = (Pbesti,j(t) +Gbesti,j(t))/2
δ = |(Pbesti,j(t)−Gbesti,j(t)|

(2)

where the each dimension of particle changes to corresponding Pbest with 50%
chance.
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3 Self-learning Bare-Bones PSO

According to formula 1 and 2, if the Pbest of the particle is equal to Gbest,
and then the particle should be in the stagnant status due to the variance of
Gaussian distribution is zero. As the fast convergence of BBPSO, the swarm is
more likely to be trapped into premature convergence. To solve this problem,
SLBBPSO develops three strategies.

First, the expectation of Gaussian distribution is an adaptive value rather
than the mean value ofGbest and Pbest, so algorithm enhances the global search-
ing ability in the earlier stage and ensures the timely convergence in the later
stage; Moreover, it will give particle an adaptive standard deviation to allow the
particle continue to search when the particles Pbest is the same as the Gbest.

Taking the position updating equations of particle i as an example, new
updated equation is as follows:

Xi,j(t+ 1) =
{

N(μ, δ) rand < 0.5
Pbesti,j(t) otherwise

μ = l ∗ Pbesti,j(t) + (1− l) ∗Gbesti,j(t)
δ =

{
R |Pbesti,j(t)−Gbesti,j(t)| = 0

|Pbesti,j(t)−Gbesti,j(t)| otherwise

(3)

Pbesti,j(t) is the personal optimal position of particle i in j-th dimension at
t-th iteration. Gbesti,j(t) is the global optimal position of particle i in j-th
dimension at t-th iteration. l linearly decreases from 1 to 0 with the evolution
iterations increasing, the variable l ensures particles’ early exploration and later
convergence, this is what we hope. The equation is as follows:

l = 1− iter/iterMax (4)

R is an adaptive factor, the equation is as follows:

R = Rmax−(Rmax−Rmin) ∗ iter/iterMax (5)

where iter is the current number of particles iterations. iterMax is the maximum
number of iterations allowed. Rmax, Rmin are default parameters, the Rmax is
set to 1 and the Rmin is set to 0.1 in this paper according to the reference [12].
Variance will linearly decrease from Rmax to Rmin with evolution generations
increasing when the Pbest is the same as the Gbest.

The positions updating of particles are dependent on the information ofGbest
and Pbest. Hence, the mutation operation is employed to Gbest and Pbest with
a certain probability, which can help the swarm jump out of local optimum
effectively.

Taking particle i as an example, the mutation operation to Pbest is as follows:

Pbest
′
i,j =

{
Pbesti,j + sgn(r1) ∗ r ∗ (Xi,j −Xi,j) rand < Ppb

Pbesti,j(t) otherwise
(6)
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where r is a random number generated by a normal distribution whose mean is
0 and variance is R; r1 is a random number generated by a uniform distribution
whose range is [-1, 1]. The sgn() is sign function. Xi,j and Xi,j are the upper
and lower bounds of the search space in j-th dimension. The mutation operation
to Gbest is as follows:

Gbest
′
i,j =

{
Gbesti,j + sgn(r1) ∗ r ∗ (Xi,j −Xi,j) rand < Pgb

Gbesti,j(t) otherwise
(7)

where Ppb and Pgb are the mutational probabilities of Pbest and Gbest respec-
tively.

When the mutation value is better than before, SLBBPSO accept the new
value, otherwise it still retain the old value.

The concrete steps of SLBBPSO are as follows:
Step1: Set up main parameters: popSize (number of swarms), dimSize

(dimension of search space), threshold, Ppb (the personal optimal mutating
probability), Pgb (the global optimal mutating probability) and so on;

Step2: Initialize swarms: Set up the initial position for each particle, in the
initial time, set personal optimal position Pbest as the particle current position,
and set the global optimal position Gbest as the current position optimum Pbest;

Step3: Update the position of particles according to the formula 3;
Step4: Mutate swarms according to the algorithm in the formula 5, 6;
Step5: If the number reaches the maximum of evolution iterations, progress

will jump to the Step6, otherwise it will jump to the Step3;
Step6: Output the searched optimum solution.

4 Simulation Experiments

In order to test the performance, SLBBPSO is compared with 6 BBPSO-based
algorithms. These algorithms are listed as follows:

– BBEXP: alternative BBPSO proposed by Kennedy (2003) [1];
– ABPSO: an adaptive bare-bones particle swarm optimization algorithm

(Zhang et al.2014) [8];
– BBDE: the bare-bones differential evolution (Mahamed, Omran, Andries,

Salman, Ayed 2009) [7];
– BBPSO-MC: BBPSO with mutation and crossover (Haibo, Kennedy, Ran-

gaiah et al.2011) [10];
– BBPSO-GJ: BBPSO with Gaussian jump (Krohling et al.2009) [6];
– BBPSO-CJ: BBPSO with Cauchy jump (Krohling et al.2009) [6].

These selected algorithms are implemented to 10 benchmark functions.
Table 1 shows the specific details of these functions.

For the 10 functions, this paper sets 50000 iterations and 30 running times;
The size of swarm is 20; Assuming that the optimal position of a problem is
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Table 1. Name, dimension, global optimum, range, optimal and accuracy of the
test functions

Functions Name Dimension Range Optimal Accuracy

f1 Sphere 30 [-100,100] 0 0

f2 Rosenbrock 30 [-30,30] 0 0

f3 Quadric 30 [-1.28,1.28] 0 0

f4 Quadric with noise 30 [-1.28,1.28] 0 0

f5 Ackley 30 [-32,32] 0 0

f6 Griewank 30 [-600,600] 0 0

f7 Schewfel problem 2.26 30 [-500,500] -12569.5 0

f8 Shifted Ackley 30 [-32,32] -140 0

f9 Expanded Extended Griewank’s plus Rosenbrock’s Function (F8F2) 30 [-5,5] -130 0

f10 Shifted Rotated Ackley’s Function with Global Optimum on Bounds 30 [-5,5] -140 0
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Table 2. Experimental result

Algorithms AC Std NFE SR(%) AC Std NFE SR(%)

Functions f1 f2
ABPSO 5.40E-21 5.28E-21 NaN 0 3.25E+01 3.49E+01 NaN 0
BBDE 3.54E+02 2.38E+02 NaN 0 4.47E+05 4.17E+05 NaN 0

BBEXP 0.00E+00 0.00E+00 2.49E+04 100 1.40E+00 2.25E+00 NaN 0
BBPSO-GJ 4.94E-324 0.00E+00 NaN 0 1.05E-04 1.19E-04 NaN 0
BBPSO-CJ 1.98E-323 0.00E+00 NaN 0 6.28E-04 1.04E-03 NaN 0
BBPSO-MC 0.00E+00 0.00E+00 2.30E+04 100 8.68E-04 1.33E-03 NaN 0
SLBBPSO 0.00E+00 0.00E+00 3.14E+04 100 2.76E+00 4.49E+00 NaN 0
Functions f3 f4
ABPSO 5.45E-03 2.59E-04 NaN 0 5.95E-03 6.76E-04 NaN 0
BBDE 5.10E-01 1.81E-01 NaN 0 6.08E-02 4.90E-02 NaN 0

BBEXP 6.95E-32 7.47E-32 NaN 0 8.41E-04 1.96E-04 NaN 0
BBPSO-GJ 8.67E-49 1.45E-48 NaN 0 2.07E-02 3.04E-02 NaN 0
BBPSO-CJ 5.88E-48 7.99E-48 NaN 0 4.02E-03 3.94E-03 NaN 0
BBPSO-MC 8.62E-33 1.11E-32 NaN 0 6.94E-03 1.08E-02 NaN 0
SLBBPSO 8.08E-30 4.58E-30 NaN 0 9.04E-04 4.53E-04 NaN 0
Functions f5 f6
ABPSO 3.70E-11 2.76E-11 NaN 0 3.94E-02 3.72E-02 NaN 0
BBDE 3.98E+00 5.30E-01 NaN 0 1.27E+00 2.72E-01 NaN 0

BBEXP 7.11E-15 0.00E+00 NaN 0 7.40E-17 1.28E-16 1.58E+03 66.67
BBPSO-GJ 2.45E+00 1.37E+00 NaN 0 2.19E-02 3.80E-02 NaN 0
BBPSO-CJ 2.61E-14 3.28E-14 NaN 0 7.75E-02 1.11E-01 NaN 0
BBPSO-MC 3.20E-14 6.15E-15 NaN 0 7.38E-03 1.28E-02 1.42E+03 33.33
SLBBPSO 7.11E-15 0.00E+00 NaN 0 0.00E+00 0.00E+00 4.56E+03 100
Functions f7 f8
ABPSO 1.82E-12 0.00E+00 NaN 0 1.03E-10 8.59E-11 NaN 0
BBDE 1.08E+04 3.45E+01 NaN 0 9.89E+00 3.35E+00 NaN 0

BBEXP 4.87E+02 2.68E+02 NaN 0 5.68E-14 0.00E+00 NaN 0
BBPSO-GJ 3.12E+03 8.00E+02 NaN 0 6.71E-01 1.16E+00 NaN 0
BBPSO-CJ 3.40E+03 7.21E+02 NaN 0 5.49E-01 9.50E-01 NaN 0
BBPSO-MC 1.20E+03 5.73E+02 NaN 0 2.18E-13 1.64E-14 NaN 0
SLBBPSO 0.00E+00 0.00E+00 1.42E+04 100 5.68E-14 0.00E+00 NaN 0
Functions f9 f10
ABPSO 3.00E+00 7.58E-01 NaN 0 2.09E+01 3.13E-02 NaN 0
BBDE 5.27E+01 6.66E+01 NaN 0 2.09E+01 1.11E-02 NaN 0

BBEXP 2.11E+00 1.17E+00 NaN 0 2.09E+01 4.53E-02 NaN 0
BBPSO-GJ 5.65E+00 4.05E+00 NaN 0 2.09E+01 5.51E-02 NaN 0
BBPSO-CJ 3.28E+00 8.37E-01 NaN 0 2.09E+01 6.50E-02 NaN 0
BBPSO-MC 1.53E+00 1.18E-01 NaN 0 2.08E+01 1.34E-01 NaN 0
SLBBPSO 1.94E+00 2.41E-01 NaN 0 2.09E+01 3.39E-02 NaN 0

Xopt, the best position of swarm is Gbesti,j(t) at time t in j-th dimension, then
the accuracy (AC) can be calculated as follows:

AC = f(Gbesti,j)− f(Xopt) (8)

the standard deviation is STD, the mean of NFE is the average number of
function evaluations required to find the global optima are considered, the SR
is successful ratio. The Ppb is set to 0.3 and the Pgb is set to 0.7 in SLBBPSO.
The results of the experiments are shown in Table 2.
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From Table 2, we can know that SLBBPSO is able to find the optimal solution
search space in less iterations for simple unimodal function f1, only BBPSO-MC
is better than it; For the more complex functions f2 and f3, the improved BBPSOs
(BBPSO-CJ, BBPSO-GJ, BBPSO-MC) performs better than SLBBPSO. But
for the unimodal function f4, SLBBPSO still has strong competitiveness. Thus
SLBBPSO is more excellent in classic unimodal function than others.

For multimodal function f5 and f8, BBEXP and SLBBPSO obtain the better
value than other algorithms. For the f6 and f7, only SLBBPSO can find the
global best solution with the 100% successful ratio and less iterations. For f9
and f10, SLBBPSO also can find the promising solution. Overall, SLBBPSO is
competitive in multimodal functions.

5 Conclusion

This paper proposes a self-learning BBPSO (SLBBPSO) which adopts three
strategies in order to solve the problem of premature convergence. First, the
expectation of Gaussian distribution is controlled by an adaptive factor, so algo-
rithm enhances the global searching ability in the earlier stage and ensures the
timely convergence in the later stage; Then it will give particle an adaptive stan-
dard deviation to allow the particle continue to search when the particles Pbest
is the same as the Gbest; Finally, the Pbest and Gbest mutate at a certain prob-
ability, and the novel mutation operation makes the swarm jump out of local
optimum effectively. The experimental results of 10 benchmark functions show
that SLBBPSO has strong competitiveness compared with other BBPSO-based
algorithms.
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Abstract. Population Diversity in Particle Swarm Optimization (DPSO) algo-
rithm can effectively balance the "exploration" and "exploitation" ability of the 
PSO optimization algorithm and improve the optimization accuracy and stabili-
ty of standard PSO algorithm. However, the accuracy of DPSO for solving the 
multi peak function will be obviously decreased. To solve the problem, we in-
troduce the linearly decreasing inertia weight strategy and the adaptively chang-
ing inertia weight strategy to dynamically change inertia weight of the DPSO 
algorithms and propose two kinds of the improved DPSO algorithms: linearly 
decreasing inertia weight of DPSO (Linearly-Weight- Diversity-PSO, 
LWDPSO) and adaptively changing inertia weight of DPSO (Adaptively-
Weight-Diversity-PSO, AWDPSO). Three representative benchmark test func-
tions are used to test and compare proposed methods, which are LWDPSO and 
AWDPSO, with state-of-the-art approaches. Experimental results show that 
proposed methods can provide the higher optimization accuracy and much fast-
er convergence speed. 

Keywords: Particle swarm optimization · Population diversity · Dynamically 
change · Inertia weight 

1 Introduction 

Particle Swarm Optimization (PSO) is proposed by Eberhart and Kennedy in 1995 
[1], it is a stochastic and population based global optimization algorithm for simulat-
ing such social behavior of groups as bird flocking. It has been widely used to solve a 
large number of non-linear, non-differentiable and complex multi-peak function op-
timization problems due to its better computational efficiency and ability to quickly 
converge to a reasonably good solution [2]. And it has also been widely used in the 
fields of science and engineering, such as neural network training [3], economic dis-
patch [4], pattern recognition [5], structure design [6], electromagnetic field [7] and so 
on. Compared with other stochastic optimization algorithms, PSO algorithm has a 
higher convergence speed in the earlier search phase and is easy to fall into local op-
timum in the later search phase, especially for solving complex non-linear problems. 
To improve the performance of PSO, many improved PSO algorithms have been pro-
posed. Generally, these improved algorithms could be classified into two categories as 
follows:  
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1) Parameters-based algorithms. Most of the parameters-based improved PSO algo-
rithm focuses on the change of the inertia weight [8, 9, 10, 11, 12, 13], the learn-
ing factors [14] and the size of the population [15, 16]. These improvements are 
efficient to improve the accuracy and convergence speed of the standard PSO. 

2) Diversity-based algorithms. Two representative diversity-based improved PSO 
algorithms are quantum-behaved PSO (QPSO) algorithm proposed by Sun [17] 
and DPSO proposed by Shi [18, 19, 20]. These improved algorithms focus on en-
hancing the diversity of the population and find the optimal solution efficiently 
through introducing the difference between the current position and the mean ve-
locity of all particles to the particle’s position update formula. However, the  
optimization accuracy and convergence speed of the above algorithms would de-
crease for the non-linear optimization problem. 

In order to further improve the optimization accuracy and convergence speed of 
DPSO, we propose two kinds of improved DPSO algorithm: LWDPSO and 
AWDPSO. Experimental results on the benchmark test functions show the effective-
ness of the proposed LWDPSO and AWDPSO algorithm. 

2 Original DPSO Algorithm 

In PSO system, each particle represents a potential feasible solution to an optimiza-
tion problem. PSO algorithm will find the best solution by adjusting the particle’s 
velocity and position according to the velocity and position update strategy. Different 
PSO algorithms adopt the different particle velocity and/or position update strategy. 
In DPSO algorithm [20], the particle velocity and position update strategy can be 
described as follows: 

( ) ( ) ( )( ) ( )( )
i1 best 2 best1 rand( ) rand( )i i i iV t wV t c P X t c G X t+ = + ⋅ − + ⋅ − .      (1) 

( ) ( ) ( ) ( ) ( )( )31 1 rand( )i i i iX t X t V t c X t V t+ = + + + ⋅ − .         (2) 

Where, ( )iV t  and ( )iX t  represent the current velocity and position of the i-th particle 
respectively; for D-dimensional space, [ ]1 2, , ,i i i idV V V V ′=  , [ ]1 2, , ,i i i idX X X X ′=  ; 

i i1 i 2 idbest best best best, , ,P P P P ′ =   represents the local best position (or local best solution) 
obtained so far by the i-th particle; [ ]best best1 best2 bestn, , ,G G G G ′=  represents the best posi-
tion (or global best solution) obtained so far by all particles ;t represents the current 
iteration number for total n iterations; w, which is originally proposed by Shi and 
Eberhart [10], represents velocity inertia weight coefficient that control the explora-
tion and exploitation; c1 and c2 are nonnegative learning factors which represent the 
influence of social and cognitive components, in other words, the parameters of the c1 

and c2 control particle towards individual best solution and global best solution;
 is a uniformly distributed random number between 0 and 1 and it is used to 

introduce a stochastic element in the search process; c3 represents diversity inertia 
weight. ( )V t represents the mean velocity of all particles at iteration t. 

Compared to standard PSO, DPSO adds diversity control item ”c3” to the position 
update formula of standard PSO shown in formula (2). Then the particle position 

rand( )⋅



 Improved DPSO Algorithm with Dynamically Changing Inertia Weight 117 

relates not only to the particles themselves, but also to the mean velocity of all par-
ticles. The improvement enhances the information interaction between the particles 
and population diversity. 

3 Proposed Improved DPSO Algorithms 

A good optimization algorithm could balance the local and global search abilities. For 
DPSO algorithms, we need a better global search in starting phase to make the opti-
mization algorithm converge to a proper area quickly and then we need a stronger 
local search to find high precision value. The inertia weight w determines the contri-
bution rate of a particle’s previous velocity to its velocity at the current iteration t and 
that control the exploration (global search) and exploitation (local search). At the 
same time many researches indicate that the bigger value of inertia weight w encou-
rages the exploration and smaller value of inertia weight w encourages for the exploi-
tation.  

Therefore we need to set w as a variable value and not constant. A linearly decreas-
ing inertia weight w can efficiently balance local and global search abilities and make 
the optimization algorithms to obtain the higher precision value [10]. Researches also 
indicate that adaptively changing inertia weight w according to the real-time state of 
all particles can improve the convergence speed of the algorithm [11]. So, we intro-
duces linearly decreasing w strategy and adaptively changing w strategy to the DPSO 
algorithm respectively, then propose two kinds of improved DPSO algorithms: Li-
nearly decreasing Inertia weight of DPSO (LWDPSO) and adaptively changing iner-
tia weight of DPSO (AWDPSO). The detail introduction on proposed algorithm is as 
follows: 

3.1 The Principle of Proposed LWDPSO Algorithm 

The main idea of proposed linearly decreasing inertia weight of DPSO (LWDPSO) 
algorithm is to introduce a linearly decreasing strategy to adjust the value of diversity 
inertia weight c3 in the particles position update equation (shown in formula (2) ) and 
velocity inertia weight w in the particles velocity update equation (shown in formula 
(1)) of DPSO. Compared to the original DPSO algorithm, at the premise of diversity 
assurance, LWDPSO algorithm can search the best solution in the global area in the 
earlier search phase to prevent premature convergence effectively. With the increase 
in the number of iterations, the global search gradually turn into refine local search, in 
the later search phase, the particles are concentrated in local search, which can assure 
to find the best solution with larger probability and higher accuracy. So the improved 
DPSO algorithm can balance the global search ability and the local search ability 
effectively. The velocity and position update formula used in LWDPSO algorithm are 
respectively as follow: 

( ) ( ) ( ) ( ) ( )
i1

max
max min min

ma
best 2 b

x
est1 rand( )( ) rand( )( )i i i i

t t
V t V t c P X t c tw Gw Xw
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c cX t X t V t

t
X t V tc

− −
 

+ = + + + ⋅ − 
 

+ .  (4) 

Where, t represents the current iteration number for total tmax iterations; wmax is the 
maximum inertia weight and wmin is minimum inertia weight; It can been seen from 
the first item of the velocity update formula (3) that the value of inertia weight w is 
linearly decreased from an initial value (wmax) to a final value (wmin) . It improves 
global search capability of the DPSO and make DPSO algorithm find the fit area 
quickly. As the value of w gradually reduces, the velocities of the particles slow down 
and DPSO algorithm start refine local search to obtain high precision solution; c3max 
and c3min represent the maximum and diversity inertia weight respectively. It can be 
seen from the third item of the position update formula (4) that the value of diversity 
inertia weight c3 is also linearly decreased from an initial value (c3max) to a final value 
(c3min). Research results in [20] indicate that if c3 is positive, the population diversity 
increases, and the search range is larger than the standard PSO; if c3 is negative, the 
population diversity decreases, and the convergence speed is faster than the standard 
PSO. Therefore, we initialize c3 a positive number, and gradually decrease c3 to a 
negative number. Thus, performance of DPSO will be further improved. Our prelimi-
nary simulation results about the selection of the value of c3 show that the best per-
formance of DPSO will be achieved by linearly decreasing inertia weight c3 from 0.1 
to -0.1. The implementation process of proposed LWDPSO is shown in Table 1.  

Table 1. The implementation process of proposed LWDPSO algorithm 

Step1：Initialization, generate N particles; 

Step2：Calculate the fitness value of each particle, determine the individual optimum 

and the global optimum ; 

Step3：Update the particle velocity according to the formula (3); 

Step4：Update the particle position according to the formula (4);  

Step5：Determine whether the termination condition are met, and if so, outputting the best 

solution, otherwise, back to step2. 

3.2   The Principle of Proposed AWDPSO Algorithm 

The main idea of proposed adaptively changing inertia weight of DPSO (AWDPSO) 
algorithm is  

1) to introduce a linearly decreasing strategy to adjust the value of diversity inertia 
weight c3 of DPSO algorithm in the particles position update equation (shown in 
formula (2) ) 

2) to introduce an adaptively changing inertia weight strategy to adjust the value of 
velocity inertia weight w of DPSO algorithm in the particles velocity update equ-
ation (shown in formula (1)). 

ibestP bestG
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Compared to the original DPSO algorithm, at the premise of diversity assurance, 
AWDPSO algorithm can effectively improve the algorithm convergence speed and 
achieve a relatively optimal accuracy and speed. The velocity and position update 
formula used in AWDPSO algorithm are respectively as follows: 

.  (5) 

. (6) 

.                    (7) 

( ) ( )( )
( ) ( )( )

best

bes

best

best t
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max ,

G t t

t PG

P
s

t
= .                     (8) 

.                       (9) 

Where, e (shown in formula.7) is the evolution speed factor ( ) which represents 
that the current global optimal value ( )bestG t  is always better than or at least equal to the 
previous global optimal value ( )best 1G t − . we is the weight coefficient of the evolution 
speed factor e. s (shown in formula.8) is the aggregation degree factor which depicts 
that the current global optimal value ( )bestG t  always better than the current mean of all 
individual optimal value, ( )bestP t , ws is the weight coefficient of the aggregation factor s. 
Researches indicate that the algorithm would have a good adaptive performance [13]  
if we select the value of we from 0.4 to 0.6 and the value of ws from 0.05 to 0.20. The 
implementation process of proposed AWDPSO is shown in Table 2.  

Table 2. The implementation process of proposed AWDPSO algorithm 

Step1：Initialization, generate N particles; 

Step2：Calculate the fitness value of each particle, determine the individual optimum 

 and the global optimum ; 

Step3：Update the particle velocity according to the formula (5); 

Step4：Update the particle position according to the formula (6);  

Step5：Determine whether the termination condition are met, and if so, outputting the best 

solution, otherwise, back to step2. 

4 Experimental Research 

Three representative benchmark test functions are used to test proposed methods 
(LWDPSO and AWDPSO) with state-of-the-art approaches and the results are com-
pared based on the final accuracy and convergence speed.  
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4.1 Experimental Setup 

Table 3 provides a detailed description of these functions. Among them, Sphere func-
tion is a unimodal quadratic function; Rastrigrin function is a simple multimodal 
function with a large amount of local minimum points; Griewank function is a typical 
non-linear pathological multi-mode function with a wide range of search space and a 
large number of local minimum points. The dimensions D of the three test functions 
are taken as 2, 3, 5 and 10 respectively. For each test function, *x represents the best 
solution to the optimization problem and *( )f x  represents the best value or best 
achievable fitness for that function. All functions have symmetric search spaces. 

Table 3. Benchmark test functions used in the experiments 

Function 
Name 

Function expression Search Space & Global optimal 

Sphere 
  

Rastrigrin 
  

Griewank 
  

In all the experiments carried out in this paper, the number of particles in the swarm N 
is 100 and the maximum number of iteration tmax is 1000.The value of learning factors 
c1,c2 is 2 and the value of we (weight coefficient of the evolution speed factor) and ws 
are 0.5 and 0.1,respectively.  

4.2 Experimental Results and Discussion 

Standard PSO[2] and original DPSO [20] are applied to the above three representative 
benchmark test functions and the results are compared with LWDPSO and AWDPSO 
proposed in this paper. Table 4 ~ Table 6 list the mean , variance and average running 
time (T, unit: s) of the best solutions found by each algorithm in 30 independent runs 
for three test functions in 4 different dimensions . The results indicate that proposed 
LWDPSO and AWDPSO can provide the higher accuracy in all test functions in 4 
different dimensions. 

Convergence curves of different PSO algorithms for test functions can provide 
more insight into their searching behavior. Fig. 1~ fig.3 show the average conver-
gence curve of the best fitness value found by four algorithms on three test functions 
in 30 runs, respectively. For the same function, the average convergence curve of 
different dimensions show a similar varying tendency, so, here we just give the one of 
dimension D=10. It can be seen from the fig. 1~ fig.3 that proposed LWDPSO and 
AWDPSO can provide the much faster convergence speed in all test functions, and 
AWDPSO is much faster than LWDPSO in convergence to the optimum due to the 
adaptive nature of this algorithm. 
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Table 4. The best solutions of four algorithms on Sphere function in 1000 function iteration 

Sphere PSO[3] DPSO[20] LWDPSO(proposed) AWDPSO(proposed) 
 

D=2 
mean 0 0 0 0 
var 0 0 0 0 
T 81.8330 82.4030 83.6310 78.9310 

 
D=3 

mean 0.0217 0.0064 8.1294e-70 3.9177e-110 
var 0.0022 0.0004 1.1998e-137 3.0292e-183 
T 105.9770 112.7070 115.2170 108.1860 

 
D=5 

mean 0.2327 0.1142 3.1326e-53 1.883719e-93 
var 6.8342 5.1533 6.5872e-105 3.1322e-142 
T 163.6530 175.5960 186.9470 169.3020 

 
D=10 

mean 1.1459 0.7881 8.3276e-33 3.3653e-67 
var 6.3427 5.2331 7.3226e-58 3.41755e-94 
T 297.0110 331.9380 337.9110 321.1240 

Table 5. The best solutions of four algorithms on Rastrigin function in 1000 function iteration 

Rastrigin PSO[3] DPSO[20] LWDPSO(proposed) AWDPSO(proposed) 
 

D=2 
mean 0.0013 0.0011 0 0 
var 4.4929e-006 1.5533e-06 0 0 
T 86.3730 89.8340 87.7020 84.8370 

 
D=3 

mean 0.2139 0.2677 0 0 
var 0.0305 0.0601 0 0 
T 117.0390 120.0390 116.2920 115.4870 

 
D=5 

mean 5.7616 5.4461 0 0.0332 
var 1.9117 1.8800 0 0.0330 
T 176.5150 176.2770 176.1460 169.1100 

 
D=10 

mean 37.5536 38.1118 1.4293 2.2221 
var 49.1731 31.7218 1.2113 1.5224 
T 330.2700 329.9310 330.7020 313.7790 

Table 6. The best solutions of four algorithms on Griewank function in 1000 function iteration 

Griewank PSO[3] DPSO[20] LWDPSO(proposed) AWDPSO(proposed) 
 

D=2 
mean 0.0046 0.0036 3.9988e-06 0 
var 1.4126e-005 1.0471e-05 4.7971e-10 0 
T 75.1920 83.4480 83.3310 80.2150 

 
D=3 

mean 0.0454 0.0435 0.0036 0.0023 
var 3.3118e-004 0.0002 1.2310e-05 1.5892e-05 
T 103.1950 114.2090 114.1250 109.0790 

 
D=5 

mean 0.3005 0.2950 0.0155 0.0145 
var 0.0049 0.0052 5.2333e-05 6.8795e-05 
T 166.3530 175.5040 175.3370 172.9830 

 
D=10 

mean 1.1347 1.1551 0.0645 0.0521 
var 0.0050 0.0013 0.0008 0.0003 
T 294.6530 328.5480 329.4310 323.4050 

5 Conclusion 

In order to further improve the optimization accuracy and convergence speed of the 
original DPSO [20] algorithm, two kinds of improved DPSO algorithms are proposed 
in this paper. Experimental results on the three representative benchmark test function 
show that proposed algorithms can provide the higher accuracy and much faster con-
vergence speed. 
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The proposed algorithms in this paper 
mainly focus on the dynamically adjust-
ing the value of velocity inertia weight 
w of DPSO algorithm. In the first ad-
justing strategy, linearly decreasing 
strategy, the updating of the w is only 
associated with to the number of itera-
tions. However, in the second adjusting 
strategy, adaptively changing strategy, 
the updating of the w is not only related 
to the number of iterations, but also 
closely related to the algorithm dynamic 
performance of all particles. Therefore, 
compared to the linearly decreasing 
strategy, adaptively changing strategy 
could further enhance the population 
diversity. Experimental results of the 
section 4 show that AWDPSO outper-
form the LWDPSO, and is in accord with the above theoretical analysis. In the future, 
we will further combine the proposed algorithm with non-rigid point clouds registra-
tion [21] and implement high-precision non-rigid point clouds registration. 
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Abstract. A hybrid particle swarm optimization (PSO) combined with an im-
proved Nelder-Mead algorithm (NMA) is proposed and introduced into the 
field of structural damage detection (SDD). The improved NMA chooses parts 
of subplanes of the n-simplex for optimization, a two-step method uses modal 
strain energy based index (MSEBI) to locate damage firstly, and both of them 
can reduce the computational cost of the basic PSO-Nelder-Mead (PSO-NM). 
An index of solution assurance criteria (SAC) is defined to describe the correla-
tion between the identified and actual damage of structures. Numerical simula-
tions on a 2-storey frame model is adopted to assess the performance of the 
proposed hybrid method. The illustrated results show that the improved PSO-
NM can provide a reliable tool for accurate SDD in both single and multiple 
damage cases. Meanwhile, the improved PSO-NM algorithm has a good ro-
bustness to noises contaminated in mode shapes. 

Keywords: Structural damage detection (SDD) · Particle swarm optimization 
(PSO) · Nelder-Mead algorithm (NMA) · Particle swarm optimization - Nelder-
Mead (PSO-NM) · Global superiority 

1 Introduction 

Structural damage detection (SDD) is one branch of structural health monitoring 
(SHM). Adopting optimization algorithm by converting the SDD problem into a ma-
thematical optimal problem is a hot direction of SDD [1]. The particle swarm optimi-
zation (PSO) is one of the common algorithm used for optimization problem and has 
been proved to be an effective algorithm for SDD [2]. 

In 1995, Kennedy and Eberhart [3] proposed the PSO, a population-based, self-
adaptive searching technique. Recently, the PSO has been applied to civil engineering 
problems and achieved good results. To improve the computational efficiency, reduce 
computational cost and avoid local optimum, scholars try efforts to make it suitable 
for such problems. Vakil Baghmisheh et al. [4] proposed a hybrid PSO-NM algorithm 
for a cantilever beam simulation with two optimized parameters. The experimental 
results of a cantilever beam indicate its capability for detecting small crack location 
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and depth with a small error. Seyedpoor [5] presented a two-step method by using 
modal strain energy based index (MSEBI) to locate the damage and using PSO to 
determine the actual damage extent based on MSEBI results. Two numerical simula-
tion examples of a cantilever beam and a truss have proved that it is a reliable tool to 
accurately identify multiple damages of structures. Begambre and Laier [6] proposed 
a new PSOS-model based damage identification procedure using frequency domain 
data, which makes the convergence of the PSOS independent of the heuristic con-
stants, meanwhile its stability and confidence are also enhanced. Yildiz [7] proposed 
an idea of selection of cutting parameters in machining operations, which reduces cost 
of the products and increases quality at the same time. 

Based on the original PSO-NM, the Nelder-Mead algorithm (NMA) is improved in 
this study for reducing the computational cost. The numerical simulation results indi-
cate that the local optimum can be avoided more efficiently by using the new method. 
By introducing a two-step procedure based on the MSEBI, the damage elements are 
first located, the computational efficiency of the hybrid optimization can be further 
enhanced. Measurement noises of 5% and 10% added to the mode shapes are consi-
dered respectively. Some numerical simulation results of a 2-storey frame model 
shows that the new method has a great accuracy, the efficiency and global superiority 
are enhanced as well. 

2 Theoretical Background 

In this section, the basic theories are presented for the improved PSO-NM method. It 
is composed of three parts. The first one is an overview of the PSO-NM. The second 
one describes an improved processor of PSO-NM. Finally, the modal strain energy 
based index (MSEBI) is introduced, which will be used to provide a result of damage 
location for PSO-NM. 
 
PSO-NM. The PSO-NM is a hybrid intelligent algorithm. For a n-dimensional opti-
mization problem, the optimum solution x* is firstly calculated by PSO, and NMA is 
then used to optimize x* by constructing a n-dimensional simplex around x*, finally 
the optimization result of NMA is deemed as one particle of PSO replacing the worst 
particle of the swarm. 

PSO is a population-based, self-adaptive search technique. The PSO starts with a 
random population (particle) and finds the global best solutions based on the updating 
formula as follows, 

1
1 2( ) ( ) ( ) ( )k k k k

i i Pb i Gb iV V c rand X X c rand X Xω+ = × + × × − + × × −  (1) 

1 1k k k
i i iX X V+ += +  (2) 

where V is velocity, X is particle location, ω is inertia weight, the superscript k means 
the k-th iteration and subscript i means i-th particle. In this study, the strategy of iner-
tia weight reduction [8] shown below is employed, 
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max max min( )
CurCount

LoopCount
ω ω ω ω= − −  (3) 

where ωmax=0.95, ωmin=0.4, c1, c2 are cognitive and social coefficients respectively 
with a value of 2 both. rand( ) is the random number in the range [0, 1]. 

The NMA, introduced by Nelder and Mead in 1965 [9], is a non-derivative search-
ing method for multidimensional unconstrained minimization. According to the 
process of the method, the worst point of n-simplex, with maximum cost values, is 
replaced by a better cost value calculated by four basic conversions (reflection, ex-
pansion, contraction and shrink). Basic conversions of original NMA are performed at 
every subplane of the n-simplex for n-dimensional problems [10]. Because the num-
ber of subplane of n-simplex is proportional to the cubic of n (n>2, the total subplane 
number is 3

nC ), the great number of element of finite element model (FEM) will great-

ly increase the calculation cost on SDD of real structures.  
 
Improved PSO-NM. In order to improve the calculation efficiency of PSO-NM for 
SDD, the PSO-NM procedure is improved as following: 

(1) PSO process: calculating the current best solution; (2) Group: setting vertices of 
every subplane of the n-simplex as a group; (3) Choosing: choosing p subplanes (

3
np C≤ ) for conversions; (4) Conversions: considering only reflection, contraction 

and local shrink; (5) Replacing: replacing the worst particle of PSO with the vertices 
found by NMA. 

For the five steps as shown above, the third and forth step improves the calculation 
efficiency by using p subplanes instead of 3

nC  and reducing the type of conversions. 

The last step is to improve the global superiority of PSO. Supposing that the vertices 
of subplane are a, b and c respectively, which satisfies ( ) ( ) ( )f a f b f c≤ ≤ , the ref-

lection, contraction and local shrink can be formulized as, 

r a b cX X X X= + −  (4) 

( ) / 3c a b cX X X X= + +  (5) 

( )0.618s c a cX X X X= + −  (6) 

 
Modal Strain Energy. A SDD method based on modal strain energy (MSE) change 
before and after damage is presented by Shi et al. [11], and has been certified theoret-
ically. The damage elements of structures can be identified by comparing the MSE 
between different elements because the damage element keeps a high value of MSE. 
So, it can be used to locate the damage efficiently. 

For a linear vibration system without damping, the modal strain energy of e-th ele-
ment in i-th vibration mode of the structure can be expressed as 

( )1
,   1, , ,   1, ,

2
e eT e e
i i imse i nm e ne= = =φ K φ    (7) 
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where ne is the number of elements, nm is the number of mode shapes used for calcu-
lation. 

To indicate the state of the structure, an efficient parameter is defined as follows, 

( )
1

1

1
 ,   1, ,

eT e enm
e i i

ne
eT e ei
i i

e

MSEBI e ne
nm =

=

= =

φ K φ

φ K φ
  (8) 

As the stiffness of damage element is unknown, the undamaged element stiffness is 
used to calculate MSE before and after damage. Therefore, the damage occurrence is 
led to increasing the MSE and consequently the efficient parameter MSEBI. If the 
value of eΔ  defined as in Eq. (9) is much bigger than zero in e-th element compar-

ing to other elements, the e-th element can be deemed as the damage element. 

( ) ( )
( ) ( )max 0, ,   1, ,

d h

e e
e h

e

MSEBI MSEBI
e ne

MSEBI

 −
 Δ = =
  

  (9) 

3 Application in Structural Damage Detection 

3.1 Objective Function 

The objective function of SDD problem can be defined as follows, 

( )( )
=1

( ) 1 ,
nm

t a
i i

i

f x MAC ϕ ϕ= −  (10) 

where ( ) ( ) ( )( )2
, /t a tT a aT a tT t

i i i i i i i iMAC ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ =   , a
iϕ , t

iϕ represent the analytical 

and test mode shapes respectively, x is the vector of damage factor ranged from 0 to 
1. So the SDD problem can be changed into a typical constrained optimization prob-
lems as shown in Eq. (11). It is obviously that the minimum value of objective func-
tion is zero [12] because MAC=1 means the test results fits the analytical results 
completely. 

( )( )
=1

min ( ) 1 ,

   [0,1]  ,  ( 1, )

nmode
t a
i i

i

f x MAC

subject to x i nmode

ϕ ϕ= −

∈ =




 (11) 

3.2 Numerical Simulations 

The numerical simulations model used for SDD is shown in Fig. 1. The finite element 
model of frame is modeled by eighteen 2-dimensional beam elements with equal 
length. The properties of the materials are as follows: Ec=Eb =2.0 × 10e+11 N/m2, Ic = 
0.0000126 m4, Ib = 0.0000236 m4, Ac=0.00298 m2, Ab=0.0032 m2, material density 
dc=8590 kg/m3 and db=7593 kg/m3, where the subscripts c and b represent the column 
and the beam respectively. 
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In the SDD process, the first five analytical mode shapes are used. Four damage 
cases are assumed to occur in the structure respectively. Cases 1 and 2 have a single 
damage that occurred in the 17th element with a loss of stiffness of 20% and 40% 
respectively, and Case 3 has multiple damages that occurred in the 17th and 8th ele-
ments with a loss of stiffness of 20% in both of them while the 20% and 40% stiffness 
loss occur in the 8th and 17th elements respectively for Case 4. The mode shapes 
contaminated with 5% and 10% random noise respectively are considered. The con-
taminated signal is represented as 
 

 

Fig. 1. 2-storey frame model 

 

n a Rϕ ϕ ψε= +  (12) 

where ( )2 / ( ) ( )ij n n
i j

row colψ ϕ ϕ ϕ= × , aϕ and nϕ are the mode shapes matrix 

with no noise and with noise respectively. row(φ) and col(φ) represent the number of 
rows and columns of matrix φn respectively. R is a random matrix and its elements 
obeys the distribution N(0,1). ε is the level of noise. 

Here, the particle population was set to be 20 for each case. An average value will 
be calculated after 10 runs in each case and the subplane selected for NMA is 10. The 
SDD results under four cases are shown in Fig. 2 to Fig. 5 and the relative percentage 
errors are listed in Table 1. It can be seen that the damage coefficients close to the 
true value under four cases, the improved method can successful identify the damage 
even if the heavy damage cases. As the SDD error results listed in Table 1, it can be 
seen that the improved method can provide a good robustness to noise even under 
10% noise although the SDD accuracy is not so high for two damage cases with 
noise. 
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Fig. 2. SDD in Case 1 Fig. 3. SDD in Case 2 

 

Fig. 4. SDD in Case 3 Fig. 5. SDD in Case 4 

Table 1. Relative percentage errors between true and identified damage coefficients  

Element 
Case 1 Case 2 

no noise 5% noise 10% noise no noise 5% noise 10% noise 
17 0.00% 7.13% 1.06% 0.2% 2.12% 0.47% 

Element 
Case 3 Case 4 

no noise 5% noise 10% noise no noise 5% noise 10% noise 
8 0.06% 5.51% 2.63% 0.1% 10.8% 30.09% 
17 0.10% 13.64% 11.89% 0.14% 3.02% 4.10% 

3.3 Global Superiority of the Improved PSO-NM 

In order to compare the performance of PSO-NM with the conventional PSO [8] , 
experiments have been done under the same parameters. The population size is 
20. The maximum iteration number equals to 50. The algorithms have been ex-
ecuted 50 times in Case 4. To describe the correlation of the identified results with 
the actual ones, an index solution assurance criteria (SAC) is defined as follows, 

( )
( ) ( )

2
_ _

_ _ _ _

T

T T

sol i sol a
SAC

sol i sol i sol a sol a

×
=

× × ×
 (13) 

where sol_a and sol_i are a row vector of actual and identified damage coefficients 
respectively. The identified results are accurate if the value of SAC is equal to 1, oth-
erwise, the identified results can be deemed as a local optimum. 
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As shown in Fig. 6, the PSO-NM finds the global minimum 42 times within 50 
calculation times with a successful percentage of 84% and the PSO just succeeds 12 
times with a lower successful percentage of 24%. It can be concluded that the PSO-
NM can greatly avoid the swarm getting into local optimum. 

 

 

Fig. 6. Comparison on global superiority between PSO and PSO-NM 

3.4 Two-Step PSO-NM 

In order to make the algorithm more efficient, a two-step method is adopted here. The 
MSEBI is used for damage localization first, the PSO-NM is then quantifies the dam-
age severity based on the results at the first step as shown in Fig. 7. Relatively higher 
values of MSEBI are found in the damage elements for both single and multiple dam-
age cases in the structure, so it can be found that the damage element is element 17 in 
single damage cases and the damage elements are elements 8 and 17 in multiple dam-
age cases, respectively. 
 

 

Fig. 7. Damage localization based on MSEBI 

In order to study the computational efficiency improvement of two-step PSO-NM, 
some experiments are performed below. The population size is set to be 20 and the 
maximum iteration number is 50. When the fitness value of the best particle is less 
than 10e-8, the iteration is stopped and the times of iteration is recorded. 50 times of 
calculation were executed to identify multiple damages in Case 4. The iteration times 
for one-step and two-step PSO-NM is compared in Fig. 8. The average iteration times 
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for one-step PSO is 46.34 while it is 36.8 for two-step method. The average damages 
of elements 8 and 17 identified by one-step PSO are 0.2029 and 0.3976 respectively, 
while that of two-step PSO-NM are 0.2000 and 0.4000 respectively. Obviously the 
two-step method is more accurate and less computational cost. 

 

 

Fig. 8. Comparison on convergence rate between one-step and two-step methods 

4 Conclusions 

An improved particle swarm optimization - Nelder-Mead (PSO-NM) algorithm is 
proposed for structural damage detection (SDD) by using an improved NMA and a 
two-step method in this study. Based on the numerical simulation results of 2-storey 
rigid frame model with 18 elements, some conclusions can be made as below: (1) The 
proposed method provide a reliable tool for accurate SDD in both single and multiple 
damage cases. (2) The improved PSO-NM algorithm has a good robustness to noises 
contaminated in mode shapes. (3) The improved PSO-NM algorithm is more efficient 
and accurate in comparison with the original PSO-NM. (4) The improved PSO-NM 
can be applied to multi-parameter (more than 2) optimization and can give a good 
SDD. 
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Abstract. The micro-Extended Analog Computer(uEAC) is a novel
hardware implementation of Rubel’s EAC model. In this study, we first
analyse the basic uEAC mathematical model and two uEAC extensions
with minus-feedback and multiplication-feedback, respectively. Then a
fully-connected uEACs array is proposed to enhance the computational
capability, and to get an optimal uEACs array structure for specific prob-
lems, a comprehensive optimization strategy based on Particle Swarm
Optimizer(PSO) is designed. We apply the proposed uEACs array to
Iris pattern classification database, the simulation results verify that all
the uEACs array parameters can be optimized simultaneously, and the
classification accuracy is relatively high.

Keywords: Micro-extended analog computer · Fully-connected
topology · Particle swarm optimizer · Pattern classification

1 Introduction

Analog computers appear much earlier than digital computers and have been
widely used [1–3], for example, the Dumaresq [4] invented in 1902 to relate
variables of the fire control problems to the movement of one’s own ship and
that of a target ship, the FERMIAC [5] invented by Fermi in 1947 to aid in
his studies of neutron transport, and the DeSTIN architecture [6,7] created by
Arel and his colleagues to address the problem of general intelligence. However,
there is not such a general model for analog computers so far as the Turing
machine [8] in the digital computer area, which is a crucial problem that limit
the development of analog computers.

Researchers never stopped proposing various models for analog computers.
Shannon proposed the General Purpose Analog Computer(GPAC) [9] as a math-
ematical model of an analog device, the Differential Analyzer [10], and Rubel
defined the Extended Analog Computer(EAC) [11] as an extension of the GPAC.
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Rubel proved that EAC was able to compute partial differential equations, solve
the inverse of functions and implement spatial continuity, and moreover, Mycka
pointed out that the set of GPAC-computable functions was a proper subset of
EAC-computable functions [12]. Thus we may assert that EAC is more pow-
erful than GPAC. For a long period of time, researchers believe that EAC can
not be physical implemented because it is a conceptual computer and no single
physical, chemical or biological technique is enough to build such a computer.
Fortunately, Mills and his colleagues designed and built an electronic implemen-
tation of Rubel’s EAC model, the micro-Extended Analog Computer (uEAC),
after a decade’s research [13–15]. To make a detailed comparison between Rubel’s
EAC model and the uEAC, Mills introduced a Δ-digraph [16] and he related the
EAC model to uEAC by dividing the “black boxes” of the EAC model into
explicit functions and implicit functions. The up to date prototype of uEAC was
designed at Indiana University in 2005 [16,17], and had been applied to letter
recognition [18,19], exclusive-OR(XOR) problem [20], stock prediction [21], etc.
All the aforementioned researches prove that uEAC is an efficient and powerful
computational model, but additional significant improvements are still needed.
Based on the basic uEAC model, in this study, we propose a fully-connected
uEACs array that lots of uEAC units are integrated, aiming to design an effi-
cient computational model that is able to solve much more complex nonlinear
problems.

The rest of this paper is outlined as follows. Section 2 provides some detailed
analyses of the uEAC mathematical model and its two feedback extensions,
minus-feedback and multiplication-feedback. A fully-connected uEACs array is
proposed in Section 3 to overcome uEAC’s limitation on nonlinear mapping,
moreover, PSO is employed to optimize the uEAC array to get the optimal
array structure for specific problems. In Section 4, we apply the proposed fully-
connected uEACs array to the famous pattern classification database, Iris data
set. A relatively high classification accuracy is obtained and the simulation
results verify that the uEACs array is able to solve nonlinear problems efficiently.
Some conclusions are given in Section 5.

2 The Basic uEAC Model

The basic uEAC hardware mainly contains three computing modules, analog
field computation unit, which complete the main analog computation, digital
interface circuit, which is used to connect the host computer and the analog
computer, and digital computer aided design unit, which complete the opera-
tion of optimization algorithm, data storage and analyses. Currents are placed
at various locations on a conductive sheet of silicon foam, and can be read from
different locations. Every current form a electrical field on the conductive sheet,
and the output voltage is the sum of all the voltages generated by every current,
it can either be read directly or mapped by a Lukasiewicz Logic Array(LLA).
Specifically, LLA is an analog nonlinear function that takes some inputs and
computes the corresponding output. There’re totally 27 Lukasiewicz basic func-
tions that form a piecewise-linear covering of the continuous [0,1] range and
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Fig. 1. Structure of a typical uEAC model

domain dissected by {0,0.5,1}. Readers who are interested in the hardware of
uEAC are referred to [16,17,22] for more details.

2.1 uEAC Mathematical Model

Supposing that a current I is injected at location P and the electrical resistivity
of the conductive sheet is ρ, without lose of generality, we can discretize the
conductive sheet into n directions. Every tiny region of the conductive sheet can
be represented by a resistance, then the resistance value R of a particular region
is

R =
ρΔr

(r0 +Δr/2) 2π
n

, (1)

where r0 is the distance from P to the resistance, Δr is the radial length of the
resistance. For two arbitrary resistances i, j on the same radius, the distance from
P to i, j are ri, rj , respectively, and Vij is the voltage between i, j. Supposing
that rj > ri, i.e., j locates outside of i, there are m resistances between i and j,
and the length of every resistance is Δr, we have

Vij = I
n (R1 +R2 + · · ·+Rm)

= I
n

∑m
k=1

ρΔr
[ri+(2k−1)Δr/2] 2π

n

.
(2)

Let Δr → 0, we have

Vij =
Iρ

2π

∫ rj

ri

dr

r
=
Iρ

2π
ln
rj
ri
. (3)

If the current input locations and voltage output locations are fixed, i.e. ri
and rj are fixed, we have Vij = c · I, where c = ρ

2π ln rj

ri
is a positive constant.

2.2 Extensions of the uEAC Unit

A single uEAC unit is very limited in nonlinear mapping because its input-
output curve is linear, we may add some feedbacks to its input to enhance
the computational capability to some degree, including minus-feedback and



136 Y. Zhu et al.

Fig. 2. uEAC with minus-feedback

multiplication-feedback. To describe explicitly, we divide the currents into input
current I and field constructive current Iw, Vo is the output voltage.

1) Minus-feedback uEAC

A uEAC unit with minus-feedback is shown as Fig. 2,

Vo =
d∑

i=1

ki(Ii − I ′) +
v∑

j=1

wjIwj . (4)

where I is the input current, Iw is the field constructive current, V0 is the out-
put current, I ′ is the feedback current, a is the feedback coefficient. Supposing
Ii is the ith output voltage, Iwj is the jth field constructive current, d and v
are the number of input currents and field constructive currents, respectively.
Substituting I ′ = a · Vo, we have

Vo =
d∑

i=1

ki(Ii − a · Vo) +
v∑

j=1

wjIwj , (5)

Vo = (
d∑

i=1

kiIi +
v∑

j=1

wjIwj)/(1 +
d∑

i=1

aki), (6)

where ki and wj are the coefficients of Ii and Iwj , respectively.

2) Multiplication-feedback uEAC

A uEAC unit with multiplication-feedback is shown as Fig. 3, the definitions
of these variables are the same with those in the minus-feedback uEAC, we have

Vo =
d∑

i=1

kiIi +
v∑

j=1

wj(Iwj · I ′). (7)

Substituting I ′ = a · Vo, we have

Vo =
d∑

i=1

kiIi +
v∑

j=1

wj(Iwj · a · Vo), (8)
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Fig. 3. uEAC with multiplication-feedback

Vo =
d∑

i=1

kiIi/(1− a
v∑

j=1

wjIwj). (9)

We can rewrite Eq. 9 in vector form, as

g(I, Iw) = Vo = KT I/(1− a ·WT Iw), (10)

where now K and W are vectors of size i and j, respectively. We shall note that,
by adding feedbacks to the input of uEAC unit, its output formation is totally
different and g(I, Iw) now is a nonlinear function of the input I and Iw, but this
enhancement of computational capability is far from satisfactory.

3 The Fully-Connected uEACs Array

In this section, we propose a fully-connected uEACs array that contains several
uEAC units. Every uEAC units in the array is connected to all the other units by
some weights. For a uEACs array with 6 uEAC units, its structure is as Fig. 4,
where x is input of the array and y is the output.

Notice that the definition of uEAC 1, uEAC 2,. . .uEAC 6 in the array is
implicit because the terms 1, 2, . . . , 6 are just symbols of the uEAC units and do
not convey any specific meaning. Moreover, it is not necessary to limit that there

Fig. 4. General structure of the fully-connected uEACs array
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is only one input x, on the contrary, there can be more inputs and outputs for
the uEACs array, and the uEACs array structure should be designed according
to the specific problems. The proposed uEACs array is said to be fully connected
because every uEAC unit in the array is connected to all the other units, thus
this structure is a general model of a variety of uEAC arrays structures.

This inner structure of a uEACs array is defined by two matrices, connection
matrix Γ and weight matrix Ψ , especially, Γ represents the connections among
uEAC units in the array while Ψ represents the strength of these connections.
For a uEACs array with M inputs, N uEAC units and K outputs, the connec-
tion matrix Γ and weight matrix Ψ are (K + N) × (K + N + M)-dimensional
matrices. Connection matrix Γ is binary, and the element γij in Γ represents
the connection from the jth uEAC unit to the ith one. If the jth uEAC unit is
connected to the ith uEAC unit, γij = 1, or γij = 0.

3.1 Optimization Based on PSO

To get an optimal uEACs array structure for a specific problem, we have to opti-
mize the connection matrix Γ and weight matrix Ψ simultaneously because there
is a one-to-one correspondence among the elements of these two matrices. From
the mathematical point of view, all the heuristic optimization algorithms can be
used to optimize the uEACs array, such as hill climbing algorithm, genetic algo-
rithm and tabu search, but we must investigate their computational capability
and complexity, time consumption, efficiency, etc.

In this study, we choose PSO as the optimizer because its update functions are
simple and convergent very fast. We shall also note that for a specific problem,
there may exist more than one “good enough” uEACs arrays, thus we shall
analyze their structures form the statistical perspective but not limited to one
or several running results. The updating rule of the i−th particle at step k + 1
is :

vk+1
i = w · vk

i + c1 · rk
1 · (pk

l − xk
i ) + c2 · rk

2 · (gk
i − xk

i ) (11)

xk+1
i = xk

i + vk
i (12)

where w is the inertia factor; xk
i and vk

i are the position vector and velocity vector
of the i−th particle at step k, respectively; pk

l is the best position vector lbest in
the neighborhood structure at step k; gk

i is the global best position vector gbest
at step k; c1 and c2 are acceleration factors; rk

1 and rk
2 are uniformly distributed

over [0, 1].
For a uEACs array with M inputs, N uEAC units and K outputs, the parti-

cles position vector X is defined as a 2× (K+N)(K+N +M)-dimensional real
number vector that contains all the elements of connection matrix Γ and weight
matrix Ψ . Especially, the former (K +N)(K +N +M) elements correspond to
matrix Γ and the rest (K +N)(K +N +M) elements correspond to matrix Ψ .
Moreover, the incorrect classification amount is chosen as the fitness function.
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Algorithm 1. Optimize the uEACs array by PSO
1: Initializing particles number n, maximum iterations number m, target error e.
2: for i = 1, 2, · · · , n do
3: initializing particle position vector Xi and velocity vector Vi.
4: end for
5: Arbitrarily selecting the best particle.
6: for j = 1, 2, 3, · · · , m do
7: for i = 1, 2, 3, · · · , n do
8: updating Xi and Vi;
9: calculating particle fitness;

10: updating the best particle.
11: end for
12: end for
13: while (error < e)or(iterations > m) do
14: outputting the best position vector Xi;
15: ending the algorithm.
16: end while

4 Simulations

We apply the proposed uEACs array and optimization strategy to the Iris
database [23] to investigate its computational capability. There are totally 150
instances in the database, including 3 classes (50 instances each) that refer to
3 different iris plants, and every instance has 4 attributes. We design 6 inde-
pendent simulation experiments. In the first experiment, 25 instances are picked
as the training sample, and after training, we use the optimized uEACs array
to classify 6 different testing samples, respectively. Especially, we execute the
classification algorithm 20 times for every testing sample and take the average
classification accuracy as the final accuracy. In the other 5 experiments, 50, 75,
100, 125, 150 instances are picked as the training sample, respectively, and the
rest procedure is the same with the first experiment.

The following connection matrix Γ represents one of the optimal uEACs array
structures in the experiment with 150 training samples and 150 testing samples,
and the actual uEACs array structure is shown as Tab. 1 and Fig. 5. We shall
note that all the elements on the diagonal are zero, it’s not an optimization result
but a prior setting, which means that all the uEAC unit in the array are basic
unit without feedback. Moreover, the connections of uEAC units in the array
are directed, i.e., elements γij and γji in the connection matrix Γ represent two
different connections.

Γ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 1 1 0 1 0 0 0 0
0 0 1 1 1 1 0 0 0 1 1
1 1 0 1 0 1 0 1 0 0 1
0 1 1 0 0 0 0 0 1 1 0
1 0 1 1 0 1 1 1 0 0 1
1 0 1 1 1 0 1 1 1 1 1
1 0 0 1 1 1 0 1 0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Fig. 5. The actual uEACs array structure

Table 1. uEACs array structure by Γ

u 1 1 u 2 u 3 u 4 u 5 u 6

u 1 0 1 1 1 1 0

u 2 0 0 1 1 1 1

u 3 1 1 0 1 0 1

u 4 0 1 1 0 0 0

u 5 1 0 1 1 0 1

u 6 1 0 1 1 1 0

1 u 1: uEAC 1, the same below.

The average uEACs array classification accuracy is shown as Tab. 2, Fig. 6
and Fig. 7.

Table 2. uEACs array Iris database classification accuracy

TRSS 2

ACA 3 TESS 4

50 75 100 125 150

25 80.7% 90% 92.1% 93.64% 95.73%

50 89.9% 93.53% 94.45% 95.76% 96.77%

75 97% 97.73% 98.45% 98.64% 98.87%

100 95.8% 98.67% 99.35% 99.16% 99.53%

125 99.1% 99.73% 99.3% 99.8% 99.73%

150 99.8% 100% 99.55% 99.92% 99.97%

2TRSS: Training Sample Size;
3ACA: Average Classification Accuracy;
4TESS: Testing Sample Size.
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Fig. 6. Classification accuracy for the same testing sample
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Fig. 7. Classification accuracy for the same training sample
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For a specific testing sample, the average classification accuracy is shown as
Fig. 6. We can see from the figure that when the training sample size is small, the
classification accuracy is relatively low and with the increase of training sample
size, the accuracy increase simultaneously, which indicates that the uEACs array
is efficient on nonlinear classification, and it is able to calculate the appropriate
features from the training sample that will be used in the classifier. The clas-
sification accuracy increase rate varies when the training sample size increases,
the biggest increase rate occurs when the training sample size increases from
50 to 75, and this phenomenon also occurs in the other 5 experiments. Another
interesting phenomenon occurs in the experiment with 50 testing instances, the
classification accuracy decreases unexpectedly when the training sample size
increases from 75 to 100. This result indicates that, for the uEACs array, there
may be a tendency to overtrain the array when the training sample increase,
and that will definitely effect its generality. Moreover, for the training sample
with 100, 125 and 150 instances, the increase of classification accuracy seems
insignificant compared with the extra time consumption, thus we assert that
the uEACs array do not need lots of training samples to get a “good enough”
structure. For a specific training sample, the average classification accuracy is
shown as Fig. 7. The classification accuracy increases simultaneously when the
testing sample size increase, which validates uEACs array’s generality.

5 Conclusion

In this study, we analyze the basic uEAC mathematical model and its two feed-
back extensions, respectively, and on this basis, we propose a fully-connected
uEACs array, which is much more powerful. To get the optimal uEACs array
structure, a revised PSO is employed in the optimization algorithm and the
simulation results validate that the proposed uEACs array owns great learning
ability and generality.

More studies about the uEACs array are still needed. First, a detailed theoret-
ical analysis about the computational capability and complexity of the proposed
uEACs array is needed. This study presents several simulation experiments to
prove that the uEACs array is able to solve nonlinear problems, but we still
do not know how many uEAC units are enough for a specific problem. Defi-
nitely the more uEAC units the more powerful, but we need to keep the balance
between computational capability and efficiency, thus this theoretical analysis is
extremely significant. Moreover, we may extend the uEACs array to a dynamic
network and design a deep uEACs structure, then we probably need to design a
new, and more efficient, optimization algorithm due to the curse of dimension-
ality.
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Abstract. Population-based clustering techniques, which attempt to integrate  
particle swarm optimizers (PSOs) with K-Means, have been proposed in the lite-
rature. However, the performance of these hybrid clustering methods have not 
been extensively analyzed and compared with other competitive clustering  
algorithms. In the paper, five existing PSOs, which have shown promising per-
formance for continuous function optimization, are hybridized separately with  
K-Means, leading to five PSO-KM-based clustering methods. Numeric experi-
ments on nine real-life datasets show that, in the context of numeric data cluster-
ing, there exist no significant performance differences among these PSOs, though 
they often show significantly different search abilities in the context of numeric 
function optimization. These PSO-KM-based clustering techniques obtain better 
and more stable solutions than some individual-based counterparts, but at the cost 
of higher time complexity. To alleviate the above issue, some potential improve-
ments are empirically discussed. 

Keywords: Population-based clustering · Optimization-based clustering ·  
Particle swarm optimizer (PSO) · K-Means 

1 Introduction 

Typically, data clustering problems that partition ܰ data points into ܭ clusters can 
be modeled as continuous optimization problems where the centroids of ܭ clusters 
and cluster indexes of ܰ data points act as inputs and outputs [1]. However, most of 
the partitioning-based clustering methods aimed at solving K-Means-type optimiza-
tion problems are sensitive to the initial centroids and easily get trapped into local 
optima [2]. More effective K-Means-type clustering algorithms are urgently required 
to uncover the hidden patterns for large-scale clustering. 

Recently, population-based clustering techniques become increasing popularity. 
One advantage of the population-based clustering methods over the individual-based 
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counterparts may lie in their potentially global exploration abilities. As powerful op-
timization tools, particle swarm optimizers (PSOs) have been widely studied and 
improved in the context of data clustering [3]. Note that real-life clustering problems 
may show fully different fitness landscapes, which cannot be represented adequately 
by existing benchmark functions. Although different PSOs could show significantly 
different performance on some benchmark functions, it is unknown whether the sig-
nificant performance differences on benchmark functions still hold on diverse cluster-
ing optimization problems. To answer the above unsolved yet important problem for 
PSO-based clustering is the main objective of the paper. 

In the paper, five existing PSOs, which have been widely cited in the optimization 
field and shown promising performances for continuous optimization, are hybridized 
separately with K-Means, giving rise to five PSO-KM-based clustering methods. 
Numeric comparative experiments on nine real-world datasets show some unexpected 
but valuable conclusions. Finally, some potential improvement directions for PSO-
based clustering algorithms are empirically discussed. 

2 Literature Overview 

Many research efforts have been devoted to the application of PSOs on a variety of 
clustering problems. Among them, hybridization strategies are a hot study direction 
for optimization-based clustering. In this section, the hybridization methods including 
PSO and K-Means are mainly concentrated. Merwe and Engelhrecht [4] first pro-
posed a PSO-based clustering algorithm, which combined PSO with K-Means. Spe-
cifically, in order to initialize the particle population of  individuals, K-Means 
needs to be run  times. In each run, the centroids of clusters obtained by K-Means 
are used as the initial seed of an individual. In terms of algorithmic design, the paper 
can be regarded as a repetition and extension to Merwe and Engelhrecht’s work. 
However, the following differences between the original work [4] and the paper 
should be highlighted: 1) the original work only took into account the global PSO 
version (i.e., GPSO), whereas in the paper more advanced PSOs (e.g., FIPS and 
CLPSO) are combined with K-Means. 2) In the numeric experiments conducted by 
Merwe and Engelhrecht, only six small-size datasets (ܰ  500 and ܦ  15) were 
tested and analyzed. However, on medium-to-large size datasets, which frequently 
occurs in the data mining field, the effectiveness and efficiency of PSO-KM-based 
clustering algorithms should be further analyzed, which is one focus of the paper. 
Similar studies can be found in the literature (e.g., [5-9]). Chen and Ye [10] directly 
used PSO to solve the K-Means-type clustering problems, with lower clustering per-
formance than most well-designed hybridization strategies. 

Cohen and Castro [11] developed a particle swarm clustering (PSC) algorithm, 
where the entire population rather than an individual represents a clustering solution. 
The authors claimed to replace the fitness function with the performance index to 
measure the quality of each particle. Unfortunately, the formal definition of the per-
formance index was not provided clearly in the original paper. Omran et al [12] pre-
sented a PSO-KM-based clustering algorithm called DCPSO, where a binary PSO 
was used to find the optimal number of clusters while K-Means was employed to 
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update the centroids. The authors considered the maximization of inter-cluster dis-
tances as well as the minimization of intra-cluster distances. Although DCPSO 
showed promising clustering results in the context of image segmentation, the expo-
nential increase in the search space gives rise to higher time complexity intractable for 
large-scale clustering. Kao et al [13] hybridized the Neld-Mead simplex search with 
PSO and K-Means, and proposed a population-based clustering approach named as 
K-NM-PSO. In practice, we can imagine that K-NM-PSO obtains better clustering 
accuracy but at the cost of time complexity. The efficiency of K-NM-PSO has not 
been validated on high-dimensional clustering applications. The above argument may 
be illustrated that the fact that, in the original paper, the authors only chose some 
small-scale datasets (ܰ  1500 and ܦ  15) to show its superiority. Alam et al [14] 
proposed a PSO-based hierarchical clustering method called HPSO. The individual 
representation way of HPSO is very similar with that of PSC. More recently, a state-
of-the-art PSC version abbreviated as RCE was developed by Yuwono et al [15]. 

For more details about PSO-KM, please refer to the literature survey [3, 16-18]. To 
the best of our knowledge, there are few open source codes available for PSO-KM-
based clustering, which increases the difficulties of conducting the repetition or com-
parative experiments. Another aim of the paper is to provide a comparative baseline 
for PSO-based clustering. 

3 PSO-Based Clustering Algorithms 

In this section, a population-based algorithmic framework, which combines PSO with 
K-Means, is proposed. In the framework, the following five PSOs are taken into ac-
count independently: 

1) PSO with a global topology and a random inertia weight (GPSO-RW) [19]: the 
inertia weight ܹ is randomly distributed in [0.5, 1]. 

2) PSO with a global neighborhood structure and the inertia weight ܹ decreasing 
linearly from 0.9 to 0.4 (GPSO-WV) [20]. 

3) GPSO with a constriction factor (GPSO-CF) [21]: the differences between it and 
the above two PSO versions lie in the introduction of the constriction factor that pre-
vents explosion of the particle system [22]. 

4) Fully informed PSO (FIPS) [23]: the weight-based pbests of all the neighbors 
are used to update each particle’ position, which reduces the influence of the best-
performing one (i.e., gbest). Note that only the Ring topology is employed for FIPS in 
the paper, as suggested in the literature [23]. 

5) Comprehensive learning PSO (CLPSO) [24]: for different dimensions, each in-
dividual learns towards different neighbors in a dynamic population topology. 

To save space, assume that the readers have been familiar with the above PSOs. 
Otherwise, please refer to the corresponding papers for more details. Whether these 
PSOs could work well and show significantly different optimization performances on 
diverse clustering problems as on many continuous benchmark functions is an open 
problem worthy of further investigation. In the paper, all the clustering problems are 
converted to K-Means-type continuous optimization problems which may have fully 
different landscape characteristics as compared with benchmark functions. 
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3.1 Real-Coded Representation Strategy 

The representation ways of a clustering solution can be simply classified into two 
groups. The first category adopts a direct (integer/binary-based) encoding strategy 
[25]. This representation way leads easily to two serious drawbacks, i.e., expensive 
computation cost (prohibitively for large–scale clustering) and redundancy [25]. The 
second one only takes into account the cluster centroids as K-Means. It encodes all 
the centers as an agent, which is stored in a real-valued array. Related studies have 
shown that the latter is better than the former with regard to computation complexity. 

The real-coded representation strategy for particle ௧ܲ ݐ)  ൌ 1, … ,  is the  where ,
swarm size) is presented in the following vector: 

 ௧ܲ ൌ ሺܥଵ௧, … , ௧ܥ ௧ሻ, whereܥ ൌ ሺܯଵ௧ , … , ௗ௧ܯ ሻ. (1) 

Note that ܥ௧ ൌ ሺܯଵ௧ , … , ௗ௧ܯ ሻ is a real-coded vector corresponding to centroid ݇ 
(݇ ൌ 1, … , ௗ௧ܯ and ,(ܭ  is the ݀-dimensional position of centroid ܥ௧ for particle ݐ. 

3.2 Population Initialization 

For optimization-based clustering techniques, two initialization ways are commonly 
used. One is to locate all the individuals at random in the entire search space, while 
the other is to choose ݇ random samples from the entire dataset as the initial centro-
ids. Some other advanced centroid initialization methods can be found in [26-28], 
which have investigated the effects of different initialization methods on the cluster-
ing performance. However, different conclusions were drawn from different research 
papers, which may be explained by the fact that different datasets were used by dif-
ferent papers while the performance of clustering methods depend heavily on the 
chosen datasets, the settings of system parameters, and so on. For refining the cluster-
ing accuracy and accumulating the convergence, the centroids obtained by K-Means 
can be organized as an initial particle before executing PSO. 

3.3 Fitness Evaluation 

In practice, different fitness evaluation functions (e.g., Davies–Bouldin index [29], 
Silhouettes index [30]) can be used for measuring the quality of a clustering solution 
[25]. For partitioning clustering algorithms, mean squared error (ܧܵܯ), is widely 
used, according to the literature [31]. ܧܵܯ is calculated by 

ܧܵܯ  ൌ ∑ ∑ || ܺ െ ೖୀଵא||ଶܥ  (2) 

where ܺ ൌ ሺ ܺଵ, … , ܺௗሻ is data point ݅ (݅ ൌ 1, … , ܰ) in the real space Ըௗ, and ܥ 
is the centroid of cluster ݇, and ||  ||ଶ denotes the squared Euclidean distance be-
tween two points. The centroid of cluster ݇ is updated by 

ܥ  ൌ ∑ ܺאೖ  | (3)ܥ|/
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where |ܥ| is the number of instances in cluster ݇. Note that the above fitness  
function is only suitable to clustering problems where the number of clusters is prede-
fined (see [32] for detailed explanation). How to determine the optimal number of 
clusters is a hot research direction (refer to [25, 33, 34] for more information). In this 
paper, the number of clusters is supposed to be known a prior. In fact, multiple fitness 
functions can be taken into account during the optimization process, leading to mul-
tiobjective clustering [35], which are beyond the scope of the paper. 

3.4 Particle Position Updating Rule 

Each particle ݐ with the velocity itself moves stochastically toward its personally 
historically best position (ܲܤ௧) and its neighbors’ best positions (ܰܤ௧), until the max-
imum number of iterations is reached. The velocity ௧ܸ and position ௧ܲ adjustment 
rule for particle ݐ are presented in the following: 

 ௧ܸ ൌ ݂ܿ כ ሺܹ כ ௧ܲ  ܿଵ כ ܴ௧ଵ כ ሺܲܤ௧ െ ܺ௧ሻ  ܿଶ כ ܴ௧ଶ כ ሺܰܤ௧ െ ܺ௧ሻሻ (4) 

 ௧ܲ ൌ ௧ܲ  ௧ܸ (5) 

where ݂ܿ is the constriction factor, ܹ is the inertia weight, ܿଵand ܿଶ  are the 
cognitive and social learning coefficients, and ܴ௧ଵ and ܴ௧ଶ are two separately gen-
erated random number in [0,1). The updating rule of ܲܤ௧ ାଵ at generation ሺ݃  1ሻ 
is illustrated as following: 

௧ܤܲ  ାଵ ൌ ൜ ௧ܲ ,   ݂݅ ݂ሺܲܤ௧ ሻ  ݂ሺ ௧ܲ ሻ; ܲܤ௧ ,                   (6)   .݁ݏ݅ݓݎ݄݁ݐ 

Note that six different PSOs have many differences with regard to the definition of 
neighbors, implementation procedures, and parameter configures. For more details, 
the readers are encouraged to refer to the original papers. In the paper, only the max-
imum number of iterations is set as the stopping condition. 

4 Experimental Studies 

To evaluate the effectiveness and efficiency of PSO-KM, 9 benchmark datasets from 
the famous UCI machine learning repository [36] are chosen for comparative experi-
ments. Almost all the datasets (except Coil2) need to be standardized (z-score) before 
clustering, for eliminating the discrepancy among different scales of different 
attributes. Furthermore, numeric experiments choose five commonly cited individual-
based clustering algorithms and one recently proposed state-of-the-art counterpart as 
benchmark algorithms: namely, 1) the agglomerative hierarchical clustering method 
with average link (AHC-AL), 2) Lloyd’s K-Means which adopts the batch update 
scheme (Lloyd-KM) [37], 3) MacQueen’s K-Means which uses the online update 
scheme (Mac-KM) [38], 4) AS-136 [39], 5) BF-KM [26], and 6) PSO-RCE [15]. 
Owing to the limitation of pages, for more experimental details, the readers are sug-
gested to scan the website freely available at [40] and download the related source 
code and data. The parameter settings of all the algorithms involved follow the sug-
gestions of the original papers. 
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Table 1. Comparative Results of  11 Algorithms on UCI Datasets 

 Iris Wine Coil2 Cancer Credit Opt Musk Magic 

AHC-AL 196.86 2199.65 154.03 4987.70 22836 309332 1167550 --- 
Lloyd-KM 154.02 1305.54 155.00 2724.42 22400 230000 901000 137000 
Mac-KM 147.57 1281.00 154.53 2724.16 22298 228754 899887 136919 
AS-136 140.03 1649.44 153.88 2724.16 22171 235213 869655 136919 
BF-KM 140.03 1649.44 154.03 2724.16 22354 224857 869655 136919 

PSO-RCE 142.92 1318.84 155.85 2798.06 22967 288987 869655 136919 
GPSO-RW 138.89 1270.75 156.47 2724.16 22171 288987 869655 136919 
GPSO-WV 138.89 1270.75 156.47 2724.16 22171 289006 869655 136919 
GPSO-CF 138.89 1270.75 156.47 2724.16 22171 289439 869655 136919 

FIPS 138.89 1270.75 156.47 2724.16 22171 289851 869655 136919 
CLPSO 138.89 1270.75 156.47 2724.16 22171 289851 869655 136919 

 
Based on Table 1, in term of ܧܵܯ, five PSO-KM-based clustering algorithms ob-

tain better, more stable clustering performances in most cases except on the Opt data-
set, followed by AS-136, BF-K-Means. For all the datasets, Mac-KM show slight 
better clustering performance than Lloyd-KM, owing to the fact that the online update 
scheme of Mac-KM is guaranteed to converge to local optimum. We can imagine that 
AHC-AL has the worst clustering performance and is not applicable for large-scale datasets 
(e.g., the Magic and Road Network dataset). Note that the state-of-the-art PSC-based algorithm, 
PSORCE, cannot show superiority clustering performance with regard to ܧܵܯ. This might 
be due to the fact ܧܵܯ is not its direct objective function. It is not guaranteed that, 
due to the stochastic nature, PSO-RCE must converge to the local optima in each run. 

5 Conclusion 

In the paper, five PSO-KM-based clustering algorithms have been compared with five 
widely cited individual-based clustering algorithms as well as one recently proposed 
state-of-the-art PSC-based counterpart. In the above comparative experiments, PSO-
KM obtained more stable, better clustering performance in most cases in terms of ܧܵܯ, but at the cost of higher time complexity. During optimization, each particle 
can often include local (rather than global) clustering structures. However, these five 
particle updating rules with individual interactions may disturb some locally valuable 
information for numeric data clustering, although they have shown success on conti-
nuous function optimization. More efficient particle updating rules (e.g., it might still 
utilize the concept of pbest and nbest, but it needs to adopt special definitions for 
them to uncover the hidden clustering structures) should be elaborated in the context 
of numeric data clustering. Furthermore, for PSO-KM, the process of fitness function 
evaluations involves excessive numeric calculations, which may be reduced by using 
some advanced data structures (e.g., kd-tree) or algorithms (e.g., k-NN). The above 
two potential improvement directions on PSO-KM are our ongoing research. 
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Abstract. A novel boundary based multiobjective particle swarm opti-
mization is presented in this paper. The proposed multiobjective opti-
mization algorithm searches the border of the objective space unlike other
current proposals to look for the Pareto solution set to solve such prob-
lems. In addition, we apply the proposed method to other particle swarm
optimization variants, which indicates the strategy is highly applicatory.
The proposed approach is validated using several classic test functions,
and the experiment results show efficiency in the convergence perfor-
mance and the distribution of the Pareto optimal solutions.

Keywords: Multiobjective optimization · Multiobjective particle
swarm optimization · Particle swarm optimization

1 Introduction

Multiobjective optimization problems (MOP), optimization with two or more
objective functions, are crucial and commonly seen both in engineering applica-
tions and in academic research, as well as in real world. To illustrate, the quality
of products and the cost of production constitute a multiobjective optimization
problem during enterprise activities, therefore, how to balance the two parts
becomes an important issue for business managers.

Until 2004, Coello Coello et al. [1] proposed multiobjective particle swarm
optimization (MOPSO), believed as a milestone in the history. Two-level of non-
dominated solutions approach to multiobjective particle swarm optimization was
claimed by Abido et al. [2] in 2007, searching locally and globally at two levels
on the current Pareto front surface, and Koduru et al. [3] put forward a multi-
objective hybrid particle swarm optimization (PSO) using μ-fuzzy dominance.
Abido [4] designed a new multiobjective particle swarm optimization technique
by proposing redefinition of global best and local best individuals. A self-adaptive
learning based particle swarm optimization was proposed by Yu Wang et al. [5]
to simultaneously adopt four PSO based search strategies. Daneshyari, M. et al.
[6] stated a cultural-based multiobjective particle swarm optimization, where a
cultural framework was used to adapt the personalized flight parameters of the
mutated particles.
c© Springer International Publishing Switzerland 2015
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Multiobjective optimization problems still have strong vitality so far due to
its numerous applications. In recent years, Pierluigi Siano et al. [7] implemented
fuzzy logic controllers for DC-DC converters using multiobjective particle swarm
optimization. A large-scale portfolio optimization using multiobjective dynamic
mutli-swarm particle swarm optimizer was proposed by Liang, J.J. et al. [8].

In this paper we propose a novel multiobjective optimization algorithm, parti-
cle swarm optimization based on boundary stated in the following parts. Section
2 describes the basic concepts in multiobjective optimization problems, and the
proposed algorithm based on PSO is presented in Section 3. Experiments are
conducted and analyzed in Section 4, and the conclusion shows up in Section 5.

2 Basic Concepts

Multiobjective optimization problems are also called multicriteria problems.
Generally, a MOP with n variables, k objective functions can be expressed by
formula (1) as follows:

⎧
⎪⎨

⎪⎩

min y = F (x) = (f1(x), f2(x), ..., fk(x))T

s.t.gi(x) ≤ 0, i = 1, 2, ..q
hj(x) = 0, j = 1, 2, ..., p

(1)

As the following algorithm is based on Pareto optimality, we introduce the
concepts related to it. In this paper, we mainly employ the definitions by Coello
Coello et al. [1].

Definition 2.1 (Pareto Dominance): A decision vector x1 dominates another
decision vector x2, defining as x1 ≺ x2, if and only if x1 is no less than x2 in every
objective, that is to say: fi(x1) ≤ fi(x2), i = 1, 2, ..., k, and x1 is strictly more
than x2 on at least one objective, in other words, ∃i = 1, 2, ..., k, fi(x1) < fi(x2).

Definition 2.2 (Pareto Optimality): A decision vector x∗ ∈ F is Pareto opti-
mal, if there is not a decision vector x �= x∗ ∈ F dominating it.

Definition 2.3 (Pareto Optimal Set): All Pareto optimal decision vectors com-
pose a Pareto optimal set P ∗, that is P ∗ = {x∗ ∈ F | � ∃x ∈ F, x ≺ x∗} .

Therefore, a Pareto optimal set is a set of all solutions, and the corresponding
objective vectors are defined as Pareto front.

3 Proposed Boundary Based Method for Multiobjective
Particle Swarm Optimization Problems

3.1 Basic Principle of PSO

Particle swarm optimization is an evolutionary algorithm that was inspired by
the social behavior of bird folks, proposed by J. Kennedy and R.C. Eberhart.
One classic PSO method [9] is:

vij(t+ 1) = wvij(t) + c1r1j(t)[yij(t)− xij(t)] + c2r2j(t)[ŷj(t)− xij(t)] (2)
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xij(t+ 1) = xij(t) + vij(t+ 1) (3)

where w is the inertia weight, and c1, c2 are positive acceleration constants
denoting the contribution of cognitive and social factors, respectively. r1j(t) and
r2j(t) are random numbers between zero and one with uniform distribution,
introducing uncertainty to the algorithm. vij(t) represents the speed of particle
i on dimension j at moment t, yi is the best position particle i has reached so
far and ŷ(t) is the global optimal location at moment t. Ni et al. [10] proposed
some improvement on the PSO method, the update formula shows as follows:

CTij(t) =

∑K
p=1 ypj(t)
K

− xij(t) (4)

OTij(t) =

∑K
p=1 ypj − yij

K
(5)

xi(t+1) = xi(t)+α× (xi(t)−xi(t− 1))+β×CTi(t)+ γ×Gen()×OTi(t) (6)

In formula (4)(5)(6), α, β, γ are all weights and α is a positive number gen-
erally. Gen() is a random number generating function of specific distribution.
When Gen() is the Gaussian function the variant is GDPSO, while it is LDPSO
when that is the Logist function. Such variants will be used to show applicatory
of the method later.

3.2 Proposed Boundary Based MOPSO

Most scholars look for the Pareto solution set to tackle multiobjective optimiza-
tion problems. The Pareto solution set in the objective space is actually the
boundary of the space. Therefore, we can convert the problem of finding the
Pareto solution set to how to find the boundary of the objective space. We will
then take a two-dimension space as an example to illustrate.

First, we consider two functions

g(x) = |w1f1(x) + w2f2(x)| (7)

h(x) = e

f2
1 (x) + f2

2 (x)
b (8)

where w1, w2 and b(b > 0) are all parameters and f1(x), f2(x) are both objective
functions. In the objective space, the first function can be seen as the absolute
value of the weighted sum of f1(x) and f2(x). In other way it is the absolute value
of the projection of the vector (f1(x), f2(x)) on the direction of vector (w1, w2) .
Obviously, when the vector (w1, w2) is vertical to the vector (f1(x), f2(x)), g(x)
has the minimum value zero. It is evident to know from the second function that
when the distance between point (f1(x), f2(x)) and point (0, 0) is the smallest,
h(x) gets the minimum. Thus, we can comprehensively combine g(x) and h(x)
to acquire a new function

f ′(x) = (g(x) + a)h(x) (9)
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Assume that all the points (f1(x), f2(x)) are located in the first quadrant, then
with regard to (9), the minimum value must be obtained on the boundary. If not,
suppose the minimum is (f1(x0), f2(x0)), noted as A in Fig. 1. Connect point
A with the original point intersecting the boundary at point B (f1(x1), f2(x2)).
We can easily find g(x1) = g(x0) and h(x1) < h(x0) and get the conclusion
f ′(x1) < f ′(x0) which is contradictory to our previous assumption. Therefore,
we have proved the minimum value of function f ′(x) must be acquired on the
boundary.

Fig. 1. The schematic plot of the objective space

As for the selection of parameter a, we can adopt the following method.
Under the condition that w1 and w2 are certain, we wish to get the minimum
value within θ to the vertical direction of the vector (w1, w2), which is shown in
Fig. 2.

Make a straight line through the original point vertical to the vector (w1, w2)
crossing the boundary at (f1(x2), f2(x2)) and choose a point (f1(x3), f2(x3))
randomly on the boundary meeting the requirement that the inclined angle with
(f1(x2), f2(x2)) is larger than θ. Let r = f2

1 (x2) + f2
2 (x2) and r1 = f2

1 (x3) +
f2
2 (x3), rmax is the maximum distance between the points on the boundary

and the original point, rmin is the minimum distance between them and θ1 is
the inclined angle between vector (f1(x2), f2(x2)) and vector (f1(x3), f2(x3)). If
f ′(x2) < f ′(x3), then

(g(x2) + a)h(x2) < (g(x3) + a)h(x3)

ae

r2

b < (|r1 sin θ1|+ a)e
r21
b

a(e
r2

b − e
r21
b ) < |r1 sin θ1|e

r21
b

(10)
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If r < r1, our expectation can be reached.
If r > r1, then it needs to meet the condition

a <
|r1 sin θ1|
e

r2−r2
1

b − 1
(11)

So when
a =

rmin sin θ

e
r2

max−r2
min

b − 1
(12)

we have got f ′(x2) < f ′(x3), assuring that we obtain the minimum value within
θ to the vertical direction of the vector (w1, w2).

Fig. 2. The selection of parameter a

Due to the above-mentioned property, θ is set to control the distribution
of the space. Pay attention to the previous hypothesis at the beginning that all
the points (f1(x), f2(x)) are located in the first quadrant which is feasible. Since
the minimum values of both f1(x) and f2(x) exist, we can add a constant large
enough, making (f1(x), f2(x)) all in the assumed position.

To sum up, the algorithm can be easily described by enumerating (w1, w2) to
acquire the minimum of f ′(x) with the current parameter. And we can transform
the procedure to the enumeration of α. Let w1 = cosα,w2 = sinα and as all the
points (f1(x), f2(x)) are located in the first quadrant, π

2 < α < π. Enumerating
averagely α might give rise to less Pareto solutions on the boundary, thus, we
randomly select α by controlling the distance as follows:
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1) Initialize α = π, delt = 0.01;
2) Calculate the minimum under α and obtain the boundary point pi;
3) Calculate the distance between pi and pi−1. If larger than argument t, then

delt = delt
2 , otherwise, delt = delt ∗ 1.5 (when i = 1 and delt = 0.01);

4) α = α− delt;
5) if α > π

2 , return to step 2 , otherwise jump out of the program.

We can obtain the basic boundary according to the process, but the boundary
is not the same as Pareto solutions. In the end some non-Pareto solutions need to
be kicked out, and the Pareto solution set is gained. The concrete implementation
can be referred to as the pseudocode in Algorithm 1.

Algorithm 1. Multiobjective Optimization Algorithm Based on Boundary
1: α = π, delt = 0.01, j = 0
2: repeat
3: Initialize all the particles randomly
4: j + +;
5: repeat
6: for each particle i ← 1 to n do
7: Calculate the current value of f ′(xi)
8: if the value of f ′(xi) is less than the minimum of the particle i then
9: Update the minimum of the current particle

10: end if
11: if the value of f ′(xi) is less than the global optimal value then
12: Update the global optimal value
13: end if
14: end for
15: for each particle i ← 1 to n do
16: Update the position of the particle according to the speed and position

update formulas
17: end for
18: until the terminal condition 1 is true
19: if j = 1 then
20: delt = 0.01
21: else
22: Calculate the distance dis between pj and pj−1

23: if dis > t then
24: delt = delt/2
25: else
26: delt = delt ∗ 1.5
27: end if
28: end if
29: α = α− delt
30: until the terminal condition 2 is true
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4 Experiment Results and Analysis

4.1 Test Functions

We use eight standard test functions listed in Table 1.

Table 1. Test problems used in this study

name test function limit

binh1
F = (f1(x, y), f2(x, y))

−5 ≤ x, y ≤ 10f1(x, y) = x2 + y2

f2(x, y) = (x− 5)2 + (y − 5)2

fonseca1
F = (f1(x, y), f2(x, y))

nonef1(x, y) = 1− e−(x−1)2−(y+1)2

f2(x, y) = 1− e−(x+1)2−(y−1)2

fonseca2
F = (f1(x, y), f2(x, y))

−4 ≤ x, y ≤ 4f1(x, y) = 1− e
−(x− 1√

2
)2−(y− 1√

2
)2

f2(x, y) = 1− e
−(x+ 1√

2
)2−(y+ 1√

2
)2

rendon1
F = (f1(x, y), f2(x, y))

−3 ≤ x, y ≤ 3f1(x, y) = 1
x2+y2+1

f2(x, y) = x2 + 3y2 + 1

rendon2
F = (f1(x, y), f2(x, y))

−3 ≤ x, y ≤ 3f1(x, y) = x + y + 1
f2(x, y) = x2 + 2y − 1

ZDT1

F = (f1(x), f2(x))

0 ≤ xi ≤ 1
f1(x) = x1

f2(x) = g(1−
√

f1
g

)

g(x) = 1 + 9
∑m

i=2
xi

m−1

m = 30

ZDT2

F = (f1(x), f2(x))

0 ≤ xi ≤ 1
f1(x) = x1

f2(x) = g(1− f1
g

)2

g(x) = 1 + 9
∑m

i=2
xi

m−1

m = 30

ZDT3

F = (f1(x), f2(x))

0 ≤ xi ≤ 1
f1(x) = x1

f2(x) = g(1−
√

f1
g
− f1

g
sin 10πf1)

g(x) = 1 + 9
∑m

i=2
xi

m−1

m = 30

4.2 Experiment Parameter Settings

We put forward a novel algorithm for MOP in this paper, and adopt two variants
of PSO, the classic PSO and GDPSO. Therefore, there are two implementations
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altogether, which includes the classic PSO based on boundary and the GDPSO
based on boundary.

With regard to the two multiobjective optimization algorithm based on
boundary, for each α the number of iteration is 200 and the number of par-
ticles is 300. Argument a and b have to be set flexibly according to different
problems.

To obtain more precise results, we run the experiment 20 times for each test
function.

4.3 Evaluation Metrics

We mainly employ two metrics to evaluate the performance of the algorithm:
convergence metric [11] and spacing metric [12].

(1) Convergence metric
Let P = (p1, p2, ..., pt1) be the ideal Pareto set(generally, the ideal Pareto
set cannot be reached, so we can replace it with some existing reference
sets), and the Pareto solution set through calculation is Q = (q1, q2, ..., qt2).
Calculate

di =
t1

min
j=1

√√
√
√

k∑

m=1

(
fm(pj)− fm(qi)
fmax

m − fmin
m

)2 (13)

and fmax
m , fmin

m are the maximum and minimum value of the mth objective
function in set P , then the convergence metric is shown in (14).

C =
∑t2

i=1 di

t2
(14)

The convergence metric reflects the performance of the convergence. Usually
when it is nearer to the ideal Pareto front, C is smaller.

(2) Spacing metric

B =

√√
√
√ 1
t2 − 1

t2∑

i=1

(ui − ū)2 (15)

where

ui =
t2

min
j=1

{
k∑

m=1

|fm(qi)− fm(qj)|
}

ū =
∑t2

i=1 ui

t2

It can be judged from the spacing metric how well the nondominated solu-
tions in the objective space are distributed. And if B = 0, it means the
distribution of the nondominated solutions we have got is uniform.
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4.4 Experiment Data and Analysis

Boxplots are employed to display the experiment data. In the following figures,
1 represents the performance parameter of the classic PSO based on boundary,
and 2 shows that of the GDPSO based on boundary.

(1) Convergence metric
Seen from Fig.3, the classic PSO algorithm based on boundary has the
advantage of less fluctuation on the convergence metric: we get almost the
same consequences during the twenty independent runs of every test func-
tion. However, the GDPSO based on boundary does not perform well due
to the insufficient number of iterations.
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Fig. 3. Boxplots of the convergence metric
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Fig. 4. Boxplots of the spacing metric

(2) Spacing metric
It can be judged from Fig.4 that the Pareto solutions are distributed more
evenly in the classic PSO algorithm based on boundary and its results are
almost the same through several runs unlike the fluctuation shown in the
other. By contrast, in the GDPSO based on boundary no evident tendency
appears in the spacing metric, which mainly depends on different test func-
tions.

5 Conclusion

On the basis of the convergence and spacing metrics, the classic PSO algo-
rithm based on boundary performs better. Although the novel boundary based
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multiobjective particle swarm optimization is of high performance and has fast
convergence speed, it has deficiencies more or less. As for the classic PSO based
on boundary we can improve on the choice of parameter a and b, but it will be
hard to have large development on the convergence metric as we have to decrease
the number of iteration considering runtime. The extension of this work would
be a further discussion of the parameter settings and to apply the proposed
method to high-dimensional objective space.
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Abstract. The problem of portfolio selection in the field of finan-
cial engineering has received more attention in recent years and many
portfolio selection models has been proposed in succession. To solve
a generalized Markowitz mean-variance portfolio selection model, this
paper proposed four improved particle swarm optimization algorithms
(RTWPSO-AD, RTWPSO-D, DRWTPSO-AD, DRWTPSO-D) based on
the strategies of Random Population Topology. We abstract the topol-
ogy of particle swarm optimization (PSO) into an undirected connected
graph which can be generated randomly according to a predetermined
degree. The topology changes during the evolution when Dynamic Popu-
lation Topology strategy is adopted. By setting the degree, we can control
the communication mechanisms in the evolutionary period, enhancing
the solving performance of PSO algorithms. The generalized portfolio
selection model is classified as a quadratic mixed-integer programming
model for which no computational efficient algorithms have been pro-
posed. We employ the proposed four algorithms to solve the model and
compare the performance of them with the classic PSO variant. The
computational results demonstrate that the population topologies of
PSO have direct impacts on the information sharing among particles,
thus improve the performance of PSO obviously. In particular, the pro-
posed DRTWPSO-D shows an extraordinary performance in most set of
test data, providing an effective solution for the portfolio optimization
problem.

Keywords: Portfolio optimization · PSO · Random population topol-
ogy · Cardinality constrained mean-variance (CCMV) model

1 Introduction

The rapid development of economy has brought to investors not only oppor-
tunities, but also serious challenges and risks. The instability of the financial
markets leads to more researches in the field of financial investment, among
which portfolio selection has become a significant problem.

Markowitz [1] established a quantitative framework for portfolio selec-
tion, proposing the Mean-Variance model (MV model). However, the portfolio
c© Springer International Publishing Switzerland 2015
Y. Tan et al. (Eds.): ICSI-CCI 2015, Part I, LNCS 9140, pp. 164–175, 2015.
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selection problem proved to be a typical NP-hard problem. In addition, when
cardinality constraint is included, the model becomes a mixed quadratic and
integer programming for which no computational efficient algorithms have been
proposed.

In recent years, computational intelligence (CI) has developed at lightening
speed and has already been introduced into the field of portfolio optimization [3]
[4] [5]. Particle swarm optimization (PSO) is a collaborative population-based
meta-heuristic algorithm introduced by Kennedy and Eberhart in 1995 and has
proven to be effective in many empirical studies. There has been some researches
introducing PSO into portfolio optimization problems, but few of them lay an
emphasis on the improvement of the performance for PSO when applied to this
specific problem.

In this paper, we propose four improved PSO algorithms based on the strat-
egy of Random Population Topology for an generalized MV model which con-
siders cardinality constraints and bounding constrains.

This paper is divided into five sections. A brief introduction of the study has
been presented in Section 1. In section 2, we introduce the extended cardinality
constrained mean-variance (CCMV) model. We give a detailed description of the
proposed strategies and algorithms in Section 3. The computational experiments
are described in Section 4. Finally, Section 5 is devoted to the conclusions.

2 Portfolio Selection Model

The portfolio selection model CCMV we adopted in this paper generalizes the
standard MV model to include cardinality and bounding constraints. The model
can be described as:

minλ
N∑

i=1

N∑

j=1

zixizjxjσij − (1− λ)
N∑

i=1

zixiμi (1)

subject to:
N∑

i=1

xi = 1, (2)

N∑

i=1

zi = K, (3)

εizi ≤ xi ≤ δizi (4)

zi ∈ {0, 1}, i = 1, 2, · · · , N. (5)

Where N is the number of different assets, xi is the proportion of asset i in
the portfolio, σij is the covariance between returns of asset i and asset j, μi is
the mean return of asset i and R is the desired mean return of the portfolio,
λ ∈ [0, 1] is the risk aversion parameter, K is the desired number of different
assets included in the portfolio, εi and δi are the lower and upper bounds for the
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proportion of the assets in the portfolio, respectively. zi ∈ {0, 1} is defined as the
decision variable, asset i will be included in the portfolio if zi = 1, otherwise, it
will not be.

With different values of λ, we can get different objective function values
which are composed of mean return and variance. The objective function values
of all these Pareto optimal solutions form what is called the efficient frontier in
the Markowitz theory.

3 The Proposed PSO Algorithms Based on Random
Population Topology

3.1 Random Population Topology

For convenience of analysis, a population topology in PSO could be usually
abstracted into an undirected connected graph. The degree of a particle in the
population means the number of neighboring particles it maintains. The aver-
age degree of a population topology means the average number of neighboring
particles, which stands for the socializing degree of the swarm.

Researchers have conducted the research on Random Population Topology
and confirmed that the structures of population topology of PSO have direct
influence on its performance [6] [7] [8] [9] [10].

3.2 Strategies of Random Population Topology

In this paper, four strategies are designed for the population topology of the
PSO algorithm. These strategies can be expressed as follows.

Algorithm 1. Random Population Topology based on the average degree (RT-AD)

1: For a population with the size of S, set up a matrix L of S×S, and let L(i; i) = 1.
2: Determine the value of AD.
3: Arrange the index of all particles in PSO algorithm randomly, generate a connected

topology by setting L(i; j) = 1 if i and j are two consecutive indexes.
4: Set CurrentAD = 2.
5: repeat
6: for every row i in the L matrix, generate a random number m(m �= i).
7: Let L(m; i) = L(i; m) = 1.
8: increase CurrentAD.
9: until CurrentAD = AD

(1) Random Population Topology based on the average degree
Random Population Topology based on the average degree (RT-AD), means
generating a population topology with a given average degree AD ran-
domly for a PSO algorithm and keep the topology during the evolution.
The detailed strategy of RT-AD is shown in Algorithm 1.
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Algorithm 2. Random Population Topology based on the degree (RT-D)

1: For a population with the size of S, set up a matrix L of S×S, and let L(i; i) = 1.
2: Determine the value of D.
3: Arrange the index of all particles in PSO algorithm randomly, generate a connected

topology by setting L(i; j) = 1 if i and j are two consecutive indexes.
4: Set CurrentD = 2 for each particle.
5: repeat
6: For every position of row i, column j in the L matrix, search for an unconnected

particle m whose degree is less than D for particle i.
7: Let L(m; i) = L(i; m) = 1.
8: increase CurrentD of particle i.
9: until CurrentD of each particle i is equal to D

(2) Random Population Topology based on the degree
Unlike RT-AD, Random Population Topology based on the degree (RT-D)
generates a population topology with a certain degree D for each particle,
which means all the particles have the same number of neighbours. The
detailed strategy of RT-D is shown in Algorithm 2.

Algorithm 3. Dynamic Random Population Topology based on the average degree
(DRT-AD)

1: For a population with the size of S, set up a matrix L of S×S, and let L(i; i) = 1.
2: Determine the value of AD.
3: Arrange the index of all particles in PSO algorithm randomly, generate a connected

topology by setting L(i; j) = 1 if i and j are two consecutive indexes.
4: Set CurrentAD = 2.
5: Set the evolution generation counter to 0.
6: repeat
7: Evolve the particles in the population.
8: Generation counter increases 1.
9: if the generation counter is evenly divisible by M then

10: Increase the value of AD linearly.
11: Generate a new Random Population Topology with average degree=AD.
12: end if
13: until The termination condition is satisfied

(3) Dynamic Random Population Topology based on the average degree
Dynamic Random Population Topology based on the average degree (DRT-
AD), means generating a new population topology randomly by every cer-
tain number of generations which can be represented by a variable M. To
avoid premature convergence and increase the possibility of exploring the
whole solution space at the early stage of evolution, the average degree AD
can be set to 2 (which generates a ring topology). With the evolution gen-
erations growing, particles tend to converge to an optimum and AD should
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Algorithm 4. Dynamic Random Population Topology based on the degree (DRT-D)

1: For a population with the size of S, set up a matrix L of S×S, and let L(i; i) = 1.
2: Determine the value of D.
3: Arrange the index of all particles in PSO algorithm randomly, generate a connected

topology by setting L(i; j) = 1 if i and j are two consecutive indexes.
4: Set CurrentD = 2 for each particle.
5: Set the evolution generation counter to 0.
6: repeat
7: Evolve the particles in the population.
8: Generation counter increases 1.
9: if the generation counter is evenly divisible by M then

10: Increase the value of D linearly.
11: Generate a new Random Population Topology with the degree=D.
12: end if
13: until The termination condition is satisfied

be increased gradually to produce a new random population topology. The
detailed strategy of DRT-AD is as Algorithm 3.

(4) Dynamic Random Population Topology based on the degree
Similar to DRT-AD, the Random Population Topology based on the degree
(DRT-D) generates new topologies with a given degree D for all the particles
in the population. The detailed strategy of DRT-D is as Algorithm 4.

3.3 The Proposed Approaches: RTWPSO-AD, RTWPSO-D,
DRTWPSO-AD, DRTWPSO-D

In our research, the strategies of Random Population Topology are implemented
in a classic variant of PSO: PSO with inertia weight (WPSO) [10]. We pro-
pose four improved PSO algorithms which are: RTWPSO-AD, RTWPSO-D,
DRTWPSO-AD, DRTWPSO-D based on the four strategies: RT-AD, RT-D,
DRT-AD, DRT-D respectively and employ them to solve the CCMV model.

4 Computational Experiments

To prove the effectiveness of the Random Population Topology strategy, we
adopt the proposed four algorithms: RTWPSO-AD, RTWPSO-D, DRTWPSO-
AD, DRTWPSO-D and WPSO to solve the optimization problem and compare
the performance of them.

4.1 Settings of Experiments

All the algorithms search for the efficient frontiers for the portfolio optimization
problem based on CCMV model formulated in Eqs.(1)-(5).
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The datasets correspond to weekly prices from March, 1992 to September,
1997 including the following indices: Hang Seng in Hong Kong, DAX 100 in Ger-
many, FTSE 100 in UK, S&P 100 in USA and Nikkei 225 in Japan. The number
of assets considered for each index was 31, 85, 89, 98 and 225, respectively.

To get the Pareto optimal set under different values of risk aversion parameter
λ, we set Δλ = 0.02 thus the number of Pareto optimal solutions, denoted by ξ,
is 51. The cardinality constraints are set as follows: K = 10, εi = 0.01, δi = 1.
The swarm size is set to 100 and the number of iteration is set to 1000 for all
experiments.

We trace out the efficient frontiers of CCMV model. For comparison between
the efficient frontiers we get and the standard efficient frontier, we use four
criteria which are mean Euclidian distance, variance of return error, mean return
error and execution time. The mean Euclidian distance, variance of return error
and mean return error are defined in [11].
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Fig. 1. RTWPSO-AD with different val-
ues of AD
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Fig. 2. RTWPSO-D with different values
of D
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Fig. 3. DRTWPSO-AD with different
change numbers
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change numbers
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4.2 Experiment 1: Parameter Adjustment of RTWPSO-AD,
RTWPSO-D, DRTWPSO-AD, DRTWPSO-D

In this section, parameter adjustment of the four algorithms is carried out to
obtain the best performance of each algorithm, proving the effectiveness of them
as well as providing the basis for subsequent experiments.

For RTWPSO-AD and RTWPSO-D, five set of experiments with different
number of degree as 10, 30, 50, 70, 90 for the topology are carried out based on
Nikkei index. For DRTWPSO-AD and DRTWPSO-D, five set of experiments in
which the number of topology changes is set to be 10, 30, 50, 70, 90 respectively.
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Fig. 5. Comparison between RTWPSO-
AD&WPSO
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Fig. 6. Comparison between RTWPSO-
D&WPSO
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Fig. 7. Comparison between DRTWPSO-
AD&WPSO
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Fig. 8. Comparison between DRTWPSO-
D&WPSO

Based on the 51 points we get under different values of risk aversion param-
eter λ, we trace out the efficient frontiers for each experiment. To get a clear
impression of the results we got, we merged the five efficient frontiers into a sin-
gle one for each of the four algorithms. The corresponding results are exhibited
in Figs.(1)-(4). We find out that RTWPSO-AD and RTWPSO-D performs well
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when the degree is around 70, DRTWPSO-AD performs well when the number
of topology changes is around 50 while DRTWPSO-D performs better around
70. We compare the best performance of each algorithm with WPSO and trace
out the efficient frontiers which are shown in Figs.(5)-(8).

From Figs.(5)-(8), we can see that all the four algorithms perform better
than WPSO and get a more smoother efficient frontier which is more closer to
the standard efficient frontier.

4.3 Experiment 2: Comparison Between the Proposed Four
Algorithms and WPSO

In this section, we compare the performance of the proposed four algorithms and
WPSO by solving the five problems in different stock markets.

Since the efficient frontiers we got are very close to each other, to achieve a
better comparision result, we merged the four efficient frontiers of RTWPSO-AD,
RTWPSO-D, DRTWPSO-AD and DRTWPSO-D into one for different markets.
The results are presented in Figs.(9)-(18) as well as the box-plots of Euclidian
distance for each stock market.

Table 1. The contribution percentage of the four proposed algorithms

Index Assets
Contribution percentage(%)

RTWPSO-AD RTWPSO-D DRTWPSO-AD DRTWPSO-D

Hang Seng 31 0.33 0.16 0.14 0.37

DAX 100 85 0.27 0.24 0.16 0.33

FTSE 100 89 0.20 0.27 0.20 0.33

S&P 100 98 0.24 0.20 0.22 0.35

Nikkei 225 0.22 0.16 0.20 0.43

From the mixed efficient frontiers and the contribution percentage of each
algorithm shown in Table 1, we can conclude that DRTWPSO-D got most opti-
mal solutions in all stock markets and the other three algorithms show similar
performances in most cases. Besides, for the Hang Seng index in Fig.(9), FTSE
100 index in Fig.(13), Nikkei index in Fig.(17), the mixed efficient frontiers are
almost coincide with the standard efficient frontier despite the fact that we are
faced with a much larger search space in the Nikkei market when the dimension
increases to 225. For the DAX 100 index in Fig.(11) and S&P index in Fig.(15),
the mixed efficient frontiers are quite close to the standard efficient frontier when
the value of parameter λ is high. But when the value of parameter λ is low, the
mixed efficient frontiers tend to deviate from the standard efficient frontier, in
which the situation is worse especially for the DAX 100 index.

To take a look at the results from a numerical point, we exhibit the corre-
sponding results in Table 2. We can see clearly that the proposed DRTWPSO-
D obtained the best result in most problems using the three criteria and the
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Fig. 18. The box-plot of Nikkei 225

Table 2. The experimental results of the four proposed algorithms and WPSO

Index WPSO RTWPSO-AD RTWPSO-D DRTWPSO-AD DRTWPSO-D

Mean Euclidian distance 9.51E-05 8.80E-05 9.83E-05 9.57E-05 7.90E − 05
Variance of return error(%) 2.01188 1.90392 2.00295 2.0429 1.85689

Hang Seng Mean return error(%) 0.748491 0.685853 0.775047 0.748999 0.63821
Time(s) 119 119.964 120.864 123.815 120.3

Mean Euclidian distance 1.75E − 04 1.77E-04 1.84E-04 1.86E-04 1.86E-04
Variance of return error(%) 8.53576 8.10246 8.55663 8.76838 8.46739

DAX 100 Mean return error(%) 1.51591 1.52205 1.62269 1.57935 1.86482
Time(s) 459 435.939 413.405 435.175 422.044

Mean Euclidian distance 5.91E-05 5.87E-05 5.78E-05 5.72E-05 5.43E − 05
Variance of return error(%) 4.04585 4.05032 3.94084 3.92245 3.64471

FTSE 100 Mean return error(%) 0.493448 0.489157 0.479852 0.475298 0.455364
Time(s) 475 492.114 457.887 449.514 463.111

Mean Euclidian distance 9.56E-05 1.01E-04 1.04E-04 9.88E-05 8.68E − 05
Variance of return error(%) 3.84698 3.97382 4.00802 3.97534 3.83954

S&P 100 Mean return error(%) 0.920094 1.08019 1.17502 1.08721 0.830604
Time(s) 568 560.264 531.764 537.864 559.701

Mean Euclidian distance 5.18E-05 3.64E-05 3.58E-05 3.51E-05 3.07E − 05
Variance of return error(%) 3.20306 1.99452 2.10767 1.98833 1.83554

Nikkei Mean return error(%) 1.11824 1.30823 3.6018 0.761275 0.669599
Time(s) 2242 2042.63 2190.45 2070.53 2223.36
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box-plots just confirm it while WPSO shows a relatively worse performance in
most cases. For the DAX 100 index, the four algorithms and WPSO show sim-
ilar performances. For the FTSE 100 index and the Nikkei index, the proposed
four algorithms show good performance while WPSO performs poorly. From the
box-plots, we can also see that with the number of dimensions increases, there
begins to occur more outliers which indicates a relatively skewed distribution of
the Euclidian distances.

5 Conclusion

In this paper, we proposed four improved particle swarm optimization algo-
rithms (RTWPSO-AD, RTWPSO-D, DRTWPSO-AD, DRTWPSO-D) based on
the strategy of Random Population Topology to solve the portfolio optimization
problem and traced out its efficient frontier. We use a generalization of the stan-
dard Markowitz mean-variance model which considers cardinality constraints
and bounding constrains. These constraints convert the portfolio optimization
problem into a mixed quadratic and integer programming for which no compu-
tational efficient algorithms have been proposed.

The proposed algorithms were tested on benchmark datasets for portfolio
optimization problems. Comparisons with WPSO showed that the four algo-
rithms perform better than WPSO in most cases, among which DRTWPSO-D
shows an excellent performance with the strategy of Dynamic Random Popula-
tion Topology.

All the experimental results presented in this paper lead us to conclude that
the strategy of Random Population Topology is an important method for the
improvement of the performance for PSO algorithm and the proposed algorithms
did provide an effective solution for the portfolio optimization problem.
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Abstract. PSO is a powerful but rarely used tool in slope stability analysis until 
very recently. Despite its simplicity, PSO can be integrated with existing pro-
gram effortlessly and improves the performance and accuracy of the resulting 
analysis. In this study, a real landslide site was selected as an example. The 
problem slope was represented as a digital elevation model using laser scan-
ning, and the model was cut in parallel lines 45 degrees to the North by a cus-
tom program. The resulting 19 profiles were inputted to the STABL program 
for stability analysis using a PSO scripting program. The results showed that 
the computed factor of safety varied from profile to profile, but PSO improved 
the results consistently for all profiles. A comparison was made with the pre-
vious study in which the slope was cut in the South-North direction. Both stu-
dies showed that the directional analysis of slope stability is an important topic 
for future research. 

Keywords: Slope stability · Slope profile · PSO · STABL 

1 Background  

Computers have been used in slope stability analysis ever since the mainframe era and 
soon after the introduction of the FORTRAN language. In fact, the most noteworthy 
slope stability analysis program to date, STABL, was written in FORTRAN IV at 
Purdue University in 1975 [1] “for the general solution of slope stability problems by 
a two-dimensional limiting equilibrium method.” The program, which was originally 
released in card deck form, remains the de facto standard today (after several major 
revisions) and is licensed by many engineering consulting companies and used in 
innumerable construction projects. To augment present capabilities of STABL, the 
authors devised a technique to add PSO (Particle Swarm Optimization) functionality 
[2, 3] to the analysis without modifying the STABL program itself [4]. The technique 
was tested on a pseudo slope [4] and then verified on real landslide slope [5]. This 
study continues on the work previous presented and expands to cover the analysis in a 
different perspective.  
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2 Method 

There are a number of different versions of STABL. Some come with a graphical 
front end, while the others can only be run in a terminal mode. Following the metho-
dology described in [4, 5], this study used a scripting program to drive the terminal 
mode STABL to perform the required analysis. First, the 3-dimensional topography of 
the slope under analysis was produced by means of laser scanning. Then, the problem 
slope was cut in parallel strips programmatically using a 1-m distance between slices. 
This way many different profiles were created and an input file could be generated for 
each of the cross-sectional cut as shown in Figure 1. Finally, the input files were sent 
to STABL for analysis, and output files containing the analysis results were sent back 
by STABL. Afterwards, all output files were gathered and analyzed by the driving 
scripting program. Through the PSO logic, a new batch of input files were created for 
the next iteration of STABL analysis. The process continued until a convergence of 
the Factor of Safety (FS, the objective function) had been reached and a solution had 
been found. 

 

Fig. 1. Automated generation of STABL input files from cross-sectional cuts of the slope topo-
graphy 

3 Site of Study  

The site of this study is shown in Figure 2 (enclosed in red square). It was a landslide 
area near the Houshanyue hiking trail in the vicinity of Taipei [6]. Terrestrial laser 
scanning was performed in this area to obtain the 3D representation of the landscape 
and the Digital Elevation Model (DEM) was created. Subsequent analysis was based 
on this DEM with soil parameters obtained from nearby boreholes. 
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Fig. 2. Overlay of the 2011 DEM (Digital Elevation Model) over the 2009 aerial photo showing 
the site of study and the lines of 45-degree cut 



 Directional Analysis of Slope Stability Using a Real Example 179 

4 Results  

One of the advantages of using a 3D model of the problem slope in the analysis is that 
it is much more accurate than relying on only a few surveying points on the surface of 
the hill. This improvement would not have been attainable until the appearance of 
low-cost and high-speed terrestrial laser scanners very recently. Using a laser scanner, 
hundreds of thousands of points of measurement covering the entire slope could be 
made in a very short time interval. Therefore, profiles such as that shown in Figure 1 
could be generated and used in the analysis. For the problem slope of Houshanyue, 
the lines of cut could be made in any direction. For this study, a set of parallel lines 45 
degrees to the North were chosen as shown in the bottom figure of Figure 2. Since the 
final output of STABL (after PSO iterations) only contained textual results, a Matlab 
program was written to plot the corresponding slope profiles and the most critical 
sliding surfaces determined by PSO. An example is shown in Figure 3. 

 

Fig. 3. Final STABL output files were plotted using a custom Matlab program 

Table 1 summarizes the results of the analysis. When the problem slope in this 
study was cut in parallel lines 45 degrees to the North, 19 profiles were created as 
tabulated in Table 1. The profiles were named (for example, @15 m) in relative to an 
arbitrarily chosen boundary at the site. Note that some of the profiles generated by the 
automatic program were not continuous due to the undulating nature of the slope sur-
face, therefore they were not included in the consequent analysis. Only profiles that 
were complete and well-defined were used in the computation. It can be seen from the 
results of Table 1 that the use of PSO improved the computation results and reduced 
the FS for every single profile. The improvement was substantial, ranging from 0.16% 
to 11.11%. The lowest FS was found at the profile 19 m from the boundary, and the 
FS was equal to 1.130. 
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Table 1. The % improvement of FS’s using PSO on parallel profiles cut 45 degrees to the 
North 

Slice Initial FS (Fig. 1) PSO FS % improvement 

@15 m 1.337  1.240  7.26% 

@16 m 1.250  1.164  6.88% 

@17 m 1.359  1.267  6.77% 

@18 m 1.408  1.343  4.62% 

@19 m 1.244  1.130  9.16% 

@20 m 1.323  1.192  9.90% 

@21 m 1.492  1.427  4.36% 

@22 m 1.340  1.217  9.18% 

@23 m 1.354  1.263  6.72% 

@24 m 1.396  1.327  4.94% 

@25 m 1.334  1.252  6.15% 

@26 m 1.363  1.286  5.65% 

@27 m 1.322  1.278  3.33% 

@28 m 1.390  1.238  10.94% 

@29 m 1.275  1.273  0.16% 

@30 m 1.509  1.460  3.25% 

@31 m 1.368  1.216  11.11% 

@32 m 1.381  1.243  9.99% 

@33 m 1.371  1.237  9.77% 

5 Summary and Discussion 

This is a continuing study of the use of PSO in the slope stability analysis. A real 
landslide was chosen as the example and the site of study. The surface topography 
was re-created faithfully using a laser scanner. The resulting model was cut in parallel 
lines 45 degrees to the North to generate 19 profiles for STABL analysis. The final 
results were plotted together in Figure 4, and they showed clear differences between 
profiles. Therefore, it can be concluded that the FS positively depends on the location 
of the profile. However, in contrast to the substantial variation of FS of the earlier 
study where the slope was cut in the South-North direction [7], the FS in this study 
showed relatively little variation with respect to the profiles (Figure 4). The percen-
tage difference between the largest and the smallest FS’s in this study was (1.460-
1.130) / 1.130 = 29.2%. On the other hand, the percentage difference in [7] was 
(2.324-0.924) / 0.924 = 151.5%. Three points are worth making about these results. 
First, both studies showed that multiple parallel profiles were indeed useful in the  
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3-dimensional analysis of the problem slope. Second, the due North profiles yielded a 
lower FS (0.924) than the 45-degree profiles (1.130). Finally, since the 45-degree and 
the 0-degree cut profiles returned different minimum FS’s, it indicated that the FS is 
directionally dependent property of the slope. Therefore, a more thorough directional 
analysis of slope stability (covering other scenarios) will be needed in the next stage 
of the research. 

 

Fig. 4. A plot combining the results of 19 profiles shown in Table 1. The lines of the variation 
of FS’s before and after the use of PSO were shown in blue and red, respectively. 
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Appendix: Computed FS’s of Selected Profiles  

The factors of safety of selected profiles are included here for general reference  
purposes. 

 

Fig. 5. Analysis results of the profile 15 m 
from the boundary 

Fig. 6. Analysis results of the profile 20 m 
from the boundary 

 

Fig. 7. Analysis results of the profile 25 m 
from the boundary 

Fig. 8. Analysis results of the profile 30 m 
from the boundary 
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Abstract. Technological advances nowadays have made it possible for
processes to handle large volumes of historic information whose man-
ual processing would be a complex task. Data mining, one of the most
significant stages in the knowledge discovery and data mining (KDD)
process, has a set of techniques capable of modeling and summarizing
these historical data, making it easier to understand them and helping
the decision making process in future situations. This article presents a
new data mining adaptive technique called lvqPSO that can build, from
the available information, a reduced set of simple classification rules from
which the most significant relations between the features recorded can
be derived. These rules operate both on numeric and nominal attributes,
and they are built by combining a variation of a population metaheuristic
and a competitive neural network. The method proposed was compared
with several methods proposed by other authors and measured over 15
databases, and satisfactory results were obtained.

Keywords: Classification rules · Data mining · Adaptive strategies ·
Particle swarm optimization · Learning vector quantization

1 Introduction

Data mining is a research field that in recent years has gained attention from vari-
ous sectors. Government employees, business people and academics alike, for very
different reasons, have contributed to the development of various techniques that
can summarize the information that is available. This is one of the most impor-
tant stages in the knowledge discovery and data mining process, and it is charac-
terized for producing useful and novel information without any prior hypotheses.
It encompasses a set of techniques capable of modeling available information and,
even though there are different types of models, decision makers usually choose
those that are self-explanatory. For this reason, rules, i.e., statements of the IF
condition1 THEN condition2 type, are preferred when characterizing that huge
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volume of historical data that were automatically saved. In particular, we were
interested in obtaining classification rules, i.e., rules whose consequence is formed
by a single condition with the same attribute being involved: the class. However,
most of the existing methods produce sets of rules that are so large and complex
that, despite having the IF-THEN structure, rules become almost unreadable.
For this reason, a new method to obtain classification rules is proposed in this
article, with two essential features: the cardinality of the set of rules obtained
is low, and the antecedent of the rules that are generated is reduced. To this
end, the method proposed combines a competitive neural network with an opti-
mization technique. The former is responsible for the supervised grouping of the
examples with the purpose of identifying the most relevant attributes for build-
ing the rule. Then, by means of an optimization technique, the search process is
guided towards the appropriate set of rules.

This paper is organized as follows: Section 2 lists some related articles,
Sections 3 and 4 briefly describe the neural network and metaheuristic used,
respectively, Section 5 details the method proposed, Section 6 presents the results
obtained, and Section 7 presents a summary of the conclusions.

2 Related Work

The literature describes several methods for building classification rules that
can operate with numerical and nominal attributes. The most popular one is
the method known as C4.5, defined by Quinlan in [16], which can be used to
generate a pruned classification tree whose branches allow obtaining the desired
set of rules.

It should be noted that the lvqPSO method proposed in this article, unlike
the C4.5 method, generates a list of classification rules. That is, when using the
rules to classify new examples, they are not analyzed separately but rather in
their order of appearance. Therefore, the rules are inspected one by one until
the one that is applicable to the case at hand is found. This is related to how
the set of rules was built, and has been used in other methods, such as PART,
defined Witten in [2]; PSO/ACO, defined by Holden in [3]; and cAnt-MinerPB,
proposed by Medland in [14].

In the case of PART, a pruned partial tree is built to determine each rule,
following the ideas proposed by Quinlan in C4.5. The difference lies in that
the tree is not built in full, but rather an error quota is applied to stop tree
generation and select the best brach obtained so far. On the other hand, the
PSO/ACO and cAnt-MinerPB method share with lvqPSO the idea of using a
population-based metaheuristic to search for the best rules.

In particular, lvqPSO presents an approach that is based on Particle Swarm
Optimization (PSO). This technique has already been used in previous works
[1,5,8,19]. Unquestionably, one of the main issues when operating with nomi-
nal attributes is the impossibility of adequately covering all areas of the search
space with the examples that are available. This results in a poor start for the
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population and a premature convergence to a local optimum. As a way to solve
this problem, and at the same time reducing rule generation time, the initial
state is obtained from an LVQ (Learning Vector Quantization) competitive neu-
ral network.

The literature describes methods that optimize a competitive neural network
with PSO and significantly reduce the calculation time for the training phase
[15], or methods that use PSO to determine the optimal number of competitive
neurons to be used in the network, such as [4]. Unlike these papers, our pro-
posal is using PSO to obtain the set of rules, and an LVQ network to avoid the
premature convergence of the population.

3 Learning Vector Quantization (LVQ)

Learning Vector Quantization (LVQ) is a supervised classification algorithm that
is based on centroids or prototypes [9]. It can be interpreted as a competitive
neural network formed by three layers. The first layer is just an input layer. The
second layer is where competence takes place. The output layer is responsible
for the classification process. Each neuron in the competitive layer is associated
to a number vector whose dimension is the same as that of the input examples,
and a label that indicates the class that it is going to represent. Once the adap-
tive process finishes, these vectors will contain the information related to the
classification centroids or prototypes. There are several versions of the training
algorithm. The one used in this article is described below.

When the algorithm is started, the number K of centroids to be used must
be indicated. This allows defining the architecture for the network, since the
number of input entries and output results are given by the problem.

Centroids are initialized taking K random examples. Examples are then
entered one by one, and centroid position is then adapted. To do so, the centroid
that is closest to the example being analyzed is selected using a preset distance
measurement. Since this is a supervised process, it is possible to determine if the
example and the centroid belong or not to the same class. If the centroid and
the example do belong to the same class, the centroid is “moved closer” to the
example in order to strengthen representation. If, on the contrary, they belong
to different classes, the centroid is “moved away”. These movements are done
by means of a factor or adaptation speed that allows weighing the distance for
the move.

This process is repeated until modifications are below a preset threshold, or
until the examples are identified with the centroids themselves in two consecutive
iterations, whichever happens first.

For the implementation used in this article, the second nearest centroid is
also analyzed and, should it belong to a different class than that of the example,
and should it be at a distance that is less than 1.2 times the distance to the first
centroid, the “moving away” step is applied.

Several variations of LVQ are described in [10].
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4 Obtaining Classification Rules with PSO

Particle Swarm optimization or PSO is a population-based metaheuristic pro-
posed by Kennedy and Eberhart [6] where each individual in the population,
called particle, represents a possible solution to the problem and adapts by fol-
lowing three factors: its knowledge of the environment (its fitness value), its
historical knowledge or previous experiences (its memory), and the historical
knowledge or previous experiences of the individuals in its neighborhood (its
social knowledge).

PSO was originally defined to work on continuous spaces, so a few consider-
ations should be taken into account when working on discrete spaces. For this
reason, Kennedy and Eberhart defined in [7] a new binary version of the PSO
method. On of the key problems of this last method is its difficulty to change
from 0 to 1 and from 1 to 0 once it has stabilized. This has resulted in dif-
ferent versions of binary PSO that seek to improve its exploratory capacity. In
particular, the variation defined by Lanzarini et al. [13] will be used in this
article.

Using PSO to generate classification rules that can operate on nominal and
numerical attributes requires a combination of the methods mentioned above,
since the attributes that will be part of the antecedent (discrete) have to be
selected and the value or range of values they can take (continuous) has to be
determined.

Since this is a population-based technique, the required information has to
be analyzed for each individual in the population. A decision has to be made
between representing a single rule or the entire set for each individual, and the
representation scheme has to be selected for each rule. Given the objectives
proposed for this work, the Iterative Rule Learning (IRL) [18] approach was
followed, where each individual represents a single rule and the solution to the
problem is built from the best individuals obtained after a sequence of runs.
Using this approach implies that the population-based technique will be applied
iteratively until achieving the desired coverage and obtaining a single rule in
each iteration: the best individual in the population. Additionally, a fixed-length
representation was chosen, where only the antecedent of the rule will be coded
and, given the approach adopted, an iterative process will be carried out to
associate all individuals in the population to a preset class, which does not
require consequent codification. The code used for each particle is described in
detail in [11].

The efficacy of population-based optimization techniques is closely related to
the size of the population. For this reason, the method proposed here uses the
variable population strategy defined in [12]. Thus, a minimum-size population
can be used to initiate the process and then adjust the number of particles during
the adaptive process.

The fitness value for each particle is calculated as follows:

Fitness = α ∗ balance ∗ support ∗ confidence− β ∗ lengthAntecedent (1)
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where

– support: it is the support value for the rule. That is, the quotient between
the number of examples that fulfill the rule and the total number of examples
being analyzed.

– confidence: it is the confidence value for the rule. That is, the quotient of
the number of examples that satisfy the rule and the number of those that
satisfy the antecedent.

– lengthAntecedent: it is the quotient between the number of conditions used
in the antecedent and the total number of attributes. It should be noted that
each attribute can only be used once within the rule antecedent.

– α, β: these are two constants that represent the significance assigned to each
term.

– balance: it takes values between (0,1], and it is used to compensate the effect
of the imbalance between classes when calculating the support value. It is
applied only when working with classes that have a number of examples
that is above the mean. Let C1, C2, ..., Ci, ..., CN be the classes into which
the examples are divided. N is the total number of classes. Let Ei be the
number of examples in the nth class. Let T be the total number of examples
being used. That is,

T =
N∑

i=1

Ei (2)

Let j be the class to which the rule corresponding to the phenotype of the
particle belongs. Let Si be the number of examples in class Ci covered by
the rule. Note that Sj corresponds to the support of the rule and

N∑

i=1,i �=j

Si (3)

is the total number of examples incorrectly covered by that rule. Then, the
value of this factor is calculated as follows

balance =
N∑

i=1,i �=j

Ei − Si

T − Ej
(4)

That is, balance will have a value of 1 if the rule is perfect, i.e., its confidence
is 1. On the other hand, Balance will be 0 if the rule covers all of the examples
being used regardless of their class.

5 Proposed Method for Obtaining Rules: lvqPSO

Rules are obtained through an iterative process that analyzes non-covered exam-
ples in each class, starting with the largest classes. Each time a rule is obtained,
the examples that are correctly covered by the rule are removed from the input
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data set. The process continues until all examples are covered or until the number
of non-covered examples in each class is below the corresponding established min-
imum support or until a maximum number of tries has been done to obtain a
rule, whichever happens first. It should be noted that, since the examples are
removed from the input data set as they are covered by the rules, the rules oper-
ate as a classification list. That is, in order to classify a new example, the rules
must be applied in the order in which they were obtained, and the example will
be classified with the class that corresponds to the consequent of the first rule
whose antecedent is verified for the example at hand.

Before starting the iterative process for obtaining the rules, the method starts
with the supervised training of an LVQ neural network using the entire set of
examples. The purpose of this training is identifying the most promising areas
of the search space.

Since neural networks only operate with numerical data, nominal attributes
are represented by means of dummy code that uses both binary digits and the
different options that may be present in such nominal attribute. Also, before
starting the training process, each dimension that corresponds to a numerical
attribute is linearly scaled in [0,1]. The similarity measure used is the Euclidean
distance. Once training is finished, each centroid will contain approximately the
average of the examples it represents.

To obtain each of the rules, the class to which the consequent belongs is
first determined. Seeking high-support rules, the method proposed will start
by analyzing those classes with higher numbers of non-covered examples. The
minimum support that any given rule has to meet is proportional to the number
of non-covered examples in the class upon rule generation. That is, the minimum
required support for each class decreases as iterations are run, as the examples
in the corresponding class are gradually covered. Thus, it is to be expected that
the first rules will have a greater support than the final ones.

After selecting the class, the consequent for the rule is determined. To obtain
the antecedent, a swarm population will be optimized using the process described
in Section 4. This swarm will be initialized with the information from the cen-
troids. In Algorithm 1, the pseudo-code of the method proposed is shown.

6 Results Obtained

In this section, the performance obtained with the method proposed is compared
against that of the cAnt-MinerPB, J48 (implementation of C4.5) and PART
methods mentioned in Section 2 for generating classification rules for a known
set of 15 databases of the UCI repository [17].

Thirty separate runs of ten-fold cross-validation were performed for each
method, and an LVQ network with 9 neurons was used. In the case of the PART
and C4.5 methods, a confidence factor of 0.3 and 0.25, respectively, was used for
pruning the tree. The cAnt-MinerPB method was used with a colony of 9 ants.
For the rest of the parameters, their default values were used.

Tables 1, 2 and 3 summarize the results obtained with each method for each
of the databases, calculating mean and deviation. In each case, not only the
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Algorithm 1. Pseudocode of the proposed method
Train LVQ network using all training examples.
Calculate the minimum support for each class.
while (termination criterion is not reached) do

Choose the class with the highest number of non-covered examples.
Build a reduced population of individuals from centroids.
Evolve the population using variable population PSO.
Obtain the best rule for the population.
if (the rule meets support and confidence requirements) then

Add the rule to the set of rules.
Consider the examples classified by this rule as correctly covered.
Recalculate the minimum support for this class.

end if
end while

coverage accuracy of the set of rules was considered (Table 1), but also the
clarity of the model obtained, which is reflected in the average number of rules
obtained (Table 2) and the average number of terms used to form the antecedent
(Table 3). In each case, a two-tailed mean difference test with a significance level
of 0.05 was carried out, where the null hypothesis establishes that the means are
equal. Based on the results obtained, when the difference is signficant according
to the specified level, the best option was shaded and highlighted in bold in the
table and when the difference is not significant equivalent solutions were only
highlighted in bold.

As shown in Table 2, in most of the cases, the number of rules used by
the method proposed is lower than with the other methods. This is due to
the emphasis placed on the simplification of the model. The purpose is not
only solving a classification problem, but also building a specific help tool for
decision making. The expectation is generating a model that can identify the
most relevant attributes and exposes how they are related among themselves
when classifying available information.

In Table 1, in 5 of the cases, the accuracy achieved with lvqPSO is equivalent
to or better than that obtained with other methods. In the case of the “Breast
cancer”, “Credit-a”, “Heart disease” and “Zoo” databases, accuracy is better or
approximately the same, and the number of rules is still lower. In the case of the
“Iris” database, the number of rules is similar to that used by the deterministic
methods C4.5 and PART, and lower than with cAnt-MinerPB.

However, when the problem to solve requires a large number of rules, the
method proposed is less accurate. This happens in other databases that were
tested. If these cases are analyzed in average, it can be stated that for a 2%
improvement, a five-fold increase in rule set cardinality was required. For exam-
ple, for the “Diabetes” database, the best accuracy is obtained with the cAnt-
MinerPB method, with 26 rules, followed by C4.5, with 20 rules. There is a 2%
difference in accuracy when compared to lvqPSO, but the latter uses less than
4 rules to solve the problem, i.e., only one sixth of the number of rules used by
cAnt-MinerPB. The same happens with the “Breast-w” database, with lvqPSO
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Table 1. Accuracy of the rule set obtained when applying the lvqPSO, PART, cAnt-
MinerPB and J48 methods

Database lvqPSO cAnt-MinerPB C4.5 (J48) PART

Balance scale 0, 7471 ± 0, 0231 0, 7696 ± 0, 0105 0, 7732 ± 0, 0073 0, 8219 ± 0, 0129

Breast cancer 0, 7203 ± 0, 0121 0, 7088 ± 0, 0208 0, 5641 ± 0, 0466 0, 6631 ± 0, 0207

Breast-w 0, 9490 ± 0, 0079 0, 9485 ± 0, 0049 0, 9549 ± 0, 0050 0, 9566 ± 0, 0065

Credit-a 0, 8569 ± 0, 0055 0, 8493 ± 0, 0087 0, 8515 ± 0, 0047 0, 7454 ± 0, 0444

Credit-g 0, 7060 ± 0, 0128 0, 7374 ± 0, 0091 0, 7095 ± 0, 0072 0, 6998 ± 0, 0111

Diabetes 0, 7242 ± 0, 0152 0, 7409 ± 0, 0050 0, 7438 ± 0, 0116 0, 7377 ± 0, 0156

Heart disease 0, 7650 ± 0, 0151 0, 7598 ± 0, 0164 0, 7433 ± 0, 0169 0, 7647 ± 0, 0264

Heart statlog 0, 7626 ± 0, 0180 0, 7648 ± 0, 0141 0, 7811 ± 0, 0083 0, 7667 ± 0, 0150

Iris 0, 9427 ± 0, 0218 0, 9380 ± 0, 0122 0, 9453 ± 0, 0103 0, 9440 ± 0, 0110

Kr-vs-kp 0, 9365 ± 0, 0037 0, 9812 ± 0, 0010 0, 9929 ± 0, 0007 0, 9917 ± 0, 0013

Mushroom 0, 9676 ± 0, 0046 0, 9969 ± 0, 0001 0, 9843 ± 0, 0252 0, 9962 ± 0, 0106

Promoters 0, 6977 ± 0, 0261 0, 7917 ± 0, 0250 0, 7082 ± 0, 0389 0, 6782 ± 0, 0600

Soybean 0, 8735 ± 0, 0156 0, 9066 ± 0, 0056 0, 9082 ± 0, 0053 0, 8936 ± 0, 0090

Wine 0, 8727 ± 0, 0146 0, 9192 ± 0, 0124 0, 8800 ± 0, 0144 0, 8867 ± 0, 0091

Zoo 0, 9417 ± 0, 0204 0, 9408 ± 0, 0153 0, 3290 ± 0, 0277 0, 3190 ± 0, 0307

Table 2. Number of rules obtained when applying the lvqPSO, PART, cAnt-MinerPB
and J48 methods

Database lvqPSO cAnt-MinerPB C4.5 (J48) PART

Balance scale 9, 6700 ± 0, 5945 14, 6900 ± 0, 4483 41, 3300 ± 1, 3300 38, 5100 ± 1, 2215

Breast cancer 5, 8600 ± 0, 4742 25, 4100 ± 1, 0744 11, 4500 ± 1, 1128 18, 8900 ± 1, 4098

Breast-w 2, 8900 ± 0, 3281 12, 9000 ± 0, 5477 10, 8500 ± 0, 7091 10, 3500 ± 0, 4950

Credit-a 3, 4100 ± 0, 1595 25, 0000 ± 0, 8654 18, 0400 ± 1, 8404 33, 3200 ± 1, 3028

Credit-g 8, 3600 ± 0, 8113 41, 4100 ± 2, 0776 85, 4500 ± 3, 4574 70, 5700 ± 1, 5868

Diabetes 3, 7900 ± 0, 3178 26, 6400 ± 0, 8996 22, 1900 ± 2, 7517 7, 5200 ± 0, 4264

Heart disease 4, 9200 ± 0, 2821 16, 0800 ± 0, 7406 23, 9000 ± 0, 9043 19, 6400 ± 0, 4248

Heart statlog 4, 6400 ± 0, 3777 15, 1200 ± 0, 6663 18, 1900 ± 1, 2556 17, 8700 ± 0, 4191

Iris 3, 0600 ± 0, 0843 8, 3500 ± 0, 3808 4, 6600 ± 0, 0966 3, 7800 ± 0, 2658

Kr-vs-kp 3, 6500 ± 0, 3274 18, 0900 ± 0, 9049 29, 0700 ± 0, 6717 22, 1100 ± 0, 6385

Mushroom 3, 2300 ± 0, 1059 22, 6900 ± 2, 0328 18, 6100 ± 0, 2378 11, 2400 ± 0, 2591

Promoters 7, 4250 ± 0, 3775 11, 5300 ± 0, 6430 16, 7500 ± 0, 5874 7, 2800 ± 0, 3765

Soybean 24, 6857 ± 0, 7151 62, 9700 ± 2, 1334 43, 5400 ± 0, 2366 31, 7300 ± 0, 4322

Wine 3, 7818 ± 0, 0874 6, 6900 ± 0, 3900 7, 6600 ± 0, 4766 5, 6200 ± 0, 1317

Zoo 6, 9500 ± 0, 0548 10, 9700 ± 0, 2214 8, 3500 ± 0, 0707 7, 6300 ± 0, 0483
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Table 3. Antecedent average length for each rule obtained when applying the lvqPSO,
PART, cAnt-MinerPB and J48 methods

Database lvqPSO cAnt-MinerPB C4.5 (J48) PART

Balance scale 1, 8035 ± 0, 0910 1, 5900 ± 0, 0527 6, 3494 ± 0, 0668 3, 0807 ± 0, 0694

Breast cancer 1, 7373 ± 0, 0497 1, 8464 ± 0, 0578 2, 1210 ± 0, 0939 2, 0048 ± 0, 0570

Breast-w 3, 3173 ± 0, 3546 1, 1622 ± 0, 0329 3, 8899 ± 0, 1581 2, 1249 ± 0, 0800

Credit-a 1, 4049 ± 0, 1186 1, 2247 ± 0, 0504 4, 8299 ± 0, 2014 2, 4844 ± 0, 0746

Credit-g 2, 0349 ± 0, 1276 1, 9258 ± 0, 1227 5, 6443 ± 0, 1209 2, 9695 ± 0, 0890

Diabetes 2, 4647 ± 0, 2027 1, 1627 ± 0, 0238 5, 7461 ± 0, 3253 1, 9255 ± 0, 1043

Heart disease 1, 8766 ± 0, 1039 1, 7455 ± 0, 0682 3, 9391 ± 0, 0952 2, 5415 ± 0, 0692

Heart statlog 1, 8491 ± 0, 0715 1, 2927 ± 0, 0346 4, 6700 ± 0, 1629 2, 8783 ± 0, 1099

Iris 1, 2083 ± 0, 0518 1, 1793 ± 0, 0329 2, 6118 ± 0, 0540 0, 9949 ± 0, 0135

Kr-vs-kp 2, 4750 ± 0, 1236 1, 4986 ± 0, 1125 7, 7738 ± 0, 0318 3, 1275 ± 0, 0689

Mushroom 1, 6400 ± 0, 0733 1, 0899 ± 0, 0294 2, 6302 ± 0, 0384 1, 2609 ± 0, 0153

Promoters 1, 1131 ± 0, 0302 1, 0409 ± 0, 0527 2, 2847 ± 0, 0364 0, 9976 ± 0, 0416

Soybean 3, 1299 ± 0, 2543 3, 3858 ± 0, 0537 6, 0213 ± 0, 0349 2, 7127 ± 0, 0709

Wine 2, 7811 ± 0, 2248 1, 0626 ± 0, 0340 3, 1027 ± 0, 1232 1, 5529 ± 0, 0759

Zoo 1, 6675 ± 0, 0462 1, 6888 ± 0, 0601 4, 0057 ± 0, 0242 1, 4693 ± 0, 0145

being less accurate than C4.5 and PART by approximately 1% but using only
one third of the number of rules with less queries in each antecedent.

7 Conclusions

A novel method for obtaining classification rules has been presented. This
method is based on PSO and can operate with numerical and nominal attributes.

An LVQ neural network was used to adequately initialize the population of
rules. The centroids obtained when grouping available data allow identifying
the relevance of each attribute for the examples. In any case, this metric is not
enough to select the attributes that will form the rule, and it is at this point
where PSO takes control to carry out the final selection.

A representation for the rules was used, combining a binary representation
that allows selecting the attributes that are used in the rule with a continuous
representation used only to determine the boundaries of the numerical attributes
that are part of the antecedent. A variation of binary PSO was used whose pop-
ulation is adequately initialized with the information from the centroids in the
previously trained LVQ network and which has the ability of adjusting popula-
tion size.

The results obtained when applying the method proposed on a set of test
databases show that the lvqPSO method obtains a simpler model. In average, it
uses approximately 40% of the number of rules generated by the other methods,
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with antecedents formed by just a few conditions and an acceptable accuracy
given the simplicity of the model obtained.

Although not included in this article, the measurements performed using
the method proposed but using fixed-size population PSO resulted in a less
accurate set of rules. This is because the architecture of the LVQ network must
be indicated beforehand, which affects grouping quality.
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Abstract. Operating room (OR) scheduling plays a decisive role in providing 
timely treatment for the patients, reducing the operation cost and increasing the 
hospital resources’ utilization. It can be regarded as a multi-objective combina-
torial optimization problem. The objectives involved in the problem are defined 
from different perspectives and often conflicting. A modified ant colony opti-
mization (ACO) algorithm with Pareto sets construction and two types of phe-
romone setting is proposed to solve the multi-objective OR scheduling problem. 
The scheduling results by three different approaches, i.e. the simulation, the 
ACO with single objective of the makespan (ACO-SO), and the proposed ACO 
with multi-objectives (ACO-MO) are compared. The computational results 
show that the ACO-MO achieved good results in shortening makespan, reduc-
ing nurses’ overtime and balancing resources’ utilization in general. 

Keywords: Operating room scheduling · Multi-objective optimization · Pareto 
set · Ant colony optimization 

1 Introduction 

It is important to ensure hospital providing a satisfied healthcare service. The satisfac-
tion should be reflected in three perspectives, i.e. patients, medical staffs, and hospital 
management.  Those three parties may focus on different performance measurements 
which sometime conflict with each other. For example, the demands for surgical ser-
vice have been constantly increased because of aging population. Patients want to 
have the quality surgeries as soon as possible, which causes the excessive overtime on 
medical staffs. In turn, such stressful work in operating room (OR) leads to the loss of 
medical staffs. It turns to be a vicious cycle in demands increasing and resources 
shortage. Under this situation, patients care for the timely surgery service and the time 
is their criteria. Medical staffs care for the workload and less overtime is their prefe-
rence. OR management care for the resources’ utilization and operation cost. But the 
time, the workload, and the operation cost are mutually incompatible. It is a challenge 
for OR management to solve such multi-objective optimization (MO) problem.       

OR planning and scheduling have been a hot research topic recently [1-3]. Most 
OR scheduling researches in operation research community described the problem as 
an optimization model with single objective, i.e. the patients’ waiting time[4][5],  
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the utilization of OR [6][7], and the Makespan [8][9]. There also exist some OR sche-
duling problems considered multiple objectives [10-12]. Although not necessarily, the 
performances often conflict with each other, meaning that building an optimal sche-
dule with respect to one objective goes at the cost of the other objectives. In addition, 
the combinatorial nature and the nonlinearity in constraints make it extremely difficult 
to optimize. In this paper, a modified ACO is proposed to solve such multi-objective 
OR scheduling problem. 

2 Multi-objective OR Scheduling Problem 

Since OR scheduling problem is an optimization problem involved multiple surgery 
stages and multiple resources, several measurements should be taken into account 
when sequencing the individual surgery and allocating the required resources. We 
assume that there is a set of surgeries I to be performed in an operating system with 
different types of resources C. The OR scheduling problem is to minimize three ob-
jectives (described in function f1, f2 and f3) involving the makespan, the overtime, and 
the equilibrium degree.  

 ( )321 ,,min fffF =
→

  (1) 

The three objective functions are: 

1. Objective function 1: is to minimize the end time to finish all surgeries, so-called 
makespan. Ti3 is the end time of last stage of a surgery i. 
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2. Objective function 2: is to minimize the variation of resources working time. It is 
used to evaluate the balance of resource utilization and defined as the ratio of the 
standard deviation to mean as shown in equation (4-5). cm
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3. Objective function 3: is to minimize the total overtime of all resources. Rcm is the 
regular working time for a specific resource m in resource type c. 
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3 The Modified ACO Algorithm for Multi-objective OR 
Scheduling 

The combinatorial nature of the OR scheduling optimization make it challenging to 
obtain a global optimal solution. Instead, we aim at a meta-heuristic approach for sub-
optimal solution. Further to consider the conflicted objectives in OR scheduling, a 
modified ACO algorithm is integrated with the Pareto set to efficiently solve the mul-
ti-objective optimization problem. 

ACO has been successfully applied to solve several combinatorial optimization 
problems, like the traveling salesman problem (TSP) and the job-shop scheduling 
problem (JSP). The traditional ant graph structure in those problems is represented as 
a graph with all nodes to be traversed. And the ant foraging path is the sequence of 
cities/jobs for TSP/JSP. However, the OR scheduling determines not only the surge-
ries sequence but also the resource allocation for each of the surgery stages. A  
two-level ant graph has to be designed. In our previous research, an ACO with such 
two-level ant graph was proposed for solving surgery scheduling optimization with 
single objective of makespan [9]. The outer level ant graph is the same as traditional 
ACO ant graph for TSP/JSP and defined as a surgery graph with all surgery nodes. 
The ant foraging path is the scheduling sequence of the surgeries. The inner level 
graph is composed of all available resources along the three-stage surgery procedure. 
Ant foraging path in inner level graph determines the resources selection for each 
specific stage during a surgery. 

3.1 Construct Pareto Set  

Individual ant traverses the two-level ant graph to build a feasible schedule solution. 
Due to the multiple objectives and often conflicting objectives in OR scheduling prob-
lem, there does not exist a single solution that simultaneously minimizes each individual 
objective. The Pareto Set is introduced. OR scheduling problem is described as a MO 

problem with three objectives: ( )321 ,,min fffF =
→

. Assume S is the feasible solution set. 

A feasible solution Ss ∈1
is said to dominate another solution Ss ∈2 , represented as  

( 21 ss  ), if 1) { }3,2,1),()( 21 ∈≤ isfsf ii  and 2) { }3,2,1),()( 21 ∈∃< jsfsf jj . Solution 1s  is 

called Pareto optimal, or Pareto optimal, if none of the objective functions can be im-
proved in value without degrading some of the other objective values. All Pareto optim-
al solutions are considered equally good and form a Pareto set. 
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3.2 Pheromone Setting and Update Strategy 

For ACO solving for the single objective optimization (ACO-SO), the pheromone is 
released on the specific path belonging an optimal solution [9]. However, in the multi-
objective OR scheduling, there no longer exists such single optimal solution, but a 
number of Pareto optimal solutions. Therefore, a special pheromone releasing should 
be introduced to take into account the impact of several Pareto optimal solutions due 
to multiple objectives. Two kinds of pheromone setting, single-path-single-
pheromone (SPSP) and single-path-multi-pheromone (SPMP) are introduced here. 

Single-Path-Single-Pheromone (SPSP)  
Like ACO-SO, SPSP allows only one pheromone value releasing on a path. Within 
one cycle, ants traverse the ant graph and return an iteration Pareto set. In order to let 
following ants cluster to paths with Pareto optimal solutions, an iteration-Pareto-
optimal (IPO) update strategy is introduced in this work, i.e. only those paths with 
best objectives (like makespan, overtime, and balance utilization) are reinforced with 
an incremental comprehensive pheromone which is determined by weighted objective 
value. We set rQ  as the pheromone strength vector associated with three objectives, 

define weights for each individual objectives as rω , r=1,2,3, and group solutions with 

individual best objective as a set PSbest. 
The pheromone (

ijτ ) indicates the strength on a path from node i to node j in the 

ant graph. Only pheromone on paths of ant solution in PSbest are enhanced and up-
dated according to equation (7). ρ  denotes the pheromone evaporation rate. The 

incremental comprehensive pheromone ( )(sijτΔ ) on the edge (i,j) of a solution s in 

PSbest is determined by a weighted objective shown in equation (8). r
sL is the rth objec-

tive value of a solution s. Decision maker can regulate the emphasis on pheromone 
according to weights setting for different objectives. Such pheromone IPO update 
strategy enhances the pheromone on the paths with best individual objective. 
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Single-Path-Multi-Pheromone (SPMP)   
SPMP allows multiple pheromone value to be laid on a single ant path. since three 
objectives are proposed for OR scheduling problem, there are three pheromones asso-
ciated (r=1,2,3) on a single path. Therefore, a pheromone vector which includes three 
pheromone values is defined for all pheromones in a two-level ant graph.  

Equation (9) defines the pheromone from node i to node j in the ant graph. Its val-
ue is determined by the individual objective strength r

ijτ and the associated weights rω .  
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IPO update strategy (Equation (10) and (11)) is adopted to cluster ants to paths 
with Pareto optimal solutions. Only the pheromone value associated to the individual 
best objective is reinforced, the other two pheromone value in vector keep unchanged. 
However, evaporation will be happened for all pheromones in pheromone vector.  

4 Computational Study  

The proposed ACO-MO algorithm is implemented with MATLAB and is run on a PC 
running Windows XP with Intel Core5 @2.79GHz and 3GB of memory. The same 
test cases from our previous research [9] are adopted here. The surgeries are classified 
into five types: small (S), medium (M), large (L), extra-large (EL), and special (SE), 
according to surgery duration. The durations of these five surgery types, the pre-
surgery stage and the post-surgery stage are represented as normal distribution ( μ ,

σ ) and are listed in Table 1. Table 2 shows those three test cases with detail problem 
size and resources required. Three performance measurements are used this compari-
son and they are the makespan, the variation coefficient of resources working time 
(VCWT), the total overtime of nurses.  

Table 1. The duration of pre/post-surgery stage and duration of a surgery in different types 

 Pre-sur 
gery 

Surgery case Post-sur 
gery S M L EL SE 

Duration (8, 2) (33,15) (86,17) (153,17) (213,17) (316,62) (28,17) 

Table 2. Three test cases 

Case  
surge-
ries 

PHU 
beds 

Nurs
es 

Surge- 
ons 

OR
s 

PACU 
beds 

Anest
hetist 

Surgery type 
(S:M:L:E:SE) 

1 10 2 8 6 4 4 6 2:6:1:1:0 
2 20 3 15 10 5 4 8 4:12:3:1:0 
3 30 4 20 10 6 5 10 7:18:3:1:1 
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4.1 ACO-MO Parameters Setting  

Since there are two pheromone settings (SPSP and SPMP) proposed in ACO-MO for 
OR scheduling problem, experiments has to be done to identify the more appropriate 
pheromone setting way. In sum, the results in Table 3 indicate the superior perfor-
mance of the SPMP in all three performance measurements. It demonstrates that to 
build an objective-specific pheromone for each individual objective function has ad-
vantage in clustering and guiding ants to the preferred direction of a decision-maker. 
Therefore, all following computational experiments on ACO-MO are adopting SPMP. 

Table 3. Comparison between pheromone settings SPSP and SPMP for test case #3  

Types Makespan Over time 
VCWT 

OR Nurse Anesthetist 

ACO-MO-SPSP 812 62 0.16 0.48 0.38 

ACO-MO-SPMP 789 55 0.11 0.44 0.35 

 
The basic ACO-MO parameters include the number of ants (m), pheromone factor 

(α), heuristic factor (β), evaporate rate (ρ), pheromone intensity (Q), decremented 
pheromone value (q0), and weights of multiple objectives ( rω ). Those parameters 
have impact on the algorithm’s convergence and solution quality. The final optimal 
ACO-MO parameters for three test cases are summarized in Table 4. 

Table 4. The optimal ACO-MOB parameters 

Test case# m α  β  ρ Q q0 NC_max w1:w2:w3 

1 30 1 5 0.5 [40,1,50] 0.1 200 0.2:0.2:0.6 
2 60 1 5 0.5 [40,1,50] 0.2 200 0.2:0.2:0.6 
3 50 1 5 0.5 [40,1,50] 0.2 300 0.2:0.2:0.6 

4.2 Computational Result Discussion  

A comparison experiment is built to evaluate the performance of three different sche-
duling approaches. These three approaches are receptively, the scheduling result in 
simulation model (named as ‘Simulation’), the ACO approach with single objective 
of makespan (named as ‘ACO-SO’), and the proposed ACO-MO in this work. The 
computational results are achieved by the same three test cases. The data of the first 
two approaches are obtained from our pilot research work [9].The comparison results 
by three different scheduling approaches are shown in Table 5. 
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Table 5. Scheduling comparison between original, ACO-SO and ACO-MO 

 Makespan   Over time   
VCWT 

OR   Nurse    Anesthetist 

Test1 

Simulation 478 0 0.276 0.551 0.237 

ACO-SO 341 0 0.08 0.55 0.13 

ACO-MO-SPMP 341 0 0.08 0.55 0.13 

Test2 

Simulation 602 122 0.12 0.24 0.50 

ACO-SO 489 9 0.09 0.46 0.18 

ACO-MO-SPMP 489 9 0.06 0.26 0.15 

Test3 

Simulation 1002 142 0.21 0.47 0.47 

ACO-SO 789 42 0.09 0.44 0.31 

ACO-MO-SPMP 789 42 0.09 0.38 0.27 

 
For three test cases, both ACO-MO-SPMP and ACO-SO show an outstanding  

performance than simulation result in every measurements, which indicates the effi-
ciency of using ACO in solving such combinatorial optimization problem. As to the 
comparison on ACO-MO-SPMP and ACO-SO, for test case #1, because of the small 
scale of the problem, there exists no difference in two approaches. For test case #2 
and #3, both report the same Makespan and total overtime. As to the resources utiliza-
tion, the VCWT of all resources including ORs and nurses and anesthetists all show 
varying improvements. For example, the VCWT of ORs in ACO-SO and ACO-MO-
SPMP is 0.09 and 0.06 in test case #2, and the VCWT of nurses in ACO-SO and 
ACO-MO-SPMP is 0.46(0.44) and 0.26(0.38) in test case #2(#3). Such improvement 
indicates that ACO-MO can achieve the optimal makespan and the overtime, while at 
the same time let the schedule have more balanced resources allocation.  

5 Conclusion and Ongoing Work 

Due to the combinatorial nature of the OR scheduling problem, and the conflicting 
objectives considered, a modified ACO algorithm integrating Pareto set by aiming at 
achieving sub-optimal solutions is proposed in this paper. The multiple objectives 
include minimizing makespan, the total overtime and the equilibrium degree of re-
sources utilization. Two kinds of pheromone setting, SPSP and SPMP for MO are 
presented to make traditional ACO suit for such MO problem. The scheduling result 
of the proposed ACO-MO algorithm is compared with the simulation scheduling re-
sult, and ACO with single objective of makespan. Three measurements, i.e. the ma-
kespan, the total overtime of nurses and the variation coefficient of working time of 
resource, are evaluated. Comparison results indicate a better performance for the pro-
posed ACO-MO in general. Future research will be in the direction of extending our 
ACO algorithm to solve the OR scheduling problems with more realistic constraints 
arise in actual OR management in hospital, like nurse rostering constraints and surge-
ons/nurses preference constraints in medical team etc. 
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Abstract. In this paper, the social fabric approach is weaved into multi-behavior 
based multi-colony ant colony system (MBMC-ACS) to construct pheromone 
diffusion model. According to the propagation characteristics of knowledge in 
the social fabric, the Cobb-Dauglas production function is introduced to  
describe the increase of pheromone caused by pheromone diffusion. The phe-
romone diffused inter-colonies based on sociometry-based networks can simu-
late the knowledge evolution mechanism in organizational learning network, 
which allows the algorithm to avoid premature convergence and stagnation 
problems. The experimental results for TSP show the validity of this algorithm. 

Keywords: Social fabric · Pheromone diffusion · Cobb-dauglas production 
function · MBMC-ACS (Multi-Behavior based Multi-Colony ant colony System) 

1 Introduction 

Swarm intelligence is a field, which studies “the emergent collective intelligence of 
groups of simple agents” [1]. In groups of insects, which live in colonies, such as ants 
and bees, an individual can only do simple task on its own, while the colony's cooper-
ative work is the main reason determining the intelligent behavior it shows.  

ACO algorithm is inspired by social behavior of ant colonies and was represented in 
the early 1990's by M. Dorigo and colleagues [2]. In recent years, many modified ant 
algorithms have been developed based on the ACO technique and applied to numerous 
difficult problems [3],[4],[5],[6]. In the previous version of the ACO, while successful, 
but individuals had no social presence, little research has been done on the improve-
ment of optimization ability from pheromone diffusion based on network structure.  

In this new approach, the social fabric theory is introduced into a multi-behavior 
based multi-colony ant colony system (MBMC-ACS) [6] to construct pheromone 
diffusion model where the pheromone and the density of the pheromone along the trail 
is presented as the knowledge that the ACS share among its individual ants. Through 
the notion of a social fabric, pheromone diffusion will expand the ability of a know-
ledge source to influence a population. Thus, the innovative potential of optimization 
will greatly be promoted. 

The organization of the paper is as follows: Section 2 describes how the ant colony is 
divided into several sub-colonies according to different behavior options. Section 3 
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introduces the social fabric basics, and how it is used as a computational tool to in-
fluence the diffusion of pheromone in Section 4. Finally, experimental study and con-
clusions are given in Section5 and 6, respectively. 

2 Our Previous Work 

The basic idea of multi-behavior based multiple colonies is that all individuals will be 
decomposed into some independent sub-colonies in parallelization schemes by using 
different behavioral characteristics and inter-colonies migration strategies [6].  

The four kinds of behavior have been briefly identified: exploitation, moderate, 
exploration, exploitation and exploration. 

Exploitation: an ant selects the next city in a stochastic selection manner every time, 
which is used to provide a new hyper plane, to overcome the premature convergence.   

Moderation: an ant selects the next city in a hybrid behavior every time, which is used 
to maintain stability in the evolution of colony. The probability of an ant move from the 

city i to the city j was determined by the following two values: 

1) The attractiveness ijη  of the move, as computed by some heuristic indicating the 

a priori desirability of that move; 

2) The pheromone trail level ijτ  of the move, indicating how useful it has been in the 

past to make that particular move; it represents, therefore, an a posteriori indication 
of the desirability of that move. 

Given the attractiveness and the pheromone trail level, the probability of an ant move 

from the city i to the city j was determined by the following pre-specified random 

distribution: 

     0argmax[( ) ( ) ],    (exp )

,                          (exp )
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where q is a randomly number uniformly distributed in [0..1], 0q is a parameter (0≤ 
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where U is the set of cities which can be visited starting from city i . The parameters 

α and β weigh the influence of trails and attractiveness. 

Exploration: an ant selects the next city in a greedy selection technique every time, 
which is used to look for and store outstanding individual in the local area. 



 Multi-Colony Ant Algorithm Using a Sociometry-Based Network 207 

         
,

0 ,    

i j

i li j
l U

i f j U

P

o th e r w is e

η

η
⊂


∈= 




                       (3) 

Exploitation and Exploration: an ant selects the next city in a "follow the crowd" 
manner every time that underlies ant’s behavior can be guided by the perceived beha-
vior of other individuals, which is used to make a delicate balance between progress 
and stability. 
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According to four kinds of behavior defined here, the ant colony is divided into four 
sub-colonies, each sub-colony of ants have different behavioral characteristics, dif-
ferent sub-colonies evolved independently. The parallel evolution example of four 
sub-colonies is shown in Figure1. 

 

 

Fig. 1. A framework of multi-colony parallel evolution 

Ants in each colony perform the same task, that is, to find the solution in the search 
space. The exploration of the search space in each colony may be guided by different 
patterns of behavior for different purposes. So, the differences in the direction of evo-
lution can be maintained and the adequacy of the search is ensured. 

Meanwhile, the sub-colonies have their own population evolved independently and 
in parallel according to four different behavior options, and update their local phero-
mone and global pheromone level respectively according to designed rules in the 
execution process. 
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3 Weaving the Social Fabric Influence Into MBMC-ACS 

The social fabric is a living skin created out of engineered emergence of agents  
illustrating the tension between the individual and the community in a context of in-
teraction between them. Here the pheromone interaction of ants will be abstracted into 
the “social fabric” (a sociometry-based network), which is viewed as a computational 
tool that influences pheromone diffusion between colonies [7].  

The experimental framework for the social fabric component which is to be added 
to the MBMC-ACS is illustrated in Figure 2. The figure shows how the edges which 
individuals have visited are represented as different community’s nodes in the func-
tional landscape produced by different behavioral characteristics and the pheromone 
interaction between them will be as "network connection". We use the probability

1q
to produce the links between the communities. In that sense, the social fabric descrip-
tion can be a very useful way of making hypotheses between visible and less visible 
networks through their links. The size of the communities may be different, reflecting 
the heterogeneous topological structure of community networks. In detail, the com-
munity network can be constructed as follows:   

 

 

Fig. 2. Concept Social Fabric component to be embedded in MBMC-ACS 

1) Consider a MBMC-ACS with 0N ants and divide them into m  communi-

ties with random in ( i = 1 , . k . , m ) ants in each community and

01
Nn

m

i i = =
. The exploration of the search space in each colony may be guided 

by different patterns of behavior for different purposes. 

2) In community k , the locally best solution k
bestr  found in every s generations 

since the start of algorithm is computed and stored (i.e., a feasible solution to the 
TSP).  

3) Between community k and p , we use the probability 1q  to add a link be-

tween every two same edges ),( ji ,which belong to k
bestr and p

bestr  respectively, 
k
bestr

 and 
p

bestr
 are similarity. 
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4) The edge ),( ji in community k  is represented as a k
ijNode  in the landscape, 

the node talks to its neighbors determined by the chosen topology, over which it can 
transmit its information to its neighbors will correspond to its influence. 

5) The nodes are connected through a topology that determines connectivity type 
between nodes. Topology used in our approach is Lbest ring topology. 

4 Pheromone Diffusion Model  

The model we propose explores how the pheromone interaction and network structure 
affect the pheromone amount of the same edges in solutions which belong to different 
communities. 

Formally, let )(tk
ijτ  denote the amount of pheromone on k

ijNode  at time 

t . Though we employ the word pheromone, )(tk
ijτ should rather be seen as a form 

of node’s capital or competence which is characterized by knowledge endowments, 
whose accumulation results from nodes performing learning and innovative activities. 

k
ijNode  and 'k

ijNode  interact if and only if there is a direct connection between 

them and pheromone level in which )(tk
ijτ  strictly dominates )(' tk

ijτ . It is assumed 

that the nodes involved in pheromone diffusion are randomly chosen, with uniform 

probability 1q  after the exchange, the increase of pheromone caused by pheromone 

diffusion is described by the Cobb-Dauglas production function.  
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where A<0 , 1, <βα ,and 1≤+ βα . Here, we assume βα <  to ensure that for 

the improvement of pheromone, the exogenous pheromone diffusion is greater than 
intrinsic level of pheromone, which is on the premise of pheromone diffusion lead  
to increase of pheromone. Similarly, assuming 0<A<l to adjust the increment of  
pheromone, in order to avoid the increment is too high, which is not coincide with 
common sense.  

This diffusion process continues until all possible diffusions have been made, 
which holds when for all possible pairs, one node weakly dominates the other.  
Since with real pheromone levels never become identical, to implement this weak 
domination, we consider them identical if they differ by less than one percent:  

0.99< )(tk
ijτ / )(' tk

ijτ <1.01, which describes the steady state of the process. 
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5 Experimental Study 

In this section, we performed tests with different instances of TSP to test the ACS 
performs using the social fabric. We used berlin52, bier127, and Chc144 to verify the 
difference between proposed method and the conventional method. 

The parameters used by our approach are the following: the number of ants is 120, 
the ant colony is divided into four sub-colonies, the ratio of ants in each sub-colony  

is 4321 ::: rrrr , where 4321 ::: rrrr =0.05:0.1:0.4:0.45, β =5, 0q =0.90, 1q =0.6, 

ρ = ∂ =0.1, 0τ =(N*LNN )-1, where NNL is the tour length produced by the nearest 

neighbor heuristic and N  is the number of cities. The results of comparison are 
shown in Table 1．G.B. (Global Best) represents the minimum length obtained by 
different methods, BRKSF means best result known so far, N.E. (Normalized Error) 
is calculated as the following: 

Normalized Error=1-(Best Result so Far/Average) 

where Average are over 15 trials, from Table 1 it can be noticed that improved method 
offers the best performances in nearly every case using real-valued distance as com-
pared with other heuristics [8],[9]. For example, on the berlin52 problem the improved 
method reached a better result in global best, with a much lower average normalized 
error of 0.000314. 

Figure 3 shows the convergence diagrams of Chc144 using the proposed algorithm 
and MBMC-ACS. They illustrate that the speed of convergence of the proposed algo-
rithm is faster than that of MBMC-ACS. 

Figures 4a–b show the trajectories of 52 and 127 nodes of the improved method, 
Simulation results show that the proposed approach is working appropriately, and also 
providing better results. 

Table 1. Comparison of improved method with other heuristics on instances of the symmetric 
TSP 

Problem BRKSF 
Improved method MMAS EAS 

GB %N.E GB % N.E GB %N.E 

berlin52 7542 7544.37 0.000314 7549.29 0.050707 7544.37 0.011321 

bier127 118282 118293.52 2.89*10-4 123903.00 0.045 123903.00 0.045 

Chc144 30354.3 30355.78 7.9*10-5 30356.75 1.84*10-4 30356.7 0.0074 
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Fig. 3. Convergent diagram of Chc144 using the proposed algorithm and MBMC-ACS 

 
(a) 

 
(b) 

Fig. 4. The shortest trajectory of the improved method. (a) 52 nodes and (b) 127 nodes. 
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6 Conclusions and Future Work 

In this paper, a sociometry-based network is presented via the social fabric concept and 
how it is used as a computational tool to influence the pheromone diffusion for ACS is 
demonstrated. Our goal was to investigate the impact that the addition of a sociome-
try-based network will have on problem solving ability of a ACO system.  

From above exploring, it is obvious that a sociometry-based network is an effective 
facility for optimization problems. It can accelerate the solution process when confi-
gured properly. The result of experiment has shown proposed algorithm is a precise 
method for TSP.   

In future work, we intend to investigate more sophisticated social structures at the 
pheromone diffusion model as well as the impact the structure has on the role of indi-
viduals during the problem solving process. 
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Abstract. In this paper, we propose a hybrid multi-cell tracking approach to 
accurately and jointly estimate the state and its contour of each cell. Our 
approach consists of level set evolution and ant colony optimization, 
representing, respectively, the deterministic and stochastic methods for cell 
tracking. Firstly, birth ants are directly distributed into the regions depicted by 
raw curves achieved by the traditional level set evolution. Then, the ants move 
towards potential regions based on the pheromone deposited by ants and the 
gradient information of current image. Finally, the resulting pheromone field is 
embedded in the variational level set to drive the evolution of cell curve to yield 
an accurate one and correspond cell position estimate. The experiment results 
show that our method could automatically track multi-cell and achieve an 
accurate contour estimation of each cell. 

Keywords: Level set · Ant colony · Cell tracking · Contour estimate 

1 Introduction 

The analysis of cellular behavior is meaningful for biomedical research, such as 
oncological studies, drug discovery, proteomics, proteomics and tissue engineering. 
During the past few years, various algorithms [1-4] have been developed for 
automated or half-automated cell tracking for different cell images. In general they 
can be roughly classified into two categories: deterministic methods and stochastic 
methods. Existing literatures show an increasing interest in the latter category. 
Deterministic methods usually divide into two kinds, one is model –based evolution 
approaches and another is detection-based association approaches. This method could 
produce good result for high image quality and low cell density, but tracking may fail 
under problematic imaging conditions such as large cell density, cell division events, 
or segmentation errors. Stochastic methods which track based on Bayesian 
probabilistic framework methods has also been proposed in recent years and are more 
robust to low resolution and signal-to-noise(SNR) scenarios than other tracking 
methods.  
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The level set [5-7] is another paradigm of the deterministic methods, which is 
based on the representation and evolution of curves or surfaces and it provides the 
advantage of identifying multiple cells in a single frame. A desirable feature is that 
level set methods can represent contours of complex topology and are able to handle 
topological changes (such as splitting, merging or moving into regions of other cells) 
in a natural and efficient way.  

Cell contour is represented as the boundary of a cell in an image, and it makes us 
understand the contents of multiple cells in an easy way. Due to technical limitations 
or artifacts, intensity inhomogeneity usually happens for most of cells in an image, 
thus the traditional level set is usually hard to evolve to the real boundary of cell. 
Inspired by ant stochastic searching behavior [8-10], we propose a hybrid multi-cell 
tracking approach, which applies the pheromone depositing by ant colony into a 
variational level set formulation without reinitialization proposed by Li et al. [11, 12] 
to automatically track multiple cells and achieve an accurate contour estimation of 
each cell. 

2 Methods 

This section gives the principle of the proposed hybrid multi-cell tracking approach 
with level set evolution and ant colony optimization in details. Birth ants are directly 
distributed into the regions represented by raw curves achieved by the level set 
evolution without reinitialization. Then, the ants move towards potential regions 
according to the proposed decision strategy and deposit pheromone accordingly. The 
resulting pheromone field is used to drive the evolution of cell curve to yield an 
accurate one and corresponding cell position estimate. Fig.1 illustrates the overview 
of our proposed algorithm. 
 

Level set evolution  

Is over

k=k+1

Improved level set evolution

Cell state and contour estimation 

Ants working mechanism

End

Cell image k

N

Y

φ

 

Fig. 1. The overview of our proposed algorithm 
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2.1 Ants Colony Initial Distribution 

Our approach is based on the variation level set formulation of curve evolution that 
completely eliminates the need of the re-initialization. The variational formulation is 
as followed 

                  ( ) ( ) ( ) ( )g gp L Aε φ μ φ λ φ ν φ= + +                   (1) 

where ( ) ( )21
1

2
p dxdyφ φ

Ω
= ∇ − is to penalize the deviation of the level set 

function φ from a signed distance function; ( ) ( )gL g dxdyφ δ φ φ
Ω

= ∇ computes the 

length of the zero level curve; ( ) ( )gA gH dxdyφ φ
Ω

= −  is introduced to speed up 

curve evolution; ,μ λ andν are the constants. We can minimize the function φ by 

satisfying the Euler-Lagrange equation 0
t

ε φ
φ

∂ ∂= − =
∂ ∂

. Then, the steepest descent 

process for minimization of the function ε is the gradient flow by following: 

 ( ) ( )div div g g
t

φ φ φμ φ λδ φ υ δ φ
φ φ

    ∂ ∇ ∇= Δ − + +       ∂ ∇ ∇     
             (2) 

 

             
     (a)original cell image     (b)level set evolution   (c)initial ant distribution 

Fig. 2. Ant colony initial distribution 

The variation level set formulation has been applied to a variety of synthetic and 
real images in different modalities. Fig.2 b) shows a result of multi-cell evolution of 
the contour on a 201 201×  pixel microscope image of multi-cell according to Fig.2 a). 
It can be observed that the yielding cell contours can only give the approximate 
estimates, and we, therefore, resort to ant colony optimization to guide the  
curve evolution to the real boundary of each cell. Specifically, a given number of ants  
are assigned on each point (or pixel) of the level set curve illustrated by  
fig.3 b) (denoted by blue points), and we will use the proposed ant searching 
information to help the variational level set obtain an accurate contour estimation of 
each cell. 
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2.2 Ant Decision Strategy 

Each ant selects the following pixel to be visited according to a stochastic mechanism 
by the pheromone mechanism, i.e. ant can move directly towards one of its neighbors 
at each time, and any pixel can be visited simultaneously by several ants. The ant 
working environment in the current cell image is the pheromone filed deposited by 
ants that can be read and modified by ants. For any pixel index, 4-neighboring 
configuration is considered. Therefore, supposed that an ant is now located a pixel 

( ),i j , in the t − th iteration, the movement from its location to one of its neighboring 

pixels may happen with the following probability 

( ) ( ) ( )
( ) ( )( )

( ), ,,

, ,,

0

,
i j i ji j

i j i jj N i j

otherwise

t tp t
if j N i j

t t

α β

α β

τ θ

τ θ
∈


    =      ∈        

           (3) 

where α  and β  are adjustment parameters related to pheromone intensity and 

importance of heuristic, respectively; ( ),N i j  is the set of neighbors for pixel ( ),i j ; 

( ),i j tτ  is the total sum of pheromone amount left by all ants passed pixel ( ),i j ; 

( ),i j tθ  is the heuristic information of pixel ( ),i j  to be defined later. 

The pheromone values are updated after each construction process and the ants’ 
decision has been performed. The aim of pheromone update is to increase the 
pheromone values associated with good solution, and decrease those associated with 
bad ones. The pheromone update defines as the following equation: 

( ) ( ) ( ) ( )
,

, , ,1 1
i j

i j i j i jt t r tτ ρ τ
Ω

+ = − +                     (4) 

where ( ]0,1ρ ∈  is the pheromone evaporation rate; ( ),i j tτ  is the pheromone on 

pixel ( ),i j  at the t − th iteration; ( )
,

,

i j

i jr t
Ω
  describes the amount of pheromone 

external input to pixel j  at the t − th iteration. 

From the ant transition probability, we know that the heuristic function ( ) ( ),i j tη  is 

an important parameter for ant decision. That is, the closer to the cell edge the greater 
value of the probability. Naturally, the grayscale distribution of current image is 

utilized. We define pixel ( ),i j  with intensity ( ),G i j  illustrated in Fig.3, and its 

neighboring region grayscale variance is computed by the following equation: 

( ) ( ) ( )( )( )
( ) ( )

2

,
, ,

1
, ,

,
i j

i j N i j

i j G G N i j
N i j

θ ′ ′
′ ′ ∈

= −                   (5) 
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where ( )( ),G N i j  is the average gray intensity of ( ),N i j ; ( ),N i j  is the number 

of neighboring pixels of pixel ( ),i j .  

According to the equation, the grayscale variance has a smaller value in the area of 
background and interior of cell, whereas a larger value is probably taken between two 
sides of edge, as well as in the vicinity of each edge pixel.  

 

( ),i j

( ), 1i j −

( )1,i j− ( )1,i j+

( ), 1i j +

 

Fig. 3. 4-neighboring pixel 

2.3 The Improved Level Set Evolution 

As for the intensity inhomogeneity in cell images, the variation level set formulation 
is hard to obtain an accurate cell boundary. The pheromone field formed by ants can 
extract of the accurate local image information. We will focus on applying the 
pheromone field in Eq. (1) to active contour for image segmentation, so that the zero 
level curve can evolve to the desired features. 

Note that parameter τ  has the local property that takes a lager value at the point 
close to the cell edge, whereas a smaller value at the point is taken for those points far 
away from the cell edge. Therefore, we define the following local energy 

  ( ) ( ) ( )( ) ( )2
1P t t H dxdyτ φ τ φ φ φ

Ω
= − −                      (6) 

Obviously, the local energy can be minimized when the contour is exactly on the 
object boundary and the entire energy functional of the variational level set evolution 
is redefined as: 

( ) ( ) ( ) ( ) ( )g gp L A Pτε φ μ φ λ φ ν φ ξ φ= + + +                  (7) 

Then we use the standard gradient descent method to minimize the energy 
functional Eq. (7) to find the object boundary. The gradient descent flow is following 

( ) ( ) ( )div div g g e
t

φ φ φμ φ λδ φ υ δ φ ξτ δ φ
φ φ

    ∂ ∇ ∇= Δ − + + −       ∂ ∇ ∇     
        (8) 

where g  is the edge indicator function; ( )δ  is the Dirac function used to limit the 

evolutional value around the zero level set function; e  is the function as below  

                  ( ) ( ) ( )( )2
1e x t t dyτ φ φ

Ω
= − −                         (9) 
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The above Eq. (8) is the proposed implicit active contour model, and the energy 
drives the zero level set toward the object boundaries. Once the level set evolves  
to the object contours, an accurate contour estimation of each cell is achieved.  
By calculating the center of each cell contour, the location of each cell is then 
available. Then, the detect cells are associated between two or more consecutive 
frames using the nearest neighboring method, and the motion trajectory of each cell is 
finally obtained.  

3 Results 

In this section, the performance of our proposed algorithm is tested on a real low-SNR 
image sequences. The image sequences are 201 201×  pixels RGB image with 20 
frames as shown in Fig. 4(a). It can be observed that the images are intensity 
inhomogeneity and the upper cell moves slowly, while the lower cells move with 
nearly round shape. Some related parameters are set to be 0.18 ,time stepμ =  

. 

Fig.4 presents an example of successfully tracking results using our proposed 
algorithm. It can be observed that our method can get the accurate contour estimates 
of cells in the cell image sequence and automatically track cells with different 
dynamics and shapes, i.e., cell 5 entering in frame 2, cell 4 in frame 13 leaving. Each 
cell trajectories are drawn in the image sequence.  

Frame 4      Frame 8      Frame 10     Frame 14     Frame 17 

 
a) Selected RGB cell images 

Frame 4      Frame 8      Frame 10     Frame 14     Frame 17 

 
b) Tracking results of multiple cells with contour and position estimations  

Fig. 4. Tracking results of a given cell image sequence (201pix×201pix) 

As we all known some cells in an image sequence move in a small region, but 
some cells move faster and even out of field of view. So the cell trajectory is another 
measure to analyze cell migration behavior. Cell trajectory can oversee the entire 
tracking history, and it can detect potential problems among all the tracking process. 
Fig.5 gives the cell trajectories of the cell moving. Fig.6 plots the corresponding 

3.88, 0.98, 1.2λ υ ξ= − = − =
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position estimate of each cell in x and y directions per frame, respectively. The 

position estimate indicates that the method is sensitive some cells which are partially 
entering or leaving the image, such as cell 3 and 5.  

 

Fig. 5. The estimated results of cell trajectories 

 

Fig. 6. The estimated velocity of each cell in x and y directions 

Figs.7 and 8 give the comparisons of multi-cell contour estimates in frames 6 and 
10 by the level set evolution without reinitialization [12], the ant-based method [8] 
and our proposed approach, respectively. It can be observed that our method 
outperforms the other two methods for most of cells in the image. 

 

   
(a)                     (b)                   (c) 

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

x-coordinate in pixel

y-
co

or
di

na
te

 in
 p

ix
el

cell 1
cell 2
cell 3
cell 4
cell 5
cell 6
cell 7



220 D. Jiang et al. 

Fig. 7. Cell contour estimate of Frame 6 by different methods, (a).The level set evolution 
without reinitialization; (b). Ant-based method; (c).Our method 

   
(a)                    (b)                     (c) 

Fig. 8. Cell contour estimate of Frame 10 by different methods, (a).The level set evolution 
without reinitialization; (b). Ant-based method; (c).Our method 

4 Conclusions 

Cell behavior analysis is important for understanding the mechanisms of biomedical 
research or drug discovery. This paper has introduced a hybrid multi-cell tracking 
approach to accurately and jointly estimate the state and its contour of each cell. The 
experiment results show that our method could automatically track multi-cell and 
achieve an accurate contour estimation of each cell. As part of future work, we would 
like to improve the ants’ working mechanism to get a broad quantitative view of cell 
cycle progression. 
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Abstract. The multi-version software and problem of its building as an optimi-
zation problem are considered. The ant algorithm as a way to solve the problem 
of multi-version software building is presented. The results of the standard and 
modified ant algorithms are given and compared. 

Keywords: Optimization · Ant algorithms · Multi-version software 

1 Introduction  

Nowadays “natural algorithms” which are the optimization algorithms based on the 
natural ways of decision making are actively investigated by a lot of scientists. One of 
those algorithms is the ant colony optimization algorithm (ACO)[1-3]. That algorithm 
is a result of the combined work of scientists who study the behavior of social insects 
and the IT specialists. The base of that algorithm is the ant behavior and their ability 
to find the smallest way to a food source. 

The ant colony is a distributed system. Despite the simplicity of its separate parts, 
that system can solve very sophisticated problems. Every single member of the colony 
tries to find the smallest way to a source of food. While doing that, it does not have an 
access to the knowledge of other members; therefore there should be a way that can 
help them to combine their knowledge. The ant ability to mark a route with phero-
mones is a way to combine their knowledge. If an ant finds a source of food, it marks 
its route using pheromones on the way back to the colony. The other ants will use that 
signal while searching for food. The more pheromones are used to mark the way the 
higher probability that an ant will choose that way in his search for food is [1]. 

That mechanism of self-organization became a base for the ant colony algorithm. 
The main idea of the algorithm is that the agents having the behavior that models the 
behavior of ants are united into a set to solve the optimization problem. The agents 
coordinate their work with the help of stigmergy which is a mechanism of the indirect 
collaboration using the alterations in the common environment.  In case of ACO that 
mechanism is pheromones. The agents mark the traversed path with the help of phe-
romones increasing the probability of choosing that way among other variants. There 
is a mechanism which is known as the evaporation of the pheromones and it is used to 
prevent a situation when the algorithm goes irreversibly to the area of the local extre-
mum. That mechanism is used to make the paths which were chosen as a solution by a 
mistake, less attractive by evaporating the pheromones on them. At the same time, the 
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paths which were chosen by agents during the decision making  process will increase 
their attractiveness and that should lead to a situation where all the agents will choose 
the general solution. 

2 Generic Ant Colony Optimization Algorithm  

Consider the generic ant colony optimization algorithm [2]: 

1. Create some ants. The start point where an ant is placed depends on the restric-
tions imposed by a task. That is due to the way the ant placement is the most impor-
tant factor for every task. They can be all placed at the same spot or different spots 
with or without repetitions. At the same stage of the algorithm, the start level of the 
pheromone is determined. It is initialized with a small positive value in order to 
achieve non-zero probabilities of jumping to the next node to the start of procedure.  

2. Find solutions. The probability of jumping from a node i to a node j is defined 
by the following formulae: 

ሻݐሺ ൌ ൣఛೕሺ௧ሻ൧ഀቈ భೕഁ
∑ ൣఛೕሺ௧ሻ൧ഀቈ భೕഁೕೌאೢಿೞ                                       (1) 

where ߬ሺݐሻ–the level of the pheromones, ݀  - a heuristic distance, а ߙиߚ -the 
constant parameters. If 0 = ߙ, then the selection of the nearest node is the most proba-
ble, and that means that the algorithms becomes greedy. If 0 = ߚ, the choice occurs 
only when the pheromones are used for the selection process, and that leads to subop-
timal solutions. 

3. Refresh the levels of the pheromones. The level of the pheromones is refreshed 
according to the following formulae: ߬ሺݐ  1ሻ ൌ ሺ1 െ ሻݐሻ߬ሺߩ  ∑ ொೖא௧௧௧௨௦ௗௗ ሺ,ሻ                                (2) 

whereߩ– the intensity of the evaporation, ܮ– the cost of the current solution for k-
th ant, Q–parameter describes the order of magnitude of the cost of the optimal solu-

tion, therefore
ொೖ  is a pheromone which is used by k-th ant to mark edge (i, j). 

4. Additional actions. Usually the local search algorithm is used here. 
5. Checking for the end of the search. In case of all restrictions were complied, the 

search process stops, otherwise return to step 1. 

3 Ant Algorithm Modification for N-version Software  

The N-version software structure forming is a task that can be solved using ACO. The N-
version programming methodology is one of the most promising and already effectively 
used the methodology to build the fault-tolerant software [4-7]. This methodology is 
based on adding the redundant programming and it allows us to increase software  
reliability significantly. The N-version of the executed program modules assumes the 
generation of a set of functionally equal versions for each module, according to the speci-
fications. The tools for concurrent execution are provided for all versions of a program 
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module. The input data are identical for each version of a single module. The results of 
execution can vary due to a lot of reasons. The selection of the correct answer is calcu-
lated in the node of estimation and decision making. 

Therefore, there is a task of choosing an optimal set of the program components 
using a set of criterions [8,9]. This task is a set covering problem (SCP) [10,11]. 
A݉ ൈ ݊matrix ܣ ൌ ൣܽ൧ with all elements equal to 0 or 1 is given. Additionally, 
every column has the positive cost ܾ. If ܽ ൌ 1 that means that column j covers row 
i. The goal of SCP is to choose a set of columns with the minimal cost and to cover 
every row at the same time. Define j as a set of columns and ݕ as a binary variable. 
If݆ א ݕ  = 1 elseݕܬ ൌ 0. Here is a formal definition of SCP: ݉݅݊ ݂ሺݕሻ ൌ ∑ ܾݕୀଵ                                                    (3) ∑ ܽݕ  1,ୀଵ ݅ ൌ 1, . . . , ݕ (4)                                                       ݉ א ሼ0,1ሽ, ݆ ൌ 1, . . . , ݊                                                          (5) 

The MAX-MIN ant system algorithm will be used for experiments because it is 
one of the most investigated and effective algorithms of the ant algorithm family. The 
main features of this algorithm are the existence of the high and low bounds for the 
pheromone level value as well as the existence of the pheromone level value renewing 
method. Only the best solution is counted and renewed.  

4 Example of the Test Task 

A schematic of a test N-version program is shown in fig. 1. 

 

Fig. 1. A schematic of a test N-version program 
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The parameters of the versions for each module are presented in Table 1. 

Table 1. Cost and reliability parameters of the versions for each module 

Module v1 … v5 … v10 

Module 1 
C=54 
R=0,6 

… 
C=70 
R=0,75 

… 
C=90 
R=0,8 

Module j … … … … … 

Module 10 
C=20 
R=0,5 

… 
C=40 
R=0,57 

… 
C=65 
R=0,68 

 
Here is the algorithm: 

1. Create ants. The amount of ants is equal the amount of the modules (N=10). 
2. Set the minimal pheromone value for each version. 
3. Create a minimal solution which contains every module. The probability of 

choosing the i-version is calculated according to the following formula: 

ఛು൨మ
∑ ఛು൨మೌೡೝೞೠ

                                               (6) 

4. Calculate the parameters of resulting solutions (P - reliability, C - cost). Check 
conditions. If one of the conditions is exceeded, then an agent is marked as bad one 
and it will not be used later. 

5. Try to add a version of a module. If conditions are exceeded then agent com-
pletes its search. 

6. Check for agents that have not completed their search. If they exist go to 5. 
7. Compare agents that have finished their search and comply with the conditions 

with the global best solution. If a new one is better, replace the global best with a new 
one. 

8. Renew the pheromone levels on the versions. Clear the agents’ parameters. 
9. Check for exceeding the maximal amount of iterations. If not, go to 3 [2]. 

Table 2. Results of the experiment 

Iteration Parameters 
1 Cost: 1609Reliability: 0,952533008881286 

Amount of versions: 33 
198 Cost: 1353Reliability: 0,954864981124059 

Amount of versions: 25 
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A set of experiments was conducted using the following parameters: ܲ ൌ 0.95, ܥ ՜ ݉݅݊.The best and fastest result is presented in Table 2. Later, another set 
of experiments was conducted using different parameters ܥ௫ ൌ  1500, ܲ ՜݉ܽݔ.The best and fastest result is presented in Table 3. 

Table 3. Results of the experiment 

Iteration Parameters 
1 Cost: 1499Reliability: 0,9380492330715 

Amount of versions: 25 
181 Cost: 1486Reliability: 0,961068949324989 

Amount of versions: 29 
 
The standard formula 6 does not take into consideration the probability the of 

module usage and the amount of already chosen versions of that module. So formula 
6 was changed:  ൌ ఛೕቈುೕೕమ

∑ ఛቈುೕೕమೠೞೡೝೞ
                                             (7)  

ܭ ൌ ܲ ଵ,                                                (8) 

where ܲ is the probability that the I-th module will be used, ݊ is the amount of al-
ready chosen versions of the I-th module. 

A set of experiments was conducted using the following parameters: ܲ ൌ 0.95, ܥ ՜ ݉݅݊.The best and fastest result is presented in Table 4.  

Table 4. Results of the experiment 

Iteration Parameters 
2 Cost: 1830Reliability: 0,95155703596872 

Amount of versions: 36 
43 Cost: 1344Reliability: 0,950684456755364 

Amount of versions: 27 
80 Cost: 1340Reliability: 0,953686684105021 

Amount of versions: 26 
536 Cost: 1302Reliability: 0,952320253504339 

Amount of versions: 25 
 
As it can be seen, the better result than the result provided by the standard algo-

rithm was achieved on the 80-th iteration. The best achieved result is shown in Table 
5.  
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Table 5. Results of the experiment 

Step Parameters 
1 Cost: 1776Reliability: 0,954688224332445 

Amount of versions: 34 
8 Cost: 99Reliability: 0,951325746678937 

Amount of versions: 28 
1884 Cost: 1268Reliability: 0,950307343800687 

Amount of versions: 25 
 
It is worth to mention that even the worst result obtained using the modified algo-

rithm is better than the best result obtained using the standard algorithm. Later, anoth-
er set of experiments was conducted using different parameters ܥ௫ ൌ  1500, ܲ ՜݉ܽݔ. 

The best and fastest result is presented in Table 6. 

Table 6. Results of the experiment 

Iteration Parameters 
1 Cost: 1465Reliability: 0,946156596647648 

Amount of versions: 26 
32 Cost: 1490Reliability: 0,948035498484535 

Amount of versions: 27 
112 Cost: 1480Reliability: 0,957518364561218 

Amount of versions: 27 
1142 Cost: 1469Reliability: 0,963395416341579 

Amount of versions: 30 
1651 Cost: 1488Reliability: 0,964324367894845 

Amount of versions: 27 
 
As it can be seen, the better result than the result provided by the standard  

algorithm was achieved on the 118-th iteration. The best achieved result is shown in 
Table 7. 

Table 7. Results of the experiment 

Step Parameters 
1 Cos: 1435Reliability: 0,944523875543017 

Amount of versions: 27 
406 Cost: 1497Reliability: 0,963332687235713 

Amount of versions: 29 
1278 Cost: 1500Reliability: 0,96460060723887 

Amount of versions: 28 
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5 Conclusion 

In this paper we propose a modification of the generic ant colony optimization algo-
rithm. It allows solving the problem of multi-version software development. The 
modified algorithm shows the best results of the test task. Although those modifica-
tions slow the calculation process, the better solution finding compensates that disad-
vantage. 

Moreover, the research is supported by the Ministry of Education and Science of 
the Russian Federation in accordance with the agreement № 14.574.21.0041 
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Abstract. In this paper, we propose an improved artificial bee colony (ABC) 
algorithm for function optimization. The new approach is called IABC, which 
employs two strategies to further enhance the performance of the original ABC 
algorithm. The first strategy utilizes the search information of the global best 
solution to guide the search of other bees, and the second one introduces a new 
solution updating model to generate candidate solutions. To test the 
performance of our algorithm, experiments are conducted a set of well-known 
functions. Computational results show that IABC achieves better performance 
than the original ABC and gbest-guided ABC (GABC) in terms of solution 
accuracy and convergence rate. 

Keywords: Artificial bee colony (ABC) · Swarm intelligence · Hybrid 
strategies · Function optimization · Global optimization 

1 Introduction 

Optimization problems exists in different kinds of areas, including engineering 
design, project scheduling, economic dispatch, portfolio selection, and so on. With the 
development of society, optimization problems become more and more complex. 
Effective optimization algorithms are always required to suitable for solving the 
increasingly complex problems. In the past decades, several different nature-inspired 
algorithms have been proposed to solve various kinds of optimization problems, such 
as evolutionary algorithm (EA) [1], particle swarm optimization (PSO) [2], ant colony 
optimization (ACO) [3], artificial bee colony (ABC) [4], cat swarm optimization 
(CSO) [5], etc. 

The ABC is a swam intelligence based algorithm, which simulates the foraging 
behavior of honey bees. Due to its simple concept, easy implementation yet 
effectiveness, it has bee successfully applied to solve many real-world and benchmark 
optimization problems [6–9]. Zhu and Kwong [8] proposed a gbest-guided ABC called 
GABC, in which the information of the global best solution (gbest) is utilized to guide 
the current search. Simulation results show that GABC performs better than the 
original ABC. Differs from the original ABC, Akay and Karaboga [9] introduced a 
parameter, called MR (0<MR<1), to control the frequency of perturbation. 
Experimental results show that this modification can effectively improve the 
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performance of the original ABC. Inspired by the mutation strategy of differential 
evolution (DE) [10], Gao and Liu [11] presented a new ABC algorithm called 
ABC/best/1. Computational results show that the new approach outperforms the 
original ABC and GABC. To accelerate the convergence of ABC, ABC with an 
external archive is proposed [12]. In this approach, some best solutions are stored in an 
archive during the search process. When generating new solutions, some good 
solutions are selected from the archive to guide the search. Experiments demonstrate 
the effectiveness of this new algorithm. Wang et al. [13] presented a multi-strategy 
ensemble artificial bee colony (MEABC) algorithm. In MEABC, a pool of three 
distinct solution search equations are used to generate new solutions. Experiments are 
conducted a large set of benchmark functions. Results show that MEABC achieves 
better solutions than the original ABC, GABC, ABC/best/1, and several other PSO and 
DE algorithms. Kiran et al. [14] proposed another multi-strategy ABC algorithm, 
which integrates five search strategies to update solutions. A counter is used to 
determine the selection of strategies for the bees. Experiments on 28 numerical 
benchmark functions show that the new algorithm obtains better performance than 
several other recently proposed algorithms. Karaboga and Gorkemli [15] described a 
quick ABC (qABC) algorithm by defining a new behavior of onlooker bees of ABC. 
Comparisons between qABC and some popular algorithms show the effectiveness of 
the new approach.  

In this paper, an improved ABC algorithm, called IABC, is proposed to enhance 
the performance of ABC. The IABC employs two strategies. The first strategy utilizes 
the search information of the global best solution to guide the search of other bees. 
The second strategy introduces a new solution updating model to generate candidate 
solutions.  

The rest paper is organized as follows. Section 2 gives a brief introduction of the 
original ABC. Section 3 describes the proposed approach. Section 4 presents the 
experimental results and discussions. Finally, the work is summarized in Section 5.  

2 Artificial Bee Colony (ABC) 

In ABC, there are three kinds of bees: employed bees, onlooker bees, and scout bees. 
The number of employed bees is equal to half of the swarm size. The onlooker bees 
have the same size as the employed bees. The employed bees search new food in the 
neighborhood of food sources, and they share the search information of these food 
sources with the onlooker bees. The onlooker bees tend to select good food sources 
from those found by the employed bees, and then re-search the neighborhood of the 
selected food source. The scout bees can abandon their food sources and search new 
ones [8,11].  

Each food source represents a candidate solution in the search space. Let 
Xi={xi,1,xi,2,…,xi,D} be the ith food source (solution) in the swarm, where D is the 
dimensional size. For each food source Xi, an employed searches its neighborhood to 
generate a new candidate solution Vi as follows [4]: 
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( ), , , , ,i j i j i j i j k jv x x xφ= + ⋅ − . (1) 

where Xk is a randomly selected solution, which is different from Xi. The dimension 

index j is randomly generated with the range of [1, D]. The parameter ,i jφ is a 

random number with the range of [-1,1]. If the new solution Vi is better than its parent 
solution Xi, then update Xi with the new Vi. 

After all employed bees complete the search, each onlooker bee begins to select a 
food source to conduct further search. The selection is based a probabilistic mode as 
described below [4]: 

1

SN

jj

i
i

fit
p

fit
=

=


. (2) 

where fiti is the fitness value of the ith solution, and SN is the number of solutions in 
the swarm. 

If a food source (solution) can not be improved under a predefined number of 
generations, the food source is abandoned. The predefined number is called limit, 
which is an important control parameter in ABC. For a abandoned food source Xi, the 
scout bee randomly generates a new solutions to replace it [4]. 

( ), min, max, min,
(0,1)

i j j j j
x x rand x x= + ⋅ − . (3) 

where rand(0,1) is a random number with the range of [0,1], and [Xmin, Xmax] is the 
search interval for a given problem. 

3 Proposed Approach 

It has been pointed out in [8] that new solutions in the original ABC are generated by 
updating only one dimension of their corresponding parent solutions. Then, there are 
many similarities between the parent solutions and offspring. As a result, the original 
ABC show slow convergence rate during the search process. To accelerate the search, 
Zhu and Kwong [8] defined a new solution search equation by utilizing the 
information of gbest to guide the search. The new solution search equation is 
described as follows [8]: 

( ) ( ), , , , , , ,i j i j i j i j k j i j i jgbestv x x x xφ ϕ= + ⋅ − + ⋅ − . (4) 

where ,i jϕ is a random number in the range [0,C], and C is a constant number. Based 

on the analysis of [8], the parameter C=1.5 is a good setting. 
Updating only one dimension may not be suitable for the search of ABC. So, we 

propose a new method to decide how many dimensions to be updated in the solution 
search equation. First, we introduce a new parameter M, which determines the number 
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of dimensions to be changed. In this paper, M is set to 0.1·D, where D is the 
dimensional size. For each solution Xi, a new solution Vi is generated as described in 
Algorithm 1. 

 

Table 1. Ten benchmark functions used in the experiments 

Functions Search range Global optimum 
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The main steps of our new approach IABC algorithm are described as follows. 

Step 1. Randomly initialize the swarm. 
Step 2. Find the current gbest.  
Step 3. For each employed bee, generate a new Vi according to Algorithm 1. Compute 

the fitness value of Vi. The better one between Xi and Vi is selected as the 
new Xi. 

Step 4. Calculate pi for each onlooker bee according to equation (2). 
Step 5. Generate a new solution Vi according to Algorithm 1 based on pi. Compute 

the fitness value of Vi. The better one between Xi and Vi is selected as the 
new Xi. 

Algorithm 1. New solution search mechanism 

Begin 
  for j=1 to M do 
    Update the jth dimension of Xi according to equation (4); 
  end for 
end
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Step 6. The scout bee determines the abandoned Xi, if exists, update it by equation 
(3). 

Step 7. Update the gbest found so far, and cycle=cycle+1. 
Step 8. If the number of cycles reaches to the maximum value MCN, then stop the 

algorithm and output the results; otherwise go to Step 3. 
Compared to the original ABC algorithm, our approach IABC does not add extra 

loop operations. Therefore, both IABC and the original ABC have the same 
computational complexity. 

4 Experimental Study 

In this section, we present an experimental study on the proposed IABC. There are ten 
well-known benchmark functions used in the following experiments [16–17]. The 
specific descriptions of the involved functions are listed in Table 1. 

In the experiments, the IABC is compared with the original ABC and GABC for 
bout D=30 and 50. To have a fair competition, the same parameter settings are 
employed for common parameters. For the above three ABC variants, the swarm size 
SN and the parameter limit are set to 100, and 100, respectively. For GABC and 
IABC, the parameter C is set to 1.5 by the suggestions of [8]. For IABC, the 
parameter M is set to 0.1·D based on empirical studies. The maximum number of 
cycles (MSN) is set to 1000 for both D=30 and 50. All results reported in this paper 
are averaged on 30 independent runs. 
  Tables 2 and 3 present the comparison results of the three ABC algorithms for 
D=30 and D=50, respectively, where “Mean” indicates the mean best function values. 
As shown in Table 2, IABC outperforms ABC on all test functions except for f5 and 
f6. For f5, ABC performs better than IABC. The three algorithms can find the global 
optimum for f6. GABC achieves better results than IABC on f5 and f8. For the rest of 7 
functions, IABC can search better solutions. 

Table 2. Results achieved by ABC, GABC and IABC for D=30 

Functions 
ABC GABC IABC 

Mean Mean Mean 

f1 1.58E-09 7.54E-16 2.87E-29 

f2 2.59E-06 1.35E-11 3.66E-17 

f3 1.07E+04 7.71E+03 4.65E+03 

f4 4.57E+01 2.52E+01 6.98E-01 

f5 5.32E+00 1.82E-01 1.30E+01 

f6 0.00E+00 0.00E+00 0.00E+00 

f7 2.05E-01 8.07E-02 3.25E-02 

f8 -12209.8 -12569.5 -12451.3 

f9 6.62E-09 5.32E-15 3.55E-15 

f10 1.37E-05 9.45E-11 2.54E-14 
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function f1 

 
function f2 

 
function f10 

Fig. 1. The convergence curves of ABC, GABC and IABC on three functions 
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When the dimension increases to 50, we use the same stopping condition for all 
algorithms. This helps to investigate the effects of dimension on the performance of 
these ABC algorithms. It can be seen that IABC still achieves better results than ABC 
and GABC on the majority of test function even if the dimension is 50. 
  Fig. 1 presents the convergence processes of ABC, GABC, and IABC on some 
representative functions. It can be seen that IABC shows faster convergence speed 
than ABC and GABC. 

Table 3. Results achieved by ABC, GABC and IABC for D=50 

Functions 
ABC GABC IABC 

Mean Mean Mean 

f1 9.35E-06 6.71E-10 1.09E-14 

f2 1.42E-03 6.23E-06 4.73E-09 

f3 4.07E+04 3.77E+04 3.20E+04 

f4 7.42E+01 6.69E+01 2.26E+01 

f5 1.13E+01 4.32E+00 4.14E+01 

f6 0.00E+00 0.00E+00 0.00E+00 

f7 6.64E-01 3.06E-01 1.29E-01 

f8 -19389.2 -20197.2 -20829.8 

f9 5.49E+00 6.42E-03 3.21E-03 

f10 9.87E-03 2.76E-05 3.78E-08 

5 Conclusions 

In this paper, we present an improved ABC algorithm called IABC for numerical 
optimization. The new approach employs two strategies. The first strategy employs 
the new solution equation of GABC to guide the search of swarm. The second 
strategy determines how many dimensions to be updated when generating new 
candidate solutions. In order to verify the performance of IABC, ten well-known 
benchmark functions are utilized in the experiments. Computational results show that 
IABC performs better than the original ABC and GABC.  
  For the parameter M, we did not investigate its effects on the performance of IABC. 
How to adjust this parameter will be studied in the future work. 
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Abstract. The scout bees phase of artificial bee colony (ABC) algorithm emu-
lates a random restart and cannot make sure the quality of the solution generat-
ed. Thus, we propose to use the entire search history to improve the quality of 
regenerated solutions, called history-driven scout bee ABC (HdABC). The pro-
posed algorithm has been tested on a set of 28 test functions. Experimental re-
sults show that ABC cannot significantly outperforms HdABC on all functions; 
while HdABC significantly outperforms ABC in most test cases. Moreover, 
when the number of restarts increases, the performance of HdABC improves. 

Keywords: Artificial bee colony · Search history · Binary space partitioning tree 

1 Introduction 

Artificial bee colony (ABC) is a simple and powerful metaheuristic for solving global 
optimization problems [1]. It is based on the intelligent behavior of honey bees. Many 
researchers have tried to improve its performance and make it better. For example, 
researchers propose to use the global best solution found so far to generate candidate 
solutions [2], [3]. Inspired by particle swarm optimization, Zhu et al. propose Gbest-
guided ABC (GABC) algorithm [4]. Kang et al. propose Rosenbrock ABC which 
combines Rosenbrock’s rotational direction method with the ABC algorithm [5]. 
Zhang et al. propose one-position inheritance and opposite directional search methods 
respectively for the employed bees phase and onlooker bees phase [6]. Karaboga et al. 
create a quick ABC algorithm which imitates the behavior of onlooker bees in a better 
way than standard ABC [7]. Kiran et al. modify ABC with a directed method [8]. 
Applications of discrete variants of ABC include [9], [10], [11], [12]. 

None of the above mentioned algorithms focus on the scout bees phase. Actually, 
the scout bees phase can be seen as a random search; the quality of the regenerated 
solution is unpredictable and low quality solution causes a waste of resources. Thus, 
we will concentrate on modifying the scout bees phase to improve the performance of 
the ABC algorithm. In this paper, we propose a novel ABC algorithm which uses the 
entire search history to improve the quality of solutions, called History-driven scout 
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bee Artificial Bee Colony (HdABC). It has been noticed that history is a good refer-
ence to help the search. There are already some works on applying the entire search 
history in the EA field [13], [14], [15]. In our proposed algorithm, we apply BSP tree 
to improve the performance of the ABC algorithm.  

The paper is organized as follows. Section 2 describes standard ABC algorithm. 
Section 3 explains the proposed HdABC algorithm in detail. Experimental results are 
shown in Section 4 and Section 5 gives the conclusion. 

2 Artificial Bee Colony Algorithm 

Standard ABC algorithm can be divided into four phases as follows: 

1. Initialization Phase 
In the initialization phase, a population NP of solutions (food sources), i.e., ܠ ൌ ൛ݔ,ଵ, ,,ଶݔ ,,ଷݔ … ,  .,ൟ, is initialized randomly in the search spaceݔ

2. Employed Bees phase 
Each employed bee randomly communicates with another employed bee to search 
a new location, i.e., ܞ ൌ ൛ݒ,ଵ, ,,ଶݒ ,,ଷݒ … , -,ൟ. The equation to generate new loݒ
cation is shown in (1).  ݒ, ൌ ,ݔ  ߶,൛ݔ, െ  ,ൟ .                   (1)ݔ

where the indices݆ ג ሼ1,2, … , ݇ ሽ andܦ ג ሼ1,2, … , ܰܲሽ, ݇ ് ݅ are randomly gener-
ated. A coefficient  ߶, is a random number between [-1, 1].  
The employed bees evaluate the new food source ܞ, and compared with their cur-
rent food sourceܠ by the fitness of solutions. The equation to calculate the fitness 
is shown in (2), where ݂ሺܠሻ represents the objective value of the solution ܠ. ݂݅ݐሺ݅ܠሻ ൌ ൝ ଵଵାሺܠሻ ,                    ݂݅ ݂ሺܠሻ  0 1  ,ሻ൯ܠ൫݂ሺݏܾܽ ݂݅ ݂ሺܠሻ ൏ 0  .                  (2) 

3. Onlooker Bees phase 
Onlooker bees receive the information from the employed bees, and make decision 
on selecting some food sources for further search. By using the equation shown in 
(3), the probability   is calculated by the fitness of the food sources. The onlook-
er bees go to the better food sources with higher probability.    ൌ ௧∑ ௧ಿುసభ  .                          (3) 

4. Scout bees phase 
During the search, some food sources will be abandoned. A user defined parameter 
limit is introduced to control when to abandon a food source. The employed bee of 
the abandoned food sources will become scout bee. A scout bee searches a new 
food source randomly to replace the abandoned food source.  
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3 The Proposed Algorithm 

3.1   Idea of the Proposed Algorithm 

In most of optimization problems, except that with illness condition, the landscape of 
function is generally smooth. Thus starting at any point, if we move towards the near-
est optimal point, we may get a better solution. In this paper, all the evaluated solu-
tions and their fitness are memorized. By these search history, we estimate the fitness 
landscape of the function. By that, the estimated local optimal point of any solution 
can be found.  Then we can find the better restarted solutions by moving them to-
wards the local optimal point. Therefore the efficiency of ABC algorithm can be im-
proved.  

 

Fig. 1. Block diagram of HdABC 

3.1 Structure of the Proposed Algorithm 

The proposed algorithm has two main parts: 1) memory, and 2) history-driven scout 
bees algorithm. The function of the memory is to store the entire search history. The 
entire search history is used to build the estimated fitness landscape of the objective 
function (surrogate model), which can be used to estimate the fitness of solutions.  
Fig. 1 shows the block diagram of our proposed algorithm. In the beginning, the loca-
tion of food sources (solutions) are randomly generated and evaluated by the objec-
tive function. Once a solution is evaluated, it will be stored with its fitness value in 
BSP tree. Then, starts the cycle of employed bees phase, onlooker bees phase and our 
proposed history-driven scout bees phase. The differences between standard ABC 
algorithm and our HdABC are that: HdABC stores all the evaluated solutions in BSP 
tree and substitutes history-driven scout bees phase for the scout bees phase.  
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3.2 History-Driven Scout Bees Algorithm 

Binary space partitioning (BSP) tree is built as a surrogate model for providing fitness 
estimation. In [14], Chow and Yuen apply the idea of the nearest-neighbor search into 
BSP tree. They stored both the evaluated solution and their fitness into BSP tree. In 
this paper, we use the same tree as that in [14], [15].  

To improve the quality of restarted solutions, the guided anisotropic search (GAS) 
module [14] is used in this paper. The GAS module is a novel parameter-less adaptive 
mutation operator, which applies a randomized gradient descent-like method to mu-
tate solutions towards the better solutions. Equation (4) shows the equation used to 
generate the new solution v by using solution x, and the corresponding local optimal 
point p. ܞ ൌ ܠ  ܘሺߙ െ  ሻ .                           (4)ܠ

In the equation, x is guided by the direction (p-x), it moves towards p with mutation 
step sizeߙ. To balance the exploitive effect of the gradient descent-like direction as-
signment, the value of ߙ is a random number within the range [0,1] with uniform 
distribution. Therefore, the solution v lies on the line determined by p and x.  

In the proposed history-driven scout bees algorithm, the GAS is used in two differ-
ent ways: 1) local restart and 2) global restart. The usage of local restart is the same as 
the GAS, which mutates the abandoned solutions towards the nearest local optimal 
region. Different from the equation (3) that is used to generate solutions in ABC, 
GAS provides a multi-dimensional mutation to the ABC algorithm. Comparing to the 
local search method used in standard ABC, GAS allows solutions moving in a rela-
tively wider area and helps solutions in ABC converge faster to a better area. Howev-
er, when the ABC continuous running, the number of solutions stored in BSP tree 
increases, the sizes of sub-regions in BSP tree decrease. In this case, the area for the 
local restart will be decreased. Therefore, we introduce another usage of the GAS, 
which is global restart, to override this problem. The global restart works like an en-
hanced version of global search. It firstly random regenerates a new solution in the 
whole search space, and then applies the GAS to mutate it towards to a better area, 
which helps the search to escape from the local optimal and ensures the new solution 
has a relatively better quality. Nevertheless, the function of global restart is mainly 
focus on preventing the premature convergence. It is expected that the improvement is 
not significant when there is only global restart applied into the ABC algorithm. 
Therefore, in the proposed history-driven scout bees algorithm, we introduce a para-
meter r to control the ratio of using local restart and global restart, where r is increas-
ing with the number of generations: ݎ ൌ ௨  ௧்௧ ௨  ௧ .                    (5) 

In each time a food source is abandoned, r will be calculated by (5). The history-
driven restarted algorithm generates a random number݀ א ሾ0, 1ሿ to make decision on 
performing local restart or global restart, i.e., operation ൌ  ൜݈ݐݎܽݐݏ݁ݎ ݈ܽܿ,     if ݀  ,ݐݎܽݐݏ݁ݎ ݈ܾ݈ܽ݃ݎ if ݀ ൏  (6)               . ݎ
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In the beginning of the search, the value is relatively smaller. The history-driven scout 
bees algorithm concentrates more in local restart, which helps the search converge 
faster. Then, at the middle of the search, the ratio of performing local restart and 
global restart is 1:1, which balances the exploration and exportation in the search. At 
the later stage of the search, the search is converged. Therefore the history-driven 
scout bees algorithm focuses on the global restart to prevent the premature conver-
gence. 

4 Experiment 

In this paper, 28 real valued benchmark functions f1-f28 are used to test the perfor-
mance of test algorithms as shown in Table 1. All the functions are tested in D = 30. 
Each test algorithm tries to solve each of the test function 30 times. For the maximum 
number of evaluation in each trial, we run experiment with two different values: one 
is MFEs=5000D, and the other is MFEs=10000D.  

To verify the performance of the proposed HdABC algorithm, it is compared with 
standard ABC. To compare the performance of test functions, the Mann-Whitney 
Utest (U-test) is used. The detailed setup of the test algorithms is NP=25 and lim-
it=100.The values of NP and limit follow [2], [3], [6]. 

Table 1. Test function set 

f1 Sphereical f15 Pathological 
f2 Schwefel's Problem 2.22 f16 InvertedCosineWave 
f3 Schwefel's Problem 1.02 f17 InvertedCosineMixture 
f4 Schwefel's Problem 2.21 f18 EpistaticMichalewicz 
f5 Rosenbrock f19 LevyMontalvo2 
f6 Quartic f20 Neumaier3 
f7 Generalized Rastrigin f21 OddSquare 
f8 Generalized Griewank f22 Paviani 
f9 Schwefel's Problem 2.26 f23 Periodic 
f10 Ackley f24 Salomon 
f11 High Conditioned Elliptic f25 Shubert 
f12 Levy f26 Sinusoidal 
f13 Zakharov f27 Michalewicz 
f14 Alpine f28 Whitely 

 
Tables 2 shows the average values of the best fitness, standard deviation and  

p-values of the test algorithms found in 30 independent runs. To increase the readabil-
ity, the best results are typed in boldface. The performance of standard ABC is com-
pared with HdABC by using U-test to determine the significance. The p-value shows 
the result of the U-test. By definition, the result is said to be significant if p<0.05. A 
marker “*” is added to the p-values which shows the result is significant. Table 8 and 
Table 9 illustrates the mean values of number of scout bees done by the test algo-
rithms in 30 independent runs with MFEs =150000 and MFEs = 300000, respectively.  

From Table 2, compared with ABC, the performance of HdABC is clearly better 
than ABC. HdABC obtains the best results in total 23 out of 28 functions. Among 
these 23 functions, the result is significant in 14 functions. Besides, HdABC performs 
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worse than original ABC in only 5 functions, but all of them are not significant. It 
shows that HdABC outperforms standard ABC in most cases. 

In fact, the difference between standard ABC and HdABC is that HdABC replaces 
the original scout bees phase to the proposed algorithm. Therefore, the results shown 
in Table 2 are directly reflecting the contribution made by the proposed algorithm. 
The proposed algorithm gives a significant improvement to original ABC, it makes 
the HdABC greatly outperforms standard ABC. To further prove that the proposed 
algorithm improves the original ABC, we have run another experiment with MFEs = 
300000. In general, with the larger MFEs, the maximum number of generations will 
be larger. Thus more employed bees will be abandoned during the search, and then 
the contribution of our proposed algorithm should be shown clearly. 

Table 2. The mean standard deviation (Std. D) and p-value (p) of the best function values 
found by ABC and HdABC in f1–f28, MFES = 5000D 

 f1 f2 f3 f4 f5 f6 
ABC 6.99E-16 3.55E-16 5.28E+03 3.89E+01 3.52E-01 1.20E+01 
Std.D 1.08E-16 8.46E-16 1.38E+03 5.86E+00 6.06E-01 5.17E-01 

HdABC 2.38E-16 2.96E-16 5.09E+03 7.02E+00 1.99E-01 9.74E+00 
Std.D 8.40E-17 6.62E-16 1.47E+03 1.50E+00 2.71E-01 6.17E-01 

p *3.69E-11 9.64E-01 5.59E-01 *3.02E-11 7.39E-01 *3.69E-11 

 f7 f8 f9 f10 f11 f12 
ABC 1.07E-14 5.59E-14 -1.38E+04 5.81E-14 7.51E-16 6.71E-16 
Std.D 2.29E-14 1.96E-13 1.63E-02 7.15E-15 1.61E-16 1.25E-16 

HdABC 2.61E-15 3.87E-13 -1.38E+04 5.22E-14 7.02E-16 2.41E-16 
Std.D 8.02E-15 1.31E-12 2.37E-02 6.40E-15 1.61E-16 1.05E-16 

p *1.60E-03 7.73E-01 6.20E-01 *2.00E-03 1.41E-01 *3.69E-11 

 f13 f14 f15 f16 f17 f18 
ABC 2.19E+02 1.09E-08 4.45E+00 -2.54E+01 -8.73E-16 -2.41E+01 
Std.D 3.02E+01 2.75E-08 3.41E-01 8.63E-01 2.69E-16 6.63E-01 

HdABC 1.54E+02 1.74E-08 3.81E+00 -2.63E+01 -9.92E-16 -2.57E+01 
Std.D 3.49E+01 5.68E-08 4.63E-01 1.04E+00 2.96E-16 6.03E-01 

p *8.35E-08 8.53E-01 *1.16E-07 *5.56E-04 1.10E-01 *4.20E-10 

 f19 f20 f21 f22 f23 f24 
ABC 4.20E-03 -2.63E+03 -2.80E-03 -9.98E+05 1.00E+00 1.73E+00 
Std.D 2.17E-02 8.55E+02 1.17E-02 5.18E-10 1.26E-05 2.41E-01 

HdABC 3.35E-02 -3.78E+03 -5.90E-03 -9.98E+05 1.00E+00 1.40E+00 
Std.D 1.75E-01 5.42E+02 1.30E-02 5.37E-10 6.04E-06 1.49E-01 

p 2.28E-01 *7.04E-07 2.06E-01 2.49E-01 2.06E-01 *7.60E-07 

 f25 f26 f27 f28   

ABC -2.32E+34 -1.74E+00 -2.96E+01 1.33E+02   
Std.D 5.05E+33 8.23E-01 2.17E-02 1.04E+02   

HdABC -2.29E+34 -3.50E+00 -2.96E+01 1.30E+02   
Std.D 4.01E+33 1.70E-03 2.72E-02 9.89E+01   

p 8.42E-01 *6.52E-09 *4.51E-02 9.59E-01   

 
The performance of ABC and HdABC in the case of MFEs = 300000 are not 

shown in this paper for the saving of space. The results show that ABC gives the same 
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performance as HdABC in 3 functions. It illustrates that both of them obtain the global 
optimal solution. As it is no differences between ABC and HdABC in these 3 functions, 
we simply discard these results. Compared to ABC in the rest of 25 functions, HdABC 
obtains the best results in 22 out of 25 functions. Among these 22 functions, HdABC 
performs significantly better than ABC in 17 functions. In only 3 test functions, ABC 
outperforms HdABC, but the results of all of them are not significant. Compared to the 
results in Table 2, it is clearly shown that the number of the test functions that HdABC 
outperforms ABC is significantly increased, and the number of the test functions that 
HdABC performs worse than ABC is decreased. The experimental results prove that the 
proposed algorithm brings a positive effect to the original ABC. 

Table 3. The mean of the number of scout bees done by ABC and HdABC in f1–f28 ,MFES = 
5000D and 10000D, respectively 

5000D f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 
ABC 50 25 2.87 559 4.87 312 25.1 30.3 2.43 25.1 

HdABC 81.4 28 3.17 572 4.73 518 35.8 46.4 2 32.3 

 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 
ABC 25.1 50 15.8 0.2 97.1 37.7 50 102 20.1 15.3 

HdABC 36.1 80.7 14.2 0.17 103 40.7 75.1 103 24.3 18.7 

 f21 f22 f23 f24 f25 f26 f27 f28   
ABC 76.6 50 26.7 85.3 32.7 26.9 6.17 57.8   

HdABC 95.4 63.7 21.7 137 26 34.6 4.83 67.8   
10000D f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 

ABC 96 48 8.7 982 21.6 591 68.1 72.6 26.2 48.3 
HdABC 184 56.3 8.2 1030 24.9 1003 102 132 38.9 75.2 

 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 
ABC 72.1 96 31.1 24.2 193 78.5 96.1 198 48.7 34 

HdABC 105 193 27.6 32.6 202 88.7 181 200 80.4 53.4 
 f21 f22 f23 f24 f25 f26 f27 f28   

ABC 141 96 57.5 169 63.3 55.4 31 114   
HdABC 187 148 63.1 290 59.9 101 50.7 133   

 
Table 3 shows the mean of numbers of scout bees done by ABC and HdABC in the 

28 test functions. Through comparison, it shows that with the larger value of MFEs, 
the number of scout bees is significantly increased. 

5 Conclusion 

History-driven scout bees Artificial Bee Colony (HdABC) algorithm is proposed. It 
uses a memory archive called Binary Space Partitioning tree to store the entire search 
history, and applies the Guided Anisotropic Search (GAS) module to find a better 
solution. The proposed algorithm contains two parts. One is for global search and the 
other is for local search. Experimental results show that the use of entire search histo-
ry and the GAS module bring positive effects to ABC algorithm.  

For the future direction, the GAS module can be applied to employed bees phase or 
onlooker bees phase to further improve the performance of ABC algorithm. Hybrid 
gravitational evolution [16], [17] or neighborhood field optimization [18] methods 
with ABC are also interesting. 
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Abstract. This paper introduces genetically inspired artificial bee colo-
ny algorithm adapted for solving multiobjective radio frequency identifi-
cation (RFID) network planning problem, which is a well-known hard
optimization problem. Artificial bee colony swarm intelligence meta-
heuristic was successfully applied to a wide range of similar problems. In
our proposed implementation, we incorporated genetic operators into the
basic artificial bee colony algorithm to enhance the intensification process
in the late iterations. Such improved version was previously tested and
proved to be better than the basic variant of the artificial bee colony
algorithm. In the practical experiments, we tested our proposed app-
roach on six benchmark instances used in the literature, with clustered
and random tag sets. In comparative analysis with other state-of-the-art
approaches our proposed algorithm exhibited superior performance and
potential for further improvements.

Keywords: RFID network planning · Artificial bee colony · Swarm
intelligence · Metaheuristics · Multi-objective optimization

1 Introduction

Radio frequency identification (RFID) technology belongs to the group of rel-
atively new technological achievements and its use has significantly increased
during last ten years along with technical, economical and commercial devel-
opment. The purpose of the RFID network is to enable transmission of data
by a portable device called tag, which is read by RFID reader and processed
according to the demands of a particular application [4].

Due to the limited range of a single reader, the problem of deployment of
optimal RFID network emerges. Important questions arise, some of them inter-
connected and dependent, like: 1) how many readers are needed; 2) where should
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the readers be placed 3) what is the efficient parameter settings for each reader;
4) how to avoid readers collision etc. Thus, the deployment of RFID system
generates RFID network planning problem (RNP) and since it belongs to the
group of hard optimization problems, classical, non-deterministic methods could
not obtain satisfactory results in a reasonable amount of time. This justifies
metaheuristic approach for tackling the RNP problem. Swarm intelligence meta-
heuristics have been proven as successful optimizers in this area [12], [3], [11],
[13], [8], [6], [5], [16].

In this paper, we adjusted artificial bee colony algorithm improved with
genetic operators (GI-ABC) for tackling the RNP. GI-ABC proved to be bet-
ter approach than the basic artificial bee colony (ABC) algorithm according to
the conducted tests [1]. In this implementation, the intensification process is
improved in the later stages of the algorithm by adapting uniform crossover and
mutation operators from genetic algorithms (GA).

We tested the proposed GI-ABC on standard RNP benchmark instances and
performed a comparative analysis using [7] as reference.

After Introduction, a mathematical model for multi-objective RFID network
planning problem is presented in Section 2. Section 3 provides details about
GI-ABC algorithm. Results and parameter settings, along with the comparative
analysis, are given in Section 4. Finally, remarks and conclusion are presented
in Section 5.

2 RFID Network Planning Problem Mathematical Model

The assignment of the RNP problem is to deploy RFID readers in the working
domain while reaching the following goals: maximum tag coverage, minimum
number of readers, minimum interference and minimum sum of transmitted (or
radiated) power [7].

Obtaining maximum level of tag coverage is the main goal of the RNP prob-
lem. The power received by the tag is defined as:

Pt[dBm] = P1[dBm] +Gr[dBi] +Gt[dBi]− L[dB], (1)

where P1 is reader’s transmitted power, Gr and Gt are reader’s and tag’s antenna
gains respectively, and L denotes attenuation factor calculated by Friis transfor-
mation [14]:

L[dB] = 10log[(4π/λ)2dn] + δ[dB], (2)

where d is a physical distance between the reader and the tag, n is environmental
factor that varies from 1.5 to 4 due to changes in physical conditions, while δ
represents losses in wireless communication.

The power received by the reader can be calculated as:

Pr[dBm] = Pb[dBm] +Gr[dBi] +Gt[dBi]− 20log(4πd/λ), (3)
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where Pb represents backscatter power sent by the tag. Pb depends on the tag
reflection coefficient Γ and on the tag received power Pt (in watts):

Pb = (Γtag)2Pt (4)

Finally, the coverage rate of a network is defined as:

COV =
max∑

t∈TS

Cv(t)/Nt · 100%, (5)

where

CVt =

{
1 if � r1, r2 ∈ RS, PTr1,t ≥ Tt ∧ PRt,r2 ≥ Tr

0 otherwise,
(6)

where Nt = |TS| represents the number of tags distributed in the working
domain.

If the network coverage goal is achieved, the minimization of the number of
readers becomes priority due to the fact that the network cost strongly depends
on the number of deployed readers.

In situations when several readers interrogate the tag at the same time, inter-
ference could occur. As a consequence, misreading and lower level of quality of
service happens. Therefore, the avoidance of interference represents an important
goal in the RNP. Total amount of interference in the RFD network is calculated
as the sum of interference levels of all deployed tags [7]:

INT =
∑

t∈TS

γ(t), (7)

where
γ(t) =

∑
PTr,t −max{PTr,t}, r ∈ RS ∧ PTr,t ≥ Tt (8)

The sum of the transmitted power of all readers should be reduced in the
context of power saving. But, according to Eq. (3) and Eq. (1), low transmitted
power could directly jeopardize the goal of obtaining tag coverage. Thus, this
objective takes the lowest priority in the RNP. The sum of the transmitted power
of all readers is defined as [7]:

SPOW =
∑

r∈RS

PSr, (9)

where PSr denotes the transmitted power of the reader r.
All of the mentioned objectives have to be satisfied simultaneously so the

RFID network planning is a multi-objective optimization problem (MORNP).
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3 Artificial Bee Colony Algorithm with Genetic
Operators for the MORNP

The main source of inspiration for the ABC algorithm, which was devised by
Karaboga [9], was the foraging behavior of honey bee swarms. ABC was imple-
mented for many problems, such as global [15] and constrained [10] optimization,
industrial problems [2], and others.

The intensification and diversification of the search space are guided by three
types of artificial agents (bees): employed, onlookers and scouts. ABC creates
initial population which consists of randomly distributed solutions. In every
iteration, each employed bee in the population discovers a food source in its
neighborhood. This process is modeled with the following equation [10]:

vi,j =

{
xi,j + φ ∗ (xi,j − xk,j), Rj < MR

xi,j , otherwise
(10)

where xi,j is j-th parameter of the old solution i, xk,j is j-th parameter of a
neighbor solution k, φ is a random number between 0 and 1, and MR is modifi-
cation rate. MR is ABC control parameter that prevents algorithm to converge
to suboptimal region of the search space, which is particularly important in early
iterations.

When a neighborhood solution is found, its fitness is evaluated and if it is
higher than the old one, new solution is retained in the population.

Upon completion of the intensification process employed bees share infor-
mation about the quality of food sources with the onlookers. Onlookers select
a food source i with a probability that is proportional to its fitness. Onlooker
selection process is modeled as [10]:

pi =
fiti∑m

j=1 fitj
, (11)

where pi represents the probability that the food source i will be selected, m is
the total number of food sources and fit is the value of fitness.

According to Eq. (11), better food sources will attract more onlookers than
the bad ones. When all onlookers select a food source for exploitation, they
search around its neighborhood in the same way as employed bees Eq. (10).

As mentioned before, when an employed bee can not improve particular food
source, it abandons it and becomes a scout. Abandoned food source is replaced
with a random one. ABC control parameter limit determines which solution will
be abandoned.

By analyzing the original ABC algorithm a deficiency in the late phase of
execution has been noticed [1]. After significant number of iterations, when opti-
mal solution is almost found, scout bees, which perform the exploration process,
are not useful any more and function evaluations are being wasted. This problem
can be treated by better adjustment of exploration and exploitation balance.

To improve the exploitation process in the late iterations, uniform crossover
and mutation operator from GA have been adopted during the replacement
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process of the exhausted food sources. Empirical point in algorithm’s execution
has been found where some of the scout bees are being replaced by a new class
of agents named guided onlookers that perform strong exploitation around the
current best solution [1].

To implement new mechanism, few additional control parameters were adop-
ted. Breakpoint (abbr. bp) parameter defines the number of iterations after
which the guided onlookers are triggered. Replacement rate (abbr. rr) defines
the probability that scouts will be replaced by the guided onlookers. If replace-
ment occurs, the best fit and one random individual are chosen from the popula-
tion as parents for uniform crossover process. After crossover, mutation operator
takes place. Each solution parameter is being mutated with certain probability
mutation probability rate (abbr. mpr) according to [1]:

offsp[i] = offsp[i] + φ1 · (rndsol[i]− offspr[i]), (12)

where offsp is a child solution, rndsol is random solution, and φ1 is a ran-
dom number in the range [−0.1, 0.1]. In this implementation we did not use
second break point from [1].

Each bee in the population is represented as a real number vector with the
dimension of 3M , where M is the number of used RFID readers. Each reader
is described by two coordinates of the readers’ 2D position, and the third com-
ponent represents transmitted power of that reader. All readers used in the
benchmarks are mobile, and tags are static. The number of readers is also a
parameter of optimization, however it was not included in the representation of
bees. Multiobjective problems can be solved using different techniques. Reduc-
tion to single-objective problem by introducing weighted sum of all objectives
is common but also rather criticized approach. For the MORNP we have a spe-
cific situation where objectives are clearly prioritized. Tag coverage is the ulti-
mate goal; only when it is achieved reduction in the number of deployed readers
becomes significant (without disturbing the tag coverage). Power reduction is
possible only at the end of this optimization procedure, resulting at the same
time in interference reduction. In such situation, weighted sum heavily favoring
the tag coverage proved to be adequate. Reader number reduction was sepa-
rately done considering the very limited search space for that parameter and the
fact that change in the number of readers destroys intensification and effectively
starts a new search.

4 Experimental Results

In the empirical testing we used six RNP instances: C30, C50, C100, R30, R50
and R100, the same ones that were used in [7]. All tests were performed in the
working domain which was a square of the size 50m by 50m, where C30 and R30
contain 30 tags, C50 and R50 contain 50 tags, and C100 and R100 have 100 tags.
C instances are clustered distributed tags, while R instances have tags that are
distributed uniformly, and as such are harder to solve. All benchmark instances
are taken from the public URL: http://www.ai.sysu.edu.cn/GYJ/RFID/TII/.
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For the sake of objective comparative analysis with [7], we used readers whose
power is adjustable in the range of [20, 33] dBm (0.1 to 2 watts). The power used
in calculations was transmitted power, with antenna gain included, while some
other papers use transmitted power. In the backscatter communication from tag
to reader, wave length λ was set to 0.328 m (915 MHz). The receiver sensitivity
thresholds for tags and readers are Tt = −14 dBm and Tr = −80 dBm, with
corresponding antenna gains of Gt = 3.7 dBi and Gr = 6.7 dBi. We set δ to 2,
n to 2, and Γtag to 0.3.

For the GI-ABC, the size of populationN was set to 20, with 20,000 iterations
(MIN), yielding total of 400,000 function evaluations. The same number of

Table 1. Experimental results

Algorithm
Mean Best

Coverage ReaderN Interfer. Power Coverage ReaderN Interfer. Power
Results for benchmark C30

GPSO 100.00 % 6 0.000 35.074 100.00 % 6 0.000 31.865
VNPSO 100.00 % 6 0.000 34.762 100.00 % 6 0.000 31.951

GPSO-RNP 100.00 % 3.18 0.000 35.511 100.00 % 3 0.000 33.948
VNPSO-RNP 100.00 % 3.04 0.000 35.034 100.00 % 3 0.000 33.535

ABC 100.00 % 2 0.000 16.246 100.00 % 2 0.000 15.297
GI-ABC 100.00 % 2 0.000 15.739 100.00 % 2 0.000 15.050

Results for benchmark C50
GPSO 95.60 % 6 0.000 35.170 100.00 % 6 0.000 31.852

VNPSO 99.20 % 6 0.000 35.023 100.00 % 6 0.000 31.742
GPSO-RNP 100.00 % 5.04 0.000 36.244 100.00 % 5 0.000 33.418

VNPSO-RNP 100.00 % 5.06 0.000 36.565 100.00 % 5 0.000 34.522
ABC 100.00 % 4 0.000 26.673 100.00 % 4 0.000 23.800

GI-ABC 100.00 % 4 0.000 26.271 100.00 % 4 0.000 23.320
Results for benchmark C100

GPSO 98.34 % 6 0.002 38.652 100.00 % 6 0.000 37.374
VNPSO 99.72 % 6 0.000 38.167 100.00 % 6 0.000 36.803

GPSO-RNP 100.00 % 5.16 0.000 38.800 100.00 % 5 0.000 37.513
VNPSO-RNP 100.00 % 5.04 0.000 38.513 100.00 % 5 0.000 37.449

ABC 100.00 % 4 0.000 33.638 100.00 % 4 0.000 30.066
GI-ABC 100.00 % 4 0.000 33.113 100.00 % 4 0.000 29.851

Results for benchmark R30
GPSO 92.13 % 6 0.000 38.849 100.00 % 6 0.000 38.842

VNPSO 94.53 % 6 0.000 38.849 100.00 % 6 0.000 38.655
GPSO-RNP 99.87 % 7.46 0.002 39.821 100.00 % 6 0.000 39.265

VNPSO-RNP 100.00 % 6.86 0.003 40.143 100.00 % 6 0.000 39.574
ABC 100.00 % 5 0.000 37.475 100.00 % 5 0.000 32.747

GI-ABC 100.00 % 5 0.000 36.961 100.00 % 5 0.000 32.551
Results for benchmark R50

GPSO 92.52 % 6 0.000 39.692 98.00 % 6 0.000 40.520
VNPSO 93.96 % 6 0.000 39.690 98.00 % 6 0.000 39.595

GPSO-RNP 99.84 % 8.26 0.012 40.652 100.00 % 7 0.000 40.315
VNPSO-RNP 100.00 % 7.66 0.030 40.667 100.00 % 7 0.000 40.080

ABC 100.00 % 5 0.006 41.273 100.00 % 5 0.000 39.017
GI-ABC 100.00 % 5 0.005 41.132 100.00 % 5 0.000 38.900

Results for benchmark R100
GPSO 91.18 % 6 0.014 40.074 95.00 % 6 0.000 40.098

VNPSO 94.14 % 6 0.012 40.333 97.00 % 6 0.043 40.657
GPSO-RNP 99.74 % 9.24 0.118 41.505 100.00 % 8 0.000 40.925

VNPSO-RNP 100.00 % 8.44 0.242 41.462 100.00 % 8 0.000 41.031
ABC 100.00 % 5 0.015 44.721 100.00 % 5 0.006 40.011

GI-ABC 100.00 % 5 0.015 44.188 100.00 % 5 0.006 39.961
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evaluations was used in [7]. MR was set to 0.8, limit to 1000, bp to 3000, rr to
0.9 and mpr to 0.01. More details about parameter adjustment for the GI-ABC
are available in [1].

A comparative analysis was performed with the pure ABC algorithm, GPSO
(traditional PSO with the global topology), VNPSO (traditional PSO with the
von Neumann topology), and GPSO-RNP and VNPSO-RNP as corresponding
algorithms with incorporated tentative reader elimination (TRE) and mutation
[7]. In this research we wanted to examine basic algorithm behavior so we did
not include any elaborate TRE mechanism into the GI-ABC. However, simple
mechanism described in Section 3 facilitated excellent results.

All experiments were conducted using 50 independent runs with different
random number seeds. We show the best and mean values for all objectives.
Treatment of objectives described in Section 3, completely satisfies real world
requirements and leads to expected high quality results.

Table 1 shows experimental results. For easier comparison, best results from
each category are marked bold. From Table 1 we conclude that GI-ABC obtains
100% tag coverage for all benchmark instances, hence the most important objec-
tive was perfectly satisfied, which other algorithms were not able to achieve. The
number of readers is much better for our proposed algorithm in all cases. For the
third objective, interference, GI-ABC obtains optimal results in all cases, except
R50 and R100, but even in these cases interference is insignificant and better
than the interference obtained by other compared algorithms. Finally, for the
objective with the lowest priority, transmitted power, GI-ABC also exhibits best
performance in all cases. In some cases significantly fewer readers were deployed
and that facilitated huge improvements in transmitted power reduction. In other
cases, transmitted power for our proposed algorithm was not significantly better
since fewer readers had to work with higher power to cover the whole working
area, but nevertheless the total power was lower.

5 Conclusion

In this paper, we presented adjustment of genetically inspired artificial bee colony
(GI-ABC) for the RFID network planning problem. We used simple technique
to control and reduce the number of readers while optimizing three other objec-
tives. Proposed algorithm was tested on 6 standard RNP benchmark instances
and comparative analysis with other state-of-the-art metaheuristics, which were
tested on the same benchmarks, show that GI-ABC exhibited uniformly better
performance. Future implementation of the more elaborated number of readers
reduction mechanism will certainly make it even more superior algorithm across
all objectives.
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Abstract. Placement of machines in a limited manufacturing area plays an im-
portant role to optimise manufacturing efficiency. Machine layout design 
(MLD) involves the arrangement of machines into shop floor area to optimise 
performance measures. The MLD problem is classified as Non-deterministic 
Polynomial-time hard (NP-hard) problem, in which, the amount of computation 
required to solve the NP-hard problem increases exponentially with problem 
size. In the manufacturing context, customers’ demands are periodically varied 
and therefore have an influence on changing production flow between machines 
for each time-period. With high variation between periods, the volume of ma-
terial flow changes significantly. Machine layout can be robustly designed un-
der demand uncertainty over time period so that no machine movement is 
needed. The objective of this paper was to investigate the effect of five degrees 
of demand variation on Genetic Algorithm based robust layout design that mi-
nimises total material handling distance. The experimental results showed that 
the degrees of demand variation had significantly affected average material 
handling distance with 95% confident interval except the largest-size problem. 
Considering standard deviation, increasing in variability of material handling 
distance had resulted from the higher degrees of variation especially in the 
small-size problems. This suggested that designing the robust machine layout 
should recognise the variation of customer demand. 

Keywords: Genetic algorithm · Robust layout · Stochastic demand · Variance 
demand 

1 Introduction 

Uncertainties in manufacturing environment, such as the change in product design, 
shorter product life cycles, elimination of existing products, and the introduction of 
new products, have effected customer’s demand variation. Material flow intensities 
between machines on the manufacturing shop floor can be changed. The more cus-
tomer demand is fluctuated, the higher material handling distance is varied. Tompkin 
et al. (2010) mentioned that about 20-50% of the total operating expenses within 
manufacturing are attributed to material handling. Material flow between machines 
relate to transportation distance and time on the shop floor area, productivity,  
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production cost, and a competitive edge in the market. Material handling cost can be 
reduced by an effective facility layout design [1]. Machine layout design is placement 
of machines in a limited manufacturing area plays an important role to optimise man-
ufacturing efficiency.  

According to demand changes over time periods, machine layout design is classi-
fied as robust layout and re-layout. Re-layout process is to rearrange machines to 
minimise handling distances for each period but it is time consuming for machine 
repositioning and produce rearrangement costs [2, 3]. The layout can be robustly de-
signed to overcome the rearrangement costs. Designing a robust layout is aimed at 
minimising the total material handling distance based on the predicted demands 
through a multi-period planning horizon. Profiles of product demand can be in the 
form of scenarios with different probabilities [4], forecast [5] or statistical distribution 
functions, such as uniform distribution [6], normal distribution [7], and exponential 
distribution [8]. Fuzzy number has also been used to introduce the stochastic flow 
between facilities, and the fuzzy cost has been represented by the triangular member-
ship function [9]. However, there has been no report on the investigation of influence 
of demand variation on robust machine layout. The objective of this paper was to 
investigate the effect of degrees of demand variation on robust machine layout design 
that minimises total material handling distance based on multiple time-periods with 
uncertainty of demand on a planning horizon.  

The remaining sections of this paper are organised as follows: Section 2 describes 
the Genetic Algorithm for solving the machine layout design (MLD) problem and its 
pseudo-code followed by the robust MLD under demand uncertainty in section 3; 
Section 4 presents the experimental design and analysis on computational results; and 
finally, discussions and conclusions are drawn in section 5. 

2 Genetic Algorithm Based Robust Machine Layout Design 
Tool 

MLD problems are categorised as NP-hard problems [10]. Solving these problems 
using full numerical methods especially for large size require the longer computational 
times. Amount of computational time increases exponentially with problem size [11]. 
In the contexts of operations research and computational intelligence, a computational 
method optimises a problem by iteratively trying to improve a candidate solution con-
sidering a given measure of quality. The approximation algorithms applied to solve the 
MLD problem, such as Genetic Algorithm [12, 13], Simulated Annealing [14], Ant 
Colony Optimisation [15], Bat Algorithm [16] and Backtracking Search Algorithm 
have been successfully applied to solve the MLD problem, but they do not guarantee 
the optimum solutions [17]. 

Genetic Algorithm (GA) [18, 19] is a biological based stochastic search algorithm 
for approximating the optimal solution in search space. Exploitation and exploration 
processes are carried out simultaneously via crossover and mutation operations, re-
spectively. These features play an important role in terms of getting trap or escape 
from local optimal. The GA has been extensively applied to solve production and 
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operations management problems [20]. The pseudo-code of the proposed GA for 
robust MLD shown in Fig. 1 [16] can be described as follows: i) encode the problem 
to produce a list of genes using a numeric string [21]. Each chromosome contains a 
number of genes, each representing a machine number so that the length of the chro-
mosome is equal to the total number of machines needed to be arranged; ii) prepare 
input data: number of machines (M), dimension of machines (width: MW x length: 
ML), number of products (N), and their machine sequences (MS), and identify parame-
ters: population size (Pop), number of generations (Gen), probability of crossover 
(Pc), probability of mutation (Pm), floor length (FL), floor width (FW), gap between 
machines (G), and number of periods (P); iii) create the demand levels of each prod-
uct in each period (Dgk). iv) randomly generate an initial population based on the  
defined Pop; iv) apply crossover and mutation operators to generate new offspring 
respecting Pc and Pm respectively; v) arrange machines row by row based on FL and 
FW; vi) evaluate the fitness function value; vii) select the best chromosome having the 
shortest material handling distance using the elitist selection; viii) choose chromo-
somes for the next generation by using roulette wheel selection; and ix) stop the GA 
process according to the number of generations. When the GA process is terminated, 
the best-so-far solution is reported. 

It has been mentioned that the GA’s parameters always play an important role on 
its performance [11]. The appropriate setting of Pc and Pm be set at 0.9 and 0.5, re-
spectively [22]. The number of chromosomes and generations were 50. Genetic op-
erators adopted in this work were the Two-point Centre Crossover (2PCX) and Two 
Operation Random Swap (2ORS) [23]. 
 

Input problem dataset (M, MW, ML, MS, N)  
      Parameter setting (Pop, Gen, Pc, Pm, FL, FW, G, P) 
      Create demand level (Dgk) for each product associated with demand distribution 
      Randomly create initial population (Pop) 
      Set a  = 1 (first generation) 
      While a ≤ Gen do   
             For b =  1 to cross do (cross = round ((Pc x Pop)/2))) 
                    Crossover operation 
             End loop for b 
             For c =  1 to mute do (mute = round(Pm x Pop))  
                     Mutation operation 
             End loop for c 
             Arrange machines row by row based on FL , FW and G 
             For k = 1 to Number of periods (P) do   
                       Calculate material handling distance based on demand level 
(Dgk) 
                        k = k+1 
             End loop for k 
             Selection of the best solution using elitist selection 
             Chromosome selection using roulette wheel method 
             a = a + 1  
      End loop while 
Output the best solution  

Fig. 1. Pseudo code of GA for MLD with stochastic demand modified from Dapa et al. (2013) 
[16] 
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3 Robust Machine Layout Design Under Demand Uncertainty 

Machines are usually designed in rectangular shape, different sizes and different 
models. The multi-row layout configuration is often found in the literature [24-28]. 
Arranging non-identical rectangular machines in multiple-row environment is where 
machines are placed row by row within a restricted area such as that shown in Fig. 2. 
Machines are placed in parallel row by row based on FL and gap between machines. 
Flow path means the movement of material handling equipment, e.g. automated 
guided vehicles, which can move to left or right side of the row and then move up or 
down to the destination row. The distance of material flow was evaluated for the 
shortest distance such as transportation of materials from M4 to M11. There are two 
choices: route A or B. Because route A is shorter than B, thus they are transported 
with route A. The operated point of each machine is centroid. 

 

Fig. 2. Example of multiple-row machine layout design modified from Leechai et al. (2009) 
[26]  

In this study, the following assumptions were made in order to formulate the prob-
lem: i) the material handling distance between machines was determined from the 
machine’s centroid, ii) machines were arranged in multiple rows, iii) there was 
enough space in the shop floor area for machine arrangement, iv) the movement of 
material flow was a straight line, v) the gap between machines was predefined and 
similar, and vi) the processing time and moving time were not taken into considera-
tion. 

The evaluation function for the efficiency of robust layout design can be used to 
minimise total of the material handling distance (MHD) for all periods as shown in 
Eq. 1[13, 29]. 
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the number of product types, g is the product index (g = 1, 2, 3, …, N). P is the number 
of time periods, k is the time period index (k = 1, 2, 3, …, P), dij is the distance from 



 

machines i to j (i ≠ j), fijgk is 
to j in period k, and Dgk is the

In order to investigate t
product type were propose
model for the distribution o
note a normal distribution w
= 0 and σ2 = 1 is called a sta
rimental study were genera
1σ, μ ± 1.5σ, μ ± 2σ, μ ± 2
product demand moves furt

 

Fig. 3. A

4 Experimental D

In this work, the computati
sets which have different n
types as shown in Table 1. E
tion: 0.5, 1, 1.5, 2, 2.5 and 3

Datasets Nu

10M5N 

20M10N 

20M20N 

20M40N 

30M15N 

40M20N 

40M40N 

50M25N 

 
With eight datasets, eac

variation, 1,200 computati
designing program was d
Command Language and 
 

Genetic Algorithm Based Robust Layout Design 

the frequency of material flow of product g from machin
e customer demand of product g in period k. 
the degree of demand variation, demand profiles on e
d with normal distribution which is the most widely u
of a random variable. The normal N (µ, σ2) is used to 
with mean µ and variance σ2. A normal distribution wit
andard normal random variable. Demand profiles for ex

ated using five forms of normal distribution: μ ± 0.5σ, 
2.5σ and μ ± 3σ. With a higher variance, the probability
ther from µ is increased as shown in Fig. 3. 

 

Areas under a Normal distribution curve [30]  

Design and Analysis on Computational Resul

ional experiments were conducted using eight testing da
numbers of non-identical machines and number of prod
Each dataset was tested with five degrees of demand va
3. The number of time periods was set to twelve periods

Table 1. Testing datasets 

umber of machines (M) Number of products (N) 

10 5 

20 10 

20 20 

20 40 

30 15 

40 20 

40 40 

50 25 

ch of which took thirty replications and five degrees
onal runs in total were carried out. The machine lay

developed and coded in modular style using the T
Tool Kit (Tcl/Tk) programming. An experiment w

261 

nes i 

each 
used 

de-
th µ 
xpe-
μ ± 
y of 

lts 

ata-
duct 
aria-
s. 

s of 
yout 
Tool 
was 



262 S. Vitayasak and P. Pongcharoen 

designed and conducted on a personal computer with Intel Core i5 2.8 GHz and 4 GB 
DDR3 RAM. The experiment was aimed at minimising the material handling 
distance. The computational results were analysed in terms of the minimum, 
maximum, mean and standard deviation (SD) as shown in Table 2. 

Table 2. Values of total material handling distance (unit: metres) in each dataset  

Data 

set 

Valu

e 

Degree of demand variation P-

value  0.5 1.0 1.5 2.0 2.5 3.0 

10 Mean 798,455.6 778,054.3 752,610.2 741,292.1 716,177.0 715,278.2 0.000 

5N SD 12,661.0 13,814.9 8,504.2 12,157.3 14,097.9 13,807.1  

 Min 790,680.9 769,917.0 749,245.0 734,615.2 708,259.9 706,364.2  

 Max 826,500.9 805,887.3 783,688.3 773,198.6 749,327.3 745,071.4  

20M Mean 6,090,233.3 6,029,309.6 5,960,297.3 5,934,004.7 5,941,205.8 5,895,145.7 0.000 

10N SD 136,503.5 175,405.7 177,763.3 146,028.0 207,073.0 172,407.5  

 Min 5,852,922.4 5,640,605.0 5,548,461.6 5,640,703.8 5,458,338.5 5,563,535.2  

 Max 6,405,797.5 6,396,783.7 6,520,753.3 6,277,827.2 6,520,753.3 6,397,712.9  

20 Mean 14,120,216.9 13,958,173.0 13,721,142.9 13,642,369.0 13,534,394.7 13,473,219.4 0.000 

20N SD 190,095.1 244,759.9 169,846.0 149,338.3 242,901.1 206,879.1  

 Min 13,770,010.8 13,567,935.1 13,357,533.5 13,154,515.8 13,022,012.2 12,967,093.1  

 Max 14,489,679.9 14,641,982.9 14,125,857.1 13,919,343.6 14,003,164.5 13,914,647.7  

20 Mean 26,779,950.4 26,331,906.1 26,089,612.3 25,863,853.4 25,821,388.3 25,976,173.0 0.000 

40N SD 334,451.5 290,473.0 309,042.6 337,976.8 407,368.1 351,672.8  

 Min 26,091,179.4 25,744,858.1 25,497,690.8 25,182,286.5 25,091,339.0 25,395,546.0  

 Max 27,454,041.7 27,125,796.0 26,905,331.1 26,412,402.0 26,547,708.5 26,706,696.5  

30 Mean 12,861,905.4 12,633,409.0 12,497,233.1 12,297,043.7 12,313,545.8 12,287,517.0 0.000 

15N SD 293,809.5 226,673.0 255,494.2 311,474.8 210,624.6 272,412.7  

 Min 12,262,049.3 12,264,522.9 12,017,526.3 11,710,277.6 11,987,376.8 11,769,353.3  

 Max 13,526,366.2 13,099,550.3 12,979,324.3 12,856,160.6 12,929,108.4 12,842,082.1  

40 Mean 19,400,243.7 19,190,781.5 18,750,884.1 18,603,557.1 18,587,821.7 18,706,237.9 0.000 

20N SD 584,399.2 542,183.4 601,789.9 585,018.7 708,056.3 583,785.3  

 Min 18,336,836.3 18,102,922.0 17,590,348.5 17,416,714.9 16,880,685.0 17,366,065.2  

 Max 20,325,492.2 20,307,448.7 19,932,879.2 19,907,592.9 20,345,596.6 19,704,154.5  

40 Mean 38,121,671.8 37,951,791.0 37,413,438.3 36,698,521.3 36,868,117.9 37,312,198.7 0.000 

40N SD 1,127,208.1 1,168,882.8 1,040,185.6 879,492.4 1,230,505.5 1,004,793.5  

 Min 35,797,412.2 35,503,204.0 34,948,160.6 35,530,237.0 35,119,602.3 35,341,525.0  

 Max 40,319,647.6 41,219,926.3 40,116,558.9 39,218,020.8 40,102,416.1 39,231,231.1  

50 Mean 31,815,766.2 31,794,316.0 31,639,579.2 32,033,331.0 32,037,873.0 31,951,724.7 0.289 

25N SD 836,672.3 832,774.6 743,358.5 758,783.8 751,141.0 676,924.9  

 Min 30,202,549.6 29,823,536.0 29,616,562.0 30,692,224.0 30,357,873.7 31,042,342.4  

 Max 33,752,084.3 34,243,146.2 33,708,784.9 33,681,905.5 33,536,816.8 33,715,837.3  
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From Table 2, the mean of material handling distance is shown as increasing when 
the problem size (number of machines and products) is larger. In each degree of varia-
tion, the problem dataset 40M40M had the highest values of mean and SD because of 
the number of machines and the type of products. When the number of machines is 
increased, the feasible solutions are increased. A variety of solutions had an effect on 
the standard variation. Also, the average computational time required to solve each 
dataset depends on the problem size. In case of a 1.0 degree of variation, the first 
three ranks of datasets according to the execution time were 40M40N, 50M25N and 
20M40N which was about 32.5, 25.6, and 22.5 minutes, respectively, while 10M5N 
took only 1.7 minutes.  

For each dataset, the distance decreased respecting to increasing in the degrees of 
variation because of demand values and machine position. The results were examined 
using the analysis of variance (ANOVA). The P value of ANOVA equaled 0.000 in 
all datasets except 50M25N, in which the P-values was 0.289. Degrees of variation 
significantly affected the material handling distance with 95% confident interval since 
the P values are less than 0.05 in almost all datasets. For 50M25N dataset, degree of 
variation had no statistically significant effect on the distance. Applying the student’s 
t-test to compare the differences in mean of the distance within degrees of variations, 
the results showed that there were statistically significant differences (P values < 
0.05) between 1.5 and 2.0, 1.5 and 2.5, and 2.0 and 2.5 degrees of variation. Influence 
of changes in demand values between periods relates to problem size and degree of 
variation. In datasets with 10 and 20 machines, when a 0.5 degree increased to 3.0, 
the SD value was higher. Wider variability in material handling distance had resulted 
from the higher degrees of demand variation especially in the small-size problems. 

5 Discussion and Conclusions 

This paper presents the investigation of the effect of five levels of stochastic demand 
on the designing a robust machine layout with shortest material handling distance. 
Demand profiles with five degrees of demand variation were based on normal 
distributions.  The experimental results indicated that degrees of demand variation 
had statistically significant effect in material handling distance in almost all datasets. 
The wider fluctuation in customer demand between periods affected the existing 
layout. Robust layout for the largest-size problem (50M25N) can withstand demand 
variation. For other datasets, the layout may be redesigned in uncertain demand 
environment to maintain the shorter material handling distance. Future research can 
also investigate this kind of the effect on machine re-layout design, in which some 
machines can be repositioned at the end of time periods. 

Acknowledgement. This work was part of the research project supported by the Naresuan 
University Research Fund under the grant number R2558C129. 



264 S. Vitayasak and P. Pongcharoen 

References 

1. Tompkins, J.A., White, J.A., Bozer, Y.A., Tanchoco, J.M.A.: Facilities Planning, 4th edn. 
John Wiley & Sons, Inc., New York (2010) 

2. Balakrishnan, J.: Dynamic layout algorithms: a state-of-the-art survey. Omega-Int. J. Man-
age. S. 26, 507–521 (1998) 

3. McKendall, Jr., A.R., Shang, J., Kuppusamy, S.: Simulated Annealing heuristics for the 
dynamic facility layout problem. Comput. Oper. Res. 33, 2431–2444 (2006) 

4. McKendall, Jr., A.R., Hakobyan, A.: Heuristics for the dynamic facility layout problem 
with unequal-area departments. Eur. J. Oper. Res. 201, 171–182 (2010) 

5. Ertay, T., Ruan, D., Tuzkaya, U.R.: Integrating data envelopment analysis and analytic 
hierarchy for the facility layout design in manufacturing systems. Inf. Sci. 176, 237–262 
(2006) 

6. Krishnan, K.K., Jithavech, I., Liao, H.: Mitigation of risk in facility layout design for sin-
gle and multi-period problems. Int. J. Prod. Res. 47, 5911–5940 (2009) 

7. Tavakkoli-Moghaddam, R.S., Javadian, N., Javadi, B., Safaei, N.: Design of a facility 
layout problem in cellular manufacturing systems with stochastic demands. Appl. Math. 
Comput. 184, 721–728 (2007) 

8. Chan, W., Malmborg, C.J.: A Monte Carlo simulation based heuristic procedure for  
solving dynamic line layout problems for facilities using conventional material handling 
devices. Int. J. Prod. Res. 48, 2937–2956 (2010) 

9. Enea, M., Galante, G.M., Panascia, E.: The facility layout problem approached using a 
fuzzy model and a genetic search. J. Intell. Manuf. 16, 303–316 (2005) 

10. Loiola, E.M., de Abreu, N.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: A survey 
for the quadratic assignment problem. Eur. J. Oper. Res. 176, 657–658 (2007) 

11. Pongcharoen, P., Warattapop, C., Thapatsuwan, P.: Exploration of genetic parameters and 
operators through travelling salesman problem. Science Asia 33, 215–222 (2007) 

12. Jithavech, I., Krishnan, K.K.: A simulation-based approach for risk assessment of facility 
layout designs under stochastic product demands. Int. J. Adv. Manuf. Tech. 49, 27–40 
(2010) 

13. Vitayasak, S., Pongcharoen, P.: Identifying Optimum Parameter Setting for Layout Design 
Via Experimental Design and Analysis. Adv. Mater. Res. 931-932, 1626–1630 (2014) 

14. Balakrishnan, J.: Soluition for the constrainted dynamic facility layout problem. Eur. J. 
Oper. Res. 57, 280–286 (1992) 

15. Corry, P., Kozan, E.: Ant Colony Optimisation for machine layout problems. Comput. Op-
tim. Appl. 28, 287–310 (2004) 

16. Dapa, K., Loreungthup, P., Vitayasak, S., Pongcharoen, P.: Bat algorithm, genetic algo-
rithm and shuffled frog leaping algorithm for designing machine layout. In: Ramanna,  
S., Lingras, P., Sombattheera, C., Krishna, A. (eds.) MIWAI 2013. LNCS, vol. 8271,  
pp. 59–68. Springer, Heidelberg (2013) 

17. Pongcharoen, P., Hicks, C., Braiden, P.M., Stewardson, D.J.: Determining optimum  
Genetic Algorithm parameters for scheduling the manufacturing and assembly of complex 
products. Int. J. Prod. Econ. 78, 311–322 (2002) 

18. Gen, M., Cheng, R., Lin, L.: Network models and optimization: Multiobjective Genetic 
Algorithm approach (Decision engineering), 2008th edn. Spinger, London (2008) 

19. Goldberg, D.: The design of innovation (Genetic Algorithms and evolutionary computa-
tion), 1st edn. Springer, London (2002) 

20. Aytug, H., Knouja, M.J., Vergara, E.F.: Use of Genetic Algorithms to solve production 
and operations management problems: A review. Int. J. Prod. Res. 41, 3955–4009 (2003) 



 Genetic Algorithm Based Robust Layout Design 265 

21. Vitayasak, S., Pongcharoen, P.: Machine selection rules for designing multi-row rotatable 
machine layout considering rectangular-to-square ratio. J. Appl. Oper. Res. 5, 48–55 
(2013) 

22. Vitayasak, S.: Multiple-row rotatable machine layout using Genetic Algorithm Research 
report (in Thai). Naresuan Univeristy, Phitsanulok (2011) 

23. Vitayasak, S., Pongcharoen, P.: Interaction of crossover and mutation operations for  
designing non-rotatable machine layout. In: Operations Research Network Conference 
(2011) 

24. Chiang, W.-C., Kouvelis, P., Urban, T.L.: Single- and multi-objective facility layout with 
workflow interference considerations. Eur. J. Oper. Res. 174, 1414–1426 (2006) 

25. Drira, A., Pierreval, H., Hajri-Gabouj, S.: Facility layout problems: A survey. Annu. Rev. 
Control 31, 255–267 (2007) 

26. Leechai, N., Iamtan, T., Pongcharoen, P.: Comparison on Rank-based Ant System and 
Shuffled Frog Leaping for design multiple row machine layout. SWU Engineering Journal 
4, 102–115 (2009) 

27. Singh, S.P., Singh, V.K.: An improved heuristic approach for multi-objective facility 
layout problem. Int. J. Prod. Res. 48, 1171–1194 (2010) 

28. Sirinaovakul, B., Limudomsuk, T.: Maximum weight matching and Genetic Algorithm for 
fixed-shape facility layout problem. Int. J. Prod. Res. 45, 2655–2672 (2007) 

29. Vitayasak, S., Pongcharoen, P.: Backtracking Search Algorithm for designing a robust  
machine layout. WIT Trans. Eng. Sci. 95, 411–420 (2014) 

30. Bluman, A.G.: Elementary statistics: A brief version. 4th edn. McGraw-Hill (2008) 



© Springer International Publishing Switzerland 2015 
Y. Tan et al. (Eds.): ICSI-CCI 2015, Part I, LNCS 9140, pp. 266–275, 2015. 
DOI: 10.1007/978-3-319-20466-6_29 

Design Index-Based Hedging: Bundled Loss  
Property and Hybrid Genetic Algorithm 

Frank Xuyan Wang() 

Validus Research Inc., Waterloo, ON N2J1R1, Canada 
frank.wang@validusresearch.com 

Abstract. For index-based hedging design, the scatter plot of the hedging 
contract losses versus the to-be-hedged losses is generally used to visualize and 
quantify basis risk. While studying this scatter plot, which does not cluster along 
the diagonal as desired, a “bundled loss” phenomenon is found. In a setting 
where both the hedging and the hedged contracts have 100,000 years of 
simulated losses, this shows that if we need to hedge one loss in a year for the 
hedged contract, we may need to pay for other losses in other years in the 
hedging contract, which are unnecessary and unwanted. The reason is that the 
index used in the hedging may have identical loss values in different years while 
the hedged contract may not. This finding is a guiding principle for forming the 
risk measures and solution frameworks. To solve the problem so formed, a 
hybrid multi-parent and orthogonal crossover genetic algorithm, GA-MPC-OX, 
is used and pertinent adjustments are studied. For a problem with hundreds of 
dimensions, using eleven parents seems best, while a problem with tens of 
dimensions would prefer nine parents. Depending on the dimensions, relevant 
best strategies of the orthogonal crossover are also suggested by experimental 
results. To combat the stagnation of the algorithm, the perturbation by Lévy 
stable distribution is studied. This reveals possible effective parameters and 
forms. Numerical comparison with other algorithms is also conducted that 
confirms its competence for the hedging problem. 

Keywords: Hedging problem · Genetic algorithm · Multi-parent crossover · 
Orthogonal crossover · Lévy stable distribution 

1 Introduction 

In the reinsurance industry, we frequently need to mimic a client company’s losses by 
an insurance industry loss index, which are functions of the collective losses from all 
insurance companies across all geography, peril, and line of business. The latter is 
used to construct index-based hedging contracts for the client. 

If the index loss is an accurate approximation of the client’s actual loss, we should 
naturally expect their scatter plot closely clustering along the diagonal, their expected 
losses around the same, and their empirical CDF and PDF plots not far apart. More 
specifically, we would want the risk, as given by quantiles of the loss differences 
distribution for various probabilities, or by probabilities of these differences above 
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given losses on condition that the client’s losses greater than a list of thresholds, to be 
within some expected limit. Since these differences, especially where the losses from 
the client contract are above the losses from the index-based contract, are the residual 
risk of un-hedged losses. The expected loss of the index-based contract is a key 
determinant of the cost of the hedging. So we first attempt to quantify the 
effectiveness of the hedge. Next, we introduce methods to optimally balance the 
effectiveness and the cost of hedging. 

The accompanying mathematical problem is finding the forms of the function used 
to construct the hedging, and the objective value function we should use to optimize 
the index, as well as which algorithm or what problem-related adjustment to the 
algorithm we should adopt for solving the hedging problem. 

In a previous study of the insurance-linked securities portfolio optimization [1], a 
domain-specific property, that many of the candidate contracts are either the best or 
the worst and their contribution should be kept constant, is found. In it, a hybrid 
multi-parent crossover, orthogonal crossover genetic algorithm and catfish algorithm, 
GA-MPC-OX, which can utilize said property, is proposed. Its superiority is 
established through numerical comparison studies. Similarly, for the hedging 
problem, we found a "bundled loss" property, which worked as a guiding principle in 
forming our solution framework, as well as in selecting and evolving algorithms to 
solve it. We will then check its efficiency by comparing with results from using such 
algorithms as the Firefly, Bat, Cuckoo, Flower Algorithm [6], and the Wind 
Algorithm [5]. 

2 Hedging Problem Solution 

2.1 Bundled Loss 

In our experiment, the scatter plot of index loss vs. client loss never clusters along the 
diagonal within a narrow band. We always see the points spread out horizontally, 
such as in Fig.1. 

A close examination of the points reveals a “bundled loss” phenomenon in the 
hedging problem, and this discovery gives us empirical rules on how to address these 
problems. 

The “bundled loss” principle can be explained most clearly in the top end of the to-
be-hedged client contract loss (called V), which occupies more than 30% of the non-
zero loss years: all values are the same number, 109. To hedge the 109 loss of one of 
these years of V with a to-be-constructed industry loss portfolio, called the index or 
the hedging contract, the portfolio needs to have a loss of 109 for that year. At the 
same time, the portfolio (called Y, we will not differentiate between the portfolio and 
the index formed from it) will have many other years that have the same loss or 
almost the same loss as that year, possibly in the years where V has zero losses, since 
V has zero losses in 90% of the years. The additional losses of Y are the “bundled 
losses”, for hedging the loss of the needed year of V, and will be the additional cost in 
the expected payoff of Y. Because of these bundled losses, we will see a horizontal 
scatter in the V-Y scatter plot: same Y but different V (the special case mentioned of 
V=0 is in the y-axis condensation shown in our results). 
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risk (and scatter plot), the solution with smaller cost E(Y) would be better. If two 
solutions have similar risk and cost, then the one with higher conditional CDF plot is 
better. 

If we want the count of years when abs(V-Y) near the higher end of 109 to be 
small, the count of  years when abs(V-Y) near the lower end of 0 will be large due to 
the bundled loss. To get an overall number for this trade-off, we need a weighting 
scheme to sum up these counts. We can use this number as our objective, which tested 
to be more robust than the p-norm or any other forms, considering that a few years’ 
losses may be outliers out of the simulation data generating process. 

The 1-norm, 2-norm, or other higher p-norm appears to be more sensitive to 
outliers in the data, and will produce solutions with bouncing Y PDF while the 
original V PDF is very smooth and slowly-changing. Various weighting schemes are 
tested with some exponential form weighting function the best. 

Using the count of years abs(V-Y) falling to different intervals in the objective 
value function will increase the stability, but may not differentiate solutions 
accurately. Two solutions with objective values so constructed, and differing by a few 
percent, may not have the property that the better solution will have the better 
objective value, especially when the function forms used are different. We then need 
to consider and compare all the different measures discussed above. 

As for the forms or the formulas that define Y, we get these empirical principles: 
the best form mimics the V payoff function, i.e., using event limit, annual limit and 
big annual aggregate deductible (better than any piecewise linear, piecewise constant, 
power, or other highly nonlinear functions, such as combined min and max 
functions); when designing the multiple portfolios, each portfolio is better to cover a 
different loss range and has tens of times less non-zero loss years than V. 

There is also another empirical finding of giving different weighting to V>Y and 
V<Y losses: if we consider the un-hedged V>Y portion as worse than the over-
hedged portion where V<Y, and want to give it a relatively large factor, we can then 
find that we will reduce the un-hedged conditional probability such as 1-F(V-
Y<=4e8|V>7.5e8). At the same time, it will increase the cost as given by E(Y). The 
relationship between the factor and the probability is almost linear. For example, 
when using a factor of 1.1, we get a probability of 1-0.81 and when we use a factor of 
1.35, we get a probability of 1-0.85. 

When the objective values of solutions only differ by a small percentage, their risk 
measures and costs, as well as the scatter plots, CDF and PDF plots, will be similar. It 
seems that a decrease in some portions of the risk curve will be offset by increases in 
other portions. However, to reveal some emerging pattern in the solution form, the 
tiny difference matters. Only the best solution has a low enough noise to show the 
true figure. 

The search for good Y form and a good algorithm is a reciprocal process. We do 
not want the noise in the algorithm to affect the decision about which form is better, 
and we want the adjustment of the algorithm to be pertinent to the objective function 
form. So we first fix several forms of the Y and test the algorithm; the settings that are 
constantly better are adopted, and with the new algorithm, we test more Y forms 
using the criteria of various plots and abs(V-Y) counts. This process is then repeated. 



270 F.X. Wang 

2.2 GA-MPC-OX Adjusted 

In [1], the GA-MPC-OX algorithm, which performed better than any of the other 
algorithms tested for the portfolio optimization problem, such as PSwarm, MOEAD, 
ENSMOEAD, DyHF, CMODE, ICDE, PSO-DE, DSA, DECC-G, CoDE, ETLBO, 
OXDE, MBA, IRM-MEDA, TLBO, MMEA, RM-MEDA, ABC, IABC, 
NBIPOPaCMA, SHADE_CEC2013, DRMA-LSCh-CMA, and iCMAES-ILS, [10]-[30], 
is proposed. This prompts us to adapt it to the hedging problem.  

Numerical experiments showed that the GA-MPC-OX can easily become stagnant, 
so we adjusted the number of parents used in its crossover operator. We found that the 
strategy of using nine parents generating nine children is best in a problem with 59 
free-to-change variables, followed by eleven parents, and then by six, seven, or 
fourteen parents. These numbers seem related to the dimension, for example, for a 
problem with 490 dimensions, using eleven parents is best.  

The Catfish Algorithm from [3] as used in [1] is akin to the dominance property of the 
portfolio optimization problem, and may not work in our hedging problem. Replacing it 
with the original normal perturbation operator from [4] produced better results. 

The original interpolation method for orthogonal crossover in [2] tested better than 
[1]'s shortcut of table lookup method, so we followed the original method. However, 
instead of using Catfish Algorithm's method of taking candidates from the lower half, 
we took them from the upper half of the candidate pool. For the levels used, we tested 
methods of using increasing, decreasing, or equal probabilities of selecting a level 
from a number of levels. The three best strategies are using three levels with equal 
probabilities, always taking three levels, and using six levels with equal probabilities. 
But for higher dimensions, the last strategy seems best, followed by the first and then 
the second; adding randomness in selecting levels appears more effective. 

With the four combinations of parent and levels numbers, when the best two for 
each were selected, for 58 dimensional problems, the precedence is (9,3),(9,6),(11,3), 
and (11,6). For 590 dimensional problems, the order is reversed. 

Five other algorithms are used to solve the same problem as ours: the WDO [5], 
Firefly, Bat, Cuckoo Search, and Flower Pollination Algorithm [6]. In one form of the 
objective function, which is a weighted sum of the counts of the differences in loss 
belonging to different intervals, so that the smaller the objective value, the better the 
hedging should be, our algorithm finds the objective value after 100,000 function 
evaluations of 100,394, and after 1.4 million function evaluations of 64,169. The 
WDO gets the objective value after 100,000 function evaluations of 262,557, 2.61 
times our number, and is stagnant after 40,000 function evaluations. 

For another form of the objective function, our algorithm finds the objective value 
after 150,000 function evaluations of 109,551, after 200,000 function evaluations of 
101,110, after 500,000 function evaluations of 85,781, and after one million function 
evaluations of 83,648. The Firefly Algorithm finds the objective value after 200,000 
function evaluations of 372,697, stagnant after 150,000 function evaluations. The Bat 
Algorithm gets the objective value after 160,000 function evaluations of 327,017. The 
Cuckoo Search Algorithm gets the objective value after one million function 
evaluations of 130,405, 55.9% larger than that of 83,648. The Flower Pollination 
Algorithm gets the objective value after 500,000 function evaluations of 126,181, 
47% larger than that of 85,781. 
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These comparisons may not absolutely show the superiority of our algorithm due 
to the example implementation of the other algorithms, but they do show the 
importance of the fine adjusting of the strategies and parameters used. Dr. Yang [6] 
emphasized the benefit of Lévy stable distribution, so we will try applying it to our 
algorithm. 

2.3 Gauss or Lévy 

The normal perturbation in the original GA-MPC algorithm is of the form 
0.5U+0.25U*N, where U is the uniform distribution in (0,1) and N is the standard 
normal distribution. The Lévy flight perturbation Dr. Yang used is of the form 
0.01N*S(1.5,0)*(x-best), where S(1.5,0) is the Lévy alpha-stable distribution 
(http://en.wikipedia.org/wiki/Stable_ distribution) with stability parameter 1.5, 
skewness parameter 0, scale parameter 1, and location parameter 0. 

We performed three runs and saw one run using Lévy flight perturbation obtained 
better results than when using normal perturbation, while the other two runs were 
worse. It seems the Lévy flight has effect but it is not trivial to harness its power, or it 
is purely caused by chance and more due to the randomly selected initial population. 
We tested on the following additional forms of the perturbation: U-0.5+0.25U*N, U-
0.5+0.25U*tan(π*(U-0.5)), U-0.5+0.25U*S(0.5,0), 0.5U+0.25U*tan(π*(U-0.5)), 
0.5U+0.25U*S(0.5,0), 0.5U+0.25U*S(α,0), α*N*S(0.5,1), α*(U-0.5)*S(0.5,1), and 
α*N*S(0.5,0), using the stable distribution code from [7], since it is faster than the 
other two implementations [8] and [9]. The test results are collected in Table 1. 

Table 1. Effects Of Perturbation Forms 

Perturbation Form Objective Value 

0.5U+0.25U*N 58369.3129228756a 

0.01N*S(1.5,0)*(x-best) 58588.2094140444 

U-0.5+0.25U*N 58626.7825481966 

U-0.5+0.25U*tan(π*(U-0.5)) 59253.6826758084 

U-0.5+0.25U*S(0.5,0), 1st run 58417.5946349593 

U-0.5+0.25U*S(0.5,0), 2nd run 58836.9978332785 

U-0.5+0.25U*S(0.5,0), 3rd run 58903.4202994694 

0.5U+0.25U*tan(π*(U-0.5)) 58454.9400481151 

0.5U+0.25U*S(0.01,0) 58533.4400598268 

0.5U+0.25U*S(0.05,0) 58365.6438802964 

0.5U+0.25U*S(0.1,0) 58487.5490576022 
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Table 1. (Continued) 

Perturbation Form Objective Value 

0.5U+0.25U*S(0.3,0) 58846.7701952340 

0.5U+0.25U*S(0.5,0) 58437.9835642726 

0.5U+0.25U*S(0.7,0) 58921.7782284960 

0.5U+0.25U*S(0.9,0) 58595.5569928767 

0.5U+0.25U*S(1.01,0) 58721.6837996683 

0.5U+0.25U*S(1.05,0) 58356.6284969962 

0.5U+0.25U*S(1.1,0) 58396.0031511394 

0.5U+0.25U*S(1.3,0) 58446.7420494971 

0.5U+0.25U*S(1.5,0) 59143.4785428433 

0.5U+0.25U*S(1.7,0) 58577.2452540111 

0.5U+0.25U*S(1.9,0) 58334.9363537724 

0.5U+0.25U*S(1.95,0) 58390.6540507207 

0.5U+0.25U*S(1.99,0) 58798.0866233763 

0.01*N*S(0.5,1) 58623.7008885335 

0.01*(U-0.5)*S(0.5,1) 59379.2371618059 

0.01*N*S(0.5,0) 58489.2841485367 

0.05*N*S(0.5,0) 58782.6471115213 

0.075*N*S(0.5,0) 58468.6686062425 

0.1*N*S(0.5,0) 58412.1454721504 

0.15*N*S(0.5,0) 58472.1776203138 

0.2*N*S(0.5,0) 58399.2953524066 

0.25*N*S(0.5,0) 58465.769182205 

0.3*N*S(0.5,0) 58874.2030665987 

0.35*N*S(0.5,0) 58653.8876928435 

0.4*N*S(0.5,0) 59082.81743882 

0.45*N*S(0.5,0) 58556.6515104805 

0.5*N*S(0.5,0) 59047.7318800064 
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Table 1. (Continued) 

Perturbation Form Objective Value 

1*N*S(0.5,0) 59020.9476755368 

0.1*N*S(0.05,0) 58442.6398141161 

0.1*N*S(1.05,0) 58436.1462185919 

0.1*N*S(1.5,0) 59154.7577594512 

0.1*N*S(1.9,0) 59028.6114845251 

a. 58 dimensional problem, used 9-parent MPC and 3-levels orthogonal crossover operators.  

 

Out of all the tested cases, the Gauss or normal distribution used by the original 
GA-MPC is at the higher quantile end, outperformed only by three cases that used 
general Lévy alpha-stable distribution for which the stability parameter α is near the 
Gauss end 2, or the Cauchy end 1, or near 0: 1.9, 1.05, and 0.05. The middle point of 
(1,2) 1.5 was the worst for that range, but 0.5 was the second best for the interval 
(0,1). Adding the symmetry perturbation term U-0.5 was not as good as adding the 
shifted-up term 0.5U, for the hedging problem: using more weights would match 
more losses with added costs. It may also be possible that our cases are mainly 
stochastic noises, and more experiments are needed for a definite conclusion. 

3 Conclusion 

For the hedging problem, a bundled loss property is found, which explains why the 
scatter plot is always blurred and cannot be used for the fine selection of the solution, 
except when the algorithms used are too inefficient or solutions found deviate too 
much from each other. When we cannot distinguish two solutions by their scatter plot, 
we can still differentiate between them by other means, such as using weighted counts 
of their differences for objective value, conditional probability plots, and etc. This 
property also guided us in adjusting the hybrid multi-parent, orthogonal crossover 
genetic algorithm GA-MPC-OX for the hedging problem, which tested far better than 
several example algorithms that may have not been fine-tuned or problem-tuned for 
performance. The normal perturbation used in the GA-MPC-OX generally performed 
well, but can be surpassed by some parameter Lévy alpha-stable distribution in some 
tests. Studies suggest some parameter values are effective. Out of many numerical 
tests, the following four parameters or combinations work better in more of the test 
cases, if not always, than all other tested combinations: 0.2*U*S(1.9,0), 

0.2*U*S(0.5,0) or 0.25*U*S(1.9,0) or 0.2*U*S(1.9,0)*(x-b) in equal probability, 
0.25*U*S(1.9,0) or 0.2*U*S(1.9,0) or 0.2*U*S(0.5,0)*(x-b) in equal probability, 
0.25*U*S(1.9,0) or 0.2*U*S(1.9,0) or 0.2*U*S(0.5,0)*(x-b) or 0.5*U+0.2*S(1.9,0) or 

0.5*U+0.2*U*S(0.5,0) in equal probability. However, a perturbation scheme that always 
performs better still requires more research. 
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Abstract. This paper presents the solution of economic load dispatch problem 
using quadratic cost functions with valve point effect by means of Genetic Al-
gorithm (GA). GA technique is particularly useful for optimization problems 
with non-convex, discontinuous and non-differentiable solution. In this paper, 
three methods of GA are used: namely the Micro Genetic Algorithm (MGA), 
Classical Genetic Algorithm (GA) and Multipopulation (MPGA). The three me-
thods were tested and validated on the Nigerian Grid system made of four ther-
mal power plants and three hydro power stations. The simulation results with 
and without losses considered are compared. It is shown that the MPGA gives 
better results in term of minimized production cost than both MGA and GA. 
However, the MGA is faster in finding a quick feasible solution as a result of its 
small population size. The results demonstrate the applicability of the three 
techniques for solving economic load dispatch problem in power system opera-
tions. 

Keywords: Genetic algorithm · Economic load dispatch · Micro genetic algo-
rithm · Quadratic cost function · Valve point effect 

1 Introduction 

Economic load dispatch (ELD) is an important task in power systems operations. The 
aim of ELD is to allocate power generation to match load demand at minimal possible 
cost while satisfying all the power units and system operation constraints of the dif-
ferent generation resources [1]. Therefore, the ELD problem is a large scale con-
strained non-linear optimization problem. 

For the purpose of economic dispatch studies, online generators are represented by 
functions that relate their production cost to their power output [2]. For simplicity, the 
generator cost function is mostly approximated by a single quadratic function. However, 
because the cost curve of a fossil fired plant is highly non-linear, containing discontinui-
ties owing to valve point loading [3], the fuel cost function is more realistically denoted 
as a recurring rectified sinusoidal function [4] rather than a single quadratic cost function. 
The ELD problem is traditionally solved using conventional mathematical techniques 
such as lambda iteration and gradient schemes. These approaches require that fuel cost 
curves be increased monotonically to obtain the global optimal solution. Conversely, the 
units have naturally highly non-linear input-output properties due to valve point effect 
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[5]. Also, different approaches such as linear programming and nonlinear programming 
have been applied to economic load dispatch problem. The main drawback of linear 
programming methods is that they are associated with the piecewise linear cost approxi-
mation although they are fast and reliable and the nonlinear programming approaches are 
complex [6]. 

However, with the advent of evolutionary algorithms such as Genetic Algorithm 
(GA), Simulated Annealing (SA), Particle Swarm Optimization (PSO), Differential 
Evolution (DE), Artificial Bee Colony (ABC) etc. which are stochastic based optimi-
zation techniques that search for the solution of problems using a simplified model of 
the evolutionary process found in nature, ELD problems can be solved easily. The 
success of Evolutionary Algorithms (EAs) is partly due to their inherent capability of 
processing a population of potential solutions simultaneously, which allows them to 
perform an extensive exploration of the search space [7]. Although the heuristic me-
thods provide fast and reasonable solutions, they do not always guarantee globally 
optimal solutions in finite time [6]. 

Genetic Algorithm methods have been employed successfully to solve complex op-
timization problems, In this paper, three methods of GA are applied to solve econom-
ic load dispatch problem with valve point effect; namely, the Micro Genetic  
Algorithm (MGA), Classical Genetic Algorithm (GA) and Multipopulation Genetic 
Algorithm. The simulation results with and without transmission losses are considered 
in this paper. The performances of these methods are validated using the Nigerian 
grid system.  

2 Problem Formulation 

Consider an interconnected power system consisting of n thermal power stations as 
shown in Fig.1, the ELD problem seeks to find the optimal combination of thermal 
power plants that minimizes the total cost while satisfying the total demand and sys-
tem constraints [8]. 

 

Fig. 1. Interconnected power system 
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The ELD problem is formulated as follows: 
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where CT is the total generation cost .and 
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is a quadratic cost function of the  ith unit, αi, βi, and γi are cost coefficient of the ith 

generator, which are found from the input-output curves of the generators and are 
dependent on the particular type of fuel used. Pi is the power output of ith unit of 
thermal plants. 

Note that, when the thermal generating unit changes its output, there is a nonlinear 
cost variation due to valve point effect. Typically, the valve point effect arises 
because of the ripple like effect of the valve point  as each steam begins to open. This 
is illustrated in Fig. 2 [9]. The fuel cost of a thermal generation unit considering 
nonlinear effect of valve will be a nonlinear function as given in (3): 

 

Fig. 2. Valve Point Effect 

 
Ci (Pi) = ן ߚ ܲ  ߛ ܲଶ | e1 * sin (f1*(Pi

min  - Pi))|                           (3) 
 
where ei and fi  are cost coefficients of the ith generator. 

The minimization is subject to the following constraints: 

2.1 Power Balance 

The total power generated must to be equal to the sum of load demand and transmis-
sion losses as given in eqn. (4): 
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where: 
 
PD = the power demand  
PL = the transmission loss 
 
The transmission losses can be represented by the B-coefficient method as shown 

in eqn. (5): 
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where Bij is the transmission loss coefficient. 

2.2 Maximum and Minimum Power Limits 

The power generated by each generator has some limits and can be expressed as: 

maxmin
iii PPP ≤≤  

min
iP = the minimum power output 
max

iP = the maximum power output 

3 Overview of Genetic Algorithm 

Genetic Algorithm searches a solution space for optimal solutions to a problem. The 
key characteristic of GA is how the searching is done. The algorithm creates a “popu-
lation” of possible solutions to the problem and lets them “evolve” over multiple gen-
erations to find better and better solutions. The following steps were used to solve a 
problem using GA: 

1. Create a population of random candidate solution named pop. 
2. Until the algorithm termination conditions are met, do the following (each 

iteration is called a generation): 
a. Create an empty population named new-pop. 
b. While new-pop is not full, do the following: 

i. Select two individuals at random from pop so that individ-
uals who are more fit are more likely to be selected. 

ii. Cross-over the two individuals to produce two new indi-
viduals. 

c. Let each individual in new-pop have a random chance to mutate. 
d. Replace pop with new-pop. 

3. Select the individual from pop with the highest fitness as the solution to the 
problem. 

The population is a collection of candidate solutions that are considered during the 
course of the algorithm. Over the generations of the algorithm, new and often “good” 
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members are “born” into the population, while older and “bad” members “die” out of 
the population. A single solution in the population is referred to as an individual. The 
fitness of an individual is a measure of how “good” the solution represented by the 
individuals. The selection process is analogous to the survival of the fittest in the nat-
ural world. Individuals are selected for cross-over based upon their fitness value. The 
fitter the individual the more likely the individual will be able to reproduce and sur-
vive to the next generation. The cross-over occur by mingling the solutions together 
to produce two new individuals. During each generation there is a small chance for 
each individual to mutate, which will change the individual in some small ways. 

3.1 Micro Genetic Algorithm 

When dealing with high dimensionality problem, it may be difficult or too time con-
suming for all the model parameters to converge within a given margin of error. In 
particular, as the number of model parameters increases, so does the required popula-
tion size. Also, large population sizes imply large numbers of cost-function evalua-
tions. An alternative is the use of micro-genetic algorithms, which evolves very small 
populations that are very efficient in locating promising areas of the search space. 
But, the small populations are unable to maintain diversity for many generations. 
Therefore, whenever diversity is lost the algorithm is restarted while keeping only the 
very best fit individuals (usually we keep the best one that is elitism of one individu-
al). Restarting the population several times during the run of the genetic algorithms 
has the added benefit of preventing further exploration of the search space and so may 
make the program converge to a local minimum. Also, since we are not evolving 
large populations, convergence can be achieved more quickly and less memory is 
required to store the population.  

In principle, micro genetic algorithms are similar to the classical genetic algorithm 
in the sense that they share the same evolution parameters and similar features except 
that new genetic material is introduced in to the population every time the algorithm 
restarted. This is an important distinction: since without the restarting, the algorithm 
will lose its exploitation capability. It was also found out that the algorithm is much 
less sensitive to the choice of evolution parameters.  

3.2 Multipopulation Genetic Algorithm 

In GA, individuals are selected according to their fitness for the production of 
offspring. Parents are recombined to produce offspring. All offspring will be mutated 
with certain probability. The fitness of the offspring is then computed. The offspring 
are inserted into the population replacing the parents, producing a new generation. 
This circle is performed until the optimization criteria are reached. Such a single pop-
ulation genetic algorithm is powerful and performs well on a broad class of problems. 
However, better results can be obtained by introducing many populations called  
subpopulation. Every subpopulation evolves for a few generations isolated (like the 
single population genetic algorithm) before one or more individuals are exchanged 
between the subpopulations. The multipopulation genetic algorithm models the  
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evolution of a species in a way more similar to nature than the single population ge-
netic algorithm 

4 Nigerian Grid System 

The Nigerian national grid belongs to rapidly growing power systems faced with 
complex operational challenges at different operating regimes.  Indeed, it suffers from 
inadequate reactive power compensation leading to wide spread voltage fluctuations 
coupled with high technical losses and component overloads during heavy system 
loading mode.  The standardized 1999 model of the Nigerian network comprises 7 
generators, out of which 3 are hydro whilst the remaining generators are thermal, 28 
bulk load buses and 33 extra high voltage (EHV) lines. The typical power demand is 
2,830.1MW and with technical power network loss of about 39.85MW.  The single 
line diagram of the 330kV Nigerian grid system is shown in Fig.3. 
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Fig. 3. Single line diagram of Nigerian 330kV 31-bus grid systems 

The Nigerian thermal power plants characteristics are shown in Table 1 with each 
plants cost coefficients and their corresponding minimum and maximum power outputs. 

Table 1. Nigerian thermal power plants characteristics 

Units α      β      γ       e f      Pi
min 

       
Pi

max 

Sapele 6929 7.84 0.13 600 0.052 137.5 550 

Delta 525.74 6.13 1.2 260 0.028 75 300 

Afam 1998 56 0.092 450 0.048 135 540 

Egbin 12787 13.1 0.031 850 0.094 275 1100 
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5 Discussion of Results 

In this work, the ELD is applied to the four thermal plants of Egbin, Sapele, Delta and 
Afam. The results of the ELD with and without losses considered are shown in Table 
2 and Table 3, respectively. With a total power generating capacity of 2823.1MW, the 
contribution of each thermal power plant to the total power generated and the cost of 
generation using the GA methods are shown in Table 2 and Table 3, respectively. 

Table 2. ELD without losses 

MGA GA MPGA 

Egbin (MW)      1070.71 937.5 942.8 

Sapele (MW) 179.81 227.88 233.6 

Delta (MW) 80.59 81.03 90.2 

Afam (MW) 201.99 289.68 266.5 

Shiroro (MW) 490 490 490 

Kainji (MW) 350 350 350 

Jebba (MW) 450 450 450 

PG (MW) 2823.1 2823.1 2823.1 

PD (MW) 2823.1 2823.1 2823.1 

Cost $/hr 101203 99712 97832 
 

Table 3. ELD with losses 

MGA GA MPGA 

Egbin  (MW)  838.39 814.56  817.47 

Sapele (MW)  345.46 457.79  451.13 

Delta (MW)    88.48 89.51  89.82 

Afam (MW) 300.46 212.82  215.62 

Shiroro (MW) 490 490  490 

Kainji (MW) 350 350  350 

Jebba (MW) 450 450  450 

PG (MW) 2862.79 2862.68  2864.04 

PD (MW) 2823.1 2823.1  2823.1 

PL (MW) 39.69 41.58  40.94 

Cost $/hr 113410 112736  110324 
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The ELD was implemented on MATLAB 2012 platform. The contributions of the 
hydro power plants to the load demand were fixed, while the least cost schedule of the 
thermal power plants were determined. The minimum cost of production without 
losses given by MPGA is 97832$/hr compared to 101203$/hr for MGA and 
99712$/hr for GA as shown in Table 2. With losses considered in Table 3, MPGA 
gives the least cost of production of $110324/hr and MGA gives lowest transmission 
losses of 39.69MW compared to 41.58MW of GA and 40.94MW of MPGA. The 
generators schedule reflects the best possible contribution of the individual generators 
based on the demand. From these results, it can be seen that the MPGA gives the 
lowest total cost of production compare to the other two algorithms. 

6 Conclusion 

In this paper, MGA, GA and MPGA methods have been applied to schedule genera-
tors of the Nigerian thermal power plants. The results show that these methods are 
capable of being applied successfully to the economic dispatch problem of larger 
thermal power plants. However, MPGA is shown to give the best cost minimization 
as a result of many populations called subpopulation used in the optimization process. 
Therefore, these methods can be applied to solve economic load dispatch of larger 
power system in future for economic operations and planning purposes. 
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Abstract. For a fuzzy classifier automated design a hybrid self-configuring 
evolutionary algorithm is implemented. For the tuning of linguistic variables a 
self-configuring genetic algorithm is used. Ensemble members and the ensem-
bling method are generated automatically with the self-configuring genetic pro-
gramming algorithm that does not need preliminary adjusting. A hybridization 
of self-configuring genetic programming algorithms with a local search in the 
space of trees is fulfilled to improve their performance for fuzzy rule bases and 
ensembles automated design. The local search is implemented with two neigh-
bourhood systems, three strategies of tree scanning (“full”, “incomplete” and 
“truncated”) and two ways of movement between adjacent trees (transition by 
the first improvement and the steepest descent). The performance of all devel-
oped memetic algorithms is estimated on a representative set of test problems of 
the function approximation as well as on real-world classification problems. 
The numerical experiment results show the competitiveness of the approach 
proposed. 

Keywords: Self-configuring evolutionary algorithms · Local search on discrete 
structures · Fuzzy classifier · Ensembles · Automated design · Performance es-
timation 

1 Introduction 

Classification is a well-known application of natural computing algorithms. Within 
the machine learning domain, problems in which the aim is to assign each input vec-
tor to one of a finite number of discrete categories are called classification problems 
[1]. Classification problem solving is usually described in terms of an optimization 
procedure that maximizes the number of correctly classified instances and minimizes 
the number of misclassified ones. This makes classification problems an appropriate 
area for the application of nature-inspired intellectual information processing tech-
nologies (IIT) like neural networks, fuzzy systems, evolutionary computations and 
many others.   

The process of intelligent information technology (IIT) design and adjustment  
is rather complex even for experts in this area. For the automated implementation of 
IIT in classification it is necessary to consider its design as an optimization problem. 
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This problem is very complicated for standard optimization tools which make evolu-
tionary algorithms rather popular in this field [2, 3]. Genetic programming (GP) can 
be used for fuzzy logic system (FLS) design [4] and for IIT ensemble design.  

Rapidly increasing computing power and technology made possible the use of 
more complex intelligent architectures, taking advantage of more than one intelligent 
system in a collaborative way. This is an effective combination of intelligent tech-
niques that outperforms or competes to single standard intelligent techniques. 

One of the hybridization forms, the ensemble technique, has been applied in many 
real world problems. Johansson et al. [5] used genetic programming (GP) [6] for 
building an ensemble from a predefined number of ANNs where the functional set 
consisted of the averaging and multiplying and the terminal set included the models 
(i.e., ANNs) and constants. In [7], a similar approach was proposed where first a 
specified number of neural networks are generated and then a GP algorithm is applied 
to build an ensemble making up the symbolic regression function from partial deci-
sions of the specific members.  

GP usually requires much effort to be adopted to a problem in hand. That is why 
before suggesting GP usage to end users for application in the development of classi-
fication tools, one must take care to avoid those main issues which are problems even 
for evolutionary computation experts. That is why we use in this study the self-
configuring GP (SelfCGP) from [7] to avoid issues in the adjustment of the algorithm.  

We suggest using a special local search for trees representing a fuzzy logic system 
or IIT ensemble in order to improve the SelfCGP convergence. Such hybridization of 
GP and local search is often referred to as memetic search [8]. However, although the 
local search is often used for real valued and discrete optimization problems, it is not 
commonplace to use it for such a data structure as a tree. Nonetheless some authors 
work in this direction. Some of them try to introduce a new heuristic inside the GP 
operator [9], others present a memetic GP for decision tree growing using domain 
specific heuristics [10], and a third group, the most widespread, use a local search 
only for numerical nodes from the terminal set. In this paper, we consider the local 
search on trees representing fuzzy logic systems and IIT ensembles. We implement 
the local search with different neighbourhood systems and different strategies of tree 
scanning. The use of the local search for only the best individual is also unsuitable as 
it can give a low algorithm performance [8]. 

The rest of the paper is organized as follows. Section 2 describes the method for 
the GP self-configuring for a fuzzy logic system and IIT ensemble automated design, 
with its testing results confirming the usefulness of the method. Section 3 describes 
the proposed local search techniques. In Section 4 we describe the testing results for 
the proposed memetic self-configuring algorithm. In Section 5 we apply the devel-
oped approach to hard real world problem solving. In the Conclusion we discuss the 
results and directions for further research. 

2 Self-Configuring Evolutionary Algorithm for Automated 
Design of Fuzzy Logic Systems and IIT Ensembles 

The self-configuring genetic algorithm (SelfCGA) and self-configuring genetic pro-
gramming (SelfCGP) do not require any efforts of the end user for their adjustment.  
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Instead of tuning real parameters, variants of settings are used, namely types of selection 
(fitness proportional, rank-based, and tournament-based with three tournament sizes), 
crossover (one-point, two-point, as well as equiprobable, fitness proportional, rank-based, 
and tournament-based uniform crossovers [11]), population control and level of mutation 
(medium, low, high for all mutation types). Each of these has its own initial probability 
distribution, which is changed as the algorithm executes [11].  

As was reported in [11] and [7] SelfCGA and SelfCGP demonstrate better reliabil-
ity than the average reliability of the corresponding single best algorithm. Addition-
ally, uniform crossovers in SelfCGP prevent a bloat of trees. Both algorithms can be 
used instead of conventional EA in complex problem solving.  

 We have to describe our way to model and optimize a rule base for a fuzzy logic 
system with GP [4] and linguistic variables adjusting with GA. The terminal set of our 
GP includes the terms of the output variable, i.e. class markers. The functional set 
includes a specific operation for dividing an input variable vector into subvectors or, 
in other words, for the splitting of the example set into parts through input variable 
values. It might be that our GP algorithm will ignore some input variables and will 
not include them in the resulting tree, i.e., a high performance rule base that does not 
use all problem inputs can be designed. This feature of our approach allows the use of 
our GP for the selection of the most informative combination of problem inputs.  

The efficiency of the proposed approach was tested on a representative set of 
known test problems. The test results showed that the fuzzy logic systems designed 
with the suggested approach have a small number of rules in comparison with the full 
rule base [4]. These fuzzy systems have a small enough classification error. This is 
why we can recommend the developed approach for solving real world problems. 

Having the developed appropriate tool for IIT automated design that does not re-
quire effort for its adjustment, we applied our self-configuring genetic programming 
technique to construct a formula that shows how to compute an ensemble decision 
using the component IIT decisions. The algorithm involves different operations and 
mathematical functions and uses models of different kinds providing diversity among 
the ensemble members. In our numerical experiments, we use fuzzy logic systems 
(FLS), automatically designed with the SelfCGP algorithm, as the ensemble members. 
The algorithm automatically chooses the component IIT which are important for ob-
taining an efficient solution and does not use the others.  

3 Memetic Self-Configuring Genetic Programming 

We can implement the following neighbourhood system for trees: trees with modified 
leaves (terminal set elements) will be called 1-level neighbours and trees with a modi-
fied functional element will be called 2-level neighbours. Neighbourhood systems for 
trees that represent fuzzy logic systems and IIT ensembles contain terminal set (T) on 
the 1-level (Output variable, i.e. class marker and ensemble members correspon-
dently) and functional set on the 2-level. 

The search in such neighbourhoods for the locally best-found solution should  
improve the efficiency of the problem solving without a significant increase in  
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computational efforts. However, the effectiveness of the local search depends not only 
on the choice of neighbourhood but also on the method of its scanning. There are 
several ways of movement between adjacent trees: transition by the first improvement 
(FI) and steepest descent (SD) that mean an exhaustive search of neighbouring trees 
and the transit into the best found neighbour solution. 

The local search procedure on the tree structure can be described as in Table 1.  

Table 1. Local search algorithm for trees 

Algorithm pseudo code 

Enter: 
Tree – initial tree that contains n nodes of different types, where n is number of nodes in 
Tree; Tree(i) – i-th node; TY(i) – type of i-th node (l – leaves, b – binary function, u – unary 
function); F – Functional set containing binary functions  set (F_b) and unary function set 
(F_u); T – Terminal set;  
Fitness_evol(Tree)– function of fitness evaluation of Tree; Fit – fitness of Tree;  
Tree_s, Tree_best – modified trees; Fit_s, Fit_best – fitness of modified trees; 
Transition – selected type of transition between trees; N – number of nodes that were scan-
ning; F – number of fitness function evaluation; 
Rand_node (TY) – function for new node value random generation.  
Start: Tree, Fit, Tree_s:=Tree, Tree_best:=Tree, Fit_s:=Fit, Fit_best:=Fit, N:=0, i:=1, 
F:=0. 
1. Tree_s(i):=Rand_node(TY(i)); 

Fit_s:=Fitness_evol(Tree_s); 
F++; 

2. If i>n go to 4. 
2.1 If Fit_s<Fit then go to 3.4. 

3. If Transition≠FI then go to 3.2. 
3.1 Tree:=Tree_s;  

Fit:=Fit_s;  
i:=i+1;  
Go to 1. 

3.2 If Fit_s<Fit_best then go to 3.4. 
3.3 Tree_best:=Tree_s; 

Fit_best:=Fit_s; 
Tree_s:=Tree; 
Fit_s:=Fit; 

N:=i; 
i:=i+1; 
Go to 1. 

3.4 Tree_s:=Tree; 
Fit_s:=Fit; 
i:=i+1;  
Go to 1. 

4.  If Transition=FI then go to End. 
 4.1 Tree := Tree_best; 

Fit :=Fit_best; 
 4.2 If N>n then go to End. 
 4.3 i:=N+1; 
      Go to 1.  

End: Tree, Fit, F. 

 
In this study, we will use both ways of movement and both systems of neighbour-

hood. In the first case, the 2-level neighbourhood will be used at the beginning of the 
algorithm execution and the 1-level neighbourhood will be used on the later stages. 
We call this method of search a “full” local search (FL). In the second case, only the 
1-level neighbourhood will be used, this variant is named as an “incomplete” local 
search (IL). In the third case, a “truncated” local search (TL) will be considered that 
means scanning only n randomly chosen nodes in the tree. Changes in tree nodes that 
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are closer to the top of the tree have a more significant impact on the result obtained. 
Therefore, when we use the 2-level neighbourhood, nodes which are closer to the top 
will be changed before others. This means that the tree will be considered in the top-
down way.  

During implementation and testing of the considered local search procedures the 
number of additional fitness function estimations must be taken into account. This 
number significantly depends on the way of the transition and the strategy for scan-
ning the neighbourhood. In addition, the speed of the memetic algorithm depends on 
the selection of individuals to be improved by the local search (only the best individ-
ual or p% best in each generation, or once every t generations, etc.). We use the hy-
bridization variant with 10% best individuals on each generation and name it as me-
metic self-configuring genetic programming (MSCGP). An individual improved by 
the local search is returned back to its population in the found form (Lamarckian ap-
proach). Each tree has an equal amount of computational resource for its adjustment. 
It means that the tree improved by the local search has less SelfCGA generations for 
its numerical parameter tuning. 

4 Memetic Algorithm Testing Results 

For the test of the proposed memetic algorithm, the test function set from [12] was 
used as for the self-configuring genetic programming algorithm for a symbolic regres-
sion problem [7]. Since local search algorithms precisely localize the optimum posi-
tion, the comparison of the efficiency should be done with the reliability criterion. The 
reliability of the algorithm is the ratio of the number of successful algorithm runs to the 
total number of algorithm runs. The algorithm run is considered as successful if the 
desired accuracy is achieved. Each algorithm received the same computational re-
sources to find a solution and was launched 100 times for each test problem. The statis-
tical significance was estimated with ANOVA. The performance evaluation was ful-
filled for the MSCGP with three types of local search (“full”, “incomplete” and “trun-
cated”) and two strategies for movement (“first improvement” and “steepest descent”) 
that can be designated as “MSCGP-FL-FI”, “MSCGP-IL-FI”, “MSCGP-TL-F”, 
“MSCGP-FL-SD”, “MSCGP-IL-SD” and “MSCGP-TL-SD” respectively, “+FLS” and 
“+E” mean a SelfCGP for automated design of fuzzy logic systems and ensembles, 
correspondingly. Partial illustration of the test experiment results is given in Table 2.  

The following criteria for evaluating the algorithms were used: 

• Reliabilities that were averaged over all test problems and the spread of their values 
in brackets (“Reliability”). 

• Information on the number of resources required to find the first suitable solutions 
in terms of accuracy that were averaged over all tasks and in brackets the spread on 
all tasks («Average number of evaluated trees»).  

It is easy to see that the local search variant with a greater neighbourhood size and 
more detailed scanning (the most “greedy” variant) has the best reliability and the 
worst number of fitness function evaluations. If we change the way of transition to the 
first improvement then the corresponding algorithm demonstrates slightly less reli-
ability but works faster. 
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Table 2. Algorithm reliability on test problems 

Algorithm Reliability Average number of evaluated trees 

SelfCGP+FLS 0.64 / [0.33, 0.96] [4600, 21100] 
MSCGP+FLS -FL-FI 0.68 / [0.37, 0.97] [4340, 20500] 
MSCGP+FLS -IL-FI 0.64 / [0.34, 0.96] [4150, 19800] 
MSCGP+FLS -TL-FI 0.65 / [0.35, 0.97] [4210, 20050] 
MSCGP+FLS-FL-SD 0.72 / [0.43, 0.99] [4540, 21000] 
MSCGP+FLS -IL-SD 0.66 / [0.38, 0.96] [4380, 20650] 
MSCGP+FLS-TL-SD 0.68 / [0.39, 0.96] [4500, 20800] 
SelfCGP+E 0.79 / [0.51, 1.00] - 
MSCGP+E-FL-FI 0.84 / [0.61, 1.00] - 
MSCGP+E-IL-FI 0.79 / [0.56, 1.00] - 
MSCGP+E-TL-FI 0.83 / [0.59, 1.00] - 
MSCGP+E-FL-SD 0.90 / [0.66, 1.00] - 
MSCGP+E-IL-SD 0.85 / [0.61, 1.00] - 
MSCGP+E-TL-SD 0.87 / [0.63, 1.00] - 

 
The proposed local search algorithms increased the efficiency of the previously ex-

isting self-configuring genetic programming algorithm. With the joint application of 
the self-configuring genetic programming and local search algorithms the perform-
ance is greater than one of the conventional genetic programming algorithms with the 
best setting with comparable computational resources. 

5 Numerical Experiments with Real World Problems 

The developed approach was applied to two credit scoring problems from the UCI 
repository [13] often used to compare the accuracy with various classification algo-
rithms: Credit (Australia-1) (14 attributes, 690 examples) and Credit (Germany) (20 
attributes, 1000 records). Both problems have two classes.  

These classification problems were solved with fuzzy classifiers and IIT ensembles 
designed by MSCGP (MSCGP+FLS, MSCGP+E) with a different variant of the local 
search (LS). This technique was trained on 70% of the instances from the data base 
and validated on the remaining 30% of examples. The results of the validations, 
namely the portion of correctly classified instances from the test set (for scoring prob-
lems) are averaged over 40 independent runs. The statistical significance of all our 
experiments was estimated with ANOVA. The results for initial SelfCGP+FLS were 
taking from [4]. 

The proposed algorithms are compared with alternative classification techniques. 
The results for the alternative approaches have been taken from scientific literature. In 
[14] the performance evaluation results for two data sets of credit scoring are given 
for the two-stage genetic programming algorithm (2SGP) specially designed for bank 
scoring as well as for the following approaches taken from other papers: conventional 
genetic programming (GP), classification and regression tree (CART), C4.5 decision 
trees and k nearest neighbours (k-NN). We have taken additional material for  
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comparison from [15] which includes evaluation data for the automatically designed 
fuzzy rule based classifier (Fuzzy). The results obtained with the best variants of 
MSCGPs in comparison with alternatives are given in Table 3.  

As can be seen from Table 3 both proposed algorithms demonstrate the best per-
formance. It is necessary to stress that fuzzy classifiers designed by MSCGP give 
additionally human interpreted linguistic rules which is not the case for the majority 
of other algorithms in Table 3. The designed rule bases usually contain 9-13 rules 
which do not include all given inputs.  

Besides the performance evaluation we can derive some additional information. 
Analysis of the data sets shows that input variables can be divided into some groups 
so that the inputs of one group are highly correlated to each other but the correlation 
between inputs of different groups is weak. There are also inputs weakly correlated 
with the output. A fuzzy classifier and IIT ensemble designed with the suggested 
memetic SelfCGP do not usually include inputs of the last kind. Moreover, they usu-
ally include members of every group of inputs but only one input from each, i.e. they 
do not include highly correlated inputs into designed classifiers. This allows the algo-
rithm to create relatively small rule bases with rather simple rules. The use of the 
local search gives an additional feature to our algorithms. They can find the best com-
bination of the most informative inputs.  This property can be used for the feature 
selection in the solved problems.  

Table 3. The comparison of classification algorithms 

Classifier Australian credit German credit 

MSCGP+E 0.9068 0.8086 
MSCGP+FLS with majority voting 0.9046 0.8075 
MSCGP+FLS with weighted averaging 0.9046 0.8050 
MSCGP+FLS 0.9041 0.8021 
2SGP 0.9027 0.8015 
SelfCGP+FL 0.9022 0.7974 
SelfCGP+ANN 0.9022 0.7940 
SelfCGP 0.8930 0.7850 
Fuzzy  0.8910 0.7940 
C4.5 0.8986 0.7773 
CART 0.8986 0.7618 
k-NN 0.8744 0.7565 

6 Conclusions 

A self-configuring genetic programming algorithm and a self-configuring genetic 
algorithm were hybridized to design fuzzy classifiers. Neither algorithm requires hu-
man efforts to be adapted to the problem in hand, which allows the automated design 
of classifiers. A special way of representing the solution gives the opportunity to  
create relatively small rule bases with rather simple rules. This makes possible the 
interpretation of the obtained rules by human experts. The self-configuring genetic 
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programming algorithm and six local searches were hybridized to design fuzzy classi-
fiers with high efficiency.  

The quality of classification is high as well, which was demonstrated through the 
solving of two real world classification problems from the area of bank scoring. The 
results obtained allow us to conclude that the developed approach is workable and 
useful and should be further investigated and expanded.  

With the approach developed an end user has no necessity to be an expert in the 
computational intelligence area but can implement a reliable and effective classifica-
tion tool. It makes the approach very useful for different area experts freeing them 
from extra efforts on the intellectual information technology algorithmic core imple-
mentation and allowing them to concentrate their attention on the area of their exper-
tise, e.g. medicine, finance, engineering, etc.  

Acknowledgement. Research is fulfilled within governmental assignment of the Ministry of 
Education and Science of the Russian Federation for the Siberian State Aerospace University, 
project 140/14. 

References 

1. Bishop, C.: Pattern recognition and machine learning. Springer (2006) 
2. Cordón, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic Fuzzy Systems: Evolutio-

nary Tuning and Learning of Fuzzy Knowledge Bases. World Scientific, Singapore (2001) 
3. Herrera, F.: Genetic Fuzzy Systems: Taxonomy, Current Research Trends and Prospects. 

Evol. Intel. 1(1), 27–46 (2008) 
4. Semenkina, M., Semenkin, E.: Hybrid self-configuring evolutionary algorithm for auto-

mated design of fuzzy classifier. In: Tan, Y., Shi, Y., Coello, C.A. (eds.) ICSI 2014, Part I. 
LNCS, vol. 8794, pp. 310–317. Springer, Heidelberg (2014) 

5. Johansson, U., Lofstrom, T., Konig, R., Niklasson, L.: Building neural network ensembles 
using genetic programming. In: International Joint Conference on Neural Networks (2006) 

6. Poli R., Langdon W.B., McPhee N.F.: A Field Guide to Genetic Programming. Published 
via http://lulu.com and freely available at http://www.gp-field-guide.org.uk (2008) 

7. Semenkina, M., Semenkin, E.: Classifier ensembles integration with self-configuring  
genetic programming algorithm. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. 
(eds.) ICANNGA 2013. LNCS, vol. 7824, pp. 60–69. Springer, Heidelberg (2013) 

8. Z-Flores, E., Trujillo, L., Schütze, O., Legrand, P.: Evaluating the Effects of Local Search 
in Genetic Programming. In: Tantar, A.-A., et al (eds.) EVOLVE - A Bridge between 
Probability, Set Oriented Numerics, and Evolutionary Computation V. AISC, vol. 288,  
pp. 213–228. Springer, Heidelberg (2014) 

9. Eskridge, B., Hougen, D.: Imitating success: A memetic crossover operator for genetic 
programming. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation 
(CEC 2004), pp. 809–815. IEEE Press (2004) 

10. Wang, P., Tang, K., Tsang, E. P. K., Yao, X.: A memetic genetic programming with  
decision tree-based local search for classification problems. In: Proceedings of the 2011 
IEEE Congress on Evolutionary Computation, pp. 917–924 (2011) 



 Memetic Self-Configuring Genetic Programming 293 

11. Semenkin, E., Semenkina, M.: Self-configuring genetic algorithm with modified uniform 
crossover operator. In: Tan, Y., Shi, Y., Ji, Z. (eds.) ICSI 2012, Part I. LNCS, vol. 7331, 
pp. 414–421. Springer, Heidelberg (2012) 

12. Finck, S., et al.: Real-Parameter Black-Box Optimization Benchmarking. Presentation of 
the noiseless functions. Technical Report Research Center PPE (2009) 

13. Frank, A., Asuncion, A.: UCI Machine Learning Repository. University of California, 
School of Information and Computer Science, Irvine (2010). http://archive.ics.uci.edu/ml 

14. Huang, J.-J., Tzeng, G.-H., Ong, C.-S.: Two-Stage Genetic Programming (2SGP) for the 
Credit Scoring Model. Applied Mathematics and Computation 174, 1039–1053 (2006) 

15. Sergienko, R., Semenkin, E.: Michigan and pittsburgh methods combination for  
fuzzy classifier design with coevolutionary algorithm. In: IEEE Congress on Evolutionary 
Computation (CEC 2013), pp. 3252–3259 (2013) 

 



Reference Point Based Constraint Handling
Method for Evolutionary Algorithm

Jinlong Li(B), Aili Shen, and Guanzhou Lu

School of Computer Science and Technology,
University of Science and Technology of China (USTC), Hefei, China

jlli@ustc.edu.cn

Abstract. Many evolutionary algorithms have been proposed to deal
with Constrained Optimization Problems (COPs). Penalty functions are
widely used in the community of evolutionary optimization when coming
to constraint handling. To avoid setting up penalty term, we introduce
a new constraint handling method, in which a reference point selection
mechanism and a population ranking process based on the distances
to the selected reference point are proposed. The performance of our
method is evaluated on 24 benchmark instances. Experimental results
show that our method is competitive when compared with the state-of-
the-art approaches and has improved the solution and the optima value
of instance g22.

Keywords: Constrained optimization problem · Constraint handling
techniques · Evolutionary strategy

1 Introduction

In many science and engineering fields, it is common to face many types of
constrained optimization problems. Without loss of generality, the minimization
is considered in this paper, and the constrained optimization problems can be
formulated as follows:

min f(x) x = {x1, . . . , xn} ∈ S . (1)

S is the decision space bounded by lower and upper constraints. The objec-
tive function f(x) is subject to inequality constraints and equality constraints:
subject to:

gj(x) ≤ 0, j = 1, . . . , q . (2)

hj(x) = 0, j = q + 1, . . . ,m . (3)

The Evolutionary Algorithms (EAs) are widely used to solve the optimization
problems [3,12]. However, EAs are mainly for unconstrained optimization prob-
lems, so an explicit constraint handling mechanism is needed to incorporate
into evolutionary algorithms. When combing constraint handling mechanisms
c© Springer International Publishing Switzerland 2015
Y. Tan et al. (Eds.): ICSI-CCI 2015, Part I, LNCS 9140, pp. 294–301, 2015.
DOI: 10.1007/978-3-319-20466-6 32
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with EAs, whether obtaining a feasible solution takes precedence of optimiz-
ing the objective value, researchers have different views [4,9,12,15]. Deb [4]
proposed three comparison criteria for ranking feasible solutions over infeasible
solutions when pair-wise individuals are compared. There are also some other
constraint handling techniques used in the EAs. Mezura-Montes and Coello
[10] gave a review of present mostly used constraint handling methods: (1)
Penalty function [1,3,5,11]; (2) Decoders [6]; (3) Separation of objective func-
tion and constraints [4]; (4) Feasibility rules [9]; (5) Stochastic ranking [12,13];
(6) ε-constrained method [14]; (7) Multiobjective concepts [2,15]; (8) Ensem-
ble of constraint-handling technique [8]. Pareto dominance concept is adopted
in algorithms that treat constrained optimization problems in a multiobjec-
tive way. The definition of Pareto dominance is: a vector μ = (μ1, ..., μk) is
Pareto dominate another vector υ = (υ1, ..., υk), which is denoted as μ ≺ υ,if
∀i ∈ 1, ..., k, μi ≤ υi and ∃j ∈ 1, ..., k, μi < υi.

In this paper, we propose a Reference Point based Constraint Handling
method, named RPCH. In order to guide the population toward the global
optima without trapping into local optima, a reference point is selected at every
generation using a straightforward mechanism in which the solution with smaller
objective value, regardless of the degree of violation, are favored at early stage
while solutions with near optimal objective value are more inclined to be selected
in the later stage. Experimental results on 24 widely used instances show that
our algorithm can obtain competitive results on most of the instances. What’s
more, RPCH has improved the objective value in one instance.

Section 2 briefly reviews the related work of solving constrained optimization
problems via evolutionary algorithms. Section 3 presents our proposed algorithm
in detail. Experimental results on 24 benchmark instances and comparisons with
state-of-the-art approaches are presented in section 4. In section 5 we give a brief
summary of this paper and a few remarks.

2 Related Work

To overcome the weakness of penalty functions, Runarsson and Yao [12] pointed
out that the proper balance between objective and penalty functions can be
obtained by stochastically ranking the individuals, which is called SR. In their
work, a probability parameter pf was introduced when two adjacent individuals
are compared as follows: (1) assuming both of the solutions are feasible, then
the one which has a smaller objective value is preferred, otherwise (2) assuming
a uniformly generated random value is less than pf , then the one having smaller
objective value ranks higher, otherwise, the one having a smaller constraint viola-
tion value ranks higher. Combined with the evolutionary strategy, the stochastic
method acquires a competitive result on 13 well-known benchmark functions.
However, its performance is affected by the probability parameter pf . Later, the
same author Runarsson and Yao published an improved version of SR [13].

There are some approaches [2,15] solving constrained optimization problems
using multiobjective optimization techniques. A multiobjective optimization-
based evolutionary algorithm for constrained optimization was proposed by Cai
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and Wang [2]. In [2], the author introduced three models of population-based
algorithm-generator with different individual choosing mechanism and replace-
ment mechanism. An Infeasible Solution Archiving and Replacement Mechanism
(ISARM) is introduced. However, some parameters such as the expanding factor
in simplex crossover are problem dependent, which restricts its use in real-world
engineering fields [15]. Later, combining multiobjective optimization with differ-
ential evolution CMODE, was proposed by the same author Cai and Wang [15].

3 The Proposed Approach

In this section, the overall framework of the proposed approach is presented.
Then we describe the details of some important steps.

Algorithm 1. Framework of the Proposed Approach
Input: λ: the size of population, μ: the number of parent individuals.
Output: x∗:the best solution found in the evolution process and its objective

value f(x∗)
1 g = 0;
2 initialization;
3 while g < max G do
4 function evaluation, standard normalization of gj(x) and computing

constraint violation;
5 finding reference point;
6 selection;
7 differential mutation and traditional mutation;
8 g = g + 1;

9 end

3.1 Framework of the Proposed Approach

The framework of RPCH is presented in Algorithm 1. g is the current number
of generation and max G is the maximum number of generation allowed in the
evolution process. In the initialization step (line 2), the initial population of x is
generated according to a uniform and random probability distribution function
in order to cover the whole search space S. The initial step size is set to σk =
(Uk − Lk)/

√
n. In every iteration, function evaluation, normalization of gk(x)

and computing constraint violation are performed for every individual. Then the
reference point is selected to guide the selection of best μ out of λ individuals as
parent to reproduce. To exploit the best individual found at current generation,
differential mutation is used in order to generate high quality individuals. At
the same time, traditional mutation is used in order to explore the search space.
Step 5-7 will be explained in the following section one by one.
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3.2 Finding Reference Point

In order to explain the selection of reference point, three phases that most evo-
lution process will experience are introduced first. In phase one, individuals in
the population are all feasible solutions; there are feasible and infeasible individ-
uals in phase two; in phase three individuals in the population are all infeasible
solutions. To make it simple, we firstly give some definitions used in finding the
reference point of current generation. We denote A as the smallest objective value
of feasible individual, B as the objective value of infeasible individual with the
smallest constraint violation, C as the smallest objective value of infeasible indi-
vidual regardless of the degree of constraint violation, O as the objective value
of reference point found at current generation. The approximation of optimum
(reference point) will be explained in detail as follows:

In phase one, A is selected as the reference point O.
In phase two,

O =

⎧
⎪⎨

⎪⎩

A A < B and rand(0, 1) < P ,
A+B

2 A > B and rand(0, 1) < P ,

C rand(0, 1) > P .

(4)

In phase three,

O =

{
B rand(0, 1) < P ,

C rand(0, 1) > P .
(5)

The probability P is dynamically adjusted during the evolution and its initial
value is set to 0.2. The implementation of probability P is as follows:

P (G) = 0.2(1 + 5(
G

max GEN
)0.5) . (6)

where G is the generation counter, and max GEN is the maximum generation
number in the evolution process.

3.3 Selection

The objective value of ith individual is denoted as Oi, then the distance of
objective value of the ith individual to the selected reference point is referred
as Distance(Oi, O). When two adjacent points are compared, if they have the
pareto dominance relationship, the point which dominates the other has a higher
rank. Otherwise, the distances of objective values of these two individuals to the
selected reference point are measured. The point that has a smaller distance
ranks higher. In this way, all points in the population have a unique rank value.
After all the individuals in the population are ranked according to Algorithm 2,
the best μ out of λ individuals are selected as the parent to reproduce. The
ranking procedure is described as Algorithm 2.
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Algorithm 2. Ranking Procedure
1 Ij = j, ∀j ∈ {1, ..., λ};
2 for i = 1 to λ do
3 Compute Distance(Oi,O);
4 end
5 for i = 1 to λ do
6 for j = 1 to λ− 1− i do
7 if Ij+1 ≺ Ij then
8 swap(Ij ,Ij+1);
9 end

10 else if Distance(Oj , O) > Distance(Oj+1, O) then
11 swap(Ij , Ij+1);
12 end

13 end

14 end

3.4 Differential Mutation and Standard Mutation

The evolutionary strategy adopted in our approach is slightly different from the
one used in stochastic ranking [13]. In [13], only μ−1 individuals are mutated in a
differential way, whereas the remaining individuals are mutated according to the
standard mutation strategy. The details of mutation in RPCH are presented in
Algorithm 3. And τ

′
= ϕ/

√
2n and τ = ϕ/

√
2
√
n. In the differential mutation,

the base vector are randomly selected from the the best M of best μ individuals.
The setting of M will be presented in Section 4.

Algorithm 3. Differential Mutation and Standard Mutation

1 (xi, σi)← (x
′
i;λ, σ

′
i;λ), i = 1, ..., μ;

2 for k := 1 to λ do
3 i← mod(k, μ);
4 if (k < 3.5μ)(differential variation) then

5 σ
′
k ← σk;

6 x
′
k ← xbest + γ(xi − xrand);

7 end
8 else

9 σ
′
k,j ← σi,j exp(τ

′
N(0, 1) + τNj(0, 1)), j = 1, ..., n;

10 x
′
k ← xi + σ

′
kN(0, 1);

11 σ
′
k ← σi + α(σ

′
k −σi);

12 end

13 end
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4 Experimental Study

4.1 Experimental Setting

The capability of our approach is demonstrated on 24 benchmark instances col-
lected on the special session on real-parameter constrained optimization prob-
lems at CEC2006 [7]. We conduct 25 runs for each benchmark instance with
5 × 105 FES at maximum. The value of ε is set to 0.0001 just as that in the
special session.

There are six parameters involved in our method: the population size λ, the
parent number μ, the smoothing factor α, the step size γ, and the expected rate
of convergence ϕ and the best vector ofM . The setting of actual parameter values
are as follows: λ = 280, μ = 40, γ = 0.88, ϕ = 1.8,M = 10 for all instances. And
in the standard mutation part, the exponential smoothing factor α = 0.4 for μ
individuals, α = 0.3 for μ individuals, and α = 0.2 for the other 1.5μ individuals.

4.2 General Performance of the Proposed Approach

An improved best known solution has been found in this paper for test function
g22, which is a heavily constrained instance. The best known objective value
reported at CEC2006 [7] for g22 is 236.4309755040, while a better objective
value found by our RPCH is 236.3542569137 1.

For instance g22, the probability keeps as one during the process. Because
instance g22 is heavily constrained, which has 8 linear equality constraints and 11
nonlinear equality constraints. So the probability remain to be one for instance
g22. With regard to test function g20, it is heavily constrained, which has 6
nonlinear inequality constraints, 2 linear equality constraints and 12 nonlinear
equality constraints. And even the best known solution is a slight infeasible,
and there is no feasible solution found so far. Therefore, we do not consider test
function g20 in this paper.

From table 1, we can find that RPCH can achieve 100% feasible rate for all
instances except for instance g22, and 100% success rate can be achieved for all
instances except for instance g02 and g22 within 5× 105 FES. For 14 out of 24
test functions (i.e., g03, g04, g05, g06, g07, g08, g09, g11, g12, g13, g15, g16,
g18, g24) can find optimal values in every run by using 1× 105 FES.

4.3 Comparison with State-of-the-Art Approaches

RPCH does not achieve 100% success rate in test function g02 and g22 for differ-
ent reasons. RPCH can not jump out of local optimum because the search space
1 Our improved solution is x∗={236.3542569137; 135.3429802710;

200.6125871166; 6461.338558449911; 3000000.1320832283; 4000001.7928515930;
3.2999998075187832E7; 130.0000013203; 170.0000192478; 299.9999986786;
399.9999820705; 330.0000192474; 184.7159051072; 249.2367160447; 127.6825141442;
269.9998836856; 159.9999505442; 5.2982628170; 5.1358507338; 5.5984855308;
5.4379953630; 5.0750856623 } with f(x∗)=236.3542569137.
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Table 1. The optimal values of 24 instances are given in table 1. The best, mean, worst,
standard deviation values, Feasible Rate (FR), Success Rate (SR), and Success Perfor-
mance (SP) are listed in table 1. Feasible Rate is computed as N(feasible runs)/
N(total runs). Success Rate is computed as N(successful runs)/N(total runs). Suc-
cess Performance is computed as mean(FES for successful runs)×N(total runs)/
N(successful runs).

Prob. opt best mean worst std FR SR SP
g01 -15.0000 -15.0000 -15.0000 -15.0000 0.0E00 100% 100% 109256
g02 -0.8036 -0.8036 -0.7826 -0.7094 2.2E-02 100% 24% 1143625
g03 -1.0005 -1.0005 -1.0005 -1.0005 2.1E-10 100% 100% 67827
g04 -30665.5387 -30665.5387 -30665.5387 -30665.5387 7.2E-12 100% 100% 73024
g05 5126.4967 5126.4967 5126.4967 5126.4967 3.2E-12 100% 100% 78982
g06 -6961.8139 -6961.8139 -6961.8139 -6961.8139 0.0E00 100% 100% 26510
g07 24.3062 24.3062 24.3062 24.3062 1.3E-14 100% 100% 95132
g08 -0.0958 -0.0958 -0.0958 -0.0958 9.2E-18 100% 100% 3304
g09 680.6301 680.6301 680.6301 680.6301 3.5E-13 100% 100% 85030
g10 7049.2480 7049.2480 7049.2480 7049.2480 3.9E-12 100% 100% 112156
g11 0.7499 0.7499 0.7499 0.7499 1.1E-16 100% 100% 15691
g12 -1.0000 -1.0000 -1.0000 -1.0000 0.0E00 100% 100% 7762
g13 0.0539 0.0539 0.0539 0.0539 2.0E-17 100% 100% 44497
g14 -47.7649 -47.7649 -47.7649 -47.7649 3.8E-15 100% 100% 126022
g15 961.7150 961.7150 961.7150 961.7150 5.7E-13 100% 100% 39771
g16 -1.9052 -1.9052 -1.9052 -1.9052 7.8E-16 100% 100% 63313
g17 8853.5339 8853.5339 8853.5339 8853.5339 8.9E-11 100% 100% 129640
g18 -0.8660 -0.8660 -0.8660 -0.8660 3.1E-17 100% 100% 72452
g19 32.6556 32.6556 32.6556 32.6556 4.4E-06 100% 100% 216238
g21 193.7245 193.7245 193.7245 193.7245 1.1E-02 100% 100% 108196
g22 236.4310 236.3578 245.8468 250.8468 3.8E01 80% 4% 9961000
g23 -400.0551 -400.0551 -400.0551 -400.0551 4.8E-13 100% 100% 131152
g24 -5.5080 -5.5080 -5.5080 -5.5080 8.9E-16 100% 100% 33857

of g02 highly consists of feasible space. RPCH can not achieve 100% success
rate for function g22 because g22 is highly constrained. However, most algo-
rithms even can not find feasible solutions for g22 in the literature [15], while
our algorithm can find the feasible solution in most runs and an improved solu-
tion has been found by our algorithm. What’s more, our algorithm can reach
100% success rate for all the rest test functions.

5 Conclusion and Future Work

We have presented a reference point based constraint handling method to solve
constrained optimization problems. We first compute the sum of constraint vio-
lation value of each solution after all the constraint violation values have been
normalized. Then a reference point is selected by an introduced mechanism.
Finally, in each iteration individuals are selected either according to the pareto
dominance relationship or the distances of objective value of each individual to
the reference point.

We have evaluated RPCH on 24 benchmark, the experimental results reveal
that RPCH can solve most of the problems efficiently. However, the experiments
suggest that, when a problem is heavily constrained or it has a large feasible
space, RPCH is not able to solve it in the number of FES required in the exper-
iments, and how to overcome this problem will be studied in our future work.
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We may also apply our reference point based constraint handling idea to other
evolutionary algorithms such as differential evolution or genetic algorithms.
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Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 231–240. Springer, Heidel-
berg (1998)

7. Liang, J., Runarsson, T., Mezura-Montes, E., Clerc, M., Suganthan, P., Coello,
C.C., Deb, K.: Problem definitions and evaluation criteria for the cec 2006. Special
Session on Constrained Real-parameter Optimization, Technical Report (2006)

8. Mallipeddi, R., Suganthan, P.N.: Ensemble of constraint handling techniques. IEEE
Transactions on Evolutionary Computation 14(4), 561–579 (2010)

9. Mezura Montes, E., Coello, C.A.C.: A simple multimembered evolution strategy
to solve constrained optimization problems. IEEE Transactions on Evolutionary
Computation 9(1), 1–17 (2005)

10. Mezura-Montes, E., Coello, C.A.C.: Constraint-handling in nature-inspired numer-
ical optimization: past, present and future. Swarm and Evolutionary Computation
1(4), 173–194 (2011)

11. Michalewicz, Z., Attia, N.: Evolutionary optimization of constrained problems.
In: Proceedings of the 3rd Annual Conference on Evolutionary Programming,
pp. 98–108. Citeseer (1994)

12. Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary opti-
mization. IEEE Transactions on Evolutionary Computation 4(3), 284–294 (2000)

13. Runarsson, T.P., Yao, X.: Search biases in constrained evolutionary optimization.
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and
Reviews 35(2), 233–243 (2005)

14. Takahama, T., Sakai, S.: Constrained optimization by the ε constrained differential
evolution with gradient-based mutation and feasible elites. In: IEEE Congress on
Evolutionary Computation, CEC 2006, pp. 1–8. IEEE (2006)

15. Wang, Y., Cai, Z.: IEEE Transactions on Combining multiobjective optimization
with differential evolution to solve constrained optimization problems. Evolution-
ary Computation 16(1), 117–134 (2012)



© Springer International Publishing Switzerland 2015 
Y. Tan et al. (Eds.): ICSI-CCI 2015, Part I, LNCS 9140, pp. 302–313, 2015. 
DOI: 10.1007/978-3-319-20466-6_33 

New Interactive-Generative Design System:  
Hybrid of Shape Grammar and Evolutionary  

Design - An Application of Jewelry Design 

Somlak Wannarumon Kielarova1(), Prapasson Pradujphongphet1,  
and Erik L.J. Bohez2 

1 Faculty of Engineering, Naresuan University, Phitsanulok, Thailand 
somlakw@nu.ac.th, prapassonp@gmail.com 

2 School of Engineering and Technology, Asian Institute of Technology, Pathumthani, Thailand 
bohez@ait.ac.th 

Abstract. This paper proposes a new methodology for developing a computer-
based design system. It places designers at the centre of design process to per-
form their tasks collaboratively with the design system. The proposed system is 
developed based on interactive shape grammar and evolutionary design  
algorithm, which is able to increase the creativity and productivity of design ac-
tivity. Designers can utilize the generated designs to initialize their conceptual 
design process more easily and rapidly. The source of form diversity is derived 
from genetic operators. Subjective user preference is used for design evaluation. 
The system can be integrated with computer-controlled model-making ma-
chines to automatically build physical artifacts. As a result, designers can easily 
start their conceptual design process through obtaining the desired designs and 
the resulting physical artifacts in line. The human-computer synergy is illu-
strated for the design of jewelry, but it is applicable to other industrial product 
design problems. 

Keywords: Evolutionary design · Evolutionary strategy · Shape grammar · Ge-
nerative design · Parametric design · Jewelry design 

1 Introduction 

In conceptual design stage, designers generally carry out activities such as generating 
design ideas, recording them, and making decisions whether to continue to generate 
more ideas or instead to explore more possibilities of the preferred existing ones [1]. 
Therefore, at this stage designers generate a number of various alternatives [2]. 

Currently, there are various computer-aided design (CAD) packages available in 
the market. Nevertheless the available computer-aided design packages are mostly 
used in detailed design stage rather than in conceptual design, because most of CAD 
systems are not able to suitably support designers in conceptual design activities.  

Generative design (GD) system is a computer-based design system that can support 
designers in divergent thinking throughout design exploration and design generation. 
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It enables designers to explore a large design space, which provides a larger range of 
design possibilities than manual design process [3]. Furthermore, a generative design 
system can also generate designs that might have not been predicted by designers 
themselves [4]. Despite design exploration and design generation being crucial in 
conceptual design stage, most of available CAD systems cannot properly support 
designers in this stage. The proposed design system was therefore developed to ad-
dress these issues.  

This paper aims to bring the benefits of computer-based design systems into the 
early stage of design process, which is important for creative design. This paper pro-
poses a generative evolutionary design system, which combines shape grammar and 
evolutionary strategy algorithm for achieving the above purposes. The system is an 
interactive design system, which is used for jewelry design application. It is able to 
increase creativity and productivity of design activity. Designers can apply the gener-
ated designs to initialize their conceptual designs more easily and rapidly through 
obtaining the desired designs and the resulting physical artifacts in line. 

The paper is organized in five main sections. The related theories and research pa-
pers focusing on topics such as generative design, shape grammar and evolutionary 
strategy are presented in Section 2. The development of hybrid shape grammar and 
evolutionary strategy is introduced in Section 3. The experimental results are dis-
cussed in Section 4. Finally, the research work is concluded in Section 5. 

2 Related Research 

2.1 Generative Design 

Generative design (GD) is a process that employs computational capabilities to sup-
port designers working in design process and/or automate some parts of the design 
process [5]. GD is expected to help designers in divergent thinking. Singh and Gu had 
investigated five commonly used GD techniques in architecture [5]. Those techniques 
are cellular automata, shape grammars, L-systems, genetic algorithms, and swarm 
intelligence. Their review of the existing literature indicates that most of the available 
GD systems are developed based on one of the above GD techniques. 

Several researchers have studied various issues of GD. One of the most important 
issues in developing a GD system is user-system interaction. There are different mod-
els of user-system interaction depending on the objectives of the uses of GD systems. 
Chase [4] summarized the user-system interaction paradigms in the following ways: 
minimal user interaction using optimization techniques; tight control over rule appli-
cation; and computer generation with user selection. He also explained the possible 
interaction scenarios, which are categorized into full control, partial control, and no 
control. Prats et al. [6] recommended that an effective design system should provide a 
communication channel between designer and the system. An generative design tool 
that applies partial control interaction model to guide conceptual design process was 
developed by Orbay and Kara [7]. Tapia [8] developed a shape grammar-based design 
system, which allows user to define and select rules. Additionally, this system also 
offers user the selection of control mode such as user control and system control. 
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There are only a few publications on generative design systems in jewelry applica-
tions. The GD system developed by Kumar et al. [9] is a geometrical modeling me-
thod to generate 3D patterns for traditional Indian Kundan jewelry. Another system 
was developed by Sharma et al. [10]. In this case the relevant CAD system for orna-
ment design industry in India was studied and a GD system named Estampa was im-
plemented. The system can generate ornamental patterns by transforming primitive 
motifs. A generative design system for jewelry design application was also developed 
by Wannarumon S. et al. [11]. The first iteration of this system was based on evolu-
tionary algorithm. Later on, Shape grammar method was used to create a shape gener-
ation mechanism to generate jewelry ring design without considerations of gemstone 
setting  [12].  

It can be seen, based on the literature examples discussed above, that shape gram-
mar integrated into generative design systems have a good potential to support design 
applications in art and design domains. 

2.2 Shape Grammar 

Shape grammars (SG) were first introduced by Stiny and Gips in 1972 [13]. Four 
basic components of an SG are defined by Stiny [14]:  
• an initial shape  
• set of shapes 
• set of shape rules 
• set of symbols 

To generate a design, shape grammar needs sets of shape rules and to perform cal-
culations with shapes in the following order: recognition of a given shape and its 
possible replacements; compiling rules; and exploring the shape grammar [8, 13]. 
Shape grammars generate designs by formalizing the spatial relations between their 
elements [6]. Shape transformations can be explicitly described and used for syste-
matic generation of design alternatives using shape grammars. Alternating the se-
quence of shape rules can generate different designs. A new type of rule named 
‘piecewise line-rule’ used in conjunction with the decomposition rule to describe and 
transform curved outlines was presented by Prat [15]. His technique can be used to 
systematically generate design alternatives. 

In this paper, we are interested in the shape grammar technique rather than other 
techniques, because SG is specifically suitable for form and style generation [5]. Fur-
thermore it can be easily modified to create new design languages with small changes 
in grammar rules [16]. Several researchers have developed shape grammar-based GD 
systems for different applications. Stiny and Gips [13] had developed shape grammars 
for generating paintings and sculptures. In architecture applications, Stiny and Mit-
chell [17] proposed parametric shape grammar for generating the ground  
plan of Palladio’s villas as Palladian style. The parametric shape grammar that  
generates the compositional forms and identifies the function zones of Frank Lloyd 
Wright's prairie-style houses was developed by Koning and Eizenberg [18]. Shape 
grammars were also implemented in engineering design problems such as roof truss 
design by Shea and Cagan [19]. Shape grammars were applied in industrial design 
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applications and are illustrated in the following examples. Agarwal and Cagan [20] 
developed a function-based grammar to design coffee makers. Partial control protocol 
was applied to set up the interaction between designer and the system by allowing 
user to select design rules. Pugliese and Cagan [21] proposed a two-dimensional Har-
ley-Davidson motorcycle shape grammar for capturing brand identity. Two-level 
shape grammars based on shape decomposition method were proposed for Zhuang 
ethnic embroidery design exploration by Cui and Tang [22]. Kielarova et al. [12] 
developed a shape grammar-based design system for jewelry design applications. The 
authors have studied shape transformations in jewelry ring design process to identify 
transformations of shapes from one state to another, and to develop shape grammar 
and shape rules. 

2.3 Evolutionary Strategy 

Schwefel was the first to investigate the evolutionary strategy (ES) and develop the 
(1+1)-ES system. Later on the scope of ES was expanded by Rechenberg [23]. ES 
was developed based on the concept of natural evolution. ES was initially applied for 
parameter optimization. Instead of binary strings real values are used in ES to code 
parameters. Contrary to genetic algorithm that includes both crossover and mutation, 
ES uses only mutation. The basic implementation of ES was a two member (1+1)-ES 
system, where one parent generates one offspring using mutation and the better of the 
two is selected, while the other is eliminated. In ES, each individual is represented by 
its genotype and strategy parameters that are both evolved. In order to improve the 
algorithm for parallel processing with respect to local optima, two general forms 
(μ+λ)-ES and (μ,λ)-ES were suggested [24]. We are interested in ES’s abilities to 
increase diversity of design alternatives. 

3 Development of Interactive-Generative Design System: 
Hybrid of Shape Grammar and Evolutionary Design 

We propose an interactive-generative design system based on a hybrid of shape 
grammar and evolutionary strategy. This research work is extension from the previous 
research [12], which has studied shape transformations in jewelry design and devel-
oped shape rules to be applied in shape grammar to generate new design alternatives. 
The previously published system was limited in its shape generating capabilities. 
Therefore a new system is proposed herein. This new system was developed by inte-
grating ES into the shape grammar-based generative design system to generate more 
preferred alternatives. The outline of this system is shown in Fig.1. 

3.1 Shape Grammar for Jewelry Design 

The major issue for developing shape grammar systems for jewelry application is the 
variety of shapes of jewelry items. It is, therefore, necessary to define scope and limi-
tations of the shape grammar to be developed. In this paper, we demonstrate the  



306 S.W. Kielarova et al. 

development of shape grammars, which can generate design elements for designing 
earrings. Gemstone earrings, shown in Fig. 2, were studied in terms of their characters 
and shapes for developing shape grammar. The color of the gemstone was not consi-
dered. After the analysis, the features of the earrings were abstracted as follows: 
• The earrings are set with main gemstones and decorated with minor ones on the 

top as shown in Fig. 3. This constitutes a strong spatial relationship. 
• Choosing different gemstone cuts, as shown in Fig. 4, can vary shapes of earrings.  
• Design parameters are size of earring, size of gemstones, gemstone cuts, and 

shapes of decorative items. 
 

 

Fig. 1. Workflow of the proposed generative design system 

The features described above indicate that it is possible to apply shape grammar 
rules to represent the gemstone earring design process. 

The earring shape grammar consists of sets as follows: 
• Shape grammar (SG) = {Sm, Sl, Sd, Sc, R, L, I} 
• Set of main gemstone cuts (Sm) = {Round, Oval, Pear, Square, Heart Shape, etc.}  
• Set of minor gemstone cuts (Sl) = {Round, Oval, Pear, Square, Heart Shape, etc.} 
• Set of shapes of decorative elements (Sd) = {circle, oval, rectangle, square, trian-

gle, other freeform items} 
• Set of shapes of connectors (Sc) = {circle, oval, rectangle, square, triangle, other 

geometric shapes} 
• Set of shape rule (R) = {Initial Rules, Shape Transformation Rules, Termination 

Rules}   
• Set of symbol or label (L) = {•1, •2, •3, … } 
• Initial shape (I) shown in Fig 3. (b) 

The initial shape consists of three main elements: main gemstone; minor gemstone; 
and connector. The shapes of main and minor gemstones can be varied within the set 
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of standard gemstone cuts, i.e. round, oval, pear, square, etc. Transforming a set of 
geometric shapes and other freeform shapes can vary the shapes of decorative element 
items. Shape of the connector is limited in geometric shapes such as circle, square, 
etc. Shape grammar rules consist of initial rules, shape transformation rules, and ter-
mination rules. The initial rules are used in the starting step of the generative design 
process to generate a main gemstone, a minor gemstone or decorative item, and a 
connector. Furthermore, initial rules also establish their positions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Fig. 2. Examples of earrings [25-28] used for studying their shape grammars 

 

Fig. 3. (a) schematic outline of studied earrings; (b) initial shape 

Shape transformation rules were obtained from [12], and are used for adaptation 
and transition of design elements. Termination rules are used to create and to position 
gemstone, decorative items, and connectors, when all tasks are finished. After the 
application of these rules the shape grammar process will stop. Label set is 
represented by dots in sequence, to signify shape-manipulating sequences along with 
spatial relationship. 

[24] [25] 

[26] [27] 
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Fig. 4. Examples of gemstone cuts 

3.2 Modified Evolutionary Strategy 

The concept of evolutionary strategy (μ+λ)-ES is employed to create an evolutionary 
design algorithm. The process begins by taking the generated shapes (solutions) from 
the shape grammar process as a set of initial parents. A new evolutionary design algo-
rithm is then implemented in the following order: 
1. Choose generated design items as μ parents that contain m design parameters 

 
 ),...,,,( 321 mxxxxX =     (1) 

 
2. Create λ new offspring by mutation.  
 

),...,,,( 321 mxxxxX ′′′′=′     (2) 
 

Applying a random vector of size X with normal distribution performs the muta-
tion 

 
),0( sNXX +=′      (3) 

 
3. Select μ individuals for next generation from (μ+λ) population of all parents and 

offspring by user. 
4. Repeat steps 2 and 3 until satisfactory solution is found or the defined computa-

tion time is reached.  
In the algorithm, no recombination is applied. An example of chromosome used in 
this process is shown in Fig. 5. 

4 Experimental Results and Discussions 

The prototype system was developed using Visual Basic script in Rhinoceros 5.0 
software [29]. Using the hybrid shape grammar and evolutionary design algorithm 
method, the proposed generative design system can generate a large number of ear-
ring designs within the defined shape grammar depending on the process parameter 
setting. The generative design system works as shown in Fig.6. 
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Fig. 5. Example of chromosome used in the evolutionary process 

 

Fig. 6. Demonstration of the system flow 

In the experiment, the process parameters set consists of the number of elements, 
number of gemstone cuts, types of setting, number of connector’s shapes, number of 
outline transformation rules, and number of structural transformation rules. Conse-
quently, the number of all possibilities of earring designs is 1,180,096. Designers can 
control direction of design generation through the input parameters that are size of 
earrings, number and size of gemstones, gemstone cuts, and shapes of connectors. 
The generative design system then will generate initial shapes. The system calculates 
shape transformations for all possibilities in the design space, calculating from the 
input parameters. The system applies the rules to the shapes and then generates a set 
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cut. On the other hand designs obtained when no inputs were defined, and the system 
ran automatically, are shown in Fig. 8 (on the right). 

 

   

Fig. 8. Example of the resulting earring designs generated by the system 

Furthermore, the design elements generated by the system can be used for design-
ing a set of earrings and pendant as shown in Fig. 9. 

 

 

Fig. 9. Example of a set of earrings and pendant generated by the system 

A workshop was organized for five participants who were given the task of design-
ing jewelry earrings using the generative design system. All participants were satis-
fied with the performance of the system. They remarked that the system is easy and 
intuitive to use. However, they required a short amount of time to become familiar 
with the system. 

5 Conclusions 

This paper presents an interactive-generative design system, which is a hybrid of 
shape grammar and evolutionary strategy. The system is designed to allow user to 
work with it semi-interactively in both shape grammar process and evolutionary de-
sign process. 
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The generative design system can support designers to automatically generate 
gemstone earring shapes based on input parameters such as earring size, gemstone 
size, gemstone cut, and shapes of connectors. With the integration of evolutionary 
strategy algorithm, the proposed design system can increase the number of generated 
earring designs. This system thus can operate as an external working memory for 
imaginary process, which can solve the overload of visuospatial working memory of 
human designers. The system can generate emergent shapes that play a part in solving 
idea saturation during conceptual design. As a result, the proposed system can support 
designers in a creative and productive manner. The system can be integrated with 
rapid prototyping and computer numerical controlled machines to automatically build 
physical artifacts in line. 

In further works, the system could be extended for evaluating the aesthetic scores 
and presenting to customers through web-based design system.  
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Abstract. Many real-world optimization problems have a large number of deci-
sion variables. In order to enhance the ability of DE for these problems, a novel 
local search operation was proposed. This operation combines orthogonal cros-
sover and opposition-based learning strategy. During the evolution of DE, one 
individual was randomly chosen to undergo this operation. Thus it does not 
need much computing time, but can improve the search ability of DE. The per-
formance of the proposed method is compared with two other competitive algo-
rithms with benchmark problems. The compared results show the new method’s 
effectiveness and efficiency. 

Keywords: Large scale optimization · Differential evolution · Orthogonal cros-
sover · Quasi-opposition learning 

1 Introduction 

Differential evolution (DE), proposed by Storn and Price, is a simple yet efficient algo-
rithm for global optimization problems in continuous domain [1].It has been widely 
used in various applications [2].However, DE still suffers from the "curse of dimensio-
nality", which implies that the performance of DE will deteriorate rapidly while the 
scale of the search space increases [3]. Thus DE usually fails to find the optimal solu-
tions to large scale optimization problems. Much work have been tried to enhance the 
performance of DE for large scale optimization problems. One way to improve the 
performance of DE is by using new crossover operators. Noman et al. proposed a cros-
sover-based adaptive local search operation to enhance the performa-nce of standard 
DE algorithm [2]. Wang et al. used an orthogonal crossover to enhance the search abil-
ity of DE [4]. These works have improved the performance of DE for low dimensional 
problems. However, when the scale size of problem grows up to 1000 or even more, 
they can not avoid being trapped into local minimum.  Another promising approach to 
deal with large scale problems is opposition-based learning (OBL) [5, 6]. OBL has 
been successfully applied to enhance the performance of DE. The key concept of OBL 
is to evaluate the current solutions and their opposite ones simultaneously. And the 
central opposition theorem has proved that the probability that the opposite  
of solution is closer to the global optimum is higher than the probability of a second 
random guess [7]. In recent years, one paradigm that received much attention is  
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cooperative co-evolution  [8] . Cooperative  co-evolution is  a divide-and-conquer 
strategy where a large scale problem is grouped into several lower-dimensional sub-
problems. Each sub-problem is usually easier to be solved in a round-robin way.  
However, how to effectively group the sub-problems are still  challengeable [3]. 

This paper is inspired by the orthogonal crossover [4] and OBL  [5]. We combine 
orthogonal crossover and OBL to propose DE with novel local search operation 
(DENLS) for solving large scale optimization problems.  

2 Differential Evolution 

DE has four main steps: Generation of Initial Population, Mutation operation,  Cros-
sover operation and Selection operation. One of the most promising schemes, 
DE/Rand/1/Bin, is presented in great detail. It is supposed that we are going to find 
the minimization of the objective function )(xf . 

2.1 Generation of Initial Population 

The DE algorithm starts with the initial population DNPijxX ×= )(  with the size of 

NP and the dimension size of D , which is generated by: 

 ))(1,0()( l
j

u
j

l
jij xxrandxGx −+=  (1) 

where NPiG ,,2,1,0 == , Dj ,,2,1 = , u
jx  and l

jx denotes the upper constraints 

and the lower constraints respectively. 

2.2 Mutation Operation 

For each target vector ),2,1( NPixi = , a mutant vector is produced by 

 )()1(
321 rrri xxFxGv −+=+  (2) 

where },2,1{,,, 321 NPrrri ∈  are randomly chosen and must be different from each 

other. And F  is the scaling factor for the difference between the individual 
2r

x  and 

individual 3r
x . 

2.3 Crossover Operation 

DE employs the crossover operation to add the diversity of the population. The ap-
proach is given as follows. 

 


 =≤+

=+
otherwiseGx

irandjorCRrandifGv
Gu

i

i
i ),(

)(),1(
)1(  (3) 
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where NPi ,,2,1 = , Dj ,,2,1 = , ]1,0[∈CR  is the crossover probability and 

),,2,1()( NPirand ∈  is the randomly selected number. The crossover operation can 

ensure that at least one component of the trial individual comes from the mutation 
vector. 

2.4 Selection Operation 

Selection operation decides whether the trial individual )1( +Gui  should be a mem-

ber of the next generation, it is compared to the corresponding )(Gxi . The selection 

operation is based on the survival of the fitness between the trial individual and the 
corresponding one such that: 

 


 ≤++

=+
otherwiseGx

GxfGufifGu
Gx

i

iii
i ),(

)))(()1((),1(
)1(  (4) 

3 DE with Novel Local Search Operation 

In the proposed DENLS, the dynamic model in [10] is adopted and a novel local 
search operation was proposed to balance the exploration ability of DE. In the local 
search operation, the orthogonal crossover is used and further the quasi-opposition 
learning strategy is adopted in the orthogonal crossover to enhance the exploitation 
ability. 

3.1 Orthogonal Crossover 

Orthogonal crossover operation was originally proposed to improve the performance 
of genetic algorithm and a quantization technique called QOX was introduced to deal 
with continuous optimization [11]. To enhance the ability of orthogonal crossover, 
opposition-based learning (OBL) [5, 6] is embedded into the orthogonal crossover. 

QOX [11] is based on orthogonal array. An orthogonal array for K factors with Q  

levels and M  combinations can be denoted to )( K
M QL . For example, )3( 4

9L  is used 

in DENSL as follows: 
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Given two parent individuals ),,,( 21 Dxxxx =  and ),,,( 21 Dyyyy = , x  and y  

can define a search interval with )],max(),,[min( iiii yxyx  for the ith  decision varia-

ble. QOX defines Q levels iQii lll ,,, 21   for the ith  decision variable as follows: 

 Qjyxyx
Q

j
yxl iiiiiiij ,,1)),min(),(max(

1

1
),min( =−

−
−+=  (6) 

According to Eq. (5) and Eq. (6), given two parent individuals x  and y , nine 

children can be generated. Details can refer to [4]. 

3.2 Quasi-Opposition Learning 

Rahnamayan et al. proposed quasi-opposition-based  learning  and  proved  that  
a quasi-opposite point is more likely to be closer to the solution of the  
optimization problem than the opposite one [12]. Opposition as defined by [12] is 
given in Eq. (7). 

Definition 1 let ],[ bax ∈  be any real number. Its opposite, ox  is defined as 

 xbaox −+=  (7) 

Definition 2 let ],[ bax ∈  be any real number. Its quasi-opposite point, qox  is de-

fined as 

 ),( oxcrandqox =  (8) 

where c  is the center of the interval ],[ ba  and ),( oxcrand  is a random number un-

iformly distributed between c  and ox . 

3.3 Proposed Method 

The crossover operation only generates one single trial vector Giu , , which is a vertex 

of the hyper-rectangle space defined by the mutation vector Giv ,  and the individual

Gix , . Therefore, DE can not search the hyper-rectangle sufficiently.  To overcome this 

limitation, we use orthogonal crossover and quasi-opposition learning to build a local 
search. This local search can generate eighteen trial vectors to locate more space. This 
local search operation needs to evaluate eighteen new solutions, and thus, it can not 
be used for each pair of mutation vector and individual vector. In order to achieve the 
advantage of this local search operation while not consuming too much computing 
time, only one individual in current population was randomly chosen to undergo this 
local search operation. In addition, the mutation operation for this chosen individual is 
also changed into Eq. (9). 
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 )()1,0()1(
321 rrri xxrandxGv −⋅+=+  (9) 

where )1,0(rand  is a uniformly random number between zero and one. 

The Pseudo code of DENLS is presented in figure 1. 

 

 

 

 

 

 

 

 
 

Fig. 1. The Pseudo code of  DENLS 

4 Numerical Experiment 

4.1 Experimental Settings 

In order to evaluate the performance of the proposed DENLS, thirteen well-studied 
optimization problems are chosen as test bed  [3]. Among the thirteen problems,  
problems 71 ff −  are unimodal and problems 138 ff −  are multimodal. The dimen-

sional sizes of these problems are 1000. The compared algorithms include OXDE [2] 
and a competitive cooperative co-evolution DECC-G [3].  

For all experiments, the FES is set to 5E6. The size of population is set to 100 for 
all algorithms. And  F  is set to 0.9, CR  is set to 0.9. Twenty-five independent runs 
are carried out for each method in each instance.  

 
 

DENLS pesudocode: 
Step 1.Parameters setting: NP(population size),F(scaling factor),CR( crossover 

     control parameter),Orthogonal Array, FESmax (maximum number of  
     function evaluations(FES)). 

Step 2. Generation of Initial Population P 
Step 3. Evaluation of the Population P 
Step 4. i=1 
Step 5. if  FES> FESmax then  goto Step 15 else goto Step 6. 
Step 6. K=rand [1, NP] 
Step 7. if (K equals to i) then goto Step 8 else goto Step 12 
Step 8. Using Eq. (9) to generate mutation vector 
Step 9. Using orthogonal crossover to generate nine trial vectors 
Step10. To generate another nine trial vectors with quasi-opposition learning 
Step11. Choose the best one from the above eighteen trial vectors, 

 FES=FES+18, then goto     Step 13 
Step12. Undergo mutation and crossover operation, according to Eq. (2) and 

 Eq.(3) without  generation G, FES=FES+1 
Step13. if )()( ii xfuf ≤ , then update P with iu  replacing ix  

Step14. if (i equals to NP) goto Step 5, else i=i+1; 
Step15. Stop and output the vector with the smallest fitness value in P. 
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Table 1. Compared Results between DENLS with OXDE, DECC-G  

fun Algo Best Worst Mean Std P  Value 

1f  
OXDE 

DECC-G 

DENLS 

2.37e+002 

4.45e-029 

0.00e+000 

8.91e+002 

1.58e-028 

0.00e+000 

4.76e+002 － 

9.61e-029 － 

0.00e+000 

1.67e+002 

3.11e-029  

0.00e+000 

9.72e-011 

9.73e-011 

 

2f  
OXDE 

DECC-G 

DENLS 

3.71e+001 

3.68e-015 

2.64e-266 

6.89e+001 

8.16e-014 

6.66e-262 

5.27e+001 － 

1.70e-014 － 

   3.95e-263 

6.89e+000 

1.77e-014  

0.00e+00 

1.42e-009 

1.42e-009 

 

3f  
OXDE 

DECC-G 

DENLS 

1.17e+006 

2.25e-004 

2.04e+006 

1.98e+006 

2.80e-003 

6.50e+006 

1.54e+006 ＋ 

1.20e-003 ＋ 

4.64e+006 

2.33e+005 

6.70e-004  

1.18e+006 

1.42e-009 

1.42e-009 

 

4f  
OXDE 

DECC-G 

DENLS 

2.28e+001 

2.22e-002 

1.33e-200 

2.91e+001 

4.09e-002 

2.76e-197 

 2.59e+001 － 

3.19e-002 － 

2.51e-198 

1.84e+000 

4.72e-003  

0.00e+000 

1.42e-009 

1.42e-009 

 

5f  
OXDE 

DECC-G 

DENLS 

1.16e+004 

9.87e+002 

9.89e+002 

3.80e+004 

9.85e+002 

9.89e+002 

 2.28e+004 － 

9.86e+002 ＋ 

9.89e+002 

7.08e+003 

4.11e-001  

7.99e-003 

1.42e-009 

1.42e-009 

 

6f  
OXDE 

DECC-G 

DENLS 

6.52e+003 

0.00e+000 

0.00e+000 

9.36e+003 

0.00e+000 

0.00e+000 

7.86e+003 － 

0.00e+000 ≈ 

0.00e+000 

8.86e+002 

0.00e+000  

0.00e+000 

9.73e-011 

NaN 

 

7f  
OXDE 

DECC-G 

DENLS 

4.24e+000 

1.50e-003 

1.01e-005 

7.35e+000 

3.70e-003 

1.71e-004 

5.68e+000 － 

2.62e-003 － 

6.91e-005 

7.25e-001 

6.68e-004 

4.29e-005 

1.42e-009 

1.42e-009 

 

8f  
OXDE 

DECC-G 

DENLS 

-4.18e+005 

-4.19e+005 

-4.19e+005 

-4.15e+005 

-4.19e+005 

-4.19e+005 

-4.17e+005 － 

-4.19e+005 －  

-4.19e+005 

7.27e+002 

9.28e-011 

1.19e-010 

9.73e-011 

2.77e-012 

 

9f  
OXDE 

DECC-G 

DENLS 

3.63e+002 

3.55e-014 

0.00e+000 

5.81e+002 

0.00e+000 

0.00e+000 

4.94e+002 － 

1.25e-014 － 

0.00e+000 

5.32e+001 

7.49e-015 

0.00e+000 

9.73e-011 

3.51e-010 

 

10f  
OXDE 

DECC-G 

DENLS 

5.95e+000 

1.15e-013 

8.88e-016 

6.93e+000 

1.39e-013 

8.88e-016 

6.49e+000 － 

1.27e-013 － 

8.88e-016 

2.79e-001 

7.11e-015 

0.00e+000 

9.73e-011 

9.01e-011 

 

11f  
OXDE 

DECC-G 

DENLS 

3.46e+000 

6.66e-016 

0.00e+000 

9.13e+000 

1.33e-015 

0.00e+000 

5.02e+000 － 

9.50e-016 － 

0.00e+000 

1.19e+000 

1.44e-016 

0.00e+000 

9.73e-011 

8.05e-011 

 

12f  
OXDE 

DECC-G 

DENLS 

1.85e+000 

6.20e-028 

4.71e-034 

4.53e+000 

1.95e-027 

4.71e-034 

3.01e+000 － 

1.24e-027 － 

4.71e-034 

7.11e-001 

3.30e-028 

1.75e-049 

9.73e-011 

9.73e-011 

 

13f  
OXDE 

DECC-G 

DENLS 

1.33e+003 

5.27e-024 

1.35e-032 

2.78e+003 

1.10e-002 

1.35e-032 

1.94e+003 － 

2.64e-003 － 

1.35e-032 

3.40e+002 

4.79e-003 

5.59e-048 

9.73e-011 

9.34e-011 

 

Notes: NaN means that both algorithms can locate optimum each time.  
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problems, DE with a novel local search operation was proposed. In the novel local 
search  operation,  quasi-opposition based learning was adopted to enhance the  per-
formance of orthogonal crossover operation. The proposed DENLS is a hybrid algo-
rithm of DE/rand/bin/1 with this novel local search operation. The compared results in 
solving the commonly used thirteen large scale optimization problems show that the 
DENLS is effective and efficient in tackling most of the large optimization problems. 
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Abstract. The previous evolutionary clustering methods for time-evolving data 
usually adopt the temporal smoothness framework, which controls the balance 
between temporal noise and true concept drift of clusters. They, however, have 
two major drawbacks: (1) assuming a fixed number of clusters over time;  
(2) the penalty term may reduce the accuracy of the clustering. In this paper, a 
Multimodal Evolutionary Clustering (MEC) based on Differential Evolution 
(DE) is presented to cope with these problems. With an existing chromosome 
representation of the ACDE, the MEC automatically determines the cluster 
number at each time step. Moreover, instead of adopting the temporal 
smoothness framework, we try to deal with the problem from view of the 
multimodal optimization. That is, the species-based DE (SDE) for multimodal 
optimization is adopted in the MEC. Thus the MEC is a hybrid of the ACDE 
and the SDE, and designed for time-evolving data clustering. Experimental 
evaluation demonstrates the MEC achieves good results. 

Keywords: Time-evolving data · Differential evolution · Multimodal 
optimization 

1 Introduction 

Time-evolving data refers to a collection of data that evolves over the time, which is 
ubiquitous in many dynamic scenarios, such as daily news, web browsing, e-mail, 
stocks markets and dynamic social network. Usually, a promise clustering result is 
desired at each time step. The key challenge to traditional clustering algorithms is that 
the data objects to be clustered evolve over the time, both as a result of long term 
trend due to changes in statistical properties and short term variations due to noise.  

Chakrabarti et al. [1] first addressed the problem of clustering time-evolving data, 
called evolutionary clustering, and proposed a framework called temporal 
smoothness. Their framework considers the frequently shift of clustering results in a 
very short time is unexpected, and so, it tries to smooth the clusters over time. It 
divides the objective function into two terms: snapshot quality (Sq) measuring the 
clustering quality on the current data, and history quality (Hq) verifying how similar 
the current clustering result is with the previous one. Actually, the history quality is a 
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penalty term which penalizes the deviation of the current clustering result from the 
previous. Thus their framework trades off the benefits of maintaining a consistent 
clustering over time with the cost of deviating from an accurate representation of the 
current data. 

Based on the temporal smoothness framework, several evolutionary clustering 
methods have been proposed [2-4]. These methods control the balance between 
temporal noise and true concept drift, and achieve promise results. However, they 
have two major drawbacks:  

(1) Assuming a fixed number of clusters over time. Limited to the static clustering 
model, most of the existing methods required pre-fixed cluster number k at each time 
step. And so, they are inadequate to handle the very typical scenario where the 
number of clusters at different times is unknown and varies with the time. 

(2) The penalty term may reduce the accuracy of the clustering. Usually, the 
history quality is scaled by a smoothing parameter which reflects the reference to the 
history model. However, it is difficult to decide how much weight should be assigned 
to the history quality term. Though some existing works propose some strategies to 
adaptively estimate the optimal smoothing parameter [5, 6], it still in a way pulls 
down the accuracy of the clustering on the current data. 

In this paper, an efficient evolutionary clustering method based on DE (differential 
evolution) is presented to deal with the problem of time-evolving data clustering. 
Evolutionary algorithms are widely used for static clustering. However, the work that 
clusters time-evolving data based on an evolutionary algorithm is little [6, 7]. We 
believe that the DE has advantages to the time-evolving data clustering.  

On one hand, with the special chromosome representation scheme, the DE for 
clustering could automatically determine the number of clusters. In this paper, we 
adopt the chromosome representation in the ACDE [8], which is detailed in Section 3. 

On the other hand, compared to the typical k-means, the DE could perform a global 
search in the solution space and provides robust and adaptive solutions. Therefore, 
instead of adopting the temporal smoothness framework, we try to deal with the 
problem from view of the multimodal optimization. The temporal smoothness 
framework assumes that the data to be clustered at different time steps should be 
identical, i.e., the data of time steps are “snapshots” of the same set of objects at 
different time. In this paper, the data of different time steps could be arbitrary I.I.D. 
samples from different underlying distributions. We adopt the SDE [9] to search the 
global and local optimal solutions. In order to ensure the current clustering does not 
deviate much from historical clustering results, the global/local optimum that is most 
similar to the historical clustering result is screened out as the best result at the current 
time step.  

Thus, the DE used in this paper is a hybrid of ACDE [8] and SDE [9]. By adopting 
the chromosome representation in the ACDE, the proposed method could deal  
with the situation where the number of clusters is unknown and varies over time. 
Meanwhile, the best result at the current time step could be selected from the global 
and local optimal clusters obtained by the SDE, which is considered the most 
consistent with the historical clustering results. 
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2 Background 

2.1 Evolutionary Clustering 

The topic of evolutionary clustering has attracted significant attention in recent years. 
Chakrabarti et al. [1] first formulated the problem and proposed the temporal 
smoothness framework, where a history cost is added to the cost function to ensure 
the temporal smoothness. Chi et al. [2] extended the spectral clustering to the 
evolutionary setting and proposed two frameworks PCQ and PCM, by incorporating 
the temporal smoothness to restructure a cost function. Both the frameworks are to 
optimize the following cost function: 

 (1 )  .totalC Sq Hqα α= ⋅ + − ⋅  (1) 

Where Sq  measures the clustering quality when the solution is applied to the current 

data and Hq is the measure of history quality. These methods significantly advance 

the evolutionary clustering literature. However, as stated in section 1, these methods 
assume the number of clusters is pre-fixed at each time step, which limits the 
applications in real world.  

2.2 Evolutionary Algorithms for Static Clustering 

Evolutionary algorithms for static clustering have been widely studied, and some of 
them have been put into practice [8]. For example, Bandyopadhyay et al. [10] applied 
evolutionary algorithms for clustering to distinguish landscape regions like 
mountains, rivers, vegetation areas and habitations in satellite images.  

Evolutionary algorithms basically evolve the clustering solutions through operators 
that use probabilistic rules to process data partitions sampled from the search space. 
Roughly speaking, the solutions that more fitted the objective functions have higher 
probabilities to be sampled. Thus, the evolutionary search is biased towards more 
promising clustering solutions and tends to perform a more computationally efficient 
exploration of the search space than traditional randomized approaches. 

2.3 The ACDE 

In this paper, we adopt the special chromosome representation scheme of the ACDE, 
proposed by Das et al [8]. The ACDE is used to automatically cluster large unlabeled 
data sets. Different from most of the existing clustering techniques, the ACDE 
requires no prior knowledge of the data to be classified. 

In the ACDE, for the data points of d dimensions at each time step, and for a user-
specified maximum number of clusters maxK , a chromosome is a vector of real 

numbers of max maxK K d+ ×  dimensions. The first maxK  positions are the control 

genes, each of which is positive floating-point number in [0, 1] and controls whether 
the corresponding cluster is to be activated. The remaining positions are reserved for 
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maxK  cluster centers, where each center has d dimensions. For example, the i-th 

chromosome vector in the population is shown as follows: 

i =x  , 1iT , 2iT  … 
ma,KiT , 1im , 2im … max,i Km

In the first maxK  positions, if , 0.5i jT > , the j-th cluster in the i-th chromosome is 

active and selected for partitioning the associated data set. Otherwise, if , 0.5i jT < , 

the particular j-th cluster is inactive. Suppose max 4K = , and we have a chromosome 

=x  (0.3, 0.7, 0.1, 0.9, 6.1, 3.2, 2.1, 6, 4.4, 7, 5, 8, 4.6, 8, 4, 4) for a 3-D data set. 
According to the rule, the second center (6, 4.4, 7) and the fourth one (8, 4, 4) are 
active for partitioning the data set. 

The fitness function corresponds to the statistical mathematical function to evaluate 
the results of the clustering algorithm on a quantitative basis. The ACDE uses the CS 
measure [12], which is outlined as: 
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Where x is an individual having K clusters ( 1,...,CKC ), and im (i=1,…,K) is the 

centroid of iC . 

Thus the fitness function of an individual x  can be described as: 
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Where e is the small constant and set to be 0.002. 
In addition, in the ACDE [8], to avoid erroneous chromosomes, a cluster center is 

probably recalculated. That is, the centroid im is computed by averaging the data 

vectors that belong to cluster iC by the following equation. 
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2.4 Multimodal Optimization and Species-Based DE 

Multimodal optimization refers to finding multiple global and local optima of  
an objective functions, so that the user can have a better knowledge about different 
optimal solutions in the search space. Evolutionary algorithms have a clear advantage 
over the classical optimization techniques to deal with multimodal optimization 
problems, due to their population-based approaches are able to detect multiple 
solutions within a population in a single simulation run. Thus, numerous evolutionary 
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optimization techniques have been developed since late 1970s for locating multiple 
optima. 

Detection and maintenance of multiple solutions are the challenge of using EAs for 
multimodal optimization. Niching is a common technique used in multimodal 
optimization, which refers to the technique of finding and preserving multiple stable 
niches, or favorable parts of the solution space possibly around multiple solutions, so 
as to prevent convergence to a single solution. In this paper, a kind of niching 
techniques named speciation is used and a species-based DE (SDE) by Li [9] is 
adopted.  

The SDE [9] is a speciation method, which classifies a DE population into groups 
according to their similarity based on Euclidean distance. The definition of a 
speciation depends on a parameter sR , which denotes the radius measured in 

Euclidean distance from the center of a species to its boundary. The center of a 
species, called species seed, is considered the fittest individual in the species. All 
individuals whose distance from the species seed is no larger than the predefined 
parameter sR  are merged into the same species. 

3 The Proposed Methods 

3.1 Algorithm Design Principle 

Let 1tf − , tf  be the two underlying data distribution at time step 1t −  and t , 

respectively. And 1tp −  , tp  are  the corresponding model distributions. In 

evolutionary clustering setting, 1tf −  and tf  are assumed to be close to each other. 

Zhang et al. [5] addressed the evolutionary clustering problem from view of statistical 
models, and proposed two general on-line frameworks, in which the historical data 
dependent (HDD) aims to minimize the loss function: 

 1(1 ) ( ) ( ) ( )  .t t t
hdd f f log p dζ λ λ − = − − +  x x x x  (5) 

Where λ  is a parameter that reflects the reference to historical data. In equation (5), 
1(1 ) ( ) ( )t tf fλ λ −− +x x  induces another distribution. Zhang et al. employed an EFM 

to estimate the density of the deduced distribution. 
In equation (5), we can observe that the parameter λ  plays a role in trading of the 

reference between current data and historical data. So it essentially belongs to 
temporal smoothness framework. From multimodal optimization point of view, 
evolutionary clustering problem aims to find global optimal solutions that could 
reflect the current data accurately, and not deviate from the historical models 
simultaneously. Therefore, we could assume that the data of time step 1t −  and t are 
arbitrary I.I.D. samples from different underlying distributions, and consider them 
simultaneously in the course of evolution. Thus the task is regarded as finding 
multiple global and local optima, and then screening out the best solution that fit the 
goals. 



 Clustering Time-Evolving Data Using an Efficient Differential Evolution 331 

In multimodal optimization, if multiple solutions are known, the implementation 
could be quickly switched to another solution without much interrupting the optimal 
system performance. Evolutionary algorithms (EAs), have a clear natural advantage 
over classical optimization techniques. That is because the EAs maintain a population 
of possible solutions. And on termination of the algorithm, we will have multiple 
good solutions rather than only the best solution.  

In order to screen out the best solution that fit the evolutionary properties, we adopt 
the NMI metric [13] to compare the clustering solutions: 
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Where ,h ln  denotes the number of agreements between clusters h and l, hn and ln  is 

the number of data points in cluster h and l, respectively, and N represents the number 
of data points in the whole dataset. NMI usually lies in [0, 1]. A higher NMI value 
indicates that the current cluster solution more similar to the historical ones.  

We further illustrate how to pick out the best solution. Assuming at time step t, 
SDE could finally find out three species seeds ,1tx , ,2tx and ,3tx , corresponding to the 

three peeks in fig. 1, respectively. Apparently, ,2 ,1 ,3( ) ( ) ( )t t tf f f> >x x x , and the 

partitions yielded by these three chromosomes are considered the three best solutions. 
However, because the NMI between ,1tx  and the historical solution 1t −x are the 

highest, ,1tx  is screened out as the best solution. Because the partition yielded by ,1tx

is most similar with the historical result. 
Overall, we consider that each global/local optimum could be a reasonable 

partition for current data, while the global/local optimum that best clusters the 
historical data is selected for the final solution. 

 

 

Fig. 1. Illustration on how to pick out the best solution 
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3.2 Algorithm Description 

Here, a Multimodal Evolutionary Clustering (MEC) method based on SDE is 
presented, which produces multiple solutions at each time step, and compares the 
solutions to determine the best one, which is most similar with the historical 
clustering results. The procedure can be summarized as follows. 

Input: data set t-1S , tS  

    the radius sR  

    the solution of time step t-1, t-1P  

Output: the best solution tx  
 1.  Randomly generate an initial population with N 

individuals according to section 2.3. 
2.  While not reach termination criteria 
3.    Evaluate all individual in the population. 
4.    Sort all individuals in decreasing order of their 

fitness values. 
5.    Determine the species seeds for the current 

population according to SDE. 
6.    For each species as identified via its species seed 
7.       Run the DE with F = 0.8, Cr = 0.9, and a local 

search by one step k-means described in[6]. 
8.      On the termination of DE, compare the best 

solution sx  with t-1P  using NMI, if NMI( sx )> 

NMI( tx ),then update the best solution.  
9.    Keep only the N fitter individuals from the 

combined population. 
10.  End while 
11. Return the best solution . 

4 Experimental Evaluation 

In this section, we report the experimental results on synthetic and real world data set. 
Unless stated otherwise, all experiment are run 10 times independently and the 
average performance is given.  

4.1 Baseline and Experimental Settings 

The proposed method MEC is compared with two baseline algorithms: the PCQ and 
PCM, which are proposed in [2]. The spectral clustering algorithm in [14] is adopted 
to implement the PCQ and PCM.  

Besides, the ACDE is implemented as the third baseline algorithm, which directly 
adopts the temporal smoothness framework. In fact, the fitness function presented in 
equation (3) could be easily modified to fit the temporal smoothness framework. 
According to equation (1), the temporal smoothness could be expressed as the 

tx
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adaptability of an individual in the old environment (the past time step). In other 
words, the history quality Hq  is about how well the partitions, yielded by the 

individual x , when is applied to cluster the history data. Thus, formally, the history 
quality could be defined as: 

 
1

( , ) ( )  .
( )t

t

Hq t f
CS e

= =
+

x x
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Where ( )tCS x  is the CS measure which is evaluated on the partitions yielded by the 

chromosome x  at time step t, and e is the same as equation (3). 
Finally, following the temporal smoothness framework, the fitness function of 

individual x  is as follows. 

 

1

( , ) ( ) (1 ) ( , 1)

1 1
(1 )  .

( ) ( )

t

t t

F t f Hq t

CS e CS e

α α

α α
−

= ⋅ + − ⋅ −

= ⋅ + − ⋅
+ +

x x x

x x

 (8) 

Where the timestamp 1t −  indicates that the CS measure is evaluated on the history 
data (in this paper, we only consider the adjacent time step t and 1t − ). 

The comparisons are conducted using the fitness value and the NMI. Both the 
values of metrics are the higher, the better cluster performance is. For fair 
comparison, we calculate the fitness values of cluster solutions produced by PCQ and 
PCM according to equation (3). 

The parameter α in PCQ, PCM and ACDE is set to be 0.8 in all the experiments. 
For ACDE and MEC, the population size is set to be 10 times of the dimension of the 
data objects. For example, the synthetic data set is 2-dimenstional, thus the population 
size in ACDE and MEC is 20. The crossover probability is 0.9 and the scale factor F 
is set to be 0.8. The maximum and minimum number of clusters is 20 and 2, 
respectively. 

4.2 Experiments on Synthetic Data 

The data sets are generated by means of the similar generation algorithm in [2]. Two 
hundred 2-D data objects are initially generated as shown in fig. 1(a), by two 
Gaussian distributions generating 100 data objects with mean values of (3, 3) and  
(3, 7), respectively. In order to simulate the data evolving process, the means of  
the two Gaussian distributions are moved slowly towards a pre-fixed evolving 
direction, which is set as 1 (0.5, 0.5)Δ = −  for the upper cluster and 2 ( 0.5, 0.5)Δ = −  

for the lower cluster. The overall data objects of the whole 6 time steps are shown in 
fig. 1(b). 

We use two experiment on synthetic data sets to investigate the performance of the 
proposed method MEC. In the first experiment, we verify our methods in the situation 
where there are concept drifts, but the number of clusters keeps the same over the 
time. In the second experiment, we demonstrate the proposed methods could deal 
with the scenario where the number of clusters at different times varies. 
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towards each other. At time step 4, the means of these two clusters overlap together at 
location (4, 6), thus the total number of clusters turn into 2, see fig. 1(d). We then 
examine how the ACDE and MEC response to the change of number of clusters.  

Table 2. The NMI values on synthetic data 

methods criteria 1 2 3 4 5 6 

MEC NMI 0.9077 0.8501 0.9293 0.8301 0.919 0.9596 

ACDE NMI 0.8926 0.8331 0.9513 0.7994 0.9596 0.9204 

PCQ NMI 0.8907 0.8544 0.8177 0.822 0.9133 0.8217 

PCM NMI 0.9077 0.8612 0.8153 0.8379 0.9120 0.8379 

 
We do not compare the proposed methods with PCQ and PCM, because they are 

incapable to deal with changeable number of clusters. Table 3 displays the cluster 
performance of ACDE and MEC in the second experiment. We can see that ACDE 
and MEC correctly partition the data into 2 clusters at time step 4. Moreover, in order 
to keep smooth to the previous cluster solution, ACDE and MEC still partition the 
data into 2 clusters at time step 5. However, ACDE partition the data at time step 3 
into 2 clusters, while MEC successfully partitions them into 2. From the second 
experiment, we can see that ACDE and MEC could automatically determine the 
number of clusters at each time step, and maintain a consistent clustering over time. 

Table 3. The cluster performance of ACDE and MEC 

methods criteria 1 2 3 4 5 6 

MEC 

Sq 1.5519 1.4288 1.3608 1.4603 1.4159 1.3600 
Hq 0 1.805 1.4385 1.4603 1.4159 1.5267 

NMI 0.9772 0.9772 0.9033 0.9624 0.7771 0.9772 
no. of clusters 

found 
3 3 3 2 2 3 

ACDE 

Sq 1.5519 1.5882 1.2823 1.3467 1.3467 1.4788 
Hq 0 1.4964 1.0248 1.3467 1.3467 1.5032 

NMI 0.9772 0.9056 0.7771 0.9624 0.7771 0.9772 
no. of clusters 

found 
3 3 2 2 2 3 

4.3 Experiments on Real World Data set 

In this section, we present outcomes on the UCI-benchmarking data sets. We use the 
Iris and breast cancer data sets to test the performance of MEC, compared with 
ACDE, PCQ and PCM. Both the data sets are available in the UCI depository. 

Each cluster in the datasets is set a pre-fixed direction for adding the Gaussian 
distribution to simulate the evolving behavior of the data. The experimental results are 
displayed in the Table 4 to 5. Since the data attributes change randomly, it is difficult 
to determine each data point’s belonging clusters. Thus we do not use the NMI to 
verify the performance. 
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From Table 4 and 5, we can see that the MEC outperforms the other methods in 
terms of the snapshot quality and history quality. The ACDE and MEC correctly 
partition the breast cancer data set into 2 clusters. While on the Iris data set, MEC 
partitions the data into 2 clusters at time step 2 to 5. The ACDE, however, is not 
satisfying on finding the optimal number of clusters. Note that in most of the 
literatures, the Iris data set are often partitioned into 2 clusters, which is considered 
acceptable. 

Table 4. The experimental results on Iris data set 

methods criteria 1 2 3 4 5 6 

MEC 

Sq 1.4556 1.1932 1.1082 1.122 1.1208 1.1555 
Hq 0 1.5011 1.1385 1.1336 1.1959 1.1907 

no. of clusters 
found 

3 2 2 2 2 3 

ACDE 

Sq 1.4117 0.9515 1.1421 0.8914 0.8146 1.1253 
Hq 0 1.4527 1.1099 0.8663 0.8219 1.1168 

no. of clusters 
found 

2 4 2 3 4 2 

PCQ 

Sq 0.9521 0.8403 0.8681 0.7911 0.7841 0.8055 
Hq 0 1.2772 0.8381 0.8112 0.8083 0.7727 

no. of clusters 
found 

3 3 3 3 3 3 

PCM 

Sq 0.9671 0.8541 0.9018 0.8253 0.815 0.8754 
Hq 0 1.2976 0.8669 0.8482 0.8355 0.8462 

no. of clusters 
found 

3 3 3 3 3 3 

Table 5. The experimental results on breast cancer data set 

methods criteria 1 2 3 4 5 6 

MEC 

Sq 0.9891 0.9573 0.9046 0.9182 0.9753 1.0046 
Hq 0 1.0242 0.9089 0.9282 1.0026 1.0098 

no. of clusters 
found 

2 2 2 2 2 2 

ACDE 

Sq 0.9301 0.9144 0.9202 0.8981 0.9036 0.9701 
Hq 0 0.9417 0.9099 0.9102 0.9045 0.9636 

no. of clusters 
found 

2 2 2 2 2 2 

PCQ 

Sq 0.9218 0.9180 0.8871 0.8719 0.8702 0.9029 
Hq 0 0.88929 0.8692 0.8868 0.8776 0.8714 

no. of clusters 
found 

2 2 2 2 2 2 

PCM 

Sq 0.9035 0.9149 0.9079 0.9036 0.9073 0.9045 
Hq 0 0.9389 0.9022 0.9177 0.9076 0.9044 

no. of clusters 
found 

2 2 2 2 2 2 
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5 Conclusion 

In this paper, we deal with evolutionary clustering problem from view of multimodal 
optimization. By adopting the chromosome representation in the ACDE, the proposed 
method could deal with the situation where the number of clusters is unknown  
and varies over time. Meanwhile, the best result at the current time step could be 
selected from the global and local optimal clusters found by the SDE, which is 
considered the most consistent with the historical clustering results. Compared with 
the existing work, the experimental results of the proposed method are not bad. 
Although there is still much room for improvement, especially the details on 
controlling the search process of multimodal optimization for clustering time-
evolving data, we think that the basic framework of the proposed method is 
promising. 

Acknowledgements. This work is partly supported by Anhui Provincial Natural Science 
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Abstract. Multi-label feature selection is a multi-objective optimiza-
tion problem in nature, which has two conflicting objectives, i.e., the
classification performance and the number of features. However, most of
existing approaches treat the task as a single objective problem. In order
to meet different requirements of decision-makers in real-world applica-
tions, this paper presents an effective multi-objective differential evo-
lution for multi-label feature selection. The proposed algorithm applies
the ideas of efficient non-dominated sort, the crowding distance and the
Pareto dominance relationship to differential evolution to find a Pareto
solution set. The proposed algorithm was applied to several multi-label
classification problems, and experimental results show it can obtain bet-
ter performance than two conventional methods. abstract environment.

Keywords: Classification · Multi-label feature selection ·
Multi-objective · Differential evolution

1 Introduction

Multi-label classification is a challenging problem that emerges in many mod-
ern real applications [1,2]. By removing irrelevant or redundant features, feature
selection can effectively reduce data dimensionality, speeding up the training
time, simplify the learned classifiers, and/or improve the classification perfor-
mance [3]. However, this problem has not received much attention yet. In the
few existing literature, a main way is to convert multi-label problems into tra-
ditional single-label multi-class ones, and then each feature is evaluated by new
transformed single-label approach [4-6]. This way provides a connection between
single-label learning and multi-label learning. However, since a new created label
maybe contain too many classes, this way may increase the difficulty of learning,
and reduce the classification accuracy.

Differential evolution (DE) has been applied to single-label feature selection
[7,8], because of population-based characteristic and good global search capabil-
ity. However, the use of DE for multi-label feature selection has not been inves-
tigated. Compared with single-label classification learning [9], since there can
c© Springer International Publishing Switzerland 2015
Y. Tan et al. (Eds.): ICSI-CCI 2015, Part I, LNCS 9140, pp. 339–345, 2015.
DOI: 10.1007/978-3-319-20466-6 36
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be complex interaction among features, and these labels are usually correlated,
multi-label feature selection becomes more difficult. Furthermore, multi-label
feature selection has two conflicting objectives: maximizing the classification
performance and minimizing the number of features. Therefore, in this paper,
we study an effective multi-objective approach for multi-label feature selection
based on DE.

2 Problem Formulation

We use a binary string to represent solutions of the problem. Taking a set of data
with D features as an example, a solution of the problem can be represented as
follows:

X = (x1, x2, · · · , xD), xi ∈ {0, 1} , i = 1, 2, · · · ,D. (1)

Selecting hamming loss [5] to evaluate the classification performance of clas-
sifier which is decided by feature subsets, a multi-label feature selection problem
is formulated as a combinatorial multi-objective optimization one with discrete
variables:

min F (X) = (Hloss(X), |X|) (2)

Where |X| represents the number of features, Hloss(X) is the hamming loss in
terms of the feature subset X.

3 Proposed Algorithm

3.1 Encoding

In DE, an individual refers to a possible solution of the optimized problem,
thus it is very important to define a suitable encoding strategy first. This paper
adopts the probability-based encoding strategy proposed in our previous work
[10]. In this strategy, an individual is represented as a vector of probability,

Pi = (pi,1, pi.2, · · · , pi.D), pi,j ∈ [0, 1] (3)

Where the probability pi,j > 0.5 means that the j-th feature will be selected into
the i-th feature subset.

3.2 Improved Randomized Localization Mutation

For mutation operator in DE, the traditional approach chooses the base vector
at random within three vectors [11]. This approach has an exploratory effect but
it slows down the convergence of DE. Randomized localization mutation (RLM)
is first introduced to deal with single objective optimization in [12]. Since it can
get a good balance between the global exploratory and convergence capabilities,
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this paper extends it to the multi-objective case by incorporating the Pareto
domination relationship. The improved mutation is described as follows:

Vi(t) = Pi,best(t) + F · (Pr2(t)− Pr3(t)) (4)

Where Pi,best(t) is the non-dominated one among the three random vectors,
Pr2(t) and Pr3(t) are the rest two vectors.

3.3 Selection Based on Efficient Non-dominated Sort

For selection operator, fast non-dominated sorting (FNS) proposed in [13] were
often used to finding Pareto-optimal individuals in DE. Efficient non-dominated
sort (ENS) [14] is a new, computationally efficient comparison technique. The-
oretical analysis shows that it has a space complexity of O(1), which is smaller
than FNS. Based on the advantage above, this paper uses a variation of the
ENS, together with the crowding distance, to update the external archive.

Supposing that the parent population at generation t is St, the set of trial
vectors produced by crossover and mutation is Qt , first all the individuals among
Rt = St ∪ Qt are classed into different rank sets according to ENS. Herein, a
solution to be assigned to the Pareto front needs to be compared only with those
that have already been assigned to a front, thereby avoiding many unnecessary
dominance comparisons. Individuals belonging to the first rank set are of best
ones in Rt. And then, the new population is selected from subsequent rank sets
in the order of their ranking. If the number of individuals selected goes beyond
the population size, then individuals that have high rank and crowding distance
values are deleted.

3.4 Implement of the Proposed Algorithm

Based on these operators above and some established operators, detailed steps
of the proposed algorithm are described as follows:

Step 1: Initialize. First, set relative parameters, including the population size
N , the scale factor F , the crossover probability CR, and the maximal generation
times Tmax. Then, initialize the positions of individuals in the search space.

Step 2: Implement the mutation proposed in subsection 3.2.
Step 3: Implement the uniform crossover technique introduced in [15] to

generate a trail vector, i.e., a new offspring;
Step 4: Select the new population. First, evaluate the fitness of each offspring

by the method introduced in subsection 3.1; then, combine these offsprings and
the parent population, and generate new population by using the method pro-
posed in subsection 3.3;

Step 5: Judge whether the algorithm meets termination criterion. If yes, stop
the algorithm, and output the individuals with the first rank as finial result;
otherwise, go to step 2.

Furthermore, Figure 1 shows the flowchart of the proposed multi-objective
feature selection algorithm.
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Fig. 1. Flowchart of the proposed DE-based multi-objective feature selection algorithm

3.5 Complexity Analysis

Since ENS and the crowding distance both need O (MNlogN) basic operation,
the mutation operator needs O (3N) basic operation, and the crossover operator
needs O (N) basic operation, the time complexity of the proposed algorithm can
be simplified as O (MNlogN).

4 Experiments and Results

We compared the proposed algorithm with two conventional multi-label feature
selection methods, ReliefF based on the binary relevance (RF-BR) [4] and mutual
information approach based on pruned problem transformation (MI-PPT) [6].

Table 1. Data sets used in experiments

Data sets Patterns Features Labels

Emotions 593 72 6
Yeast 2417 103 14
Scene 2407 294 6

Table 2. Best hamming loss obtained by the two algorithms

Proposed algorithm RF-BR

Datasets HLoss No. of features HLoss No. of features

Emotions 0.18 17.89 0.22 17.2
Yeast 0.193 39.29 0.24 40.58
Scene 0.087 140.24 0.12 56.3
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Fig. 2. Solution sets obtained by the proposed algorithm and MI-PPT
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For the proposed algorithm, we set the population size as 30, and the maximum
iteration sets as 100. Due to easy implementation and less parameter, the most
frequently used ML-KNN [16] is selected as classifier. Table 1 lists the datasets
[17] employed in the experiments, which have been widely used in multi-label
classification.

The first experiment is designed to evaluate the proposed algorithms perfor-
mance by looking for the extreme optimal solution, i.e., the smallest hamming
loss value. Table 2 compares our best hamming loss values with the existing
results obtained by RF-BR. It can be seen that although RF-BR reduced the
number of features obviously, the proposed algorithm obtained a significant
improvement in terms of the hamming loss. Taking Emotions as an exam-
ple, compared with RF-BR, the hamming loss of the proposed algorithm has
decreased by 4.0 percent.

The second experiment is designed to evaluate the parallel search capability of
the proposed DE-based algorithm. Here we run the proposed algorithm only once
for each test problems. Due to the population-based characteristic, the proposed
algorithm obtained simultaneously a set of optimal solutions (i.e, feature subset)
for each test problems. In order to evaluate the whole quality of the solution set
produced by the proposed algorithm, MI-PPT was run sequentially to find a set
of solutions which has the same number of features as the proposed algorithm.
Figure 2 shows the solution sets obtained by the proposed algorithm and MI-
PPT. Clearly, the solutions of MI-PPT are dominated by those of the proposed
algorithm in most cases. Taking Yeast as an example, the proposed algorithm
has inferior hamming loss only when the number of features is equal to 15.

5 Conclusion

This paper proposed a new multi-objective multi-label feature selection tech-
nique based on DE. According to the experiments, the following can be con-
cluded: 1) The proposed algorithm shows high performance on looking for
the extreme optimal solution, i.e., the smallest hamming loss; 2) Due to the
population-based characteristic, the proposed algorithm can find simultaneously
a set of optimal solutions for a test problem, which have smaller hamming loss
than MI-PPT.
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Abstract. Network coding can reduce the data transmission time and improves 
the throughput and transmission efficiency. However, network coding tech-
nique increases the complexity and overhead of network because of extra cod-
ing operation for information from different links. Therefore, network coding 
optimization problem becomes more and more important. In this paper, a diffe-
rential evolution algorithm based on simulated annealing (SDE) is proposed to 
solve the network coding optimization problem. SDE introduces individual ac-
ceptance mechanism based on simulated annealing into canonical differential 
evolution algorithm. SDE finds out the optimal solution and keeps the popula-
tion diversity during the process of evolution and avoids falling into local opti-
mum as far as possible. Simulation experiments show that SDE can improve the 
local optimum of DE and finds network coding scheme with less coding edges. 

Keywords: Network coding · Differential evolution · Simulated annealing · 
SDE 

1 Introduction 

Network coding [1] is a type of data transfer mode, which is an extension on the con-
cept of routing. In a conventional network transmission policy, the intermediate nodes 
in the network only simply forward or copy forward the information of upstream link. 
Network coding allows intermediate nodes mixed coding the information from differ-
ent incoming links to generate new information and forwards [2]. Network coding 
combines the information exchange technologies of routing and coding. Its core idea 
is linear or nonlinear process the information received from each channel on each 
node and forward to downstream nodes. The intermediate nodes play the role of  
encoder or signal processor. Network coding shows its superiority by improving net-
work throughout, improving load balancing, reducing transmission delay, saving  
energy consumption of nods and increasing network robustness. Network coding also 
could be widely used in Ad Hoc networks, sensor networks, P2P content distribution, 
distribution file storage, network security and many other fields. The theory and  
application of network coding has become a hot research field [3].  

However, introduction of coding operation and transferring of encoding vector 
brings additional calculations and control overhead for nodes in network. The core 
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optimization problem of network coding is how to seek an optimal network coding 
scheme when network resources are consumed as less as possible and only the essen-
tial link of network coding is retained [2]. At the same time, it should ensure that 
network speeds reach the theoretical maximum of the premise. Kim et al. [4] proved 
that network coding optimization problem is NP-hard problem, and then they are the 
first to use genetic algorithm (GA) to solve the network coding optimization problem. 
With the increase of the problem size, the single cycle time of genetic algorithm in-
creases dramatically and the running time of the algorithm is also unacceptable. The 
quality of the obtained results also significantly decline. This method does not consid-
er as far as possible to reduce the unnecessary links. 

Differential evolution algorithm (DE) was first proposed in 1995 by Storn et al [7]. 
The principle of differential algorithm is to randomly select multiple individuals to 
construct difference vector to update individual and diversify the search direction of 
the individual. It aims to decline the function value. It has shown a clear advantage on 
solving continuous optimization problems [5,6]. Similar with generic algorithm (GA), 
DE is free of gradient information and includes mutation, crossover and selection 
operations. It updates population with one-elimination mechanism. DE is essentially a 
kind of greedy GA with elitism. On the other hand, DE algorithm takes into account 
correlation between variables, so it has a great advantage on solving variable coupling 
problem when comparing with GA. The greedy selection operation of DE easily  
results in premature convergence. In order to maintain population diversity well and 
search routes of DE, simulated annealing strategy is introduced into DE to select the 
better network coding scheme according to the acceptance probability distribution. 

This paper presents a hybrid DE based on simulated annealing idea for network 
coding optimization problem. Section 2 describes DE algorithm, simulated annealing 
principle and network coding optimization; Section 3 combines simulated annealing 
with differential evolution for network coding optimization problem; Section 4  
presents the simulation results and analysis; and finally concluding remarks. 

2 Background Knowledge 

2.1 Differential Evolution Algorithm 

DE firstly generates an initial population and then produces new population through 
mutation, crossover and selection operation, where i = 1,…,NP, NP population size;  
j = 1,…,D, D is problem dimension, g is current iteration variable.  

Initialization. Initialize population Xi = (xi,1, xi,2,…, xi,D) as follows [8]: 

 
, ( )i j j j jx randj U L L= × − +   (1) 

Where randj is a random number in (0, 1), Uj and Lj denote the upper and lower 
bounds for the j-dimension. 



348 L. Zhang et al. 

Mutation. Difference vector of different individuals is scaled and is added to another 
different individual, then a trial solution is obtained, where 1 2 3r r r i≠ ≠ ≠ , F denotes 
scaling factor, the most common mutation operation, DE / rand / 1, is following: 

 , 1, 2, 3,( )i g r g r g r gv x F x x= + −  (2) 

Crossover. DE usually uses binomial crossover operation: 

 , ,

, ,
, ,

(0,1) ||i j g rand

i j g
i j g

v rand CR j j
u

x other

≤ =
= 


 (3) 

CR is crossover operation probability, which is usually assigned in [0.4, 0.9], jrand 
is a constant which locates in [1, D]. 

Selection. DE adopts greedy selection strategy according to the fitness value f of 
target vector and test vector. For minimization problem, selection operation is as  
follows: 

 , , ,

, 1
,

( ) ( )i g i g i g

i g
i g

v f u f x
x

x other+

<
= 


 (4) 

xi,g+1 is a solution vector for next generation, DE produces new population through 
differential mutation, crossover and selection operations. 

2.2 Simulated Annealing 

Simulated annealing [9] is a stochastic optimization algorithm with Monte Carlo itera-
tive solution strategy. It is originated from solid's annealing process, which needs 
setting an initial temperature and an annealing control parameter in order to adapt to a 
certain probability to accept a lower value of the solution. It makes the algorithm 
always have the ability to jump out of local optimum. SA has proven to be an optimal 
global algorithm theoretically, but the prerequisite is to choose the appropriate anneal-
ing control parameters. The slower the cooling schedule, or rate of decrease, the more 
likely the algorithm is to find an optimal or near-optimal solution. 

1. Give an initial solution x and an initial temperature T, then compute the function 
value; 

2. Generate random perturbations xΔ and get a new solution 'x x x= + Δ , then com-
pute function perturbations ( ') ( )f f x f xΔ = − ; 

3. Accept new solution or remain unchanged according to Metropolis criteria: 

 
' ( 0)

' [ ( ) ]

x if f

x x if p f rand

x else

Δ <
= Δ ≥



 (5) 

( )
f

Tp f e
Δ−

Δ = is the acceptance probability and rand is a uniform random in [0,1]; 
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4. Decrease temperature. ,T T λ λ= × is parameter of temperature decreasing; 

5. If terminate then output final solution; else Return to (2). 

2.3 Network Coding Optimization 

Network coding optimization aims at reducing computing complexity and other  
expenses of network as far as possible resulting from network coding under the condi-
tion that the maximum information transmission speed reaches the max multicast 
speed. Network coding optimization problems can be divided into following four 
categories [10]: minimum cost multicast, maximum undirected network throughput, 
minimize coding nodes and edges and the network topology design based on network 
coding. The first two topics also exist in the routing network, but they are  
NP-complete in the routing network. The latter two topics were proposed after net-
work coding problem appeared. Research on these two issues has great influence in 
practical applications for the promotion of network coding. 

Figure 1 is the simplest butterfly diagram network. S is source node. t1 and t2 are 
receiving nodes. The information sent from S should arrive at two receiving nodes 
simultaneously with certain propagation rate R. However, due to the limitation of 
channel capacity, such as C-D channel, coding is necessary if information x and y is 
required to transfer to receiving nodes simultaneously [10]. When data is sent to mul-
tiple recipients (t1, t2) at the same time, network coding can significantly enhance the 
multicast rate of networks. 

 

 

Fig. 1. Simple butterfly diagram network 

Kim et al. [11] applied GA to solving network coding link optimization problem 
firstly. Simulation experiments indicate that GA has better performance than  
traditional greedy algorithm. After that, chromosome gene block operation method is 
proposed for crossover and mutation step and distributed algorithm is given. Howev-
er, the evolution process of GA is easy to fall into local optimum. Reference  
[10] shows that standard DE has more advantages than GA on solving network  
coding optimization problem. Based on these observations, this paper introduces  
selection strategy of simulated annealing to solve the network coding optimization 
problem. 
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3 Hybrid Differential Evolution Based on Annealing Strategy 

3.1 Algorithm Framework 

In theory, differential evolution algorithm achieves optimization by swarm evolution 
operation based on “survival of the fittest” ideology. The key operation of DE is its 
unique mutation, but the essential feature of the operation also determines that algo-
rithm converges slowly in the late period and is possible to fall into local optimum. 
Simulated annealing (SA) strategy can effectively avoid local optimum when appro-
priate control parameter is chosen[12]. SA always has a probability of escaping from 
current local optimum. This probability changes over time and tends to zero with the 
progress of algorithm. Therefore, the idea of simulated annealing is introduced to DE 
algorithm to avoid falling into local optimum and enhance the robustness, while the 
advantages of DE are maintained. SDE framework is as follows. 
 

 

Fig. 2. SDE algorithm framework 

3.2 New Individual Accept Strategy Based on Simulated Annealing 

Fitness function f() is used to evaluate new individual generated by differential opera-
tions. Simulated annealing-based acceptance strategy is used to accept the new or the 
original individual with probability p, which is defined as follows [13]: 

 
1, ( ) ( )

( ) ( )
exp , ( ) ( )

g g
new old

g g
g gnew old
new oldg

f x f x

p f x f x
f x f x

T

 <
=  − − ≥ 

 

 (6) 

f(xg
old) is fitness value for the current solution, Tg is the current annealing temperature 

and Tg+1=λTg, 0<λ<1. The new individual acceptance strategy based on simulated 
annealing utilizes a certain probability to balance the new or the original individual.  
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It is also possible to accept the new solution even it is unsatisfactory. So is always 
possible to escape from the current local optimum. Of course, new individual is di-
rectly sent to next generation if it is an even better. 

4 Simulation Experiment 

4.1 Network Coding Examples and Parameter Settings 

Network coding optimization problem is researched to verify the superiority of SDE 
algorithm with the following classic network coding instances. Four network models 
are used: three butterfly diagram network (F3), seven butterfly diagram network (F7), 
random network (Fr) and fifteen butterfly diagram network (F15). The goal of algo-
rithm is to find the network coding optimization model with the minimal number of 
coding edges. F3 is showed in Figure 3. Random network model consists of 24 nodes 
including a sending node and 3 receiving node, as shown in Figure 4.  
 

                        

Fig. 3. Three butterfly diagram network model        Fig. 4. Random network model 

In this experiment, population size is 50, maximal iteration is 200, scale factor F is 
0.25, crossover probability is 0.7. Initial temperature of simulated annealing is 10000 
and the cool factor is 0.9 [16]. Both algorithms were independently run50 times on 
F3, F7 and Fr and on 30 times F15 due to the large-scale model. 

4.2 Numerical Comparison and Analysis 

The final computing results of two algorithms were shown in Table 1. “Best”, “Aver-
age” and “STD” denote the minimum, average and standard deviation respectively of 
the coding edges in multiple independent runs on the network models.  

Table 1. Comparison between algorithms on butterfly network models 

models 
SDE DE 

Best Average STD Best Average STD 
F3 3.0 3.3 0.63 3.0 4.4 1.27 
Fr 5.0 7.9 1.23 7.0 8.3 1.47 
F7 14.0 14.7 0.71 15.0 15.3 1.41 
F15 37.0 38.0 0.85 38.0 38.4 0.56 
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Observed from Table 1, the “Best” and “Average” items of SDE are all better than 
DE except for the small scale network F3. It indicates the even better exploration 
ability and the stability of SDE. Both algorithms found the optimal coding edges on 
relatively simple example F3 (3 coding edges) in multiple runs. The simulation results 
show that SDE is better than DE to reduce coding edges and has better optimization 
results especially on medium and large-scale network models. 

Standard deviation of SDE are all better than those of DE except for F15. This 
phenomenon is not difficult to understand because the acceptance poclicy of SDE is 
based on simulated annealing strategy and has a certain probability accept worse 
individual. This strategy can maintain population diversity well and avoid local 
convergence. Thus even better result is able to obtain. However, it is also possible to 
obtain final solutions with great difference for large-scale complex problems.  

4.3 The Curve of Dynamic Convergence Behavior  

In order to investigate the online changes of coding edges in solving network coding 
optimization problems, Figure 5 - Figure 8 show the varying curves of mean coding 
edges at every same iteration in multiple runs versus the iteration variable on four 
network optimization model.  
 

         

 Fig. 5. F3 three butterfly diagram network           Fig. 6. Fr random network 

            

Fig. 7. F7 seven butterfly diagram network    Fig. 8. F15 fifteen butterfly diagram network 

The red curve in figures 5 to 8 are the convergence process of SDE, and the black 
curve represents convergence process of DE. It can be seen that SDE converges faster 
than DE in the early period which means that SDE can detect the excellent solution 
faster. The average values of SDE are always less than those of DE for all network 
models which mean that SDE can always find even less coding edges than DE. 
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5 Conclusion 

A hybrid differential evolution algorithm with simulated annealing strategy (SDE) is 
proposed for network coding optimization in this paper. Individual acceptance strate-
gy based on simulated annealing ensures the population diversity and avoids falling 
into local optimal. Simulation results show that SDE can significantly improve the 
loscally optimal network coding optimization problems. The comparison between 
SDE and other techniques such as simulated annealing genetic algorithm will also be 
made in next work. Our future work is how to further improve the network coding 
optimization on large-scale problems and improve the robustness of SDE algorithm.  
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Abstract. Finding the global optima of a complex real-world problem has be-
come much more challenging task for evolutionary computation and swarm in-
telligence. Brain storm optimization (BSO) is a swarm intelligence algorithm 
inspired by human being’s behavior of brainstorming for solving global optimi-
zation problems. In this paper, we propose a Random Grouping BSO algorithm 
termed RGBSO by improving the creating operation of the original BSO. To 
reduce the load of parameter settings and balance exploration and exploitation 
at different searching generations, the proposed RGBSO adopts a new dynamic 
step-size parameter control strategy in the idea generation step. Moreover, to 
decrease the time complexity of the original BSO algorithm, the improved 
RGBSO replaces the clustering method with a random grouping strategy.  
To examine the effectiveness of the proposed algorithm, it is tested on 14 
benchmark functions of CEC2005. Experimental results show that RGBSO is 
an effective method to optimize complex shifted and rotated functions, and  
performs significantly better than the original BSO algorithm. 

Keywords: Brain storm optimization · Dynamic step size · Random grouping 

1 Introduction 

Global optimization problems have become more and more complex, from simple 
unimodal functions to hybrid rotated shifted multimodal functions [1]. Effective and 
efficient optimization algorithms are always needed to tackle increasingly complex 
real-world optimization problems in different fields of engineering, social sciences 
and physical sciences. It has led the researchers to develop various optimization tech-
niques founded on evolutionary computation and swarm intelligence. In the past  
few decades, a lot of swarm intelligence optimization algorithms, such as particle 
swarm optimization (PSO) [2,3], ant colony optimization (ACO) [4], bee colony op-
timization (BCO) [5], firefly  optimization algorithms (FFO)[6], bacterial forging 
optimization (BFO)[7], artificial raindrop algorithm (ARA)[8], have been proposed to 
tackle those challenging complex real-world problems.   
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Among those existing meta-heuristics, brain storm optimization (BSO) was pro-
posed to act as a global optimization technique by emulating the collective behavior 
of human beings in the problem solving process [9, 10]. Like other swarm intelligence 
algorithms, BSO has achieved successful applications in areas such as optimal satel-
lite formation reconfiguration [11], the design of DC Brushless Motor [12], economic 
dispatch considering wind power [13], and multi-objective optimization[14,15]. How-
ever, in evolutionary computation research, there have always been attempts to further 
improve any given findings. In this paper, we present an improved variant of the BSO 
algorithm named Random Grouping BSO (RGBSO). On the one hand, the RGBSO 
decreases the time complexity of the algorithm with random group strategy instead of 
clustering method, and on the other hand, reduces the load of parameter settings and 
balances exploration and exploitation at different searching generations with a new 
dynamically changing step size. The proposed algorithm is tested on 14 benchmark 
functions of CEC2005, and the results show that the RGBSO algorithm significantly 
improves the performance of BSO on complex global optimization problems. 

The rest of this paper is organized as follows. Section 2 describes the improved 
RGBSO. Section 3 presents the test benchmark functions, the experimental setting for 
each algorithm, and the experimental results. Conclusions are given in Section 4. 

2 The Improved Algorithm-RGBSO 

2.1 Random Grouping Strategy 

In the original BSO, a k-means clustering method was used in the grouping operator. 
As we all known, the k-means clustering method needs heavier time computational 
burden. During the evolutionary process, BSO executes the k-means clustering in 
every generation to group ideas.  

However, it is not necessary to use much accurate k-means clustering method to 
group the ideas into different groups. In our improved algorithm, the random group-
ing strategy is used to replace the k-means clustering method. The strategy of random 
grouping stems from the following two ideas. On the one hand, in many facilitating 
creative thinking, the exchange and discussion in the scheme of random grouping may 
be propitious to increase the chance of creativity. To the contrary, the well-regulated 
or precise grouping may be easy to fall into the fixed mindset. On the other hand, 
similar to other swarm intelligence algorithms, BSO is also a stochastic optimization 
technique, and random grouping will increase the chance to seek good solutions in a 
heuristic search mode. 

Based on the above idea, we propose the random grouping strategy. The random 
grouping strategy is implemented as the following steps. 

1) Step 1: Randomly divide the N ideas into m groups based on a group size s  
(assuming *N s m= )), i.e., { }1 2, ,..., mG G G G= . 

2) Step 2: For each group (1 )iG i m≤ ≤  , compare the function fitness value of each 

idea in each group. 
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3) Step 3: Choose the group center idea of each group from which has minimal 
function fitness value in each group. 

The Pseudo-code for the random grouping is summarized in Algorithm 1. 
 

Algorithm 1. Random Grouping( ) 

1  Begin 
2     G = {};  %grouping set 
3     rand_ints =randperm(N); %generating N different random integer between 1 to N 
4     s=N/m; %N is the total ideas, and m is the group number 
5     for (i=1:s:N) 
6          index = rand_ints (i:i+s-1); 
7          G = {G{1:end} index}; 
8     end 
9    fit_values = Inf*ones(m,1); %storing the best fitness value 
10     best = ones(m,1); %storing number value of the best idea 
11     for (i=1:m)     
12       for (j=1:s) 
13          if fit_values(i,1) > fitness_popu(group{i}(j),1) 
14               fit_values(i,1) = fitness_popu(group{i}(j),1); 
15               best(i,1) = group{i}(j); 
16         end 
17      end 
18        centers(i,:) = popu(best(i,1),:); % popu is all ideas in the population 
19    end 
20  end 

2.2 A New Dynamic Step Size Parameter Control 

To maintain the diversity of population, a new individual in the original BSO is up-
dated according to as 

* (0,1)new selectX X normrndξ= +                       (1) 

where normrnd is the Gaussian random with mean 0 and variance 1, ξ  is an adjust-

ing factor  which is expressed as 

*log ((0.5*max_ _ ) / )rand sig iteration current iteration kξ = −         (2) 

where rand is a random value between 0 and 1. The max_iteration and cur-
rent_iteration denote the maximum number of iteration and current number of itera-
tion respectively. The logsig is a logarithmic sigmoid transfer function, and k is a 
predefined parameter for changing slopes of the logsig function. 

This approach to control the size of step can also balance exploration and exploita-
tion at different searching generations. However, it just takes effect only for very 
short interval which is shown in Fig.1 (1). Hence, we present a simple dynamic step 
size strategy, and the dynamic function is described as the following 
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 *exp(1-( max_ )/( max_ _ +1))rand iteration iteration current iterationξ = −  (3) 

where rand is a random value between 0 and 1. The max_iteration and cur-
rent_iteration are the same to formula 2. Fig.1 (2) shows the adjusting factor which 
controls the scale of step. 
 

        
(1) The curve of adjusting factor in BSO   (2) The adaptive curve of step size in RGBSO 

Fig. 1. The comparison chart of adjusting factor between BSO and RGBSO 

2.3 Pseudo-Code of the RGBSO 

As described above, the pseudo-code of the RGBSO is summarized in Algorithm 2. 

Algorithm2. RGBSO( ) 

1   Begin 
2    Randomly initialize N ideas and evaluate their fitness 
3    Initialize m cluster centers (m<N) 
4    while(stopping condition not met) 
5       Execute Algorithm 1: Random Grouping( )       
6       for (i=1 to N)                    % creating operation 
7        if rand()<p_one                
8           if rand()<p_one_center 
9              Give the group center idea to Xselected 
10           else 
11              Randomly select an idea in a group to Xselected 
12           endif 
13       else 
14           if rand()<p_two_center 
15                Combine the two groups’ center ideas to Xselected 
16           else 
17               Combine two random ideas from the two groups to Xselected 
18           endif 
19        endif 
20        Create Xnew using Xselected according to formula (1) and (3) 
21        Accept Xnew if f(Xnew ) is better than f(Xi ) 
22       endfor 
23     endwhile 
24   end
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2.4 The Compared Analysis of Computational Complexity 

Due to the simplicity of modification in RGBSO compared with the original BSO, the 
analysis of the computational complexity about RGBSO and BSO is fairly 
straightforward. The difference of the computational complexity of RGBSO and BSO 
mainly lies in the grouping of ideas. So, the analysis of the computational complexity 
of the grouping operator depends on the k-means clustering method of BSO and the 
random grouping strategy of RGBSO. 

In our experiments, the run time of the k-means in BSO is 42.592810s in 10000 runs, 
and the random grouping in RGBSO is only 0.455166s. The k-means method takes 
much longer run time than the random grouping strategy does. 

3 Benchmark Tests and Experimental Results 

For a fair comparison, all the experiments are conducted on the same machine with an 
Intel 3.4 GHz CPU, 4GB memory. The operating system is Windows 7 with 
MATLAB 8.0 (R2012b).  

3.1 Benchmark Functions 

In this paper, we choose 14 widely known rotated and shifted benchmark functions in 
CEC2005 which are given in [1]. All functions are tested on 30 dimensions. Because 
the BSO algorithm is analogous with the PSO algorithm, we specially compare the 
performance of RGBSO with the PSO, the variants of PSO, DE, and the original 
BSO. We choose two PSO variants, i.e. CLPSO [16].The parameter settings of all the 
algorithms are given in Table 1. 

Table 1. Algorithms Parameter Setting 

No. Algorithm Parameter Setting 

1 RGBSO M=5,p_one=0.8, p_one_center=0.4, p_two_center=0.5 

2 BSO M=5,p_replace=0.2, p_one=0.8, p_one_center=0.4, 

3 DE F=0.5, CR=0.9 

4 PSO ω: 0.9~0.4, c1= c2=1.49445, global version 

5 CLPSO ω: 0.9~0.4, c1= c2=1.49445, vmaxd=0.2*Range 

3.2 Comparison Results for 30-D 

1. Comparisons on Solution Accuracy. The results of solution accuracy are given in 
Table 2 in terms of the mean optimum solution and the standard deviation of the solu-
tions obtained in the 25 independent runs by each algorithm over 300,000 FEs on 14 
benchmark functions. In each row of the table, the mean values are listed in the first 
part, and the standard deviations are listed in the last part, and the two parts are divided 
with a symbol “±”. The best results among the algorithms are shown in boldface.  
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Table 2. The results of solution accuracy 

Fun RGBSO BSO DE PSO CLPSO 

F1 3.41E-17±3.41E-17 2.65E-03±3.03E-03 5.46E-01±2.59E+00 4.67E+03±2.86E+03 0.00E+00±0.00E+00 

F2 1.08E-05±9.27E-06 2.76E+00±8.16E-01 1.19E-01±5.88E-01 6.51E+03±8.15E+03 3.59E+02±9.69E+01 

F3 4.46E+05±2.21E+05 1.33E+06±3.58E+05 3.40E+05±1.69E+05 2.29E+07±4.93E+07 1.42E+07±3.99E+06 

F4 2.08E+03±4.33E+03 1.29E+04±9.06E+03 1.25E+02±5.87E+02 4.56E+03±6.54E+03 5.31E+03±1.13E+03 

F5 2.91E+04±1.19E+02 3.12E+04±6.02E+02 2.90E+04±2.17E-01 3.43E+04±2.28E+03 2.92E+04±7.19E+01 

F6 4.69E+02±7.96E+02 1.52E+03±2.71E+03 5.43E+06±1.51E+07 8.15E+08±9.30E+08 7.28E+00±1.02E+01 

F7 2.10E-02±1.69E-02 5.35E+03±2.32E+02 4.70E+03±9.47E-13 5.36E+03±5.34E+02 4.70E+03±1.52E-12 

F8 2.02E+01±7.42E-02 2.05E+01±1.17E-01 2.09E+01±7.37E-02 2.09E+01±6.56E-02 2.09E+01±4.57E-02 

F9 3.38E+01±7.35E+00 4.97E+01±1.02E+01 2.18E+01±5.63E+00 6.90E+01±2.28E+01 0.00E+00±0.00E+00 

F10 2.82E+01±7.26E+00 4.59E+01±1.19E+01 4.28E+01±1.59E+01 1.26E+02±3.82E+01 9.33E+01±1.75E+01 

F11 9.99E+00±3.48E+00 2.43E+01±2.58E+00 2.30E+01±6.15E+00 2.02E+01±2.59E+00 2.57E+01±1.69E+00 

F12 3.02E+03±2.85E+03 3.16E+04±1.70E+04 2.08E+05±8.19E+04 4.83E+03±5.14E+03 5.76E+04±9.67E+03 

F13 3.17E+00±6.60E-01 5.56E+00±1.35E+00 3.24E+00±5.77E-01 3.65E+00±1.14E+00 1.89E+00±2.34E-01 

F14 1.31E+01±3.50E-01 1.32E+01±3.92E-01 1.30E+01±2.66E-01 1.21E+01±5.27E-01 1.27E+01±2.54E-01 

w/t/l - 14/0/0 9/0/5 13/0/1 9/0/5 

 

  
(2) F07-Shifted rotated Griewank (3) F14- Expanded extended Scaffes 

Fig. 2. Convergence performance of the 6 algorithms on parts of functions 

The results among RGBSO and other algorithms are summarized as “w/t/l” in the 
last row of the Table, which means that RGBSO wins in w functions, ties in t function 
and loses in l functions. From the Table 2 it can be observed that the mean value and 
the standard deviation value of the RGBSO performs better for all 14 function than 
the original BSO, worse only for 5 functions F3, F4, F5, F9 and F14 than DE, and 
worse for only one function F14 than PSO. The mean value and the standard devia-
tion value of the RGBSO is performs better for 9 functions F2, F3, F4, F5, F7, F8, 
F10, F11 and F12 than the CLPSO.  

2. The Comparison Results of Convergence Speed. The Fig.2 presents the conver-
gence graphs in terms of the mean fitness values achieved by each of 6 algorithms for 
25 runs. From the Fig.2 we can observe that ABSO has fast or similar convergence 
speed than the other five algorithms. 
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3. The Comparison Results of Mean CPU Time. The mean CPU time of 5 algo-
rithms are shown in Table 3. Table 3 shows that the total mean CPU time of RGBSO 
is shorter than BSO, DE and PSO for functions F1 to F14. In all, the total mean CPU 
time of RGBSO is ranked in the second, and only worse than CLPSO. 

Table 3. The mean CPU times for 30-D problems (Time(s)) 

Fun  RGBSO BSO DE PSO CLPSO 

F1 

F2 

F3 

F4 

F5 

F6 

F7 

F8 

F9 

F10 

F11 

F12 

F13 

F14 

2.64E+02 (2) 3.93E+02 (6) 3.69E+02 (4) 3.48E+02 (3) 3.13E+01 (1) 

2.81E+02 (2) 4.16E+02 (6) 3.78E+02 (4) 3.52E+02 (3) 3.21E+01 (1) 

3.84E+02 (2) 5.72E+02 (5) 5.22E+02 (4) 4.97E+02 (3) 4.78E+01 (1) 

2.88E+02 (2) 4.10E+02 (5) 3.80E+02 (4) 3.67E+02 (3) 3.23E+01 (1) 

2.75E+02 (2) 3.90E+02 (5) 3.63E+02 (4) 3.55E+02 (3) 2.85E+01 (1) 

2.67E+02 (2) 3.82E+02 (5) 3.56E+02 (4) 3.41E+02 (3) 3.16E+01 (1) 

3.84E+02 (2) 5.39E+02 (4) 5.43E+02 (5) 5.14E+02 (3) 4.51E+01 (1) 

3.91E+02 (2) 5.90E+02 (6) 5.45E+02 (4) 5.05E+02 (3) 4.78E+01 (1) 

2.72E+02 (2) 4.70E+02 (6) 3.91E+02 (4) 3.38E+02 (3) 3.10E+01 (1) 

3.88E+02 (2) 6.56E+02 (6) 5.93E+02 (5) 4.93E+02 (3) 4.87E+01 (1) 

5.27E+02 (2) 8.15E+02 (6) 7.74E+02 (5) 6.42E+02 (3) 1.01E+02 (1) 

3.23E+02 (2) 5.05E+02 (6) 4.28E+02 (5) 3.91E+02 (4) 4.62E+01 (1) 

3.06E+02 (2) 4.93E+02 (6) 4.11E+02 (5) 3.78E+02 (3) 3.37E+01 (1) 

4.32E+02 (2) 7.08E+02 (6) 6.00E+02 (4) 5.64E+02 (3) 5.05E+01 (1) 

Total 4.78E+03 7.34E+03 6.65E+03 6.08E+03 6.08E+02 

Rank 2 6 4 3 1 

4 Conclusion 

In this paper, a random grouping BSO named RGBSO is proposed for solving com-
plex shifted and rotated global optimization problems. Experiments on the 14 chosen 
test problems were carried out in this paper. From the experimental results, it is ob-
served that the random grouping strategy greatly reduces the run time of RGBSO by 
compared with the original BSO algorithm. From the analysis of experimental results, 
we can conclude that RGBSO significantly improves the performance of the original 
BSO. We are considering applying RGBSO to solve some real-world global optimiza-
tion problems. Further work also includes research into dynamic clustering to make 
the algorithm more efficient. 
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Abstract. Brain Storm Optimization (BSO) algorithm is a new swarm
intelligence method that arising from the process of human beings
problem-solving. It has been well validated and applied in solving the sin-
gle objective problem. In order to extend the wide applications of BSO
algorithm, a modified Self-adaptive Multiobjective Brain Storm Opti-
mization (SMOBSO) algorithm is proposed in this paper. Instead of the
k-means clustering of the traditional algorithm, the algorithm adopts the
simple clustering operation to increase the searching speed. At the same
time, the open probability is introduced to avoid the algorithm trapping
into local optimum, and an adaptive mutation method is used to give
an uneven distribution on solutions. The proposed algorithm is tested
on five benchmark functions; and the simulation results showed that the
modified algorithm increase the diversity as well as the convergence suc-
cessfully. The conclusions could be made that the SMOBSO algorithm
is an effective BSO variant for multiobjective optimization problems.

Keywords: Brain storm optimization · Multiobjective optimization ·
Clustering operation · Mutation method

1 Introduction

Optimization technique has been a significant and successful tool in solving
various problems. Multiobjective optimization problems (MOPs) have gained
much attention in recent years. Unlike single objective problems, each objective
of MOPs usually conflicts with each other [7]. Due to the characteristic of a MOP,
its optimum solution is usually not unique, but consists of a set of candidate
solutions among which no one solution is better than other solutions with regards
to all objectives.
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In the multiobjective optimization algorithm, the Non-dominated Sorting
Genetic Algorithm (NSGA) is the most widely used algorithm, in which the
idea of a non-dominated sorting was introduced to the genetic algorithm that
transform the computation of the objective function into multiple virtual fit-
ness. NSGA-II is the improved NSGA-based non-dominated sorting genetic algo-
rithm [3]. It uses a fast non-dominated sorting process, elitist and non-operating
parameters to niche operator that overcomes the shortcomings of traditional
NSGA which has high computational complexity, non-elite maintaining strate-
gies and without specifying shared radius. Speed constrained multiobjective
particle swarm optimization (SMPSO) has used crowding distance to maintain
external archive collection which is used in NSGA-II [4]. The SMPSO algorithm
introduced the binomial variation in the population space, which can be a good
solution to the multimodal problem. Two solutions are randomly selected from
the archive and choose the one that has a larger crowd distance as the global
best [4].

Brain Storm Optimization (BSO) algorithm, inspired by human idea genera-
tion process, is originally proposed solving single objective optimization problems
[5]. As a new swarm intelligence algorithm, BSO has received much attention
since proposed in 2011. Currently, the main works of BSO research could be
categorized into three class: 1) the analysis of BSO algorithm, such as solu-
tion clustering analysis [1], and population diversity maintenance [2]; 2) the new
variants of BSO algorithms, e.g. BSO Algorithm for multiobjective optimization
problems [6,7]; 3) the application of BSO algorithm.

The BSO algorithm, which used the k-means clustering and Gaussian/
Cauchy mutation, has been utilized to solve multiobjective problems [6,7]. In
this paper, a self-adaptive multiobjective BSO (SMOBSO) algorithm with clus-
tering strategy and mutation is proposed to solve multiobjective optimization
problems. Instead of the k-means method, the algorithm adopts a simple group-
ing method in the cluster operator to reduce the algorithm computational bur-
den. Moreover, a parameter named open probability is introduced in mutation,
which is dynamically changed with the increasing of iterations. The proposed
algorithm is tested on the ZDT benchmark functions with different dimensions
[3]. The simulation results showed that SMOBSO would be a promising algo-
rithm in solving multiobjective optimization problems.

The remaining of the paper is organized as follows. The proposed algorithm is
described in Section 2. The parameter settings and results are given in Section 3.
Finally, the conclusions and further research are detailed in Section 4.

2 Self-adaptive Brain Storm Optimization
for Multiobjective Optimization Problems

Compared with the original multiobjective BSO algorithm [7], this paper makes
improvements about clustering, mutation, and global archive operations. Three
modifications are: a simple clustering operator has replaced the original k-means
clustering, an open probability in the mutation operation, and a new updating
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strategy of the archive set. These three parts improve the performance of the pro-
posed algorithm together. The SMOBSO algorithm is described in Algorithm 1:

Algorithm 1. Procedure of SMOBSO algorithm
1 Initialize number of the population with the size of Np, maximum iteration,

probability parameter p1, p2, p3, p4, size of archive is max A, number of cluster
and cluster center;

2 Initialize the individuals of the population p and calculate their fitness values.
Set a null archive Rep;

3 while the maximum iteration has not reached do
4 Calculate the non-dominated solutions and store them in Rep and then

crowing distance of each individual in Rep;
5 Cluster individuals using a new clustering strategy in 2.1;
6 Get the elite and general clusters according to clustering results and if there

are non-dominated individuals or not;
7 Select the mutation that will be mutated according to 2.2;
8 Update to generate new individuals;
9 Put non-dominated individuals into archive one by one and update archive

using 2.3;

10 Output the archive;

2.1 Grouping Operator

In the original BSO, k-means clustering was used in the grouping operator. How-
ever, there is no strict requirement for grouping operator in BSO algorithm, only
individuals should be divided into different classes. Although originally k-means
clustering method is accurate. But it needs many computational costs. In this
paper, a new simple clustering method is proposed which randomly select M (M
is the number of clustering) different individuals as the centers throughout the
search area to make the algorithm more simple. Each individual is clustered to
its nearest class after calculated the Euclidean distance between each individual
and the center of all classes. The detail steps of clustering strategy are given in
Algorithm 2.

Algorithm 2. The clustering strategy in grouping operator
1 Randomly select M different ideas from the current generation as the centers of

M groups, denoted as Sj , 1 ≤ j ≤M ;
2 while The clustering of all individuals has not completed do
3 Calculate Euclidean distance between each individual xi (1 ≤ i ≤ Np) in the

current generation and every center;
4 For each individual, comparing the M distance values, the individual will be

clustered in the cluster which has the smallest M value. In this process, the
cluster centers do not always change;
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2.2 Mutation Operator

Individuals will be mutated after xselect has been selected (xselect is selected
according to [6]). Gaussian mutation was used in original BSO algorithm. How-
ever, there are two drawbacks: 1) Due to behavior of BSO search is a random
process, there is no feedback about the complex transfer function of S-type and
cannot get a good search information. This defect will be more obvious in deal-
ing with different optimization problems; 2) log sig() function and random value
rand() is all in the range of (0, 1). ξ multiplied by the Gaussian random value.
Such random noise may have little effect on the global search when facing a large
search range.

The open probability is introduced to avoid the algorithm trapping into local
optimum. An adaptive mutation method is used to give an uneven distribution
on solutions. In order to ensure the convergence, open probability of pr should
be small at the beginning of the search. The effect of the pr value became smaller
with the increasing of iterations. In order to generate new ideas and to avoid
falling into local best solutions, pr should be increased with the increasing of
iterations. Based on this principle, the equation of formula variation is as follows:

xnew,d =
{
Ld + (Hd − Ld) × rand() rand() < pr

xselect,d + (x1,d − x2,d) × rand() otherwise (1)

Where Ld and Hd are lower and upper bounds of dth dimension, and x1,d and
x2,d are two selected unequal dth dimension values in the population.

2.3 Global Archive

Circulation crowded distance is used to maintain global archive. Crowding dis-
tance is used to estimate the intensity of a solution and other solutions around
it. Firstly, set all individual crowding distance to 0, and then calculate objective
values of individuals in the archive. Then sort each objective function values in
ascending order. Crowding distance of the first and last individual will be set to
infinity, then calculate the other crowding distance following the formula:

distance(i) = distance(i) +
fm(i+ 1) − fm(i− 1)

fmax
m − fmin

m

(2)

where fm(i) represents the ith individual function value on the mth target, fmax
m

and fmin
m respectively denote the maximum and minimum of all individuals in

the function value of the mth target. The average length of cube edge that
formed by the solution i + 1 and i − 1 will be calculated. The specific method
for the archive set updating shows as follows: 1) Non-dominated individuals
in the population will be put into an archive one by one. If an individual is
dominated by individuals in external archive, then the individual will be deleted
from the archive. Otherwise the individual will join the archive. 2) If number of
individuals in archive is less than the maximum number, then there is no need
to delete, otherwise crowding distance of all individuals in the current archive
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will be calculated and individual that has the smallest crowded distance will be
deleted to keep the number of individuals is less than or equal to the maximum
capacity. This method is different from the NSGA-II which will sort crowding
distance between all non-dominated individuals that were newly generated and
in archive. Then choose individuals that have far crowded distances into the next
generation. It is benefit for the individuals to be distributed more even in the
Pareto front.

3 Results and Discussions

3.1 Parameter Settings

During the test, the population size is set to be 200 and the maximum size of
the Pareto set is fixed at 100. The pre-determined probability values p1, p2 and
p3 are set to 0.8, 0.8 and 0.2, respectively. All algorithms are implemented in
MATLAB using a real-number representation for decision variables. For each
experiment, 30 independent runs were conducted to collect statistical results.
The number of the dimensions is set to 5, 10, 20, and 30 for each test problem,
respectively.

3.2 Results

The ZDT benchmark functions [3] are used in this paper to evaluate the perfor-
mance of the SMOBSO algorithm. In ZDT functions, the ZDT1 and ZDT3 have a
convex of the Pareto frontier, and ZDT3 is discontinuous. The high-dimensional
space ratio HR box, which is obtained by repeating for 30 runs, is shown in
Figure 1 and 2. The Figure 1 shows the comparisons among different variant of
BSO algorithms, which include SMOBSO, MMBSO, MBSO G, and MBSO C.
While the Figure 2 shows the comparison among different swarm intelligence
algorithms, which include SMOBSO, NSGA-II [3], SMPSO [4].

All the result in Figure 1 shows that SMOBSO for all test functions has
the most concentrated distribution, and dirty data is clearly smaller than the
other algorithms. According to definition of HR, the closer of HR value to 1,
the better performance algorithm has and the closer to the real front, the more
uniformly distributed. It is clearly showed that HR value of SMOBSO is almost
around 1. The SMOBSO algorithm is the best in comparison of other similar
algorithms.

To compare the SMOBSO algorithm with the other multiobjective optimiza-
tion algorithm, the SMPSO and NSGA-II algorithm are used as our comparison
algorithm in this paper. The comparisons of high-dimensional space ratio HR
among SMOBSO, NSGA-II, and SMPSO solving ZDT benchmark problems are
shown in Figure 2. From the figure 2, we can see that SMOBSO is slightly
worse than the other two algorithms in high-dimensional space ratio for ZDT1,
ZDT2, and ZDT3 problem. For ZDT4 and ZDT6 problem, with the number of
dimensions increasing, the dirty data of NSGA-II are significantly increased; and
SMOBSO and SMPSO results are similar. In conclusion, the proposed algorithm
shows strong potential for multiobjective optimization algorithm.
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Fig. 1. The comparisons of high-dimensional space ratio HR among SMOBSO,
MMBSO, MBSO G, MBSO C solving ZDT benchmark problems. The statistics box-
plots are derived from 30 independent runs.
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Fig. 2. The comparisons of high-dimensional space ratio HR among SMOBSO, NSGA-
II, and SMPSO solving ZDT benchmark problems. The statistics boxplots are derived
from 30 independent runs.
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4 Conclusions

In this paper, we proposed a self-adaptive brain storming optimization algorithm
for multiobjective problem. The algorithm adopts the simple clustering operation
to increase the searching speed. The open probability is introduced to avoid the
algorithm trapping into local optimum; and an adaptive mutation method is
used to give an uneven distribution on solutions. Five benchmark functions are
simulated to validate the performance of the proposed algorithm. Compared with
other similar BSO algorithms, the results show that the proposed algorithm has
made a great improvement on the basis of the literature [7]. Moreover, compared
with the other algorithms, the SMOBSO shows the better robustness for ZDT
benchmark functions than the other algorithms, through the other performance
is slightly worse than other two algorithms.

In general, The SMOBSO algorithm is an effective modified BSO algorithm
for multiobjective optimization problem. It is close to the true front of test
functions and has uniform distribution. As a new swarm intelligence algorithm,
there is plenty of room for improvement with generality and applicability.
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Abstract. Brain storm optimization is a young and promising swarm
intelligence algorithm, which simulates the human brainstorming pro-
cess. The convergent operation and divergent operation are two basic
operators of the brain storm optimization. The k means clustering is
utilized in the original brain storm optimization, which needs to define
the k value before the search. To adaptively change the number of clus-
ters during the search, a modified Affinity Propagation (AP) clustering
method and an enhanced creating strategy are proposed on account of
the structure information of single or multiple clusters. In addition, the
modified brain storm optimization is applied to optimize the dynamic
deployments of two different wireless sensor networks (WSN). Experi-
mental results show that the proposed algorithm achieves satisfactory
results and guarantees a high coverage rate.

Keywords: Brain Storm Optimization · Affinity propagation · Struc-
ture information · Wireless sensor networks

1 Introduction

Brain Storm Optimization (BSO) is a new swarm intelligence algorithm that sim-
ulates the problem-solving process of human brainstorming. The basic framework
of BSO was introduced by Shi [7–9], who designed the clustering and creating
operators by modelling and abstracting brainstorming process based on Osborn’s
four rules in 2011.

As a young and promising algorithm, BSO can be further improved by devel-
oping various search strategies. Zhan et al. [13] proposed a simple grouping
method to reduce the algorithm computational burden. Chen et al. [1] intro-
duced affinity propagation clustering into BSO by analyzing the clusters’ vari-
ations over iterations. Xue et al. [10] designed a new creating operator of BSO
with combinations of Gaussian mutation and Cauchy mutation. Zhou et al. [14]
c© Springer International Publishing Switzerland 2015
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created new individuals in a batch-mode and used a mutative step-size according
to the dynamic range of individuals on each dimension. Zhan et al. [12] investi-
gated the influence on the performance of BSO with different control parameters.
Duan et al. [5] introduced Predator-prey concept into BSO for the purpose of
utilizing the global information and improving the swarm diversity. Yang et al.
[11] proposed a new creating mechanism with inter-group discussion and intra-
group discussion to get a tradeoff between the capability of global search and
local search. Cheng et al. [2–4] analyzed and discussed the solution clustering,
and other properties of BSO. In addition, the basic BSO and its variants have
been applied successfully to global numerical optimization and optimizing design
variables for a DC brushless motor [5].

In this paper, an enhanced BSO algorithm is proposed for optimizing Wire-
less Sensor Networks (WSN) deployment. The remaining paper is organized as
follows. In Section 2, the original BSO algorithm is introduced and the perfor-
mance of basic operators is discussed. In Section 3, an enhanced BSO method
is proposed based on affinity propagation clustering and an improved creating
operator. In Section 4, the proposed BSO algorithm is applied to solve the prob-
lem of WSN coverage and the experimental results are analyzed. Our concluding
remarks are made in Section 5.

2 Original Brain Storm Optimization

Consider an unconstrained minimization function with finite dimensions in the
form of minx∈S f(x), where S is an n-dimensional search space, x denotes a
candidate solution corresponding to a point in S, and f(x) is an evaluation
function corresponding to x.

The original BSO optimizes a problem by having a population of candidate
solutions, and iteratively trying to improve candidate solutions with regards to
a given measure of quality. Generally speaking, BSO has three main operators:
clustering, creating, and selecting. The original BSO and most of variants employ
k-means or k-medoids clustering algorithms, which require the number of clusters
to be determined before running the algorithm. However, the proper number of
clusters in BSO would not be available in advance. Moreover, the individuals
should be grouped into diverse number of clusters as the BSO algorithm evolves.
To be specific, candidate solutions can be partitioned into several groups in the
initial stage of iteration, while they may be gathered into different number of
clusters in the later iterations. In other words, the number of clusters might
vary with the iteration. Affinity Propagation (AP) clustering algorithm can be
a better clustering algorithm for a BSO than k-means clustering does at least
under some scenarios [1]. AP can organize various individuals into proper groups
without knowing the number of clusters in advance. The number of clusters
is determined adaptively over iterations. For creating operator, the basic BSO
generates new individuals in four patterns.

1. a random vector is added to a selected cluster center to develop a new indi-
vidual.
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2. a random vector is added to a random individual to form a new individual.
3. a random vector is added to a combination of two cluster centers to generate

a new individual.
4. a random vector is is added to a combination of two random individuals to

create a new individual.

We can see that the basic BSO takes the advantages of fine-grained search
and coarse-grained search. Specifically, updating pattern 1 and pattern 2 are the
local search strategies which can yield small variation, while updating pattern 3
and pattern 4 are the global search strategies that create large variation.

For the original BSO, there are some valuable aspects which need to be
further discussed. Firstly, the cluster center can be viewed as a special individual,
the fitness of which is not generally desired best individual. In some cases, it
might be a good choice to specify the best individual of the cluster as the cluster
center. Secondly, new individuals are generated one by one in the original version,
which is a time consuming process. The mass-produced individuals are worth
considering. Thirdly, the global strategies which only combine the information of
two selected clusters might go against exploration within the whole search space.

3 Enhanced Brain Storm Optimization (EBSO)

3.1 AP Clustering Strategy

Affinity Propagation (AP) is a clustering algorithm based on the concept of
“message passing” between data points [6]. Unlike k-means or k-medoids clus-
tering algorithms, AP does not require knowing the number of clusters. Like
k-medoids, AP finds “exemplars”, members of the input set that are represen-
tative of clusters.

Let {ξ1, ξ2, · · · , ξn} be a set of data points, with no assumptions made about
their internal structure, and let ρ(·) be a function that quantifies the similarity
between any two points, that is ρ(i, j) > ρ(i, k) iff ξj is more similar to ξi than
ξk is.

The algorithm proceeds by alternating two message passing steps, to update
two matrices: responsibility matrix and availability matrix. The value γ(i, k) of
responsibility matrix quantifies how well-suited ξk is to serve as the exemplar for
ξi. The value λ(i, k) of availability matrix represents how appropriate it would
be for ξi to pick ξk as its exemplar [6].

First, responsibility updates are set

γ(i, k)← ρ(i, k)−max
k′ �=k
{λ(i, k′) + ρ(i, k′)} (1)

Then, availability λ(i, k) is updated to the self responsibility λ(k, k) add the
sum of the positive responsibilities candidate exemplar k receives from other
samples [6].

λ(i, k)← min

⎧
⎨

⎩
0, γ(k, k) +

∑

i′ �∈{i,k}
max{0, ρ(i′, k)}

⎫
⎬

⎭
(2)
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The self-availability λ(k, k) is updated as follows:

λ(k, k)←
∑

i′ �=k

max{0, γ(i′, k)} (3)

It is generally known that an appropriate clustering algorithm depends on
data set and intended usage of the clustering results. However, the individuals
might be over-clustered by AP algorithm in BSO. A single example of over-
segmentation is shown in Fig. 1.
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Fig. 1. The over-segmentation of candidate solutions

From Fig. 1 (a), it can be seen that the distribution of candidate solutions is
concentrated on the central part of search space. So, generally speaking, these
individuals are expected to be a group for BSO. However, AP algorithm distin-
guishes the subtle differences among the candidate solutions, which results in
the over-segmentation, as shown in Fig. 1 (b). In this paper, we solve the issue
by specifying the smallest distance between individuals.

3.2 Enhanced Creating Strategy

In this section, a new creating operator is proposed to strengthen the ability of
exploration and exploitation. The enhanced creating strategy has the character-
istics of synthesizing structure information of one or more clusters.

First, the fitness values of candidate solutions in each cluster are mapped
into the uniform confidence interval for easily extracting information.Second,
the structure information of each cluster C is extracted and denoted as a set
of vectors C{u,v,w}, where u is the kernel of the cluster, v and w are the
coverage and dispersion of candidate solutions in the cluster, respectively. The
detailed procedure is listed as Algorithm 1.
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Algorithm 1. Extracting structure information of each cluster.
1 Select a cluster with K individuals in M dimension.;
2 Calculate the fitness value of each individual f(x), i = 1, 2, · · · , K;
3 Mapping the fitness values f(x) to the confidence interval [0, 1];
4 Determine the best individual as the kernel in the selected cluster

u = [u1, u1, · · · , uM ] = x̌;
5 Calculate the coverage of the selected sparks

v = [v1, v1, · · · , vM ] = 1
L−1

∑L
i=1(xi − u)2;

6 for each couple of individuals and their fitness values (xi, f(xi)) do

7 Calculate oi =
√

−(xi−u)2

2 ln f(xi)

8 Calculate the mean of oi as ō, i.e., ō = 1
L

∑L
i=1 oi;

9 Calculate the dispersion of the selected cluster

w = [w1, w1, · · · , wM ] = 1
L−1

∑L
i=1(oi − ō)2;

Third, the structure information of multiple clusters can be calculated on
the basis of the information of single clusters. For example, we have the cluster
information C1{u1,v1,w1} and C2{u2,v2,w2}. The synthesized information
of two clusters is calculated as follow.

u12 =
u1v

′
1 + u2v

′
2

v′
1 + v′

2

, v12 = v′
1 + v′

2, w12 =
w1v

′
1 + w2v

′
2

v′
1 + v′

2

where v′
1, v′

2 are the expectation of the clusters C1 and C2, respectively.
Similarly, the synthesized information of multiple clusters can be obtained

in the same way. Finally, the new individuals can be generated based on diverse
structure information. The detailed procedure is presented as Algorithm 2.

Algorithm 2. Creating new individuals with structure information
C(u,v,w).
1 Select a cluster with K individuals in M dimension.;
2 Create the G new individuals based on the structure information C(u, v, w);
3 for j = 1 to G do
4 Generate a normally distributed random vector p with the kernel v and the

coverage w, i.e., p = NormRand(v, w).;
5 Generate a normally distributed random individuals xi with the kernel u

and the coverage p, i.e., xi = NormRand(u, p).;

4 WSN Deployment Based on Enhanced BSO

For better investigating the performance of the proposed BSO, dynamic deploy-
ments of WSNs are performed. First, the mathematical expressions of WSN
Deployment are described, then EBSO is used to optimize the dynamic deploy-
ments of two different WSNs.
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4.1 Model Representations of WSN Deployment

Assume that there are a set of wireless sensors, expressed as ζ = {ζ1, ζ2, · · · , ζN}.
The position of a wireless sensor ζi is recorded as (ai, bi). If the target point ϕj

is located at (aj , bj), then the Euclidean distance between the wireless sensor ζi
and the target point ϕj is calculated as follows.

D(ζi, ϕj) =
√

(ai − aj)2 + (bi − bj)2 (4)

The perceived radius of the sensor node is set as Ri. We take the binary
detection model for sensor ζi and target ϕj , expressed as

P (ζi, ϕj) =
{

1 D(ζi, ϕj) ≤ Ri

0 D(ζi, ϕj) > Ri
(5)

Then we have the joint perception probability of K sensors with target
point ϕj .

J(ϕj) = 1−
K∏

i=1

(1− P (ζi, ϕj)) (6)

In the enhanced BSO, a 2N -dimensional individual xi represents all the
N sensor nodes in two-dimensional space: xi = [xH

i1, x
V
i1, x

H
i2, x

V
i2, · · · , xH

iN , x
V
iN ],

where xH
iN and xV

iN present the positions of the N -th mobile sensor node in
horizontal axis and vertical axis, respectively.

The fitness function of EBSO is the effective coverage, expressed as

f(x) =
∑
J(ϕj)

X × Y (7)

where the X and Y represent the rows or columns within a grid environment.

4.2 Experimental Results and Analysis

Experiments are carried out in a square area S = 500 × 500, i.e., 0.25 square
kilometres. In Experiment I, there are 15 stationary nodes (the green squares
in Fig. 2) and 40 mobile nodes (the red circles in Fig. 2). The detection radius
of each sensor is 40 metre. In Experiment II, there are 15 stationary nodes (the
green squares in Fig. 3) and 70 mobile nodes (the red circles in Fig. 3). The
detection radius of each stationary node is 40 metre, and the detection radius of
each mobile node is 30 metre.

The EBSO has a population size 50 and the number of maximum iteration
is set to 200 for one execution. The experiments are implemented by Matlab 8.0
and the simulations are run on the PC with Intel Core i3 2350M 2.3GHz, 2 GB
memory capacity and the Windows 7 operating system.

The simulation results of the Experiment I and Experiment II are illustrated
as Fig. 2 and Fig. 3, respectively. Fig. 4 shows the variation of coverage rate over
iterations.
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Fig. 2. The simulation results of Experiment I

0 100 200 300 400 500

0

100

200

300

400

500

0 100 200 300 400 500

0

100

200

300

400

500

(a) (b)

Fig. 3. The simulation results of Experiment II
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As shown in Fig. 2 and Fig. 3, the squares in green represent the locations
of stationary sensors and the solid circles in red are mobile stationary sensors.
The large circular in red or blue is the detection area of each sensor. Fig. 2 (a)
and Fig. 3 (a) are the initial distribution of nodes. Fig. 2 (b) and Fig. 3 (b) are
the final distribution of nodes optimized by EBSO. From Fig. 4, we can see that
EBSO can implement dynamic deployment effectively. Specifically, the effective
coverage rate reaches 97% in Experiment I and nearly 92% in Experiment II.

5 Conclusions

The original BSO generates the new individuals one by one, which might result
in time consuming. The creating operator can only combine the information
of two selected clusters, which might go against exploration within the whole
search space. In this paper, an enhanced BSO model is proposed based on a
modified AP clustering and a new creating method. The modified AP can orga-
nize various individuals into proper groups without the number of clusters to
be determined and it overcomes the problem of over-segmentation. Meanwhile,
the new creating operator can synthesize the structure information of one or
more clusters. The enhanced BSO model has the characteristics of utilizing the
local and global information. Finally, the proposed BSO is applied to optimizing
the deployment for two different WSN scenarios. The experimental results show
that the proposed algorithm achieves satisfactory results and guarantees a high
coverage rate.
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Abstract. Biogeography optimization algorithm (BBO) is a new optimization 
algorithm based on biogeography. Unique migration pattern of BBO makes 
good habitat feature information can be widely distributed among multiple ha-
bitats, showing a diversity of solutions. It is applied to the DC motor PID  
control problems and compared with genetic algorithms (GA), differential evo-
lution (DE), particle swarm optimization (PSO). Experimental results show that 
BBO has the ability of searching optimal solution in a small local neighborhood 
space. The output of PID control system of DC motor optimized under BBO 
has no overshoot, no steady-state error and has the shortest system dynamic re-
sponse time. 

Keywords:: Biogeography based optimization algorithm · Direct current  
motor · PID control 

1 Introduction 

Biogeography Based Optimization Algorithm (BBO) is a new optimization algorithm 
was  proposed by Simon in 2008 [1]. The biogeography of species migration process 
is realized by adjusting the immigration rate and migration rate. Migration strategies 
are used to achieve information sharing and improve habitat suitability for solving 
global optimal solution [1]. BBO algorithm has been improved and applied for differ-
ent areas [2-3]. 

BBO was applied to solve reactive power optimization problem. Studies have 
shown that BBO algorithm is not strongly dependent on the parameters for solving 
reactive power optimization [4]. BBO and DE are hybrid for solving mixed robot path 
planning in a static environment to determine the required number of points by the 
number of obstacles in the path [5].Panchal used BBO to classify satellite images and 
have achieved good results [6]. A novel high performance low-complex EA that com-
bines the advantages of both BBO and ABC algorithms for optimization problems in 
both continuous and discrete domains was proposed in[7]. This algorithm has shown 
higher performance in comparison to other EAs when applied to some optimization 



386 H. Mo and L. Xu 

problems. In[8], BBO was combined with fuzzy C-means clustering algorithm to  
be BBO-FCM and used for image segmentation. Experimental results show that 
BBO-FCM was superior to FCM and some other compared bio-inspired algorithms. 
In [9], BBO is combined with chaos theory and used to train the neural network archi-
tecture for fault diagnosis of pumping.  

DC motors are widely used as actuator component in engineering applications. The 
selection of PID control parameter directly affects the performance of DC motor con-
trol systems. For a DC motor, overshoot, errors and response speed of control system 
are three main objectives to optimize without mutual conflict at the same time. To 
improve the performance of some other objectives will cause performance degrada-
tion. We use BBO to optimize PID parameters of DC motor in order to obtain  
overshoot, errors and response speed between a reasonable configuration and good 
dynamic response of control system. 

2 Biogeography Based Optimization 

The fitness function of BBO is generally defined as living suitability index (habitat 
suitability index, HSI). BBO model is based on a group of suitable habitats. For  
species with higher habitat adaptation index (Habitat Suitability Index, HSI),  
they have more species to move out. They often have a larger emigration rates and 
smaller immigration rate. Habitat with lower HSI has fewer species. Higher HIS  
solution will share their good characteristics with lower HSI solution to complete the 
evolution. 

2.1 BBO Migration Operation  

Fig.1 shows the migration of species habitats on earth by a nonlinear model.  

 

Fig. 1. Biogeography migration model 

The lateral axis represents the number of species of habitats. And the vertical axis 
represents mobility,which represents immigration rate. is the biggest immigration 
rate and the maximum emigration rate. Immigration rate and emigration rate are 

I
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equal to the equilibrium point for the habitat to accommodate the maximum number 
of species. 

In this model, immigration rate and emigration rate are calculated as follows, re-
spectively: 

 . 

(1)

When population size of habitats increases, immigration rate decreases rapidly, 
while emigration rate increases slowly. When the number of the population almost 
saturated, immigration rate decreases slowly move out rate increases rapidly. 

The migration operation is as follows. 

1: for  to  do  
2:  Selected  with probability   

3:     if rndreal (0,1) < then  

4:       for  to  do  

5:         Selected  with probability  

6:           if rndreal (0,1) < then 

7:             Randomly select a variable   from   

8:             Replace a random variable in with   

9:           end if  
10:      end for  
11:      end if  
12: end for 

2.2 Mutation Operation 

BBO simulate changes in habitat environment by mutation operation. The number of 
species is inversely proportional to the probability and mutation probability. Mutation 
operation makes the solutions with low HSI have more opportunities to be improved. 
The mutation rate is caculated as follows: 

 . (2)

where  is an user-defined parameter, , .  is the 

probability of the corresponding number of species. 
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The mutation operator is as follows: 

1: for  to   do  
2:  Compute the probability   

3:    Select SIV   with probability  

4:      if rndreal (0, 1) < , then  

5:         Replace  with a randomly generated SIV 

6:       end if  
7: end for. 

3 Model of DC Motor Control System 

3.1 Transfer Function of the DC motor 

In Fig.2,the circuit of DC motor is shown in Fig.2.Dynamic mathematical model of 
the DC motor can be expressed by the following equations [10]: 
 

 

Fig. 2. Circuit of DC motor 

 . (3)

where is the armature voltage, the armature circuit inductance, the arma-

ture current,  the total resistance of the armature circuit.  
Ignore viscous friction and elasticity torque motor shaft kinetic equation is: 

 . (4)

where is the motor load torque including no-load torquet, the 

torque of electric drive system moving parts converted to motor shaft. 
Induced electromotive force and torque under rated excitation are: 

 . (5)
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where  is the ratio of torque and current of motor under rated 

excitation. 
Define the following time constants:  

- electronmagnetic time constant of armature circuit with unit s;  

- electromechanical time constant of electric drive system with unit s. 

Substituting into equations (4) and (5),we get 

 . (7)

 . (8)

where  - load current(A). 

Under zero initial condition, Laplace transform is operated on both sides of  
the equation (7) and equation (8). The transfer function between voltage and current 
is: 

 . (9)

The transfer function between the current and the electromotive force is: 

 . (10)

Based on formula (10) and equation (11), the final finishing speed relative to the 
input DC voltage transfer function model is : 

 . (11)

A DC motor nameplate parameters include Inertia Rated voltage V, rated current 
A, rated speed, rated output power KW, motor shaft. According to [11], the parame-
ters of DC motor are motor electromechanical time constant = 0.3023s, electromag-
netic time constant = 0.0215s, motor potential coefficient = 0.612. The final transfer 
function of the motor speed and the input voltage model is: 
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 . (12)

3.2 Objective Function 

For optimizing the DC motor control system, the objective function is defined as: 

 . (13)

In the function, system error, the controller output and the rise time are used as 
weights. Absolute error and the control input of the time integral of the squared term, 
as well as key performance indicators Functions, respectively, as the rise time of  
entry. To avoid overshoot, also uses a punitive function, which once produced  
overshoot, exceed the amount transferred as an optimal index, in which case the best 
indicators: 

Formula(14), the weights, and, for the target output is pulled.Right value 

=0.999， =0.001， =100， =2.0。where is weight and .

. is the system output. 

4 PID Control System of DC Motor Optimized by BBO 

For using the BBO algorithm to optimize the PID parameters of the DC motor, we 
need to map the , , into habitat feature vector SIVs, SIV = { , , }. 

The optimization problem of DC motor PID control system becomes the minimum 
optimization problem of searching SIVs. In the evolutionary process of the algorithm, 
the solutions with higher HSI will share their good characteristics with solutions 
which have lower HSI, that is, share the better PID control parameter values. The 
number of samples used in the algorithm is 30. The number of evolution generation is 
G = 30. The parameter ranges [0,300], the range [0,10], the range [0,50]. The process 
of optimizing PID parameters by BBO is shown in Fig.3. 
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Fig. 3. Optimization process of DC motor PID parameters 

5 Simulation and Analysis 

The simulation is realized by Matlab/Simulink7.12.0. BBO is compared with Genetic 
Algorithm (GA), Differential Evolution (DE) and Particle Swarm Optimization (PSO). 

5.1 Optimal Solutions Evolution   

The best optimal objective functions of the four algorithms were obtained in 20 tests: 
BBO (4.2933), GA (4.4144), DE (4.7650), PSO (4.6444). Evolutionary process is 
shown in Figure 1.  

Seen from Fig.4, BBO gets the optimal solution with least generation G = 11, fol-
lowed by GA, PSO. The worst is DE. The best values of BBO and GA are close to the 
solution of the objective function and were significantly better than the other two 
algorithms. So for the four algorithms, BBO is the most effective for solving the prob-
lem.  

It can be seen from Fig.4 that BBO has the best diverse distribution in neighbor-
hood of optimal solutions. It can maintain the diversity of the solutions to some extent 
avoid the local minimum. 
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Fig. 4. Optimal solutions evolved by four algorithms 

5.2 Distribution of the PID Control Parameters 

The optimal PID control parameters obtained by the four algorithms in 20 tests were:  

BBO（ =228.432， =0.1045， =25.8424） 

GA（ =40.9285， =0.1534， =6.3416） 

DE （ =75.2666， =6.3661， =31.1357） 

PSO（ =96.6429， =3.7513， =30.5624） 
 

The distribution is shown in Fig. 5 in a three-dimensional numerical space. It can 
be seen from Fig.5 that the search results of BBO and GA, whose values are distri-
buted in [0,1]. The value is relatively small. 

 

 

Fig. 5. Control parameters obtained by four algorithms 

In Fig.5, the distribution of the PID control parameters obtained by BBO in 20 experi-
ments is shown in 3D space. Fig.5 and Fig. 6 show that BBO tends to obtain the control 
parameters in the vicinity of the optimal solution Best , while the solutions of PSO and 
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DE are relatively far from the optimal solution Best . To some extent, BBO has the 
characteristics of searching the solutions within the periphery of the optimal solution. 

 

Fig. 6. Control parameters obtained by BBO in 20 experiments 

In Fig. 6, we can see that the control parameters obtained by BBO in 20 experi-
ments are distributed near the optimal solution. 

5.3 DC Motor Speed Control 

For the rated speed of the DC motor speed tracking, it can be seen from Figure 7 that 
the DC motor speed control under the BBO PID algorithm obtains the response with-
out overshoot, but there is a certain steady-state tracking error of DE and PSO for DC 
motor speed control. DE control has the maximum steady-state error. Under the BBO 
control of the DC motor system its output has no steady-state error.  

It can be seen from Fig. 7 that BBO control has the fastest dynamic response, fol-
lowed by GA, DE, and PSO. DC motor under BBO control obtains steady-state out-
put in 0.3s. 

 

Fig. 7. DC motor speed control 
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For DC motor speed control, BBO gets optimal results of PID control system out-
put. DE has the worst results. 

6 Conclusions 

In this paper, BBO is used to PID control for DC motors. Compared with GA, PSO 
and DE, the results show that BBO is the most effective and gets the optimal solution 
in a small local area neighborhood space. The output of DC motor PID control system 
optimized by BBO has no overshoot and no steady-state error. It has the minimum 
system dynamic response time.  

The experimental results show that BBO is effective in optimizing PID control pa-
rameters of DC motor. In future study, it will be used to optimize more complex con-
trol system and the problem of parameter identification. 
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Abstract. In this paper we embody the simulation of the Fuzzy Logic 
Controller. The controller governs the speed of a permanent magnet 
synchronous motor PMSM, which is employed in an elevator with different 
loads. This work aims to obtain the optimal parameters of FLC. Biogeography-
Based-Optimization (BBO) is a new intelligent technique for optimization; it 
can be used to tune the parameters in different fields. The main contribution of 
this work is to show the ability of BBO to design the parameters of FLC by 
shaping the triangle memberships of the two inputs and the output. The results 
show the optimal controller (BBO-FLC) compared with the other controllers 
designed by genetic algorithm (GA). GA is a powerful method that has been 
found to solve the optimization problems. The implementation of the BBO 
algorithm has been done by M-file/MATLAB. The complete mathematical 
model of PMSM system has carried out using SIMULINK/MATLAB. The 
calculation of finesses function can be done by SIMULINK, and it linked with 
M-file/MATLAB to complete all steps of BBO. The results show the excellent 
performance of BBO-FLC compared with the GA-FLC and PI controller; also, 
the proposed method was very fast and needed only a few iterations. 

Keywords: Biogeography Based Optimization (BBO) · Genetic Algorithm 
(GA) · Fuzzy Logic Controller (FLC) · Permanent Magnet Synchronous Motor 
(PMSM) 

1 Introduction 

In a new high-rise building, an elevator becomes the essential service facility. With 
the continuous improvement of running speed, the elevator’s dynamic performance is 
closely related with human comfort, which is increasingly a cause for concern. 
Improving the elevators’ comfort, and reducing vibration and noise during operation 
has become a hot research topic at home and abroad [1]. The development in 
microprocessor schemes and semiconductor technologies makes the AC drive give a 
high performance of speed control. This system is an excellent opportunity to use AC 
motors [2]. In the last few years, PMSM has become popular in the medium range of 
an AC machine and its drive. Nowadays, this technology has become the first choice 
because of its inherent advantages. These advantages include high torque to current 
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ratio, large power to weight ratio, higher efficiency and robustness. There are many 
applications of PMSM in elevators, wind energy, EV drive, etc., because it allows an 
enlarged speed range with an inverter size that is lower than in a conventional flux-
oriented induction motor drive [3]. In [4], the adaptive dynamic surface control (DSC) 
has been presented for the feedback controller of PMSM. Also, some control methods 
have been studied to stabilize the PMSM systems, such as the sliding mode control 
(SMC) [7], deferential geometry method [8], and passivity control [9, 10]. The 
tangible benefit of choosing the controller is its simplicity in implementation. It is not 
easy to find another controller with such a simple structure that is comparable in 
performance. Fuzzy rule-based models are easy to comprehend all applications of 
PMSM because it uses linguistic terms as well as the structure of if-then rules [11]. A 
very important step in the use of controllers is the controller parameters and tuning 
process [12]. Unfortunately, in spite of this, a large range of tuning techniques and the 
optimum performance cannot be achieved. In recent years many intelligent 
optimization techniques have emerged and have received much attention from 
researchers concerning genetic algorithm (GA), particle swarm optimization (PSO) 
techniques bee colony optimization (BCO), ant colony optimization (ACO), simulated 
annealing (SA), and bacterial foraging (BF) [13]. GA was the most used in the control 
field, such as in the search for optimal parameters of an FLC controller. But it still 
requires an enormous computational effort. In this paper we suggest a new 
computational theory named Biogeography-Based Optimization (BBO) to tune 
parameters of the FLC controller. This controller can govern a non-linear system. 

2 PMSM Mathematical Models and the Vector Control 

The basic idea of vector control is to manage the analog DC motor torque. Also, the 
control law is used in the ordinary three-phase AC motor. For magnetic field 
directional coordinates, we break down the current vector into the exciting current 
component, which produces the magnetic flux and torque. 
 

 

Fig. 1. Schematic diagram of the PMSM vector control 
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After coordinate transformation, the three-phase stator coordinate system (a-b-c 
coordinate) is varied to d-q coordinate. The two components (d-q coordinate) are 
perpendicular to each other and independent of each other. They are then adjusted 
respectively. Thus, the torque control of the AC motor is similar to the DC motor 
regarding their principles and characteristics. Therefore, the key for vector control is 
still both magnitude and the spatial location control of the current vector. Figure 1 
shows the schematic diagram of the PMSM vector control. 

3 Fuzzy Logic Controllers 

Fuzzy logic controllers have the following advantages over the conventional 
controllers: they are cheaper to develop, they cover a wide range of operating 
conditions, and they are more readily customizable in natural language terms. In 
Mamdani type FIS, the crisp result is obtained by defuzzification [14]; the Mamdani 
FIS can be used for both multiple input and single output and a multiple 
inputs/multiple outputs system, as shown in Figure 2.  

The usefulness of the fuzzy controller is adopted particularly in a complex and 
nonlinear system. The rules of conventional FLC produced depend on the operator’s 
experience or general knowledge of the system in a heuristic way. The thresholds of 
the fuzzy linguistic variables are usually chosen arbitrarily in the design process. An 
improper controller value leads to an adverse consequence, unstable mode, collapse 
and separation. This work proposed BBO to design an optimal fuzzy logic controller 
(OFLC), where the optimized criteria are how to minimize the transient state. 

 

Fig. 2. Arrangement of fuzzy logic controller 

4 Biogeography Based Optimization 

Inspired by biogeography, Simon developed a new approach called Biogeography-
Based-Optimization (BBO) in 2008. This algorithm is an example of how a natural 
process can be modeled to solve optimization [15]. In BBO, each possible solution is an 
island; the features that describe habitability are named the habitat suitability index 
(HSI). The goodness of each solution is named Suitability Index Variables (SIV). For 
example, concerning the natural process, why do some islands tend to accumulate many 
more species than others? Because they posses certain environmental features that are 
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more suitable to sustaining them than other islands with fewer species. It is axiomatic that 
the habitats with high HSI have large populations, a high immigration rate, and a large 
number of species that migrate to other habitats. The rate of immigration will be lower if 
these habitats are already saturated with species. On the other hand, habitats with low 
HSI have a high immigration and low immigration rate, because of the sparse population.    

The fitness function FF is associated with each solution of Biogeography Based 
Optimization BBO, which is analogous to the HSI of a habitat. A good solution is 
analogous to a habitat having a igh HSI, and a poor solution represents a habitat having a 
low HSI. The best solutions share their geographies of the lowest solutions throw 
migration. The best solutions have very small change compared with the lowest 
solutions, while the lowest solutions have a large change from time to time and accept 
many new features from the best solutions.  

The immigration rate and emigration rate of the jth island may be formulated as 
follows, in equations 1 & 2. ߣ ൌ ܫ ቀ1 െ ቁ                                          (1) ߤ ൌ ா.                                             (2) 

is Where µj , λj are the immigration rate and the emigration rate of jth individual; I is 
the maximum possible immigration rate; E is the maximum possible emigration rate; j is 
the number of species of jth individual; and n is the maximum number of species [16]. 

In BBO, the mutation is used to increase the diversity of the population to get the 
best solutions. The mutation operator modifies a habitat’s SIV, randomly based on the 
mutation rate. The mutation rate mj is expressed in (3). 

݉ ൌ ݉௫ ቀଵିೕೌೣቁ                            (3) 

 
Where mj is the mutation rate for the jth habitat having a j number of species; mmax 

is the maximum mutation rate; Pmax is the maximum species count probability; Pj the 
species count probability for the jth habitat and is given by: 

 ሶܲ ൌ ൞ െ൫ߣ  ൯ߤ ܲ  ାଵߤ ܲାଵ,      ݆  0െ൫ߣ  ൯ߤ ܲ  ିଵߣ ܲିଵ  ାଵߤ ܲାଵെ൫ߣ  ൯ߤ ܲ  ିଵߣ ܲିଵ,           ݆ ൌ ݊ 1  ݆  ݊           (4) 

 
Where µj+1 , λj+1  are the immigration and emigration rate for the jth habitat contain 

j+1 species;  µj-1 , λj-1 are the immigration and emigration rate for the jth habitat contains 
j-1 species. 

5 Implementing BBO Tuning for FLC Parameters 

The implementation of BBO in this work is somewhat complex, because the 
performance of the system must be examined for all habitats during of the each iteration. 
Therefore, the optimization algorithm is implemented by the MATLAB m-file program 
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and linked with the system simulation program in MATLAB SIMULINK, to check the 
system performance in the each iteration.  In this paper, the problem is summarized in 
optimizing three variables (X1, X2 and X3 shown in Figure 6), they are: one output and 
two inputs (speed and the change in speed); they are represented as three dimensional 
spaces including the prams of the triangle memberships of FLC. A random 20 habitats 
were assumed and an algorithm of 100 iterations is used to estimate the optimal values of 
the FLC controller parameters. The fitness function FF, illustrated in equation (5), can be 
calculated by SIMULINK, as shown in Figure 3. FF ൌ ITSE ൌ  t כ eଶሺtሻ dt୲                         (5) 

 

Fig. 3. System model implemented by SIMULINK/MATLAB 

6 Results 

Figure 4 shows the convergence of fitness function in 100 iterations and the 
comparison between GA and BBO. Figure 5 shows the step response with load and no 
 

 

Fig. 4. The convergence of fitness function in 100 iterations 
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load using the proposed controller and GA-FLC, and the PI-controller tuned by 
conventional methods of trial and error. Figure 6 shows FLC designed by BBO, and 
Figure 7 shows the surface of FLC. 
 

 

Fig. 5. Comparison performance of different controllers with proposed tuning methods 

 

Fig. 6. FLC memberships designed by BBO 

 

Fig. 7. The surface of FLC designed by BBO 
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7 Conclusions 

The system responses of different tuning methods are illustrated in the simulation 
result, and a comparable performance between the three controllers in this research 
(PI controller, GA-FLC and BBO-FLC) is shown in Figure 5. We can obtain the 
following conclusions through simulation analysis: 

1- This paper designs fuzzy logic control by a computational algorithm; it interjects 
control concepts of trial and error in fuzzy control and the conventional GA-FLC 
method, and then the control velocity modulation of an elevator.  

2- Obviously, the BBO tuning of the FLC is the best intelligent method, which gives 
an excellent system performance, and the GA gives a good response with respect to 
the traditional trial and error method. 

3- In addition to improving the system response, the BBO and GA can use a higher 
order system in the tuning process, which avoids the error of system order 
reduction. It gives a satisfactory solution during the first 50 iterations as shown in 
Figure 6. 

4- The proposed method gives the control system strong flexibility, instantaneity and 
reliability because of the advanced prediction of the FLC predicting controller. 

5- It makes the control system have a stronger real-time controllability because 
optimal fuzzy parameters have predicted a possible interference source. The lower 
the interference frequency, the more the BBO algorithm is controllable.  

6- The elevator speed control system using BBO-FLC can be used as an effective 
complement to traditional control methods, thus, it can further enhance and 
improve the regulating quality for a control system with a different load torque. 
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Abstract. Oppositional Biogeography-Based Optimization using the Current 
Optimum (COOBBO) has been recently developed to solve combinatorial prob-
lems and outperforms other heuristic algorithms. The objective of this paper is 
mainly to ascertain various modified methods which can significantly enhance 
the performance and efficiency of COOBBO algorithm. The improvement 
measures include crossover approach, local optimization approach and greedy 
approach. Experiment results illustrate that, the combination model of “inver-
over crossover + 2-opt local optimization + all greedy” may be the best choice 
of all when considering both the overall algorithm performance and computa-
tion overhead. 

Keywords: Biogeography-Based Optimization · Traveling Salesman Problem · 
Crossover approach · Local optimization approach · Greedy approach 

1 Introduction 

Biogeography-Based Optimization (BBO), which was first introduced in 2008 by 
Simon [1], is inspired by the science of biogeography which studies the temporal and 
spatial distribution of species amongst islands. Based on previous research results in 
recent years, BBO has been successful applied not only to continuous optimization 
problems, but also to discrete domain problems [2-7]. Recently, we proposed a novel 
Oppositional Biogeography-Based Optimization using the Current Optimum, called 
COOBBO algorithm, for solving combinatorial problems [8]. Simulation results illu-
strated clearly that, it outperformed both standard BBO and Oppositional Biogeogra-
phy-Based Optimization (OBBO) by Ergezer in 2011 [6]. 

While an excellent algorithm may be very critical for sophisticated problem solv-
ing, various modified techniques are also definitely an issue, particularly for real-
world applications. Many experiment results proved that, using these improvement 
measures correctly can really help us increase population diversity, accelerate the 
convergence speed and reduce time complexity greatly. Here for a chance, we em-
phasize again that, we do not put forward a new algorithm, but focus on the entire 
impact of various skills that will give us a chance to enhance the performance and 
efficiency of COOBBO. 

The remainder of this paper is organized as follows. In the following section, we 
provide a general description of our COOBBO algorithm, and then investigate various 
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modified techniques briefly. Section 3 shows the simulation results to ascertain their 
effect and influence on basic algorithm. Finally, some concluding remarks and sug-
gestions for further research are presented in Section 4. 

2 Background 

2.1 COOBBO Algorithm 

As two hybrid soft computing algorithms, OBBO and COOBBO are both created by 
incorporating the idea of opposition-based learning into original BBO algorithm and 
suffer the same basic produce as shown in Figure 1. Actually, the only difference 
between original OBBO and COOBBO consists in that the definition of opposite path. 
In OBBO algorithm, an opposite path is defined as a candidate path that maximizes 
the distance between the adjacent vertices in the original path [6]. 
 

--------------------------------------------------------------------------- 
1:procedure OBBO (or COOBBO) algorithm (Problem) 
2: Randomly generate initial population, P 
3: Generate the opposite of initial population, OP 
4: Maintain the fittest amongst P and OP 
5: while Generation ≤ gen limit do 
6:  Perform BBO Migration operator 
7:  Calculate the fitness of P 
8:  if random ≤ Opposition Jumping Rate then 
9:   Create the opposite population, OP 
10:   Calculate the fitness of OP 
11:   Maintain the fittest amongst P and OP 
12:  end if 
13:  Restore Elite Individuals 
14: end while 
15: return Best Individual 
16:end procedure 
--------------------------------------------------------------------------- 

Fig. 1. General flowchart of OBBO and COOBBO algorithms 

Opposition-Based Learning using the Current Optimum (COOBL) was original in-
troduced to accelerate differential evolution in continuous domain by Xu [9, 10]. As a 
successful extension of COOBL from continuous domain to discrete domain, we de-
veloped a novel definition of opposite path, which could lead to a better solution effi-
ciently [8]. Its core feature was that the sequence of candidate paths and the distances 
between adjacent nodes in the tour were considered simultaneously. In a sense, the 
candidate path and its corresponding opposite path had the same (or similar at least) 
distance from the optimal path in the current population. Experiment results also 
showed that, when compared with standard BBO and OBBO, the excellent perfor-
mance of COOBBO algorithm was mainly attributed to the distinct definition of  
opposite path. 
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2.2 Modified Method 

So far, many technical modifications have been invented for the purpose of perfor-
mance improvement. In this paper, we mainly investigate three types of modified 
approaches that are widely studied and utilized for classical Traveling Salesman Prob-
lem (TSP). 

(1) Crossover Approach. It is well known that, migration is the method of combin-
ing selected parent individuals and creating a child individual from them in the next 
generation. Hence, crossover operator is also believed to be the most important and 
useful component of COOBBO algorithm. Three crossover methods will be discussed 
later in this paper: matrix crossover [11], clycle crossover [12], and inver-over cros-
sover [13]. 

The detailed procedure of matrix crossover is as follows [7]. (1) First, for an n-city 
problem, we need to convert the ordering information of all individuals to an n by n 
matrix. Each row in the matrix expression provides the position information of a city 
in the trip, and each column in each row represents the ordering relationship between 
the column city and row city. Based on this method, we convert all the individuals in 
the population to the matrix expression. (2) Second, based on the selection methods, 
we select individuals to perform migration operator. Once the parents are selected, we 
perform AND logic on two matrices and then we obtain one child matrix. (3) Third, 
we randomly fill in necessary information to create a valid child, which represent a 
TSP tour, and then the child matrix is complete. (4) In the last step, we transform the 
child individual from matrix expression to sequential representation. 

Alternative crossover operator for TSP is cycle crossover as follows [7]. (1) We 
randomly select a city as the starting point in parent 1, and record its position. (2) In 
parent 2, find the city at the position we recorded in parent 1 and then record this city. 
Go back to parent 1, search for the city we found in parent 2 and then record its posi-
tion in parent 1. (3) Repeat step 2 until we obtain a closed cycle, which means we 
have returned to the starting city. (4) We copy the cities from the closed cycle in par-
ent 2, and the cities that are not in the closed cycle in parent 1, to obtain child 1. Simi-
larly, we copy the cities from the closed cycle in parent 1, and the cities that are not in 
the closed cycle in parent 2, to obtain child 2. 

Another crossover operator investigated in this paper is inver-over crossover to 
yield better individuals for the next generation [7]. (1) Two parents are utilized to 
generate a child. Randomly select a city in parent 1 as the starting point, city s.  
(2) Find s in parent 2 and choose the city next to it as the ending point, city e. Then 
find this ending point city in parent 1. (3) Reverse the cities between s+1 (the city 
next to the starting point city) and e in parent 1. That is the child created by inver-over 
crossover. 

(2) Local Optimization Approach. As a complement to migration in COOBBO, lo-
cal search optimization can find the optimal solutions by modifying the candidate 
solutions. We introduce two local optimizations measures, which have been success-
fully implemented in TSP: 2-opt [14] and 3-opt [15]. 

It is certainty that, 2-opt is a very simple but effective method for local research. 
For 2-opt method, we break two links in a random individual, and then connect the 
cities which only have one link connected, with the constraint that the resulting  
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path includes all cities. Instead of replacing two links in the individual as in 2-opt, the 
3-opt technique breaks three links and then randomly reconnects the cities that have 
broken links. 

(3) Greedy Approach. As a general algorithm design paradigm, greedy methods 
have been applied to solve a wide variety of continuous and discrete problems. The 
definition of a greedy method is just as its name implies: always choose the imme-
diate benefit, and refuse to take any losses [16]. Based on practice experiences, Gree-
dy method does not always yield optimal solutions, but for many problems they do. 

3 Experimental Results and Discussions 

3.1 Experimental Setup 

In the rest of this section, we will ascertain and compare the impact of all techniques 
mentioned in Section 2. Since these modified methods can not be exclusively per-
formed solving TSP problem, they should be embedded in a general framework. In 
this paper, COOBBO is selected as the basic algorithm for its compact configuration 
and excellent performance. Then various hybrid COOBBO algorithms, as shown in 
Figure 2, are set up well for investigating the value measures implicit in hybrid algo-
rithms. 
 
--------------------------------------------------------------------------- 
1:procedure hybrid COOBBO algorithm (Problem, CrossoverMethod,  
LocalOptimizationMethod, GreedyMethod) 
2: Randomly generate initial population, P 
3: Generate the opposite of initial population, OP 
4: Maintain the fittest amongst P and OP 
5: while Generation ≤ gen limit do 
6:  Perform crossover operator based on CrossoverMethod  //new 
7:  Perform greedy operator based on GreedyMethod  //new 
8:  Perform local optimization operator based on LocalOptimizationMethod
         //new 
9:  Perform greedy operator based on GreedyMethod  //new 
10:  Calculate the fitness of P 
11:  if random ≤ Opposition Jumping Rate then 
12:   Create the opposite population, OP 
13:   Calculate the fitness of OP 
14:   Maintain the fittest amongst P and OP 
15:  end if 
16:  Restore Elite Individuals 
17: end while 
18: return Best Individual 
19:end procedure 
--------------------------------------------------------------------------- 

Fig. 2. General flowchart of hybrid COOBBO algorithms 
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By comparing the Figures 1 and 2, there are four distinctions between OBBO 
(COOBBO) algorithm and hybrid COOBBO algorithms, which are labeled in Lines  
6-9 in Figure 2. Each improvement approaches can be chosen to run independently and 
manually on algorithm parameters, such as CrossoverMethod, LocalOptimization-
Method, and GreedyMethod. Hence we can protect individual approach from the inter-
ference by other approaches. 

In this paper, eight different well-known TSP problems are employed for perform-
ance verification of all modified methods. All the benchmarks are selected from 
TSPLIB [17], and their sizes vary from small problem to extra large problem. In order 
to minimize the effect of the stochastic nature of heuristic algorithms, all algorithms 
are conducted 100 independent experiments, both utilizing the same set of algorithm 
parameters as [8]. It is noted that, unless a change is stated, hybrid algorithms run 
inver-over crossover, and do not perform local optimization operator and greedy op-
erator in all experiments. In this paper, tested algorithms will be stopped when the 
number of evaluation of cost function has reached the maximum number. Obviously, 
it is in accord with the termination criterion described in [8], which seems more fair 
and advisable, especially when compared with that employed by Ergezer [6]. 

As utilized in [8], four comparison criteria are also recoded and compared to ana-
lyze the contribution of different modified methods. They include Best Solution found 
at the end of the computation (BS), Computation Time (CT), Utilization Rate of op-
posite paths (UR) and Population Diversity (PD). Thereinto, UR and PD are defined 
respectively as following. 
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where OPres is the number of opposite paths reserved as offspring in the next genera-
tion, Np is the size of the population including all candidate paths and their corre-
sponding opposite paths, X is a set of edges included in the current population, and 
F(e) is the number of edges e in the current population. For further details of compari-
son criteria, please carefully read the reference [8]. 

3.2 Crossover Method 

Firstly, in order to check the performance of different crossover methods in the migra-
tion of COOBBO, we design three crossover strategies in this paper: matrix crossover 
(CrossoverMethod = 1), cycle crossover (CrossoverMethod = 2) and inver-over 
crossover (CrossoverMethod = 3). The simulation results on eight TSP benchmarks 
are shown in Table 1. The mean (left) and variance (right) of 100 independent ex-
periments for each case are both listed and the best results in each row are highlighted 
in boldface font. 
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Table 1. Performances for different crossover methods 

TSP problems 

and criteria 

Crossover methods 

Inver-over crossover Cycle crossover Matrix crossover 

berlin52 

BS 10585.6729±1106.8232 13962.2258±1820.3901 19090.7778±543.2546 

CT 15.7656±0.5733 20.7691±0.6810 33.8837±0.4033 

UR 3.4087±0.6340 5.1758±1.0683 42.4384±0.7741 

PD 6.0483±0.7837 8.6661±2.7154 68.3919±0.0735 

bier127 

BS 280361.0292±38778.3636 335819.6482±47120.0356 516662.9791±8447.7298 

CT 70.9550±2.7362 85.5037±3.1586 168.4036±1.9537 

UR 3.8659±1.0352 5.5124±1.302 74.4264±0.8640 

PD 14.7046±2.1019 27.3031±9.3704 204.9903±0.2294 

ch130 

BS 17089.9077±2858.6011 22660.3878±3255.9918 37579.2059±910.5536 

CT 75.2717±2.9781 89.2527±2.9303 172.6000±2.3052 

UR 4.3072±1.0183 6.3204±1.6010 54.4476±0.7465 

PD 15.3682±2.3285 29.6966±9.3633 210.3570±0.2744 

kroA150 

BS 85580.4285±15715.5394 120467.1556±19866.5277 203524.9152±7368.3192 

CT 96.3781±3.7218 114.2763±3.7809 225.2339±2.7192 

UR 4.8259±1.2510 6.6926±1.9878 50.4902±0.5534 

PD 19.5021±2.8978 36.0452±12.3256 248.3056±0.3054 

kroA200 

BS 120597.2931±19113.1388 163060.5333±22350.7237 279234.5228±8166.8980 

CT 163.4809±6.3209 189.698±6.7125 395.7475±4.3098 

UR 5.0262±1.3217 6.9101±1.5923 52.8035±0.6579 

PD 26.0689±3.4488 51.2904±14.3457 344.4834±0.4392 

kroC100 

BS 48296.9643±8517.3143 75028.9277±12709.5846 127590.1662±3035.9217 

CT 46.8898±1.9041 57.1769±1.6063 107.2795±1.3750 

UR 4.5670±0.8556 6.2929±1.6824 52.9462±0.6007 

PD 12.9923±1.7231 20.5180±6.9798 154.1704±0.1985 

lin105 

BS 33257.0403±5520.1857 53617.8518±8962.8354 77434.0851±4526.5639 

CT 51.3555±1.7913 62.7614±2.0238 114.6811±1.4163 

UR 4.2091±0.8561 6.0932±1.4705 44.3913±1.0255 

PD 14.3067±1.9913 22.1774±6.734 161.6842±0.2329 

lin318 

BS 235023.9477±33480.0785 318788.4121±35103.0976 454171.3861±26468.5845 

CT 393.0959±15.4872 444.2844±16.7241 1061.0963±14.2891 

UR 5.3975±1.5245 6.2498±1.5583 29.9671±0.9732 

PD 40.4241±5.3767 77.0247±24.9730 569.3946±0.75272 
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Based on the simulation results in Table 1, we have some good reason to believe 
that inver-over crossover dominates over the other methods in both BS and CT. As 
mentioned above, matrix crossover needs both expression transformation and valid 
child creation, which spends a great deal of time. So the CPU time required by matrix 
crossover becomes very long when the benchmark size increases. 

As is known to all, the appropriate randomness can efficiently improve population 
diversity and avoid premature convergence for population-based soft algorithms. At 
the same time, intelligent algorithm should also circumscribe the randomness of 
population within narrow bounds and then seek a proper balance of exploitation and 
exploration. But, in the process of valid child creation of matrix crossover, some nec-
essary cities are randomly filled to create a valid child and then the balance of exploi-
tation and exploration is destroyed badly. As a result, matrix crossover is ranked the 
worst on most of comparison criteria among three methods. Besides, it is surprising 
that matrix crossover shows the best stability for its smallest variance of all. Then the 
attempt at explaining this phenomenon is our top task in the near future. 

3.3 Local Optimization Method 

The second test is to compare the performance of different local optimization ap-
proaches. In this paper, three improvement methods are discussed: no local optimiza-
tion (LocalOptimizationMethod = 1), 2-opt (LocalOptimizationMethod = 2), and 3-opt 
(LocalOptimizationMethod = 3). The improvement performances are shown in Table 
2 and the best results in each row are also highlighted in boldface font. 

Table 2. Performances for different local optimization methods 

TSP problems 

and criteria 

Local optimization methods 

No local optimization 2-opt local optimization 3-opt local optimization 

berlin52 

BS 10585.6729±1106.8232 8894.8842±332.7840 9927.7220±409.1705 

CT 15.7656±0.5733 18.6747±0.5060 21.2614±0.6892 

UR 3.4087±0.6340 3.4867±0.2141 11.5389±0.5142 

PD 6.0483±0.7837 30.7186±0.3279 48.3719±0.2507 

bier127 

BS 280361.0292±38778.3636 225532.4117±10162.9802 257053.2436±9689.5476 

CT 70.9550±2.7362 75.1322±2.9792 79.8512±3.1949 

UR 3.8659±1.0352 2.0488±0.1222 2.1109±0.1289 

PD 14.7046±2.1019 38.3343±0.9401 67.6701±0.6155 

ch130 

BS 17089.9077±2858.6011 14171.3376±671.7278 17122.4857±661.7640 

CT 75.2717±2.9781 77.7820±2.8153 79.9014±3.3327 

UR 4.3072±1.0183 2.0716±0.1354 2.1518±0.1382 

PD 15.3682±2.3285 37.8605±0.7931 67.5397±0.6990 
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Table 2. (Continued) 

TSP problems 

and criteria 

Local optimization methods 

No local optimization 2-opt local optimization 3-opt local optimization 

kroA150 

BS 85580.4285±15715.5394 73505.8046±3166.0688 87485.8476±3156.0360 

CT 96.3781±3.7218 101.2262±3.9108 107.5780±4.2153 

UR 4.8259±1.2510 2.4676±0.1497 3.0251±0.2378 

PD 19.5021±2.8978 41.6502±1.4121 72.8408±1.1334 

kroA200 

BS 120597.2931±19113.1388 108649.8755±4617.973 124554.3216±3898.1169 

CT 163.4809±6.3209 168.1614±6.3264 170.0575±5.8185 

UR 5.0262±1.3217 2.3738±0.1440 2.5207±0.1738 

PD 26.0689±3.4488 45.6952±1.5906 77.6007±1.4078 

kroC100 

BS 48296.9643±8517.3143 40843.2221±2075.6276 50617.9084±2421.8124 

CT 46.8898±1.9041 50.1209±1.8377 54.7880±1.9410 

UR 4.5670±0.8556 2.9232±0.2163 6.9964±0.5579 

PD 12.9923±1.7231 37.6503±0.9068 69.9279±1.1320 

lin105 

BS 33257.0403±5520.1857 28994.3855±1559.5959 35921.3267±1743.4190 

CT 51.3555±1.7913 54.1039±1.8861 56.3952±2.0881 

UR 4.2091±0.8561 2.7982±0.1823 6.3792±0.4469 

PD 14.3067±1.9913 38.2931±0.8673 70.7354±1.0536 

lin318 

BS 235023.9477±33480.0785 240604.5007±10818.7375 267160.5702±7109.9995 

CT 393.0959±15.4872 404.3264±14.4934 426.0155±15.7691 

UR 5.3975±1.5245 1.9481±0.1091 1.9371±0.1342 

PD 40.4241±5.3767 54.5339±3.0000 85.2502±2.0748 
 
Without any question, COOBBO algorithm with no local optimization requires the 

least CPU time among all tested methods. However with small increases in CPU time, 
the performance improvement may be very significant at a lower cost, except for 
lin318 problem, when utilizing 2-opt local optimization. In this particular case, the 
average BS of no local optimization is slightly less than that of 2-opt local optimiza-
tion apparently. With the help of statistical analysis software, Statistical Product and 
Service Solutions (SPSS) 14.0 version, we can find that there is no significant differ-
ence in statistics (sig = 0.114, p = 0.05) between no local optimization and 2-opt local 
optimization. In conclusion, when considering both algorithm performance and  
computation time, 2-opt local optimization may be the best choice for COOBBO  
algorithm. Another fact we can observe from Table 2 is that, the performance im-
provement will be steadily decline, and even degeneration, especially for large scale 
TSP problems. Of course, the plucky inference should be proved or falsified by more 
extra experiments to cover a wide range of benchmark size in the future. 
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According to our observation of the process of 2-opt local optimization and 3-opt 
local optimization, we have found that their superior performances derive from high 
population diversity. The original order in a tour is confused and then realigned in 
order to seek the better solution, which brings in randomness and increases population 
diversity inevitably. And the intuitive influence in 3-opt local optimization is more 
distinct than that in 2-opt local optimization. As noted above, randomness and diver-
sity can badly destroy the balance of exploitation and exploration of population-based 
algorithm. In our opinion, it is the power principle in algorithm design that leaves  
3-opt local optimization in an awkward position. 

Despite of the worst algorithm performance among three methods, no local optimi-
zation has the highest utilization rate of opposite paths for most of benchmark prob-
lems. Probably it seems implausible, because the high UR leads usually to a wide 
search space and a good optimization result. In fact, this conclusion applies only to 
the same algorithm without opposition-based learning (BBO algorithm in this paper). 
In our previous works [8], experiment results had already illustrated that COOBBO 
outperformed standard BBO and its excellent performance was attributed to the dis-
tinct definition of opposite path. Thus we may infer that the performance gap between 
standard BBO and COOBBO with local optimization must be much more remarkable 
than now as shown in Table 2. 

3.4 Greedy Method 

Finally, we test various greedy methods in similar way: no greedy (GreedyMethod = 
1), half greedy (greedy method used in half of population, GreedyMethod = 2), and all 
greedy (greedy method used in entire population, GreedyMethod = 3). The greedy 
method is applied at both two steps (crossover operator and local optimization opera-
tor) of the COOBBO algorithm in each generation. The experimental results for dif-
ferent greedy method are shown in Table 3, and similarly the best results in each row 
are highlighted in boldface font. 

Table 3. Performances for different greedy methods 

TSP problems 

and criteria 

Greedy methods 

No greedy Half greedy All greedy 

berlin52 

BS 10585.6729±1106.8232 8129.2240±237.4142 8412.0144±385.9223 

CT 15.7656±0.5733 18.5217±0.5972 17.9673±0.5939 

UR 3.4087±0.6340 9.3809±3.4942 1.8345±0.3447 

PD 6.0483±0.7837 11.0890±0.6490 4.4932±0.3429 

bier127 

BS 280361.0292±38778.3636 170839.6973±6631.1940 154413.8013±6596.8629

CT 70.9550±2.7362 74.0825±2.6817 74.3248±2.7873 

UR 3.8659±1.0352 2.5370±0.2490 3.0678±0.4246 

PD 14.7046±2.1019 23.1495±1.0181 14.1370±0.7819 
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Table 3. (Continued) 

TSP problems 

and criteria 

Greedy methods 

No greedy Half greedy All greedy 

ch130 

BS 17089.9077±2858.6011 10047.0577±455.0622 8882.2923±512.9533 

CT 75.2717±2.9781 77.9531±2.8970 76.8778±2.9550 

UR 4.3072±1.0183 2.6275±0.2998 3.2770±0.3907 

PD 15.3682±2.3285 22.7481±1.1188 14.2228±0.8272 

kroA150 

BS 85580.4285±15715.5394 51588.1972±2706.9540 43546.5763±2638.0468 

CT 96.3781±3.7218 99.2130±3.6143 98.7319±3.5164 

UR 4.8259±1.2510 2.7287±0.2461 3.517±0.4314 

PD 19.5021±2.8978 26.3202±1.3272 17.3495±1.2022 

kroA200 

BS 120597.2931±19113.1388 81249.7957±4577.1808 67858.3109±3900.7881 

CT 163.4809±6.3209 168.3205±6.5453 171.4500±6.3965 

UR 5.0262±1.3217 2.4959±0.1710 3.1838±0.3630 

PD 26.0689±3.4488 31.5255±1.7917 22.8020±1.6054 

kroC100 

BS 48296.9643±8517.3143 27258.1630±1297.3684 26887.4022±2224.6761 

CT 46.8898±1.9041 49.8877±1.9892 48.6789±1.8294 

UR 4.5670±0.8556 3.6354±0.3905 3.5355±0.5597 

PD 12.9923±1.7231 20.4741±0.9838 11.0619±0.6984 

lin105 

BS 33257.0403±5520.1857 19600.8860±1003.3149 18571.1600±1406.4064 

CT 51.3555±1.7913 53.6700±1.8817 53.8862±1.8962 

UR 4.2091±0.8561 3.2621±0.3396 2.9983±0.4262 

PD 14.3067±1.9913 21.8738±1.0320 12.2363±0.7913 

lin318 

BS 235023.9477±33480.0785191804.1596±10477.6094164103.4505±8397.6502

CT 393.0959±15.4872 399.2556±15.6145 394.9992±18.4682 

UR 5.3975±1.5245 2.0946±0.1337 2.6318±0.2295 

PD 40.4241±5.3767 42.7564±2.5368 35.7467±2.7509 
 
Similarly with local optimization, COOBBO algorithm with no greedy requires the 

least CPU time among all tested methods and the performance improvement of other 
measures will also be very significant at a lower cost (small increases in CPU time in 
this paper). Except berlin52 problem, all greedy can get an advantage over half greedy 
on the degree of improvement. These data fully demonstrate that, greedy method is 



 Enhancing the Performance of Biogeography-Based Optimization 413 

very helpful to improve algorithm performance in discrete domain, and the overall 
trend increases rapidly when more candidate solutions survive and reproduce over 
generations by greedy technique. 

For the point of CPU time required, the distinction between all greedy and half 
greedy is not much at all, and even there are four benchmark problems with no sig-
nificant difference in statistics ((bier127, kroA150, lin105 and lin318; highlighted in 
boldface font) as seen from Table 4. In brief, hybrid COOBBO algorithms can be 
improved efficiently via embedding all greedy approach, if algorithm performance 
and computation time are considered simultaneously. 

Table 4. Performance comparison on CT of different greedy methods 

 Half greedy All greedy Total 

Half greedy - 
0.000; 0.532; 0.010; 0.341; 

0.001; 0.000; 0.419; 0.080 
4+4 

All greedy * -  
 
For most of benchmark problems, no greedy has the highest UR and the worst al-

gorithm performance among three methods, for the same reason as mentioned before. 
However the utilization rate of opposite paths of all greedy is higher than that of half 
greedy, which may be helpful to improve its performance. 

Surprising though, half greedy has the highest population diversity among three 
measures. For this improvement technique, candidate solutions are derived from two 
sources. The first half evolves in the normal way and the second half suffers from 
extra greedy process. Hybrid COOBBO algorithm may obtain a better balance of 
exploitation and exploration with the help of this extra operation. At the same time, 
for all greedy, the whole population of candidate solutions suffers from extra greedy 
process and then its population diversity decrease instead of increase like it should. 

4 Conclusion 

In this paper, we focus on the impact and influence of various modified measures to 
enhance the performance and efficiency of COOBBO algorithm in discrete domain. 
These methods include crossover approach, local optimization approach and greedy 
approach. Experiment results illustrate clearly that, compared to other sets of algo-
rithm parameters, the combination model of “inver-over crossover + 2-opt local  
optimization + all greedy” can improve much of the overall performance without 
increasing complexity and overhead. 

As we all known, combinatorial problems are challenging benchmarks for heuristic 
algorithms. In near future research, we should introduce and test several new methods 
to create hybrid soft algorithms and then extend our research to real world applica-
tions, such as vehicle routing problems. For population-based intelligent algorithms, 
population diversity is undoubtedly one of the most important indicators of a popula-
tion state. With the exception of edge entropy used in this paper, various measures 
should be proposed to evaluate population diversity. 
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Abstract. In this paper, an analysis method of electroencephalograph (EEG) 
based on the motor imagery is proposed. Butterworth band-pass filter and arti-
fact removal technique are combined to extract the feature of frequency band of 
ERD/ERS. Common spatial pattern (CSP) is used to extract feature vector. 
Support Vector Machine (SVM) is used for signal classification of motor im-
agery EEG. To improve classification performance, the parameters of SVM are 
optimized by a new bio-inspired method called Magnetic Bacteria Optimization 
Algorithm (MBOA). Experimental results show that MBOA has good perfor-
mance on the problem of SVM optimization and obtain good classification re-
sults on EEG signals. 

Keywords: Magnetic bacteria optimization algorithm · Support vector machine 
· Classification · EEG · Motor imagery 

1 Introduction 

As one kind of the brain computer interface (BCI) control signal, sensorimotor 
rhythms have been investigated extensively in BCI research[1]. Well-known BCI 
systems such as Wadsworth[2], Berlin[3], or Graz[4] BCIs employ sensorimotor 
rhythms as control signals. Sensorimotor rhythms are related to motor imagery with-
out any actual movement. They comprise mu and beta rhythms, which are oscillations 
in the brain activity localized in the mu band (7–13 Hz), also known as the Rolandic 
band, and beta band (13–30 Hz), respectively. The amplitude of the sensorimotor 
rhythms varies when cerebral activity is related to any motor task although actual 
movement is not required to modulate the amplitude of sensorimotor rhythms. 

In BCI system, given the inter and intrapersonal variations in EEG, to obtain satis-
factory performance, the design of the classifier is often critical. 

Support vector machine (SVM) is an extensively used machine learning method 
with many biomedical signal classification applications. Indeed, the SVM classifier 
exhibits a promising generalization capability. Several works have introduced SVM 
into the EEG classification application [5-10]. Meanwhile, the optimization mechanism 
involves kernel parameter setting in the SVM training procedure, which significantly 
influences the classification accuracy. The optimization of SVM classifier based on 
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bio-inspired optimization techniques has proved successful in a number of different 
application fields. More recently, Subasi proposed the PSO optimized SVM in an at-
tempt to classify the EMG signals for diagnosis of neuromuscular disorders [11]. Ay-
din proposed a multi-objective artificial immune algorithm to optimize the kernel and 
penalize parameters of SVM[12]. Fei used the particle swarm optimization-based SVM 
to study the diagnosis of arrhythmia cordis[13]. Fernandez applied the genetic algo-
rithm-optimized SVM method in drug design quantitative structure–activity relation-
ships (QSAR) modeling [14]. Nevertheless, in some of the studies conducted before, 
there was no similar optimization of SVM applied to motor imagery EEG classifica-
tion. So our study attempts to increase the EEG signal classification accuracy rate by 
utilizing a novel approach called Magnetic Bacteria Optimization Algorithm (MBOA) 
to optimize the parameters of SVM. 

Magnetic Bacteria Optimization Algorithm (MBOA) is a new intelligent optimi-zation 
algorithm [15]. The algorithm is inspired by magnetic bacteria, simulating magnetic bac-
teria mechanism which can move along the magnetic field lines. Lots of experiment re-
sults show that the MBOA can effectively solve optimization problems [16-21]. 

We adopted adaptive EOG artifact removal and Common Spatial Patterns (CSP) 
[22] for the EEG preprocessing and feature extraction process, respectively. All the 
algorithms were applied to the datasets collected from 2008 BCI Competition which 
are consisted of four different motor imagery tasks. Finally we apply our novel clas-
sifiers to the feature to evaluate the performance. For comparison, the other bio-
inspired optimization techniques, such as Genetic Algorithm (GA) [23], Particle 
Swarm Algorithm (PSO) [24], Artificial Bee Colony(ABC)[25], Biogeography Based 
Optimization(BBO)[26] are also used to optimize the parameters of SVM and to test 
the classification accuracy.  

2 Data Description 

Experiment data comes from the 2008 International BCI competition dataset (Graz 
data A) [27].This data set consists of EEG data from 9 subjects. The BCI paradigm 
consisted of four different motor imagery tasks, namely the imagination of movement 
of the left hand (class 1), right hand (class 2), both feet (class 3), and tongue (class 4). 
Two sessions on different days were recorded for each subject. Each session is com-
prised of 6 runs separated by short breaks. One run consists of 48 trials (12 for each of 
the four possible classes), yielding a total of 288 trials per session. 

At the beginning of each session, a recording of approximately 5 minutes was per-
formed to estimate the EOG influence. The recording was divided into 3 blocks: (1) 
two minutes with eyes open (looking at a fixation cross on the screen), (2) one minute 
with eyes closed, and (3) one minute with eye movements. 

In addition to the 22 EEG channels, 3 monopolar EOG channels were recorded and 
also sampled with 250 Hz. The EOG channels are provided for the subsequent appli-
cation of artifact processing methods. These channels were bandpass filtered between 
0.5 Hz and 100 Hz (with the 50 Hz notch filter enabled), and the sensitivity of the 
amplifier was set to 1 mV. 
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All data sets are stored in the General Data Format for biomedical signals(GDF). 
The GDF files can be loaded using the open-source toolbox BioSig. 

Digital Filter is a kind of digital signal processing device, which has transmission 
characteristic. For motor imagery ERD / ERS phenomena, this study uses 10-27Hz 
Butterworth band-pass filter to filter each channel of EEG data. 

3 SVM Optimized by MBOA 

3.1 SVM and MBOA 

Support vector machine is a popular classifier used in many classification problems. 
Given the training sample of instance-label pairs ( , )i iyx , 1,...,i l= , i

n∈x R , 

{1, 1}iy ∈ − , support vector machines require the solution of the following primal 

problem[16]: 

, ,
1

1
min

2

l
T

iw b
i

C
ξ

ξ
=

+ w w
 

. 
(1) 

Subject to ( ) 1T
i i iy b ξ+ ≥ −w x , 0,iξ ≥  1,...,i l= , where 0C >  is the penalty 

parameter of the error term. 
The parameters of support vector machines with Gaussian kernel refer to the error 

penalty parameter C  and the Gaussian kernel parameter γ , namely which is para-

meters ( , )C γ . 

Magnetic bacteria optimization algorithm (MBOA) is a new optimization algo-
rithm, inspired by the behavior of magnetic bacteria. MBOA obtains the optimal solu-
tion by regulating the moments of cells continually by the process of MTS generation, 
MTS expanding and MTS replacement. When the MBOA obtains the optimal solu-
tion, it corresponds to the state that when the moments of all cells are oriented in the 
geomagnetic field. 

The MBOA includes the following steps: 

Initialization. The initial population is filled with N  number of randomly generated 

n -dimensional real-valued vectors. Let 0 0 0 0
1 2( , ,..., )i i i inX x x x=  represents the ith cell 

(for t=0) initialized randomly. Then each MTS 0
ijx  in a cell 0

iX  is generated as fol-

lows: 

0
min max min( )ij j j jx x rand x x= + × −  . (2) 

where 1, 2,...,i N= , 1,2,...,j n= . max jx and min jx are upper and lower bounds for the 

dimension j , respectively. rand  is a random number between 0 and 1. 

Interaction Energy Calculation. In this step, for enhancing the search ability of the 
algorithm and producing diverse solutions in the algorithm, it is not necessary to fol-
low the biology strictly. So, at first we randomly select a cell rX ( r ∈ [1, N ] ) in the 
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population. t  is the number of generation. The distance of two cells iX  and rX ,

( )1 2, , ,t t t t
i i i inD d d d=  , is calculated as follows: 

t t t
i i rD X X= −  . (3) 

From (3), we can obtain a distance vector matrix 
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 from the population. Then the 

interaction energy 1 2( , ,..., ,..., )t t t t t
i i i ij inE e e e e=  is calculated as follows[15]: 
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Where 1c  and 2c  are constants. t
pqd  and t

p qd ′ ′ stand for randomly selected va-

riables from tD . , [1, ]p p N′∈ , , [1, ]q q n′∈ , p p′≠ , q q′≠ . 

MTSs generation, moments are generated as follows[15]: 
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where B  is  the magnet ic  field  s trength.  Suppose  

1 2( , ,..., ,..., )t t t t t
i i i ij inM m m m m= ,  we can obtain a moment vector  matr ix 

1 2( , ,... ,..., )t t t t t
i NM M M M M ′=

11 12 1

21 22 2

1 2

t t t
n

t t t
n

t t t
N N Nn

m m m

m m m

m m m

 
 
 =
 
 
  




   


.  

The MTSs are generated as follows: 

t t t
ij ij lsv x m rand= + ×  . (6) 

where t
lsm  stands for the moment of a randomly selected MTS from tM . [1, ]l N∈ , 

[1, ]s n∈ . 

MTSs Generation. After MTSs generation, the MTSs in the cell are regulated as 
follows: 

We set a magnetic field strength probability as 0.5. 
If rand>0.5, the MTSs in the cell are regulated and their moments are as follows: 

( )t t t t
ij cbestj cbestj iju v v v rand= + − ×  . (7) 
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Otherwise, they are regulated as follows. 

( )t t t t
ij ij cbestj iju v v v rand= + − ×  . (8) 

where t
cbestjv  stands for the j th dimension of current best cell t

cbestV  in the current 

generation. 

MTSs Replacement. After the MTSs regulation, we set a replacement probability 
0.5, some worse cells with worse moments are replaced by the following way : 

If rand>0.5, 

1t t
ij l jx m rand+

′= ×  . (9) 

where l ′  is a random number between 1 and N . t
l jm ′  stands for the moment of a 

randomly selected MTS from t
lM ′ . 

In general, we replace the last 1/5 of population by new generated MTSs. 
From the process of MBOA, it can be seen that the MBOA has different steps from 

the other popular natural computing mentioned above. The distance matrix is used to 
generate diverse MTSs with good moments. MTSs regulation guides the generated 
MTSs to the better MTS in current generation. This step not only makes the other 
relative worse MTSs close to the better one and thus the algorithm has good global 
search ability, but also enhance the local search ability. MTSs replacement is used to 
enhance the diversity of solutions in one generation. 

3.2 Procedures of MBOA Optimizing SVM 

The procedure of optimizing the parameters of SVM based on MBOA is as follows: 
 Select support vectors from sample vectors to construct sample training set X . 
 Use each support vector in sample training set to obtain a set of SVM parame-

ters, and obtain the population X of cells. 
 Calculate the distance matrix D  of X . 
 Calculate the interaction energy E  of cells and obtain the moments of cells. 
 MTS generation according to Eq.(4) and Eq.(5). 

 Use the classification accuracy 2

1

1
( ) ( )i ii

F x f y
m

∞

=
= −  as the fitness of a cell 

and calculate the fitness of each cell. 
 MTS regulation according to Eq.(7),(8) and calculate the fitness of each cell. 
 MTS replacment according to Eq.(9) and calculate the fitness of each cell. 
 If termination criteria is met, the algorithms stops, output the results. It not, it 

returns step three. 

4 Experiments and Results 

In this section, we use MBOA to optimize the SVM penalty factor C  and kernel 
parameter g . The parameters of MBOA are given below: 
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MBOA setting: In the MBOA, only the magnetic field B  needs to be set up as a 
parameter,the earth magnetic field strength B =3, and parameters 1 50C = , 

2 0.0003C = . 

In order to show the performance of MBOA, we compare MBOA with some other 
popular optimization algorithms including GA, PSO, ABC and BBO. A GA is a me-
thod that is based on natural selection in the theory of biological evolution. PSO is 
based on the swarming behavior of birds, fish, and other creatures. ABC is an optimi-
zation algorithm inspired by the behavior of bee colony. BBO is an optimization me-
thod based on biogeography. 

The parameters of them are set as follows: 
GA Settings: In our experiments, we employ a real number coded standard GA 

having evaluation, fitness scaling, seeded selection, random selection, crossover, mu-
tation and elite units. Single point crossover operation with the rate of 0.8 is em-
ployed. Mutation operation restores genetic diversity lost during the application of 
reproduction and crossover. Mutation rate in our experiments is 0.01. 

PSO Settings: In our experiments cognitive and social components are both set  
to 2. Inertia weight, which determines how the previous velocity of the particle influ-
ences the velocity in the next iteration, is 0.8. 

ABC Settings: Limit=100, which is a control parameter in order to abandon the 
food source. 

BBO Settings: For BBO, we use the following parameters: habitat modification 
probability is 1, immigration probability bounds per gene are [0,1] , step size for nu-
merical integration of probabilities, maximum immigration and migration rates for 
each island are 1 , and mutation probability is 0. 

For all the algorithms, set the size of the population 20, the number of iterations 
20.Search range of optimize parameters C  and g  is set as [0.1, 1000]. 

We selects 2008 BCI competition four categories motor imagery EEG data A01, 
A03, A07, A09 as training and test sets. The tendency results of classification are 
shown in Fig.1, 2, 3 and 4. The accuracy results of classification are shown in Table1, 
2, 3 and 4 respectively. 

 

 

Fig. 1. Fitness curve corresponding to each algorithm of EEG dataset A01 
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Table 1. The optimal value of EEG dataset A01(%) 

Algorithm MBOA PSO GA ABC BBO 

Accuracy 69.4444 60.4167 66.6667 69.4444 56.2500 

 

Fig. 2. Fitness curve corresponding to each algorithm of EEG dataset A03 

Table 2. The optimal value of EEG dataset A03(%) 

Algorithm MBOA PSO GA ABC BBO 

Accuracy 76.7361 70.4861 65.6250 76.3889 52.0833 

 

Fig. 3. Fitness curve corresponding to each algorithm of EEG dataset A07 
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Table 3. The optimal value of EEG dataset A07(%) 

Algorithm MBOA PSO GA ABC BBO 

Accuracy 67.7083 64.2361 59.3750 64.2361 61.4583 

 

Fig. 4. Fitness curve corresponding to each algorithm of EEG dataset A09 

Table 4. The optimal value of EEG dataset A09(%) 

Algorithm MBOA PSO GA ABC BBO 

Accuracy 66.6667 65.9722 64.9306 65.9722 47.9167 

 
From the Fig.1, 2, 3 and 4, compared with GA, PSO, ABC and BBO, it can be seen 

that MBOA has the fastest convergence speed for the classification the SVM parame-
ters. And it obtains the highest classification accuracy of the motor imagery EEG data 
A01, A03, A07, A09, respectively. 

5 Conclusions 

In this paper, a method of optimizing the parameters of SVM based on MBOA is 
proposed. Then it is used to classify the 2008 BCI competition four categories motor 
imagery EEG data A01, A03, A07, A09. The classification accuracy is used as fitness 
function. The results are compared with those of PSO, GA, ABC, BBO. The experi-
mental results show that MBOA can quickly converge on the same number of itera-
tions and obtain the highest classification accuracy in all the algorithms. So MBOA 
can effectively solve optimization problems in EEG signal processing. In future, 
MBOA can be improved in further to obtain better results. 
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Abstract. Cuckoo search algorithm (CSA) experiences an upsurge in popularity 
since its invention due to its effectiveness in solving optimization problems. In 
this paper, a new CSA was proposed, in which the two-parent crossover opera-
tor was integrated in order to alleviate the deficiency of lack of information ex-
change. In addition, an adaptive step size strategy was introduced. The resultant 
algorithm was validated on optimizing benchmarking functions and a real-
world problem. The experimental analysis highlighted the faster convergence 
ability of the proposed algorithm to the optimal solution. 

Keywords: Cuckoo search algorithm · Two-parent crossover · Swarm intelli-
gence · Numerical optimization 

1 Introduction 

Swarm intelligence (SI) - an emerging research field of artificial intelligence, consists 
of particles that are capable of accomplishing autonomous tasks by means of self-
organization and cooperation principles among the particles within an environment 
[1]. Inspired by how nature adapts to challenging circumstances, SI has roots in multi-
tudinous domains, particularly for problems with optimization at the heart. Particle 
swarm optimization (PSO), perhaps, is the most notable representative of SI based 
optimization technique. Each particle in PSO contributes its individual best expe-
rience to the swarm, leading to the convergence towards the optimality [2]. Other bio-
inspired optimizers with similar searching strategy as in PSO are artificial bee colony 
[3], and ant colony optimization [4], to name but a few.  

Cuckoo search algorithm (CSA), a new SI optimization technique, has been added 
to the pool recently [5]. Comprising of Lévy flight and brood parasitism behavior of 
certain cuckoo species, CSA has shown an obvious predominance in solving problems 
in the presence of high dimensionality and non-linearity, ranging from fault diagnosis, 
pattern recognition, job scheduling, software testing, data fusion, network design to 
image processing problems [6]. Despite its great promise of faster convergence but 
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with fewer control parameters, a further challenge in CSA is to improve its efficiency, 
in terms of accelerating the convergence speed and avoiding the local optima. 

In this regard, Ong enumerated considerations for CSA, which, the adaptive step 
size adjustment strategy was formed, for fast convergence purpose [7]. Walton ap-
proached the CSA through the addition of information exchange among the elites  
in order to generate a better offspring solution [8]. As well, Li et al. presented an or-
thogonal learning design framework in balancing the exploitation and exploration in 
CSA [9]. Wang et al. added a harmony search based mutation operator to CSA [10], 
for expediting the convergence rate of CSA. Zhang et al. developed dimensional en-
tropy gain method to CSA; where a punishment was employed to the inferior solution 
in their topology in order to improve the quality of offspring [11].  

While prior researches have identified possible contributions to the existing CSA 
framework, this work has attached its improvement from two aspects: (i) adaptive 
search strategy, where the step size of Lévy flight is updated adaptively. The step size 
should neither extremely narrow nor extremely wide in preventing premature or slow 
convergence; (ii) two-parent crossover operator, which, the information exchange 
between good solutions is allowed, considering the possibility that a high quality of 
potential solution can be generated. The modified algorithm was then tested through 
the optimization of benchmark functions, as well as a real world application problem.  

The paper is organized as follows. Section 2 presents the framework of the stan-
dard CSA. Its limitations are then discussed in Section 3 and subsequently, the pro-
posed modified CSA, namely, adaptive cuckoo search algorithm with two-parent 
crossover operator (ACSAC), is described. In Section 4, the analysis of comparative 
results for both benchmark functions and real-world problem are performed and last-
ly, conclusions are summarized in Section 5. 

2 Cuckoo Search Algorithm 

CSA was developed by Yang and Deb based on the obligate brood parasitism en-
gaged by some cuckoo species [5]. Cuckoos, such as the ani and Guira cuckoos, em-
ploy unique reproduction strategy in which the female cuckoos lay their fertilized 
eggs in the nest of other species. The unwitting host birds are fooled due to the high 
resemblance between the cuckoo eggs and the host eggs. The host birds, somehow, 
evict the parasitic egg if it is spotted, and this incites the cuckoos to evolve better 
mimicry. The ongoing arms race between cuckoo egg mimicry opposed to host adap-
tion triggers the formulation of CSA [5]. 

Such simulation, similarly to other SI based optimization techniques, starts with of 
a pool of randomly generated initial potential solutions (the host nests), which is cha-
racterized by: 

0 1, min, max, min,x x ( , )(x x )i j j j jrand= + −  ,                                  (1) 

where 1 2, , ...,i n= , 1 2, , ...,j d= , while max,x j and min,x j denote the upper bound and 

lower bound of dimension j, respectively. The number of potential solutions is given 
by n while d represents the dimension of underlying problem.  
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The fitness of each possible solution is then evaluated. The solution with high fit-
ness value is considered as showing high similarity with the host egg and thus, it is 
more likely to be passed on to next iteration. The host birds, anyhow, detect the cuck-
oo eggs with a discovery probability 0 1[ , ]ap ∈ . If this is the case, the host nests are 

destroyed and new nests are built in other places, which is characterized by: 

1
, ,x x ( )t t

i j i j Lα λ+ = +  ,                                                    (2) 

1

1 2

1 2

1 2 2

/

( )/

( ) sin( / )
( )

[( ) / ]
L

λ

λ
λ πλλ

λ λ −

Γ + ×=
Γ + × ×

 ,                                       (3) 

Here, t represents the current iteration number, Γ is the gamma function while λ is a 
constant (1 3λ< ≤ ). The step size 0α > controls the scale of Lévy flight search pat-
terns ( )L λ , in which it ensures that the distribution of new solution is neither too nar-

row nor too wide. The fixed step size 1α = is used in CSA [5].    

3 Adaptive Cuckoo Search Algorithm with Two-Parent 
Crossover  

Scrutinizing the CSA revealed that there is lack of information exchange in its search-
ing process. Each cuckoo moves independently without interaction. The cuckoo nei-
ther memorizes its individual or global best location nor shares its best experience 
with others. In this regard, the two-parent crossover operator that allows the informa-
tion exchange among the potentially good solutions is proposed, considering the pos-
sibility that a better new solution might be produced from this group of elites. In the 
proposed ACSAC, 25% of the solutions with highest fitness values are considered as 
elite. The crossover among two randomly chosen top eggs from this group is per-
formed by [12]: 

       
1

1 1 2

1
2 2 1

1

1

,

,

x _ ( ) _

x _ ( ) _

t t t
i

t t t
i

rand top egg rand top egg

rand top egg rand top egg

+

+

= × + − ×

= × + − ×
                           (4) 

where rand is a random value from a uniform distribution over the interval 0 1[ , ] . 

On the other hand, the step-length of Lévy flight α should be assigned judiciously 
to maintain an appropriate balance between global and local searching. If the generat-
ed new solutions are distributed widely, the search may experience slow convergence, 
as the new solutions may be located outside the search space. If the new solutions are 
generated in narrower regions than previous, it may lose its diversity. An adjustable 
step size α , in general, is preferable. Intensive search around the regions with high 
survivability should be performed, since those regions, probably, contain the optimal 
solutions. In contrast, more aggressive search approach seems reasonable if the  
current habitat quality is poor, in order to improve its diversity. Thus, the second  
modification in the ACSAC is to update the step size adaptively according to: 
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Algorithm 1. Adaptive Cuckoo Search Algorithm with Two-Parent Crossover 
Begin 
Generate initial population of n host nest    

Define minimum Lévy flight step size and initial Lévy flight step size   

Evaluate the fitness function     

       while (iteration < Max Generation) 
                 for all top eggs 
                     Generate a cuckoo egg using (4) 

                     Evaluate the fitness   

                 end for  
                 for all non-top eggs 
                     Generate a cuckoo egg using (2) and (5) 

                     Evaluate the fitness   

                 end for 
                 Choose a nest i among n host nest randomly 
                 if (  ) (for minimization problem) 

                     Replace with   

                     Replace with   

                 end if  
                 Abandon a fraction of the worst nests 

                 Generate new nests randomly to replace nests lost 
                 Evaluate the fitness of new nests 
       end while 
End 

( )( )α α α γ= + 01 tanh / /t
L bestF t  ,                                                 (5) 

where Lα , 0α and t are the predefined minimum step size, initial step size, and t-th 

iteration number, respectively. tanh( )⋅ is the hyperbolic tangent, γ is the best fitness 

value in the initial population, and t
bestF represents the best fitness in the t-th iteration.  

As shown in (5), the rate of fitness improvement over the best solution in the initial 
population is denoted by / t

bestFγ , which controls the scale of Lévy flight. A more 

intense exploitation around the current solution is undertaken whenever an improve-
ment in terms of fitness is seen. The new cuckoo egg is distributed widely if the  
current best fitness value is comparative poorer than the best fitness value in initial 
population, in order to further diversify the distribution. Assuming that the cuckoo 

eggs are located far from the optimal solutions initially, the term 0 / tα is included  

 

, 1,2,...,xi i n=

minα 0α
( )xi iF f=

x j

( )xj jF f=

x j

( )xj jF f=

j iF F<
xi x j

iF jF
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in (5) to prompt more thorough exploration at the beginning. As the number of gener-

ation t increases, the value of 0 / tα is gradually decreases, assuming that the cuckoo 

eggs are now approaching optimal solution. In this case, more localized search should 
be performed. The steps involved in the ACSAC are shown in Algorithm 1.    

4 Numerical Simulations 

4.1 Benchmark Problems 

Benchmark functions taken from the optimization literature were used to analyze the 
feasibility of the ACSAC, as described in Table 1. The population size was chosen as 
20. The simulations were repeated for 30 trials. The searching for global optimum 
continued unless the best fitness value was below the threshold value of 510ξ −≤ . At 
each run, the Euclidean distance between the obtained best solution coordinates and 
the known global optima was measured. The results from 30 trials were then averaged 
and compared against the standard CSA. In addition, the two-tailed t-test was applied 
in order to validate the statistical significance of the obtained performances. Table 2 
summarizes the performances of CSA and ACSAC. The iteration curves were de-
picted in Fig. 1 and Fig. 2, for the average results from 30 independent runs.  

As shown in Fig.1, both algorithms demonstrated the behavior of exponential-like 
decrease of the distance error as the computation continued; however, the  
CSA needed more iteration steps for convergence, as presented in Table 2.  
More encouragingly than the CSA, the ACSAC reduced the number of iterations 
needed in converging to optimality from 1753 to 1222 on average, exhibited an im-
provement of 30%. It can be noticed that both algorithms took short iterations in con-
vergence, attributed to that the De Jong’s function is one of the simplest unimodal 
function. 

For the Rosenbrock’s function, the comparative result reaffirmed the superior con-
vergence characteristic of the ACSAC, demonstrated an improvement of 30% in con-
vergence rate as compared to CSA. The fastest allowable value needed by CSA in 
converging to optimality was 23218 iterations, and conversely, the slowest allowable 
value needed by ACSAC in reaching the known optimal was 22701 iterations, which 
was 8000 less iterations than the standard CSA.  

Table 1. Problem description and parameter setting of benchmark function 

Function Definition Dimension d Search 
Space 

Global 
Optimum 

f(x*) 

Optimum 
Point 

x* 
De Jong 

2

1

( )x
d

i
i

f x
=

=  
50 [-5.12,5.12] 0 (0,0,…,0) 

Rosenbrock 1
2 2 2

1
1

( ) [(1 ) 100( ) ]x
d

i i i
i

f x x x
−

+
=

= − + −
  

10 [-100,100] 0 (1,1,…,1) 
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Fig. 1. De Jong’s function: Convergence 
characteristic performance of standard CSA 
and the proposed ACSAC 

Fig. 2. Rosenbrock’s function: Convergence 
characteristic performance of standard CSA 
and the proposed ACSAC 

Table 2. Performance comparison of CSA and the proposed ACSAC (in terms of number of 
iterations needed in converging to optimality) 

Function CSA  ACSAC Statistically 
Significant? Best Worst Average Time,s  Best Worst Average Time, s 

De Jong 1673 1815 1753 2.14  1104 1317 1222 2.46 Yes 
Rosenbrock 23218 34916 27635 34.46  11328 22701 19687 31.77 Yes 

Table 3. Performance comparison of ACSAC with other optimization methods 

Function Generation Average Best Fitness Value  
GA PSO ACSAC 

De Jong 1 334.35 334.12 337.01 
 500 17.79 0.27 0.0050 
 1000 7.65 0.27 5.85e-05 
 1500 4.52 0.27 9.97e-07 
 2000 2.96 0.27 1.80e-08 

Rosenbrock 1 5.54e+09 1.79e+10 2.37e+09 
 500 7.34e+04 7.93e+09 5.06e+07 
 1000 7.31e+04 4.30e+08 9.93e+06 
 1500 7.31e+04 3.02e+05 1.88e+06 
 2000 7.31e+04 8.97e+04 9.90e+04 

 
Apart from the performance assessment under fixed tolerance rate, another com-

monly used approach – comparison of best fitness value for a fixed number of itera-
tion, was adopted. The convergence characteristics of genetic algorithm (GA) and 
PSO were compared against with the ACSAC, too. Table 3 presents the average best 
fitness values from 30 independent trials at iteration number of 1, 500, 1000, 1500 
and 2000 for all considered optimization methods.  

It is pertinent to note that for De Jong’s function, both GA and PSO showed fast 
convergence initially; however, merely marginal or no improvement in terms of the 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12

14

16

18

20

Iteration Number

E
uc

lid
ea

n 
D

is
ta

nc
e 

F
ro

m
 K

no
w

n 
G

lo
ba

l O
pt

im
a

 

 

CSA

ACSAC

50 100 150 200 250 300 350 400 450 500

20

40

60

80

100

120

Iteration Number

E
uc

lid
ea

n 
D

is
ta

nc
e 

F
ro

m
 K

no
w

n 
G

lo
ba

l O
pt

im
a

 

 

CSA

ACSAC



 Adaptive Cuckoo Search Algorithm with Two-Parent Crossover 433 

best fitness values can be noticed as iteration proceeded, which might be due to these 
algorithms were trapped in local optima. Only the ACSAC has reached the optimality 
at iteration number of 1000, where the GA and PSO were failed in this regard. Fur-
thermore, the best fitness values of both GA and PSO were not below the threshold 
value of 510ξ −≤ , although maximum number of iteration is set to 100,000.    

For the Rosenbrock’s function, both GA and PSO attained better best fitness value 
than ACSAC at iteration number of 2000; however, both failed to converge to opti-
mality in all 30 independent runs, even the maximum number of generation is set to 
100,000. In contrast, the ACSAC was able to reach the optimal solution after 19,687 
iterations averagely.       

4.2 Real-World Problem – Optimization of Pulp and Paper Properties 

Throughout the pulping process in pulp and paper industry, a marginal change in the 
pulping variables, for instance, the temperature and pressure, may lead to high varia-
tion in pulp and paper properties, for instance, the kappa number and tensile strength. 
The optimization of pulping condition is often a challenging task due to the fact that 
each response has its own optimal experimental condition, and, it is often conflicting 
with each other. For instance, due to fiber degradation, a severe experimental milieu 
should be avoided in order to obtain a satisfying tensile strength, but severe pulping 
condition is preferable in getting a high tear index.  

The data from 27 experimental trials which study the effect of four types of pulp-
ing variables (sodium hydroxide (NaOH), ethanol (EtOH) concentration, temperature 
and time) on the properties of pulp and paper (screened yield, kappa number, tensile 
index and tear index) are presented in Table 4 [13]. The proposed ACSAC is used to 
determine the optimal experimental milieu, in which it aims to maximize the screened 
yield, tensile index and tear index while simultaneously minimize the kappa number. 
The quadratic models which correlate the pulping variables to the response variables 
are formed initially, which are given as [13]: 

228 51 4 66 0 30 0 44 0 19 2 69 1 27ScreenedYield A Et T t A T AY X X X X X X X= − − + − − −. . . . . . .    (6) 

                      
32 2667 36 63 7 60 7 67 3 72 4 20KappaNumber A Et T t A EtY X X X X X X= − − − − +. . . . . .            (7) 

       2 2 2 23 40 4 10 31 60 7 40 8 10 3 10A T Et T A Et T tX X X X X X X X+ + + + + +. . . . . .     

                                             
59 50 14 18 2 34 2 88 2 06 12 50TensileIndex A Et T t A EtY X X X X X X= + − + + −. . . . . .                 (8) 

                 2 2 2 216.21 20.84 8.36 6.05 7.06A T A Et T tX X X X X X− − − − −    

                                    
4 10 0 64 0 18 0 07 0 06 0 60TearIndex A Et T t A EtY X X X X X X= + − + − −. . . . . .                         (9) 

                2 20 80 0 56 0 90 0 56A T T t A EtX X X X X X− − − −. . . .  

where XA, XEt, XT and Xt are the wt% of NaOH, EtOH, temperature and time, respec-
tively. The multi-objectives optimization problem was transformed into a single-
objective maximization problem, in which the objective function was formed as: 
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    _ ScreenedYield TensileIndex TearIndex KappaNumberObjective Function Y Y Y Y= + + −                (10) 

The population size was chosen as 20 and the predefined threshold value of 
1010ξ −≤  is selected. In addition, the obtained best fitness value was compared against 

the results obtained by the wavelet neural networks (WNNs) and the response surface 
methodology (RSM) on the same data. 

The obtained fitness values for the corresponding optimal pulping conditions pre-
dicted by RSM (NaOH, 18.15%; EtOH, 38.62%; T, 165°C; t, 170min), WNNs 
(NaOH, 18.15%; EtOH, 38.12%; T, 165.23°C; t, 167.71min) and ACSAC (NaOH, 
26.20%; EtOH, 19.87%; T, 187.18°C; t, 153.09min) are 295.33, 294.77 and 356.27, 
respectively. It can be concluded that the proposed ACSAC outperformed the others, 
in which a higher fitness value indicates better optimization results, since the problem 
was modeled as maximization problem. 

Table 4. Experimental values of pulping and response variables from 27 trials 

No Experimental Conditions  Experimental Values for the Pulp and Paper 
Properties 

NaOH 
(%) 

EtOH 
(%) 

Temperature 
(ºC) 

Time 
(min) 

 Screened 
Yield 
(%) 

Kappa 
Number 

Tensile 
Index 

(N m/g) 

Tear 
Index 
(mN 
N2/g) 

1 10 45 170 120  28.25 102.0 28.59 2.83 
2 20 45 170 120  28.12 32.6 62.99 4.13 
3 25 60 180 90  24.51 23.3 46.5 3.84 
4 25 60 160 150  22.52 24.9 64.74 4.18 
5 15 30 180 150  32.92 59.6 46.06 3.55 
6 15 60 180 90  31.71 57.5 44.88 3.38 
7 30 45 170 120  25.91 25.4 51.26 3.64 
8 20 45 170 180  29.45 30.9 51.29 3.95 
9 25 30 180 150  24.07 25.4 56.88 3.56 
10 20 45 170 60  28.75 39.5 56.12 4.13 
11 15 60 160 150  28.98 58.7 39.52 3.35 
12 15 30 160 150  31.50 72.7 33.53 2.96 
13 25 30 180 90  25.60 28.1 60.59 4.65 
14 20 45 170 120  29.54 31.7 57.1 4.23 
15 25 30 160 90  25.65 34.6 59.82 4.45 
16 15 60 180 150  32.10 53.0 49.6 3.56 
17 15 30 160 90  29.03 75.1 33.14 3.01 
18 20 45 190 120  26.84 31.6 59.1 4.23 
19 25 60 160 90  25.99 28.5 47.06 3.73 
20 15 60 160 90  30.54 62.5 35.28 3.06 
21 25 60 180 150  23.24 20.2 48.4 3.45 
22 20 15 170 120  26.57 47.0 54.27 3.65 
23 20 75 170 120  28.01 32.0 50.52 3.5 
24 20 45 170 120  27.86 32.5 58.4 3.95 
25 20 45 150 120  27.15 48.8 50.32 3.9 
26 25 30 160 150  25.67 31.0 64.69 4.68 
27 15 30 180 90  31.66 63.3 41.83 3.56 
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5 Conclusion 

The proposed ACSAC, accelerates the convergence characteristic of the standard 
CSA at an acceptable error level, with the utilization of adaptive step size strategy and 
two-parent crossover. The experimental results on benchmark functions of De Jong’s 
and Rosenbrock’s functions are encouragingly, where improvements of 30% in  
convergence rate as compared to standard CSA are noticed. Performance comparison 
with GA and PSO at fixed iteration number demonstrated its superiority from the 
aspect of faster convergence characteristic and free of stagnation. On the other hand, 
the promising capability of the proposed ACSAS was shown through finding the  
optimal experimental conditions of pulping process using a real-world data. 
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Abstract. Constraint Programing is a programming paradigm devoted
to the efficient solving of constraint satisfaction problems (CSPs). A
CSP is a formal problem representation mainly composed of variables
and constraints defining relations among those variables. The resolution
process of CSPs is commonly carried out by building and exploring a
search tree that holds the possibles solutions. Such a tree is dynamically
created by interleaving two different phases: enumeration and propaga-
tion. During enumeration, the variables and values are chosen to build
the possible solution, while propagation intend to delete the values hav-
ing no chance to reach a feasible result. Autonomous Search is a new
technique that gives the ability to the resolution process to be adaptive
by re-configuring its enumeration strategy when poor performances are
detected. This technique has exhibited impressive results during the last
years. However, such a re-configuration is hard to achieve as parameters
are problem-dependent and their best configuration is not stable along
the search. In this paper, we introduce an Autonomous Search frame-
work that incorporates a new optimizer based on Cuckoo Search able to
efficiently support the re-configuration phase. Our goal is to provide an
automated, adaptive, and optimized search system for CSPs. We report
encouraging results where our approach clearly improves the performance
of previously reported Autonomous Search approaches for CSPs.

Keywords: Swarm-based optimization · Nature-inspired algorithms ·
Cuckoo search · Constraint Programming · Autonomous search

1 Introduction

Constraint Programing (CP) is a programming paradigm focused on solving
constraint satisfaction and optimization problems. A main idea behind this
c© Springer International Publishing Switzerland 2015
Y. Tan et al. (Eds.): ICSI-CCI 2015, Part I, LNCS 9140, pp. 436–447, 2015.
DOI: 10.1007/978-3-319-20466-6 46
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paradigm is to model the problems by using variables and constraints. The vari-
ables are the unknowns of the problem and each one has a non-empty domain
of possible values that the variable can take. Constraints represent the rela-
tions among the variables and can be considered as rules that must be fol-
lowed to find the solution. A problem is solved when each variable has taken
a value from its domain and no constraint is violated. The resolution of the
CSP requires the exploration of possible values for each variable. This process
is usually carried out by using a search engine called solver, which attempts to
find a proper solution by building and exploring a search tree. The construc-
tion of the tree can be divided in two main phases: enumeration and propaga-
tion. The first one selects the order in which variables and values are chosen,
while propagation tries to eliminate the values having no chance to reach a
solution.

The enumeration is a key phase on the solving process as the performance
is greatly influenced by the selection of an appropriate enumeration strategy.
However, selecting the proper strategy is known to be hard as the performance of
strategies are commonly unpredictable. Autonomous Search is a new technique
that gives the ability to the search process to be adaptive by automatically
re-configuring its enumeration strategy when poor performances are detected.
The idea is to interleave a set of strategies during the search process, replacing
underperforming strategies by more promising ones. However, such a strategy
re-configuration is hard to achieve as parameters are problem-dependent and
their best configuration is not stable along the search.

In this paper, we introduce an Autonomous Search framework that incorpo-
rates a new optimizer based on Cuckoo Search able to efficiently support the
re-configuration phase. Cuckoo Search is a modern metaheuristic based on the
breeding behavior of certain Cuckoo species that has successfully been used to
solve complex optimization problems [13]. Our goal is to provide an automated,
adaptive, and optimized search system for CSPs. We report encouraging results
where our approach clearly improves the performance of previously reported
Autonomous Search approaches for CSPs. The rest of this work is organized as
follows: Section 2 presents the related work. Section 3 and 4 present the problem
and the proposed solution, respectively. Finally, the experimental evaluation is
illustrated followed by conclusions and future work.

2 Related Work

A preliminary work in Autonomous Search (AS) for CP is the one presented
in [2]. This framework proposed an interesting architecture composed of 4 ele-
ments. The idea is to support the dynamic replacement of enumeration strategies.
The strategies are evaluated via performance indicators, and better ones replace
worse ones during solving time. This preliminary framework was used as basis
of different related works. For instance, a more recent framework based on this
idea is reported in [5]. This approach uses two layers, where an hyper-heuristic
placed on the top-layer manages the selection of strategies of the search engine
placed on the lower-layer. An hyper-heuristic can be seen as a method to choose
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heuristics [8]. In this approach, two different top-layers have been proposed, one
using a genetic algorithm [10,4] and another using a particle swarm optimizer [6].
Similar approaches have also been implemented for solving optimization prob-
lems instead of pure CSPs [9]. In Section 5 we contrast the proposed approach
with the best AS optimizers reported in the literature.

3 Constraint Satisfaction Problems and Autonomous
Search

A constraint satisfaction problem P is formally defined by a triple P = 〈X ,D,C〉
where X is an n-tuple of variables X = 〈x1, x2, . . . , xn〉. D is the corresponding
n-tuple of domains D = 〈d1, d2, . . . , dn〉 such that xi ∈ di, and di is a set of
values, for i = 1, . . . , n. C is an m-tuple of constraints C = 〈c1, c2, . . . , cm〉,
and a constraint cj is defined as a subset of the Cartesian product of domains
dj1 × · · · × djnj

, for j = 1, . . . ,m. A solution to a CSP is an assignment {x1 →
a1, . . . , xn → an} such that ai ∈ di for i = 1, . . . , n and (aj1 , . . . , ajnj

) ∈ cj , for
j = 1, . . . ,m.

As previously mentioned, the enumeration strategy controls which variable xi

and which value from di is selected to build the potential solution. In this work,
we aim at online controlling a set of enumeration strategies which are dynami-
cally interleaved during solving time. Our purpose is to select the most promising
one for each part of the search tree. In order to properly perform this selection,
we employ a quality rank that is governed by a Choice Function (CF) [6]. The
CF is composed of performance indicators and parameters that control the rel-
evance of each indicator within the CF. Considering any enumeration strategy
Sj , the CF f in step n for Sj is defined by equation 1.

fn(Sj) =
l∑

i=1

αifin(Sj) (1)

where l is the number of indicators and αi is the control parameter for indicator
i. The idea is to assign a weight to each indicators in order to increase the
relevance of a given indicator and decreasing another one. This allow the solver
to adjust even more the process of selecting the best strategy.

There are many indicators that can be used, but no one of them is the best to
evaluate the strategies on every problem [6]. We employ the following CF for the
experiments: α1SB + α2In1 + α3In2, where SB is the number of shallow back-
tracks [1] (SB), In1=CurrentMaximumDepth − PreviousMaximumDepth,
and In2=CurrentDepth − PreviousDepth, where Depth refers to the depth
reached within the search tree.

A main problem in this context, is that α parameters are problem-dependent
and their best configuration is not stable along the search. To this end, we
incorporate a Cuckoo Search algorithm, which allow the solver to optimize the
relevance of each indicator during the resolution, thus giving a suitable con-
figuration for each problem. This is done by carrying out a sampling phase
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where the CSP is partially solved to a given cutoff. The performance infor-
mation gathered in this phase via the indicators is used as input data of the
optimizer, which attempt to determine the most successful α parameters for the
CF. This tuning process is very important as the correct configuration of the CF
may have essential effects on the ability of the solver to properly solve specific
CSPs.

4 Cuckoo Search Algorithm

The Cuckoo Search Algorithm is a metaheuristic inspired in the aggressive repro-
duction strategy used by certain species. The problems are modeled by repre-
senting each possible solution as a nest/egg. The cuckoos deposit the eggs on
the random nest and then leave, the best nests are the ones that will carry the
next generation of cuckoos. Each new generation will try to find a better nest
than the previous, but the best one found so far will always be remembered
[13,3,11,12]. The algorithm can be described by three simple rules:

– Each Cuckoo lays one single egg on a random nest
– The better nest will carry the next generation
– There is a change Pa that an egg will be discovered and discarded, in which

case the mother will lay an egg on a different nest

The algorithm can be separated in three different phases.

1. Initial Phase: During this phase the initial solutions are randomly generated
and evaluated.

2. Improving Solutions Phase: A local search is done in an effort to improve
the actual solutions, Lévy Flights are used to generate random walks and if
a new solution found is better than the previous one, then it is replaced.

3. New Solutions Phase: During this phase a percentage defined by the param-
eter Pa of nests are discovered and destroyed, using random permutations
new solutions are created to replace the ones discovered.

4. The second and the third phases are repeated until the best solution is found.

Algorithm 1 depicts the Cuckoo Search procedure employed. We model the
objective function f(x) according to the CF employed, where each unknown xi

of the objective function represents an αi of indicator i. The population size n is
the amount of cuckoos generated (every cuckoo represents a potential solution).
The max generation needs to be defined as how many iterations the algorithm
is going to execute. Finally the pa ∈ [0, 1] represents the chance for a nest to be
discovered and replaced by a new random solution.

The fitness of a potential solution given by Cuckoo Search is tested by using
the indicator IN3, which corresponds to the search space reduction achieved
during last step of the CSP to be solved. A bigger reduction means a smaller
amount of potential solutions to be explored, which in turn means improvement
in search time.
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Algorithm 1. Cuckoo Search Algorithm
1: Objective function f(x), x = (x1, ..., xd)
2: Generate the initial population of n nest/solutions xi (i = 1, 2, ..., n)
3: Evaluate the fitness of solutions w.r.t IN3
4: while (t < MaxGeneration) or (Stop criterion) do
5: Choose a cuckoo/nest/solution randomly amon n (say, j)
6: Generate a new solution by Levy flights (say, i)
7: Evaluate its quiality/fitness Fi

8: if (Fi > Fj) then
9: replace j with the new nest i;

10: end if
11: A fraction (pa) of the worst nests
12: are abandoned and new ones are built using random permutations.
13: Evaluate the quality of the solutions and create a rank.
14: end while
15: Results visualization.

5 Experimental Evaluation

The proposed solution was tested on different problems and also compared to
previous work. We test several instances of well-known CSPs, mentioned as
follows:

– N-Queens problem with n = {8, 10, 12, 20, 50, 75}
– Magic Square problem size n = {3, 4, 5, 6}
– Sudoku puzzle n = {2, 5, 7}
– Knights Tournament with n = {5, 6}
– Quasi Group with n = {3, 5, 6}
– Langford with size n = {2} and k = {12, 16, 20, 23}

The Autonomous search system has been implemented using Java and the
Eclipse constraint programming system. All tests were carried out on an Intel
Core i3-2120 3.30 GHz with 4 GB RAM running Windows 7 32-bits. All problems
are solved until a solution is found or until a maximum amount of step is reached
(65535 steps). When the solver is not able to reach a solution before this bound
it is set to t.o. (time-out). There are 8 variable selection heuristics and 3 value
selection heuristics that combined form a portfolio of 24 enumeration strategies
described in Table 1.

Tables 2, 3, and 4 illustrate the performance in terms of runtime required to
find a solution for each enumeration strategy individually (S1 to S24) and the
proposed approach based on Cuckoo Search (CS). The results greatly validate
our proposal, which is the only one in solving all instances of all problems,
taking the best average runtime. Tables 5, 6, and 7 depict the results in terms of
backtracks, which are similar to the previous ones. This demonstrates the ability
of the proposed approach to correctly select the strategy to each segment of the
solving process. We also contrast the proposed approach with the two previously
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Table 1. Portfolio used

Id Variable ordering Value ordering

S1 First variable of the list min. value in domain
S2 The variable with the smallest domain min. value in domain
S3 The variable with the largest domain min. value in domain
S4 The variable with the smallest value of the domain min. value in domain
S5 The variable with the largest value of the domain min. value in domain
S6 The variable with the largest number of attached constraints min. value in domain
S7 The variable with the smallest domain. If are more than one, min. value in domain

choose the variable with the bigger number of attached
constraints.

S8 The variable with the biggest difference between the smallest min. value in domain
value and the second more smallest of the domain

S9 First variable of the list mid. value in domain
S10 The variable with the smallest domain mid. value in domain
S11 The variable with the largest domain mid. value in domain
S12 The variable with the smallest value of the domain mid. value in domain
S13 The variable with the largest value of the domain mid. value in domain
S14 The variable with the largest number of attached constraints mid. value in domain
S15 The variable with the smallest domain. If are more than one, mid. value in domain

choose the variable with the bigger number of attached
constraints.

S16 The variable with the biggest difference between the smallest mid. value in domain
value and the second more smallest of the domain

S17 First variable of the list max. value in domain
S18 The variable with the smallest domain max. value in domain
S19 The variable with the largest domain max. value in domain
S20 The variable with the smallest value of the domain max. value in domain
S21 The variable with the largest value of the domain max. value in domain
S22 The variable with the largest number of attached constraints max. value in domain
S23 The variable with the smallest domain. If are more than one, max. value in domain

choose the variable with the bigger number of attached
constraints

S24 The variable with the biggest difference between the smallest max. value in domain
value and the second more smallest of the domain.

reported AS systems for CP, one supported by a genetic algorithm (GA) [6] and
the other one supported by a particle swarm optimizer (PSO) [7]. Table 8 depicts
solving time and number of backtracks required by GA and PSO in contrast with
our proposal. This comparison shows that CS and PSO outperforms GA, in
terms of number of problems solved and backtracks needed to successfully reach
a solution. Moreover, considering runtime, the CS algorithm based optimizer
performs notably better than its competitors. A graphical comparison can be
seen in Figures 1 and 2.
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Table 2. Runtime in ms for strategies S1 to S8

Strategies
Problem S1 S2 S3 S4 S5 S6 S7 S8

Q-8 5 5 5 4 2 4 4 2
Q-10 5 8 3 4 4 5 3 4
Q-12 12 11 11 11 13 14 11 10
Q-20 20405 4867 20529 20529 1294 26972 15 93
Q-50 t.o. t.o. 532 t.o. t.o. t.o. 524 t.o.
Q-75 t.o. t.o. 4280 t.o. t.o. t.o. 4217 t.o.
MS-3 1 5 1 1 1 4 1 1
MS-4 14 2340 6 21 21 1500 6 11
MS-5 1544 t.o. 296 6490 t.o. t.o. 203 1669
MS-6 t.o. t.o. t.o. t.o. t.o. t.o. t.o. t.o.
S-2 35 30515 10 50 225 1607 10 10
S-5 7453 t.o. 2181 8274 t.o. t.o. 2247 897
S-7 26882 t.o. 2135 25486 t.o. t.o. 2187 31732
K-5 1825 t.o 2499 t.o t.o t.o t.o t.o
K-6 90755 t.o 111200 89854 t.o t.o 39728 t.o

QG-5 t.o. t.o. 7510 t.o. t.o. t.o. 9465 t.o.
QG-6 45 t.o. 15 45 t.o. 3605 15 t.o.
QG-7 256 8020 10 307 943 16896 10 16

LF 2-12 20 242 4 29 43 32 4 22
LF 2-16 70 70526 231 115 1217 489 237 7
LF 2-20 191 t.o. 546 318 61944 11 553 240
LF 2-23 79 t.o. 286 140 68254 19 285 19

x 8311 11653.9 7252 8922.3 11163.5 3935.3 2986.3 2315.6

Table 3. Runtime in ms for strategies S9 to S16

Strategies
Problem S9 S10 S11 S12 S13 S14 S15 S16

Q-8 5 5 4 5 2 4 4 2
Q-10 5 8 7 5 5 5 3 4
Q-12 11 11 11 11 13 14 11 10
Q-20 20349 4780 18 23860 1250 36034 17 87
Q-50 t.o. t.o. 532 t.o. t.o. t.o. 533 t.o.
Q-75 t.o. t.o. 4336 t.o. t.o. t.o. 4195 t.o.
MS-3 1 4 1 1 1 4 1 1
MS-4 13 2366 6 21 21 1495 6 11
MS-5 1498 t.o. 297 6053 t.o. t.o. 216 1690
MS-6 t.o. t.o. t.o. t.o. t.o. t.o. t.o. t.o.
S-2 35 29797 10 50 225 1732 10 10
S-5 7521 t.o. 2394 9015 t.o. t.o. 2310 972
S-7 26621 t.o. 2069 26573 t.o. t.o. 2094 30767
K-5 1908 t.o 2625 t.o t.o t.o t.o t.o
K-6 93762 t.o 102387 109157 t.o t.o 46673 t.o

QG-5 t.o. t.o. 9219 t.o. t.o. t.o. 10010 t.o.
QG-6 40 t.o. 15 45 t.o. 3565 15 t.o.
QG-7 240 13481 10 348 1097 18205 11 15

LF 2-12 20 270 4 29 44 32 5 21
LF 2-16 69 55291 250 118 1273 530 235 8
LF 2-20 185 t.o. 538 312 61345 11 541 237
LF 2-23 79 t.o. 285 140 71209 19 278 19

x 8464.6 10601.3 5953.3 10337.9 11373.8 4742.4 3358.4 2257
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Table 4. Runtime in ms for strategies S17 to S24 and CS

Strategies
Problem S17 S18 S19 S20 S21 S22 S23 S24 CS

Q-8 5 5 4 4 4 2 4 2 290
Q-10 4 7 2 4 5 4 3 5 310
Q-12 11 10 11 11 14 13 11 8 380
Q-20 22286 4547 16 13135 26515 1249 16 1528 685
Q-50 t.o. t.o. 520 t.o. t.o. t.o. 521 t.o. 3269
Q-75 t.o. t.o. 4334 t.o. t.o. t.o. 4187 t.o. 12981
MS-3 1 1 1 1 1 1 1 1 340
MS-4 88 37 99 42 147 37 102 79 485
MS-5 t.o. t.o. t.o. 165878 t.o. 153679 t.o. t.o. 590
MS-6 t.o. t.o. t.o. t.o. t.o. t.o. t.o. t.o. 1135
S-2 5 18836 30 5 100 1710 30 40 330
S-5 t.o. t.o. 2590 t.o. t.o. t.o. 2670 t.o. 245
S-7 3725 t.o. 338 5350 t.o. t.o. 378 9168 555
K-5 1827 t.o 2620 t.o t.o t.o t.o t.o 1429
K-6 96666 t.o 97388 90938 t.o t.o 40997 t.o 7575

QG-5 9743 t.o. 20 10507 t.o. t.o. 21 t.o. 295
QG-6 7075 t.o. 125 6945 t.o. t.o. 130 t.o. 345
QG-7 9 1878 12 9 1705 9 12 14 315

LF 2-12 18 242 4 29 33 43 5 13 310
LF 2-16 66 55687 245 107 510 1297 240 584 440
LF 2-20 170 t.o. 562 294 11 58732 569 15437 560
LF 2-23 75 t.o. 272 126 20 73168 276 10 505

x 8339.7 8125 5459.7 17258 2422.1 22303.4 2640.7 2068.4 1516.8

Table 5. Backtracks requires for strategies S1 to S8

Strategies
Problem S1 S2 S3 S4 S5 S6 S7 S8

Q-8 10 11 10 10 3 9 10 3
Q-10 6 12 4 6 6 6 4 5
Q-12 15 11 16 15 17 16 16 12
Q-20 10026 2539 11 10026 862 15808 11 63
Q-50 >121277 >160845 177 >121277 >173869 >143472 177 >117616
Q-75 >118127 >152812 818 >118127 >186617 >137450 818 >133184
MS-3 0 4 0 0 0 4 0 0
MS-4 12 1191 3 10 22 992 3 13
MS-5 910 >191240 185 5231 >153410 >204361 193 854
MS-6 >177021 >247013 >173930 >187630 >178895 >250986 >202927 >190877
S-2 18 10439 4 18 155 764 4 2
S-5 4229 >89125 871 4229 >112170 >83735 871 308
S-7 10786 >59828 773 10786 >81994 >80786 773 10379
K-5 767 >179097 767 >97176 >228316 >178970 >73253 >190116
K-6 37695 >177103 37695 35059 >239427 >176668 14988 >194116

QG-5 >145662 >103603 8343 >145656 >92253 >114550 8343 >93315
QG-6 30 >176613 0 30 >83087 965 0 >96367
QG-7 349 3475 1 349 4417 4417 1 4

LF 2-12 16 223 1 16 29 22 1 12
LF 2-16 39 24310 97 39 599 210 97 0
LF 2-20 77 >158157 172 77 26314 1 172 64
LF 2-23 26 >157621 64 26 29805 3 64 7

x 3611.8 4221.5 2381.6 3878.1 5185.8 1786 1327.3 781.8
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Table 6. Backtracks requires for strategies S9 to S16

Strategies
Problem S9 S10 S11 S12 S13 S14 S15 S16

Q-8 10 11 10 10 3 9 10 3
Q-10 6 12 12 6 6 6 4 5
Q-12 15 11 16 15 17 16 16 12
Q-20 10026 2539 11 10026 862 15808 11 63
Q-50 >121277 >160845 177 >121277 >173869 >143472 177 >117616
Q-75 >118127 >152812 818 >118127 >186617 >137450 818 >133184
MS-3 0 4 0 0 0 4 0 0
MS-4 12 1191 3 10 22 992 3 13
MS-5 910 >191240 185 5231 >153410 >204361 193 854
MS-6 >177174 >247013 >174068 >187777 >179026 >251193 >203089 >191042
S-2 18 10439 4 18 155 764 4 2
S-5 4229 >89125 871 4229 >112174 >83735 871 308
S-7 10786 >59828 773 10786 >81994 >80786 773 10379
K-5 767 >179126 767 >97176 >228316 >178970 >73253 >190116
K-6 37695 >177129 37695 35059 >239427 >176668 14998 >194116

QG-5 >145835 >103663 8343 >145830 >92355 >114550 8343 >93315
QG-6 30 >176613 0 30 >83087 965 0 >93820
QG-7 349 3475 1 349 583 4417 1 4

LF 2-12 16 223 1 16 29 22 1 12
LF 2-16 39 24310 97 39 599 210 97 0
LF 2-20 77 >158157 172 77 26314 1 172 64
LF 2-23 26 >157621 64 26 29805 3 64 7

x 3611.8 4221.5 2382 3878.1 4866.3 1786 1327.8 781.8

Table 7. Backtracks requires for strategies S17 to S24 and CS

Strategies
Problem S17 S18 S19 S20 S21 S22 S23 S24 CS

Q-8 10 11 10 10 9 3 10 2 3
Q-10 6 12 4 6 6 6 4 37 3
Q-12 15 11 16 15 16 17 16 13 3
Q-20 10026 2539 11 10026 15808 862 11 1129 10
Q-50 >121277 >160845 177 >121277 >173869 >143472 177 >117616 1
Q-75 >118127 >152812 818 >118127 >186617 >137450 818 >133184 818
MS-3 1 0 1 1 1 0 1 1 0
MS-4 51 42 3 29 95 46 96 47 1
MS-5 >204089 >176414 >197512 74063 >201698 74711 >190692 >183580 26
MS-6 >237428 >176535 >231600 >190822 >239305 >204425 >204119 >214287 257
S-2 2 6541 9 2 89 887 9 12 4
S-5 >104148 >80203 963 >104148 >78774 >101058 963 >92557 308
S-7 1865 >80295 187 1865 >93675 >91514 187 2626 93
K-5 767 >179126 767 >97178 >178970 >228316 >73253 >190116 4
K-6 37695 >177129 37695 35059 >176668 >239427 14998 >160789 2196

QG-5 7743 >130635 0 7763 >96083 >94426 0 >95406 0
QG-6 2009 >75475 89 2009 >108987 >124523 89 >89888 1
QG-7 3 845 1 3 773 1 1 1 0

LF 2-12 16 223 1 16 22 29 1 6 0
LF 2-16 39 24592 98 39 210 599 98 239 50
LF 2-20 77 >158028 172 77 1 26314 172 4521 47
LF 2-23 26 >157649 64 26 3 29805 64 0 19

x 3550.1 3481.6 2054.3 7706.5 1419.5 10252.4 932.4 664.2 174.8
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Table 8. Solving time in ms and Backtracks requires for optimizers CS, PSO and GA

CS PSO GA
Problem Runtime Backtracks Runtime Backtracks Runtime Backtracks

Q-8 290 3 4982 3 645 1
Q-10 310 3 7735 1 735 4
Q-12 380 3 24369 1 875 40
Q-20 685 10 52827 11 7520 3879
Q-50 3269 1 1480195 0 6530 15
Q-75 12981 818 t.o. 818 16069 17
MS-3 340 0 2745 0 735 0
MS-4 485 1 15986 0 1162 42
MS-5 590 26 565155 14 1087 198
MS-6 1135 257 t.o. >47209 t.o. >176518
S-2 330 4 10967 2 15638 6541
S-5 245 308 2679975 13 8202 4229
S-7 555 93 967014 256 25748 10786
K-5 1429 4 4563751 106 21089 50571
K-6 7575 2196 t.o. 12952 170325 21651

QG-5 295 0 59158 0 11862 7763
QG-6 345 1 44565 0 947 0
QG-7 315 0 28612 0 795 4

LF 2-12 310 0 10430 1 1212 223
LF 2-16 440 50 20548 0 1502 97
LF 2-20 560 47 28466 1 1409 64
LF 2-23 505 19 30468 3 1287 0

x 1516.8 174.8 557786.8 675.4 14065.5 5053.6

Fig. 1. Comparing runtimes of adaptive approaches
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Fig. 2. Comparing backtracks of adaptive approaches

6 Conclusions

Autonomous search is a powerful approach to provide self-tuning capabilities
to solvers in order to obtain faster resolution processes, but by maintaining the
quality of solutions. In this paper, we have presented a new Autonomous Search
system based on the modern Cuckoo Search metaheuristic. Cuckoo Search is a
simple to implement algorithm for optimization problems with rapid convergence
to optimal solutions. The experimental results have illustrated the efficiency
of the proposed approach validating the adaptation capabilities to dynamic
environments, which clearly improves performance of solvers during resolution.
There exist different directions for future work, perhaps the most straightfor-
ward one is the integration of more recent metaheuristics to the framework. The
incorporation of additional and more sophisticated strategies to the portfolio
would be an interesting research direction to pursue as well.
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Abstract. We propose an instance selection technique with subsample balanc-
ing for an evolutionary classification algorithm. The technique creates subsam-
ples of the training sample in a way to guide the learning process towards  
problematic areas of the search space. For unbalanced datasets, the number of  
instances of different classes is artificially balanced to get better classification 
results. We apply this technique to a self-configured hybrid evolutionary fuzzy 
classification algorithm. We performed tests on 4 datasets to evaluate the accu-
racy as well as other classification quality measures for different parameters of 
the active instance selection procedure. The results shown by our algorithm are 
comparable or even better than other algorithms on the same classification 
problems. 

Keywords: Instance selection · Fuzzy classification · Evolutionary algorithm · 
Genetics-based machine learning 

1 Introduction 

Recent advances in computer and internet technologies have led to the need to proc-
ess, analyse and understand massive amounts of data. Data mining (DM) and machine 
learning methods have made this possible by creating accurate models for particular 
problems. Still, due to the growing size of data to be analysed, the problem of  
machine learning method scalability remains important for researchers. 

Although this problem is often extensively solved by applying parallel computation 
methods and modern hardware solutions, sometimes they cannot be applied due to 
resource limitations. The data reduction (DR) methods represent an intelligent way to 
process large amounts of data with small resources. DR can be performed in different 
ways, depending on the problem to be solved, for example by selecting features or 
selecting instances. In this study we concentrate on instance selection methods (IS), or 
training set selection (TSS). IS focuses on preparing the dataset for the learning algo-
rithm, i.e. creating a training subsample. IS methods include boosting, sampling, pro-
totype selection and active learning. 

As in instance selection we use only a part of the training set, and the problem of 
relevance of the subsample to the original sample must be considered. Although we 
achieve lower training time, removing instances may result in information loss.  
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However, for large datasets removing instances does not necessarily lead to informa-
tion loss, and moreover, may help to avoid over-fitting. That means that IS should be 
considered not only a method for saving computational resources, but also a way to 
increase the overall accuracy. So, the idea of developing an IS method that would not 
only decrease the computation time, but also increase accuracy is behind this study. 
Machine learning methods today often use evolutionary algorithms (EAs) as a power-
ful optimization technique, which allows the complex structures of the solution to be 
created. These algorithms may use specific genetic operators and population organiza-
tion schemes. This field is called genetics-based machine learning (GBML) [1, 2]. 

In this study we used a self-configuring hybrid evolutionary fuzzy classification 
algorithm. This algorithm is our implementation of an algorithm developed by the H. 
Ishibuchi group [3], with some modifications. We applied our instance selection tech-
nique because this algorithm is very sample-dependent as it includes several heuristics 
in the learning process. They are the heuristic rule generation in initialization and the 
Michigan part, which uses instances to generate new rules; and the heuristic class 
label and rule weight specification, which uses confidence values. 

The paper is organized as follows: Section 2 describes our machine learning 
method, Section 3 explains the IS method, Section 4 contains experimental setup and 
results, and Section 5 concludes the paper. 

2 Hybrid Evolutionary Fuzzy Classification Algorithm 

As a classification method, in this study we applied the algorithm that we have pre-
viously used in our works [4, 5]. The idea of the algorithm was developed by the H. 
Ishibuchi group in [3]. We made several modifications, including applying different 
genetic operators and self-configuration. We will give a very short description of the 
main features of this algorithm here. 

In the Pittsburgh part, each individual consists of several rules, and the number of 
rules is not fixed. The compatibility grade for every pattern was calculated using a 
product operator. The winner-rule strategy was applied in the fuzzy inference proce-
dure – the resulting class label for a pattern was equal to the label of the rule having 
the largest product of compatibility grade and rule weight. We used several fuzzy 
granulations for every variable – four partitions into 2, 3, 4 and 5 fuzzy sets, plus the 
“don’t care” condition, i.e. there were 15 fuzzy sets used. The class label for each 
rule, as well as the class weight, was determined heuristically based on the confidence 
value. We applied the self-configuration scheme to choose the probabilities of selec-
tion, mutation and the Michigan part. The self-configuration scheme, introduced in  
[6, 7] has already been successfully used in our previous works [4, 5]. 

3 Instance Selection Method 

The instance selection method that we propose creates subsamples of the original train-
ing sample to train the classifier on them. The size of the subsample was set to 5, 10, 
15, 20, 25 and 30 percent of the original sample in our computational experiments. 
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Reducing the number of instances available to the classifier may or may not lead to 
lower accuracy on the test sample, depending on which instances are selected in the 
subsample. Similar approaches have already been studied, for example [8, 9]. 

The way to improve the classification quality is to use a selection procedure for in-
stances. To be able to use a selection procedure, we have to define a fitness function 
for instances. For example, we may want to select those instances, which are difficult 
to classify for the learning algorithm, and design a fitness function based on classifi-
cation results. To avoid over-fitting and to get more accurate results, we may change 
the training subsample during the learning process. For example, we may change the 
subsample every 50, 100, 200 or 400 generations, called the adaptation periods, dur-
ing which the population adjusts itself to a new environment. 

The instance selection scheme that we propose uses counters Ui for every instance. 
These values show the number of times that an instance i has been in the subsample 
and was classified correctly. If an instance was misclassified during the training proc-
ess, its counter value is reset. Here we follow two main principles: firstly, we should 
select instances, which have not been used before (exploration), and secondly, we 
would like to keep misclassified instances in the training subset (exploitation). That 
means that our instance selection algorithm has to concentrate on problematic areas of 
the feature space, but it should also try to discover new areas. To follow these goals, 
at first we define all counter values Ui = 1, i = 1…m. Then, we select a training subset 
with uniform probabilities and launch the algorithm for one adaptation period. After 
that, we use the best current individual for the subsample, to classify the instances and 
recalculate Ui values. If an instance j was correctly classified, then Uj = Uj + 1, else  
Uj = 1. Note that we change Ui only for instances in the subset. Then we select a new 
training subsample in a way similar to proportional selection in GA, with probabilities 
equal to: 

  ൌ ଵ/∑ ଵ/ೕೕసభ,തതതതത  (1) 

The Ui values actually represent the inverse fitness values for the instances in this 
case. This means that instances with larger counters, i.e. those which have been previ-
ously correctly classified many times, will get lower probabilities. Unused or diffi-
cult-to-classify instances get large and equal probabilities to be selected. 

After several adaptation periods, the counter values change in such a way that the 
algorithm concentrates on problematic areas where the different class instances are 
close to each other. At the same time, areas where the class number is clear get lower 
probabilities. 

In fig. 1 we provide an example with two Gaussian samples, and show the  
instances selected (left side). As we can see, the algorithm focuses on the area where 
classes mix with each other. The reason why IS can provide better classification is 
that during the learning process the algorithm becomes more sensitive to misclassifi-
cation, as it leads to a change in counter values Ui. At each generation of the algo-
rithm, we take the current best individual for the subsample and test it on the whole 
training sample. If the accuracy improves, we save this new best individual separately 
and include it in the population on all generations. This allows good genetic informa-
tion from previous generations to be saved and prevents over-fitting. 
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every experiment. In this study we tested our approach on datasets from the KEEL 
repository [10]. The parameters of these datasets are provided in Table 1. First, we 
measured the algorithm efficiency without instance selection, i.e. with training on the 
whole sample. The results are shown in table 2.  

Table 2. Results of the standard algorithm, test errors in percent 

Dataset Training error, % Test error, % Number of 
rules 

Average 
rule length 

Magic 16.044 16.606 11.1 8.71 
Phoneme 15.659 17.099 17.4 2.96 

Page-blocks 3.523 4.202 9.8 3.62 
Satimage 12.926 14.353 16.6 15.99 

 
In Table 3 we show the test sample error values for the Magic problem with in-

stance selection for different sizes of the subsample and different adaptation periods. 

Table 3. Results with instance selection for the Magic problem, test errors 

Percent of 
training sample 

Number of generations 
50 100 200 400 

5 15.788 15.383 15.594 16.119 
10 15.457 15.299 15.589 15.683 
15 15.252 15.263 15.489 15.404 
20 15.263 15.368 15.199 15.194 
25 15.457 15.410 15.420 15.252 
30 15.221 15.284 15.079 15.163 

 
The best result with instance selection was obtained with 30% of the training sam-

ple used and an adaption period of 200 generations. However, the results do not differ 
very much from 5% to 30%, which means that the data is homogenous. The instance 
selection was able to provide higher accuracy, although the Wilcoxon test did not 
show a significant change in accuracy. Table 4 contains the results for the Phoneme 
problem. 

Table 4. Results with instance selection for the Phoneme problem, test errors 

Percent of 
training sample 

Number of generations 
50 100 200 400 

5 18.504 19.245 18.929 19.003 
10 18.876 19.117 19.059 18.746 
15 17.911 17.709 18.320 18.727 
20 17.394 17.837 18.651 18.135 
25 17.395 17.450 17.857 18.136 
30 16.875 17.062 16.988 17.654 
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For the Phoneme problem, the use of instance selection mostly gave worse results, 
however, the Wicoxon test showed no significant difference in accuracy. One may see 
that a larger subsample usually gives better results; however, it increases the calcula-
tion time. Table 5 shows results for the Page-blocks dataset. 

Table 5. Results with instance selection for the Page-blocks problem, test errors 

Percent of 
training sample 

Number of generations 
50 100 200 400 

5 7.947 8.443 9.248 8.479 
10 5.810 6.031 6.670 7.274 
15 4.002 4.496 4.897 5.775 
20 3.252 3.399 3.929 4.405 
25 3.783 3.782 3.691 4.148 
30 3.380 3.690 3.782 4.057 

 
For the Page-blocks dataset we observed a much bigger divergence in classifica-

tion accuracy. This can be because this dataset is highly imbalanced, so that the 
change of subsample size influences the ratio in the subsample, as we used the artifi-
cial balancing strategy for the subsample. The best result in the sense of accuracy was 
received for 30% of the training sample size, and an adaptation period of 50 genera-
tions. According to the Wilcoxon test, this result was not significantly different from 
the original algorithm. With a training subsample size equal to 5% the accuracy val-
ues were much lower and the Wilcoxon test showed that they are significantly worse 
than those shown by the original algorithm. The results for the Satimage problem are 
in table 6. 

Table 6. Results with instance selection for the Satimage problem, test errors 

Percent of 
training sample 

Number of generations 
50 100 200 400 

5 14.046 15.384 15.865 15.337 
10 14.172 13.832 14.590 14.575 
15 13.381 14.093 13.599 14.453 
20 13.428 13.363 13.534 14.126 
25 13.023 13.255 13.893 13.815 
30 12.928 13.022 13.349 13.924 

 
According to the Wilcoxon test, the best result for the Satimage dataset was sig-

nificantly better than the result of the original algorithm. The same or even better 
results were obtained already with 10% of the size of the original sample.  

Together with accuracy we calculated Recallµ measure for datasets containing 
more than 2 classes according to [11]. This value shows the average accuracy among 
classes. In table 7 we provide the (1-Recallµ)*100 values for test sample for Page-
blocks problem. The 1-Recallµ value for the original algorithm is equal to 39.9%, 
which means a huge imbalance in classification results. The accuracy value for this 



Instance Selection Approach for Self-Configuring Hybrid Fuzzy Evolutionary Algorithm 457 

case is about 4.2%, but it should not be considered as a good result, as most of the test 
instances are classified into minority class. 

Table 7. 1-Recallµ values in percent for test sample, Page-blocks problem 

Percent of 
training sample 

Number of generations 
50 100 200 400 

5 10.183 12.915 15.180 12.060 
10 12.918 13.713 14.589 17.509 
15 20.508 19.625 18.355 19.263 
20 23.045 21.226 22.719 22.359 
25 28.351 26.137 23.048 22.239 
30 28.037 27.731 28.423 29.511 

 
The instance selection method with artificial balancing strategy significantly 

changes the 1-Recallµ values. For example, when using only 5% of the training sam-
ple, the subset becomes much more balanced. This leads to the decrease in accuracy, 
which we observed before, however the solutions received with instance selection 
describe minority classes significantly better. For example, for 5% of the training 
sample and 50 generation adaptation period, the difference between accuracy and  
1-Recallµ is only 2.236%. For other datasets the difference in 1-Recallµ is about 2-3% 
due to lower imbalance rates. We also compared the best instance selection results 
with other approaches for the same problems. The comparison is shown in table 8.  

Table 8. Comparison to other approaches, test accuracy 

Dataset Our method Parallel fuzzy 
GBML [4] 

GP-Coach 
[12] 

FARC-HD 
[13] 

Magic 15.079±0.68 14.89 20.18 15.49 
Phoneme 16.875±1.44 15.96 - 17.86 

Page-blocks 3.380±0.64 3.62 8.77 4.99 
Satimage 12.928±0.83 12.96 27.50 12.68 

 
Presented results show that for two out of four problems our approach allowed us 

to get better results than the algorithm, which we used as a prototype. One should also 
mention that we used much less computational resources. For two of the problems we 
were able to get the best result compared to other approaches, although the difference 
is not significant. 

5 Conclusion 

In this paper we described an instance selection method for evolutionary classification 
machine learning algorithms. This method is based on the idea of applying a probabil-
istic mechanism to create subsamples of the original training sample for the classifier 
to learn for several generations/iterations. The presented instance selection technique 
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allows artificial balancing of the subsample, which gives the opportunity for the clas-
sifier to learn more adequate models, describing minority classes better. The accuracy 
of the presented method is comparable to the classification method, used as prototype, 
and may even surpass it. The time complexity experiment has shown that applying 
instance selection results in better computation times, together with higher accuracy. 
The instance selection technique can be applied to other evolutionary classification 
methods. This method can also be used for larger datasets with some modifications. 
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Abstract. Although attractive and repulsive particle swarm optimization 
(ARPSO) algorithm keeps the diversity of the swarm adaptively to avoid pre-
mature convergence, its search performance is still restricted because of its sto-
chastic search mechanism. In this study, a new hybrid algorithm combining 
ARPSO with the Quasi-Newton method is proposed to improve the search 
ability of the swarm. In the proposed algorithm, ARPSO keeps the reasonable 
search space by controlling the swarm not to lose its diversity, while the Quasi-
Newton method is used to perform local search efficiently. The Quasi-Newton 
method makes the hybrid algorithm converge to optimal solution accurately. 
The experimental results verify that the proposed hybrid PSO has better con-
vergence performance than some classic PSO algorithms. 

Keywords: Attractive and repulsive particle swarm optimization · Diversity · 
The Quasi-Newton method 

1 Introduction 

As an effective population-based stochastic optimization technique, particle swarm 
optimization (PSO) [1,2] has been widely used in large-scale, highly nonlinear, and 
complex optimization problems. Although PSO has shown good performance in  
solving many optimization problems, it suffers from the problem of premature con-
vergence like most of the stochastic search techniques, particularly in multimodal 
optimization problems. 

To improve the search ability of PSO, many improved PSO were proposed. Passive 
congregation PSO (PSOPC) introduced passive congregation for preserving swarm 
integrity to transfer information among individuals of the swarm [3]. PSO with a  
constriction (CPSO) defined a “no-hope” convergence criterion and a “rehope” method 
as well as one social/confidence parameter to re-initialize the swarm [4, 5]. Although 
these classical PSO and their improvements improve the search ability of the swarm, 
they still could not overcome the problem of premature convergence and thus converge 
to local minima with high probability. 
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To overcome the problem of premature convergence, attractive and repulsive PSO 
(ARPSO) was proposed in [6]. It used a diversity measure to control the movement of 
the swarm, which the swarm alternated between phases of attraction and repulsion 
according to the diversity value of the swarm, which prevented premature conver-
gence to a high degree [6]. Although ARPSO and its improvements [7] keep the di-
versity of the swarm adaptively, they still perform search with stochastic mechanism 
in essence and there still has much room to improve. 

The algorithm referred to as GPSO in [8], is one of the most efficient gradient-based 
PSO. GPSO combined the standard PSO with second derivative information to perform 
global exploration and accurate local exploration, respectively [8]. Since the standard 
PSO could not control the diversity of the swarm effectively to keep the reasonable 
search space, this hybrid PSO may still converge to local minima in some cases. 

To overcome the problems described above, we proposed an improved hybrid PSO 
called HARPSOGS [9] which combined ARPSO with the steepest gradient descent 
method. Different from HARPSOGS, ARPSO is combined with the Quasi-Newton 
method in this paper to further improve the search ability of PSO, In the new method, 
to avoid the swarm be trapped into local minima, firstly, ARPSO is used to perform 
stochastic and rough search. In the solution space obtained by ARPSO, the Quasi-
Newton method is then used to perform further search. When the deterministic search 
converges to local minima, the proposed algorithm turns to ARPSO to adjust the 
search space by improving the diversity of the swarm. With the deterministic search 
method in a proper search space, the proposed PSO may converge to the global mini-
ma with a high likelihood. 

2 Particle Swarm Optimization 

PSO is an evolutionary computation technique in search for the best solution by simu-
lating the movement of birds in a flock [1, 2]. The population of the birds is called 
swarm, and the members of the population are particles. Each particle represents a 
possible solution to the optimization problem. During each iteration, each particle 
flies independently in its own direction guided by its own previous best position as 
well as the global best position of all particles. Assume that the dimension of the 
search space is D, and the swarm is S=(X1, X2, X3, …, XNp); each particle represents a 
position in the D dimension; the position of the i-th particle in the search space is 
denoted as Xi=(xi1, xi2, …, xiD), i=1, 2, …, Np, where Np is the number of all particles. 
The own previous best position of the i-th particle is called pbest which is expressed 
as Pi=(pi1, pi2, …, piD). The global best position of all particles is called gbest which is 
denoted as Pg= (pg1, pg2, …, pgD). The velocity of the i-th particle is expressed as Vi= 
(vi1, vi2, …, viD). The adaptive PSO [10] was described as: 

 ( 1) ( ) ( ) 1 () ( ( ) ( )) 2 () ( ( ) ( ))i i i i g iV t W t V t c rand P t X t c rand P t X t+ = × + × × − + × × −  (1) 

  (2) 

where c1, c2 are the acceleration constants with positive values; rand() is a random 
number ranged from 0 to 1; W(t) is inertia weight.  

( 1) ( ) ( 1)i i iX t X t V t+ = + +
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Attractive and repulsive particle swarm optimization (ARPSO), a diversity-guided 
method, was proposed to avoid premature convergence effectively [6]. The movement 
of particles in ARPSO depends on the diversity value of the swarm, and the velocity 
update of particles was described as follows: 

 ( 1) ( ) ( ) [ 1 () ( ( ) ( )) 2 () ( ( ) ( ))]i i i i g iV t W t V t dir c rand P t X t c rand P t X t+ = × + × × × − + × × −  (3) 

where 
1

1
low

high

diversity d
dir

diversity d

−        <=           >
. 

In ARPSO, a function was proposed to calculate the diversity of the swarm as  
follows: 
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N 1

1
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)(1  (4) 

where |L| is the length of the maximum radius of the search space; pij is the j-th compo-
nent of the i-th particle and 

j
p  is the j-th component of the average over all particles. 

In the attraction phase (dir=1), the swarm is attracting, and consequently the diver-
sity decreases. When the diversity drops below the lower bound, dlow, the swarm 
switches to the repulsion phase (dir=-1). When the diversity reaches the upper bound, 
dhigh, the swarm switches back to the attraction phase. ARPSO alternates between 
phases of exploiting and exploring-attraction and repulsion-low diversity and high 
diversity and thus improve its search ability [6]. 

3 The Proposed Hybrid PSO 

In this paper, an improved hybrid PSO, named HARPSOQN combining ARPSO with 
the Quasi-Newton method, is proposed, and the detailed steps are as follows: 

Step 1: Initialize the velocities and positions of all particles randomly, the maxi-
mum iteration number and optimization target. 

Step 2: Calculate the pbest of each particle, gbest of all particles and the diversity 
of the swarm, and update the pbest of each particle and the gbest of all particles. 

Step 3: Each particle updates its position according to the following equation: 

 ( )
i arpso

X t VX′ = +  (5) 

where Varpso is the velocity update of the i-th particle obtained by Eq.(3). 
Step 4: With the position obtained by Eq.(5), each particle searches in the direction 

guided by the BFGS method [11], one of most efficient quasi-Newton method, and 
the particle is updated by the following iterative equations: 

 ( 1) ( ) ( ) ( )X k X k k G rad kβ′′ ′′+ = + × ,  (0 )X X′′ ′=  (6) 
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In Eq. (6), the parameter β(k) is determined by one-dimensional search method such 
as binary chop. 

Step 5: Compare the position obtained by ARPSO with the position obtained by the 
Quasi-Newton method, and select the one with the better fitness function value as the 
new position for the particle, which is described as follows:  

 ( ) ( )
( 1)

i

X if f X f X
t

X elseX
′ ′ ′′<

+ =  ′′
 (9) 

Step 6: Once the new population is generated, return to Step 2 until the goal is met 
or the predetermined maximum learning epochs are completed. 

4 Experimental Results and Discussion 

In this section, the performance of the proposed hybrid PSO is compared with some 
classical PSO including APSO, CPSO and PSOPC, ARPSO, GPSO and HARPSOGS 
on six functions in the De Jong test suite of benchmark optimization problems. For 
combing ARPSO with the steepest gradient descent method, HARPSOGS is renamed 
as HARPSOSGD in this section. Table 1 shows these classical test functions used in 
the experiments. The Sphere functions is convex and unimodal (single local mini-
mum). The Rosenbrock test function has a single global minimum located in a long 
narrow parabolic shaped flat valley and tests the ability of an optimization algorithm 
to navigate flat regions with small gradients. The Rastrigin and Griewangk functions 
are highly multimodal and test the ability of an optimization algorithm to escape from 
local minima. The Schaffer and LevyNo.5 both are two-dimensional functions with 
many local minima, which the former has infinite minima and the latter has 760 local 
minima. All the programs are carried out in MATLAB 7.0 environment on an Intel 
Core 2 Duo 2.93 GHZ CPU. 

The population size in PSOPC is 120 and the one in other PSO is 20 in all experi-
ments. And the acceleration constants c1 and c2 in APSO, ARPSO, GPSO, 
HARPSOSGD and HARPSOQN all are set as 2.0. The constants c1 and c2 both are 
2.05 in CPSO, and they both are 0.5 in PSOPC. The decaying inertia weight w start-
ing at 0.9 and ending at 0.4 is set for APSO, CPSO, ARPSO, HARPSOSGD and 
HARPSOQN according to [10]. The initial inertial weight and the final one in PSOPC 
are 0.9 and 0.7, respectively. According to [7], the parameters, dlow and dhigh, are set as 
5e-6 and 0.25, respectively, in ARPSO, HARPSOSGD and HARPSOQN. All the 
results shown in this paper are the mean values of 20 trials. 
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Table 1. The specification of the six test functions 

Test function Equation Search space Global minima 

Sphere  
(F1) 
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Table 2. Mean absolute error obtained by the seven PSO on the six test functions 

Table 2 shows mean absolute error for the six test functions on different dimen-
sions by using the seven PSO. From Table 2, the proposed algorithm obtains better 
convergence accuracy than other PSO in all cases, which indicates that HARPSOQN 
has the best search ability among all PSO.  

Table 3 lists CPU time of the seven PSO on the six functions with ten and thirty 
dimensions. From Table 3, some conclusions can be drawn. First, since ARPSO adap-
tively adjusts the diversity of the swarm and PSOPC uses much more particles to 

22
2

2
1

2
2

2
1

))(001.01(

5.0sin
5.0

xx

xx

++
−+

+−

2
2

2
1

5

1

5

1
21

)80032.0()42513.1(

)])1cos(([)])1cos(([

+++

+−+− 
= =

xx

jxjjixii
i j

Functions 
(Dimension) 

APSO CPSO PSOPC ARPSO GPSO HARPSOSGD HARPSOQN 

Mean absolute error 

F1 

10 2.80e-4 1.64 5.89e-9 3.3e-3 0 5.35e-15 0 

20 0.22 1.11e+3 8.42e-07 0.38 0 7.48e-13 0 

30 0.21 4.43e+3 5.33e-7 11.02 0 6.54e-12 0 

F2 
10 4.73 1.46e+4 7.98 2.73 7.87e-11 5.40e-10 0 
20 21.51 1.59e+5 18.63 191.19 2.20e-9 1.13e-9 0 
30 65.06 1.30e+6 60.31 352.68 2.14e-7 5.67e-7 0 

F3 
10 2.7e-2 107.54 0.058 79.48 0 2.21e-12 0 
20 3.29 433.15 0.42 14.91 0 6.88e-11 0 

30 4.11 3.18e+3 1.09 40.58 0.001 9.94e-10 0 

F4 
10 7.6e-2 0.36 5.32e-7 0.14 0 2.55e-14 0 
20 0.34 1.10 7.50e-5 0. 67 0 1.09e-13 0 
30 1.68 1.38 7.21e-3 1.11 0 2.21e-9 0 

F5 2 0.0091 0.0097 0.0077 0.0095 0.009 0 0 
F6 2 6.4311 10.3421 1.1e-5 18.6752 1.21e-1 1.1e-5 1.1e-5 
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perform search, they require more time than APSO and CPSO. APSO and CPSO lose 
the diversity of the swarm and converge to local minima quickly, so they require less 
CPU time than other PSO in almost all cases. Second, although HARPSOSGD con-
verges more accurately than APSO, CPSO, PSOPC and ARPSO, it spends less time 
than these stochastic PSO in most of cases. Finally, GPSO and HARPSOQN require 
most time in all cases except that they spend least time on the F1 and F4 functions. 
This is mainly because GPSO and HARPSOQN spend most of time to search the 
Qusai-Newton direction. Moreover, HARPSOQN spends less time than GPSO in all 
cases. 

Table 3. CPU time versus the order magnitude of the absolute error obtained by the seven PSO 
on the six test functions with ten and thirty dimensions 

Fig. 1 shows the diversity values of the swarm in seven PSO on the six test func-
tions with ten dimensions. Obviously, the swarms in the APSO, CPSO and PSOPC 
lose their diversity quickly, while ARPSO, GPSO, HARPSOSGD and HARPSOQN 
keep the diversity of the swarm adaptively in the whole search process. GPSO adjust 
the diversity of the swarm at higher levels than ARPSO, HARPSOSGD and 
HARPSOQN in all cases. HARPSOSGD and HARPSOQN adjust the diversity value 
of the swarm more frequently than ARPSO in almost all functions, which indicates 
that HARPSOSGD and HARPSOQN control the diversity of the swarm more effi-
ciently than the ARPSO. 

Functions 
(Dimension) 

APSO CPSO PSOPC ARPSO GPSO HARPSOSGDHARPSOQN 
CPU time (s) (the order of magnitude of the absolute error) 

F1 
10 

2.754 
(10^-1) 

3.182 
(10^2) 

8.14 
(10^-3) 

9.135 
(10^1) 

0.66 
(0) 

2.96 
(10^ -8) 

0.35 
(0) 

30 
8.491 
(10^1) 

9.007 
(10^3) 

8.47 
(10^1) 

24.231 
(10^2) 

0.67 
(0) 

6.336 
(10^ -8) 

0.67 
(0) 

F2 
10 

4.653 
(10^1) 

5.331 
(10^3) 

18.228 
(10^-11) 

19.539 
(10^1) 

780 
(10^-11) 

6.512 
( 10^-9) 

418 
(0) 

30 
11.53 
(10^3) 

12.201 
(10^7) 

12.069 
(10^2) 

27.199 
(10^3) 

1985 
(10^-11) 

11.387 
(10^ -7) 

1800 
(10^-6) 

F3 
10 

6.719 
(10^2) 

7.801 
(10^2) 

20.34 
(10^1) 

22.24 
(10^2) 

869 
(0) 

18.103  
(10^-10) 

300 
(10^-13) 

30 
66.719 
(10^2) 

67.801 
(10^3) 

68.51 
(10^2) 

85.24 
(10^2) 

1614 
(0) 

76.103   
( 10^-9) 

1200 
(0) 

F4 
10 

8.199 
(10^-2) 

9.458 
(10^-1) 

8.76 
(10^-1) 

10.023 
(10^-1) 

7.65 
(0) 

4.177 
(10^ -9) 

2.568 
(10^-8) 

30 
44.199 
(10^-2) 

64.458 
(10^-1) 

48 
(10^1) 

76.023 
(10^-1) 

128 
(10^-13) 

38.177 
( 10^-9) 

32 
(10^-13) 

F5 2 
1.9390 
(10^ -3) 

1.698 
(10^ -3) 

1.26 
(10^-3) 

2.343 
(10^ -3) 

330 
(0) 

2.170 
(10^ -10) 

120 
(0) 

F6 2 
5.634 
(10^-1) 

4.18 
(10^-1) 

2.65 
(10^-5) 

12.80 
(10^-1) 

560 
(10^-1) 

2.180 
(10^ -5) 

375 
(0) 
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Fig. 1. The diversity values of the seven PSO on the six test functions with ten dimensions  
(a) Sphere (b) Rosenbrock (c) Rastrigin (d) Griewangk (e) Schaffer (f) LevyNo.5 

5 Conclusions 

To improve the search ability of PSO, a hybrid PSO combing ARPSO with the Quasi-
Newton method was proposed in this paper. In the proposed PSO, ARPSO was used 
to keep the reasonable search space by adjusting the diversity of the swarm adaptive-
ly, and the Quasi-Newton method was used to perform local search efficiently. The 
experimental results verified the effectiveness and efficiency of the proposed hybrid 
PSO. Future work will include how to apply this hybrid PSO to solve discrete prob-
lems such as gene selection for microarray data. 
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Abstract. In this paper we introduce the multi-agent heuristic procedure to 
solve multi-objective optimization problems. To diminish the drawbacks of  
the evolutionary search, an island model is used to involve various genetic  
algorithms which are based on different concepts (NSGA-II, SPEA2, and 
PICEA-g). The main benefit of our proposal is that it does not require addi-
tional experiments to expose the most appropriate algorithm for the problem 
considered. For most of the test problems the effectiveness of the developed al-
gorithmic scheme is comparable with (or even better than) the performance of 
its component which provides the best results separately. Owing to the parallel 
work of island model components we have managed to decrease computational 
time significantly (approximately by a factor of 2.7). 

Keywords: Heuristic search · Multi-objective genetic algorithm · Multi-agent 
approach · Island model · Cooperation 

1 Introduction 

In recent times there has been a growing interest in the sphere of Evolutionary Ma-chine 
Learning: owing to a number of benefits which heuristic-based optimization methods 
have demonstrated, researchers have proposed several effective applications of Evolu-
tionary Computation in the Machine Learning field [1], [2], [3]. This has become possi-
ble for several reasons: evolutionary algorithms are universal and might be used to find 
the optimal solution in both continuous and discrete search spaces; they could be ap-
plied in a dynamic environment; in most cases the effectiveness of evolutionary ap-
proaches is not lower than the performance of non-evolutionary ones [4].  

However, some researchers highlight the negative sides of the Evolutionary  
Computation and Machine Learning integration. Firstly, it is always necessary to 
investigate a number of algorithms to define the most effective one for the problem 
considered because the performance of evolutionary algorithms varies significantly 
for different problems. Secondly, these methods require more computational re-
sources compared with alternative non-evolutionary algorithms.  

This paper is devoted to solving optimization problems with several criteria, and 
therefore, we attempt to develop a modified multi-objective genetic algorithm 
(MOGA) with these drawbacks removed.     
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To overcome the disadvantages of the evolutionary search, an island model is used 
to involve genetic algorithms (GA) which are based on different concepts (NSGA-II, 
SPEA2, and PICEA-g). Moreover, this model allows us to parallelize calculations 
and, consequently, to reduce computational time.   

As a result, we have managed to implement the multi-agent heuristic procedure to 
solve multi-objective optimization problems, which does not require additional  
experiments to expose the most appropriate algorithm for the problem considered. 
Besides, due to the parallel work of island model components we have achieved a 
significant decrease in computational time (roughly by a factor of 2.7). According to 
the results obtained, for most of the test problems the effectiveness of the developed 
algorithmic scheme is comparable with the performance of its component which pro-
vides the best results separately.   

The rest of the paper is organized as follows: in Section 2 a description of the co-
operative algorithm developed is presented. The test problems used to investigate the 
effectiveness of our proposal are introduced in Section 3. The experiments conducted, 
the results obtained, and the main inferences are included in Section 4. The conclu-
sion and future work are presented in Section 5. 

2 Developed Approach 

2.1 Cooperative Multi-objective Genetic Algorithm 

Designing a MOGA, researchers are faced with some issues which are referred to 
fitness assignment strategies, diversity preservation techniques, and ways of elitism 
implementation. However, the common scheme of any MOGA includes the same 
steps as any conventional one-criterion GA: 
 

Generate the initial population 
Evaluate criteria values 
While (stop-criterion!=true), do: 
 {Estimate fitness-values; 

Choose the most appropriate individuals with the mating selection operator 
based on their fitness-values; 
Produce new candidate solutions with recombination; 
Modify the obtained individuals with mutation; 
Compose the new population (environmental selection); 

 } 
 
In contrast to one-criterion GAs, the outcome of MOGAs is the set of non-

dominated points which form the Pareto set approximation. 
To eliminate a number of questions which are raised while designing multi-criteria 

evolutionary methods, in this study we propose a cooperation of several GAs based 
on various heuristic mechanisms.  

Generally speaking, an island model [5] of a GA implies the parallel work of several 
algorithms. A parallel implementation of GAs has shown not just an ability to preserve 
genetic diversity, since each island can potentially follow a different search trajectory, 
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but also could be applied to separable problems. The initial number of individuals M is 
spread across L subpopulations: Mi=M/L, i=1,…,L. At each T-th generation algorithms 
exchange the best solutions (migration). There are two parameters: migration size, the 
number of candidates for migration, and migration interval, the number of generations 
between migrations. Moreover, it is necessary to define the island model topology, in 
other words, the scheme of migration. We use the fully connected topology that means 
each algorithm shares its best solutions with all other algorithms included in the island 
model. The multi-agent model is expected to preserve a higher level of genetic diversity. 
The benefits of the particular algorithm could be advantageous in different stages of 
optimization. In this study the Non-Sorting Genetic Algorithm II (NSGA-II) [6], the 
Preference-Inspired Co-Evolutionary Algorithm with goal vectors (PICEA-g) [7], and 
the Strength Pareto Evolutionary Algorithm 2 (SPEA2) [8] were used to be involved as 
parallel working islands (Figure 1).   

 

 

Fig. 1. The island model implemented 

The next subsection provides a concise description of the algorithms included in 
the cooperation and their essential features. 

2.2 Brief Description of Island Model Components   

Several decades ago Goldberg suggested the usage of the Pareto-dominance idea as 
the main principle of fitness assignment in any evolutionary algorithm [9]. Since that 
time this strategy has proved its effectiveness and substituted other alternative pro-
posals. Therefore, the chosen methods (NSGA-II, SPEA2, and PICEA-g) are based on 
the Pareto-dominance idea. However, there are various ways of its implementation 
[10]:  some algorithms use the dominance rank (the amount of individuals by which 
the candidate-solution is dominated); in others the dominance depth is evaluated (this 
implies the division of a population into several fronts and determination of the front 
which an individual belongs to); the dominance count might also be taken into con-
sideration (in other words, the amount of points dominated by a certain individual), 
and so on. Thus, the algorithms involved in the island model accomplish diverse fit-
ness assignment strategies based on the Pareto-dominance idea (Table 1). 
 



474 C. Brester and E. Semenkin 

Table 1. Basic features of the MOGA used 

MOGA Fitness Assignment Diversity Preservation Elitism 

NSGA-II Pareto-dominance 
(niching mechanism) and 

diversity estimation 
(crowding distance) 

 

Crowding distance Combination of  the 
previous population 

and the offspring 

PICEA-g Pareto-dominance 
(with generating goal 

vectors) 

Nearest neighbour 
technique 

The archive set and 
combination of  the 
previous population 

and the offspring 
 

SPEA2 Pareto-dominance 
(niching mechanism) and 

density estimation (the 
distance to the k-th near-
est neighbour in the ob-

jective space) 

Nearest neighbour 
technique 

The archive set 

 
Besides, diversity preservation techniques are incorporated in most of the MOGAs 

to maintain variety within Pareto Set and Front approximations. There are also several 
ways to implement these techniques [11]. Kernel methods estimate the density with a 
Kernel function, which takes the distance to another point as an argument. Nearest 
neighbour techniques are based on the assessment of the distance between a given 
point and its k-th nearest neighbour. And histograms present another class of density 
estimators that use a hypergrid to calculate neighbourhoods. In most cases, these ap-
proaches define the distance between points in the objective space. 

Moreover, there is the problem of losing effective individuals during the optimiza-
tion process due to stochastic effects, and to solve this problem the idea of elitism has 
been suggested. Generally, there are two ways to implement it. The first strategy to 
cope with the problem is to combine the parent population with the offspring and then 
to apply a deterministic selection procedure taking into account fitness values of indi-
viduals from the mating pool. Another strategy is based on the usage of a secondary 
population which is called archive to copy there promising solutions at each genera-
tion. Actually, one of these techniques might be implemented: in NSGA-II the first 
strategy is used, whereas in SPEA2 the second one is applied, but they might also be 
combined (as a case in point, PICEA-g). 

In Table 1 a brief description of the MOGAs involved in the cooperative algorithm 
and their main features are summarized. 

In the approach developed we have tried to engage various heuristic concepts to 
implement fitness assignment strategies, diversity preservation techniques, and the 
elitism idea. On the one hand, it is supposed to lead to an increase in the algorithm 
reliability. On the other hand, due to the parallel structure of the island model compu-
tational time might be decreased. 

The next section includes a description of the test problems which have been used 
to investigate the effectiveness of the approach proposed. 
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3 Test Problems 

To investigate the effectiveness of the approach proposed in comparison with its 
components, we have engaged a set of high-dimensional test problems designed by 
the international scientific community to compare the effectiveness of developed 
algorithmic schemes (the CEC 2009 competition [12]). There are problems with dis-
crete and continuous, convex and non-convex Pareto Sets and Fronts. 

In this study we use a number of these test instances which are unconstrained two- 
and three-objective optimization problems with real variables.  

In the CEC 2009 competition the metric IGD was used to estimate the quality of 
obtained Pareto Front approximations: ܦܩܫሺܣ, ሻכܲ ൌ ∑ ௗሺ௩,ሻೡചುכ|כ| ,                                            (1) 

where ܲכ is a set of uniformly distributed points along the Pareto Front (in the objec-
tive space), ܣ is an approximate set to the Pareto Front, ݀ሺݒ, -ሻ is the minimum Eucܣ
lidean distance between ݒ and the points in ܣ. In short, the ܦܩܫሺܣ,  ሻ value reflectsכܲ
the average distance from ܲכto ܣ. 

These continuous multi-objective optimization test problems have been proposed 
in the past 25 years. In the CEC 2009 competition they were gathered to investigate 
the algorithms developed. Although in this study we do not compare our proposal 
with the winners of this competition, it is fair to notice that for most of the test prob-
lems the effectiveness of the approach developed is higher than the effectiveness of 
some methods from the list of winners (the list of thirteen best algorithms). 

The next section provides a description of the experiments conducted, the results 
obtained and a brief discussion of them. 

4 Experiments and Results 

Firstly, conventional algorithmic schemes were applied to solve the problems intro-
duced. All algorithms were provided with the same amount of resources: according to 
the rules of the CEC 2009 competition, the maximal number of function evaluations 
was equal to 300 000. The maximal number of solutions in the approximate set pro-
duced by each algorithm for computing the IGD metric was 100 and 150 for two-
objective and three-objective problems respectively. For all of the test instances IGD 
values were averaged over 25 runs of each algorithm. 

In the experiments conducted the following settings were defined: binary tourna-
ment selection, uniform recombination and the mutation probability pm=1/n, where n 
is the length of the chromosome. As usual, MOGAs (NSGA-II, SPEA2, and PICEA-
g) operated with binary strings and therefore, we used standard binary coding to get 
real values of variables.  

Secondly, a similar experiment was conducted for the developed cooperative mul-
ti-objective algorithm. The computational resources (300 000 function evaluations) 
were distributed to all of the components equally. The migration size was 50 (in total 
each island got 100 points from two others), and the migration interval was 25 genera-
tions. Again all results were averaged over 25 runs. 
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The main criterion which was used to compare the effectiveness of the algorithm 
proposed with the performance of its components was the IGD metric. However, we 
also measured computational time required in each case. The results obtained are 
presented in Table 2.  

The first experiment revealed that there was no one MOGA which demonstrated 
the highest effectiveness (in the sense of the IGD metric) for all of the test problems. 
The best results provided with NSGA-II, SPEA2, and PICEA-g separately are hig-
hlighted with in bold. 

Table 2. Experimental results 

Test 
Func. 

NSGA-II PICEA-g SPEA2 
Cooperative 

algorithm Result of 
t-test 

IGD 
Time 
(sec.) 

IGD 
Time 
(sec.) 

IGD 
Time 
(sec.) 

IGD 
Time 
(sec.) 

UF1 0.097 196.060 0.107 42.327 0.010 236.677 0.068 56.566 
Outperforms 

the best 
value 

UF2 0.061 181.520 0.060 84.538 0.078 262.089 0.056 64.837 
Corresponds 
to the best 

value 

UF3 0.191 181.150 0.222 36.781 0.326 237.594 0.202 55.952 
Corresponds 
to the best 

value 

UF4 0.055 182.233 0.0570 75.837 0.083 243.208 0.058 60.271 
Corresponds 
to the best 

value 

UF5 0.426 181.509 0.498 33.844 0.518 240.198 0.338 56.391 
Outperforms  

the best  
value 

UF6 0.335 183.085 0.346 34.997 0.319 237.906 0.254 56.008 
Outperforms 

the best 
value 

UF7 0.085 181.039 0.091 75.556 0.125 245.891 0.084 60.269 
Outperforms 

the best  
value 

UF8 0.269 190.269 0.191 166.056 0.259 253.813 0.259 87.240 
Corresponds 
to the second 

value 

UF9 0.319 191.105 0.290 107.157 0.407 406.996 0.314 78.532 
Corresponds 
to the best 

value 

UF10 0.626 186.267 0.421 118.744 0.534 290.870 0.533 75.119 
Corresponds 
to the best 

value 

 
Then we compared these best IGD values obtained by MOGAs with the results of 

the cooperative algorithm. A t-test (with the significance level p=0.01) was used to 
expose the significant difference in the pairs of IGD values. As a result, it turned out 
that in seven cases there was no difference between the best results provided with 
MOGAs separately and the IGD values obtained with the cooperation of these MO-
GAs (in Table 2 ‘Corresponds to the best value’ indicates these cases). Furthermore, 
the cooperative method outperformed the best MOGA twice (in Table 2 it is labeled 
‘Outperforms the best value’) and only once its effectiveness corresponded to the 
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second (in the sense of the IGD values) MOGA (this case is marked ‘Corresponds to 
the second value’). This implies that our proposal is an effective alternative to the 
random choice of the appropriate MOGA for the problem considered. 

Also the parallel implementation allows us to save computational time: the average 
number of seconds spent with conventional MOGAs (NSGA-II, SPEA2, and PICEA-
g) is 176, whereas the cooperative algorithm requires 65 seconds. On average, it 
works faster than the fastest MOGA (PICEA-g) and much faster than two others. 
Certainly, these results depend on different characteristics of the computer used, but it 
might be roughly assessed that the computational time has been decreased essentially.  

5 Conclusion 

In this paper, we have proposed the multi-agent heuristic procedure to solve multi-
objective optimization problems which does not require additional experiments to 
expose the most appropriate algorithm for the problem considered. This cooperative 
technique might be effectively used instead of any of its component. Moreover, the 
parallel work of island model components allows us to decrease the computational 
time significantly. For most of the test problems the effectiveness of the developed 
algorithmic scheme is comparable with (or even better than) the performance of its 
component which provides the best results separately.   

The algorithm developed has already been applied to select informative features 
from data bases (two criteria were introduced – the Intra- and Inter-class distances). 
Also it has been successfully used to design neural network models taking into ac-
count two criteria (the computational complexity and the accuracy). All these applica-
tions will be presented in the next paper.  

Thus, it might be concluded that due to advances in the algorithm proposed it 
might be effectively used in the Machine Learning field. 
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Abstract. Multi-objective particle swarm optimization algorithm based on 
comprehensive optimization strategies (MOPSO-COS) is proposed in this paper 
to deal with the problems of premature convergence and poor diversity. The ve-
locity updating mode is modified by incorporating the information of the global 
second best particle to promote information flowing among particles. In order 
to improve the convergence accuracy and diversity, some effective strategies, 
such as chaotic mutation, external archiving with dynamic grid method, selec-
tion strategy based on a temporary population and so on, are introduced into 
MOPSO-COS. Theoretical analysis of MOPSO-COS is carried out including 
convergence and time complexity. Performance tests are conducted with ZDT 
test functions. Simulation results show that MOPSO-COS can improve the con-
vergence accuracy and diversity of Pareto optimal solutions simultaneously, and 
particles can escape from local optimum point effectively. 

Keywords: MOPSO · Comprehensive optimization · The global second best 
particle · External archiving strategy · Chaotic mutation 

1 Introduction 

Particle swarm optimization (PSO) algorithm solves complex optimization problems 
by simulating foraging of birds, fish and other groups. PSO is widely applied because 
it’s simple, easy to realize and has less parameters. The velocity vi and position xi of i-
th particle in standard PSO are updated respectively according to Eq.1 and Eq.2. 

 ( ) ( ) ( )( ) ( )( )1 1 2 21  .i i i i gi iv t + = v t + c r p - x t + c r p - x tω  (1) 

 ( ) ( ) ( )1 1  .i i ix t + = v t+ +x t   (2) 

where [ ]1 2 ,  , ,  i i i idx x x x= …  represents a candidate solution, and d is the total di-

mensions; t is the current iteration times; pi, which is called personal best, is the pre-
vious best location of i-th particle; pgi, which is called global best, is the location of 
the particle with best fitness; ω  is inertia weight; c1 and c2 are acceleration constants 
which show the contributions of pi and pgi; r1 and r2 are independent random numbers 
within [0, 1]. According to Eq.1, each particle adjusts its velocity and track according 
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to the flying experience from itself and the whole group. Therefore they have the 
capacity to search for better position in the search space. 

Now it is common to solve multi-objective optimization problems by PSO algo-
rithm. Multi-objective particle swarm optimization (MOPSO) algorithm inherits the 
advantages of PSO, but it also has some shortcomings, such as premature, low con-
vergence accuracy and poor diversity. Therefore, MOPSO has been improved at dif-
ferent points in recent years, including population initialization [1], the setting of 
inertia weight [2] and acceleration constants [3], selection methods for the global best 
particle [4], modification of the position and velocity updating equation [5], and co-
evolution of multi-population [6]. 

The performance of modified MOPSO is better. But there are still some problems 
found by simulation and experiments. When the population falls into the area around 
local optimum point, it is difficult for non-convex and multimodal problems to get rid 
of it effectively. The diversity of non-dominated solutions needs to be further im-
proved. And the convergence and diversity indices are seriously fluctuant among 
different runs. To solve these problems, this paper proposes multi-objective particle 
swarm optimization algorithm based on comprehensive optimization strategies 
(MOPSO-COS). In MOPSO-COS, velocity updating equation is modified by intro-
ducing the global second best particle, and chaotic mutation、external archiving 
strategy based on dynamic grid method and so on are incorporated. All the strategies 
work simultaneously. Simulation is carried out with ZDT test functions. Results show 
that good performance can be obtained. 

2 MOPSO Based on Comprehensive Optimization Strategies 

Traditional velocity equation only involves personal best and global best. Information 
from other particles in the population hasn’t been utilized effectively. It results in low 
information sharing rate, poor diversity and slow convergence. To handle these prob-
lems, this paper changes velocity equation as Eq. 3. 

 1 1 2 2 3 3( 1) ( ) ( ( )) ( ( )) (sec ( )) .i i i i gi i gi iv t + = v t + c r p - x t + c r p - x t + c r p - x tω   (3) 

where secpgi is the position of the global second best particle, whose fitness is only 
worse than pgi’s. c3 is a coefficient like c1 and c2. r3 is a random number within [0,1]. 
Therefore, the whole population will move towards the personal best particle, the 
global best particle and the global second best particle at the same time. Compared 
with Eq.1, Eq.3 can promote information sharing among particles in theory, enhance 
information flowing within the population, and avoid the population gathering exces-
sively at the global best point.  

To escape from local optimum point effectively and break highly aggregated state, 
this paper introduces chaotic mutation [7]. If the population has a highly aggregation, 
even overlap, in the target space, the evolution is marked as stagnation once. When 
the evolution stagnates K times consecutively, the algorithm relying on current strate-
gies is deemed to fail to escape from local optimum point, and chaotic mutation starts 
to work. Aggregation index, a, is introduced to quantize the aggregation degree of the 
population, and it can be expressed as Eq. 4. The closer a is to 1, the more seriously 
the population gathered and the worse the diversity is. 
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where jbestf is the best value of the j-th (j = 1,2, ..., M) objective function, and 

jmeanf is the mean value; M is the total number of objective functions.  

To make the Pareto optimal solutions distribute more uniformly in target space, ex-
ternal archiving strategy [8] is adopted to store non-dominated particles gained in 
each calculation. When external archive overflows, dynamic grid method [9] is em-
ployed to maintain archive. In addition，selection strategy based on a temporary 
population [10] is adopted to choose particles in the next population. In order to en-
hance the ability of global search and improve convergence speed, random mutation 
works when the flight speed of the population is less than the threshold value [10].  

3 Theoretical Analysis of MOPSO-COS Algorithm  

3.1 Convergence Analysis of MOPSO-COS Algorithm 

Compared with Eq. 1, Eq.3 has a new part including the global second best particle. 
How is the convergence of MOPSO-COS? How will the parameters be set? These 
problems will be discussed below. vi and xi are independent on each dimension.  For 
simplicity, the following analysis is based on one-dimensional space and all the ran-
dom values are ignored.  

 1 2 3

( 2) ( 1) ( 2)

( 1) ( ( 1) ( )) ( ( 1)) ( ( 1)) (sec ( 1)) .i gi gi

x t x t v t

x t x t x t c p x t c p x t c p x tω
+ = + + +

= + + + − + − + + − + + − +
  

(5) 

 1 2 3( 2) ( 1) ( 1) ( ) sec  .i gi gix t c x t x t c p c p c pω ω+ + − − + + = + +
  

(6) 

Supposing that 1 2 3c c c c+ + = , Eq. 6 is available. Ignoring the change of pi, pgi and 

secpgi, Eq. 6 is a non-homogeneous second-order differential equation with constant 
coefficients. The characteristic equation is expressed as Eq. 7. 

 
2 ( 1) 0 .s c sω ω+ − − + =  (7) 

Let 2( 1) 4c ω ωΔ = − − − , so the solution of Eq.6 is 1 2(t) t tx As Bts C= + + , which can 

be divided into the following three cases: 1) 0Δ = , 1 2 0.5( 1)s s c ω= = − − − ; 2) 0Δ > , 

1 0.5((c 1) )s ω= − − − + Δ ; 2 0.5((c 1) )s ω= − − − − Δ ; 3) 0Δ < , 1 0.5((c 1)s ω= − − −

; 2 0.5((c 1) )s iω= − − − − −Δ .Where A, B and C are uncertain coefficients 

determined by x (0) and v (0).  
If MOPSO-COS converges, when t → ∞ , x(t) is finite, namely, 1 1 s < and 2 1s < . 

Considering three cases comprehensively, feasible domain of parameters in  
MOPSO-COS algorithm can be described as: 0c > 、 1 1ω− < <  and 2 2 0cω − + > . 

)i+ −Δ
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The parameter values have significant influence on the performance of MOPSO-COS. 
The convergence analysis provides reference for the setting of some parameters.  

3.2 Time Complexity Analysis of MOPSO-COS Algorithm 

Time complexity is an important index that weighs the performance of modified algo-
rithm. The strategies used most frequently and holding higher degree of time com-
plexity are external archiving strategy and selection strategy based on a temporary 
population. According to the research in [11], time complexity of selection strategy 

based on a temporary population can be expressed as:
2

( log( ))
N

i N

Mi i
=

Ο  , where N is the 

population size. Set archive size to Ne. There are some assumptions for the worst 
case: 1) the current archive is full; 2) all the N particles in the current population are 
non-dominated, further when they’re added into archive, there are no new dominated 
particles nor overlap in the target space. Hence dynamic grid method needs to remove 
N particles. By calculation, time complexity for removing the first particle is

2(( ) )N + NeΟ , and that for removing the second particle is 2(( 1) )N + NeΟ − …and by 

this analogy, that for removing the N-th particle is 2((Ne 1) )Ο + . So the total time 

complexity for archive updating with the worst case is ( )
1

2

0

N

i

N Ne i
−

=

 Ο + −  
 . 

According to the relationship of time complexity, the total time complexity for 

MOPSO-COS is ( )
1

2

0

N

i

N Ne i
−

=

 Ο + −  
 . Therefore, MOPSO-COS increases operation 

time. However, the efficiency of MOPSO-COS is still high. When N is bigger，fast 
convergence is available .  

4 Performance Tests of MOPSO-COS Algorithm  

Performance tests are based on ZDT test functions. Generation distance (GD) [4] and 
diversity index ( Δ ) [12] are used to evaluate the convergence accuracy and distribu-
tion properties of Pareto solutions. The smaller GD is, the higher convergence accura-
cy is. The smaller Δ  is, the more evenly Pareto optimal solutions distribute. 

Comparisons will be made between MOPSO-COS and some other similar typical 
algorithms, such as SPEA2, NSGA2 and MOPSO [13], to evaluate the performance 
of MOPSO-COS more objectively and comprehensively. For all the algorithms, set  
N=100，Ne=100, Gmax=250 (maximum iteration times). Only for MOPSO-COS, set  

1 1= +(1- ) rω ω ω × , 1ω =0.5, c1=0.7(2.5-2t/Gmax), c2=0.5+2t/Gmax, c3=0.3(2.5-2t/Gmax), 

T=3，m=5，h=20, where r is a random number. The value of ω  in MOPSO is set the 
same as MOPSO-COS, while c1=2.5-2t/Gmax， c2=0.5+2t/Gmax. The probabilities of 
crossover and mutation in NSGA2 are respectively set pc=0.9 and pm=0.1. 
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Table 1. Comparison of Convergence Index-GD 

  SPEA2 NSGA2 MOPSO MOPSO-COS 

ZDT1 
meanG 6.2205e- 2.9997e- 1.6537e-4 2.1638e-4 

varGD 1.3218e-
8

3.1154e-
9

2.1596e-
10

2.7426e-9 

ZDT2 
meanG
D

2.3288e-
4

2.2078e-
3

3.1045e-2 1.0597e-4 

varGD 2.1089e-
7

7.6374e-
8

8.8444e-3 3.0936e-11 

ZDT3 
meanG 2.6240e-

4
6.2196e-

4
1.5469e-1 6.1302e-4 

varGD 7.0359e-
9

3.3547e-
8

4.1214e-2 2.8784e-9 

ZDT4 
meanG 8.8982e-

3
0.12657 3.1461e-4 6.5150e-4 

varGD 4.5395e-
5

1.0551e-
2

8.2928e-
10

7.7298e-10 

ZDT6 
meanG
D

3.3990e-
2

0.57436 2.7691e-2 7.2604e-3 

varGD 4.7913e-
4

6.4193e-
2

2.2267e-3 2.8939e-4 

Table 2. Comparison of Diversity Index- Δ  

  SPEA2 NSGA2 MOPSO MOPSO-COS 

ZDT1 
mean Δ  0.69577 0.38010 0.52879 0.43395 

var Δ  1.2828e-2 1.0412e-3 6.9777e-4 1.3164e-3 

ZDT2 
mean Δ  0.81973 0.48544 0.90792 0.44556 

var Δ  1.9481e-2 8.2685e-3 1.3987e-2 1.3223e-3 

ZDT3 
mean Δ  0.91386 0.75506 0.72845 0.68625 

var Δ  1.3084e-2 5.9355e-2 2.9714e-2 1.4590e-3 

ZDT4 
mean Δ  0.80941 0.69995 0.49158 0.37226 

var Δ  3.0119e-2 2.8908e-2 2.7190e-3 6.3067e-4 

ZDT6 
mean Δ  0.77787 1.0299 1.1245 0.85959 

var Δ  2.3101e-3 2.7091e-2 8.1845e-2 3.7125e-3 

 
Optimization for each algorithm is done 50 times independently. The results are 

shown in Table 1 and 2, where mean represents the mean value and var represents the 
variance. Fig. 1 shows the difference between optimal front obtained from MOPSO-
COS and the true Pareto front. In fact, it is difficult for many improved MOPSO algo-
rithms to escape from local optimal point effectively, particularly for non-convex 
function ZDT2. Besides, many MOPSO algorithms are difficult to converge to the 
true Pareto front for ZDT6 because ZDT6 is multimodal function. It is easy to find in 
Table 1 that convergence of MOPSO-COS is obvious improved for ZDT2 and ZDT6, 
and variance of GD is smaller than other algorithms. According to Table 2, diversity 
of MOPSO-COS is best, except that it is worse only than NSGA2 for ZDT1 and 
worse than SPEA2 for ZDT6. Combing Table 1, Table 2 and Fig.1, it can be drawn 
that MOPSO-COS is able to converge to the true Pareto front with high accuracy for 
ZDT test functions. The optimal front of MOPSO-COS distributes uniformly and 
diversity is good. Although its performance is not the best at certain test function, 
order of magnitude is similar. Therefore the improved MOPSO-COS is effective. 
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(a) ZDT2                                                             (b) ZDT3 

     
(c) ZDT4                                                            (d) ZDT6 

Fig. 1. Pareto Front of MOPSO-COS for ZDT Test Functions 

Fig. 2 shows the difference between MOPSO-COS and MOPSO for ZDT2 when 
the population gets rid of local optimal point. Results for 20 times selected randomly 
are adopted for comparison. In Fig. 2, the number ‘0’ indicates that final Pareto op-
timal solutions converge to the true front and distribute uniformly; ‘1’ indicates that 
the population fails to get out of the local optimal point, and particles overlap at the 
local extremum finally; ‘2’ indicates that the population aggregates seriously, so the 
diversity is poor. Through experiments and observation, it is obvious that MOPSO 
can hardly escape from local optimal point for ZDT2. Even if MOPSO can, aggrega-
tion degree of the population is high at last, and solutions on the Pareto front distri-
bute extremely unevenly. On the contrary, MOPSO-COS is able to avoid seriously 
aggregating and it has a larger probability to escape from the local optimal point. 

 

 
Fig. 2. Comparison between MOPSO-COS and MOPSO When Escaping from Local Optimum  
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5 Conclusions  

This paper presents a multi-objective particle swarm optimization algorithm based on 
comprehensive optimization strategies. The concept of the global second best particle 
is proposed and further velocity updating equation is modified, which has improved 
the utilization of population information and convergence speed. Premature conver-
gence and serious aggregation are avoided by chaotic mutation. External archive 
strategy, which maintains the archive by dynamic gird method, has increased the di-
versity of Pareto optimal solutions. However, the analysis of time complexity shows 
that MOPSO-COS requires a little more time to search for the optimal solutions. Re-
sults of simulation based on ZDT test functions show that, compared with several 
other algorithms, MOPSO-COS is able to improve the convergence accuracy and 
diversity and escape from local optimum point effectively.  
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Abstract. A modification of the self-tuning meta-heuristic, called Co-Operation 
of Biology Related Algorithms for multiobjective optimization problems 
(COBRA-m) is introduced. Its basic idea consists of a cooperative work of five 
well-known bionic algorithms such as Particle Swarm Optimization, Wolf Pack 
Search, the Firefly Algorithm, the Cuckoo Search Algorithm and the Bat Algo-
rithm with the use of Pareto optimality theory. The performance of the men-
tioned algorithms as well as COBRA-m on the set of benchmark functions is 
reported. It was established that the proposed approach COBRA-m has per-
formed either comparably or better than its component bionic algorithms. Then 
the method COBRA-m is modified for solving constrained multiobjective op-
timization problems. The proposed algorithm is first validated against a subset 
of test functions, and then applied to known multiobjective design problems 
such as welded beam design and disc brake design. Simulation results suggest 
that the proposed algorithm works effectively. 

Keywords: Biologically inspired algorithms · Cooperation · Multiobjective op-
timization · Design problems 

1 Introduction 

There are numerous industrial and engineering problems whose solving requires the 
simultaneous optimizing of several objective functions which are in conflict with each 
other. This kind of problem is known as a multiobjective optimization problem. 

Although there are many approaches and methods developed in multiobjective op-
timization generally [1] and in evolutionary multiobjective optimization [2] in par-
ticular, the scientific community continues generating new ideas and algorithms and 
this area of research is permanently expanding.  It is usually in the area of the devel-
opment of nature-inspired optimization algorithms that every new algorithm is sug-
gested first for conventional one-objective unconstrained optimization problems and 
later, if it demonstrates high performance and reliability, further modifications for 
constrained and multiobjective optimization are fulfilled for this algorithm. 

In [3], the new bionic self-tuning meta-heuristic called Co-Operation of Biology 
Related Algorithms (COBRA), based on the collective work of five biology-inspired 
optimization methods such as particle swarm optimization (PSO), wolf pack search 
(WPS), the firefly algorithm (FFA), the cuckoo search algorithm (CSA) and the bat 
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algorithm (BA), for real-valued one-objective unconstrained optimization has been 
introduced and investigated. Numerical experiments from the CEC 2013 continuous 
optimization competition benchmark showed that this metaheuristic works better than 
its component algorithms and can be used instead of them [3].  

Having in mind that all component algorithms used in the COBRA metaheuristic have 
their own modifications for multiobjective optimization problems [4-7], it was natural to 
assume that a cooperation of these algorithms could give again an improvement in effec-
tiveness. To evaluate the effectiveness of the proposed approach the algorithm COBRA-
m (for unconstrained multiobjective optimization) was empirically compared with its 
above-listed component algorithms on a set of benchmark functions which  
are test problems for multiobjective unconstrained optimization. Then the heuristic 
COBRA-cm (for constrained multiobjective optimization) was validated against a subset 
of corresponding test functions. And finally the algorithms were applied to solving 
known multiobjective design problems such as welded beam design and disc brake de-
sign. The results obtained showed that the COBRA approach to multiobjective optimiza-
tion is also effective and reliable, i.e., it finds a good approximation of the Pareto front in 
all runs.  

The remainder of this paper is organized as follows. Section 2 explains the original 
COBRA algorithm. Further, in Section 3, the proposed meta-heuristics COBRA-m 
and COBRA-cm for multiobjective unconstrained and constrained optimization prob-
lems, respectively, are introduced. In Section 4, the results of testing are discussed 
and in Section 5 the results of solving the design optimization problems are reported. 
Finally, the conclusion follows in Section 6. 

2 Co-operation of Biology Related Algorithms 

A new method for solving one-criterion unconstrained real-parameter optimization 
problems based on the cooperation of five nature-inspired algorithms and called Co-
Operation of Biology Related Algorithms (COBRA) was introduced in [3]. The basic 
idea of this approach consists in generating five populations (one population for each 
above mentioned algorithm) which are then executed in parallel cooperating with 
each other. The choice of these five algorithms was explained through their likeness 
in ideology and a similarity in behaviour that brings troubles for end users when 
choice of an appropriate tool for solving the problem in hand. 

Proposed in [3] algorithm is a self-tuning meta-heuristic so there is no need to 
choose the population size for algorithms. The number of individuals in the popula-
tion of each algorithm can increase or decrease depending on whether the fitness 
value is improving or not. If the fitness value was not improved during a given num-
ber of generations, then the size of all populations increases by adding randomly gen-
erated individuals. And vice versa, if the fitness value was constantly improved, then 
the size of all populations decreases by removing the worst population members. Ad-
ditionally, each population can “grow” by accepting individuals removed from an-
other population. A population “grows” only if its average fitness is better than the 
average fitness of all other populations. Besides, all populations communicate with 
each other: they exchange individuals in such a way that a part of the worst individu-
als of each population is replaced by the best individuals of other populations.  
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The performance of the proposed algorithm was evaluated on the set of benchmark 
problems from the CEC’2013 competition [3]. This set of 28 unconstrained real-
parameter optimization problems was given in [8]. Experiments showed that COBRA 
works successfully and is reliable on this benchmark. Results also showed that 
COBRA outperforms its component algorithms when the dimension grows and more 
complicated problems are solved. It means that COBRA can be used instead of any 
component algorithm. 

3 Multiobjective Modifications COBRA-m and COBRA-cm 

At the beginning, we will assume that the following multiobjective unconstrained 
optimization problem should be solved: 

                                        f(x) = (f1(x), f2(x), …, fK(x)) → min         (1) 

So, there are K objectives which should be minimized. And later we will assume that 
there are also M constraint functions gi(x) ≤ 0, i = 1, …, M. 

For development of the multiobjective version of COBRA, its component algo-
rithms have to be also modified. Therefore, all these techniques were extended to 
produce a Pareto optimal front directly: PSO and WPS by using the σ-method [4] and 
the FFA, CSA and BA as suggested in [5-7] correspondingly. Thus, for each compo-
nent algorithm an external archive Si (i = 1, …, 5) of nondominated solutions was 
generated and a general external archive S was created. Solutions in all archives Si 
were compared and solutions which were nondominated among all of them were 
placed in the archive S.  

The development of the multiobjective modification of optimization tool COBRA 
requires changes in the procedure of selecting the winning algorithm. That is why on 
the next stage of the COBRA-m execution K weight coefficients whose sum is equal 
to 1 are initialized randomly. Then all objectives are combined into a single objective 
(weighted sum of K objectives). We will call this single objective “fitness” on the 
current stage. For each component algorithm its average fitness value is calculated; 
the one with the best fitness value is the “winner-algorithm”. 

A migration operator should also be modified. Again, K weight coefficients whose 
sum is equal to 1 are initialized randomly; and a single objective as a weighted sum of 
K objectives is generated. For each component algorithm, its individuals are sorted 
according to this single objective. Finally, the worst solutions of one component algo-
rithm are replaced by the best solutions of others; and archive S is updated. 

The next step in the approach development and main point of this study is about 
the development and investigation of COBRA-cm, i.e., the modification of COBRA-
m that can be used for solving constrained multiobjective optimization problems. For 
this purpose a well-known constraint handling technique, namely Deb’s rule [9], is 
used. 
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4 Numerical Results 

4.1 Comparison Study for Algorithm COBRA-m 

There are various test functions for the multiobjective optimization, but to validate the 
proposed algorithm COBRA-m, a subset of these functions with convex, non-convex 
and discontinuous Pareto fronts was selected [11]. To be more specific, in this study 
the following four functions were used for the testing of COBRA-m: ZDT1 function 
with a convex Pareto front, ZDT2 function with a non-convex Pareto front, ZDT3 
function with a discontinuous Pareto front and Schaffer’s Min-Min (SCH) test func-
tion with convex Pareto front. 

The dimension of the first three optimization problems was equal to 30. In papers 
[5-7] the results for multiobjective FFA, CSA and BA algorithms are given where the 
number of individuals for each algorithm was equal to 50; and the number of itera-
tions was equal to 1000 for BA and 2000 for FFA and CSA. So, the maximum num-
ber of function evaluations for COBRA-m was established to be equal to 50000.  

After generating Pareto points by COBRA-m, the corresponding Pareto front was 
compared with the true front. We define the distance between the estimated Pareto 
front PFe and its corresponding true front PFt as follows: 

                                                        E = || PFe – PFt ||2         (2) 

The results for all the problems are summarized in Table 1; the results for CSA and 
FFA were taken from [5, 6], and the results for all test problems except SCH obtained 
by method BA were taken from [7]. 

Table 1. Summary of results for unconstrained problems 

Func PSO WPS FFA CSA BA COBRA-m 

ZDT1 7.2E-05 4.8E-06 2.3E-06 1.2E-06 3.7E-04 1.1E-06 
ZDT2 6.8E-07 3.2E-07 8.9E-06 7.3E-06 2.4E-04 2.6E-07 
ZDT3 2.9E-05 1.9E-05 3.7E-05 2.2E-05 5.2E-05 1.4E-05 
SCH 2.5E-06 1.7E-06 5.5E-09 4.9E-09 5.1E-07 2.7E-09 

 
As one can see, the simulations for these test problems show that the proposed ap-

proach COBRA-m is an efficient algorithm for solving multiobjective optimization 
problems. It can deal with highly non-linear problems with diverse Pareto optimal 
sets. Also COBRA-m outperforms its component algorithms. It means that COBRA-
m could be recommended for use instead of all of its components. 

4.2 Comparison Study for Algorithm COBRA-cm 

The subset of test multiobjective optimization problems taken from the CEC 2009 
special session on Performance Assessment of Constrained / Bound Constrained Mul-
tiobjective Optimization Algorithms [10] was used to validate the proposed algorithm 
COBRA-cm. All test problems were treated as black-box problems. The results ob-
tained were used for calculating the inverted generational distance (IGD) values for 
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different problems which can be described as follows. Let P* be a set of uniformly 
distributed points along the Pareto front in the objective space (for all test problems 
from mentioned competition it was given). Let A be an approximate set to the Pareto 
front. The average distance from P* to A is defined as: 

                                                   IGD(A, P*) = ∑d(v, A),                  (3) 

where v is a point from P*, d(v, A) is the minimum Euclidean distance between v and 
all points in A.  For each constraint gi(x) ≥ 0 all the solutions in the approximate set 
for computing the IGD should satisfy gi(x) ≥  –10-6. 

The maximum number of solutions in the approximate set produced by COBRA-
cm for computing the IGD was equal to 100. All problems were two-objective opti-
mization problems. The maximum number of function evaluations was equal to 
300000. The problems were solved 30 times. The results achieved and also the results 
obtained by the other methods which participated in the mentioned special session are 
presented in Table 2 and Table 3. 

Table 2. Summary of results for constrained problems 

 CF1 CF2 CF3 

1 LuiLiAlgorithm 0.00085 DMOEADD 0.0021 DMOEADD 0.05630 

2 NSGAIILS 0.00692 LuiLiAlg 0.0042 MTS 0.10446 

3 MOEDGM 0.0108 MOEDGM 0.008 GDE3 0.12506 

4 DMOEADD 0.01131 NSGAIILS 0.01183 LuiLiAlg 0.18290 

5 COBRA-cm 0.01775 GDE3 0.01597 NSGAIILS 0.02399 

6 MTS 0.01918 COBRA-cm 0.01949 COBRA-cm 0.24441 

7 GDE3 0.0294 MTS 0.02677 MOEDGM 0.5131 

8 
DECMOSA-

SQP 
0.10773 

DECMOSA-
SQP 

0.0946 
DECMOSA-

SQP 
106 

Table 3. Summary of results for constrained problems 

 CF4 CF5 CF6 

1 DMOEADD 0.00699 DMOEADD 0.01577 LiuLiAlg 0.01395 

2 GDE3 0.00799 MTS 0.02077 DMOEADD 0.01502 

3 MTS 0.01109 GDE3 0.06799 MTS 0.01616 

4 LuiLiAlg 0.01423 COBRA-cm 0.07934 NSGAIILS 0.02013 

5 COBRA-cm 0.01542 LiuLiAlg 0.10973 COBRA-cm 0.03125 

6 NSGAIILS 0.01576 NSGAIILS 0.1842 GDE3 0.06199 

7 MOEDGM 0.0707 
DECMOSA-

SQP 
0.41275 

DECMOSA-
SQP 

0.14782 

8 
DECMOSA-

SQP 
0.15265 MOEADGM 0.5446 MOEADGM 0.2071 
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In Table 2 and Table 3 results were ranked from the best to the worst. In those ta-
bles “CF” means constrained multiobjective optimization problems.  

The results obtained show that the proposed optimization tool COBRA-cm is effi-
cient enough taking 5th place among 8 winners of competition. Its usefulness is also 
established as COBRA-cm outperforms its component-algorithm on this test set. 

5 Design Optimization Problems 

There are various design optimization problems, namely the design of the structure of 
some kind of objects, which have applications in engineering. In consequence of this 
fact, nowadays numerous studies with detailed description of the solving of some 
real-world design problems can be found in literature, for example [12] or [13]. For 
this study two well-known design optimization problems were chosen: the welded 
beam design problem [14] and the disc brake design problem [15]. This choice was 
conditioned by the circumstance that the mentioned problems were solved by other 
researchers multiple times with a variety of tools. Hence there is a variety of results 
obtained by alternative optimization tools that can be used for the comparison. 

5.1 Welded Beam Design Problem 

The multiobjective design problem of a welded beam is a well-known benchmark 
[14] which has four design variables: the width x1 and length x2 of the welded area, 
the depth x3 and thickness x4 of the main beam. The objective is to minimize both the 
overall fabrication cost and the end deflection. The welded beam structure consists of 
a beam and the weld required to hold it to the member. Constraints for this problem 
are related to the shear stress, bending stress in the beam and buckling load on the bar. 
The detailed formulation of the problem can be found in [14]. 

The welded beam design problem was solved by using the proposed approach 
COBRA-cm. The approximate Pareto front was generated by the 50 nondominated 
solutions. The maximum number of function evaluations was equal to 50000.  

Estimated Pareto fronts were consistent with the results obtained by alternative 
methods [5-7], [14]. Besides, the decreasing of the maximum number of evaluations 
changed results unessentially. 

5.2 Disc Brake Design Problem 

The design of a multiple disc brake is another well-known benchmark for multiobjec-
tive optimization [15] which was solved by the proposed algorithm COBRA-cm. The 
objectives are to minimize the overall mass and the braking time by choosing optimal 
design variables. There are four design variables for this problem: the inner radius and 
outer radius of the discs, the engaging force and the number of friction surfaces. This 
is under the design constraints such as the torque, pressure, temperature and length of 
the brake. The detailed formulation of problem can be found in [15]. 
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The approximate Pareto front for the disc brake design problem was generated by 
the 50 nondominated solutions. Again the maximum number of function evaluations 
was equal to 50000. The estimated Pareto fronts were consistent with the results ob-
tained by alternative methods [11-12], [20]. Besides, as for the welded beam design 
problem, the decreasing of the maximum number of evaluations changed the obtained 
results unessentially. 

6 Conclusions 

In this paper a new algorithm for solving multiobjective unconstrained problems, 
COBRA-m, based on the recently developed method COBRA was described and 
investigated. The proposed approach COBRA-m has been tested against a subset of 
well-known test functions and compared with its component algorithms. Thus, the 
usefulness and workability of the optimization tool COBRA-m were established. Be-
sides, comparison showed that the method COBRA-m has performed either compara-
bly or better than its component bionic algorithms. 

Then the proposed approach COBRA-m was modified for solving multiobjective 
constrained optimization problems. This algorithm (COBRA-cm) has also been 
tested. A subset of test multiobjective optimization problems taken from CEC 2009 
special session was used to validate the algorithm. Eventually, the heuristic COBRA-
cm demonstrated competitive results on that subset of test problems.  

Finally, two design optimization problems were solved by the COBRA-cm. The 
simulations for these benchmarks suggest that the COBRA-cm is an efficient algo-
rithm for solving real-world multiobjective constrained optimization problems. It can 
deal with highly nonlinear problems with complex constraints and diverse Pareto 
optimal sets. 

It should be mentioned that on this stage of research we do not try to develop the 
best algorithm for the constrained multiobjective optimization. It means that the inten-
tion of this study is the development of the optimization tool that could be used in-
stead of five similar algorithms in order to help an end user in choosing an appropriate 
optimization technique without need to become an expert in swarm intelligence com-
putations. Further studies can focus on parametric studies of component algorithms. 

Acknowledgement. Research is fulfilled within governmental assignment of the Ministry of 
Education and Science of the Russian Federation for the Siberian State Aerospace University, 
project 140/14. 
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Abstract. Evolutionary algorithms are the most widely used meta-heuristics for 
solving multi objective optimization problems, and since all of these algorithms 
are population based, such as NSGAII, there are a set of factors that affect the 
final outcomes of these algorithms such as selection criteria, crossover, muta-
tion and fitness evaluation. Unfortunately, little research sheds light at how to 
generate the initial population. The common method is to generate the initial 
population randomly. In this work, a set of initialization methods were ex-
amined such as, Latin hypercube sampling (LHS), Quasi-Random sampling and 
stratified sampling. Nonetheless. We also propose a modified version of Latin 
Hypercube sampling method called (Quasi_LHS) that uses Quasi random num-
bers as a backbone in its body. Furthermore, we propose a modified version of 
Stratified sampling method that uses Quasi-Random numbers to represent the 
intervals. For our research, a set of well known multi objective optimization 
problems were used in order to evaluate our initial population strategies using 
NSGAII algorithm. The results show that the proposed initialization methods 
(Quasi_LHS) and Quasi-based Stratified improved to some extent the quality of 
final results of the experiments. 

Keywords: Evolutionary algorithms · Initial population · Random numbers · 
Quasi random numbers · Latin hypercube sampling · Stratified sampling ·  
Quality indicators · Pareto set · NSGAII algorithm 

1 Introduction 

Multi objective optimization as mentioned in [7] a complex task, since there are a set 
of objectives that have to be done simultaneously as a result of the optimization 
process. Moreover, the difficulty will rise when there is a conflict between those ob-
jectives in nature.  

Based on [10], this type of optimization problems cannot be solved in a reasonable 
time by using traditional and exact methods such as linear programming and gradient 
search. Therefore, Evolutionary Algorithms (EAs) are an aspect to be considered 
when solving this type of problems in a practical manner in terms of solution quality 
and computation time. For a given optimization problem, the EAs starting from a set 
of possible solutions called initial population or individuals generated randomly, and 
the process continues by selecting a subset from those individuals according to the 
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selection criteria. Then, the crossover and mutation are performed according to a spe-
cific criteria and probability as in the case of genetic algorithms (GAs). Finally the 
function evaluation and fitness assistance take place in order to produce the fittest 
individuals for the next generation.  

The domain of decision variables that form the initial population may be continuous 
or discrete based on the nature of the problem being formulated. In this research all 
problems which are undertaken have continuous domain decision variables. Based on 
[5], the initial values for this kind of variables will be generated randomly in order to 
create the initial population. For example, if the domain of variable xi ∈ [0,1] for all x ∈ 
X then we can generate a set of random values between lower bound (0) and upper 
bound (1) in order to represent the value of xi  at any given point, i.e. 0 ≤ xi ≤ 1 at every 
time during the evolution process. However, in the large scale problems the misuse of 
randomness may worsen the final solution of the problem undertaken in term of quality 
and evolution speed, i.e. the result of (25000) function evaluation for bad initial popula-
tion may be achieved using (10000) function evaluation of a good initial population. 
More precisely, as mentioned in [1], if the initial population to evolutionary algorithms 
is good, then the possibility of finding a good solution will be increased. Moreover, 
based on [5] it is a hard problem to find a good initial population for a given problem 
because in the most cases of optimization we do not have a priori knowledge about the 
location and the number of local optima in the fitness space. 

In the case of multi objective optimization, the overall process is more complex 
than it appears in single objective family, since the goal of any working evolutionary 
algorithm is to find the set of non dominated optimal solutions that satisfy the prob-
lem objectives. Based on [8, 9], those non dominated solutions are called Pareto set. 
They are somehow affected by the supplied possible solutions,  i.e. population.  
Furthermore, the complexity of the problem is increased when the number of  
objectives is increased. Therefore, it is no longer feasible to let the current working 
algorithm spend more time in the complex function evaluation. 

For this reason, in this research we will look at  the initial population in order to 
increase the representativeness of the initial population hoping  to increase the evolu-
tion speed.   Kalyanmoy et al. in [8], outline the main challenge of the optimization 
algorithms, such that, the Pareto-optimal solutions cannot be said to be better than  
the other in the absence of further information. This leads us to let the optimization 
algorithm find Pareto-optimal solutions as large as possible i.e. diversity must be 
increased, and based on the results in [5]; the diversity of the current solutions is 
somehow related to the diversity of the initial population. This was achieved by let-
ting the generated decision variables cover the feasible regions in the problem domain 
as large as possible while preserving the randomness nature of the initial population, 
and obviously, this leads us to the fact that not only the representativeness in decision 
variables is required, but also the randomness nature must be preserved in order to 
preserve the stochastic nature of evolutionary algorithms because of being the main 
advantage of this type of optimization algorithms.  

The rest of the paper is organized as follows: Section 2 presents literature review. 
The initialization methods are described in Section 3. Section 4 outlines the proposed 
initialization method. The experimental environment is outlined in Section 5. In  
Sections 6 and 7 we show the results and  how to obtain them. Finally, we conclude 
in Section 8. 
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2 Related Work 

Up to our knowledge, little research has been done in the field of initial population. 
Pedro et al. in [1], focused on the population size in order to understand the trade-offs 
of population size issue such that, the smaller population size could guide the algo-
rithm to poor solutions. On the other hand, large population size could guide the algo-
rithm to a poor performance and makes the algorithm spend more time in computation 
i.e. slow evolution. But the issue of how these populations are generated was com-
pletely ignored. 

However, in Mckay and Beckman [2], a comparison study for single objective 
problems was made between three methods for generating input variables for a specif-
ic complex computer code, such as, simple random sampling, stratified sampling and 
Latin hypercube sampling (LHS) and the results shown LHS method improves upon 
simple random and stratified sampling methods when it is adopted, and it appears to 
be a good method to be used for selecting values of input variables. In Hekki et al. 
[5], after estimating the initial population of GAs for a single objective family of op-
timization functions, four methods were adopted in order to generate the initial popu-
lation such as, pseudo random numbers, quasi random sequence generators and 
another two statistical methods such as SSI (simple sequential inhibition process) and 
Nonaligned Systematic sampling (the details of these methods are discussed in [5]).  

Unfortunately, there was no explicit conclusion could be made of what is the best 
method to be considered because of the presence of trade-offs between them in term 
of uniform coverage, genetic diversity and the evolution lifetime before the premature 
converge is happened, except the quasi random method shown a significant improve-
ment in many test cases. 

3 Initialization Methods 

In this Section, we will discuss three initialization methods related to the standard 
random approach that are commonly used by previous researches, and they were con-
sidered to be good methods for generating initial population and performed well in the 
experiments. 

3.1 Stratified Sampling Method 

Based on [2, 6], it is a sampling method used in statistical applications in order to gener-
ate a set of samples from a given continuous variable, such that, the range of continuous 
variable is divided into n-equal width intervals, each one of them called strata, and a 
simple random sampling method or systematic sampling method is used in order to 
select a random value within each interval often with equal probability for selection. 
Finally, those collected samples with length n (one sample per strata) are used to 
represent the continuous variables in experiments and simulations. But in our scope, the 
sample is used to generate the initial population for the evolutionary algorithms.  
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For example, consider we have a problem P with 4 continuous input variables 
x1,x2 x3, and x4, each xi in the range of [0,1], i.e.  0 ≤ xi ≤1 for all xi ∈ X, then the 
range of xi is divided into 4 intervals, each interval length is proportional to the num-
ber of variables. In our example, the interval length L is equal to (0.25), i.e. L= (upper 
bound (1)-lower bound (0)) /4 = (0.25), and this produces the following: 

Interval_1 ∈ [0, 0.25] and x1 value= random number (r1) such that: 0 ≤ r1 ≤0.25. 
Interval_2 ∈ [0.25, 0.5] and x2 value= random number (r2) such that: 0.25 ≤ r2 ≤0.5.  
Interval_3 ∈ [0.5, 0.75] and x3 value= random number (r3) such that: 0.5 ≤ r3 ≤0.75.  
Interval_4 ∈ [0.75, 1] and x4 value= random number (r4) such that: 0.75 ≤ r4 ≤1.  

Hence, the input initial population for the problem P is the sample (r1, r2, r3 and 
r4) and so on. Actually based on [6], stratified sampling has the advantage of forcing 
the inclusion of specified subsets of variable range, while maintaining the probabilis-
tic character of random sampling, i.e. the representativeness of the sample is increased 
while preventing the desired randomness in the sample, but, it is a challenge to define 
the number of intervals and calculating their interval probabilities, but in our scope 
this will not be a significant problem because the number of intervals must be defined 
before the individuals are generated, and in our research, the number of intervals will 
be equal to the number of input variables of the NSGAII algorithm. 

3.2 Latin Hypercube Sampling Method (LHS) 

Based on [2, 3, 6, 11 and 12], it is a statistical method that combines the desirable 
features found in random and stratified sampling, such that, the randomness issue is 
increased when it is compared to the stratified sampling. But in the other hand, it pro-
vides more stable samples when it is compared to the simple random sampling by 
ensuring that all portions of the continuous variable were sampled. 

Table 1. N x K matrix of LHS samples ∈ [0, 1] 

 
         variables 
interval 
number 

 
 
 

x1 

 
 
 

x2 

 
 
 

x3 

 
 
 

x4 

 
 
 

x5 
1 0.007 0.038 0.039 0.114 0.033 
2 0.379 0.256 0.321 0.224 0.263 
3 0.491 0.436 0.504 0.593 0.490 
4 0.670 0.706 0.699 0.742 0.702 
5 0.948 0.950 0.968 0.841 0.803 

 
Latin hypercube sampling works as follows, consider we have K input variables 

for a citrine optimization algorithm (x1, x2……, xk), each input variable is divided into 
N non overlapping intervals on the basis of equal probability, and one value is se-
lected from each interval based on the probability density in the interval using density 
function, each value in the x1 intervals is paired at random with N values of x2 inter-
vals without replacement, and the pair (x1,x2) is paired at random with values from x3 
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intervals and so on until we have a matrix with N x K input values from K variables. 
For example, consider that N=5 and there are 5 input variables ( x1, x2, x3, x4 and x5 ), 
such that 0 ≤ xi ≤1 for all xi, then each xi variable will be divided into 5 intervals as 
the case of stratified sampling, then we have :  xi,1 ∈ [0,0.2] , xi,2 ∈ [0.2,0.4] , xi,3 ∈ 
[0.4,0.6] , xi,4 ∈ [0.6,0.8] , and xi,5 ∈ [0.8,1], and as a result, Table 1 is a possible N x 
K matrix of our input variables. 

Obviously, after random pairing between (x1, x2) we may have a possible pair 
(0.007, 0.436), and the resulted pair is paired at random with x3 intervals to have 
(0.007, 0.436,0.504) and so on. Actually, it is possible for intervals to be repeated 
within the samples in contrast with stratified sampling approach that discussed in 
Section 3.1. Furthermore, all samples will share the same values generated in the NxK 
matrix, i.e. the NxK matrix will act as a repository for all input samples.  Samples 1 
and 2 below are two possible instances from the NxK matrix in Table 1:  
 

Sample 1: (0.007, 0.436, 0.504, 0.224, 0.803). 
Sample 2: (0.491, 0.038, 0.699, 0.968, 0.803). 

3.3 Niederreiter Quasi Random Method  

For more convenience, the details of this method will not be discussed here and avail-
able at appendix A. Therefore, we will shed light into the concepts that are related to 
our interest.  Based on [5,13], Niederreiter quasi random sequences are a part of a 
low-discrepancy sequences with the property that for all values of N, its subsequence 
x1, ..., xN has a low discrepancy. In other words, the values generated in a given range 
for a continuous variable are less random and cover more regions than strictly random 
approach. 

Actually, Niederreiter quasi random method is useful for global optimization. This 
is because the low discrepancy property of this method lets us to sample the space of 
continuous variables more uniformly than random approach. In fact, this is desirable 
for exploring the space of the problem variables in order to generate the initial popu-
lation for evolutionary algorithms, since, the generated samples will be more repre-
sentative and the randomness still preserved. Notice that in our work, Niederreiter 
quasi random numbers is generated using (martignal.jar) library from open source, 
and this library is available at [15]. 

4 Proposed Initialization Method 

4.1 Merging the Stratified Sampling with Quasi-random Method  

In this approach, when generating  random values within such interval in Stratified 
sampling, these values will be generated using Niederreiter quasi random method 
rather than classical strictly random. In more detail, once the number of intervals for 
the given variable X has been determined, we can define the lower and upper bond for 
each interval as discussed before in section 3.1. These bounds are given to the Quasi-
Random generator to generate a value r  within strata boundaries such that:  
   lower-bound ≤ r ≤ upper-bound 
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Actually, we can have the properties of the two methods Quasi-Random and Strati-
fied sampling at the same time in one step using this approach, but that is not enough to 
make this method more attractive than stratified sampling. For this reason, the output 
sample will be randomly shuffled as a finalizing step before producing the output sam-
ples to prevent our initial populations from falling in the same regions in the problem 
domain space. For example, consider we have an output sample S ∈ [0,1]  generated 
using the modified version of stratified sampling as discussed above  say  (r1,r2,r3 and 
r4), each ri in S falls in a different strata, the sample S  for example may be converted 
to (r2,r3,r1 and r4)  or (r1,r3,r4 and r2) after random shuffling, this strategy i.e. gener-
ate and shuffle will continue for all  generated samples in advance  in order to preserve 
randomness beside representativeness in our initial populations.  

4.2 Merging LHS with Quasi-random Method 

In this approach, all properties of LHS sampling method remain unchanged except those 
that tell how the value was generated within each interval. This initialization method is 
similar to the modified version of stratified samplin in the concept of how the values are 
generated within each interval. In other words, Quasi-Random generator were used to 
generate the values from each interval while constructing the NxK matrix as discussed 
in section 3.2 rather than generate those values using strictly random method, and the 
issues regards to random pairing will remain unchanged  to preserve the randomness 
along with representativeness. For more convenience, this new method will be called 
QuasiLHS in our experiments. The motivation behind these two approaches is to set the 
advantages of random, Quasi-random and LHS beside each other's. 

5 Experimental Environment 

In our experiments, we have used the NSGAII algorithm as a multi objective optimi-
zation algorithm and a set of state-of-the-art multi objective optimization problems as 
shown in Table 2. The algorithm and optimization problems are implemented in 
jMetal platform [14]. This platform allows user to design an experiment by selecting 
the algorithm, setting the algorithm parameters and finally choosing the optimization 
problems and setting the corresponding parameters.  Moreover, there are a set of 
quality indicators have be set before running such experiment, the average of final 
results  of all independent runs of the experiments would be stored in latex files, each 
one of them contains the mean and standard deviation for all quality indicators that 
have been set before running the experiments, see [4] for more details, Actually. We 
have made the required modifications in jMetal platform in order to apply our initiali-
zation method in all experiments instead of the default java random number, and also, 
there were a set of general setting have to be set for all experiments in order to isolate 
the effects of our initialization method as the following: 

• Population size equal to 100 input sample. 
• Crossover probability equal to 100%. 
• Mutation probability equal to (1 / number of variables). 
• Maximum number of function evaluations equal to 25000. 
• Number of independent runs for each experiment equal to 30.  
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Table 2. Testing Problems 

Optimization problem Number of objectives 
DTLZ1, DTLZ2, DTLZ3, DTLZ4 
DTLZ5, DTLZ6, DTLZ7     

2D and 3D 

LZ09_F1, LZ09_F2, LZ09_F3, 
LZ09_F4, LZ09_F5, LZ09_F6, 
LZ09_F7, LZ09_F8, LZ09_F9 

 
2D 

WFG1, WFG2, WFG3, WFG4, WFG5, 
WFG6, WFG7, WFG8, WFG9 

2D and 3D 

CEC2009_UF1, CEC2009_UF2, 
CEC2009_UF3, CEC2009_UF4, 
CEC2009_UF5, CEC2009_UF6, 
CEC2009_UF7 

 
2D 

 
 

CEC2009_UF8, CEC2009_UF9, 
CEC2009_UF10 

3D 

6 Quality Indicators 

There are a set of quality indicators that have to be used in order to compare the quali-
ty of obtained solution. We are using Hyper Volume (HV) and Inverted Generational 
Distance (IGD) [16]. HV is used to measure the volume of the dominated portion of 
the objective space and the fitness of Pareto sets in evolutionary multi-objective opti-
mization, whereas, IGD is used to measure how far the elements are in the Pareto 
optimal set from those in the set of non-dominated solutions found. 

Table 3. HyperVolume quality indicator for LZ09, WFG, DTLZ  and CEC2009 Problems (2D 
then 3D) 
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Table 4. IGD quality indicato
problem) 

Qudah 

Table 3. (Continued) 

or for LZ09, WFG, DTLZ  Problems (2D then 3D for any gi

 

 

 

iven 
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Table 4. (Continued) 

 

7 Experimental Results 

Tables 3 and 4 show the detailed results for all test problems that were used in our 
experiments using the HV and IGD quality metrics. The columns in tables 3 and 4 
were titled by the names of our initialization methods such that: Random represents 
standard random method, Quasi represents quasi random method, Stratified represents 
the modified version of stratified sampling, LHS represents the LHS method, Qua-
siLHS represents the modified version of LHS method.   

Actually, the best results were highlighted by a dark gray color, and Light gray for 
the second best for each problem. The main conclusion that can be made from our 
results is: it is no longer feasible to use Random initialization, because it has not per-
formed well in our experiments. Different problems prefer different initialization 
techniques. This is clear from the following: regarding HV. LZ09, WFG (2D & 3D) 
preferred QuasiLHS, while DTLZ (2D) preferred LHS the DTLZ (3D) preferred Stra-
tified. Also, regarding IGD. LZ09 preferred all except Random, WFG (2D) preferred 
QuasiLHS, and WFG (3D) preferred both QuasiLHS and LHS. Finally DTLZ (2D 
and 3D) preferred LHS. 

8 Conclusion and Future Work 

In this work, we evaluated different initialization methods using NSGAII algorithm 
such as Random, Quasi, Stratified, LHS and QuasiLHS using different multi objec-
tives optimization problems.  Based on our experimental results, these initialization 
methods have shown different reactions depending on the optimization problem cha-
racteristics. 

We have shown through our experiments that the use of traditional Random initiali-
zation method would not perform well when it is compared with other initialization 
methods. Furthermore, our new initialization methods such as Stratified and QuasiLHS 
have performed well beside LHS in the experiments and they were better than Random 
and Quasi initialization methods in term of (HV) and (IGD)  quality indicators. 

Actually, we have shown in our research that the nature and number of objectives 
of an optimization problem may affect the output quality of an initialization method; 
therefore, further researches are required in order to find a possible connection  
between the optimization problem characteristics and the initialization method being 
used. Also, the number of intervals inside Stratified, LHS and QuasiLHS initialization 
methods require further experiments in order to estimate the best number of intervals 
that maximize the quality of final solution.  
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Abstract. Traditional dominant comparison never fits for the interval multi-
objective optimization problems. The particle swarm optimization for solving 
these problems cannot adaptively adjust the key parameters and easily falls into 
premature. So a novel multi-objective cultural particle optimization algorithm is 
proposed. Its strength are: (i)The possibility degree is introduced to construct a 
novel dominant relationship so as to rationally measure the uncertainty of par-
ticles; (ii)The grid’s coverage degree is defined based on topological knowledge 
and used to measure the uniformity of non-dominant solutions instead of the 
crowding distance. (iii)The key flight parameters are adaptively adjusted and 
the local or global best are selected in terms of the knowledge. Simulation re-
sults indicate that the proposed algorithms coverage to the Pareto front uniform-
ly and the uncertainty of non-dominant solutions is less. Furthermore, the 
knowledge plays a rational impact on balancing exploration and exploitation. 

Keywords: Interval multi-objective optimization · Cultural particle swarm · 
Possibility-dominant · The coverage degree of grid · Parameters adjustment 

1 Introduction 

For most of practical engineering optimization problems, the environmental noise and 
other uncertain factors make the parameters in optimization models uncertain and 
dynamic. To define the uncertain information and optimize corresponding problems, 
stochastic programming, fuzzy programming and interval programming[1] are gradu-
ally formed. In the former two methods, the uncertainty of parameters obeys the 
known probability distribution functions or fuzzy membership functions. But incom-
plete information and limited cognition make the exact functions matching the actual 
situation difficultly constructed. In contrast, it is easy to achieve the possible interval 
of the parameters’ values. Consequently, we focus on interval multi-objective optimi-
zation problem(IMOP)[2] and their problem-solving methods. Suppose ݔ א ሾݔ,  ҧሿ isݔ
decision variable. α א ሾα, αഥሿ is interval parameter. M is the number of objective func-
tions. IMOP is expressed by P: maxܨሺݔ, ܽሻ ൌ ሼ݂1ሺݔ, ܽሻ,݂2ሺݔ, ܽሻ, ڮ , ݂Mሺݔ, ܽሻሽ. 

Recently, population-based intelligent optimization methods were introduced to 
solve IMOPs. Philipp[3]proposed imprecise-propagation multi-object evolutionary 
algorithm. The improved domination sort method from NSGA-II[4] made non-
dominant solutions easily lost and the selection pressure higher. Interval robust multi-
objective evolutionary algorithm[5] adopted interval analysis techniques to deal with 
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the uncertainties in a deterministic way. A novel crowding distance based on hyper-
volume[4] was proposed for IMOP. The solutions with small volumes and far away 
from others’ midpoint have less crowding distances and more chance to be survived 
in next generation. Particle swarm optimization(PSO)[2] was also incorporated into 
solving IMOPs. Though the uniform pareto-optimal set approximates the true pareto 
front, the key parameters couldn’t adaptively adjust and the algorithm easily got pre-
mature. It had been proved that PSO with dynamically adjusted parameters, including 
cognitive coefficient, social coefficient and inertia weight, was capable of handling 
optimization problems with different characteristics[6]. In addition, more than one 
hyper-volume solutions compose of the local best set or global best set. How to 
choose a rational one to direct a particle’s flight is a difficult issue. They were com-
monly selected from the archive randomly or in terms of the distance[7]. Cultural 
algorithm is introduced to extract the knowledge from the non-dominated individuals 
and utilize it to adjust the particles’ flight parameters and the extremes’ selection[8]. 
However, the adaptive strategies only deal with MOPs with certain parameters. 

To alleviate the weakness of existing PSO for IMOPs, we propose a novel multi-
objective cultural particle swarm optimization algorithm(MOCPSO). Firstly, a novel 
possibility-dominant relationship is constructed so as to rationally measure the uncer-
tainty of particles. Secondly, the grid’s coverage degree is defined based on topologi-
cal knowledge and used to measure the crowding degree of optimal non-dominant set 
instead of the crowding distance. Thirdly, the key flight parameters are adaptively 
adjusted and the local or global best are selected in terms of the knowledge.  

2 The Novel Possibility Dominant Relationship  

In IMOP, the individuals’ objective values are all intervals, denoted by ݂ሺݔ, αሻ ൌቂ ݂ሺݔሻ, ݂ሺݔሻቃ , ݔ א ܵ. They compose of the hyper-volume, limited by ݂ሺݔሻ ൌ ݂ሺݔ, αሻఈ  and  ݂ሺݔሻ ൌ  ݂ሺݔ, αሻఈ௫ . To compare these individuals, the order-
dominant comparison based on order relationship between intervals was given[3], 
which does not fit for the situation that two intervals are embodied each other. In 
interval probability dominant relationship[5], the individual’s rank is the number of 
individuals who probably dominates it. However, the individuals with same rank may 
have different chance to be reserved in next generation. In order to fully measure the 
difference among individuals, we proposed a novel possibility-dominant comparison 

method by introducing the possibility degree[9]. Let ܮ൫ ݂ሺݔ, αሻ൯ ൌ ݂ሺݔሻ െ ݂ሺݔሻ 

be the span of mth objective function. Defined ߪሺݔ,   isݔ ሻ is the possibility thatݔ
superior to ݔ. 

,ݔ൫ߪ  ൯ݔ ൌ ୫ୟ୶ ቊ,ቆ൫ሺ௫,ሻ൯ାቀ൫௫ೕ,൯ቁି୫ୟ୶ቀሺ௫ሻି൫௫ೕ൯,ቁቇቋ൫ሺ௫,ሻ൯ାቀ൫௫ೕ,൯ቁ  .      (1) 

Suppose ߪሺݔ ظ ௫ೕሻሱۛظ:ఙሺ௫ݔ  in terms of certain possibility, we describe it asݔ   dominatsݔ . Ifݔ  dominatingݔ  ሻ denotes the possibility thatݔ ۛۛ ۛሮ  . For ith individual, itsݔ
rank is decides by the possibility of all individuals dominated by it, defined as 
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݊ܽݎ ݇ሺݐሻ ൌ ∑ ߪ ቀݔሺݐሻ ظ ሻቁݐሺݔ , ሻݐሺݔ א ܺ, ௫ೕሻሱۛظ:ఙሺ௫ݔ ۛۛ ۛሮ ݔ . The optimal non-

dominant particles satisfy ܵሺݐሻ ൌ ሼݔሺݐሻ|݇݊ܽݎሺݐሻ ൌ 0, ሻݐሺݔ א ܺሽ . Though the 
particle’s rank may be not an integer and the non-dominant particles’ ranks may be 
different, the particles with larger rank must be dominated in larger possibility by 
more particles.  

ەۖۖ
۔ۖ
ۓۖ ݔ൫ߪ ظ ൯ݔ ൌ ∏ ,ݔ൫ߪ ൯ݔ ,݉ ,ݔ൫ߪ ൯ݔ  ,ݔ൫ߪ ,݇൯ݔ ,ݔ൫ߪ ൯ݔ  ,ݔ൫ߪ ݔ൫ߪ൯ݔ ظ ൯ݔ ൌ ∏ ,ݔ൫ߪ ൯ݔ ,݉ ,ݔ൫ߪ ൯ݔ  ,ݔ൫ߪ ,݇൯ݔ ,ݔ൫ߪ ൯ݔ  ,ݔ൫ߪ ൯ݔ||ݔ൫ߪ൯ݔ ൌ 1 െ ∏ ,ݔ൫ߪ ൯ݔ െ ∏ ,ݔ൫ߪ ൯ݔ ,݉ ,ݔ൫ߪ ൯ݔ  ,ݔ൫ߪ ,݇൯ݔ ,ݔ൫ߪ ൯ݔ  ,ݔ൫ߪ ൯ݔ

 .
(2) 

3 Multi-objective Cultural Particle Swarm Optimization for 
IMOP 

MOCPSO consists of population space and belief space. In population space, multi-
objective PSO realizes the particles’ operators and the possibility-dominant compari-
son. In belief space, all non-dominant particles are preserved and used to extract useful 
knowledge so as to adjust the flight parameters and direct the extreme selection.  

In particle swarm optimization, each particle flies towards optimum along itself 
trajectory after initialization. The flight direction and distance depend on its velocity. 
In each generation, particles update their velocity by tracking two extreme values. 
One is the local best, which records this particle’s optimal location. The other is glob-
al best, which memories the optimal particle in whole population. Suppose ݔሺݐሻ and ݒሺݐሻ are ith particle’s location and velocity in tth generation. Let ሺݐሻ be ith par-
ticle’s local best. ݃ሺݐሻ is jth global best. ܿଵ and  ܿଶ  are cognitive coefficient and 
social coefficient. w is inertia weight.  

ݐሺݔ   1ሻ ൌ ሻݐሺݔ  ݐሺݒ  1ሻ .                                             ሺ3ሻ 

ݐሺݒ   1ሻ ൌ ሻݐሺݒݓ  ܿଵݎଵ൫ሺݐሻ െ ሻ൯ݐሺݔ  ܿଶݎଶ ቀ݃ሺݐሻ െ  ሻቁ . (4)ݐሺݔ

In belief space, three kinds of knowledge are constructed in MOCPSO. 

Normative Knowledge. It is defined as ܭNOM ൌ ሼܷሺݐሻ, ,ሻݐሺܮ ܷܸሺݐሻ, ,ሻݐሺܸܮ ,ሻݐሺܨܮ  ,ሻݐሺܨܷ ܹ, ,ଵܥ  ଶሽ. The former four parts record the boundary of each decision variableܥ
and particles’ extreme velocity. The following two parts memories the extreme objec-
tive values of non-dominant particles. The latter three parts save the limits of key 
parameters. The inertia weight is adjusted in terms of the extreme value of particle’s  
velocity. Let  ∆ݓ א ሺ0,1ሿ be the incremental of w.  

ݐሺݓ   1ሻ ൌ ൞ݓሺݐሻ  ݓ∆ ሻݐሺݒ ൏ ሻݐሺݓሻݐሺݒ݈ െ ݓ∆ ሻݐሺݒ  ሻݐሺݓሻݐሺݒݑ ݎ݄݁ݐ  . (5) 
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ݐሺݓ   1ሻ ൌ ቐ ݓ ݐሺݓ  1ሻ  ݓݓ ݐሺݓ  1ሻ ൏ ݐሺݓݓ  1ሻ ݎ݄݁ݐ                    (6) 

Situational Knowledge. Situational knowledge consists of local optimal set ܵ ܲሺݐሻ and 
global optimal set ܵܩሺݐሻ. Let ܾሺݐሻ be jth non-dominated solution in  ܵ ܲሺݐሻ and  ܾ݃ሺݐሻ be jth non-dominated solution in  ܵܩሺݐሻ. They updated in terms of the possibil-
ity-dominant relationship between them. ܾ݃ሺݐሻ is a particle which have a smallest 
contribution to hyper-volume in ܵܩሺݐ  1ሻ. ߟ א ሾ0,1ሿ is the probability threshold. 

ܵ ܲሺݐ  1ሻ ൌ ۔ۖەۖ
ۓ ܵ ܲሺݐሻ ݐሺݔ൫݇݊ܽݎ  1ሻ൯  ݇݊ܽݎ ቀܾሺݐሻቁܵ ܲሺݐሻݔڂሺݐ  1ሻ ݐሺݔ൫݇݊ܽݎ  1ሻ൯ ൌ 0ܵ ܲሺݐሻݔڂሺݐ  1ሻ\ ܾሺݐሻ ߪ ቀݔሺݐ  1ሻ, ሻቁݐሺܾ  ߟ  . (7) 

ݐሺܩܵ  1ሻ ൌ ۔ۖەۖ
ۓ ሻݐሺܩܵ ݇݊ܽݎ ቀܾሺݐ  1ሻቁ  ݇݊ܽݎ ቀܾ݃ሺݐሻቁܵܩሺݐሻܾڂሺݐ  1ሻ ݇݊ܽݎ ቀܾሺݐ  1ሻቁ ൌ ݐሺܾڂሻݐሺܩ0ܵ  1ሻ\ܾ݃ሺݐሻ ߪ ቀܾሺݐ  1ሻ, ܾ݃ሺݐሻቁ  ߟ  . 

(8) 

Topographic Knowledge. Topographic knowledge memories the hyper-volumes’ 
distribution about non-dominant particles’ objective vector based on the grids. The 
object space recorded by normative knowledge is evenly partitioned into many grids. 
Suppose ሻݔሺܣ   is the hyper-volume’s acreage of ith particle’s objective hyper-
volume overlapped by ܩ . If ,ݔሺܨ  ሻߙ ת ܩ ്  ሻݔሺܣ , ൌ ∏ หmin൫݃ݑሺݐሻ,ெୀଵ   ݂ሺݔሻቁ െ max ቀ݈݃ሺݐሻ, ݂ሺݔሻቁቚ  .Otherwise, ሻݔሺܣ  ൌ 0 ܣ .  is the acreage of 

each grid. Subsequently, the coverage degree is defined as ܩܥሺݐሻ ൌ ∑ ሻሻݐሺݔሺܣ ⁄ேୀଵܣ  to measure the distribution of non-dominant particles’ 
objective hyper-volume. Larger ܩܥሺݐሻ means qth grid is crowed and covered by 
more particles or larger hyper-volumes. Let ݀ be the division depth for mth objec-
tive. Let ݃ݑሺݐሻ ൌ ݈݃ሺݐሻ  ∆, ܿ ൌ 1,2, ڮ , ݀ .∆ൌ ሾݑ ݂ሺݐሻ െ ݈ ݂ሺݐሻሿ/݀  and ݈݃ሺݐሻ ൌ ݈ ݂ሺݐሻ  ሺܿ െ 1ሻ∆. 

Topographic knowledge not only directs the adjustment of cognitive coefficient 
and social coefficient, but also helps to choose the extreme. In order to avoid prema-
ture and ensure the uniformity of pareto-optimal set, global best shall direct the evolu-
tion to exploit the less crowded area. Thus, we choose ܾ݃ሺݐሻ that locates in the grid 
with ܩܥ ሺݐሻ and has largest coverage acreage in qth grid as global best. The in-
fluences of global best and local best on the particle’s velocity are decided by social 
coefficient and cognitive coefficient. The area containing less non-dominated solu-
tions and having less ܩܥሺݐሻ is needed to be explored more. Hence, we dynamically 
adjust ܿଶሺݐሻand  ܿଵሺݐሻ as follows. Let α and β be the adjustment factors. 

 ܿଶሺݐ  1ሻ ൌ ܿଶሺݐሻ െ ݐሺܩܥ൫ߙ  1ሻ െ ݐሻ൯ .           (9) ܿଵሺݐሺܩܥ  1ሻ ൌ ܿଵሺݐሻ െ ݐሺܩܥ൫ߚ  1ሻ െ  ሻ൯ .           (10)ݐሺܩܥ
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4 Simulation and Analysis 

In order to further validate the rationality of MOCPSO, three groups of experiments 
are designed to analyze the effect of the key parameters on the pareto-optimal set, and 
then different algorithms are compared. All experiments are done aiming at ZDT1, 
ZDT2, ZDT4 and ZDT6 given in[3]. The uncertainty is constructed by adding an im-
precision factor ε  to the benchmark functions. The variables’ dimensions are 
30,30,10,10. The main parameters’ values are set as follows: ݓ ,0.1=ݓ ൌ 0.9, ܿଵ ൌܿଶ ൌ 3, ܿଵ ൌ ܿଶ ൌ 1, ܶ ൌ ሺ0ሻݓ ,100 ൌ 0.4, ܿଵሺ0ሻ ൌ ܿଶሺ0ሻ ൌ 2. Moreover, the con-

vergence, the distribution and the uncertainty of pareto-optimal set are measured by 
interval hyper-volume(IH), interval spacing(ISP), interval purity(IP) and interval 
uncertainty(IX)[2,3, 10].  

Under different wΔ , ISP, IX and IP metrics are compared in Table.1. IH-metric are 
shown in Fig.1 by box plot. We see that IP-metric is largest and ISP-metric is smal-
lest as ∆ݓ ൌ 0.1. For ZDT, the performances are better as ∆ݓ ൌ 0.05. Under 
smaller ∆ݓ, the inertia weight is not adjusted enough. This makes the distribution 
of the pareto-optimal set worse. The particles fly over the possible global best 
with larger ∆ݓ. Hence, ∆ݓ ൌ 0.1 has the exploration–exploitation tradeoff.  

 
               (a) ZDTଵ              (b) ZDTଶ             (c) ZDTସ             (d) ZDT 

Fig. 1. The box plot of IH-metric obtained by different ∆ݓ 

Table 1. The performances of MOCPSO with different ∆ݓ 

Functions measures 
ݓ∆

0.005 0.05 0.1 1 ZDTଵ 

ISP 0.1267 0.1246 0.1091 0.1215 
IX 0.0241 0.0290 0.0289 0.0299 
IP 0.2800 0.2809 0.4602 0.3557 ZDTଶ 

ISP 0.1253 0.1364 0.1568 0.1495 
IX 0.0293 0.0283 0.0269 0.0267 
IP 0.2810 0.3554 0.3064 0.3829 ZDTସ 

ISP 0.1843 0.1426 0.1325 0.1266 
IX 0.0261 0.0261 0.0254 0.0259 
IP 0.1694 0.2628 0.4809 0.2776 ZDT 

ISP 0.1414 0.1122 0.1151 0.1311 
IX 0.0271 0.0216 0.0229 0.0224 
IP 0.3687 0.4272 0.3462 0.2111 

 
Under different α, the statistical results are listed in Table.2 and Fig.2. We see that 

the performances of ZDTଵ and ZDTଶ are best as α=0.5. For ZDT, it is better to chose 

19

20

21

22

23

24

25

0.005 0.05 0.1 1

15

16

17

18

19

20

21

0.005 0.05 0.1 1

500

550

600

650

700

750

0.005 0.05 0.1 1

18

20

22

24

26

28

30

32

34

0.005 0.05 0.1 1



510 Y. Guo et al. 

α=2. Especially, α=10 fits for ZDTସ. IH-metric indicates that all functions have a better 
convergence as α equals to 0.5 or 2, except for ZDTସ. Thus, α=0.5 is better because 
less α cannot provide enough adjustment for social coefficient while larger α forms a 
large disturbance for particles flight.  

 
             (a) ZDTଵ             (b) ZDTଶ              (c) ZDTସ               (d) ZDT 

Fig. 2. The boxplot of IH-metric obtained by different α 

Table 2. The performances of MOCPSO with different  α 

Function Measure 
α

0.1 0.5 2 10 ZDTଵ 

ISP 0.1198 0.1089 0.1197 0.1064 
IX 0.0273 0.0262 0.0268 0.0285 
IP 0.2810 0.3819 0.3732 0.3010 ZDTଶ 

ISP 0.1418 0.1153 0.1097 0.1357 
IX 0.0289 0.0262 0.0271 0.0264 
IP 0.2159 0.4310 0.3942 0.3487 ZDTସ 

ISP 0.1552 0.1482 0.1494 0.1218 
IX 0.0261 0.0282 0.0270 0.0230 
IP 0.4292 0.2774 0.2571 0.4797 ZDT 

ISP 0.1579 0.1441 0.1153 0.1157 
IX 0.0248 0.0251 0.0248 0.0255 
IP 0.2486 0.3243 0.4361 0.2716 

 

Under different β, the statistical results listed in Table.3 and Fig.3 show that the al-
gorithm’s performances is better when β=2.  

Table 3. The performances of MOCPSO with different β 

Function Measure 
β

0.1 0.5 2 10 ZDTଵ 

ISP 0.1192 0.1234 0.1297 0.1298 
IX 0.0291 0.0269 0.0288 0.0271 
IP 0.3950 0.4576 0.3462 0.2397 ZDTଶ 

ISP 0.1203 0.1157 0.1361 0.1367 
IX 0.0253 0.0259 0.0236 0.0261 
IP 0.4245 0.4647 0.1418 0.1345 ZDTସ 

ISP 0.1987 0.1150 0.1240 0.1465 
IX 0.0236 0.0264 0.0265 0.0247 
IP 0.5025 0.5103 0.2109 0.1341 ZDT 

ISP 0.0994 0.1034 0.1423 0.1228 
IX 0.0264 0.0242 0.0255 0.0245 
IP 0.2977 0.5523 0.1800 0.1682 

18

19

20

21

22

23

24

25

0.1 0.5 2 10

15

16

17

18

19

20

21

0.1 0.5 2 10

500

550

600

650

700

750

0.1 0.5 2 10

18

20

22

24

26

28

30

32

34

0.1 0.5 2 10



Cultural Particle Swarm Optimization Algorithms for Interval Multi-Objective Problems 511 

 
             (a) ZDTଵ              (b) ZDTଶ               (c) ZDTସ              (d) ZDT 

Fig. 3. The box plot of IH-metric obtained by different β
 

The rationality and validity of MOCPSO is further analyzed by compared with 
multi-objective particle swarm optimization algorithm(MOPSO) and probability do-
minate multi-objective particle swarm optimization (PD-MOPSO)[2]. The statistical 
results listed in Table.4 and Fig.4 show that though MOPSO has better performances 
than others for ZDTଶ, MOCPSO does better in other benchmark functions.  

 
             (a) ZDTଵ              (b) ZDTଶ               (c) ZDTସ              (d) ZDT 

Fig. 4. Comparison of the IH-metric among different algorithms  

Table 4. Comparison of the performances among different algorithms 

Function algorithm ISP IX IP ZDTଵ 

MOCPSO 0.1278 0.0277 0.5866 
MOPSO 0.1350 0.0292 0.4741 

PD-MOPSO 0.1403 0.0271 0.1238 ZDTଶ 
MOCPSO 0.1274 0.0273 0.4081 
MOPSO 0.1160 0.0271 0.6279 

PD-MOPSO 0.1661 0.0304 0.1569 ZDTସ 
MOCPSO 0.1190 0.0230 0.7625 
MOPSO 0.1443 0.0255 0.4621 

PD-MOPSO 0.1706 0.0266 0.1034 ZDT 

MOCPSO 0.0967 0.0226 0.7368 
MOPSO 0.1193 0.0260 0.3776 

PD-MOPSO 0.1239 0.0281 0.1249 

5 Conclusions 

Aiming at interval multi-objective optimization problem, a kind of cultural particle 
swarm optimization was proposed. In belief space, particles’ locations and weight 
inertia are updated by normative knowledge. The grid’s coverage degree is defined in 
topographic knowledge instead of the crowding distance to measure the distribution 
of non-dominant solutions in object space. The solutions with smaller coverage  
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degrees are chosen as the global best or local best to ensure the uniform distribution 
of the pareto front. The accelerating coefficients are dynamically adjusted in terms of 
the grid’s coverage degree so as to balance exploration and exploitation. Simulation 
results show that the proposed algorithm converges to the better Pareto front uniform-
ly and the uncertainty of non-dominant solutions is less. How to find out density rela-
tion among individuals for high-dimension optimization problems will be the next 
work. 
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Abstract. To improve the production ability of a three-phase submerged arc 
furnace (SAF), it is necessary to maximize the power input; and it needs to  
minimize the supply voltage unbalances to reduce the side effect to the power 
grids. In this paper, maximizing the power input and minimizing the supply  
voltage unbalances based on a proposed multi-swarm multi-objective particle 
swarm optimization algorithm are the focus. It is necessary to have objective 
functions when an optimization algorithm is applied. However, it is difficult to 
get the mathematic model of a three-phase submerged arc furnace according to 
its mechanisms because the system is complex and there are many disturbances. 
The neural networks (NN) have been applied since its ability can be used as an 
arbitrary function approximation mechanism based on the observed data. Based 
on the Pareto front, a multi-swarm multi-objective particle swarm optimization 
is described, which can be used to optimize the NN model of the three-phase 
SAF. The simulation results showed the efficiency of the proposed method. 

Keywords: Multi-objective optimization · Particle swarm optimization ·  
Submerged arc furnace · Power optimization · Supply voltage unbalances 

1 Introduction 

In the past decades there has been a drastic increment in the number and size of Sub-
merged Arc Furnaces (SAF) constructed for the production of Ferro-chromium and 
Ferro-manganese alloys. The economic benefit caused the use of larger furnaces which 
are relatively large, e.g. 48 MVA for ferro-chromium, and up to 81 MVA for ferro-
manganese, with currents ranging from about 50 to 130KA [1].  With the increment of 
the furnaces’ power, it is very important to consider the side effects on the power grim 
such as supply voltage unbalances for three-phase submerged arc furnaces. Hence we 
have to consider the constraints or other objectives when furnaces are optimally  
controlled. There are many parameters or variables about three-phase submerged arc  
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furnace and the most important variables are voltages, equivalent resistance and temper-
ature, for determining power of SAFs. However, it is difficult to construct mathematical 
model SAF according to the mechanisms of the actual furnace plant system due to its 
complexity and many disturbances; and the neural network is a good option to model 
SAF as it is easy to use in modeling nonlinear functions based on the observed data. 
Neural networks have been widely used for modeling complicated systems and achieve 
good results [2], [3]. Hence, the optimization algorithm can be applied based on the 
neural network model of for three-phase submerged arc furnaces to get the control sig-
nals. Here, a proposed multi-swarm multi-objective particle swarm optimization algo-
rithm was used to optimize the power and supply voltage unbalances. 

The rest parts of the paper are organized as follows. Section 2 the multi-objective 
particle swarm optimization was reviewed and a multi-swarm multi-objective particle 
swarm optimization (MSMOPSO) method was proposed. Section 3 investigated  
the three-phase SAF. Three-phase SAF was modeled by BP neural network in  
Section 4. Section 5 presents MSMOPSO based power and voltage unbalances opti-
mization. The concluding remarks were given in the last section. 

2 Multi-swarm Multi-objective Particle Swarm Optimization 

In general the single objective optimization algorithms will terminate when an optim-
al solution is obtained. But for most MOO problems, there can be a number of optim-
al solutions. A multi-objective optimization (MOO) problem can be described by 

1Min ( ) Min( ( ), , ( ))mF x f x f x=                        (1) 

               Subject to  x ∈ Ω . 

Here Ω  is the variable space, mR is the objective space, and : mF RΩ →  consists 
of m  real-valued objective functions.   

If there is no information regarding the preference of objectives, a ranking scheme 
based upon the Pareto optimality is regarded as an appropriate for MOO [4]. The 
solution to the MOO problem is described by a Pareto front set. For the more details 
related to Pareto front set, please refer to reference [5]. 

A good MOO algorithm should guarantee a high probability of finding the Pareto 
optimal set. Among the MOO algorithms, the multi-objective particle swarm optimi-
zation algorithm has been proven to be a promising algorithm [6]. To achieve good 
optimization performance, the particles can be divided to several swarms. If a mul-
tiple-swarm PSO employs an over large number of swarms, it will have a better 
chance of obtaining possible good solutions that lead to the optimal Pareto set, but it 
can also suffer from an undesirable computational cost. There are some multiple-
swarm PSO algorithms, such as reference [6] [7], which used the adaptive swarm size 
methods. However, the existing MSMOPSOs do not use the information of the found 
Pareto front set to allocate the swarms. For most of the continuous optimization prob-
lems, the good results may be discovered if the particles search around the Pareto 
front. Based on this finding, we propose an MSMO optimization method. Several 
swarms are used to search regions around certain points of the Pareto front set. These 
swarms are called Pareto front swarms. There is still another swarm, which is called 
spare swarm and searches other spaces far away from the Pareto front to ensure all the  
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particles are spread around the whole objective space. The main contributions of the 
proposed algorithm are: 

1) Pareto front swarms are used to search different regions around some points 
of Pareto front, and the velocity update equation is 

1 1 2 2 3 3( 1) ( ) ( ( )) ( ( )) ( ( ) ( ))i i i i g i iV t V t c R P X t c R P X t c R Core m X tω+ = + − + − + −    (2) 

( 1) ( ) ( 1)i i iX t X t V t+ = + +                         (3) 

Here, ( )Core m is central point of the mth swarm and is chosen dynamically, the rela-

tionship between m and i is floor( ) 1
g

i
m

num
= + , gnum  is the particle number of the 

mth swarm and floor( )A  rounds the elements of A to the nearest integers less than or 

equal to A . The number of the cores equals the number of the Pareto front swarms. 
The cores are from the Pareto front set and using the same way as choosing the Pareto 
front set. 

2) The particles of the spare swarm are updated using 

1 1 2 2 4 4( 1) ( ) ( ( )) ( ( )) ( ( ) ( ))i i i i g i iV t V t c R P X t c R P X t c R Core m X tω+ = + − + − − −    (4) 

( 1) ( ) ( 1)i i iX t X t V t+ = + +                              (5) 

Here, 4c is determined by the sharing function [8] according to the distance be-

tween particle i and core particles, 

4

1
( )

g

R rand
m

= ⋅                                    (6) 

and gm  is the number of Pareto front swarms. 

3) To avoid the premature of PSO, small disturbance is added, that is, 

( 1, ) ( 1, ) v
i i

g

R
V t irand V t irand

m
+ = + +                         (7) 

Here, vR is a random number within an interval of [ 1,1]− . 

The method of choosing iP  and gP  is described in ref. [9]. 

The following procedure can be used for the proposed particle swarm algorithm: 
1) Initialize the parameters of particles. 
2) Evaluate the fitness functions for each particle. 
3) Find the non-dominated Pareto front particles and store them in the repository set. 
4) Determine the cores of Pareto front swarms and dynamically set up the relation-

ship among the swarms and the cores. 
5) Using (2) and (3); or (4), (7) and (5) to update particles. 
6) Repeat steps (2)-(6) until a stopping criterion is met (e.g., maximum number of 

iterations or a sufficiently good fitness value). 
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3 Three-Phase Submerged Arc Furnaces  

A typical three-phase SAF consists of a fixed circular bath and three electrodes sub-
merged in a charge of raw materials projected into it. The operation of the SAF in-
volves trying to maintain the maximum real power input to the furnace within the 
constraints or limits of the associated equipment of the furnace [10]. To control the 
input power, the input voltage can be changed by the transformers. The transformers 
for the furnaces are different from the standard power system transformers in that the 
secondary winding has to supply very high currents at low voltages as shown in Fig. 
1. Furnace transformers are used to step down from voltages between 11KV and 33 
kV to levels of several hundred volts and control the input voltage of the furnace. 

 

Fig. 1. A single phase furnace transformer [12] 

There are also constraints and limits for the operation of the three-phase SAF, for 
example, the voltage unbalance must be considered. The voltage unbalance occurs in 
SAFs, when current consumption is not balanced during the 3 cycle of processing 
(operation) or during a faulty condition before tripping. They impact negatively on 
three phase asynchronous motors by causing overheating and a tripping of protective 
devices. A voltage unbalance is a ratio of the negative sequence component to the 
positive sequence component and it can be determined by the following formulas [11] 

and the unbalance voltage, uu , is given as: 

( )max ( )100%, 1,2,3i avg
u i

avg

U U
u i

U

−
= =

                

(8) 

where iU  is the phase voltage, and 
3

1

1

3avg i
i

U U
=

=  . 

Hence to achieve good control performance of the three-phase SAF, there are at 
least two objectives: 1) maximum the power input; 2) minimum the voltage unbal-
ances. Of course, there are other constraints or limits such as harmonics, which 
should be considered when the SAF system is optimized/controlled. In this study, we 
only focus on these two objectives. 
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4 Neural Network Based Modeling of Three-Phase SAF 

One of the most commonly used supervised neural networks is the back-propagation 
network which uses the back-propagation learning algorithm [13, 14, 15]. It was first 
proposed by Paul Werbos in 1974, but it wasn’t until 1986, through the work of David E. 
Rumelhart, Geoffrey E. Hinton and Ronald J. Williams [16], that it gained recognition, 
which led to a “renaissance” in the field of artificial neural network research. The back 
propagation neural network is essentially a network of simple processing elements work-
ing together to produce a complex output. The combination of weights which minimizes 
the error function is considered to be a solution of the learning problem. Here, the Neural 
Network Model is of two-layer feed-forward network with the default tan-sigmoid trans-
fer function in the hidden layer with 45 neurons and the linear transfer function in the 
output layer. The design SAF model is trained using the Levenberg-Marquardt back-
propagation method. To test the performance of the proposed SAF neural network  
model, a set of electro-thermal variables from the 45 MW SAF Wonderkop Chrome 
Processing Plant (WCP) was used [12]. The input vectors (equivalent resistances, voltag-
es and temperature) and the target vector (power) comprise of 120 samples each. It 
should be noted that only the first 90 samples are used to train neural network and the last 
30 samples are used to validate and test the trained neural network. 

The Neural Network Fitting Tool GUI is utilized to construct and train the neural 
network based on the software MATLAB 2009a. The linear regression performance 
between the obtained NN model outputs and the corresponding targets (power) shows 
that the model’s output tracks the targets very well for training and validations shown 
in Fig. 2, which means that the trained neural network model is acceptable. 

The output of the SAF NN model and the real power data reveal some similarities 
explicitly. The real furnace power samples and the trained neural network model out-
put are shown in Fig. 3. As can be seen from Fig. 3, the obtained neural network 
model showed similar characteristics of the real samples although the last 30 samples 
were not used to train the BP neural network. Hence this NN model can be used as the 
representative of the real SAF system. 

5 Multi-swarm Multi-objective PSO Based Power and Voltage 
Unbalances Optimization of Three-Phase SAF 

As the data is from the 45 MW SAF Wonderkop Chrome Processing Plant (WCP), 
the theoretic input power can be 45 MW. However, as can be seen from Fig. 3, the 
real sample input power is much lower than the theoretic value (the highest input 
sample power is about 35 MW). Hence, there should be space to improve the input 
power based on the optimization algorithm although the voltage unbalances to be 
considered. As mentioned in Section 3, to optimize the performance of this three-
phase SAF, the optimization problem can be described by 

Min 1 2( ) ( ( ), ( ))F x f x f x=                               (9) 

Subject to x ∈ Ω                                     (10) 
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where, 1( )f x  and 2 ( )f x  are the input power and the voltage unbalance, respective-

ly, and 1 2 3 1 2 3[ , , , , , , ]x R R R U U U T= , 1 2 3, ,R R R  are three phase equivalent resistances, 

1 2 3, ,U U U  are three input phase voltages, and T is the furnace temperature. 

 

Fig. 2. Simulated Regression Characteristics 

Since we cannot get the mathematical model of the input power, the neural network 
model obtained in Section 4 can be used as 1( )f x− . It should be noted that there is a 

minus sign before 1( )f x  since the first objective is to maximum the input power. The 

second objective is  

2 ( ) min max ( ) 100%i avg
i

avg

U U
f x

U

 −
= ⋅  

 
.                      (11) 
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Fig. 3. SAF neural network output versus real output data (power) 

Altough there are 7 variables in the NN SAF model, only 1 2 3, ,U U U  are looked as 

control variable and 
1 2 3, , ,R R R T  can be looked as time-variant parameters since this sys-

tem is a slow response system can 1 2 3, , ,R R R T can be measured or calculated in real time. 

For the condition (10), we can choose 1 2 3276 300;100 290;100 263U U U< < < < < <  

based on the samples. Table 1 gives the first 5 sets of samples and the simulation will be 
implement to verify the proposed method base on these 5 sets of samples. 

Table 1. 5 sets of samples [12] 

   
RESISTANCE VOLTAGE (V) 

Temp.  
 (oC) 

POWER  
   (KW) 

R1 R2 R3 U1 U2 U3 T  P 
S1 2.1 2.1 2.77 289 158 188 2349 29417.31 
S2 2.73 2.27 4.21 286 187 200 2200 28363.93 
S3 2.14 2.12 1.29 299 197 263 2670 33450.08 
S4 4.27 4.18 2.09 300 100 100 2717 15914.31 
S5 2.14 1.75 1.28 284 290 163 2706 31734.41 

 
In the simulation, the total number of fitness function evaluations was set to 10 

000. The particle number is 200. The number of Pareto front swarms is 20 and each 
swarm has 8 particles. A random initial population was created for each of the 20 runs 
on each test problem. The maximum number of external repository particles is 100. 
Parameters are set as 1 2 2c c= = and 0.5 (.)ω = + rand . 

Using the proposed method, the Pareto fronts were obtained and they are shown in 
Fig. 4, 5, 6, 7 and 8 for S1, S2, S3, S4 and S5, respectively. Here S1, S2, S3, S4 and 
S5 are referring to the underlined parameters in Table 1. As can be seen from Fig. 4, 
5, 6, 7 and 8, the Pareto front is smooth and uniform which means the proposed multi-
swarm multi-objective PSO works well. 
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Only considering the Figures 4, 5, 6, 7 and 8, higher input power may be obtained. 
However there are two limitations, which limit the increment of input power: 1) the 
voltage unbalance is acceptable if it is not more than 0.02 for long time; for short 
time, the voltage unbalance 0.04 is acceptable; 2) the input power cannot be more 
than 45 MW since this is a 45 MW SAF. For the first limitation and considering the 
real situation, the voltage unbalance 0.025 can be chosen to determine the power in-
puts based on the achieved Pareto front, and we can obtain the input voltages and the 
corresponding input power which are listed in Table 2. Consider the limitation 2), the 
maximum input power for S3 and S5 is 45 MW. In the real system, the input power 
more than 45 MW cannot be achieved due to the other limitations or constraints of the 
physical system. Comparing Table 1 and Table 2, the input power is similar with each 
other for S2, but the voltage unbalance was reduced. Hence the proposed method can 
improve the performance of three-phase SAF. 

 

Fig. 4. Pareto front for S1 Fig. 5. Pareto front for S2 

Fig. 6. Pareto front for S3 Fig. 7. Pareto front for S4 
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Fig. 8. Pareto front for S5 

Table 2. Optimization result based on the five sets of samples 

  
RESISTANCE VOLTAGE (V) 

Temp. 
 (oC) 

POWER  
     

(KW) 

R1 R2 R3 U1 U2 U3 T  P 
2.1 2.1 2.77 276 276.5 257.1 2349 29906 

2.73 2.27 4.21 283.3 283.1 263 2200 28275 
2.14 2.12 1.29 276 276 263 2670 45000 
4.27 4.18 2.09 276 276 256 2717 34936 
2.14 1.75 1.28 276 276 263 2706 45000 

6 Conclusion 

The power and voltage unbalance of three-phase SAF were optimized based on a 
proposed multi-swarm multi-objective particle swarm optimization (MSMOPSO). A 
back-propagation neural network was used to model the three-phase SAF, and then 
MSMOPSO was implemented on the obtained neural network model. The achieved 
Pareto fronts are smooth and uniform which means the proposed multi-swarm multi-
objective PSO works well.  Moreover, the simulation result showed the efficiency of 
the proposed method to improve the performance of three-phase SAF. In our future 
research, the more constraints such as harmonics, power factor, and so on, will be 
considered to make the optimization be used in the real SAF plants. 
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Abstract. Differential evolution (DE) is well known as a powerful and
efficient population-based stochastic real-parameter optimization algo-
rithms over continuous space. DE is recently shown to outperform several
well-known stochastic optimization methods in solving multi-objective
problems. Nevertheless, its performance is still limited in finding a uni-
formly distributed and near optimal Pareto fronts. To alleviate such lim-
itations, this paper introduces an adaptive mutation operator to avoid
premature of convergence by adaptively tuning the mutation scale factor
F , and adopts ε-dominance strategy to update the archive that stores
the nondominated solutions. Experiments based on five widely used mul-
tiple objective functions are conducted. Simulation results demonstrate
the effectiveness of our proposed approach with respect to the quality of
solutions in terms of the convergence and diversity of the Pareto fronts.

1 Introduction

Differential evolution (DE) algorithm [1] is a novel technique that was origi-
nally thought to solve the problem of Chebyshev polynomial. It is a population
based stochastic meta-heuristic for global optimization on continuous domains
which related both with simplex methods and evolutionary algorithms. Due to
its simplicity, robustness, and effectiveness, DE is successfully applied in solv-
ing optimization problems arising in various practical applications [2], such as
data clustering, image processing, etc. DE outperforms many other evolutionary
algorithms in terms of convergence speed and the accuracy of solutions. Its per-
formance, however, is still quite dependent on the setting of control parameters
such as the mutation factor [3] for complex real-world optimization problems,
especially those with multiple objectives [4,5].

In multiple objective problems, several objectives (or criteria) are, not unusu-
ally, stay in conflict with each other, thus requiring a set of non-dominated
solutions, i.e., Pareto-optimal solutions to be the candidates for decision. The
general goals of this requirement are the discovery of solutions as close to
the Pareto-optimal as possible, and the distribution of solutions as diverse as
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Y. Tan et al. (Eds.): ICSI-CCI 2015, Part I, LNCS 9140, pp. 523–532, 2015.
DOI: 10.1007/978-3-319-20466-6 55



524 Q. Shi et al.

possible in the obtained non-dominated set. Many works have been reported
to satisfying these two goals. Wang et al. [6] proposed a crowding entropy-
based diversity measure to select the elite solutions into the elitist archive.
Zhang et al. [7] utilized the direction information provided by archived infe-
rior solutions to evolve the differential mutations. Gong et al. [8] introduced
the ε-dominance and orthogonal design into DE to keep the diversity of the
individuals along the trade-off surface. More recently, Chen et al. [9] proposed
a cluster degree based individual selection method to maintain the diversity
of non-dominated solutions. A hybrid opposition-based DE algorithm was pro-
posed by combining with a multi-objective evolutionary gradient search [10].
Although these variants of multi-objective DE have demonstrated that DE is
suitable for handling multiple objectives, rare work, however, is carried out to
discuss the setting of control parameters involving the mutation factor in the
multi-objective DE.

Based on the above consideration, in this work, we proposed an adaptive
mutation operator into DE to avoid the premature convergence of non-dominated
solutions. In the former searching phases, the setting of mutation scale factor F
remains large enough to explore the search space sounding to the non-dominated
solutions, thus maintaining the diversity of the distribution of Pareto set. Along
with the lapse of evolution, F is gradually reduced to perform the exploita-
tion around the promising search area, aiming to reserve good information and
to avoid the destruction of the optimal solutions. Furthermore, as noticed by
Zitzler et al. [11] that elitism helps in achieving better convergence of solutions
in multi-objective evolutionary algorithm, an elitist scheme is adopted by main-
taining an external archive of nondominated solutions obtained in the evolution
process. Moreover, the ε-dominance strategy [12] which can provide a good com-
promise in terms of convergence near to the Pareto-optimal and the diversity of
Pareto fronts is also used in the algorithm. It is expected that, with the utiliza-
tion of elitist scheme and ε-dominance, the cardinality of Pareto-optimal region
can be reduced, and no two obtained solutions are located within relative small
regions. To verify the performance of the proposed algorithm, five widely used
benchmark multiple objective functions are utilized as the test suit. Experimen-
tal results indicate that the proposed adaptive mutation based multi-objective
DE outperforms traditional multi-objective evolutionary algorithms in terms of
the convergence and diversity of the Pareto fronts.

2 Brief Introduction to DE

The standard DE is essentially a kind of special genetic algorithm based on real
parameter and greedy strategy for ensuring quality. An iteration of the classi-
cal DE algorithm consists of the four basic steps: initialization of a population of
search variable vectors, mutation, crossover or recombination, and finally selec-
tion. DE begins its search with a randomly initiated population for a global
optimum point in a D-dimensional real parameter space. We denote subsequent
generations in DE by G = {0, 1, 2, · · · , Gmax} and the i-th (i = 1, 2, ..., NP ) indi-
vidual of the current population is denoted asXi,G = (x1

i,G, x
2
i,G, ... x

j
i,G, ..., x

D
i,G).
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The initial population is randomly generated by:

xj,i,0 = xj,min + randi,j [0, 1] ∗ (xj,max − xj,min) (1)

where randi,j [0, 1] is a uniformly distributed random number in [0, 1], xj,min

and xj,max represents the boundary values of the search space. For each individ-
ual vector Xi,G (target vector), differential evolution algorithm uses mutation
operator to generate a new individual Vi,G (variation vector), which is generated
according to Eq. (2).

Vi,G = Xr1,G + F ∗ (Xr2,G −Xr3,G) (2)

where three individuals vectors Xr1,G, Xr2,G and Xr3,G are selected randomly
from the current populations. r1, r2, r3 ∈ {1, 2, · · · , NP} are random indexes. F
is a real and constant scale factor ∈ [0, 2] which controls the amplification of the
differential variation (Xr2,G - Xr3,G). In order to increase the potential diversity
of the perturbed parameter vectors, a crossover operation comes into play after
generating the donor vector through mutation. The binomial crossover operation
was shown in the following.

ui,G =

⎧
⎨

⎩

vj
i,G, if randi,j [0, 1] � Cr or j = jrand

Xj
i,G, otherwise

(3)

where Cr is called the crossover rate. randi,j ∈ [0, 1]. After DE generates off-
spring through mutation and crossover operation, the one-to-one greedy selection
operator is performed as:

ui,G+1 =

⎧
⎨

⎩

U j
i,G, if f(Ui,G) � f(Xi,G)

Xj
i,G, otherwise

(4)

3 Design of Multi-objective Differential Evolution
Algorithm

For solving multiple objective problems, the general requirements of the approx-
imation of the Pareto optimal set are two-fold: (1) minimize the distance to
the true pareto optimal fronts, and (2) the distribution of the obtained non-
dominated solutions are located as diverse as possible [13]. The purpose of this
research is aimed to address the above two requirements, and the processes of
the proposed adaptive mutation based ε-dominance differential evolution (IDE)
are summarized in Fig. 1.

To generate initial solutions evenly located over the whole decision space, the
orthogonal experimental design method [14] is adopted in IDE. Refer to [15] for
detailed description of the orthogonal experimental design in population-based
evolutionary algorithm. After generating the orthogonal population (denoted
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Fig. 1. The general flow chart of the proposed adaptive mutation based multi-objective
differential evolution (IDE)

as OP ), an initial archive with the nondominated individuals extracted from
OP through the traditional Pareto dominance method [16] is created. Then the
initial evolutionary population (EP ) which is responsible for finding new non-
dominated solutions is generated from the initial archive and OP . If the size of
initial archive is larger than NP , we select NP solutions from the initial archive
randomly, or all of the ar size (which is the size of the initial archive) solutions
in the initial archive are inserted into EP , and the remainder NP - ar size
solutions are selected from OP randomly. In order to accelerate the algorithm
convergence and make use of the archive individual to guide the evolution, we
adopt a hybrid selection mechanism when selecting the target vector Xr1 as
shown in Eq. (2). At the beginning phase of the evolution, all of the parents for
mating are randomly selected from EP to generate the offspring. With the lapse
of evolution, the elitist selection is used. We randomly choose one solution from
the archive as the base parent, and the other two parents are selected from the
evolution population EP randomly.

In previously reported works [6–10], all those multi-objective DE algorithms
set the scaling factor F as a constant in the whole process of evolution, which
made the search appear precocious phenomenon frequently. It is very sensitive to
set scaling factor F for traditional differential evolution algorithms. Experimen-
tal work in a variety of DE algorithms has provided strong evidence supporting
the view that the performance of the algorithm is strongly depending on the
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setting of F values [17,18]. To be more specifically, if the F value is too large,
the DE algorithm approximates for random search, thus the search efficiency and
the accuracy of getting the global optimal solution are quite low. On the con-
trary, if the F value is too small, it can lose the diversity of population into the
prematurity. To alleviate this problem, we propose an adaptive mutation opera-
tor that can determine the mutation rate adaptively according to the progress of
the search of the algorithm, thus enabling the algorithm to possess greater muta-
tion rates in the early search stages to maintain the individuals’ diversity and to
avoid precocious phenomena during the process. Later, the mutation operator
was gradually reduced to reserve good information and avoid the destruction of
the optimal solution, and meanwhile it increases the probability of searching to
the optimal solutions.

To realize the above characteristic of the setting of F , an adaptive setting
rule is designed as in Eqs. (6) and (7).

t = e1− Gm
Gm+1−G (5)

F = F0 ∗ 2G (6)

where F0 is initial mutation operator. Gm denotes the maximum number of
fitness evaluation. G indicates the current evolution number. At the beginning
search phase of the algorithm, the adaptive mutation operator is carried out with
a probability within [F0 - 2F0], which is a relatively large value to maintain the
individual diversity. Along with the lapse of evolution, the mutation operator is
gradually reduced to reserve good information and expected to well balance the
exploration and exploitation of the search.

In addition, as noticed by Zitzler et al. [19] that elitism helps in achieving
better convergence in handling multiple objectives. Therefore, in this paper, the
elitist scheme is adopted through maintaining an external archive AR of non-
dominated solutions found in evolutionary process. In order to achieve faster
convergence, we adopted [20] ε-dominance mechanism to update archive popu-
lation. At each generation, the newly generated non-dominated solution is com-
pared with each other member which is already contained in the archive. The
new individual can be saved in the archive only when it meets the requirements
that no individuals within a ε distance exist. By doing so, we can ensure both
convergence and diversity of the Pareto fronts within reasonable computational
times.

4 Simulation and Analysis

Multi-objective optimization problem is also known as multi-criteria optimiza-
tion problem [21]. In order to evaluate the effectiveness of the proposed IDE
and make a comparison with other multi-objective evolutionary algorithms, five
widely used benchmark problems [19] involving ZDT1, ZDT2, ZDT3, ZDT4 and
ZDT6 are adopted as the test suit. All problems have two objective functions
and all objective functions are to be minimized. The parameter settings of IDE
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are as follows: the maximum number of fitness evaluation Gm = 5000, the initial
scaling factor value of F0=0.5, the crossover probability of CR = 0.3, NP = 100.
For each problem, we run 50 times independently with different random seeds,
then compared the performance of IDE with the one of the traditional multi-
objective DE variants (MDE) [8]. In addition, we compared the results of IDE
algorithm with NSGA-II [16], SPEA2 [22] and MOEO [23]. To assess the perfor-
mance of the compared algorithms, the convergence metric λ and the diversity
metric Δ are used [13]. The first convergence metric λ measures the distance
of the obtained non-dominated sets Q and the true Pareto front approximation
sets P ∗ as in Eq. (7).

λ =
∑|Q|

i=1 di

| Q | (7)

where di is the Euclidean distance between the solution i ∈ Q and the nearest
member of P ∗. It is clear that the lower the λ value, the better convergence of
obtained solutions, suggesting that the obtained non-dominated sets are more
closer to the true Pareto fronts.

The second diversity metric measures the extent of distribution among the
obtained non-dominated sets Q. Δ is defined as in Eq. (8).

Δ =
df + dl +

∑|Q|−1
i=1 | di − d̄ |

df + dl + (| Q | −1)d̄
(8)

where di measures the Euclidean distance of each point in Q to its closer point,
df and dl denote the Euclidean distance between the extreme points in Q and
P ∗, respectively. Obviously, the lower the Δ value is, the better distribution of
solutions possess.

Table 1 records the convergence metric λ obtained by IDE and the previ-
ous MDE algorithm [8]. The diversity metric Δ obtained by IDE and MDE are
shown in Table 2. Table 3 shows the convergence metric obtained by IDE and
three multi-objective evolutionary algorithms. Table 4 illustrates comparative
results in terms of the diversity metric obtained by IDE and its competitors.

Table 1. Comparison of the convergence metric between IDE and MDE

Problem ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

MDE 0.0028 0.00064 0.0038 0.0026 0.0008

IDE 0.00075 0.00084 0.0030 0.0020 0.00075

Table 2. Comparison of the diversity metric between IDE and MDE

Problem ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

MDE 0.2536 0.38565 0.40025 0.3850 0.3571

IDE 0.2425 0.2896 0.39575 0.2709 0.2595
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Table 3. Comparison of the convergence metric during IDE, NSGA-II, SPEA2, and
MOEO

Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

NSGA-II 0.033482 0.072391 0.114500 0.513053 0.296564

SPEA2 0.023285 0.16762 0.018409 4.9271 0.23255

MOEO 0.001277 0.001355 0.004385 0.008145 0.000630

IDE 0.00075 0.00084 0.0030 0.0020 0.00075

Table 4. Comparison of the diversity metric during IDE, NSGA-II, SPEA2, and
MOEO

Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

NSGA-II 0.390307 0.430776 0.738540 0.702612 0.668025

SPEA2 0.154723 0.33945 0.4691 0.8239 1.04422

MOEO 0.327140 0.285062 0.965236 0.275567 0.225468

IDE 0.2425 0.2896 0.39575 0.2709 0.2595

From Table 1, we can find that IDE performs better results with respect to the
convergence on all tested instances, except on ZDT2, which suggested that the
incorporated adaptive mutation strategy indeed help the search finding better
solutions. On the other hand, the comparative results in Table 2 show that IDE
has capacity of finding a better spread of solutions than MDE on all problems
except ZDT6. From Table 3, it is clear that IDE produces solutions significantly
closer to the true Pareto fronts than NSGA-II, SPEA2, and MOEO on all tested
functions. An exception is that MOEO can find slightly better solutions than
IDE on ZDT6. With regards to the diversity of obtained non-dominated solu-
tions, as shown in Table 4, an overall improvement can be found on IDE that its
non-dominated solutions located more evenly than those obtained by its competi-
tor algorithms, verifying that the proposed adaptive mutation strategy together
with the ε-dominance no doubt improve the performance of DE in terms of the
diversity.

Furthermore, to further understand the performance of our improved algo-
rithm more intuitively, Fig. 2 draws the Pareto fronts constructed by the
obtained non-dominated solutions that obtained by IDE and MDE on all tested
functions respectively. From this figure, it is clear that the Pareto fronts obtained
by IDE is much better than those by MDE. The performance on ZDT6 is
quite illuminating to further elaborate the search characteristics of the com-
pared algorithms. Almost the same number of non-dominated solutions are
obtained by both algorithms, and the average distance (measured by λ) to the
true Pareto front is also within an acceptable tolerance (0.0008 vs 0.00075).
Nevertheless, the distribution of the non-dominated solutions is quite different
(0.3571 vs 0.2595). A significantly evenly distributed non-dominated solutions
for ZDT6 are obtained by IDE, implying that IDE is capable of finding a well-
distributed and near-complete set of non-dominated solutions when handling
multiobjectives.
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Fig. 2. Pareto fronts obtained by IDE and its competitor algorithm MDE on ZDT1,
ZDT2, ZDT3, ZDT4, and ZDT6 respectively
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5 Conclusion

This paper proposed an adaptive mutation operator based on the multi-objective
differential evolution algorithm. In the beginning of search phase, the algorithm
has a relatively large value to maintain the individuals’ diversity, and avoid the
premature phenomenon of fast convergence. With the lapse of evolution, the
mutation operator was gradually reduced to reserve good information and avoid
the destruction to the optimal solution. Together with the ε-dominance strategy,
we constructed the effective IDE to handling multiple objectives. We test IDE
via five standard multi-objective test functions and the performance comparison
during MDE, NSGA-II, SPEA2 and MOEO. It can be concluded that IDE is
superior to other algorithms on multiple problems, indicating that our approach
has ability to obtain effective uniformly distributed and near-optimal Pareto
sets.
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Abstract. This paper presents a fleet of chemical plume tracers with the distri-
buted architecture developed at California State University, Bakersfield 
(CSUB). Each chemical plume tracer built upon a DaNI robot integrates mul-
tiple sensors, including a wind sensor, chemical sensors, a wireless router, and a 
network camera. The DaNI robot is an advanced platform embedded with a sin-
gle control board (sbRIO-9632), consisting of a 400 MHz industrial processor, a 
2M gate Xilinx Spartan FPGA, and a variety of I/Os. In order demonstrate the 
feasibility of the designed chemical plume tracers, the experiments on moth-
inspired plume tracing are conducted under the turbulent airflow environment. 
This fleet of chemical plume tracers is a powerful tool for investigating algo-
rithms for the tracking and mapping of chemical plumes via swarm intelligence. 

Keywords: Chemical plume tracer · Bio-inspired algorithm · Moth behavior · 
LabVIEW · DaNI robot · Swarm robots 

1 Introduction 

A potential application of chemical plume tracing (CPT) is searching for sources of 
hazardous chemicals or pollutants, or victims in earthquake wreckage using a swarm 
robot system. One of the critical problems in this area is to develop the swarm robot 
system with an effective navigation mechanism which guides a fleet of plume tracers 
to track a chemical plume towards its source. Chemical information-based plume 
tracing phenomena widely exist in a variety of biological swarm behaviors [1]. 

An initial approach to designing a chemical plume tracer might attempt to calculate 
a concentration gradient [2], with subsequent plume tracing based on gradient follow-
ing. This approach suits for a chemical source under diffusive airflow environments. 
At medium and high Reynolds numbers, however, the evolution of the chemical  
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distribution in the flow is turbulence dominated. The result of the turbulent diffusion 
process is a highly discontinuous and intermittent distribution of the chemical. A 
dense array of sensors distributed over the area of interest and a long time-average of 
the output of each sensor (i.e., several minutes per sensor) would be required to esti-
mate a smooth (time-averaged) chemical distribution. However, the required dense 
spatial sampling and long time-averaging makes such an approach ineffective for 
implementation on an autonomous robot. In addition, even decameters from the 
chemical source in the direction of the flow the gradient is too shallow to detect in a 
time-averaged plume.  

Over the past ten years, various biomimetic robotic CPT studies were developed. 
Grasso et al. [3] evaluated biomimetic strategies and challenged theoretical assump-
tions of the strategies by implementing biomimetic strategies on their robot lobster. 
Inspired by moth behavior [4], Li et al. [5] developed, optimized, and evaluated coun-
ter-turning strategies. Li et al. [6] implemented the moth-inspired plume tracing strat-
egies on autonomous underwater vehicles (REMUS). The in-water tests conducted in 
near-shore ocean conditions in [6-7] demonstrate that the REMUS-based plume trac-
ers track the chemical plumes over hundred meters and achieve the average source 
declaration accuracy of approximately 13m. Webster et al. [8] developed a dynamic 
CPT algorithm inspired by the behaviors of blue crabs in a turbulent flow environ-
ment. Success rates and movement patterns compare favorably to that of blue crabs. 

This paper introduces a fleet of chemical plume tracers built upon the DaNI robots 
manufactured by National Instruments (NI), which is embedded with a single control 
board (sbRIO-9632), consisting of a 400 MHz industrial processor, a user-
reconfigurable field-programmable gate array (FPGA) – a 2M gate Xilinx Spartan, 
and a variety of I/Os. Each plume tracer integrates multiple sensors, including a wind 
sensor, chemical sensors, a wireless router, and a camera. The DaNI robot platform 
uses LabVIEW – the visual programming language environment. 

2 Integration of Multiple Sensors 

2.1 DaNI Robot 

A group of DaNI robots are used to build a fleet of the chemical plume tracers. A 
DaNI robot comes preassembled and has two motors, encoders, and an ultrasonic 
sensor, as shown in Fig. 1. It is equipped with the sbRIO-9632 embedded control and 
acquisition device, integrating a 400 MHz industrial processor, a user-reconfigurable 
field-programmable gate array (a 2M gate Xilinx Spartan FPGA), and I/O on a single 
printed circuit board. It features 110 3.3V (5V tolerant/TTL compatible) digital I/O 
lines, 32 single-ended/16 differential 16-bit analog input channels at 250 kS/s, and 
four 16-bit analog output channels at 100 kS/s. It also has three connectors for expan-
sion I/O using board-level NI C Series I/O modules. The sbRIO-9632 offers a -20 to 
55 °C operating temperature range, and includes a 19 to 30 VDC power supply input 
range, 128 MB of DRAM for embedded operation, and 256 MB of nonvolatile memo-
ry for storing programs and data logging. It also features a built-in 10/100 Mbit/s 
Ethernet port you can use to conduct programmatic communication over the network 
and host built-in Web (HTTP) and file (FTP) servers. A user also can use the RS232 
serial port to control peripheral devices.  
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Fig. 1. A DaNI robot is equipped with a sbRIO-9632 embedded control and acquisition device, 
integrating a 400 MHz industrial processor and a 2M gate Xilinx Spartan FPGA. A chemical 
plume tracer built upon the DaNI robot integrates multiple sensors, including a wind sensor, 
chemical sensors, a wireless router, a camera, and an ultrasonic transducer. 

2.2 Ultrasonic Sensor and DC Motors 

A DaNI robot is equipped with a Parallax ultrasonic sensor. It detects objects by emit-
ting a short ultrasonic burst and then “listening” for the echo. Under the control of a 
host microcontroller (trigger pulse), the sensor emits a short 40 kHz (ultrasonic) burst. 
This burst travels through the air at about 1130 feet per second, hits an object, and 
then bounces back to the sensor. The PING sensor provides an output pulse to the 
host that terminates when the echo is detected.  Meaning the width of this pulse cor-
responds to the distance to the target. The DC motors use 12V of power and offer 300 
oz-in. of torque and 152 RPM. The encoders use 5V of power and offer 100 cycles 
per revolution and 400 pulses per revolution.  

2.3 Chemical Sensor 

The chemical sensor made by Figaro uses a metal oxide semiconductor layer on an 
alumina substrate of a sensing chip with an integrated heater. When the chemical is 
detectable, the sensor’s conductivity increases depending on the gas concentration in 
the air. The electrical circuit board that converts chemical concentrations into elec-
trical output signals is shown in Fig. 2 (left).  

2.4 Wind Sensor  

The Gill WindSonic wind sensor is a low-cost anemometer, which utilizes the Gill’s 
ultrasonic technology to provide wind speed and direction data via one serial or two 
analogue outputs, as shown in Fig. 2 (middle). To confirm correct operation, outputs 
are transmitted together with an instrument status code. It features a robust, corrosion-
free polycarbonate housing which makes it very lightweight. The WindSonic anemo-
meter is a robust ultrasonic wind speed and direction sensor with aluminum alloy 
construction. The WindSonic sensor is solid-state with no moving parts and uses the 
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ultrasonic measurement technology to detect wind speed and direction at speeds up to 
60m/s (134mph). The robust aluminum alloy housing is hard-anodised to ensure sui-
tability in harsh marine environments, and the optional heating system allows opera-
tion down to -40ºC. The WindSonic sensor provides a marine-standard NMEA 0183 
output, with options for RS232, 422 and 485 outputs. A single 9-way connector and 
three mounting holes for attachment to a 1.75" pipe ensure installation is straightfor-
ward. The WindSonic sensor has a very low maintenance overhead. 

             

Fig. 2. The electrical circuit board for the Figaro chemical sensor converts chemical concentra-
tions into electrical output signals (left). The Gill WindSonic sensor is a low-cost anemometer, 
which provides wind speed and direction data via one serial or two analogue outputs (middle). 
A wireless router integrated on the DaNI robot is for wireless communication between a com-
puter and the DaNI robot (right). 

2.5 Wireless Router and Camera 

Since the DaNI robot is open architecture it is easy to add a wireless router to establish 
wireless communication with the internet, as shown in Fig. 2 (right). Next, an AXIS 
M1011 network camera is mounted on the DaNI robot to view surroundings from the 
robot’s perspective, as shown in Fig. 1. The camera provides multiple, individually 
configurable video streams in H.264 as well as Motion JPEG and MPEG-4.  It also 
offers video quality at 30 frames per second in VGA resolution. The NI Measurement 
and Automation software can configure the camera format and image resolution. 

2.6 Swarm Robot System for Chemical Plume Tracing 

A swarm robot system with a distributed structure must be powerful to trace chemical 
plumes and to build plume maps in the real world. However, most of the existing 
studies on the tracking and mapping of chemical plumes via swarm robots are based 
on simulation evaluations, e.g., [9]. 

In order to validate the strategy for plume tracing via the swarm robots, it is essen-
tial to develop a fleet of chemical plume tracers with distributed structure, as shown in 
Fig. 3. Because each robot is equipped with multiple sensors, including a wireless 
router and two chemical sensor boards, the plume tracers in the swarm robot system 
are able to talk each other in LabVIEW Robotics projects. Each plume tracer per-
forms its maneuver and shares the collected information with the others, such as, 
chemical concentrations, airflow orientations and magnitudes, and its current state. 
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The swarm robots are able to dynamically form their shape to perform CPT missions 
according to the formation control mechanism [9]. Conducting CPT missions via the 
swarm robots under formation control in an open and large-scale operation area is on 
schedule. 

 

Fig. 3. The swarm robot system for plume mapping and tracing is developed in Robotics Lab, 
at California State University, Bakersfield 

3 Algorithms Implementation in Labview 

The sbRIO-9632 device can be programmed in the LabVIEW graphical development 
environment. The real-time processor runs the LabVIEW Real-Time Module on the 
Wind River VxWorks real-time operating system (RTOS) for extreme reliability and 
determinism. With the addition of the LabVIEW MathScript RT Module, custom.m 
file are easily deployed to NI real-time hardware while combining both graphical and 
textual syntax. The onboard reconfigurable FPGA can be quickly programmed using 
the LabVIEW FPGA Module for high-speed control, custom I/O timing, and inline 
signal processing. LabVIEW contains built-in drivers and APIs for handling data 
transfer between the FPGA and real-time processor. 

The moth-inspired chemical plume tracing algorithms proposed in [5], including 
the four plume tracing behaviors, including Find-Plume, Maintain-Plume, Reacquire-
Plume, and Declare-Source, are implemented on the plume tracers using the Lab-
VIEW language, as shown in Fig. 4. The program needs the Initialize Starter Kit 2.0 
(sbRIO) VI. This VI begins a communication session with the FPGA on the plume 
tracer and returns a reference to read from or write to the FPGA. This VI must be 
called before accessing I/O with the FPGA. The next VI in the program is the Create 
Starter Kit 2.0 Steering Frame VI. This VI generates a steering frame object for the 
robot and the steering frame object can be used with the other Steering VIs to imple-
ment steering for the plume tracer. 

The plume tracer needs the VISA Configure Serial Port VI and it initializes the 
serial port specified by “VISA resource name” to the specified settings. This VI 
writes data from the write buffer to the device or interface specified by “VISA re-
source name.”  This VI reads the specified number of bytes from the device or inter-
face specified by “VISA resource name” and returns the data in “read buffer.” The 
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VISA Close VI closes a device session or event object specified by “VISA resource 
name.” The Write DC motor Velocity Setpoints VI applies velocity values to the 
drive motors on the robot. The left and right motors are defined by their positions. 
The maximum motor velocity is 15.7 rad/s. 

 

Fig. 4. The moth-inspired chemical plume tracing algorithms are implemented using LabVIEW 
block diagram which includes Initialize Starter Kit 2.0 (sbRIO) VI and The Close Starter kit VI 

The moth-inspired plume tracing algorithm controls the plume tracer to follow the 
wind. When the wind is coming from the left, the robot turns left. When the wind is 
from the right, it turns right. Since the front of the sensor is 0°/360° and counts from 0 
to 360 clockwise, if the wind is coming from somewhere between 180° to 360° the 
robot turns left and if the wind is coming from somewhere between 0° to 180°  
the robot turns right. The case statement block in Fig. 4 checks if the value from the 
WindSonic sensor for wind direction is greater than 180, the statement is true and it 
uses the true block.  If the value is less than 180 it is false and uses the false block.  
Both the cases use the Write DC Motor Velocity Setpoints VI.  If the statement is 
true the wind is coming from the left and speeds up the right motor in order to turn 
left and for false speeds up the left motor to turn right.  For this VI, a negative value 
in the right motor makes it go forward. 

For the chemical sensor, a LabVIEW block diagram designed for the program reads 
the analog inputs converted from chemical. The block is called Read AI Line VI and it 
reads the voltage value from an analog input line on the Starter Kit FPGA. The Close 
Starter kit VI terminates a communication session with the FPGA. When the communi-
cation session ends, the drive motors, distance sensor, and sensor servo stop operating. 

4 Moth-Inspired Plume Tracing Experiments 

In order demonstrate the feasibility of the designed chemical plume tracers, the expe-
riments on moth-inspired plume tracing are conducted under the turbulent airflow 
environment. A humidifier pumps alcohol as the chemical source and a fan with a fix 
heading or a varying heading are used to generate a chemical plume, as shown in Fig. 
5. The first step for the experiments is to calibrate the performance of following the 
wind by turning off the chemical source. A true-false case structure indicates whether 
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the angle read from the wind sensor is less than or greater than 180 degrees. If the 
wind is to the left, the tracer will turn left. If the wind is to the right, the tracer will 
turn right. The tracer keeps turning until the angle approaches zero when the tracer is 
facing the wind. This behavior is responsible for its zigzag movement, which moths 
behave when tracking odors. 

  

Fig. 5. The experiments on moth-inspired plume tracing under turbulent airflow environments 
are conducted by the plume tracer. A humidifier pumps alcohol as the chemical source and a 
fan with a fix heading or a varying heading is used to generate turbulent airflow. 

Next, the plume tracer is controlled to track air-borne chemicals under turbulent 
airflow environments by using chemical concentrations in conjunction with wind 
information. The chemical detection is created on two breadboards with both having 
the same circuit to monitor both sides of the tracer. The chemical sensor circuit uses 
one of two Figaro sensors and outputs a voltage value corresponding to the detected 
chemical concentration. This voltage value is fed into the analog input. The plume 
tracer needs to detect above a chemical threshold before it starts tracking. The expe-
riment settings were given as follows: The experiments show that nearly 100% suc-
cess rate is achieved using the moth-inspired plume tracing algorithms. Fig. 6 shows 
chemical concentrations, wind speeds, wind angles measured during a CPT mission 
under the turbulent airflow environment.   

 

Fig. 6. Chemical concentrations (left), wind speeds (middle), and wind angles (right) were 
measured during a CPT mission 
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5 Conclusions 

This paper presents a fleet of the chemical plume tracers with the distributed architec-
ture built by the DaNI robots. The experiments on the moth-inspired plume tracing 
under the turbulent airflow environment demonstrate the feasibility of the designed 
plume tracers. In our further research, we will validate the plume mapping and plume 
tracing algorithm via swarm robots proposed in [9]. 
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Abstract. The problems of diversity of tasks and non-structural environment 
have been put in front of robotic development, on the other hand, we urgently 
hope they consume low cost and have high reliability, so the method of multi-
cooperation is wildly used. Then we would get the swarm robotics social 
system with the individual growing. In this paper, we proposed hierarchical 
organizational model to definite social order during task decomposition; then, 
we design the method of behavior generation based on proposition/transition 
Petri networks, which would assist the system to construct combined behavior 
using the sample individual behavior to solve a variety of tasks. 

Keywords: Hierarchical self-organization · Task-oriented · Swarm robotics 

1 Introduction 

Three characters of robotic development are summarized as following: 1) Integrate 
and improve the function of individual, such as stability and load capacity; 2) Increase 
of intelligence of individual, which makes robots have autonomy; 3) Number of 
robots in whole system, which spurs collaboration and solves more tasks. The 
research contents of this paper relate to the last two aspects, hoping to make swarm 
system work autonomously. 

Swarm robotics occurs from artificial swarm intelligence, the biological studies of 
insects, ants and other fields in nature, so swarm robotics is defined as a new 
approach to the coordination of multi-robot systems which consist of large numbers 
of most simple physical robots and which is supposed that a desired collective 
behavior emerges from the interactions among the robots and interactions between the 
robots and environment [1, 2]. Considering swarm robotic application, we focus on 
the characteristic of organization structure and propose that: 

Swarm robotics is a robotics system with a special organization structure, which 
has the flexibility, unpredictability and infinite increase or decrease mechanism, and 
consisted of any form of robots, except for interactions with robots or environment 
[3]. 
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Task-oriented robot means that operators do not need to understand “How to do it”, 
and just need to know “what to do”[4,5,6]. For example, if you want a cup of coffee, 
you just need to click the button identifying the kind of coffee you like, and you do 
not need to know how to do it. It is simple to realize for one machine, especially 
which uses switch control. But the statuses will shapely change with the number of 
robots increase and complex function of individual. To solve this problem, we put 
forward some ways to realize task-oriented in swarm system.  

In recent years, interest of swarm robotics has been greatly increasing, for the 
following characteristics: 1) Robustness; 2) Scalability; 3) Flexibility; 4) Economy 
[1,2]. At the end of 2014, the journal of Science choose top 10 breakthrough of the 
whole year, which includes the Kilobots [7, 8], a swarm system made by Self-
organization system research group in Harvard University. They could organize 
themselves into stars and other two-dimensional shapes. This news fully affirms the 
scientific significance of swarm robotics.  

In addition, other swarm robotics platforms are created to verify swarm theory, 
such as Pheromone robotics [9], Swarm-bots[10], Swarmanoid [11] and Termites 
robotics [12] etc. In practical application, Amazon has hired about 15000 Kiva robots 
to help company arrange millions of stock. In the foreseeable future, a lot of swarm 
systems will get into our life such as driverless cars, intelligent manufacturing factory 
and etc. 

In order to make system astronomical, we general adopt MAS (Multi-Agent 
System) technology to formal description and design robotic society. In the society, 
individual is abstracted as agent with the ability of perception, decision and action. 
All agents construct social organization with special order to realize common task. In 
the MAS technology, robotic society requires to abstract many virtual agents, which 
are on hierarchical system for task decomposition, action planning, self-organization 
and etc.  

For the research of organizational model, some typical methods have been 
proposed, such as AGR (Agent/Group/Role) model [13], electronic institution model 
[14], HARMONIA model [15] and so on, but they have some disadvantages as 
following: 

• The models are built just for static organizational structure, not for dynamic; 
• There are no unified standard, so they could just be used on someone system and 

have no good generality. 
• Although there are series of theory of organization design, most of them adopt 

complex logical tools to describe and infer rules, which are not adaptive to 
engineering application. 

The rest of this paper is organized as follows: Section 2 describes a hierarchical 
organizational model for task-oriented swarm system. Method of behavior generation 
in hierarchical organizational model is provided in Section 3. Finally, the concluding 
remarks follow in Section 5. 
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2 Task-Oriented Hierarchical Organizational Model  

The organizational model defines a series of autonomous agent and the social order 
among them, intending to decompose social target and define cooperative demand. In 
the robotic society, cooperation means that many agents in one organization complete 
social target together. 

2.1 Cooperation Types 

From social aspect, cooperation is a management mode of the organization, managing 
the interaction among agents and the dependencies in activities. According to  
different methods for realizing social target, cooperation can be divided into three 
basic types: market cooperation, network cooperation and hierarchical cooperation. 

Market cooperation is committed to promote the exchange between different 
agents. Agents provide services and express their capacities, and contest for the 
executive priority with each other. The common aim of market mechanism is to 
complete the most tasks with the least cost of the least resources. In the network 
cooperation, there is a common aim of the agents to make them build a steady trust 
relationship. Hierarchical cooperation guides resources and information flow from the 
centralized management perspective of one hierarchy, and determine the affiliation of 
members by the predefined structure but not by negotiation or communication. 

Table 1. Specific characteristics of each coordination model 

Cooperation 
model 

market network hierarchy 

Society type Open mutual trust Close 
Membership Completely selfish common interest subordination 

Social purpose 
Exchange resource and 

information 

Cooperate to 
achieve common 

purpose 

Generate activities 
from lower to upper 

Interactive 
mode 

Predefined standard 
interaction 

Negotiate 
interactive 
process and 

content   

Be confirmed when the 
organization is 

designed 

2.2 Self-configuration/Self-reconfiguration of Organizational Model 

In the robotic society, in order to complete one task together, the robots interact with 
others through respective communication channel and interface. It’s a natural network 
cooperative relationship. But network cooperation problems in space application are 
as follows: 

(1) It needs to make a plan for each robots designating how to do when the task 
explicit what to do. With the expanding number and kind of robots in society, 
it will confront the state space explosion problem to get a complete plan 
directly. 
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(2) The executive process involving too many individualities and large time and 
spatial span is highly complicated, which is difficult to control and manage. 

(3) Because of higher communication cost, the limitation of the bandwidth, more 
unpredictable and indefinite events, the organizational structure is inclined to 
choose the hierarchical cooperation model to reduce the interaction cost. 

We can solve this problem by adding task plan agent to organization and making 
the original agent as the functional agent in bottom layer. Task plan agent is running 
on robots controller or computer with calculating ability in the form of a program. It 
decomposes the task layer by layer, till the agent could understand it and execute it. 
The closeness of hierarchical cooperation determines its limitation in one task or one 
kind of tasks, so we need to design different hierarchical cooperation model to satisfy 
different task designation. In another word, task-oriented self-configuration/self-
reconfiguration is an indispensable ability for the robotic society. 

 

Fig. 1. Self-configuration/self-reconfiguration of an organization 

In the task-oriented hierarchical organizational model, task planning agent 
has determined affiliation and interaction of common goals and specific 
organizational relationships, and knows how to interact and decompose task 
through communication. 

3 Method of Behavior Generation 

Hierarchical organizational model can get the complicated behavior of upper 
hierarchy through the lower hierarchy. Researches on behavior generation methods, 
such as CAMPOUT, encapsulate the behavior of lower agent as a series of functional 
interface, which can be used as the basic unit to build the behavior of upper agent. But 
this method is generally used in mobile robot platform because it is only active in the 
atomic behavior choices and is unable to monitor or manage complicated concurrent 
behavior. 

Behavior generation method is asked to monitor and manage concurrent activities 
of many agents in an organization in order to realize the generality of it. 
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3.1 Control Structure 

Formal description and analysis of the behavior needs to be defined in a control 
structure, and we use classical Kripke structure model. 

Kripke structure makes )SL,R,(S,M 0= , in which S means nonempty finite set of 
states, R means state transition set, AP2S:L  means every state corresponds to an 
atomic proposition, and SS0 ⊆ means initial set of states. 

In the process of monitoring and management of multi-agents action, we use state 
set SSmark, ⊆t  to describe all effective states at time t , and use sequence 

mark,1mark,0 S,Sπ =  to represent implementation process. 

3.2 Definite of Behavior 

The lower layer agent provides a series of function interface for the agent, which is 
belonged. In essence, the behavior is a strategy to operate this functional interface, 
according to the current events. Next, we definite Event, Action (function interface) 
and Behavior in formal ways. 

(1) Event 

( ) { }m1n1 Assertion,Assertion,E  =xx is a set of assertions, in which, E means 
name of event, and n1, xx   are parameters of event. When all assertions are true, we 
could admit that event occurs. Ranges of parameters of event are described as

( ) ( ){ }nnE,1E,1E C,CParameter xx = .   

(2) Action 

( ) )Result,Disable,Ready,Enable(,A AAAAn1 =xx  is one function interface, in 
which, A means the name of action, n1, xx   are parameters of action, and AEnable , 

AReady , ADisable , and AResult  represent enable event, ready event, forbid event 
and result event. Ranges of parameters of action are described as

( ) ( ){ }nnA,1A,1A C,CParameter xx = .   

(3) Behavior 

( ) )E,Output,Input,Terminate,P(,B BBBBBn1 =xx   is one strategy of action 
control based on event, in which, B means the name of behavior, n1, xx   are 
parameters of behavior, BP  means pre-event, BTerminate  means end time, 

BInput  and BOutput  means a set of event about action input and output, and BE  
represents a set of post event. Ranges of parameters of behavior are described as

( ) ( ){ }nnB,1B,1B C,CParameter xx = .   

3.3 Behavior Generation 

Behavior is a motion control strategy that means series of action to realize one 
behavior. When one behavior just contains one action, we call it atomic behavior, 
otherwise we call it combined behavior. 

In this paper, we adopt proposition/transition Prtri network with enable arc and 
suppression arc to describe inner structure of combined behavior. Every library 
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iPlace of Prtri network is given a set of propositions iSetAssertion_ . When iPlace

contains Token, which means all propositions in this set are true.  
Combined behavior is composed by two parts: structure module and control 

module as shown in Fig. 2. Structure module encapsulates one behavior and 
provides interface for receiving and sending event. Control module links a 
plurality of interfaces of structure modules and controls the execution process. 

 

Start Interface

Terminate 
Interface

Result 
Interface1

Result 
Interface2

…………

Structure
Module

Control Module

Structure
Module

Structure
Module

 

Fig. 2. Components of combined behavior 

To simplify the description, existing compound behavior could be set as structure 
modules when building a more compound behavior. 

(1)  Structure Modules 

Structure modules of primitive behavior is shown in Fig.3. 
 

 

Fig. 3. Structure modules of primitive behaviour 

Enable、Disable, Result_OK and Result_Fail are external interface, and Ready, 
ActionOK and ActionFail are provided by sub layer agent. 

As shown in Fig.2, we assume that there are two action results of primitive 
behavior: Action OK and Action Fail. In the real application, there may be three or 
even more action results, and we should adjust accordingly. 

Structure modules of combined behavior are shown in Fig.4.  
P_Block, Terminate_Block, Input, Output, Result1, Result2 are external interface 

of this structure module. 

(2) Control module 
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Control module controls event flow of each structure modules, and can be defined 
flexibly according to actual need. Take sequence control module as an example: 
Sequence(A, B) controls structure module A and B, module B will be skipped if 
module A fail in execution, as shown in Fig. 5. 

 

Fig. 4. Structure modules combined behaviour 

 

Fig. 5. Sequence control module 

The advantage of this generation method of organization behavior method lies in: 
the relationship between compound behavior and its structure module is operation of 
activation or ban, but not invoking，which is pretty important because it can avoid 
using invoking relationship effectively when dealing with concurrent activities of 
many agents thereby avoiding error-prone problems in the executive process. A task 
plan is a living example of replacing all variables in one behavior with constant, and it 
can be considered as an executive strategy that can activate or end the action of robot 
according to occurred event.  

4 Conclusion 

In order to avoid the state explosion problem in the decomposition process of robot 
and reduce the interaction cost in executive process, first, we added task plan agent 
with explicit affiliation and interaction to space robotic society, and formed a 
hierarchical organizational model, both of which can definitely understand the 
common aim and the relationship of organization, and know how to realize interaction 
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through communicating; second, we designed a method of behavior generation based 
on proposition/transition Petri network. we can see that method of behavior 
generation could produce compound behavior responding to all kind of events to 
satisfy demand of users who is not familiar with technical details and it also has a 
good generality. A set of expert system is required to be developed for automatic 
generation or used to help people to build a plan of task description in future research. 
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Abstract. Bio-inspired aggregation is one of the most fundamental
behaviours that has been studied in swarm robotic for more than two
decades. Biology revealed that the environmental characteristics are very
important factors in aggregation of social insects and other animals. In
this paper, we study the effects of different environmental factors such
as size and texture of aggregation cues using real robots. In addition, we
propose a mathematical model to predict the behaviour of the aggrega-
tion during an experiment.

Keywords: Power-law distribution · Swarm robotics · Aggregation ·
Modelling

1 Introduction

Aggregation is a common phenomenon in social behaviour of animals which can
be observed from microscopic amoeba to insects and other animals [8]. A cue-
based aggregation helps to gather a group of animals at the optimal zones with
following the environmental cue. In swarm robotics [16], aggregation is defined
as gathering of randomly distributed robots into a single aggregate. It is one
of the fundamental behaviours in swarm robotics which helps the robots to get
closer to each other and interact in order to perform other behaviours such as
flocking and collective transport.

BEECLUST aggregation method proposed in [19] is inspired from simple
behaviours in honeybees aggregation. The aggregation method is based on colli-
sions between robots. A gradient light source in the arena is used as the aggre-
gation cue. Each robot moves randomly and stops when it meets another robot.
The waiting time depends on the intensity of the light at the particular loca-
tion where the robot collied. The more the intensity, the longer it waits. After
the waiting time is over, the robot turns randomly and moves forward. Results
of the performed experiments showed that robots are able to aggregate on the
optimal zone where the intensity of the light is the highest. Schmickl et al.
[18] proposed two types of experiments: (i) static experiments in which there
is a single light source and (ii) dynamic experiments in which there are two
c© Springer International Publishing Switzerland 2015
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light sources with different intensities. The intensities of the sources are changed
during an experiment. They showed that, robots aggregated on the optimal
zone in static experiments. Whereas, in dynamic experiments, robots are able
to aggregate under the highest intensity source. To improve the performance
of the cue-based aggregation, two modifications on BEECLUST were proposed
in [4]. One is the dynamic velocity in which robots are allowed to select three
different speeds based on intensity of light; higher intensity results in slower
speed. The second modification is the comparative waiting time in which the
waiting time of a robot increases in the presence of the other robots. The results
showed that both methods improve aggregation performance. In addition, the
effects of turning angle has been studied in [6]. In this study, the performance of
two proposed aggregation algorithms – vector averaging and näıve – was com-
pared with BEECLUST. The results showed that the proposed strategies outper-
form BEECLUST method. Fuzzy-based aggregation method has been introduced
in [5]. The results showed that the proposed fuzzy decisioning method improves
the performance of BEECLUST especially in the presence of noise.

In order to analyse a collective behaviour in swarm robotics, macroscopic
modelling is considered to be a more comprehensible approach to analysis
different effective parameters of the behaviour. Stochastic characteristic of
swarm algorithms leads to use a probabilistic modelling to depict the collec-
tive behaviour of the swarm systems [20]. To that end, various models from
macroscopic behaviours of swarms have been proposed in [10,13,14]. The swarm
scenarios are mostly the result of the inter-agent interactions which can be mod-
elled by chemical reaction network model [15]. Macroscopic model of an aggre-
gation behaviour must be able to predict the final distribution of the cluster
[21]. Bayindir and Şahin [7] proposed a macroscopic model for a self-organized
aggregation using probabilistic finite state automata. Schmickl et al. [17] pro-
posed Stock & Flow model to model the macroscopic behaviour of a cue-based
aggregation.

In this paper, we analyse a cue-based aggregation scenario based on the state-
of-the-art BEECLUST method. In particular, we investigate different character-
istics of a cue in the environment (size and texture) to check the influence of the
changes on the swarm performance with a real robot, Colias.

2 Power-Law Distribution

The power-law distribution is a mathematical model that depicts a dynamic and
functional relationship between two variables [9]. This is an important approach
to model performance pattern of a long-term activity in an experiment and can
reveal the reliability of a system. Mathematically, it is said that two quantities
are related by power-law relationship, when one quantity varies as a power of
another one (Eq. 1).

y = αxk , (1)
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where y and x are variables of interest, k is called the power-law exponent, and
α is a constant amplitude. Distributions of the form Eq. 1 are said to follow
a power-law. Power-law is very important because it reveals reliability in the
properties of a system. Therefore, the result we get at one level would be very
similar to the obtained result at former levels. This self-similar property makes
the system predictable. A simple way to test whether an activity follows the
power-low is construct a histogram representing the frequency distribution and
re-plot the data on a log-log scaled graph. Hence, if we take the logarithms of
both sides of Eq. 1, we get log y = k log x + logα. This says that if we have a
power-law relationship, and we plot log y as a function of log x, then we should
see a straight line. Such a plot thus provides a quick way to see if one’s data
exhibits an approximate power-law. Assuming log y = V and log x = U , simply k
and α can be obtained from: V = kU+logα, where k is slope of the straight line
and logα is the value of the intercept when U = 0. Practically, some empirical
phenomena completely comply with power-law for all values. Therefore, we can
hardly ever be certain that an observed quantity is drawn from a power-law
distribution. The most we can say is that our observations are consistent with
a form of probability distribution like Eq. 1. Usually power-law applies only
for values greater than a lower bound. In such cases, we say that the tail of
the distribution follows a power-law. Therefore, a probability distribution that
follows the power-law is possible:

P (x) = Cx−k for x > xmin (2)

Generally, if distribution of variables follows a strict/pure power-law, then:

P (x) =
k − 1
xmin

(
x

xmin

)−k

, (3)

where xmin is the smallest value for which the power-law exist. Assuming xmin =
1 simplifies the distribution form to Eq. 2. We rewrite the power-law for our
purpose as following equation where D(t) is the size of aggregation at time t.

D(t) = α tk (4)

Examining the size of aggregate on our method outputs, parameters α and
k for different experiments are extracted and listed in the results section.

3 Swarm Scenario

We implement a cue-based aggregation scenario with two different configura-
tions: i) effects of different sizes of cue and ii) effects of the cue’s texture on the
performance of the swarm.
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3.1 Aggregation Method

We use BEECLUST method [18] as the aggregation scenario. In BEECLUST,
robots move randomly in the environment. When they detect an object, they
check whether it is an obstacle or another robot. If it is an obstacle, the
robot avoids the obstacle. If not, it stops and waits for a particular amount
of time, w(t), depends on the intensity of the light.

3.2 Size of Cue

In this setup, we study the effects of the different cue sizes on the performance of
the aggregation with the simulated gradient light. We assume Ar = πR2

s is the
area which a robot covers using its sensory system with radius of Rs. Therefore,
the total area which can be covered by radial arrangement of the robots is
Asw = NAr, where N is the number of the robots in an experiment. In this
phase of the experiments, we use three different sizes of cue for each population,
Ac = βNAr, β ∈ {2, 2.5, 3}. Therefore, with an increase in population size we
increase the size of the cue relatively.

3.3 Texture of Cue

In this experiment, we study on effects of two types of cues with different lighting
which are gradient and non-gradient. In the gradient cue, the luminance reduces
gradually from the center to the edge of the cue; however the non-gradient cue
has similar luminance at every part of the cue. We study effects of the texture
on the performance of the aggregation at two fixed sizes of cues, a small cue with
radius of Rc =16 cm and a big cue with radius of Rc =20 cm. We then extract
the model parameters (Eq. 4) from the observed results to investigate the effects
of the different texture of cue on the model.

4 Experiments

4.1 Experimental Setup

We use Colias [2] as the robot platform in our experiments. It is specially
designed for swarm robotics research with a very compact size of 4 cm. Fig.
1(a) shows a Colias robot and its different modules. Two micro DC gearhead
motors each connected to a wheel with diameter of 2.2 cm actuate Colias attain-
ing a maximum speed of 35 cm/s. The rotational speed for each motor is con-
trolled individually using pulse-width modulation [1]. The basic Colias uses only
IR proximity sensors to avoid obstacles as well as the collision with the other
robots [3], and a light sensor to read intensity of the ambient light. Colias is
a modular robot which supports extension modules such as bio-inspired vision
board developed in [11].

We used a horizontally placed 42” LCD flat screen as the ground that the
robots move on as shown in Fig. 1(b). A very useful feature of Colias is the



Power-Law Distribution of Long-Term Experimental Data 555

Fig. 1. (a) Colias micro robot. (b) Experimental setup.

Fig. 2. Aggregation time in different population sizes at different cue sizes β ∈
{2, 2.5, 3}

light (illuminace) sensor face to the bottom side of the robot which gives an
opportunity to use a LCD screen. In our experiments, all the aggregation cues
are circular light spots with maximum illuminance of 420 lux. We use visual
localisation software [12] to track the robots.

4.2 Results

Aggregation time, Ta, and size of the aggregate, Da, are two metrics used in
this study. Aggregation zone is defined as the area at the cue zone and set the
robots within that area as an aggregated robot. Therefore, the aggregation time
is defined as the time that the aggregate size reaches at 70% of the total number
of robots.

The results of the aggregation at different cue sizes are shown in Fig. 2.
In general, an increase in population size reduces the aggregation time. In the
experiments with the same number of robots, aggregation at a big cue accom-
plishes faster than at a small size cue. It is because of the increase in probability
of the successful collisions which result in a longer resting time for the robot at
the high luminance spots. The reduction in aggregation time also depends on
the population size, which in the big population the reduction is less than the
small populations.

Fig. 3 shows size of the aggregate and the best fitted model. The model
fitting is investigated in three population sizes of minimum, middle and maxi-
mum number of robots (N = {6, 12, 18}). The results show that, the proposed



556 F. Arvin et al.

Fig. 3. Median of size of the aggregate during aggregation process with different β
values

model meets the captured aggregation size from the experiments with different
populations and sizes of cue.

In case of the different sizes of cue, model parameters are extracted from the
recorded results in different population sizes. In general, for all β, with increasing
the population size, the constant amplitude parameter of the model (α) increases
and the exponent parameter (k) decreases. In similar populations, an increase in
the size of cue, increases α and reduces k. As shown in the extracted parameters,
the changes on environments have clear influence on the model parameters. In
addition, all the results are fitted to the model with high coefficient of determi-
nation (R2 > 0.97).

Table 1. Extracted model parameters for different cue sizes

β = 2 β = 2.5 β = 3
Population α k R2 α k R2 α k R2

6 Robots 0.063 0.714 0.99 0.145 0.580 0.99 0.353 0.447 0.99
12 Robots 0.470 0.547 0.97 0.626 0.505 0.98 0.994 0.431 0.98
18 Robots 3.999 0.288 0.98 5.072 0.249 0.99 6.407 0.203 0.99

Fig. 4. Aggregation time with gradient and non-gradient lights in different population
sizes at (a) a small size cue (with radius of 16 cm) and (b) a big size cue (with radius
of 20 cm)

In the second configuration, we study the effects of different methods of
lighting on swarm performance. Fig. 4 reveals the results of four different
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configurations with different number of robots. As shown in the all experiments,
an increase in number of robots reduces the aggregation time. In addition, it
is observed that, in all runs the non-gradient cue reduces the aggregation time
slightly due to its higher average luminance which resulted in longer resting
time. However, in higher populations (12 and 15 robots) the aggregation time
increased. Since cue has same luminance, in high populations the aggregate
formed nearby the edges hence the way to reach the centre of the cue by other
robots is blocked. However, the swarm performance in the big size cue was less
affected by the phenomenon.

In addition, we modelled the recorded data from aggregation experiment
using Eq. 4 and extracted the model parameters for the different population
sizes in the small size cue. Median of the size of aggregate during an aggregation
process and the predicted model are shown in Fig. 5. We stop the experiments
when the aggregate is formed (t = Ta).

Fig. 5. Median of size of the aggregate in gradient and non-gradient environments

Table 2 shows the model parameters in different populations and the coef-
ficient of determinations for each configuration. All the results are fitted in the
model with high R2 values. The results of the modelling reveal that, an increase
in the population size increases parameter α and reduces parameter k. Moreover,
α and k in a similar population size are different for gradient and non-gradient
cues. In non-gradient cue, α is higher than the gradient cue, however, k is less
than the gradient cue, except in the case of 6 robots which both α and k showed
an opposite behaviour than the higher populations which could be due to lower
population size in a large swarm arena.

The anticipated changes on the model parameters due to the physical changes
on the swarm configuration demonstrate that, the environmental changes can
also be predicted by the proposed model.

5 Conclusion

In this paper we analysed the effects of two environmental factors in a cue-based
aggregation method called BEECLUST. We investigate two metrics, namely,
aggregation time and size of the aggregate and evaluated the performance of
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Table 2. Extracted model parameters for small cue

Gradient light Non-gradient light
Population α k R2 α k R2

6 Robots 0.134 0.576 0.95 0.099 0.641 0.98
9 Robots 0.431 0.479 0.96 0.515 0.449 0.98
12 Robots 0.811 0.460 0.98 1.272 0.372 0.99
15 Robots 3.113 0.289 0.96 3.854 0.249 0.99
18 Robots 4.555 0.253 0.99 5.870 0.198 0.99

the swarm aggregation using real mobile robots. We also modelled the exper-
imental data with the simplified Power-Law distribution. The model parame-
ters were extracted from the results observed from the experiments in different
configurations.

Acknowledgments. This work was supported by EU FP7-IRSES projects EYE2E
(269118), LIVCODE (295151) and HAZCEPT (318907).
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7. Bayindir, L., Şahin, E.: Modeling self-organized aggregation in swarm robotic sys-
tems. In: Swarm Intelligence Symposium, pp. 88–95 (2009)

8. Camazine, S., Franks, N., Sneyd, J., Bonabeau, E., Deneubourg, J.L., Theraulaz,
G.: Self-organization in Biological Systems. Princeton University Press (2001)

9. Clauset, A., Shalizi, C.R., Newman, M.E.: Power-law distributions in empirical
data. SIAM Review 51(4), 661–703 (2009)

10. Correll, N., Martinoli, A.: Modeling self-organized aggregation in a swarm of minia-
ture robots. In: IEEE International Conference on Robotics and Automation,
Workshop on Collective Behaviors Inspired by Biological and Biochemical Systems
(2007)



Power-Law Distribution of Long-Term Experimental Data 559

11. Hu, C., Arvin, F., Yue, S.: Development of a bio-inspired vision system for mobile
micro-robots. In: 4th International Conference on Development and Learning and
on Epigenetic Robotics, pp. 137–142 (2014)

12. Krajńık, T., Nitsche, M., Faigl, J., Vaněk, P., Saska, M., Přeučil, L., Duckett, T.,
Mejail, M.: A Practical Multirobot Localization System. Journal of Intelligent &
Robotic Systems 76(3–4), 539–562 (2014)

13. Lerman, K., Galstyan, A., Martinoli, A., Ijspeert, A.: A macroscopic analytical
model of collaboration in distributed robotic systems. Artificial Life 7(4), 375–393
(2001)

14. Martinoli, A., Ijspeert, A., Mondada, F.: Understanding collective aggrega-
tion mechanisms: From probabilistic modelling to experiments with real robots.
Robotics and Autonomous Systems 29(1), 51–63 (1999)

15. Mermoud, G., Matthey, L., Evans, W., Martinoli, A.: Aggregation-mediated col-
lective perception and action in a group of miniature robots. In: International
Conference on Autonomous Agents and Multiagent Systems, pp. 599–606 (2010)
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21. Soysal, O., Şahin, E.: A macroscopic model for self-organized aggregation in swarm
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Abstract. This paper tries to analyze the positive effect of the emer-
gent structures in the objects’ aggregation task which is performed by
a cognitive multi-agent system (CMAS). Indeed, these structures allow
improving overall performance of the system by the optimization of the
planning time and satisfaction level of the cognitive agents. A series of
simulations enables us to discuss our system.

Keywords: Emergent structures · Cognitive multi-agent system ·
Optimization · Cognitive maps

1 Introduction

In the field of swarm intelligence [1–7], a number of successful experiments in the
objects’ aggregation task was performed based on simple local rules. A model
relying on biologically plausible assumptions was proposed in [8] to analyse the
phenomenon of dead bodies’ aggregation by ants. The authors in [9] showed that
interacting directly with objects simplifies the reasoning needed by multi-agent
system and allows the aggregation of scattered objects. The aggregation and the
sorting of colored frisbees by a multi-agent system was studied in [10]. In the
experiments cited above, the agents do not have a navigation strategy; they move
randomly using only local rules. Thus, it’s interesting to know what will happen
if the agents were able to use beside the local rules a bio-inspired navigation
system which allows them to learn the objects’ positions in their environment.
Our case study is part of the objects’ aggregation task. In fact, the simulated
environment contains three infinite resources (A, B and E). All resources are
composed of a set of objects. The agent life cycles are linked to their supply
levels from each resource type (which is already discovered and learned). Each
agent possesses drives which corresponds to a resource type. The level of each
supply levels is internally represented by an essential variable ei(t) whose value
c© Springer International Publishing Switzerland 2015
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is in [0; 1] and varies with time as in Equation 1.

dei

dt
= −αnei(t) (1)

In the equation, αn represents the decreasing rate of the essential variable. When
the level of one supply decreases to a critical threshold level (TL), the drive
related to that type of supply triggers and the agent starts to reach the resource
that allows the satisfaction of that need. If the agent fails to go back to that
resource before the corresponding satisfaction level reaches a very low level,
it dies. To maintain the satisfaction level of the agents, instead of navigation
between the three learned original resources, it’s interesting if the accumulation
of the local rules and the learning ability of agents give birth of the creation of
relevant warehouses in the environment. Warehouse creation is possible only if
agents are able to carry and deposit a quantity of products taken from resources.
The localisation of warehouses is important because when agents reach them
easily, they can increase their average satisfaction level and optimize the planning
time spent looking for warehouses. So what is the effect of the localisation of
warehouses in the improvement of the performance of the cognitive agents? The
aim of this work is to show how the emergent structures (the warehouses) are
able to improve the overall performance of the cognitive multi-agent system
(CMAS) through the optimization of the planning time and satisfaction level of
the cognitive agents. This paper is organized as follow: in section 2 the internal
behavior of a cognitive agent is presented. Section 3 describes the emerging of
relevant warehouses. Before concluding, section 4 and 5 are devoted to show the
positive effect’s of the emergent warehouses to improve the performance of the
cognitive multi-agent system (CMAS)

2 The Internal Behavior of a Cognitive Agent

An agent is able to perceive objects only in a local neighborhood. Thanks to the
perception-action loop, which implies sensing from the environment, an agent is
able to learn and build its own cognitive map.

2.1 The Agent’s Neural Networks Architecture

Starting from neurobiological hypotheses on the role of hippocampus in the
spatial navigation, several works [11,12] revealed special cells in the rats hip-
pocampus that becomes active whenever the animal passes through a given
place which it already visited. These neurons have been called place cells (PCs).
We do not use PCs directly to navigate, plan or build a map, we rather use
neurons called transition cells (TC) [13]. These cells represent the basis of the
neurobiological model of temporal learning sequences in the hippocampus. A
transition cell encodes a spatio-temporal transition between two PCs consecu-
tively winning the place recognition competition, respectively at time t and δt.
The set of PCs and TCs constitutes a non-cartesian cognitive map. To develop
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the bio-inspired cognitive map, we took inspiration from the model presented in
[14] which describes the role of the hippocampus. In practice, to create the PC
the agent takes a visual panorama of the surrounding environment. The views are
processed to extract visual landmarks. After learning these landmarks, a visual
code is created by combining the landmarks of a panorama with their azimuth.
This configuration serves as a code for PCs. We suppose the signals provided
by the EC (the entorhinal cortex:an input structure to the hippocampus) are
solely spatial and consistent with spatial cells? activities. Spatial cells activi-
ties are submitted to a Winner-Take-All competition in order to only select the
cell with the strongest response at a specific location. We will subsequently talk
about the current location by indicating the spatial cell which has the highest
activity at a given location. Thus, the temporal function at the level of the DG
(dentate gyrus) is reduced to the memorization of past location. The acquired
association at the level of CA3 (the pyramidal cells) is then the transition from
a location to another. Once the association from the past location to the new
one is learned, every new entry will reactivate the corresponding memory in the
DG. A schematic view of our architecture is shown in Fig. 1.

Fig. 1. From the construction of the visual code of place cells to the creation of the
cognitive map [15]

During the exploration of the environment each agent is able, independently
of the other agents, to navigate, learn and create its own cognitive map on-line
whose structure depends on the agent’s own experience and discovery of the
environment in which it lives [16]. After having explored the environment, the
agents are able to predict, in each position the locations directly reachable. The
equations 2 and 3 govern the learning in the cognitive map, where T (t) is a
binary signal (0 or 1) which is activated when a transition is made (moving from
one place to another). This signal controls the learning of recurrent connections
WCC . γ is a parameter less than 1 which regulates the distribution of the moti-
vation activity on the map. λ1 and λ2 are parameters of respectively active and
passive forgotten on the recurrent connections. S(t) is a signal marking the satis-
faction of an objective. This signal controls the learning of synaptic connections
between neurons in WMC motivations activity XM and neurons of the cognitive
map of activity XC .

dW CC
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2.2 Agent’s Local Rules

In the context of situated cognition, the local rules can lead to create emergent
structures allowing the creation of relevant warehouses as shown in the sorting
strategy used by the authors in [8]. In the simulated environment, the agents
have two behaviors. The first one is the exploration mode which allows them to
discover the environment without the need to satisfy their drives. The resources
and the new warehouses discovered will be learned and added in the cognitive
maps of the agents in order to allow them to satisfy their needs. The second
behavior is manifested when the need arises and the drives trigger. Indeed, the
agents switch to the planning mode using their cognitive maps to reach a resource
or a warehouse. Thereby, the agents are able to return to these resources or ware-
houses in order to pick up an object and deposit elsewhere in the environment.
The pick up and the diposit local rules are functions of the number of agents
perceived. The agent can indeed, tend to favor the location which contains other
agents rather than empty regions in order to deposit the object. The pick up
condition follows equation 4, which means, that the probability to take an object
from a resource or a warehouse is inversely proportional to the number of agents
surrounding the resource, the more isolated is the resource, the higer picking
probability is.

Pr(pick up) = exp−λNR (4)

where NR is the number of agents in the neighborhood, λ is a positive constant.
Equation 5 describes the deposit conditions. The probability of deposit increases
with time from the original resource or the warehouse from where the agent took
the objects. It also depends on the number of the agents in the neighborhood:
the agent wants more to deposit when the place is frequented by other agents.
The deposit operation is also built on the concept of refueling : the agent puts
objects in the warehouses that already exist.

Pr(Deposits) = (1− exp−αNR) ∗ (1− exp−βt) (5)

where α, β are environmental factors, NR is the number of agents in the neigh-
borhood and t is the time since the taking.

3 Emerging of Relevant Warehouses

We placed the three original resources (A, B and E) in the summits of an isosce-
les triangle knowing that the centroid is the relevant place. The three original
resources allow the creation of three different types of warehouses (“a” is from
A, ”b” from B and ”e” is from E). In Fig. 3 (a), the 48 agents start moving
randomly in the environment, with a limited field of view that restricts the abil-
ity to perceive the entire environment and let the agents detect only the close
agents. While passing through a resource or a warehouse, a agent increases its
level of satisfaction and applies the local rule to pick up an object (λ = 1). The
probability to pick up an object increases when the agent does not detect other
agents next to the resource. Once the pick up is succeeded, the agent tries to
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find a suitable location to deposit the object and to create thus a new warehouse
(α = β = 0.3). The probability of deposit increases when the agent detects other
agents and it is sufficiently away from the original resource as indicated by equa-
tion 5. This means that the locations chosen for the deposit are often common
to several agents. Fig. 3 (b) shows the creation of warehouses. Agents also have
the possibility of refueling warehouses by adding objects to them. This provides
stability for the warehouse in relevant locations which are close to several agents.
However, warehouses that are abandoned or poorly visited will eventually dis-
appear since the number of objects available will decrease rapidly (see Fig. 3
(c)). When a planning agent (TL = 70) tries to reach a previously known ware-
house and realizes that it has disappeared, the agent dissociates the current TC
from the formerly-corresponding warehouse, and it resets the motivation to 0.
Since the TC does not fire any more when the agent feels the need for this
warehouse, the transitions leading to this place will be progressively forgotten.
Similarly, when a new matching warehouse is discovered, the paths leading to
the warehouse are immediately reinforced, making the cognitive map evolving
in accordance with the environment (see Figure 2).

Fig. 2. The evolution of the cognitive map. The disappearance of the warehouse leads
to the dissociation of the motivation from the old warehouse place. After discovering
a new warehouse, the TCs, leading the old warehouse disappear and the new ones
become completely reinforced.

Finally, the cognitive multi-agent system (CMAS) converges to a stable con-
figuration (see Fig. 3 (d)) with a fixed number of warehouses in fixed places
at 7587 time steps and remains the same for more than 20000 time steps (see
Fig. 3 (e)). We note that the agents were able to create villages of warehouses
(composed by a fixed number of warehouses, in fixed positions), which consist
of objects from the three different original resources in an appropriate location
at the centroid of triangle. Thus, instead of browsing an Euclidean distance
between the three original resources which is equal to 59.2 to look for objects,
agents can reduce this distance (equal to 12.08) with the creation of near-perfect
villages. This shows that emergent warehouses ensure an optimization of the dis-
tance traveled by the agents to return to resources, using their cognitive maps
(see Fig. 3 (f)).
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Fig. 3. The cognitive multi-agent system (CMAS) were able to create a village of
different kinds of new stable warehouses in relevant places which allowed agents to
optimize the distance walked to return to the different kind of resources

4 The Increasing of the Needs Satisfaction

In order to show that the CMAS is able to create emergent warehouses in rele-
vant places frequented by the agents (without having to use thresholds in order
to limit the number of warehouses nor to specify their locations), we tried to
experimentally count the number of visits of the warehouses created by the
CMAS, compared to the number of visits of the resources for 20000 time steps.
We noted that the average number of visits to the warehouses (115) is more
important than for the resources (27). Indeed, the agents of the CMAS do
not have to follow the same paths as the multi-agent system without deposits
(MASWD) to satisfy their needs (see Figure 4 (a)). They can use the warehouses
placed in relevant locations that form a village of different types of warehouses
(see Figure 4 (b)).
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Fig. 4. The optimal paths of agents shows that the agents in the CMAS do not follow
the path that lead to the three resources as is the case for the multi-agent system
without deposits (MASWD) to satisfy their needs but they choose paths that contain
a village of different types of warehouses

Thus, the CMAS is able to improve the level of satisfaction of agents. Indeed, the
variance of the needs satisfaction of the CMAS is lower than the variance of
the multi-agent system without deposits (MASWD) (see Table 1). As a result,
the CMAS can also keep the agents in a comfort zone (the average of needs is
greater than the threshold level (TL)) allowing them to explore the environment
and to optimize the planning mode. For the multi-agents system without deposits
(MASWD), agents are required to use the planning module as they spend most
of the time in the area of stress (the average of needs is under the threshold level
(TL). Table 1 shows that thanks to the location of the warehouses, agents can
keep a higher average satisfaction level and optimize their planning time.

Table 1. Improvement of the satisfaction Level (time steps)

Average MASWD CMAS

Planning Time 1600ts 450ts

Satisfaction level 59,89 88.07

Variance of the needs satisfaction 74.272 31.596

5 Optimization of the Planning Time

In order to assess the quality of the solution, we tried to change the environ-
ment, since the location of resources and the shape of the environment can affect
the quality of the final solution. Thus, we put 10 agents in an environment (in
form of “T”) consisting by three sides with different length, containing the three
resources in the three ends, as shown in Figure 5 (a). Example of the cognitive
map of an agent after 20000 time steps is presented in Figure 5 (e). During the
experiment, the agents first deposit two warehouses (type a and e) near to the
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resource B which are placed on the longest side (see Figure 5 (b)) and also fre-
quented by agents (see Figure 7 (d)). Thus, agents do not have to move to other
resources to satisfy their needs, they just have to visit the village composed by
the resource B and the two warehouses a and e. This solution is interesting,
except that agents exploit in full the warehouses without to refuel them, since
they are far from the resources (A nd E). Thus, the warehouses (a and e) even-
tually disappear. At stability, the solution converges to Figure 5 (c): the agents
ended up creating a village composed by three different types of warehouses (a,
b and e) in the intersection of three paths leading to the different resources (A,
B and E). It’s the optimal solution since the village is located at the centroid of
the resources. The number of visits in this location is the highest and therefore
the most frequented by the agents (see Figure 5 (d)).

Fig. 5. Relevance in the location of the warehouses: based on the cognitive process the
CMAS was able to create emergent warehouses in relevant places more precisely in the
intersection of three paths leading to the different resources (A, B and E)

Thus, this emergent configuration allows the agents to no longer use their cog-
nitive maps and therefore to: optimise their planning time (i) to improve their
needs satisfaction and (ii) to refuel the warehouses (see Table 2). It is important
to note that it is possible to program a single agent to deposit the warehouses in
the centroid of plants once their positions are discovered. However, this solution
is not attractive in the case where the environment is constituted by several vil-
lages of plants. Indeed, the agent will place the warehouses not in the centroid
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of each village but in the centroid of all the villages. The CMAS is able to adapt
to changes in the configuration of the environment and allows the emergence of
a fixed number of warehouses in fixed and appropriate places without having to
use thresholds in order to limit the number of warehouses nor to specify their
locations. This warehouses allow the agents to optimize the planning time and
to improve of their needs satisfaction.

Table 2. Optimization of planning time (time steps)

Average MASWD CMAS

Planning Time 1825ts 0ts

Satisfaction level 54,36 95,89

Variance of the needs satisfaction 97,294 13,275

6 Conclusions

In this paper we describe how the coupling of simple rules to our bio-inspired
architecture leads to emergent structures (the warehouses) which are able to
improve the performance of the cognitive agents. Particularly, through a set of
simulations we show that the cognitive multi-agent system (CMAS) is able to
create emergent structures in relevant places which allow agents (i) to optimize
their planning time, (ii) to improve their level of satisfaction and finally (iii)
to keep a fixed number of stable warehouses in fixed and relevant places. As
prospects, the challenge is the development of the ”agents awareness” to allow
them to categorize emergent behaviors in order to acquire more complex behav-
iors. This means that agents could be aware of their own state in the environ-
ment. To achieve our goal, we are trying to use an internal observer [17] which
will allow the agents to detect, categorize and create new emergent rules.

Acknowledgments. The authors would like to thank the financial support of
the Tunisian General Direction of Scientific Research and Technological Renovation
(DGRSRT), under the ARUB program 01/UR/11 02 and The National Center of sci-
entific research (CNRS).

References

1. Mataric, M.J.: Designing emergent behaviors: from local interactions to collective
intelligence. In: Meyer, J., Roitblat, H., Wilson, S. (eds.) Proceedings of the Second
Conference on Simulation of Adaptive Behavior, pp. 1–6. MIT Press (1992)

2. Kube, C.R., Zhang, H.: Collective robotics from social insects to robots. Adaptive
Behavior 2(2), 189–218 (1993)

3. Holland, O., Melhuish, C.: Stigmergy, self-organization, and sorting in collective
robotics. Artif. Life 5(2), 173–202 (1999)

4. Chatty, A., Kallel, I., Alimi, A.M.: Counter-ant algorithm for evolving multirobot
collaboration. In: IEEE Proceedings of the 5th International Conference on Soft
Computing as Transdisciplinary Science and Technology, pp. 84–89. CSTST (2008)



Effect of the Emergent Structures in the Improvement 569

5. Chatty, A., Kallel, I., Gaussier, P., Alimi, A.M.: Emergent complex behaviors for
swarm robotic systems by local rules. In: IEEE Proceedings of the Symposium
Series on Computational Intelligence on Robotic Intelligence in Informationally
Structured Space (RiiSS), pp. 69–76 (2011)

6. Chatty, A., Gaussier, P., Kallel, I., Laroque, P., Pirard, F., Alimi, A.M.: Evalua-
tion of emergent structures in a “cognitive” multi-agent system based on on-line
building and learning of a cognitive map. In: Proceedings of the 5th International
Conference on Agents and Artificial Intelligence (ICAART), pp. 269–275 (2013)

7. Chatty, A., Gaussier, P., Karaouzene, A., Bouzid, M., Kallel, I., Alimi, A.M.: Cou-
pling learning capability and local rules for the improvement of the objects’ aggre-
gation task by a cognitive multi-robot system. In: del Pobil, A.P., Chinellato, E.,
Martinez-Martin, E., Hallam, J., Cervera, E., Morales, A. (eds.) SAB 2014. LNCS
(LNAI), vol. 8575, pp. 290–299. Springer, Heidelberg (2014)

8. Deneubourg, J.L., Goss, S., Franks, N., Franks, A.S., Detrain, C., Chrétien, L.: The
dynamics of collective sorting robot-like ants and ant-like robots. In: Proceedings
of the First International Conference on Simulation of Adaptive Behavior on From
Animals to Animats, Cambridge, MA, USA, pp. 356–363. MIT Press (1990)

9. Gaussier, P., Zrehen, S.: Avoiding the world model trap: An acting robot does not
need to be so smart!. Robotics and Computer-Integrated Manufacturing 11(4),
279–286 (1994)

10. Beckers, R., Holland, O.E., Deneubourg, J.L.: From local actions to global tasks:
stigmergy and collective robotics. In: Articial Life IV. Proc. Fourth International
Workshop on the Synthesis and Simulation of Living Systems, Cambridge, Mas-
sachusetts, USA, pp. 181–189 (1994)

11. O’Keefe, J., Nadel, L.: The hippocampus as a cognitive map. Clarendon Press,
Oxford University Press, Oxford (1978)

12. Milford, M., Wyeth, G.: Mapping a suburb with a single camera using a biologically
inspired slam system. IEEE Transactions on Robotics 24(5), 1038–1053 (2008)

13. Gaussier, P., Revel, A., Banquet, J.P., Babeau, V.: From view cells and place cells
to cognitive map learning: processing stages of the hippocampal system. Biological
Cybernetics 86(1), 15–28 (2002)

14. Banquet, J.P., Gaussier, P., Dreher, J.C., Joulain, C., Revel, A., Gunther, W.:
Spacetime, order and hierarchy in fronto-hippocamal system : a neural basis
of personality. In: Cognitive Science Perspectives on Personality and Emotion,
pp. 123–189. Elsevier Science BV (1997)

15. Chatty, A., Gaussier, P., Hasnain, S.K., Kallel, I., Alimi, A.M.: The effect of learn-
ing by imitation on a multi-robot system based on the coupling of low-level imita-
tion strategy and online learning for cognitive map building. Advanced Robotics
28(11), 731–743 (2014)

16. Chatty, A., Gaussier, P., Kallel, I., Laroque, P., Alimi, A.M.: Adaptive capability
of the cognitive map to improve behaviors of swarm robotics. In: IEEE Proceedings
of the International Conference on Development and Learning and the Epigenetic
Robotics (ICDL-EPIROB), pp. 1–7 (2012)

17. Tani, J.: An interpretation of the “self” from the dynamical systems perspective:
A constructivist approach. Journal of Consciousness Studies 5, 516–542 (1998)



© Springer International Publishing Switzerland 2015 
Y. Tan et al. (Eds.): ICSI-CCI 2015, Part I, LNCS 9140, pp. 570–577, 2015. 
DOI: 10.1007/978-3-319-20466-6_60 

Multi-agent Organization  
for Hiberarchy Dynamic Evolution 

Lu Wang, Qingshan Li(), Yishuai Lin, and Hua Chu 

Software Engineering Institute, Xidian University, Xi’an 710071, People's Republic of China 
qshli@mail.xidian.edu.cn 

Abstract. With increasingly dynamic operating environment and user require-
ments, software adopts a unified strategy to achieve the different levels of evo-
lution, a fact which reduces the flexibility and efficiency. So, in this paper, a 
method with agent technology is proposed to support the hiberarchy evolution 
of both the function and service levels. Precisely, a multi-agent organization is 
proposed to separate the calculation and collaboration logics of software which 
are corresponding to the different levels of evolution. To achieve the function-
level evolution, an adaptive agent model with knowledge reasoning provides 
the software an ability to dynamically modify the calculation logics. With the 
adjustment of the collaboration logics, the multi-agent organization can make it 
convenient for the software to deal with the service-level evolution. Finally, a 
case study of air defense simulation system and some test metrics indicates that 
the proposed multi-agent organization can effectively support the hierarchy 
evolution. 

Keywords: Dynamic evolution · Multi-agent system · Adaptive agent 

1 Introduction 

There is a growing awareness that both users’ requirements and the operating envi-
ronment in which software runs are likely changing. However, the software running in 
some special fields is unable to stop to update itself. Therefore, the dynamic evolution 
has become a hot research topic. There are some existing studies of dynamic evolution, 
such as strategies based on model driven [1] [2], control engineering [3] [4], software 
architecture [5], programming language, and so on. As the agents have the commenda-
ble features such as adaptability, autonomy, initiative and collaboration, so the dynam-
ic evolution strategy based on agents is also becoming a research focus [6]. 

Some existing studies about the dynamic evolution based on agents mainly pay 
attentions to build the adaptive agent models [7]. However, these current studies 
lack of classifying the evolutionary triggered factors by triggered reasons, and ig-
nore the effect of the multi-agent organization on evolutions. Whichever the evolu-
tionary triggered factor is, software adopts a unified strategy based on the adaptive 
agents to achieve the evolution, undoubtedly reducing the flexibility and efficiency 
of software. 
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So this paper proposes an approach that uses agent technology to support the  
hiberarchy evolution of both the function and service levels. In order to apply this 
approach for all the software, the first thing is to change the normal software into the 
multi-agent system. Particularly, the functional units of software are packaged as 
agents and the relationship between the units are defined as the collaborative relation-
ship between agents. Based on the transformation, the paper proposes a multi-agent 
organization to support the hiberarchy evolution by separating the different logics.  

The paper is organized as follows. The section 2 presents the proposed multi-agent 
organization for hiberarchy dynamic evolution. Further, the section 3 demonstrates a 
platform to verify the effectiveness of this multi-agent organization. Finally, the sec-
tion 4 draws a conclusion. 

2 Multi-agent Organization for Hiberarchy Evolution 

2.1 Multi-agent Organization and Agent Model 

In the proposed evolution, the evolutionary triggered factors are separated into func-
tion-level and service-level. So, a multi-agent organization is shown in figure 1.   
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Fig. 1. Multi-Agent Organization and Agent Model 

Specially, the factors in function level only influence the local functions of the 
software. For example, the functional units of software are damaged or lost is a factor 
of this level. And the calculation logic describes the specific definitions of the soft-
ware units. So the Function Agent is designed to represent the calculation logics of a 
software unit. Function Agents are formed by packaging the software units which are 
in the form of exe, dll, or web service. So the solution of function-level evolution is 
just to adjust the calculation logics of the units in the corresponding Function Agents. 

Furthermore, the service-level triggered factors require the software to provide the 
new services. For instance, users are likely to require software to provide new servic-
es or expand existing services. And when the environment changes, software also 
needs to dynamically adjust the relationship among functional units. So the Service 
Agent is formed by organizing some Function Agents. And there are also collabora-
tions between Service Agents. Both the collaborative relationship between Service  
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Agents and the organization of Function Agents in a Service Agent are the collabora-
tion logics. So the solution of service-level evolution is just to adjust these two kinds 
of logics. 

Both Function Agents and Services Agents are established according to an adaptive 
agent model, as shown in figure 1. The Perception Module is designed to use different 
Sensors to monitor various triggered factors and use Information Base to store the 
collected information. The Control Module uses the Control Engine to make deci-
sions. The capacities stored in the Capacities Library mean the functions or services, 
which an agent could provide to external. The Reasoning Module is designed to sup-
port the Control Module by using the Learning Engine to learn the knowledge and 
using Reasoning Engine to reason and propose the solutions. The evolutionary know-
ledge stored in the Repository is about the evolution tasks, collaborative relationship, 
and other information about the evolution. The Messages Handler is used to package 
and submit the messages to the system evolutionary controller through the messages 
transportation. 

2.2 Function-Level Evolution 

In this kind of evolution, the change is just about the calculation logic of the units.  
The adaptive algorithm is given to deal with the damages of units, as shown in figure 2.  

  Input：the name of the damaged functional unit
  Output：the running state of this functional unit
  1 BEGIN 
  2     Name N = Input;
  3     Agent Set = all the agents in system
  4     WHILE (Agent Set != NULL)
  5           Check every agent;
  6           IF (agent A has the unit named as N)
  7                 Find the unit U in A;
  8                 Check the running state of U;
  9                 IF (the state = damaged )
10                       WHILE (Repository != NULL)
11                              Control Engine searches the knowledge K;
12                              IF (A has the K)
13                                     Control Engine sends the operations to Messages Handler;
14                                     RETURN “Normal”;
15                              ELSE 
16                                     Learning Engine learns the K from other agents;
17                                     IF (other agents have the K)
18                                              Reasoning Engine gives the suggestions;
19                                              Control Engine sends the operations to Messages Handler;
20                                     RETURN “Normal”;
21                                     ELSE RETURN “Abnormal”;
22                       END-WHILE;
23                 ELSE RETURN “Normal”;
24           ELSE  CONTINUE;
25     END-WHILE
26  END  

Fig. 2. Adaptive Algorithm 

The character of this algorithm is the knowledge learning. It means that agent could 
learn the knowledge from other agents and deal with the unfamiliar problems, which 
enhance the ability of agents to adapt to the different kinds of abnormal situations.  

The process of the function-level evolution is shown in figure 3. When the func-
tional unit is damaged or lost is happened, a Function Agent could get this informa-
tion by its Sensors ①. And the Control Engine queries the Capacities Library to  



 Multi-agent Organization for Hiberarchy Dynamic Evolution 573 

verify the running state of this unit ②. The agent could adjust itself according to the 
adaptive algorithm ③. If the agent does not have the appropriate knowledge, it could 
use the Learning Engine to get the knowledge from other agents ④. With the learned 
knowledge, the Reasoning Engine can give the preferable suggestions to the Control 
Engine ⑤. 
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Fig. 3. Process of the Function-Level Evolution 

2.3 Service-Level Evolution 

The “Events/Conditions/Actions” Rules (ECA Rules) is “ON event of environment 
information changes; [IF condition on life message or attribute is available]; DO ac-
tion of switching the integration rules”, used as the evolutionary rules to achieve the 
adjustments. The adjustment algorithm can be described as figure 4.  

  Input：Evolutional Drivers
  Output：The running state of system
  1 BEGIN
  2     IF (evolutionary controller finds the triggered factors)
  3           EVENT E1= the corresponding event;
  4           Kind K1= the kind of the E1;
  5           Set S1= the set of ECA Rules in controller;
  6           WHILE (S1!= NULL)
  7                  Search the corresponding rules;
  8                  IF (Rule R1’s event=E AND kind=K1)
  9                          Send R1 to all the agents;
10                  ELSE CONTINUE;
11           END-WHILE;
12           LABLE:
13           IF (K1= service)
14                  All the Service Agent adjust collaborations;
15                  RETURN “Normal”;
16          ELSE (K1= function)
17                  Service Agent S1 adjusts its Function Agents;
18                  RETURN “Normal”;
19     ELSE (Service Agent S2 finds the triggered factors)
20           EVENT E2= the corresponding event;
21           Kind K2= the kind of the E2;
22           Set2= the set of ECA Rules in Repository of S2;
23           WHILE (Set2 != NULL)
24                  Search the corresponding rules;
25                  IF (Rule R2’s event=E2 AND kind=K2)
26                           Send R2 to evolutionary controller;
27                           GOTO LABLE;
28                  ELSE CONTINUE;
39           END-WHILE;
30   END  

Fig. 4. Adjustment Algorithm 

As shown in figure 5, when some new requirements is put forward by users,  
these requirements could be sent to the system evolutionary controller as events ①.  
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It is necessary to trigger the corresponding ECA rules stored in the controller ②. If 
the events just influence Service Agent, the adjustment algorithm is used to adjust the 
collaboration among the Function Agents ③. If the events influence all the Service 
Agents, the collaboration among Service Agents needs to be adjusted ④. When the 
environment changes, the corresponding ECA rules stored in Service Agents are trig-
gered ⑤. Then the rules are submitted to the system evolutionary controller ⑥ and 
sent to all the Service Agents in the system. On receiving the rules, Service Agents 
adjust their collaboration with others to achieve the evolution ③, ④.  
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Fig. 5. Process of the Service-Level Evolution 

3 Case Study 

3.1 Background 

To verify whether the proposed multi-agent organization can effectively support the 
hiberarchy evolution, this paper analyzes the air defense simulation system and pro-
poses a platform to change this software into multi-agent system. The platform pack-
ages the functional units as Function Agents (such as the Command Agent, Plane 
Agent). And by organizing the Function Agent, a variety of Service Agents are formed 
(such as the Control Agent). In this simulation system, the damage of the functional 
units is considered as an evolutionary triggered factor of function level. And the facts 
that users want to enhance the capacity to fight the enemy and the changes of the 
location of enemies are considered as evolutionary triggered factors of service level. 

The experiment conditions are CPU: the Intel (R) Core (TM) 2 Duo the E7500 @ 
2.93 GHZ, Memory: 1.87 GB, Operating System: Windows 7 SP1. 
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3.2 Function-Level Evolution 

When the enemies destroy the command, software should dynamically discovery this 
factor. Based on the analysis of its capacities library, this Function Agent can replace 
the command. As shown in figure 6, when this circumstance is occurred, the platform 
has the awareness of this factor and the command is replaced.  
 

 

 

 

 

  

 

 

 

Fig. 6. Evolution Triggered by the Damaged Functional Units 

The replacement time is used to test the ability of the multi-agent organization to 
support the function-layer dynamic evolution. The elapsed time of finding the dam-
aged units to replace the backup unit is called the replacement time. System monitors 
all the running states of functional units every 5 seconds. So as shown in figure 7, the 
replacement time remains 6 seconds, a fact indicates that once the triggered factor of 
units damaged are found, it can be completed within 1 second. 

 

Fig. 7. Replacement Time 
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3.3 Service-Level Evolution 

When the enemies are in the alert area, this evolutionary triggered factor can be per-
ceived by Control Agent (A Service Agent is responsible to monitor the enemies and 
make operation plans). Then the corresponding evolutionary rule A is submitted to the 
system evolution controller and then distributed to all the Service Agents in the system. 
Based on the rule A, the collaboration among Service Agents can be adjusted. As shown 
in figure 8, the Attack Agent (A Service Agent is responsible to use different weapons to 
attack enemies) is added and the planes are used to attack by Attack Agent. 
 

 

Fig. 8. Evolution Triggered by the Environmental Changes 

Following, when users want enhance the ability of this system to attack the enemies, 
the evolutionary rule B in system evolutionary controller is triggered and distributed to 
all the Service Agents. Then according to the rule B, the Attack Agent adjusts its internal 
Function Agents and adds the Missile Agent (A Function Agent is used to control mis-
siles). As shown in figure 9, the missiles are sent to attack the enemies. 

 

 

Fig. 9. Evolution Triggered by the Users’ Requirement and Test of Reorganization Time 

The elapsed time of distributing the rules to finish the adjustment of the collabora-
tion is called the reorganization time, used to test the ability of the multi-agent organi-
zation to support the service-layer dynamic evolution. As shown in figure 9, with the 
number of Service Agents increasing, this time rises proportionally. 
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4 Conclusion 

This paper proposes a multi-agent organization for hiberarchy dynamic evolution by 
separating calculation logics from collaboration logics. The adaptive agent model is 
used to support the function-level evolution by dynamically replacing the damaged 
units. And with the adjustment algorithm modifying the collaborative relationship 
among agents, the multi-agent organization can supports the service-level evolution. 
The case study proves that the multi-agent organization is suitable for the hiberarchy 
dynamic evolution and helpful to decrease the cost and time of evolution. Researchers 
may mature this multi-agent organization in the future by comparing it with other 
existing organizations and improving its ability of dealing with more levels evolution. 
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Abstract. Electricity demand and economic growth are closely correlated. 
Electricity is an important means of production and subsistence and plays an 
important role in the national economy system. Accurate electricity demand 
forecasting results could provide the basis for the power grid planning and 
construction and therefore has important social and economic benefits. In this 
paper, a long-term electricity demand forecasting model that contains six kinds 
of Agent is proposed based on multi-agent technology. The model is validated 
by the electricity consumption data of 2011-2014. Then the industry-wide 
electricity demand forecasting results from 2015 to 2025 are obtained. Through 
case study, the results change affected by economic policy is studied. The 
results show that the electricity demand will increase under loose monetary 
policy. 

Keywords: Multi-agent based model · Electricity demand · Forecasting · 
Economic policy 

1 Introduction 

China's electricity demand and economic growth are closely correlated [1]. Electricity 
is an important means of production and subsistence, the growth of electricity 
consumption will lead to the growth of GDP, while the shortage of electricity will 
inhibit the normal development of the economy [2]. Accurate forecasting of 
electricity demand can provide the basis for the power grid planning and construction. 
It has important social and economic benefits [3]. 

Many approaches have been proposed and applied to long term electricity demand 
forecasting, including regression analysis, time series analysis, gray prediction, expert 
systems, artificial neural networks and support vector machine method [4,5]. Existing 
forecasting methods often require large amount of historical data. In these methods 
the model parameters are set based on historical data and fixed during the forecasting 
process. It is difficult to evaluate the impact on electricity demand by a variety of 
factors such as the economic performance and policy changes. As part of the 
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macroeconomic system, power system is inseparable from the operation of economic 
system are. Considering both the macroeconomic situation and the operation of the 
power system is the key to get accurate data of electricity demand. Macroeconomic 
forecasting is a complex economic and social problem. Electricity demand forecasting 
considering economic factors is a cross-disciplinary problem which is very difficult to 
solve using traditional tools. With the development of artificial intelligence 
technology, Agent-based modeling method provides a new way of economic research 
and also has been widely used in power system [6,7,8]. Ref. [9] studied fluctuations in 
the development of economy and power system by intelligent engineering methods 
and obtained the optimal solution of power system development. Ref. [10,11,12] 
studied the impact of economic policies on electricity consumption based on multi-
agent technology.  

2 Theory 

2.1 Agent 

Minsky [13] first proposed Agent in 1986 and believed that Agent is the individual in 
society who is able to obtain the problem solution through negotiation. There is no 
unified definition of Agent due to the different backgrounds and views of researchers 
from different areas. Woodridge and Jennings [14] gave a comprehensive overview of 
the concept and features of Agent and proposed the most popular definition. They 
believe that Agent is the independent individual with situatedness, autonomy and 
flexibility. Holland [15] proposed the concept and theory of complex adaptive 
systems, and proposed Agent-based simulation (ABS) method, which is a powerful 
tool to study the socio-economic system. Ref. [16] compared Agent-Based Model and 
Equation-Based Model applied in different areas. The results show that Agent-Based 
Model has better performance. 

2.2 MAS 

Multi-agent system (MAS) is a distributed autonomous system consists of a plurality 
of mutually interacting Agents [13]. MAS studies Agent behavior coordination. That 
is how independent autonomous Agents adjust their autonomous intelligent behavior 
to solve complex problems can not be solved by Agent individuals through interaction 
and collaboration between each other. 

Multi-Agent based modeling method has been widely used in various fields [17]. 
Tesfatsion [8] proposed Agent-based Computational Economics (ACE) and pointed 
out the advantages of ACE method to simulate complex adaptive economic system. 
US Sandia Laboratories developed a simulation model of the US economy ASPEN 
[18]. ASPEN used multi-agent technology to simulate the decision-making behavior 
of micro-economic individual, thus, reproduced some of the process of socio-
economic system. Kang et al. [7] proposed the theoretical framework of the electricity 
market simulation based on individual beliefs study of Agent. Yuan et al. [19] added 
the fuzzy theory into Agent decision and simulated the consultation in electricity 
contract market. 
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2.3 ARE 

ACE model combines mathematical modeling, game theory and experimental methods, 
but ignores the human initiative in the economic simulation. Hu [20] proposed Agent 
Response Equilibrium (ARE) model. ARE model divides the macroeconomic according 
to the function, organization and structure. Each of the microscopic section can be 
abstracted as Agent has intelligence and response capabilities.  

ARE model sets different Agents and builds the framework of interaction and 
response to achieve the objective of macroeconomic simulation. Hu et al. [21] derived 
the input-output table of China 2010 based on ARE model. Duan et al. [12] build a 
simulation system  using ARE model to study how economic policies affect 
electricity demand and the validity of the model was proved through data validation. 

3 The Model 

3.1 Model Design 

In the economic system, the changes of the industrial production activities will lead to 
the electricity consumption change. Through the economic system the individuals will 
adjust their activity based on their own goals and interests after the implementation of 
economic policy, thus affecting electricity consumption. Accurately forecasting of 
electricity demand cannot be separated from the foundation of the economic system. 
In ARE model, the production activities of power industry and other various 
industries are fully taken into account thus enabling electricity demand forecasting 
results more accurate. Given the complexity of the economic system, the economic 
system can be simplified into five sectors including government, bank, residents, 
industry and abroad. 

 

Fig. 1. The electricity demand forecasting model 
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Based on the simplified macroeconomic system, the electricity demand forecasting 
model is build using multi-agent technology. The model includes Power Agent, 
Industry Agent, Residents Agent, Bank Agent, Government Agent, Market Agent and 
Abroad Agent. In order to unify statistical standard of electricity consumption data 
and industry production data, the national economic system is divided into 42 sectors 
based on the input-output table of China 2010. The relationship between the various 
sectors, as well as electricity consumption of industry production activities is 
represented by the input-output relationship. 

3.2 Model Application 

The electricity demand forecasting model is developed using Java programming 
language on Swarm platform. The flow chart is shown in Fig.2. 

4 Results 

4.1 Model Validation 

The industry-wide electricity consumption data from 2011 to 2014 is predicted and 
compared with the data published by CEC and NEA [22,23]. 

Table 1. The forecasting data and the published data 2011-2014 

Industry-wide electricity consumption 
/ trillion kWh 

2011 2012 2013 2014 

Forecasting data 4.1409 4.3375 4.6433 4.8095 
Published data 4.1401 4.3429 4.6430 4.8305 
Forecasting error 0.02% -0.12% 0.01% -0.43% 

As can be seen, the forecasting errors of 2011-2014 are: 0.02%, -0.12%, 0.01%, -
0.43% . The errors between predicted value and the actual value are small, indicating 
that the model is valid. 

4.2 Scenarios 

Steady development of China's “new normal” economy in recent years leads to the 
smooth power consumption at low growth rate. Total electricity consumption in 2014 
reached 5.52 trillion kWh with an increase of 3.8%. To accomplish the industry-wide 
electricity demand forecasting from 2015 to 2025 and analyze the impact of policy 
changes on the predicted results, we set two scenarios. 

Scenario 1: The initial policy remains unchanged without applying any intervention. 
Scenario 2: In 2015-2018, with the implementation of loose monetary policy, the 

deposit reserve rate is adjusted from 20% to 15% through several adjustments. 
Meanwhile the deposit rate is adjusted from 3% to 2% and the interest rate is adjusted 
from 6% to 4%. 
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Fig. 2. The flow diagram of the electricity demand forecasting model 
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4.3 Forecasting Results 

According to the forecasting results of scenario 1, the industry-wide electricity 
consumption of 2015 is 4.86 trillion kWh and grows to 6.03 trillion kWh at 2025 with 
an average annual growth rate of 2.2%. According to predict two scenarios, the entire 
industry in 2015 with a capacity of 4.88 trillion kWh, 2025 grew to 6.33 trillion kWh, 
with an average annual growth rate of 2.6%. 

 

Fig. 3. The industry-wide electricity consumption 2015-2025 

Compared to Scenario 1, the industry-wide electricity consumption of 2025 
increases by 301.4 billion kWh in Scenario 2. The electricity consumption increment 
of Scenario 2 rises year by year. The increment changes from 0.3% (2015) to 5.0% 
(2025).  

 

Fig. 4. The increment in forecasting results under different economic policy 
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From the industry perspective, the increment of primary industry, secondary 
industry and tertiary industry in Scenario 2 are as follows: -1.2%, 5.6%, 2.5%. The 
second industry has the biggest increment, mainly due to the asymmetric effects of 
monetary policy. 

5 Conclusion 

This paper proposed the long-term electricity demand forecasting model six kinds of 
Agent based on multi-agent modeling method. Through the interaction between 
Agents, the operation of macroeconomic system and the industrial production activities 
can be observed, at the same time the electricity consumption data can be obtained. 

The model forecasts the electricity demand for 2015-2025. According to the 
results, the industry-wide electricity demand in 2025 will reach 6.03 trillion kWh and 
this number will increases to 6.33 trillion kWh with loose monetary policy. The 
policy change has different effects on different industries. The second industry will be 
affected most due to the asymmetric effects of the policy. 

The results show that the model can combine with the macroeconomic operation 
and industrial production activities for long-term electricity demand forecasting. The 
model can provide the basis for the grid planning and generation scheduling. The 
disadvantage is that the electricity consumption behavior of residents was not taken 
into account. In the next step of the research work, the Residents Agent will be further 
studied and the total electricity consumption will be forecasted. 
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Abstract. Every human continuously interacts with his environment and its enti-
ties. To interact with the environment, humans use language and physical ex-
pression to understand the events and be understood. These communication me-
thods are natural features acquired at birth, with a few exceptions. Unfortunately, 
some people face interaction difficulties because of disabilities or illnesses. To 
remedy to these problems, researchers have been designing assistance robots 
which can imitate human interaction using multiple modalities. To do so, the ro-
bot must be able to interact with humans using natural methods used by people 
such as speech, gestures, eye movements, etc. The robot must be able to under-
stand and execute the commands issued by the user through the different modali-
ties. To do so, we propose a smart system that will use a knowledge base to 
achieve the three tasks of “sensing-understanding-acting” in an ambient envi-
ronment. 

Keywords: Assistance robot · Multimodal systems · Ontology · SWRL rules · 
Fusion engine 

1 Introduction 

With the increasing emergence of ambient intelligence, sensors and wireless network 
technologies, robotic assistance becomes a very active area of research in autonomous 
intelligent systems. The robot, which becomes an intelligent system, will be able to 
understand an environment in which events are detected by sensors. This system must 
be able to merge events in order to understand a situation and be able to decide, act 
and perform different services.  

The aim of this research work is to build a multimodal fusion engine using the se-
mantic web. This multimodal system will be applied on a wheelchair with a manipu-
lated arm to help people with disabilities interact with their main tool of movement 
and their environment. This work focuses on building a multimodal interaction fusion 
engine to better understand the multimodal inputs using the concept of ontology. 
Given that the system components are interconnected in a network, our architecture 
allows a robot to provide services to humans anytime and anywhere.  
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2 Related Work 

In recent years, multimodal fusion is gaining attention of researchers of various do-
mains due to the benefits of using multimodal inputs and outputs. Multimodality pro-
vides access to various modalities, and their use based upon accessibility and availabil-
ity. Since the first multimodal system, the famous Bolt’s [1] system “Put that Here”, 
several multimodal system have been proposed. For instance, we can find a review of 
sensor fusion algorithms for wearable robots [2]. In this paper, the authors highlight 
that the fusion combines information from different sensors either by using a single 
fusion algorithm, a unimodal switching, a multimodal switching or a parallel multiple 
sensor fusion algorithm (mixing) [2]. Another work on mobile robot uses vison and 
RFID data fusion for tracking and following a person of interest using a mobile robot 
[3]. For tracking method, the authors use particle filtering framework, and for follow-
ing the person, they have designed a multi-sensor-based control strategy based on the 
tracker output and RFID data. Furthermore, an example is presented in the concept-
based evidential reasoning form multimodal fusion in human-computer interaction [4]. 
In this work, an approach is proposed for the semantic fusion of different input modali-
ties based on transferable belief models. On the other hand, the Adaptive Resonance 
Theory (ART)-based fusion of multimodal perception for robots [5] uses ART for mul-
timodal fusion. The ART is an unsupervised neural network which has the ability of 
fast incremental on-line learning. Furthermore, the work of detection of violence in 
movies [6] uses ontology for multimodal fusion. To do this, two different fusion ap-
proaches are used: “the first one is a multimodal fusion that provides binary decisions 
on the existence of violence, and the second one is an ontological and reasoning fusion 
that combines the audio-visual cues with violence and multimedia ontologies” [6]. In 
the same way, ontology is used in multimodal fusion for interaction systems [7]. In this 
work, the environment is described in ontology and then used in the fusion engine. It 
uses semantic web languages based on W3C standards.  

Based to the works mentioned above, we conclude that no work has been done us-
ing a multimodal ontology-based fusion engine to control a device such as a wheel-
chair with an embedded manipulation arm. This choice is guided by the fact that the 
use of ontology allows the full description of the environment of a user and takes into 
consideration its context. It provides an easy access to information and allows the 
possibility of reusing it and allows us to introduce fusion rules to facilitate the fusion 
process according to predefined models in the ontology. We have chosen to use a rule 
based fusion engine because it allows a good temporal alignment between different 
modalities and is often used to better estimate the state of a moving object.  

3 Proposed Architecture  

In representing our system architecture our approach of choice is a multimodal fusion 
and service composition engine. The fusion engine will be associated with an assistant 
robot. In this case, the robot is a wheelchair with a manipulator arm used by persons 
with disabilities to interact with the environment and to provide them services. The 
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We will present an examples of commands made by the user and how the system 
deals with it and merge the information using the fusion engine. The scenario chosen 
to test our fusion engine is “Give Mother Some Juice”. In this case, the system has to 
understand the meaning of the phrase, find a model that corresponds to it and merge 
the information, and take into account the maximum time allowed between the modal-
ities and the full command. We highlight that when asking for juice, the system has to 
understand that the juice has to be brought within an appropriate object, such as a 
glass or a bottle.     

 After launching the reasoning engine Pellet in Protégé and the check is completed 
and no problem was detected, we start our test of the fusion engine. We assume that 
the system detected the inputs described in table 1.When detecting inputs, the fusion 
engine checks their presence in the ontology and gives the classes where they are 
defined as individuals in the ontology, as shown in Fig.4 .We note that the fusion 
engine has recognized the words: “give”, “juice”, and “mother” and gives us their 
location in different classes of the ontology. The word “ding” which is a sound emit-
ted by the television and detected by the system is rejected because it is not found in 
any class within the ontology. Furthermore, the fusion engine will find the predefined 
model of the command “Give Mother Some Juice” that is represented by the follow-
ing order: words convenient objects → People → Liquid. Also, the fusion engine has 
to understand that the liquid requested has to be brought in an object used for liquids.  

Table 1. Input modalities 

Modality Event Arrival time (s)

Speech Give 0

Speech Mother 3

Sound from TV 

Speech 

Ding 

Juice 

6.2

7 

 
The result of the query is presented in Fig.5. The fusion engine has recognized the 

model as being model 19 of the ontology and that the answer for such a request will 
be the answer of the model: words convenient objects →People →Object used for 
liquid →Liquid. In fact, the fusion engine has recognized the model and added the 
objects: bottle, glass or jug that can be used for the juice.  

Finally, the fusion engine will make a time verification. The result is given in the 
Fig.5, where Txy and Tyz are the times between the successive modalities “Bring”, 
“Mother” and “Juice” respectively, and Full-Time-C is the time of the full command. 
We notice that the modalities times are less than “5 seconds” which is the maximum 
allowed, and the full command time is less than “15 seconds” (the maximum com-
mand time allowed), so time condition has been satisfied. 
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fusion process. We conclude that the fusion process has been made correctly and that 
this net validate our proposed approach.   

5 Conclusion 

We have described in this paper a multimodal fusion engine used to control a wheel-
chair with a manipulated arm. We aimed to facilitate the interaction between the user 
and his main tool of living. Our proposed architecture uses the concept of ontology as 
a knowledge base for the fusion engine. By using this concept, we have ensured the 
reusability of the information at any time. Thereby, our proposed architecture is an 
autonomous system that is able to interact and make decisions for answering the user 
requests. To validate our approach, we have built a Colored Petri Net of the architec-
ture and simulated it using CPNTools. Indeed, the Petri nets are a graphical and 
mathematical tool to verify systems and protocols. The model built using the 
CPNTools allowed us to verify the correctness of our system and the absence of dead-
lock and bugs.  

Our perspective for this work is to build a composition of service engine that will 
subdivide the result of the fusion engine into unimodal tasks and send them to the 
available output modality. By doing this, the global system will be a full multimodal 
system that is able to understand the requests and offer services to the user using a 
multimodal interaction. 
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