
CEPH File System – Mina Rady – ITMO, June 2017

1

CEPH File System
Mina Rady – mina.mouawad@student.lut.fi

Computing Clusters, Computing Grids, Computing Clouds Course

Professor Andrey Shevel, ITMO University

This report is to provide a general overview of the Ceph file system (CephFS). The aim

is to examine the general features of CephFS as a distributed Software Defined Storage

(SDS) system. It is also interesting the limitations or strengths of CephFS with respect

to deployment parameters.

Introduction: Proprietary vs Open Cluster Storage
SDS platforms, just as most categories of software, are offered in both proprietary and

open source paradigms. However, for the case of SDS, it can be closely tight to

underlying hardware. That is to say, an additional concern of choice between

proprietary and open cluster storage, is that proprietary SDS might be offered

exclusively with specific hardware configuration to “guarantee” minimal performance

quality by the vendor. Meanwhile, Open Source SDS, by definition, offers the choice

for deployment on any compatible hardware infrastructure (whether physical or

virtual). At the same time, open source SDS can be solicited commercially with

professional services to configure them or maintain them by professional experts.

Figure 1 shows a basic outline of both paradigms in SDS.

Figure 1 Proprietary (left) vs Open Source (right) paradigms in SDS

mailto:mina.mouawad@student.lut.fi

CEPH File System – Mina Rady – ITMO, June 2017

2

Ceph Overview
Ceph, as an SDS platform, is designed to handle distributed storage of large enterprises

over distributed storage systems. It is meant to offer an abstraction of large-scale

storage resources as one virtual storage file system. Meanwhile, it implements

intelligent autonomous system behavior to achieve objectives such as: self-healing,

self-management, and zero or minimal bottlenecks.

Essentially, Ceph offers POSIX interface which is attractive to maximize portability of

applications using traditional file systems access methods to CephFS. At the same

time, CephFS performs data replication operations in the backscene without any need

of intervention from the original application.

Essentially, CEPH provides three access methods to the data store:

1- Data Object Access.

2- Block Device Access.

3- File System Access.

The main advantage of Ceph is that it alleviates the need for a file catalog which

eliminates a possible critical performance bottleneck. For any typical distributed file

system, there is a need to keep a record of existing files and their physical distribution

across various storage disks/servers. To achieve this, classically, the record authority

needs to be updated every time data is added or a data location is changed. Maintaing

such mapping can be computationally intensive, especially for runtime lookup of data

objects to respond to application requests. This can cause a bottleneck during

heightened system loads. Ceph eliminates this bottleneck by relying on hashing

mechanism for data indexing and lookup as illustrated in Figure 2.

Figure 2 CRUSH Algorithm for hash indexing (left) and Lookup (right)

CEPH File System – Mina Rady – ITMO, June 2017

3

Ceph Architecture:
The core of Ceph Architecture (Figure 2), is RADOS which translates to a Reliable

Autonomous Distributed Object Store. RADOS provides the core data management

functionalities of Ceph while maintain POSIX compatible access.

Figure 3 RADOS in Ceph Architecture

RADOS is accessible via 4 different venues as follows:

1- LBRADOS API: Ceph offers an API to allow applications to directly access RADOS

with support for C, C++, Java, Puthong, Ruby, and PHP.

2- RADOSGW: REST gateway compatible with S3 and Swift. Compatibility with S3 access

method is particularly significant with the rise of Amazon Web Services.

3- RBD: Reliable Block Device access is available for Host/VM usage in Linux Kernal

client.

4- CephFS: A POSIX-Compliant fistributed file system, that is accessible from a Linux

kernel client.

Main Components and Concepts:
Any Ceph deployment requires at least the following components (Figure 3):

1- OSDs.

CEPH File System – Mina Rady – ITMO, June 2017

4

2- Monitor Nodes.

3- Metadata Servers (only in case of shared files system).

Figure 4 Typical Ceph Deployment

OSD stands for Object Storage Daemon to run on top of each storage node. The daemon points

out a to a specific path in the storage disk and makes it a storage location for Ceph. OSDs are

responsible for handling all data read/write operations in the storage devices they are assigned to.

Theoretically, even the storage path of an OSD can point out to a RAIS infrastructure. OSDs are

also responsible for peering, replication can recovery tasks.

Monitor Nods (or MONs) do not provide any data operations services, however, they are

exclusively responsible for monitoring status of storage nodes such as their capacity and their

status. Any Ceph deployment need to have an odd number of MONs since it is necessary for

consensus making for distributed decision making.

Metadata Servers (MDs) store metadata on behalf of the Ceph Filesystem (i.e., Ceph Block

Devices and Ceph Object Storage do not use MDS). They make it feasible for POSIX file system

users to execute basic commands like ls, find, etc. without placing a huge burden on the Ceph

Storage Cluster.

CephFS Main Concepts
The following concepts are essential to operation of CephFS:

CEPH File System – Mina Rady – ITMO, June 2017

5

• Pools: logical containers or partitions for storage objects.

• Placement Groups: Client does not talk to placement groups directly but it is important to

be aware of how many there are as the they are the hash buckets. It is computationally

intensive to map objects to OSDs, so you map them to placement groups and then you get

which OSD a pool is on

• One placement group spans several OSDs, one OSD serves several placement groups

• Dynamic Subtree Partitioning is used by Metadata Servers to distribute metadata acroos

deployed MDs to eliminate bottlenecks, especially during peak access to specific data

resources.

Deployment Considerations:
• Pricing: Ceph is open source, therefore source code is free of charge.

• Professional support: By Kernel Software Inc, Wisconson, USA: $3700 storage

architecture. $1700 over existing Open Stack Deployment.

• Intended for large enterprise operations. Not recommended for physically small storage

deployments

• It automatically balances storage spaces. Therefore note recommended if special

operations are required in the storage clusters.

• Hard Disk Parameters:

• Higher RPM, more energy cost but higher IOPS and throughput

• Higher Density contribute positively to performance but negatively to

maintainability

• Redundancy: increases read performances, but write performance does not change.

• Erasure Coding: CephFS allows customized data and parity bit distribution. This would

cause higher CPU load but lower probability for failure of recovery.

• Scalability: Adding more nodes, Ceph will make sure data are evenly distributed across

nodes until you hit network topology limitations.

Demonstration
• For the report, a deployment was created on a virtual machine with one main storage disk

of 8 GB (dynamic) and 3 storage disks of 1 TB each (dynamic). Three OSDs were

installed in addition to 1 Monitor and 1 Metadata Server.

• One networking installation challenge was faced that was not mentioned in the

installation guidelines (but has several reports on online forums) was that only real

internal IP addresses need to be used to refer to hosts for Ceph installation to be

successful. Otherwise, it will report unresolvable addresses to the host machine.

CEPH File System – Mina Rady – ITMO, June 2017

6

• The following screenshot shows result of execution of general check commands:

• Health check: ceph –s

• Stats: ceph osd stat

• OSD List: ceph osd tree –f json

