
VERSION 2.01 1

Software-Defined Networking:
A Comprehensive Survey

Diego Kreutz, Member, IEEE, Fernando M. V. Ramos, Member, IEEE, Paulo Verissimo, Fellow, IEEE,
Christian Esteve Rothenberg, Member, IEEE, Siamak Azodolmolky, Senior Member, IEEE,

and Steve Uhlig, Member, IEEE

Abstract—The Internet has led to the creation of a digital
society, where (almost) everything is connected and is accessible
from anywhere. However, despite their widespread adoption,
traditional IP networks are complex and very hard to manage.
It is both difficult to configure the network according to pre-
defined policies, and to reconfigure it to respond to faults, load
and changes. To make matters even more difficult, current
networks are also vertically integrated: the control and data
planes are bundled together. Software-Defined Networking (SDN)
is an emerging paradigm that promises to change this state of
affairs, by breaking vertical integration, separating the network’s
control logic from the underlying routers and switches, promoting
(logical) centralization of network control, and introducing the
ability to program the network. The separation of concerns
introduced between the definition of network policies, their
implementation in switching hardware, and the forwarding of
traffic, is key to the desired flexibility: by breaking the network
control problem into tractable pieces, SDN makes it easier to
create and introduce new abstractions in networking, simplifying
network management and facilitating network evolution.

In this paper we present a comprehensive survey on SDN. We
start by introducing the motivation for SDN, explain its main
concepts and how it differs from traditional networking, its roots,
and the standardization activities regarding this novel paradigm.
Next, we present the key building blocks of an SDN infrastructure
using a bottom-up, layered approach. We provide an in-depth
analysis of the hardware infrastructure, southbound and north-
bound APIs, network virtualization layers, network operating
systems (SDN controllers), network programming languages, and
network applications. We also look at cross-layer problems such
as debugging and troubleshooting. In an effort to anticipate the
future evolution of this new paradigm, we discuss the main
ongoing research efforts and challenges of SDN. In particular,
we address the design of switches and control platforms – with
a focus on aspects such as resiliency, scalability, performance,
security and dependability – as well as new opportunities for
carrier transport networks and cloud providers. Last but not
least, we analyze the position of SDN as a key enabler of a
software-defined environment.

D. Kreutz and F. Ramos are with the Department of Informatics of
Faculty of Sciences, University of Lisbon, Lisbon, 1749-016 Portugal e-mail:
kreutz@lasige.di.fc.ul.pt, fvramos@fc.ul.pt.

P. Verı́ssimo is with the Interdisciplinary Centre for Security, Reliability
and Trust (SnT), University of Luxembourg, 4 rue Alphonse Weicker, L-2721
Luxembourg. e-mail: paulo.verissimo@uni.lu.

C. Esteve Rothenberg is with the School of Electrical and Com-
puter Engineering (FEEC, University of Campinas, Brazil. e-mail:
chesteve@dca.fee.unicamp.br.

S. Azodolmolky is with Gesellschaft für Wissenschaftliche Datenverar-
beitung mbH Göttingen (GWDG), Am Faßberg 11, 37077 Göttigen, Germany.
e-mail: siamak.azodolmolky@gwdg.de.

S. Uhlig is with Queen Mary University of London. is with Queen Mary,
University of London, Mile End Road, London E1 4NS, United Kingdom.
e-mail steve@eecs.qmul.ac.uk.

Manuscript received May 31, 2014.

Index Terms—Software-defined networking, OpenFlow, net-
work virtualization, network operating systems, programmable
networks, network hypervisor, programming languages, flow-
based networking, scalability, dependability, carrier-grade net-
works, software-defined environments.

I. INTRODUCTION

The distributed control and transport network protocols run-
ning inside the routers and switches are the key technologies
that allow information, in the form of digital packets, to
travel around the world. Despite their widespread adoption,
traditional IP networks are complex and hard to manage [1].
To express the desired high-level network policies, network
operators need to configure each individual network device
separately using low-level and often vendor-specific com-
mands. In addition to the configuration complexity, network
environments have to endure the dynamics of faults and
adapt to load changes. Automatic reconfiguration and response
mechanisms are virtually non-existent in current IP networks.
Enforcing the required policies in such a dynamic environment
is therefore highly challenging.

To make it even more complicated, current networks are
also vertically integrated. The control plane (that decides how
to handle network traffic) and the data plane (that forwards
traffic according to the decisions made by the control plane)
are bundled inside the networking devices, reducing flexibility
and hindering innovation and evolution of the networking
infrastructure. The transition from IPv4 to IPv6, started more
than a decade ago and still largely incomplete, bears witness
to this challenge, while in fact IPv6 represented merely a
protocol update. Due to the inertia of current IP networks,
a new routing protocol can take 5 to 10 years to be fully
designed, evaluated and deployed. Likewise, a clean-slate
approach to change the Internet architecture (e.g., replacing
IP), is regarded as a daunting task – simply not feasible in
practice [2], [3]. Ultimately, this situation has inflated the
capital and operational expenses of running an IP network.

Software-Defined Networking (SDN) [4], [5] is an emerging
networking paradigm that gives hope to change the lim-
itations of current network infrastructures. First, it breaks
the vertical integration by separating the network’s control
logic (the control plane) from the underlying routers and
switches that forward the traffic (the data plane). Second,
with the separation of the control and data planes, network
switches become simple forwarding devices and the control
logic is implemented in a logically centralized controller (or

ar
X

iv
:1

40
6.

04
40

v3
 [

cs
.N

I]
 8

 O
ct

 2
01

4

VERSION 2.01 2

Network Infrastructure

Data forwarding elements

(e.g., O
penFlow switches)

Open southbound API

Controller	
 Pla+orm	

Network	
 Applica4on(s)	

Open northbound API

Fig. 1. Simplified view of an SDN architecture.

network operating system1), simplifying policy enforcement
and network (re)configuration and evolution [6]. A simplified
view of this architecture is shown in Figure 1. It is important
to emphasize that a logically centralized programmatic model
does not postulate a physically centralized system [7]. In fact,
the need to guarantee adequate levels of performance, scala-
bility, and reliability would preclude such a solution. Instead,
production-level SDN network designs resort to physically
distributed control planes [7], [8].

The separation of the control plane and the data plane
can be realized by means of a well-defined programming
interface between the switches and the SDN controller. The
controller exercises direct control over the state in the data-
plane elements via this well-defined application programming
interface (API), as depicted in Figure 1. The most notable
example of such an API is OpenFlow [9], [10]. An OpenFlow
switch has one or more tables of packet-handling rules (flow
table). Each rule matches a subset of the traffic and performs
certain actions (dropping, forwarding, modifying, etc.) on
the traffic. Depending on the rules installed by a controller
application, an OpenFlow switch can – instructed by the
controller – behave like a router, switch, firewall, or perform
other roles (e.g., load balancer, traffic shaper, and in general
those of a middlebox).

An important consequence of the software-defined net-
working principles is the separation of concerns introduced
between the definition of network policies, their implemen-
tation in switching hardware, and the forwarding of traffic.
This separation is key to the desired flexibility, breaking the
network control problem into tractable pieces, and making it
easier to create and introduce new abstractions in networking,
simplifying network management and facilitating network
evolution and innovation.

Although SDN and OpenFlow started as academic experi-
ments [9], they gained significant traction in the industry over
the past few years. Most vendors of commercial switches now
include support of the OpenFlow API in their equipment. The

1We will use these two terms interchangeably.

SDN momentum was strong enough to make Google, Face-
book, Yahoo, Microsoft, Verizon, and Deutsche Telekom fund
Open Networking Foundation (ONF) [10] with the main goal
of promotion and adoption of SDN through open standards
development. As the initial concerns with SDN scalability
were addressed [11] – in particular the myth that logical
centralization implied a physically centralized controller, an
issue we will return to later on – SDN ideas have matured
and evolved from an academic exercise to a commercial
success. Google, for example, has deployed a software-defined
network to interconnect its data centers across the globe.
This production network has been in deployment for 3 years,
helping the company to improve operational efficiency and sig-
nificantly reduce costs [8]. VMware’s network virtualization
platform, NSX [12], is another example. NSX is a commercial
solution that delivers a fully functional network in software,
provisioned independent of the underlying networking devices,
entirely based around SDN principles. As a final example, the
world’s largest IT companies (from carriers and equipment
manufacturers to cloud providers and financial-services com-
panies) have recently joined SDN consortia such as the ONF
and the OpenDaylight initiative [13], another indication of the
importance of SDN from an industrial perspective.

A few recent papers have surveyed specific architectural
aspects of SDN [14], [15], [16]. An overview of OpenFlow
and a short literature review can be found in [14] and [15].
These OpenFlow-oriented surveys present a relatively simpli-
fied three-layer stack composed of high-level network services,
controllers, and the controller/switch interface. In [16], the
authors go a step further by proposing a taxonomy for SDN.
However, similarly to the previous works, the survey is limited
in terms of scope and it does not provide an in-depth treatment
of fundamental aspects of SDN. In essence, existing surveys
lack a thorough discussion of the essential building blocks
of an SDN such as the network operating systems, program-
ming languages, and interfaces. They also fall short on the
analysis of cross-layer issues such as scalability, security, and
dependability. A more complete overview of ongoing research
efforts, challenges, and related standardization activities is also
missing.

In this paper, we present, to the best of our knowledge,
the most comprehensive literature survey on SDN to date.
We organize this survey as depicted in Figure 2. We start, in
the next two sections, by explaining the context, introducing
the motivation for SDN and explaining the main concepts
of this new paradigm and how it differs from traditional
networking. Our aim in the early part of the survey is also to
explain that SDN is not as novel as a technological advance.
Indeed, its existence is rooted at the intersection of a series
of “old” ideas, technology drivers, and current and future
needs. The concepts underlying SDN – the separation of
the control and data planes, the flow abstraction upon which
forwarding decisions are made, the (logical) centralization of
network control, and the ability to program the network –
are not novel by themselves [17]. However, the integration
of already tested concepts with recent trends in networking
– namely the availability of merchant switch silicon and the
huge interest in feasible forms of network virtualization – are

VERSION 2.01 3

Sec$on	
 I:	
 Introduc$on	

Infrastructure	
 (data	
 plane	
 –	
 forwarding	
 devices)	

Switch	
 	

Designs	

Controller	

Pla>orms	

Resilience	
 and	

Scalability	

Performance	

evalua$on	

Security	
 and	

Dependability	

Migra$on	
 	

to	
 SDN	

SDN	
 for	

telecom	
 and	

cloud	

	

	

Sec$on	
 III:	
 What	
 is	
 SoFware-­‐Defined	
 Networking?	

Southbound	
 Interfaces	

Network	
 Hypervisors	

Network	
 Opera$ng	
 Systems	
 (SDN	
 Controllers)	

Northbound	
 Interfaces	

Language-­‐based	
 virtualiza$on	

Programming	
 languages	

Network	
 Applica$ons	

Traffic	
 engineering	
 Mobility	
 	
 &	
 Wireless	
 Measurement	
 &	

Monitoring	

Security	
 &	

Dependability	

Data	
 Center	

Networking	

Cross-­‐layer	
 issues	
 (debugging,	
 tes$ng	
 &	
 simula$on)	

SDN	
 completes	

the	
 SDE	
 puzzle	

Sec$on	
 II:	
 State	
 of	
 quo	
 in	
 “computer	
 networking”	
 and	
 movaon	
 for	
 SDN	

Section IV: Comprehensive survey: Bottom-up approach

Section V: Ongoing research efforts and challenges

Terminology	
 Defini$ons	
 Standardiza$on	
 History	

Fig. 2. Condensed overview of this survey on SDN.

leading to this paradigm shift in networking. As a result of the
high industry interest and the potential to change the status
quo of networking from multiple perspectives, a number of
standardization efforts around SDN are ongoing, as we also
discuss in Section III.

Section IV is the core of this survey, presenting an extensive
and comprehensive analysis of the building blocks of an
SDN infrastructure using a bottom-up, layered approach. The
option for a layered approach is grounded on the fact that
SDN allows thinking of networking along two fundamental
concepts, which are common in other disciplines of computer
science: a) separation of concerns (leveraging the concept of
abstraction) and b) recursion. Our layered, bottom-up approach
divides the networking problem into eight parts: 1) hardware
infrastructure, 2) southbound interfaces, 3) network virtual-
ization (hypervisor layer between the forwarding devices and
the network operating systems), 4) network operating systems
(SDN controllers and control platforms), 5) northbound in-
terfaces (to offer a common programming abstraction to the
upper layers, mainly the network applications), 6) virtual-
ization using slicing techniques provided by special purpose
libraries or programming languages and compilers, 7) network
programming languages, and finally 8) network applications.
In addition, we also look at cross-layer problems such as

debugging and troubleshooting mechanisms. The discussion
in Section V on ongoing research efforts, challenges, future
work and opportunities concludes this paper.

II. STATE OF QUO IN NETWORKING

Computer networks can be divided in three planes of
functionality: the data, control and management planes (see
Figure 3). The data plane corresponds to the networking de-
vices, which are responsible for (efficiently) forwarding data.
The control plane represents the protocols used to populate the
forwarding tables of the data plane elements. The management
plane includes the software services, such as SNMP-based
tools [18], used to remotely monitor and configure the control
functionality. Network policy is defined in the management
plane, the control plane enforces the policy, and the data plane
executes it by forwarding data accordingly.

In traditional IP networks, the control and data planes are
tightly coupled, embedded in the same networking devices,
and the whole structure is highly decentralized. This was
considered important for the design of the Internet in the early
days: it seemed the best way to guarantee network resilience,
which was a crucial design goal. In fact, this approach has
been quite effective in terms of network performance, with a
rapid increase of line rate and port densities.

VERSION 2.01 4

Fig. 3. Layered view of networking functionality.

However, the outcome is a very complex and relatively
static architecture, as has been often reported in the networking
literature (e.g., [1], [3], [2], [6], [19]). It is also the fundamental
reason why traditional networks are rigid, and complex to
manage and control. These two characteristics are largely re-
sponsible for a vertically-integrated industry where innovation
is difficult.

Network misconfigurations and related errors are extremely
common in today’s networks. For instance, more than 1000
configuration errors have been observed in BGP routers [20].
From a single misconfigured device may result very undesired
network behavior (including, among others, packet losses,
forwarding loops, setting up of unintended paths, or service
contract violations). Indeed, while rare, a single misconfigured
router is able to compromise the correct operation of the whole
Internet for hours [21], [22].

To support network management, a small number of vendors
offer proprietary solutions of specialized hardware, operating
systems, and control programs (network applications). Net-
work operators have to acquire and maintain different man-
agement solutions and the corresponding specialized teams.
The capital and operational cost of building and maintaining
a networking infrastructure is significant, with long return on
investment cycles, which hamper innovation and addition of
new features and services (for instance access control, load
balancing, energy efficiency, traffic engineering). To alleviate
the lack of in-path functionalities within the network, a myriad
of specialized components and middleboxes, such as firewalls,
intrusion detection systems and deep packet inspection en-
gines, proliferate in current networks. A recent survey of 57
enterprise networks shows that the number of middleboxes
is already on par with the number of routers in current
networks [23]. Despite helping in-path functionalities, the
net effect of middleboxes has been increased complexity of
network design and its operation.

III. WHAT IS SOFTWARE-DEFINED NETWORKING?
The term SDN (Software-Defined Networking) was origi-

nally coined to represent the ideas and work around OpenFlow
at Stanford University [24]. As originally defined, SDN refers
to a network architecture where the forwarding state in the data
plane is managed by a remote control plane decoupled from
the former. The networking industry has on many occasions

shifted from this original view of SDN, by referring to
anything that involves software as being SDN. We therefore
attempt, in this section, to provide a much less ambiguous
definition of software-defined networking.

We define an SDN as a network architecture with four
pillars:

1) The control and data planes are decoupled. Control
functionality is removed from network devices that will
become simple (packet) forwarding elements.

2) Forwarding decisions are flow-based, instead of destina-
tion-based. A flow is broadly defined by a set of packet
field values acting as a match (filter) criterion and a set
of actions (instructions). In the SDN/OpenFlow context,
a flow is a sequence of packets between a source and
a destination. All packets of a flow receive identical
service policies at the forwarding devices [25], [26]. The
flow abstraction allows unifying the behavior of different
types of network devices, including routers, switches,
firewalls, and middleboxes [27]. Flow programming
enables unprecedented flexibility, limited only to the
capabilities of the implemented flow tables [9].

3) Control logic is moved to an external entity, the so-
called SDN controller or Network Operating System
(NOS). The NOS is a software platform that runs on
commodity server technology and provides the essential
resources and abstractions to facilitate the programming
of forwarding devices based on a logically centralized,
abstract network view. Its purpose is therefore similar to
that of a traditional operating system.

4) The network is programmable through software appli-
cations running on top of the NOS that interacts with
the underlying data plane devices. This is a fundamental
characteristic of SDN, considered as its main value
proposition.

Note that the logical centralization of the control logic, in
particular, offers several additional benefits. First, it is simpler
and less error-prone to modify network policies through high-
level languages and software components, compared with low-
level device specific configurations. Second, a control program
can automatically react to spurious changes of the network
state and thus maintain the high-level policies intact. Third, the
centralization of the control logic in a controller with global
knowledge of the network state simplifies the development of
more sophisticated networking functions, services and appli-
cations.

Following the SDN concept introduced in [5], an SDN can
be defined by three fundamental abstractions: (i) forwarding,
(ii) distribution, and (iii) specification. In fact, abstractions are
essential tools of research in computer science and information
technology, being already an ubiquitous feature of many
computer architectures and systems [28].

Ideally, the forwarding abstraction should allow any for-
warding behavior desired by the network application (the con-
trol program) while hiding details of the underlying hardware.
OpenFlow is one realization of such abstraction, which can
be seen as the equivalent to a “device driver” in an operating
system.

VERSION 2.01 5

Network Infrastructure
Forwarding Devices

Open southbound API

Network	
 Opera,ng	
 System	
 (SDN	
 controllers)	

Network	
 Abstrac,ons	
 (e.g.,	
 topology	
 abstrac,on)	

Open northbound API

Net	
 App	
 1	
 Net	
 App	
 2	
 Net	
 App	
 n	

Global network view

Abstract network views

C
on

tr
ol

 p
la

ne

D
at

a
Pl

an
e

Fig. 4. SDN architecture and its fundamental abstractions.

The distribution abstraction should shield SDN applications
from the vagaries of distributed state, making the distributed
control problem a logically centralized one. Its realization
requires a common distribution layer, which in SDN resides
in the NOS. This layer has two essential functions. First,
it is responsible for installing the control commands on the
forwarding devices. Second, it collects status information
about the forwarding layer (network devices and links), to offer
a global network view to network applications.

The last abstraction is specification, which should allow a
network application to express the desired network behavior
without being responsible for implementing that behavior
itself. This can be achieved through virtualization solutions,
as well as network programming languages. These approaches
map the abstract configurations that the applications express
based on a simplified, abstract model of the network, into a
physical configuration for the global network view exposed
by the SDN controller. Figure 4 depicts the SDN architecture,
concepts and building blocks.

As previously mentioned, the strong coupling between
control and data planes has made it difficult to add new
functionality to traditional networks, a fact illustrated in
Figure 5. The coupling of the control and data planes (and
its physical embedding in the network elements) makes the
development and deployment of new networking features
(e.g., routing algorithms) very hard since it would imply a
modification of the control plane of all network devices –
through the installation of new firmware and, in some cases,
hardware upgrades. Hence, the new networking features are
commonly introduced via expensive, specialized and hard-to-
configure equipment (aka middleboxes) such as load balancers,
intrusion detection systems (IDS), and firewalls, among others.
These middleboxes need to be placed strategically in the
network, making it even harder to later change the network
topology, configuration, and functionality.

In contrast, SDN decouples the control plane from the
network devices and becomes an external entity: the network

SDN	
 controller	

Network	
 Applica2ons	

MAC	

Learning	

Rou2ng	

Algorithms	

Intrusion	

Detec2on	

System	

Load	

Balancer	

So
ftw

ar
e-

D
ef

in
ed

 N
et

w
or

ki
ng

C

on
ve

nt
io

na
l N

et
w

or
ki

ng

Fig. 5. Traditional networking versus Software-Defined Networking (SDN).
With SDN, management becomes simpler and middleboxes services can be
delivered as SDN controller applications.

operating system or SDN controller. This approach has several
advantages:

• It becomes easier to program these applications since the
abstractions provided by the control platform and/or the
network programming languages can be shared.

• All applications can take advantage of the same network
information (the global network view), leading (arguably)
to more consistent and effective policy decisions while
re-using control plane software modules.

• These applications can take actions (i.e., reconfigure
forwarding devices) from any part of the network. There
is therefore no need to devise a precise strategy about the
location of the new functionality.

• The integration of different applications becomes more
straightforward [29]. For instance, load balancing and
routing applications can be combined sequentially, with
load balancing decisions having precedence over routing
policies.

A. Terminology

To identify the different elements of an SDN as unequiv-
ocally as possible, we now present the essential terminology
used throughout this work.
Forwarding Devices (FD): Hardware- or software-based data
plane devices that perform a set of elementary operations. The
forwarding devices have well-defined instruction sets (e.g.,
flow rules) used to take actions on the incoming packets
(e.g., forward to specific ports, drop, forward to the controller,
rewrite some header). These instructions are defined by south-
bound interfaces (e.g., OpenFlow [9], ForCES [30], Protocol-
Oblivious Forwarding (POF) [31]) and are installed in the

VERSION 2.01 6

forwarding devices by the SDN controllers implementing the
southbound protocols.
Data Plane (DP): Forwarding devices are interconnected
through wireless radio channels or wired cables. The net-
work infrastructure comprises the interconnected forwarding
devices, which represent the data plane.
Southbound Interface (SI): The instruction set of the forward-
ing devices is defined by the southbound API, which is part
of the southbound interface. Furthermore, the SI also defines
the communication protocol between forwarding devices and
control plane elements. This protocol formalizes the way the
control and data plane elements interact.
Control Plane (CP): Forwarding devices are programmed by
control plane elements through well-defined SI embodiments.
The control plane can therefore be seen as the “network brain”.
All control logic rests in the applications and controllers,
which form the control plane.
Northbound Interface (NI): The network operating system can
offer an API to application developers. This API represents a
northbound interface, i.e., a common interface for developing
applications. Typically, a northbound interface abstracts the
low level instruction sets used by southbound interfaces to
program forwarding devices.
Management Plane (MP): The management plane is the set
of applications that leverage the functions offered by the
NI to implement network control and operation logic. This
includes applications such as routing, firewalls, load balancers,
monitoring, and so forth. Essentially, a management applica-
tion defines the policies, which are ultimately translated to
southbound-specific instructions that program the behavior of
the forwarding devices.

B. Alternative and Broadening Definitions

Since its inception in 2010 [24], the original OpenFlow-
centered SDN term has seen its scope broadened beyond
architectures with a cleanly decoupled control plane interface.
The definition of SDN will likely continue to broaden, driven
by the industry business-oriented views on SDN – irrespective
of the decoupling of the control plane. In this survey, we
focus on the original, “canonical” SDN definition based on
the aforementioned key pillars and the concept of layered ab-
stractions. However, for the sake of completeness and clarity,
we acknowledge alternative SDN definitions [32], including:
Control Plane / Broker SDN: A networking approach that
retains existing distributed control planes but offers new
APIs that allow applications to interact (bidirectionally) with
the network. An SDN controller –often called orchestration
platform– acts as a broker between the applications and the
network elements. This approach effectively presents control
plane data to the application and allows a certain degree of
network programmability by means of “plug-ins” between the
orchestrator function and network protocols. This API-driven
approach corresponds to a hybrid model of SDN, since it
enables the broker to manipulate and directly interact with
the control planes of devices such as routers and switches.
Examples of this view on SDN include recent standardization
efforts at IETF (see Section III-C) and the design philosophy

behind the OpenDaylight project [13] that goes beyond the
OpenFlow split control mode.
Overlay SDN: A networking approach where the (software- or
hardware-based) network edge is dynamically programmed to
manage tunnels between hypervisors and/or network switches,
introducing an overlay network. In this hybrid networking
approach, the distributed control plane providing the underlay
remains untouched. The centralized control plane provides
a logical overlay that utilizes the underlay as a transport
network. This flavor of SDN follows a proactive model
to install the overlay tunnels. The overlay tunnels usually
terminate inside virtual switches within hypervisors or in
physical devices acting as gateways to the existing network.
This approach is very popular in recent data center network
virtualization [33], and are based on a variety of tunneling
technologies (e.g., STT [34], VXLAN [35], NVGRE [36],
LISP [37], [38], GENEVE [39]) [40].

Recently, other attempts to define SDN in a layered ap-
proach have appeared [41], [16]. From a practical perspec-
tive and trying to keep backward compatibility with existing
network management approaches, one initiative at IRTF SD-
NRG [41] proposes a management plane at the same level of
the control plane, i.e., it classifies solutions in two categories:
control logic (with control plane southbound interfaces) and
management logic (with management plane southbound in-
terfaces). In other words, the management plane can be seen
as a control platform that accommodates traditional network
management services and protocols, such as SNMP [18],
BGP [42], PCEP [43], and NETCONF [44].

In addition the broadening definitions above, the term SDN
is often used to define extensible network management planes
(e.g., OpenStack [45]), whitebox / bare-metal switches with
open operating systems (e.g., Cumulus Linux), open-source
dataplanes (e.g., Pica8 Xorplus [46], Quagga [47]), special-
ized programmable hardware devices (e.g., NetFPGA [48]),
virtualized software-based appliances (e.g., Open Platform for
Network Functions Virtualization - OPNFV [49]), in spite
of lacking a decoupled control and data plane or common
interface along its API. Hybrid SDN models are further
discussed in Section V-G.

C. Standardization Activities
The standardization landscape in SDN (and SDN-related

issues) is already wide and is expected to keep evolving over
time. While some of the activities are being carried out in
Standard Development Organizations (SDOs), other related
efforts are ongoing at industrial or community consortia (e.g.,
OpenDaylight, OpenStack, OPNFV), delivering results often
considered candidates for de facto standards. These results
often come in the form of open source implementations that
have become the common strategy towards accelerating SDN
and related cloud and networking technologies [50]. The
reason for this fragmentation is due to SDN concepts spanning
different areas of IT and networking, both from a network
segmentation point of view (from access to core) and from a
technology perspective (from optical to wireless).

Table I presents a summary of the main SDOs and organi-
zations contributing to the standardization of SDN, as well as

VERSION 2.01 7

the main outcomes produced to date.
The Open Networking Foundation (ONF) was conceived

as a member-driven organization to promote the adoption of
SDN through the development of the OpenFlow protocol as an
open standard to communicate control decisions to data plane
devices. The ONF is structured in several working groups
(WGs). Some WGs are focused on either defining extensions
to the OpenFlow protocol in general, such as the Extensibility
WG, or tailored to specific technological areas. Examples of
the latter include the Optical Transport (OT) WG, the Wireless
and Mobile (W&M) WG, and the Northbound Interfaces
(NBI) WG. Other WGs center their activity in providing new
protocol capabilities to enhance the protocol itself, such as the
Architecture WG or the Forwarding Abstractions (FA) WG.

Similar to how network programmability ideas have been
considered by several Working Groups (WGs) of the Internet
Engineering Task Force (IETF) in the past, the present SDN
trend is also influencing a number of activities. A related
body that focuses on research aspects for the evolution of the
Internet, the Internet Research Task Force (IRTF), has created
the Software Defined Networking Research Group (SDNRG).
This group investigates SDN from various perspectives with
the goal of identifying the approaches that can be defined,
deployed and used in the near term, as well as identifying
future research challenges.

In the International Telecommunications Union’s Telecom-
munication sector (ITU-T), some Study Groups (SGs) have
already started to develop recommendations for SDN, and
a Joint Coordination Activity on SDN (JCA-SDN) has been
established to coordinate the SDN standardization work.

The Broadband Forum (BBF) is working on SDN top-
ics through the Service Innovation & Market Requirements
(SIMR) WG. The objective of the BBF is to release recom-
mendations for supporting SDN in multi-service broadband
networks, including hybrid environments where only some of
the network equipment is SDN-enabled.

The Metro Ethernet Forum (MEF) is approaching SDN with
the aim of defining service orchestration with APIs for existing
networks.

At the Institute of Electrical and Electronics Engineers
(IEEE), the 802 LAN/MAN Standards Committee has recently
started some activities to standardize SDN capabilities on
access networks based on IEEE 802 infrastructure through the
P802.1CF project, for both wired and wireless technologies to
embrace new control interfaces.

The Optical Internetworking Forum (OIF) Carrier WG
released a set of requirements for Transport Software-Defined
Networking. The initial activities have as main goal to de-
scribe the features and functionalities needed to support the
deployment of SDN capabilities in carrier transport networks.

The Open Data Center Alliance (ODCA) is an organization
working on unifying data center in the migration to cloud com-
puting environments through interoperable solutions. Through
the documentation of usage models, specifically one for SDN,
the ODCA is defining new requirements for cloud deployment.

The Alliance for Telecommunication Industry Solutions
(ATIS) created a Focus Group for analyzing operational issues
and opportunities associated with the programmable capabili-

ties of network infrastructure.
At the European Telecommunication Standards Institute

(ETSI), efforts are being devoted to Network Function Virtual-
ization (NFV) through a newly defined Industry Specification
Group (ISG). NFV and SDN concepts are considered comple-
mentary, sharing the goal of accelerating innovation inside the
network by allowing programmability, and altogether changing
the network operational model through automation and a real
shift to software-based platforms.

Finally, the mobile networking industry 3GPP consortium
is studying the management of virtualized networks, an effort
aligned with the ETSI NFV architecture and, as such, likely
to leverage from SDN.

D. History of Software-Defined Networking

Albeit a fairly recent concept, SDN leverages on networking
ideas with a longer history [17]. In particular, it builds on
work made on programmable networks, such as active net-
works [81], programmable ATM networks [82], [83] , and
on proposals for control and data plane separation, such as
NCP [84] and RCP [85].

In order to present an historical perspective, we summarize
in Table II different instances of SDN-related work prior to
SDN, splitting it into five categories. Along with the categories
we defined, the second and third columns of the table mention
past initiatives (pre-SDN, i.e., before the OpenFlow-based
initiatives that sprung into the SDN concept), and recent
developments that led to the definition of SDN.

Data plane programmability has a long history. Active
networks [81] represent one of the early attempts on building
new network architectures based on this concept. The main
idea behind active networks is for each node to have the
capability to perform computations on, or modify the content
of, packets. To this end, active networks propose two distinct
approaches: programmable switches and capsules. The former
does not imply changes in the existing packet or cell format.
It assumes that switching devices support the downloading of
programs with specific instructions on how to process packets.
The second approach, on the other hand, suggests that packets
should be replaced by tiny programs, which are encapsulated
in transmission frames and executed at each node along their
path.

ForCES [30], OpenFlow [9] and POF [31] represent recent
approaches for designing and deploying programmable data
plane devices. In a manner different from active networks,
these new proposals rely essentially on modifying forwarding
devices to support flow tables, which can be dynamically
configured by remote entities through simple operations such
as adding, removing or updating flow rules, i.e., entries on the
flow tables.

The earliest initiatives on separating data and control sig-
nalling date back to the 80s and 90s. The network control point
(NCP) [84] is probably the first attempt to separate control
and data plane signalling. NCPs were introduced by AT&T to
improve the management and control of its telephone network.
This change promoted a faster pace of innovation of the
network and provided new means for improving its efficiency,

VERSION 2.01 8

TABLE I
OPENFLOW STANDARDIZATION ACTIVITIES

SDO Working Group Focus Outcomes

ONF

Architecture & Framework SDN architecture, defining architectural components and inter-
faces

SDN Architecture [51]

Northbound Interfaces Definition of standard NBIs for SDN controllers

Testing and Interoperability Specification of OpenFlow conformance test suites Conformance tests [52]

Extensibility Development of extensions to OpenFlow protocol, producing
specifications of the OpenFlow switch (OF-WIRE) protocol

OF-WIRE 1.4.0 [53]

Configuration & Management OAM (operation, administration, and management) capabilities
for OF protocol, producing specifications of the OF Configura-
tion and Management (OF-CONFIG) protocol

OF-CONFIG 1.2 [54]
OpenFlow Notifications Framework [55]

Forwarding Abstractions Development of hardware abstractions and simplification of
behavioral descriptions mapping

OpenFlow Table Type Patterns [56]

Optical Transport Specification of SDN and control capabilities for optical trans-
port networks by means of OpenFlow

Use cases [57]
Requirements [58]

Wireless & Mobile Specification of SDN and control capabilities for wireless and
mobile networks by means of OpenFlow

Migration Methods to migrate from conventional networks to SDN-based
networks based on OpenFlow

Use cases [59]

Market Education Dissemination of ONF initiatives in SDN and OpenFlow by
releasing White Papers and Solution Briefs

SDN White Paper [60]

IETF

Application-Layer Traffic Opti-
mization (ALTO)

Provides applications with network state information Architectures for the coexistence of
SDN and ALTO [61]

Forwarding and Control Element
Separation (ForCES)

Protocol specifications for the communication between control
and forwarding elements.

Protocol specification [30]

Interface to the Routing System
(I2RS)

Real-time or event driven interaction with the routing system in
an IP routed network

Architecture [62]

Network Configuration (NET-
CONF)

Protocol specification for transferring configuration data to and
from a device

NETCONF protocol [63]

Network Virtualization Overlays
(NVO3)

Overlay networks for supporting multi-tenancy in the context
of data center communications (i.e., VM communication)

Control plane requirements [64]

Path Computation Element (PCE) Path computation for traffic engineering and path selection
based on constrains

ABNO framework [65]
Cross stratum path computation [66]

Source Packet Routing in Net-
working (SPRING)

Specification of a forwarding path at the source of traffic OpenFlow interworking [67]
SDN controlled use cases [68]

Abstraction and Control of Trans-
port Networks (ACTN) BoF

Facilitate a centralized virtual network operation Virtual network controller
framework [69]

IRTF Software-Defined Networking
Research Group (SDNRG)

Prospection of SDN for the evolution of Internet SDN operator perspective [70]
SDN Architecture [71]
Service / Transport separation [72]

ITU-T

SG 11 Signalling requirements using SDN technologies in Broadband
Access Networks

Q.Supplement-SDN [73]
Q.SBAN [74]

SG 13 Functional requirements and architecture for SDN and networks
of the future

Recommendation Y.3300 [75]

SG 15 Specification of a transport network control plane architecture
to support SDN control of transport networks

SG 17 Architectural aspects of security in SDN and security services
using SDN

BBF Service Innovation and Market
Requirements

Requirements and impacts of deploying SDN in broadband
networks

SD-313 [76]

MEF The Third Network Service orchestration in Network as a Service and NFV envi-
ronments

IEEE 802 Applicability of SDN to IEEE 802 infrastructure

OIF Carrier WG Transport SDN networks Requirements for SDN enabled transport
networks [77]

ODCA SDN/Infrastructure Requirements for SDN in cloud environments Usage model [78]

ETSI NFV ISG Orchestration of network functions, including the combined
control of computing, storage and networking resources

NFV Architecture [79]

ATIS SDN Focus Group Operational aspects of SDN and NFV Operation of SDN [80]

VERSION 2.01 9

TABLE II
SUMMARIZED OVERVIEW OF THE HISTORY OF PROGRAMABLE NETWORKS

Category Pre-SDN initiatives More recent SDN developments

Data plane programmability xbind [82], IEEE P1520 [86], smart packets [87], ANTS [88], SwitchWare [89],
Calvert [90], high performance router [91], NetScript [92], Tennenhouse [93] ForCES [30], OpenFlow [9], POF [31]

Control and data plane
decoupling

NCP [84], GSMP [94], [95], Tempest [96], ForCES [30], RCP [85], Soft-
Router [97], PCE [43], 4D [98], IRSCP [99]

SANE [100], Ethane [101], Open-
Flow [9], NOX [26], POF [31]

Network virtualization
Tempest [96], MBone [102], 6Bone [103], RON [104], Planet Lab [105],
Impasse [106], GENI [107], VINI [108]

Open vSwitch [109], Mininet [110],
FlowVisor [111], NVP [112]

Network operating systems Cisco IOS [113], JUNOS [114]. ExtremeXOS [115], SR OS [116] NOX [26], Onix [7], ONOS [117]

Technology pull initiatives Open Signaling [118] ONF [10]

by taking advantage of the global view of the network provided
by NCPs. Similarly, other initiatives such as Tempest [96],
ForCES [30], RCP [85], and PCE [43] proposed the separation
of the control and data planes for improved management in
ATM, Ethernet, BGP, and MPLS networks, respectively.

More recently, initiatives such as SANE [100],
Ethane [101], OpenFlow [9], NOX [26] and POF [31]
proposed the decoupling of the control and data planes for
Ethernet networks. Interestingly, these recent solutions do not
require significant modifications on the forwarding devices,
making them attractive not only for the networking research
community, but even more to the networking industry.
OpenFlow-based devices [9], for instance, can easily co-exist
with traditional Ethernet devices, enabling a progressive
adoption (i.e., not requiring a disruptive change to existing
networks).

Network virtualization has gained a new traction with the
advent of SDN. Nevertheless, network virtualization also has
its roots back in the 90s. The Tempest project [96] is one
of the first initiatives to introduce network virtualization, by
introducing the concept of switchlets in ATM networks. The
core idea was to allow multiple switchlets on top of a single
ATM switch, enabling multiple independent ATM networks to
share the same physical resources. Similarly, MBone [102] was
one of the early initiatives that targeted the creation of virtual
network topologies on top of legacy networks, or overlay
networks. This work was followed by several other projects
such as Planet Lab [105], GENI [107] and VINI [108]. It
is also worth mentioning FlowVisor [119] as one of the first
recent initiatives to promote a hypervisor-like virtualization
architecture for network infrastructures, resembling the hyper-
visor model common for compute and storage. More recently,
Koponen et al. proposed a Network Virtualization Platform
(NVP [112]) for multi-tenant datacenters using SDN as a base
technology.

The concept of a network operating system was reborn
with the introduction of OpenFlow-based network operating
systems, such as NOX [26], Onix [7] and ONOS [117]. Indeed,
network operating systems have been in existence for decades.
One of the most widely known and deployed is the Cisco
IOS [113], which was originally conceived back in the early
90s. Other network operating systems worth mentioning are
JUNOS [114], ExtremeXOS [115] and SR OS [116]. Despite

being more specialized network operating systems, targeting
network devices such as high-performance core routers, these
NOSs abstract the underlying hardware to the network oper-
ator, making it easier to control the network infrastructure as
well as simplifying the development and deployment of new
protocols and management applications.

Finally, it is also worth recalling initiatives that can be seen
as “technology pull” drivers. Back in the 90s, a movement
towards open signalling [118] started to happen. The main
motivation was to promote the wider adoption of the ideas
proposed by projects such as NCP [84] and Tempest [96].
The open signalling movement worked towards separating
the control and data signalling, by proposing open and pro-
grammable interfaces. Curiously, a rather similar movement
can be observed with the recent advent of OpenFlow and SDN,
with the lead of the Open Networking Foundation (ONF) [10].
This type of movement is crucial to promote open technologies
into the market, hopefully leading equipment manufacturers
to support open standards and thus fostering interoperability,
competition, and innovation.

For a more extensive intellectual history of programmable
networks and SDN we forward the reader to the recent paper
by Feamster et al. [17].

IV. SOFTWARE-DEFINED NETWORKS: BOTTOM-UP

An SDN architecture can be depicted as a composition of
different layers, as shown in Figure 6 (b). Each layer has its
own specific functions. While some of them are always present
in an SDN deployment, such as the southbound API, network
operating systems, northbound API and network applications,
others may be present only in particular deployments, such as
hypervisor- or language-based virtualization.

Figure 6 presents a tri-fold perspective of SDNs. The SDN
layers are represented in the center (b) of the figure, as
explained above. Figures 6 (a) and 6 (c) depict a plane-
oriented view and a system design perspective, respectively.

The following sections introduce each layer, following a
bottom-up approach. For each layer, the core properties and
concepts are explained based on the different technologies
and solutions. Additionally, debugging and troubleshooting
techniques and tools are discussed.

VERSION 2.01 10

Net	
 App	
 Net	
 App	
 Net	
 App	

Net	
 App	
 Net	
 App	

Net	
 App	

Network	
 Infrastructure	

Southbound	
 Interface	

Network	
 Opera7ng	
 System	

Northbound	
 Interface	

Language-­‐based	
 Virtualiza7on	

Programming	
 Languages	

Network	
 Applica7ons	
 Debugging,	
 Tes7ng	
 &
	
 Sim

ula7on	

Network	
 Opera7ng	

System	
 (NOS)	
 and	

Network	
 Hypervisors	

Network	
 Applica7ons	

Ro
u7

ng
	

Ac
ce
ss
	

Co
nt
ro
l	

Lo
ad

	

ba

la
nc
er
	

Control plane

Data plane

Management plane

(a)	
 (b)	
 (c)	

Network	
 Hypervisor	

Fig. 6. Software-Defined Networks in (a) planes, (b) layers, and (c) system design architecture

A. Layer I: Infrastructure

An SDN infrastructure, similarly to a traditional network, is
composed of a set of networking equipment (switches, routers
and middlebox appliances). The main difference resides in the
fact that those traditional physical devices are now simple
forwarding elements without embedded control or software
to take autonomous decisions. The network intelligence is
removed from the data plane devices to a logically-centralized
control system, i.e., the network operating system and ap-
plications, as shown in Figure 6 (c). More importantly,
these new networks are built (conceptually) on top of open
and standard interfaces (e.g., OpenFlow), a crucial approach
for ensuring configuration and communication compatibility
and interoperability among different data and control plane
devices. In other words, these open interfaces enable controller
entities to dynamically program heterogeneous forwarding
devices, something difficult in traditional networks, due to
the large variety of proprietary and closed interfaces and the
distributed nature of the control plane.

In an SDN/OpenFlow architecture, there are two main
elements, the controllers and the forwarding devices, as shown
in Figure 7. A data plane device is a hardware or software
element specialized in packet forwarding, while a controller
is a software stack (the “network brain”) running on a com-
modity hardware platform. An OpenFlow-enabled forwarding
device is based on a pipeline of flow tables where each entry
of a flow table has three parts: (1) a matching rule, (2)
actions to be executed on matching packets, and (3) counters
that keep statistics of matching packets. This high-level and
simplified model derived from OpenFlow is currently the most
widespread design of SDN data plane devices. Nevertheless,
other specifications of SDN-enabled forwarding devices are
being pursued, including POF [31], [120] and the Negotiable
Datapath Models (NDMs) from the ONF Forwarding Abstrac-
tions Working Group (FAWG) [121].

Inside an OpenFlow device, a path through a sequence of
flow tables defines how packets should be handled. When a

new packet arrives, the lookup process starts in the first table
and ends either with a match in one of the tables of the pipeline
or with a miss (when no rule is found for that packet). A flow
rule can be defined by combining different matching fields, as
illustrated in Figure 7. If there is no default rule, the packet
will be discarded. However, the common case is to install
a default rule which tells the switch to send the packet to
the controller (or to the normal non-OpenFlow pipeline of the
switch). The priority of the rules follows the natural sequence
number of the tables and the row order in a flow table. Possible
actions include (1) forward the packet to outgoing port(s), (2)
encapsulate it and forward it to the controller, (3) drop it, (4)
send it to the normal processing pipeline, (5) send it to the
next flow table or to special tables, such as group or metering
tables introduced in the latest OpenFlow protocol.

As detailed in Table III, each version of the OpenFlow
specification introduced new match fields including Ethernet,
IPv4/v6, MPLS, TCP/UDP, etc. However, only a subset of
those matching fields are mandatory to be compliant to a given
protocol version. Similarly, many actions and port types are
optional features. Flow match rules can be based on almost
arbitrary combinations of bits of the different packet headers
using bit masks for each field. Adding new matching fields
has been eased with the extensibility capabilities introduced
in OpenFlow version 1.2 through an OpenFlow Extensible
Match (OXM) based on type-length-value (TLV) structures.
To improve the overall protocol extensibility, with OpenFlow
version 1.4 TLV structures have been also added to ports, ta-
bles, and queues in replacement of the hard-coded counterparts
of earlier protocol versions.

Overview of available OpenFlow devices
Several OpenFlow-enabled forwarding devices are available

on the market, both as commercial and open source products
(see Table IV). There are many off-the-shelf, ready to deploy,
OpenFlow switches and routers, among other appliances. Most
of the switches available on the market have relatively small
Ternary Content-Addressable Memory (TCAMs), with up to

VERSION 2.01 11

SDN	
 DEVICE	

SDN	
 CONTROLLER	

Network	
 	

Opera5ng	
 	

System	
 Co

nt
ro
l	

Co
m
m
un

ic
a5

on
s	

Net	
 App	
 Net	
 App	

Net	
 App	

Net	
 App	
 Net	
 App	
 Net	
 App	

FLOW	
 TABLES	

Co
nt
ro
l	

Co
m
m
un

ic
a5

on
s	

RULE	
 STATS	
 ACTION	

Packet	
 +	
 counters	

1.  Forward	
 packet	
 to	
 port(s)	

2.  Encapsulate	
 and	
 forward	
 to	
 controller	

3.  Drop	
 packet	

4.  Send	
 to	
 normal	
 processing	
 pipeline	

Switch	

port	

MAC	

src	

MAC	

dst	

VLAN	

ID	

IP	
 	

src	

TCP	

psrc	

TCP	

pdst	

IP	
 	

dst	

Eth	

type	

FLOW	
 TABLE	

Fig. 7. OpenFlow-enabled SDN devices

TABLE III
DIFFERENT MATCH FIELDS, STATISTICS AND CAPABILITIES HAVE BEEN ADDED ON EACH OPENFLOW PROTOCOL REVISION. THE NUMBER OF REQUIRED

(REQ) AND OPTIONAL (OPT) CAPABILITIES HAS GROWN CONSIDERABLY.

OpenFlow Version Match fields Statistics
Matches # Instructions # Actions # Ports
Req Opt Req Opt Req Opt Req Opt

v 1.0

Ingress Port Per table statistics

18 2 1 0 2 11 6 2
Ethernet: src, dst, type, VLAN Per flow statistics

IPv4: src, dst, proto, ToS Per port statistics

TCP/UDP: src port, dst port Per queue statistics

v 1.1
Metadata, SCTP, VLAN tagging Group statistics

23 2 0 0 3 28 5 3
MPLS: label, traffic class Action bucket statistics

v 1.2
OpenFlow Extensible Match (OXM)

14 18 2 3 2 49 5 3
IPv6: src, dst, flow label, ICMPv6

v 1.3 PBB, IPv6 Extension Headers
Per-flow meter

14 26 2 4 2 56 5 3
Per-flow meter band

v 1.4 —
—

14 27 2 4 2 57 5 3
Optical port properties

8K entries. Nonetheless, this is changing at a fast pace. Some
of the latest devices released in the market go far beyond
that figure. Gigabit Ethernet (GbE) switches for common
business purposes are already supporting up to 32K L2+L3 or
64K L2/L3 exact match flows [122]. Enterprise class 10GbE
switches are being delivered with more than 80K Layer 2 flow
entries [123]. Other switching devices using high performance
chips (e.g., EZchip NP-4) provide optimized TCAM memory
that supports from 125K up to 1000K flow table entries [124].
This is a clear sign that the size of the flow tables is growing at
a pace aiming to meet the needs of future SDN deployments.

Networking hardware manufacturers have produced various
kinds of OpenFlow-enabled devices, as is shown in Table IV.
These devices range from equipment for small businesses
(e.g., GbE switches) to high-class data center equipment (e.g.,
high-density switch chassis with up to 100GbE connectivity
for edge-to-core applications, with tens of Tbps of switching
capacity).

Software switches are emerging as one of the most promis-
ing solutions for data centers and virtualized network in-
frastructures [147], [148], [149]. Examples of software-based
OpenFlow switch implementations include Switch Light [145],

ofsoftswitch13 [141], Open vSwitch [142], OpenFlow Ref-
erence [143], Pica8 [150], Pantou [146], and XorPlus [46].
Recent reports show that the number of virtual access ports is
already larger than physical access ports on data centers [149].
Network virtualization has been one of the drivers behind this
trend. Software switches such as Open vSwitch have been
used for moving network functions to the edge (with the core
performing traditional IP forwarding), thus enabling network
virtualization [112].

An interesting observation is the number of small, start-
up enterprises devoted to SDN, such as Big Switch, Pica8,
Cyan, Plexxi, and NoviFlow. This seems to imply that SDN is
springing a more competitive and open networking market, one
of its original goals. Other effects of this openness triggered by
SDN include the emergence of so-called “bare metal switches”
or “whitebox switches”, where the software and hardware are
sold separately and the end-user is free to load an operating
system of its choice [151].

B. Layer II: Southbound Interfaces
Southbound interfaces (or southbound APIs) are the con-

necting bridges between control and forwarding elements, thus

VERSION 2.01 12

TABLE IV
OPENFLOW ENABLED HARDWARE AND SOFTWARE DEVICES

Group Product Type Maker/Developer Version Short description

Hardware

8200zl and 5400zl [125] chassis Hewlett-Packard v1.0 Data center class chassis (switch modules).

Arista 7150 Series [126] switch Arista Networks v1.0 Data centers hybrid Ethernet/OpenFlow switches.

BlackDiamond X8 [127] switch Extreme Networks v1.0 Cloud-scale hybrid Ethernet/OpenFlow switches.

CX600 Series [128] router Huawei v1.0 Carrier class MAN routers.

EX9200 Ethernet [129] chassis Juniper v1.0 Chassis based switches for cloud data centers.

EZchip NP-4 [130] chip EZchip Technologies v1.1 High performance 100-Gigabit network processors.

MLX Series [131] router Brocade v1.0 Service providers and enterprise class routers.

NoviSwitch 1248 [124] switch NoviFlow v1.3 High performance OpenFlow switch.

NetFPGA [48] card NetFPGA v1.0 1G and 10G OpenFlow implementations.

RackSwitch G8264 [132] switch IBM v1.0 Data center switches supporting Virtual Fabric and OpenFlow.

PF5240 and PF5820 [133] switch NEC v1.0 Enterprise class hybrid Ethernet/OpenFlow switches.

Pica8 3920 [134] switch Pica8 v1.0 Hybrid Ethernet/OpenFlow switches.

Plexxi Switch 1 [135] switch Plexxi v1.0 Optical multiplexing interconnect for data centers.

V330 Series [136] switch Centec Networks v1.0 Hybrid Ethernet/OpenFlow switches.

Z-Series [137] switch Cyan v1.0 Family of packet-optical transport platforms.

Software

contrail-vrouter [138] vrouter Juniper Networks v1.0 Data-plane function to interface with a VRF.

LINC [139], [140] switch FlowForwarding v1.4 Erlang-based soft switch with OF-Config 1.1 support.

ofsoftswitch13 [141] switch Ericsson, CPqD v1.3 OF 1.3 compatible user-space software switch implementation.

Open vSwitch [142], [109] switch Open Community v1.0-1.3 Switch platform designed for virtualized server environments.

OpenFlow Reference [143] switch Stanford v1.0 OF Switching capability to a Linux PC with multiple NICs.

OpenFlowClick [144] vrouter Yogesh Mundada v1.0 OpenFlow switching element for Click software routers.

Switch Light [145] switch Big Switch v1.0 Thin switching software platform for physical/virtual switches.

Pantou/OpenWRT [146] switch Stanford v1.0 Turns a wireless router into an OF-enabled switch.

XorPlus [46] switch Pica8 v1.0 Switching software for high performance ASICs.

being the crucial instrument for clearly separating control and
data plane functionality. However, these APIs are still tightly
tied to the forwarding elements of the underlying physical or
virtual infrastructure.

Typically, a new switch can take two years to be ready for
commercialization if built from scratch, with upgrade cycles
that can take up to nine months. The software development for
a new product can take from six months to one year [152]. The
initial investment is high and risky. As a central component
of its design the southbound APIs represent one of the
major barriers for the introduction and acceptance of any new
networking technology. In this light, the emergence of SDN
southbound API proposals such as OpenFlow [9] is seen as
welcome by many in the industry. These standards promote
interoperability, allowing the deployment of vendor-agnostic
network devices. This has already been demonstrated by the
interoperability between OpenFlow-enabled equipments from
different vendors.

As of this writing, OpenFlow is the most widely accepted
and deployed open southbound standard for SDN. It provides
a common specification to implement OpenFlow-enabled for-
warding devices, and for the communication channel between
data and control plane devices (e.g., switches and controllers).
The OpenFlow protocol provides three information sources for
network operating systems. First, event-based messages are
sent by forwarding devices to the controller when a link or

port change is triggered. Second, flow statistics are generated
by the forwarding devices and collected by the controller.
Third, packet-in messages are sent by forwarding devices to
the controller when they do not known what to do with a
new incoming flow or because there is an explicit “send to
controller” action in the matched entry of the flow table. These
information channels are the essential means to provide flow-
level information to the network operating system.

Albeit the most visible, OpenFlow is not the only avail-
able southbound interface for SDN. There are other API
proposals such as ForCES [30], OVSDB [153], POF [31],
[120], OpFlex [154], OpenState [155], Revised Open-
Flow Library (ROFL) [156], Hardware Abstraction Layer
(HAL) [157], [158], and Programmable Abstraction of Data-
path (PAD) [159]. ForCES proposes a more flexible approach
to traditional network management without changing the cur-
rent architecture of the network, i.e., without the need of a
logically-centralized external controller. The control and data
planes are separated but can potentially be kept in the same
network element. However, the control part of the network
element can be upgraded on-the-fly with third-party firmware.

OVSDB [153] is another type of southbound API, de-
signed to provide advanced management capabilities for Open
vSwitches. Beyond OpenFlow’s capabilities to configure the
behavior of flows in a forwarding device, an Open vSwitch
offers other networking functions. For instance, it allows the

VERSION 2.01 13

control elements to create multiple virtual switch instances, set
QoS policies on interfaces, attach interfaces to the switches,
configure tunnel interfaces on OpenFlow data paths, manage
queues, and collect statistics. Therefore, the OVSDB is a
complementary protocol to OpenFlow for Open vSwitch.

One of the first direct competitors of OpenFlow is POF [31],
[120]. One of the main goals of POF is to enhance the current
SDN forwarding plane. With OpenFlow, switches have to
understand the protocol headers to extract the required bits to
be matched with the flow tables entries. This parsing represents
a significant burden for data plane devices, in particular if we
consider that OpenFlow version 1.3 already contains more than
40 header fields. Besides this inherent complexity, backward
compatibility issues may arise every time new header fields
are included in or removed from the protocol. To achieve its
goal, POF proposes a generic flow instruction set (FIS) that
makes the forwarding plane protocol-oblivious. A forwarding
element does not need to know, by itself, anything about the
packet format in advance. Forwarding devices are seen as
white boxes with only processing and forwarding capabilities.
In POF, packet parsing is a controller task that results in a
sequence of generic keys and table lookup instructions that
are installed in the forwarding elements. The behavior of data
plane devices is therefore completely under the control of the
SDN controller. Similar to a CPU in a computer system, a
POF switch is application- and protocol-agnostic.

A recent southbound interface proposal is OpFlex [154].
Contrary to OpenFlow (and similar to ForCES), one of the
ideas behind OpFlex is to distribute part of the complexity of
managing the network back to the forwarding devices, with the
aim of improving scalability. Similar to OpenFlow, policies are
logically centralized and abstracted from the underlying im-
plementation. The differences between OpenFlow and OpFlex
are a clear illustration of one of the important questions to
be answered when devising a southbound interface: where to
place each piece of the overall functionality.

In contrast to OpFlex and POF, OpenState [155] and
ROFL [156] do not propose a new set of instructions for
programming data plane devices. OpenState proposes ex-
tended finite machines (stateful programming abstractions)
as an extension (super-set) of the OpenFlow match/action
abstraction. Finite state machines allow the implementation of
several stateful tasks inside forwarding devices, i.e., without
augmenting the complexity or overhead of the control plane.
For instance, all tasks involving only local state, such as MAC
learning operations, port knocking or stateful edge firewalls
can be performed directly on the forwarding devices without
any extra control plane communication and processing delay.
ROFL, on the other hand, proposes an abstraction layer that
hides the details of the different OpenFlow versions, thus
providing a clean API for software developers, simplifying
application development.

HAL [157], [158] is not exactly a southbound API, but
is closely related. Differently from the aforementioned ap-
proaches, HAL is rather a translator that enables a southbound
API such as OpenFlow to control heterogeneous hardware
devices. It thus sits between the southbound API and the
hardware device. Recent research experiments with HAL

have demonstrated the viability of SDN control in access
networks such as Gigabit Ethernet passive optical networks
(GEPONs) [160] and cable networks (DOCSIS) [161]. A
similar effort to HAL is the Programmable Abstraction of
Datapath (PAD) [159], a proposal that goes a bit further by also
working as a southbound API by itself. More importantly, PAD
allows a more generic programming of forwarding devices by
enabling the control of datapath behavior using generic byte
operations, defining protocol headers and providing function
definitions.

C. Layer III: Network Hypervisors

Virtualization is already a consolidated technology in mod-
ern computers. The fast developments of the past decade have
made virtualization of computing platforms mainstream. Based
on recent reports, the number of virtual servers has already
exceeded the number of physical servers [162], [112].

Hypervisors enable distinct virtual machines to share the
same hardware resources. In a cloud infrastructure-as-a-service
(IaaS), each user can have its own virtual resources, from
computing to storage. This enabled new revenue and business
models where users allocate resources on-demand, from a
shared physical infrastructure, at a relatively low cost. At the
same time, providers make better use of the capacity of their
installed physical infrastructures, creating new revenue streams
without significantly increasing their CAPEX and OPEX costs.
One of the interesting features of virtualization technologies
today is the fact that virtual machines can be easily migrated
from one physical server to another and can be created and/or
destroyed on-demand, enabling the provisioning of elastic
services with flexible and easy management. Unfortunately,
virtualization has been only partially realized in practice. De-
spite the great advances in virtualizing computing and storage
elements, the network is still mostly statically configured in a
box-by-box manner [33].

The main network requirements can be captured along two
dimensions: network topology and address space. Different
workloads require different network topologies and services,
such as flat L2 or L3 services, or even more complex L4-
L7 services for advanced functionality. Currently, it is very
difficult for a single physical topology to support the diverse
demands of applications and services. Similarly, address space
is hard to change in current networks. Nowadays, virtualized
workloads have to operate in the same address of the physical
infrastructure. Therefore, it is hard to keep the original network
configuration for a tenant, virtual machines can not migrate to
arbitrary locations, and the addressing scheme is fixed and hard
to change. For example, IPv6 cannot be used by the VMs of
a tenant if the underlying physical forwarding devices support
only IPv4.

To provide complete virtualization the network should pro-
vide similar properties to the computing layer [33]. The net-
work infrastructure should be able to support arbitrary network
topologies and addressing schemes. Each tenant should have
the ability to configure both the computing nodes and the
network simultaneously. Host migration should automatically
trigger the migration of the corresponding virtual network

VERSION 2.01 14

ports. One might think that long standing virtualization primi-
tives such as VLANs (virtualized L2 domain), NAT (Virtu-
alized IP address space), and MPLS (virtualized path) are
enough to provide full and automated network virtualization.
However, these technologies are anchored on a box-by-box
basis configuration, i.e., there is no single unifying abstraction
that can be leveraged to configure (or reconfigure) the network
in a global manner. As a consequence, current network provi-
sioning can take months, while computing provisioning takes
only minutes [112], [163], [164], [165].

There is hope that this situation will change with SDN
and the availability of new tunneling techniques (e.g.,
VXLAN [35], NVGRE [36]). For instance, solutions such
as FlowVisor [166], [111], [167], FlowN [168], NVP [112],
OpenVirteX [169], [170], IBM SDN VE [171], [172], Radio-
Visor [173], AutoVFlow [174], eXtensible Datapath Daemon
(xDPd) [175], [176], optical transport network virtualiza-
tion [177], and version-agnostic OpenFlow slicing mecha-
nisms [178], have been recently proposed, evaluated and
deployed in real scenarios for on-demand provisioning of
virtual networks.

Slicing the network
FlowVisor is one of the early technologies to virtualize

a SDN. Its basic idea is to allow multiple logical networks
share the same OpenFlow networking infrastructure. For this
purpose, it provides an abstraction layer that makes it easier
to slice a data plane based on off-the-shelf OpenFlow-enabled
switches, allowing multiple and diverse networks to co-exist.

Five slicing dimensions are considered in FlowVisor: band-
width, topology, traffic, device CPU and forwarding tables.
Moreover, each network slice supports a controller, i.e., mul-
tiple controllers can co-exist on top of the same physical
network infrastructure. Each controller is allowed to act only
on its own network slice. In general terms, a slice is defined
as a particular set of flows on the data plane. From a system
design perspective, FlowVisor is a transparent proxy that inter-
cepts OpenFlow messages between switches and controllers.
It partitions the link bandwidth and flow tables of each switch.
Each slice receives a minimum data rate and each guest
controller gets its own virtual flow table in the switches.

Similarly to FlowVisor, OpenVirteX [169], [170] acts as
a proxy between the network operating system and the
forwarding devices. However, its main goal is to provide
virtual SDNs through both topology, address, and control
function virtualization. All these properties are necessary in
multi-tenant environments where virtual networks need to
be managed and migrated according to the computing and
storage virtual resources. Virtual network topologies have to be
mapped onto the underlying forwarding devices, with virtual
addresses allowing tenants to completely manage their address
space without depending on the underlying network elements
addressing schemes.

AutoSlice [179] is another SDN-based virtualization pro-
posal. Differently from FlowVisor, it focuses on the au-
tomation of the deployment and operation of vSDN (virtual
SDN) topologies with minimal mediation or arbitration by
the substrate network operator. Additionally, AutoSlice targets

also scalability aspects of network hypervisors by optimizing
resource utilization and by mitigating the flow-table limitations
through a precise monitoring of the flow traffic statistics.
Similarly to AutoSlice, AutoVFlow [174] also enables multi-
domain network virtualization. However, instead of having a
single third party to control the mapping of vSDN topologies,
as is the case of AutoSlice, AutoVFlow uses a multi-proxy
architecture that allows network owners to implement flow
space virtualization in an autonomous way by exchanging
information among the different domains.

FlowN [168], [180] is based on a slightly different concept.
Whereas FlowVisor can be compared to a full virtualization
technology, FlowN is analogous to a container-based virtu-
alization, i.e., a lightweight virtualization approach. FlowN
was also primarily conceived to address multi-tenancy in the
context of cloud platforms. It is designed to be scalable and
allows a unique shared controller platform to be used for
managing multiple domains in a cloud environment. Each
tenant has full control over its virtual networks and is free
to deploy any network abstraction and application on top of
the controller platform.

The compositional SDN hypervisor [181] was designed with
a different set of goals. Its main objective is to allow the
cooperative (sequential or parallel) execution of applications
developed with different programming languages or conceived
for diverse control platforms. It thus offers interoperability
and portability in addition to the typical functions of network
hypervisors.

Commercial multi-tenant network hypervisors
None of the aforementioned approaches is designed to ad-

dress all challenges of multi-tenant data centers. For instance,
tenants want to be able to migrate their enterprise solutions
to cloud providers without the need to modify the network
configuration of their home network. Existing networking
technologies and migration strategies have mostly failed to
meet both the tenant and the service provider requirements.
A multi-tenant environment should be anchored in a network
hypervisor capable of abstracting the underlaying forwarding
devices and physical network topology from the tenants.
Moreover, each tenant should have access to control abstrac-
tions and manage its own virtual networks independently and
isolated from other tenants.

With the market demand for network virtualization and the
recent research on SDN showing promise as an enabling tech-
nology, different commercial virtualization platforms based on
SDN concepts have started to appear. VMWare has proposed a
network virtualization platform (NVP) [112] that provides the
necessary abstractions to allow the creation of independent
virtual networks for large-scale multi-tenant environments.
NVP is a complete network virtualization solution that allows
the creation of virtual networks, each with independent service
model, topologies, and addressing architectures over the same
physical network. With NVP, tenants do not need to know
anything about the underlying network topology, configuration
or other specific aspects of the forwarding devices. NVP’s
network hypervisor translates the tenants configurations and
requirements into low level instruction sets to be installed on

VERSION 2.01 15

the forwarding devices. For this purpose, the platform uses a
cluster of SDN controllers to manipulate the forwarding tables
of the Open vSwitches in the host’s hypervisor. Forwarding
decisions are therefore made exclusively on the network edge.
After the decision is made, the packet is tunneled over the
physical network to the receiving host hypervisor (the physical
network sees nothing but ordinary IP packets).

IBM has also recently proposed SDN VE [171], [172],
another commercial and enterprise-class network virtualiza-
tion platform. SDN VE uses OpenDaylight as one of the
building blocks of the so-called Software-Defined Environ-
ments (SDEs), a trend further discussed in Section V. This
solution also offers a complete implementation framework
for network virtualization. Like NVP, it uses a host-based
overlay approach, achieving advanced network abstraction that
enables application-level network services in large-scale multi-
tenant environments. Interestingly, SDN VE 1.0 is capable
of supporting in one single instantiation up to 16,000 virtual
networks and 128,000 virtual machines [171], [172].

To summarize, currently there are already a few network
hypervisor proposals leveraging the advances of SDN. There
are, however, still several issues to be addressed. These in-
clude, among others, the improvement of virtual-to-physical
mapping techniques [182], the definition of the level of detail
that should be exposed at the logical level, and the support for
nested virtualization [29]. We anticipate, however, this ecosys-
tem to expand in the near future since network virtualization
will most likely play a key role in future virtualized environ-
ments, similarly to the expansion we have been witnessing in
virtualized computing.

D. Layer IV: Network Operating Systems / Controllers

Traditional operating systems provide abstractions (e.g.,
high-level programming APIs) for accessing lower-level de-
vices, manage the concurrent access to the underlying re-
sources (e.g., hard drive, network adapter, CPU, memory), and
provide security protection mechanisms. These functionalities
and resources are key enablers for increased productivity, mak-
ing the life of system and application developers easier. Their
widespread use has significantly contributed to the evolution
of various ecosystems (e.g., programming languages) and the
development of a myriad of applications.

In contrast, networks have so far been managed and con-
figured using lower level, device-specific instruction sets and
mostly closed proprietary network operating systems (e.g.,
Cisco IOS and Juniper JunOS). Moreover, the idea of op-
erating systems abstracting device-specific characteristics and
providing, in a transparent way, common functionalities is still
mostly absent in networks. For instance, nowadays designers
of routing protocols need to deal with complicated distributed
algorithms when solving networking problems. Network prac-
titioners have therefore been solving the same problems over
and over again.

SDN is promised to facilitate network management and ease
the burden of solving networking problems by means of the
logically-centralized control offered by a network operating
system (NOS) [26]. As with traditional operating systems,

the crucial value of a NOS is to provide abstractions, es-
sential services, and common application programming inter-
faces (APIs) to developers. Generic functionality as network
state and network topology information, device discovery,
and distribution of network configuration can be provided as
services of the NOS. With NOSs, to define network policies a
developer no longer needs to care about the low-level details of
data distribution among routing elements, for instance. Such
systems can arguably create a new environment capable of
fostering innovation at a faster pace by reducing the inherent
complexity of creating new network protocols and network
applications.

A NOS (or controller) is a critical element in an SDN
architecture as it is the key supporting piece for the control
logic (applications) to generate the network configuration
based on the policies defined by the network operator. Similar
to a traditional operating system, the control platform abstracts
the lower-level details of connecting and interacting with
forwarding devices (i.e., of materializing the network policies).

Architecture and design axes

There is a very diverse set of controllers and control
platforms with different design and architectural choices [7],
[13], [183], [184], [185], [186]. Existing controllers can be
categorized based on many aspects. From an architectural
point of view, one of the most relevant is if they are centralized
or distributed. This is one of the key design axes of SDN
control platforms, so we start by discussing this aspect next.

Centralized vs. Distributed
A centralized controller is a single entity that manages all

forwarding devices of the network. Naturally, it represents a
single point of failure and may have scaling limitations. A
single controller may not be enough to manage a network with
a large number of data plane elements. Centralized controllers
such as NOX-MT [187], Maestro [188], Beacon [186], and
Floodlight [189] have been designed as highly concurrent
systems, to achieve the throughput required by enterprise class
networks and data centers. These controllers are based on
multi-threaded designs to explore the parallelism of multi-core
computer architectures. As an example, Beacon can deal with
more than 12 million flows per second by using large size com-
puting nodes of cloud providers such as Amazon [186]. Other
centralized controllers such as Trema [190], Ryu NOS [191],
Meridian [192], and ProgrammableFlow [193], [133] target
specific environments such as data centers, cloud infrastruc-
tures, and carrier grade networks. Furthermore, controllers
such as Rosemary [194] offer specific functionality and guar-
antees, namely security and isolation of applications. By using
a container-based architecture called micro-NOS, it achieves
its primary goal of isolating applications and preventing the
propagation of failures throughout the SDN stack.

Contrary to a centralized design, a distributed network
operating system can be scaled up to meet the requirements
of potentially any environment, from small to large-scale
networks. A distributed controller can be a centralized cluster
of nodes or a physically distributed set of elements. While
the first alternative can offer high throughput for very dense

VERSION 2.01 16

data centers, the latter can be more resilient to different kinds
of logical and physical failures. A cloud provider that spans
multiple data centers interconnected by a wide area network
may require a hybrid approach, with clusters of controllers
inside each data center and distributed controller nodes in the
different sites [8].

Onix [7], HyperFlow [195], HP VAN SDN [184],
ONOS [117], DISCO [185], yanc [196], PANE [197], SMaRt-
Light [198], and Fleet [199] are examples of distributed
controllers. Most distributed controllers offer weak consistency
semantics, which means that data updates on distinct nodes
will eventually be updated on all controller nodes. This implies
that there is a period of time in which distinct nodes may
read different values (old value or new value) for a same
property. Strong consistency, on the other hand, ensures that
all controller nodes will read the most updated property
value after a write operation. Despite its impact on system
performance, strong consistency offers a simpler interface
to application developers. To date, only Onix, ONOS, and
SMaRtLight provide this data consistency model.

Another common property of distributed controllers is fault
tolerance. When one node fails, another neighbor node should
take over the duties and devices of the failed node. So far,
despite some controllers tolerating crash failures, they do not
tolerate arbitrary failures, which means that any node with an
abnormal behavior will not be replaced by a potentially well
behaved one.

A single controller may be enough to manage a small
network, however it represents a single point of failure.
Similarly, independent controllers can be spread across the
network, each of them managing a network segment, reducing
the impact of a single controller failure. Yet, if the control
plane availability is critical, a cluster of controllers can be used
to achieve a higher degree of availability and/or for supporting
more devices. Ultimately, a distributed controller can improve
the control plane resilience, scalability and reduce the impact
of problems caused by network partition, for instance. SDN
resiliency as a whole is an open challenge that will be further
discussed in Section V-C.

Dissecting SDN Controller Platforms

To provide a better architectural overview and understanding
the design a network operating system, Table V summarizes
some of the most relevant architectural and design prop-
erties of SDN controllers and control platforms. We have
focused on the elements, services and interfaces of a selection
of production-level, well-documented controllers and control
platforms. Each line in the table represent a component we
consider important in a modular and scalable control platform.
We observe a highly diversified environment, with different
properties and components being used by distinct control
platforms. This is not surprising, given an environment with
many competitors willing to be at the forefront of SDN
development. Note also that not all components are available
on all platforms. For instance, east/westbound APIs are not
required in centralized controllers such as Beacon. In fact,
some platforms have very specific niche markets, such as
telecom companies and cloud providers, so the requirements

will be different.
Based on the analysis of the different SDN controllers

proposed to date (both those presented in Table V and oth-
ers, such as NOX [26], Meridian [192], ForCES [30], and
FortNOX [201]), we extract several common elements and
provide a first attempt to clearly and systematically dissect
an SDN control platform in Figure 8.

There are at least three relatively well-defined layers in most
of the existing control platforms: (i) the application, orches-
tration and services; (ii) the core controller functions, and (iii)
the elements for southbound communications. The connection
at the upper-level layers is based on northbound interfaces
such as REST APIs [202] and programming languages such
as FML [203], Frenetic [204] and NetCore [205]. On the
lower-level part of a control platform, southbound APIs and
protocol plugins interface the forwarding elements. The core
of a controller platform can be characterized as a combination
of its base network service functions and the various interfaces.

Core controller functions
The base network service functions are what we consider

the essential functionality all controllers should provide. As
an analogy, these functions are like base services of op-
erating systems, such as program execution, I/O operations
control, communications, protection, and so on. These services
are used by other operating system level services and user
applications. In a similar way, functions such as topology,
statistics, notifications and device management, together with
shortest path forwarding and security mechanisms are essential
network control functionalities that network applications may
use in building its logic. For instance, the notification man-
ager should be able to receive, process, and forward events
(e.g., alarm notifications, security alarms, state changes) [55].
Security mechanisms are another example, as they are critical
components to provide basic isolation and security enforce-
ment between services and applications. For instance, rules
generated by high priority services should not be overwritten
with rules created by applications with a lower priority.

Southbound
On the lower-level of control platforms, the southbound

APIs can be seen as a layer of device drivers. They provide
a common interface for the upper layers, while allowing
a control platform to use different southbound APIs (e.g.,
OpenFlow, OVSDB, ForCES) and protocol plugins to manage
existing or new physical or virtual devices (e.g., SNMP, BGP,
NetConf). This is essential both for backward compatibility
and heterogeneity, i.e., to allow multiple protocols and device
management connectors. Therefore, on the data plane, a mix
of physical devices, virtual devices (e.g., Open vSwitch [142],
[109], vRouter [206]) and a variety of device interfaces (e.g.,
OpenFlow, OVSDB, of-config [207], NetConf, and SNMP)
can co-exist.

Most controllers support only OpenFlow as a southbound
API. Still, a few of them, such as OpenDaylight, Onix and HP
VAN SDN Controller, offer a wider range of southbound APIs
and/or protocol plugins. Onix supports both the OpenFlow
and OVSDB protocols. The HP VAN SDN Controller has
other southbound connectors such as L2 and L3 agents.

VERSION 2.01 17

TABLE V
ARCHITECTURE AND DESIGN ELEMENTS OF CONTROL PLATFORMS

Component OpenDaylight OpenContrail HP VAN SDN Onix Beacon
Base network x
services

Topology/Stats/Switch
Manager, Host x
Tracker, Shortest x
Path Forwarding

Routing, Tenant x
Isolation

Audit Log, Alerts, x
Topology, Discovery

Discovery, Multi- x
consistency Storage, x
Read State, Register x
for updates

Topology, device x
manager, and routing

East/Westbound
APIs

— Control Node (XMPP-x
like control channel)

Sync API Distribution I/O module Not present

Integration
Plug-ins

OpenStack Neutron CloudStack, OpenStack OpenStack — —

Management
Interfaces

GUI/CLI, REST API GUI/CLI REST API Shell / GUI
Shell

— Web

Northbound
APIs

REST, REST-
CONF [200], Java
APIs

REST APIs (configu-
ration, operational, and
analytic)

REST API, GUI Shell Onix API (general x
purpose)

API (based on x
OpenFlow events)

Service
abstraction
layers

Service Abstraction x
Layer (SAL)

— Device Abstraction API Network Information x
Base (NIB) Graph x
with Import/Export x
Functions

—

Southbound
APIs or x
connectors

OpenFlow, OVSDB, x
SNMP, PCEP, BGP, x
NETCONF

— OpenFlow, L3 Agent, x
L2 Agent

OpenFlow, OVSDB OpenFlow

Security !
ACLs!

Network
Virtualization! Management Applications!

Controller Platform!

Southbound Interfaces!

Data Plane Elements !Hardware-based Forwarding
Devices!

Software-based Forwarding
Devices!

OpenFlow! OVSDB!

Topology Manager! Stats Manager! Device Manager!

Shortest Path Forwarding!

SDNi! ForCES!

Routing
Protocols!

Load
Balancers!

ForCES
CE-CE!

Network
Monitoring!

POF!

Northbound Interfaces!REST! Programming Languages!

Southbound Abstraction Layer!East/Westbound  
Abstraction Layer! Common Interfaces!

Attack
Detection!

Notification Manager! Security Mechanisms!
East/Westbound !
Mechanisms &

Protocols!

Fig. 8. SDN control platforms: elements, services and interfaces

OpenDaylight goes a step beyond by providing a Service
Layer Abstraction (SLA) that allows several southbound APIs
and protocols to co-exist in the control platform. For instance,
its original architecture was designed to support at least seven
different protocols and plugins: OpenFlow, OVSDB [153],
NETCONF [44], PCEP [43], SNMP [208], BGP [42] and
LISP Flow Mapping [13]. Hence, OpenDaylight is one of the
few control platforms being conceived to support a broader
integration of technologies in a single control platform.

Eastbound and Westbound
East/westbound APIs, as illustrated in Figure 9, are a special

case of interfaces required by distributed controllers. Currently,

each controller implements its own east/westbound API. The
functions of these interfaces include import/export data be-
tween controllers, algorithms for data consistency models, and
monitoring/notification capabilities (e.g., check if a controller
is up or notify a take over on a set of forwarding devices).

Similarly to southbound and northbound interfaces,
east/westbound APIs are essential components of distributed
controllers. To identify and provide common compatibility
and interoperability between different controllers, it is neces-
sary to have standard east/westbound interfaces. For instance,
SDNi [209] defines common requirements to coordinate flow
setup and exchange reachability information across multiple

VERSION 2.01 18

0.75

SDN	
 Controller	
 Node	

Onix	

ONOS	

yanc	

SDN	
 Controller	
 Node	

Trema	

ODL	

Floodlight	

Westbound/	

Eastbound	
 APIs	

Fig. 9. Distributed controllers: east/westbound APIs.

domains. In essence, such protocols can be used in an or-
chestrated and interoperable way to create more scalable and
dependable distributed control platforms. Interoperability can
be leveraged to increase the diversity of the control platform
element. Indeed, diversity increases the system robustness by
reducing the probability of common faults, such as software
faults [210].

Other proposals that try to define interfaces between con-
trollers include Onix data import/export functions [7], ForCES
CE-CE interface [30], [211], ForCES Intra-NE cold-standby
mechanisms for high availability [212], and distributed data
stores [213]. An east/westbound API requires advanced data
distribution mechanisms such as the Advanced Message Queu-
ing Protocol (AMQP) [214] used by DISCO [185], techniques
for distributed concurrent and consistent policy composi-
tion [215], transactional databases and DHTs [216] (as used
in Onix [7]), or advanced algorithms for strong consistency
and fault tolerance [213], [198].

In a multi-domain setup, east/westbound APIs may require
also more specific communication protocols between SDN
domain controllers [217]. Some of the essential functions of
such protocols are to coordinate flow setup originated by
applications, exchange reachability information to facilitate
inter-SDN routing, reachability update to keep the network
state consistent, among others.

Another important issue regarding east/westbound interfaces
is heterogeneity. For instance, besides communicating with
peer SDN controllers, controllers may also need to communi-
cate with subordinate controllers (in a hierarchy of controllers)
and non-SDN controllers [218], as is the case of Closed-
Flow [219]. To be interoperable, east/westbound interfaces
thus need to accommodate different controller interfaces, with
their specific set of services, and the diverse characteristics
of the underlying infrastructure, including the diversity of
technology, the geographic span and scale of the network, and
the distinction between WAN and LAN – potentially across
administrative boundaries. In those cases, different information
has to be exchanged between controllers, including adjacency
and capability discovery, topology information (to the extent of
the agreed contracts between administrative domains), billing
information, among many others [218].

Lastly, a “SDN compass” methodology [220] suggests a
finer distinction between eastbound and westbound horizon-
tal interfaces, referring to westbound interfaces as SDN-to-
SDN protocols and controller APIs while eastbound interfaces
would be used to refer to standard protocols used to commu-

nicate with legacy network control planes (e.g., PCEP [43],
GMPLS [221]).

Northbound
Current controllers offer a quite broad variety of north-

bound APIs, such as ad-hoc APIs, RESTful APIs [202],
multi-level programming interfaces, file systems, among other
more specialized APIs such as NVP NBAPI [7], [112] and
SDMN API [222]. Section IV-E is devoted to a more detailed
discussion on the evolving layer of northbound APIs. A second
kind of northbound interfaces are those stemming out of SDN
programming languages such as Frenetic [204], Nettle [223],
NetCore [205], Procera [224], Pyretic [225], NetKAT [226]
and other query-based languages [227]. Section IV-G gives a
more detailed overview of the several existing programming
languages for SDN.

Wrapping up remarks and platforms comparison
Table VI shows a summary of some of the existing con-

trollers with their respective architectures and characteristics.
As can be observed, most controllers are centralized and multi-
threaded. Curiously, the northbound API is very diverse. In
particular, five controllers (Onix, Floodlight, MuL, Meridian
and SDN Unified Controller) pay a bit more attention to this
interface, as a statement of its importance. Consistency models
and fault tolerance are only present in Onix, HyperFlow, HP
VAN SDN, ONOS and SMaRtLight. Lastly, when it comes to
the OpenFlow standard as southbound API, only Ryu supports
its three major versions (v1.0, v1.2 and v1.3).

To conclude, it is important to emphasize that the control
platform is one of the critical points for the success of
SDN [233]. One of the main issues that needs to be addressed
in this respect is interoperability. This is rather interesting, as
it was the very first problem that southbound APIs (such as
OpenFlow) tried to solve. For instance, while WiFi and LTE
(Long-Term Evolution) networks [234] need specialized con-
trol platforms such as MobileFlow [222] or SoftRAN [235],
data center networks have different requirements that can be
met with platforms such as Onix [7] or OpenDaylight [13].
For this reason, in environments where diversity of network-
ing infrastructures is a reality, coordination and cooperation
between different controllers is crucial. Standardized APIs for
multi-controller and multi-domain deployments are therefore
seen as an important step to achieve this goal.

E. Layer V: Northbound Interfaces
The North- and Southbound interfaces are two key ab-

stractions of the SDN ecosystem. The southbound interface
has already a widely accepted proposal (OpenFlow), but a
common northbound interface is still an open issue. At this
moment it may still be a bit too early to define a standard
northbound interface, as use-cases are still being worked
out [236]. Anyway, it is to be expected a common (or
a de facto) northbound interface to arise as SDN evolves.
An abstraction that would allow network applications not to
depend on specific implementations is important to explore the
full potential of SDN

The northbound interface is mostly a software ecosystem,
not a hardware one as is the case of the southbound APIs.

VERSION 2.01 19

TABLE VI
CONTROLLERS CLASSIFICATION

Name Architecture Northbound API Consistency Faults License Prog. language Version
Beacon [186] centralized multi-threaded ad-hoc API no no GPLv2 Java v1.0

DISCO [185] distributed REST — yes — Java v1.1

Fleet [199] distributed ad-hoc no no — — v1.0

Floodlight [189] centralized multi-threaded RESTful API no no Apache Java v1.1

HP VAN SDN [184] distributed RESTful API weak yes — Java v1.0

HyperFlow [195] distributed — weak yes — C++ v1.0

Kandoo [228] hierarchically distributed — no no — C, C++, Python v1.0

Onix [7] distributed NVP NBAPI weak, strong yes commercial Python, C v1.0

Maestro [188] centralized multi-threaded ad-hoc API no no LGPLv2.1 Java v1.0

Meridian [192] centralized multi-threaded extensible API layer no no — Java v1.0

MobileFlow [222] — SDMN API — — — — v1.2

MuL [229] centralized multi-threaded multi-level interface no no GPLv2 C v1.0

NOX [26] centralized ad-hoc API no no GPLv3 C++ v1.0

NOX-MT [187] centralized multi-threaded ad-hoc API no no GPLv3 C++ v1.0

NVP Controller [112] distributed — — — commercial — —

OpenContrail [183] — REST API no no Apache 2.0 Python, C++, Java v1.0

OpenDaylight [13] distributed REST, RESTCONF weak no EPL v1.0 Java v1.{0,3}
ONOS [117] distributed RESTful API weak, strong yes — Java v1.0

PANE [197] distributed PANE API yes — — — —

POX [230] centralized ad-hoc API no no GPLv3 Python v1.0

ProgrammableFlow [231] centralized — — — — C v1.3

Rosemary [194] centralized ad-hoc — — — — v1.0

Ryu NOS [191] centralized multi-threaded ad-hoc API no no Apache 2.0 Python v1.{0,2,3}
SMaRtLight [198] distributed RESTful API no no Apache Java v1.0

SNAC [232] centralized ad-hoc API no no GPL C++ v1.0

Trema [190] centralized multi-threaded ad-hoc API no no GPLv2 C, Ruby v1.0

Unified Controller [171] — REST API — — commercial — v1.0

yanc [196] distributed file system — — — — —

In these ecosystems, the implementation is commonly the
forefront driver, while standards emerge later and are essen-
tially driven by wide adoption [237]. Nevertheless, an initial
and minimal standard for northbound interfaces can still play
an important role for the future of SDN. Discussions about
this issue have already begun [236], [237], [238], [239],
[240], [241], [242], [243], and a common consensus is that
northbound APIs are indeed important but that it is indeed too
early to define a single standard right now. The experience
from the development of different controllers will certainly
be the basis for coming up with a common application level
interface.

Open and standard northbound interfaces are crucial to
promote application portability and interoperability among the
different the control platforms. A northbound API can be
compared to the POSIX standard [244] in operating systems,
representing an abstraction that guarantees programming lan-
guage and controller independence. NOSIX [245] is one of the
first examples of an effort in this direction. It tries to define
portable low-level (e.g., flow model) application interfaces,
making southbound APIs such as OpenFlow look like “device

drivers”. However, NOSIX is not exactly a general purpose
northbound interface, but rather a higher-level abstraction for
southbound interfaces. Indeed, it could be part of the common
abstraction layer in a control platform as the one described in
Section IV-D.

Existing controllers such as Floodlight, Trema, NOX, Onix,
and OpenDaylight propose and define their own northbound
APIs [238], [246]. However, each of them has its own specific
definitions. Programming languages such as Frenetic [204],
Nettle [223], NetCore [205], Procera [224], Pyretic [247] and
NetKAT [226] also abstract the inner details of the controller
functions and data plane behavior from the application devel-
opers. Moreover, as we explain in Section IV-G, programming
languages can provide a wide range of powerful abstractions
and mechanisms such as application composition, transparent
data plane fault tolerance, and a variety of basic building
blocks to ease software module and application development.

SFNet [248] is another example of a northbound interface.
It is a high-level API that translates application requirements
into lower level service requests. However, SFNet has a limited
scope, targeting queries to request the congestion state of

VERSION 2.01 20

the network and services such as bandwidth reservation and
multicast.

Other proposals use different approaches to allow appli-
cations to interact with controllers. The yanc control plat-
form [196] explores this idea by proposing a general control
platform based on Linux and abstractions such as the virtual
file system (VFS). This approach simplifies the development of
SDN applications as programmers are able to use a traditional
concept (files) to communicate with lower level devices and
sub-systems.

Eventually, it is unlikely that a single northbound interface
emerges as the winner, as the requirements for different
network applications are quite different. APIs for security
applications are likely to be different from those for routing
or financial applications. One possible path of evolution for
northbound APIs are vertically-oriented proposals, before any
type of standardization occurs, a challenge the ONF has started
to undertake in the NBI WG in parallel to open-source SDN
developments [50]. The ONF architectural work [218] includes
the possibility of northbound APIs providing resources to
enable dynamic and granular control of the network resources
from customer applications, eventually across different busi-
ness and organizational boundaries.

There are also other kind of APIs, such as those provided
by the PANE controller [197]. Designed to be suitable for the
concept of participatory networking, PANE allows network
administrators to define module-specific quotas and access
control policies on network resources. The controller provides
an API that allows end-host applications to dynamically and
autonomously request network resources. For example, audio
(e.g., VoIP) and video applications can easily be modified to
use the PANE API to reserve bandwidth for certain quality
guarantees during the communication session. PANE includes
a compiler and verification engine to ensure that bandwidth
requests do not exceed the limits set by the administrator
and to avoid starvation, i.e., other applications shall not be
impaired by new resource requests.

F. Layer VI: Language-based Virtualization

Two essential characteristics of virtualization solutions are
the capability of expressing modularity and of allowing dif-
ferent levels of abstractions while still guaranteeing desired
properties such as protection. For instance, virtualization tech-
niques can allow different views of a single physical infrastruc-
ture. As an example, one virtual “big switch” could represent
a combination of several underlying forwarding devices. This
intrinsically simplifies the task of application developers as
they do not need to think about the sequence of switches
where forwarding rules have to be installed, but rather see
the network as a simple “big switch”. Such kind of abstrac-
tion significantly simplify the development and deployment
of complex network applications, such as advanced security
related services.

Pyretic [247] is an interesting example of a programming
language that offers this type of high-level abstraction of
network topology. It incorporates this concept of abstraction
by introducing network objects. These objects consist of an

abstract network topology and the sets of policies applied to
it. Network objects simultaneously hide information and offer
the required services.

Another form of language-based virtualization is static
slicing. This a scheme where the network is sliced by a
compiler, based on application layer definitions. The output
of the compiler is a monolithic control program that has
already slicing definitions and configuration commands for the
network. In such a case, there is no need for a hypervisor
to dynamically manage the network slices. Static slicing can
be valuable for deployments with specific requirements, in
particular those where higher performance and simple isolation
guarantees are preferrable to dynamic slicing.

One example of static slicing approach it the Splendid
isolation [249]. In this solution the network slices are made
of 3 components: (a) topology, consisting of switches, ports,
and links; (b) mapping of slice-level switches, ports and
links on the network infrastructure; (c) predicates on packets,
where each port of the slice’s edge switches has an associated
predicate. The topology is a simple graph of the sliced nodes,
ports and links. Mapping will translate the abstract topology
elements into the corresponding physical ones. The predicates
are used to indicate whether a packet is permitted or not to
enter a specific slice. Different applications can be associated
to each slice. The compiler takes the combination of slices
(topology, mapping, and predicates) and respective programs
to generate a global configuration for the entire network. It also
ensures that properties such as isolation are enforced among
slices, i.e., no packets of a slice A can traverse to a slice B
unless explicitly allowed.

Other solutions, such as libNetVirt [250], try to integrate
heterogeneous technologies for creating static network slices.
libNetVirt is a library designed to provide a flexible way to
create and manage virtual networks in different computing
environments. Its main idea is similar to the OpenStack Quan-
tum project [251]. While Quantum is designed for OpenStack
(cloud environments), libNetVirt is a more general purpose
library which can be used in different environments. Addition-
ally, it goes one step beyond OpenStack Quantum by enabling
QoS capabilities in virtual networks [250]. The libNetVirt
library has two layers: (1) a generic network interface; and
(2) technology specific device drivers (e.g., VPN, MPLS,
OpenFlow). On top of the layers are the network applications
and virtual network descriptions. The OpenFlow driver uses a
NOX controller to manage the underlying infrastructure, using
OpenFlow rule-based flow tables to create isolated virtual
networks. By supporting different technologies, it can be used
as a bridging component in heterogeneous networks.

Table VII summarizes the hypervisor and non-hypervisor
based virtualization technologies. As can be observed, only
libNetVirt supports heterogeneous technologies, not restricting
its application to OpenFlow-enabled networks. FlowVisor,
AutoSlice and OpenVirteX allow multiple controllers, one per
network slice. FlowN provides a container-based approach
where multiple applications from different users can co-exist
on a single controller. FlowVisor allows QoS provisioning
guarantees by using VLAN PCP bits for priority queues. SDN
VE and NVP also provide their own provisioning methods for

VERSION 2.01 21

TABLE VII
VIRTUALIZATION SOLUTIONS

Solution Multiple controllers Slicing QoS “guarantees” Multi-technology
AutoVFlow [174] yes, one per tenant flow space virtualization no no, OF only

AutoSlice [179] yes, one per slice VLAN tags no no, OF only

Compositional Hypervisor [181] — — no no, OF only

FlowVisor [166], [167] yes, one per slice virtual flow tables per slice yes (VLAN PCP bits) no, OF only

FlowN [168], [180] no (contained applications) VLAN tags no no, OF only

IBM SDN VE [171] yes, a cluster of controllers logical datapaths yes (priority-based) yes (VXLAN, OVS, OF)

libNetVirt [250] no, one single controller VLAN tags no yes (e.g., VPN, MPLS, OF)

NVP’s Hypervisor [112] yes, a cluster of controller logical datapaths yes no, OVS only

OpenVirteX [170] yes, one per slice virtual flow tables per slice unknown no, OF only

Pyretic [247] no, one single controller compiler time OF rules no no, OF only

Splendid Isolation [249] no, one single controller compiler time VLANs no no, OF only

RadioVisor [173] yes, one per slice 3D resource grid slices — Femto API [252]

xDPd virtualization [176] yes, one per slice flow space virtualization no no, OF only

guaranteeing QoS.

G. Layer VII: Programming languages

Programming languages have been proliferating for decades.
Both academia and industry have evolved from low-level
hardware-specific machine languages, such as assembly for
x86 architectures, to high-level and powerful programming
languages such as Java and Python. The advancements towards
more portable and reusable code has driven a significant shift
on the computer industry [253], [254].

Similarly, programmability in networks is starting to move
from low level machine languages such as OpenFlow (“assem-
bly”) to high-level programming languages [204], [203], [223],
[205], [224], [225], [112]. Assembly-like machine languages,
such as OpenFlow [9] and POF [31], [120], essentially mimic
the behavior of forwarding devices, forcing developers to
spend too much time on low-level details rather than on
the problem solve. Raw OpenFlow programs have to deal
with hardware behavior details such as overlapping rules, the
priority ordering of rules, and data-plane inconsistencies that
arise from in-flight packets whose flow rules are under installa-
tion [204], [205], [255]. The use of these low-level languages
makes it difficult to reuse software, to create modular and
extensive code, and leads to a more error-prone development
process [225], [256], [257].

Abstractions provided by high level programming languages
can significantly help address many of the challenges of these
lower-level instruction sets [204], [203], [223], [205], [224],
[225]. In SDNs, high-level programming languages can be
designed and used to:

1) create higher level abstractions for simplifying the task
of programming forwarding devices;

2) enable more productive and problem-focused environ-
ments for network software programmers, speeding up
development and innovation;

3) promote software modularization and code reusability in
the network control plane;

4) foster the development of network virtualization.

Several challenges can be better addressed by programming
languages in SDNs. For instance, in pure OpenFlow-based
SDNs, it is hard to ensure that multiple tasks of a single
application (e.g., routing, monitoring, access control) do not
interfere with each other. For example, rules generated for one
task should not override the functionality of another task [204],
[255]. Another example is when multiple applications run on
a single controller [225], [255], [201], [258], [259]. Typically,
each application generates rules based on its own needs and
policies without further knowledge about the rules generated
by other applications. As a consequence, conflicting rules
can be generated and installed in forwarding devices, which
can create problems for network operation. Programming lan-
guages and runtime systems can help to solve these problems
that would be otherwise hard to prevent.

Important software design techniques such as code mod-
ularity and reusability are very hard to achieve using low-
level programming models [225]. Applications thus built are
monolithic and consist of building blocks that can not be
reused in other applications. The end result is a very time
consuming and error prone development process.

Another interesting feature that programming language ab-
stractions provide is the capability of creating and writing
programs for virtual network topologies [247], [249]. This
concept is similar to object-oriented programming, where
objects abstract both data and specific functions for application
developers, making it easier to focus on solving a particular
problem without worrying about data structures and their
management. For instance, in an SDN context, instead of
generating and installing rules in each forwarding device, one
can think of creating simplified virtual network topologies that
represent the entire network, or a subset of it. For example, the
application developer should be able to abstract the network
as an atomic big switch, rather than a combination of several
underlying physical devices. The programming languages or
runtime systems should be responsible for generating and

VERSION 2.01 22

installing the lower-level instructions required at each forward-
ing device to enforce the user policy across the network. With
such kind of abstractions, developing a routing application
becomes a straightforward process. Similarly, a single physical
switch could be represented as a set of virtual switches, each
of them belonging to a different virtual network. These two
examples of abstract network topologies would be much harder
to implement with low-level instruction sets. In contrast, a
programming language or runtime system can more easily
provide abstractions for virtual network topologies, as has
already been demonstrated by languages such as Pyretic [247].

High-level SDN programming languages
High-level programming languages can be powerful tools

as a mean for implementing and providing abstractions for
different important properties and functions of SDN such as
network-wide structures, distributed updates, modular compo-
sition, virtualization, and formal verification [29].

Low-level instruction sets suffer from several problems. To
address some of these challenges, higher-level programming
languages have been proposed, with diverse goals, such as:

• Avoiding low-level and device-specific configurations and
dependencies spread across the network, as happens in
traditional network configuration approaches;

• Providing abstractions that allow different management
tasks to be accomplished through easy to understand and
maintain network policies;

• Decoupling of multiple tasks (e.g., routing, access con-
trol, traffic engineering);

• Implementing higher-level programming interfaces to
avoid low-level instruction sets;

• Solving forwarding rules problems, e.g., conflicting or
incomplete rules that can prevent a switch event to be
triggered, in an automated way;

• Addressing different race condition issues which are
inherent to distributed systems;

• Enhancing conflict-resolution techniques on environ-
ments with distributed decision makers;

• Provide native fault-tolerance capabilities on data plane
path setup;

• Reducing the latency in the processing of new flows;
• Easing the creation of stateful applications (e.g., stateful

firewall).
Programming languages can also provide specialized ab-

stractions to cope with other management requirements, such
as monitoring [224], [204], [260], [227]. For instance, the
runtime system of a programming language can do all the
“laundry work” of installing rules, polling the counters, re-
ceiving the responses, combining the results as needed, and
composing monitoring queries in conjunction with other poli-
cies. Consequently, application developers can take advantage
of the simplicity and power of higher level query instructions
to easily implement monitoring modules or applications.

Another aspect of paramount importance is the portability
of the programming language, necessary so that developers
do not need to re-implement applications for different control
platforms. The portability of a programming language can
be considered as a significant added value to the control

plane ecosystem. Mechanisms such as decoupled back-ends
could be key architectural ingredients to enable platform
portability. Similarly to the Java virtual machine, a portable
northbound interface will easily allow applications to run on
different controllers without requiring any modification. As an
example, the Pyretic language requires only a standard socket
interface and a simple OpenFlow client on the target controller
platform [225].

Several programming languages have been proposed for
SDNs, as summarized in Table VIII. The great majority
propose abstractions for OpenFlow-enabled networks. The pre-
dominant programming paradigm is the declarative one, with
a single exception, Pyretic, which is an imperative language.
Most declarative languages are functional, while but there are
instances of the logic and reactive types. The purpose – i.e., the
specific problems they intend to solve – and the expressiveness
power vary from language to language, while the end goal is
almost always the same: to provide higher-level abstractions
to facilitate the development of network control logic.

Programming languages such as FML [203], Nettle [223],
and Procera [224] are functional and reactive. Policies and
applications written in these languages are based on reactive
actions triggered by events (e.g., a new host connected to
the network, or the current network load). Such languages
allow users to declaratively express different network configu-
ration rules such as access control lists (ACLs), virtual LANs
(VLANs), and many others. Rules are essentially expressed
as allow-or-deny policies, which are applied to the forwarding
elements to ensure the desired network behavior.

Other SDN programming languages such as Frenetic [204],
Hierarchical Flow Tables (HFT) [255], NetCore [205], and
Pyretic [225], were designed with the simultaneous goal of
efficiently expressing packet-forwarding policies and dealing
with overlapping rules of different applications, offering ad-
vanced operators for parallel and sequential composition of
software modules. To avoid overlapping conflicts, Frenetic
disambiguates rules with overlapping patterns by assigning dif-
ferent integer priorities, while HFT uses hierarchical policies
with enhanced conflict-resolution operators.

See-every-packet abstractions and race-free semantics also
represent interesting features provided by programming lan-
guages (such as Frenetic [204]). The former ensures that
all control packets will be available for analysis, sooner or
later, while the latter provides the mechanisms for suppressing
unimportant packets. As an example, packets that arise from
a network race condition, such as due to a concurrent flow
rule installation on switches, can be simply discarded by the
runtime system.

Advanced operators for parallel and sequential composition
help bind (through internal workflow operators) the key char-
acteristics of programming languages such as Pyretic [225].
Parallel composition makes it possible to operate multiple poli-
cies on the same set of packets, while sequential composition
facilitates the definition of a sequential workflow of policies to
be processed on a set of packets. Sequential policy processing
allows multiple modules (e.g., access control and routing) to
operate in a cooperative way. By using sequential composition
complex applications can be built out of a combination of

VERSION 2.01 23

TABLE VIII
PROGRAMMING LANGUAGES

Name Programming paradigm Short description/purpose
FatTire [261] declarative (functional) Uses regular expressions to allow programmers to describe network paths and respective fault-

tolerance requirements.

Flog [257] declarative (logic), event-driven Combines ideas of FML and Frenetic, providing an event-driven and forward-chaining logic
programming language.

FlowLog [256] declarative (functional) Provides a finite-state language to allow different analysis, such as model-checking.

FML [203] declarative (dataflow, reactive) High level policy description language (e.g., access control).

Frenetic [204] declarative (functional) Language designed to avoid race conditions through well defined high level programming
abstractions.

HFT [255] declarative (logic, functional) Enables hierarchical policies description with conflict-resolution operators, well suited for
decentralized decision makers.

Maple [262] declarative (functional) Provides a highly-efficient multi-core scheduler that can scale efficiently to controllers with
40+ cores.

Merlin [263] declarative (logic) Provides mechanisms for delegating management of sub-policies to tenants without violating
global constraints.

nlog [112] declarative (functional) Provides mechanisms for data log queries over a number of tables. Produces immutable tuples
for reliable detection and propagation of updates.

NetCore [205] declarative (functional) High level programming language that provides means for expressing packet-forwarding policies
in a high level.

NetKAT [226] declarative (functional) It is based on Kleene algebra for reasoning about network structure and supported by solid
foundation on equational theory.

Nettle [223] declarative (functional, reactive) Based on functional reactive programming principles in order to allow programmers to deal
with streams instead of events.

Procera [224] declarative (functional, reactive) Incorporates a set of high level abstractions to make it easier to describe reactive and temporal
behaviors.

Pyretic [225] imperative Specifies network policies at a high level of abstraction, offering transparent composition and
topology mapping.

different modules (in a similar way as pipes can be used to
build sophisticated Unix applications).

Further advanced features are provided by other SDN
programming languages. FatTire [261] is an example of a
declarative language that heavily relies on regular expressions
to allow programmers to describe network paths with fault-
tolerance requirements. For instance, each flow can have its
own alternative paths for dealing with failure of the pri-
mary paths. Interestingly, this feature is provided in a very
programmer-friendly way, with the application programmer
having only to use regular expressions with special characters,
such as an asterisk. In the particular case of FatTire, an
asterisk will produce the same behavior as a traditional regular
expression, but translated into alternative traversing paths.

Programming languages such as FlowLog [256] and
Flog [257] bring different features, such as model checking,
dynamic verification and stateful middleboxes. For instance,
using a programming language such as Flog, it is possible
to build a stateful firewall application with only five lines of
code [257].

Merlin [263] is one of the first examples of unified frame-
work for controlling different network components, such as
forwarding devices, middleboxes, and end-hosts. An important
advantage is backward-compatibility with existing systems.
To achieve this goal, Merlin generates specific code for
each type of component. Taking a policy definition as input,
Merlin’s compiler determines forwarding paths, transformation

placement, and bandwidth allocation. The compiled outputs
are sets of component-specific low-level instructions to be
installed in the devices. Merlin’s policy language also allows
operators to delegate the control of a sub-network to tenants,
while ensuring isolation. This delegated control is expressed
by means of policies that can be further refined by each tenant
owner, allowing them to customize policies for their particular
needs.

Other recent initiatives (e.g., systems programming lan-
guages [264]) target problems such as detecting anomalies
to improve the security of network protocols (e.g., Open-
Flow), and optimizing horizontal scalability for achieving
high throughput in applications running on multicore archi-
tectures [262]. Nevertheless, there is still scope for further
investigation and development on programming languages. For
instance, one recent research has revealed that current policy
compilers generate unnecessary (redundant) rule updates, most
of which modify only the priority field [265].

Most of the value of SDN will come from the network
managements applications built on top of the infrastructure.
Advances in high-level programming languages are a funda-
mental component to the success of a prolific SDN application
development ecosystem. To this end, efforts are undergoing to
shape forthcoming standard interfaces (cf. [266]) and towards
the realization of integrated development environments (e.g.,
NetIDE [267]) with the goal of fostering the development of
a myriad of SDN applications. We discuss these next.

VERSION 2.01 24

H. Layer VIII: Network Applications

Network applications can be seen as the “network brains”.
They implement the control-logic that will be translated into
commands to be installed in the data plane, dictating the
behavior of the forwarding devices. Take a simple application
as routing as an example. The logic of this application is to
define the path through which packets will flow from a point
A to a point B. To achieve this goal a routing application has
to, based on the topology input, decide on the path to use and
instruct the controller to install the respective forwarding rules
in all forwarding devices on the chosen path, from A to B.

Software-defined networks can be deployed on any tradi-
tional network environment, from home and enterprise net-
works to data centers and Internet exchange points. Such
variety of environments has led to a wide array of network
applications. Existing network applications perform traditional
functionality such as routing, load balancing, and security
policy enforcement, but also explore novel approaches, such as
reducing power consumption. Other examples include fail-over
and reliability functionalities to the data plane, end-to-end QoS
enforcement, network virtualization, mobility management in
wireless networks, among many others. The variety of network
applications, combined with real use case deployments, is
expected to be one of the major forces on fostering a broad
adoption of SDN [268].

Despite the wide variety of use cases, most SDN ap-
plications can be grouped in one of five categories: traffic
engineering, mobility and wireless, measurement and moni-
toring, security and dependability and data center networking.
Tables IX and X summarize several applications categorized
as such, stating their main purpose, controller where it was
implemented/evaluated, and southbound API used.

Traffic engineering
Several traffic engineering applications have been pro-

posed, including ElasticTree [273], Hedera [275], OpenFlow-
based server load balancing [336], Plug-n-Serve [284]
and Aster*x [272], In-packet Bloom filter [276], SIM-
PLE [290], QNOX [285], QoS framework [287], QoS for
SDN [286], ALTO [269], ViAggre SDN [291], ProCel [281],
FlowQoS [274], and Middlepipes [27]. In addition to these,
recent proposals include optimization of rules placement [337],
the use of MAC as an universal label for efficient routing in
data centers [338], among other techniques for flow manage-
ment, fault tolerance, topology update, and traffic characteri-
zation [339]. The main goal of most applications is to engineer
traffic with the aim of minimizing power consumption, maxi-
mizing aggregate network utilization, providing optimized load
balancing, and other generic traffic optimization techniques.

Load balancing was one of the first applications envisioned
for SDN/OpenFlow. Different algorithms and techniques have
been proposed for this purpose [336], [272], [284]. One partic-
ular concern is the scalability of these solutions. A technique to
allow this type of applications to scale is to use wildcard-based
rules to perform proactive load balancing [336]. Wildcards
can be utilized for aggregating clients requests based on the
ranges of IP prefixes, for instance, allowing the distribution
and directing of large groups of client requests without re-

quiring controller intervention for every new flow. In tandem,
operation in reactive mode may still be used when traffic
bursts are detected. The controller application needs to monitor
the network traffic and use some sort of threshold in the
flow counters to redistribute clients among the servers when
bottlenecks are likely to happen.

SDN load-balancing also simplifies the placement of net-
work services in the network [284]. Every time a new server
is installed, the load-balancing service can take the appropriate
actions to seamlessly distribute the traffic among the available
servers, taking into consideration both the network load and
the available computing capacity of the respective servers. This
simplifies network management and provides more flexibility
to network operators.

Existing southbound interfaces can be used for actively
monitoring the data plane load. This information can be lever-
aged to optimize the energy consumption of the network [273].
By using specialized optimization algorithms and diversified
configuration options, it is possible to meet the infrastruc-
ture goals of latency, performance, and fault tolerance, for
instance, while reducing power consumption. With the use of
simple techniques, such as shutting down links and devices
intelligently in response to traffic load dynamics, data center
operators can save up to 50% of the network energy in normal
traffic conditions [273].

One of the important goals of data center networks is to
avoid or mitigate the effect of network bottlenecks on the
operation of the computing services offered. Linear bisection
bandwidth is a technique that can be adopted for traffic
patterns that stress the network by exploring path diversity
in a data center topology. Such technique has been proposed
in an SDN setting, allowing the maximization of aggregated
network utilization with minimal scheduling overhead [275].

SDN can also be used to provide a fully automated system
for controlling the configuration of routers. This can be partic-
ularly useful in scenarios that apply virtual aggregation [340].
This technique allows network operators to reduce the data
replicated on routing tables, which is one of the causes of
routing tables’ growth [341]. A specialized routing applica-
tion [291] can calculate, divide and configure the routing tables
of the different routing devices through a southbound API such
as OpenFlow.

Traffic optimization is another interesting application for
large scale service providers, where dynamic scale-out is
required. For instance, the dynamic and scalable provisioning
of VPNs in cloud infrastructures, using protocolols such
as ALTO [271], can be simplified through an SDN-based
approach [269]. Recent work has also shown that optimiz-
ing rules placement can increase network efficiency [337].
Solutions such as ProCel [281], designed for cellular core
networks, are capable of reducing the signaling traffic up to
70%, which represents a significant achievement.

Other applications that perform routing and traffic engi-
neering include application-aware networking for video and
data streaming [342], [343] and improved QoS by employing
multiple packet schedulers [288] and other techniques [287],
[285], [278], [344]. As traffic engineering is a crucial issue
in all kinds of networks, upcoming methods, techniques and

VERSION 2.01 25

TABLE IX
NETWORK APPLICATIONS

Group Solution/Application Main purpose Controller Southbound API

Traffic
engineering

ALTO VPN [269] on-demand VPNs NMS [270], [271] SNMP

Aster*x [272] load balancing NOX OpenFlow

ElasticTree [273] energy aware routing NOX OpenFlow

FlowQoS [274] QoS for broadband access networks POX OpenFlow

Hedera [275] scheduling / optimization — OpenFlow

In-packet Bloom filter [276] load balancing NOX OpenFlow

MicroTE [277] traffic engineering with minimal overhead NOX OpenFlow

Middlepipes [27] Middleboxes as a PaaS middlepipe controller —

OpenQoS [278] dynamic QoS routing for multimedia apps Floodlight OpenFlow

OSP [279] fast recovery through fast-failover groups NOX OpenFlow

PolicyCop [280] QoS policy management framework Floodlight OpenFlow

ProCel [281] Efficient traffic handling for software EPC ProCel controller —

Pronto [282], [283] Efficient queries on distributed data stores Beacon OpenFlow

Plug-n-Serve [284] load balancing NOX OpenFlow

QNOX [285] QoS enforcement NOX Generalized OpenFlow

QoS for SDN [286] QoS over heterogeneous networks Floodlight OpenFlow

QoS framework [287] QoS enforcement NOX OF with QoS extensions

QoSFlow [288] multiple packet schedulers to improve QoS — OpenFlow

QueuePusher [289] Queue management for QoS enforcement Floodlight OpenFlow

SIMPLE [290] middlebox-specific “traffic steering” Extended POX OpenFlow

ViAggre SDN [291] divide and spread forwarding tables NOX OpenFlow

Mobility
&
Wireless

AeroFlux [292], [293] scalable hierarchical WLAN control plane Floodlight OpenFlow, Odin

CROWD [294] overlapping of LTE and WLAN cells — OpenFlow

CloudMAC [295] outsourced processing of WLAN MACs — OpenFlow

C-RAN [296] RAN [235] virtualization for mobile nets — —

FAMS [297] flexible VLAN system based on OpenFlow ProgrammableFlow OpenFlow

MobileFlow [222] flow-based model for mobile networks MobileFlow SDMN API

Odin [298] programmable virtualized WLANs Floodlight OpenFlow, Odin

OpenRAN [299] vertical programmability and virtualization — —

OpenRoads [300] control of the data path using OpenFlow FlowVisor OpenFlow

SoftRAN [235] load balancing and interference management — Femto API [252], [301]

Measurement
&
Monitoring

BISmark [6] active and passive measurements Procera framework OpenFlow

DCM [302] distributed and coactive traffic monitoring DCM controller OpenFlow

FleXam [303] flexible sampling extension for OpenFlow — —

FlowSense [304] measure link utilization in OF networks — OpenFlow

measurement model [305] model for OF switch measurement tasks — OpenFlow

OpenNetMon [306] monitoring of QoS parameters to improve TE POX OpenFlow

OpenSample [307] low-latency sampling-based measurements Floodlight modified sFlow [308]

OpenSketch [309] separated measurement data plane OpenSketch “OpenSketch sketches”

OpenTM [260] traffic matrix estimation tool NOX OpenFlow

PaFloMon [310] passive monitoring tools defined by users FlowVisor OpenFlow

PayLess [311] query-based real-time monitoring framework Floodlight OpenFlow

Data Center
Networking

Big Data Apps [312] optimize network utilization — OpenFlow

CloudNaaS [313] networking primitives for cloud applications NOX OpenFlow

FlowComb [314] predicts application workloads NOX OpenFlow

FlowDiff [315] detects operational problems FlowVisor OpenFlow

LIME [316] live network migration Floodlight OpenFlow

NetGraph [317] graph queries for network management — OpenFlow, SNMP

OpenTCP [318] dynamic and programmable TCP adaptation — —

VERSION 2.01 26

TABLE X
NETWORK APPLICATIONS

Group Solution/Application Main purpose Controller Southbound API

Security
&
Dependability

Active security [319] integrated security using feedback control Floodlight OpenFlow

AVANT-GUARD [320] DoS security specific extensions to OF POX OpenFlow

CloudWatcher [321] framework for monitoring clouds NOX OpenFlow

Cognition [322] cognitive functions to enhanced security
mechanisms in network applications

— —

DDoS detection [323] attacks detection and mitigation NOX OpenFlow

Elastic IP & Security [324] SDN-based elastic IP and security groups NOX OpenFlow

Ethane [101] flow-rule enforcement (match/action) Ethane controller first instance of OpenFlow

FlowNAC [325] flow-based network access control NOX OpenFlow

FortNOX [201] security flow rules prioritization NOX OpenFlow

FRESCO [258] framework for security services composition NOX OpenFlow

LiveSec [326] security policy enforcement NOX OpenFlow

MAPPER [327] fine-grained access control — —

NetFuse [328] protection against OF traffic overload — OpenFlow

OF-RHM [329] random host mutation (defense) NOX OpenFlow

OpenSAFE [330] direct spanned net traffic in arbitrary ways NOX OpenFlow

OrchSec [331] architecture for developing security apps any Flow-RT [332], OpenFlow

Reliable multicasting [333] reduce packet loss when failures occur Trema OpenFlow

SANE [100] security policy enforcement SANE controller SANE header (pre-OF)

SDN RTBH [334] DoS attack mitigation POX OpenFlow

VAVE [335] source address validation with a global view NOX OpenFlow

innovations can be expected in the context of SDNs.

Mobility & wireless
The current distributed control plane of wireless networks

is suboptimal for managing the limited spectrum, allocating
radio resources, implementing handover mechanisms, man-
aging interference, and performing efficient load-balancing
between cells. SDN-based approaches represent an opportu-
nity for making it easier to deploy and manage different
types of wireless networks, such as WLANs and cellular
networks [298], [300], [294], [235], [345], [346]. Traditionally
hard-to-implement but desired features are indeed becoming a
reality with the SDN-based wireless networks. These include
seamless mobility through efficient hand-overs [298], [347],
[345], load balancing [298], [235], creation of on-demand
virtual access points (VAPs) [298], [295], downlink scheduling
(e.g., an OpenFlow switch can do a rate shaping or time divi-
sion) [295], dynamic spectrum usage [295], enhanced inter-
cell interference coordination [295], [345], device to device of-
floading (i.e., decide when and how LTE transmissions should
be offloaded to users adopting the D2D paradigm [348]) [294],
per client and/or base station resource block allocations (i.e.,
time and frequency slots in LTE/OFDMA networks, which are
known as resource blocks) [235], [294], [346], control and
assign transmission and power parameters in devices or in
a group basis (e.g., algorithms to optimize the transmission
and power parameters of WLAN devices, define and assign
transmission power values to each resource block, at each
base station, in LTE/OFDMA networks) [294], [235], sim-
plified administration [298], [300], [235], easy management

of heterogenous network technologies [300], [235], [349], in-
teroperability between different networks [349], [346], shared
wireless infrastructures [349], seamless subscriber mobility
and cellular networks [345], QoS and access control policies
made feasible and easier [345], [346], and easy deployment
of new applications [298], [235], [349].

One of the first steps towards realizing these features in
wireless networks is to provide programmable and flexible
stack layers for wireless networks [350], [235]. One of the
first examples is OpenRadio [350], which proposes a soft-
ware abstraction layer for decoupling the wireless protocol
definition from the hardware, allowing shared MAC layers
across different protocols using commodity multi-core plat-
forms. OpenRadio can be seen as the “OpenFlow for wireless
networks”. Similarly, SoftRAN [235] proposes to rethink the
radio access layer of current LTE infrastructures. Its main
goal is to allow operators to improve and optimize algorithms
for better hand-overs, fine-grained control of transmit powers,
resource block allocation, among other management tasks.

Light virtual access points (LVAPs) is another interesting
way of improving the management capabilities of wireless net-
works, as proposed by the Odin [298] framework. In contrast
to OpenRadio, it works with existing wireless hardware and
does not impose any change to IEEE 802.11 standards. An
LVAP is implemented as a unique BSSID associated with a
specific client, which means that there is a one-to-one mapping
between LVAPs and clients. This per-client access point (AP)
abstraction simplifies the handling of client associations, au-
thentication, handovers, and unified slicing of both the wired

VERSION 2.01 27

and wireless portions of the network. Odin achieves control
logic isolation between slices, since LVAPs are the primitive
type upon which applications make control decisions, and
applications do not have visibility of LVAPs from outside their
slice. This empowers infrastructure operators to provide ser-
vices through Odin applications, such as a mobility manager,
client-based load balancer, channel selection algorithm, and
wireless troubleshooting application within different network
slices. For instance, when a user moves from one AP to
another, the network mobility management application can
automatically and proactively act and move the client LVAP
from one AP to the other. In this way, a wireless client will
not even notice that it started to use a different AP because
there is no perceptive hand-off delay, as it would be the case
in traditional wireless networks.

Very dense heterogeneous wireless networks have also been
a target for SDN. These DenseNets have limitations due to
constraints such as radio access network bottlenecks, control
overhead, and high operational costs [294]. A dynamic two-tier
SDN controller hierarchy can be adapted to address some of
these constraints [294]. Local controllers can be used to take
fast and fine-grained decisions, while regional (or “global”)
controllers can have a broader, coarser-grained scope, i.e.,
that take slower but more global decisions. In such a way,
designing a single integrated architecture that encompasses
LTE (macro/pico/femto) and WiFi cells, while challenging,
seems feasible.

Measurement & monitoring
Measurement and monitoring solutions can be divided in

two classes. First, applications that provide new functionality
for other networking services. Second, proposals that target to
improve features of OpenFlow-based SDNs, such as to reduce
control plane overload due to the collection of statistics.

An example of the first class of applications is improving the
visibility of broadband performance [351], [6]. An SDN-based
broadband home connection can simplify the addition of new
functions in measurement systems such as BISmark [351], al-
lowing the system to react to changing conditions in the home
network [6]. As an example, a home gateway can perform
reactive traffic shaping considering the current measurement
results of the home network.

The second class of solutions typically involve different
kinds of sampling and estimation techniques to be applied,
in order to reduce the burden of the control plane with
respect to the collection of data plane statistics. Different
techniques have been applied to achieve this goal, such as
stochastic and deterministic packet sampling techniques [352],
traffic matrix estimation [260], fine-grained monitoring of
wildcard rules [353], two-stage Bloom filters [354] to represent
monitoring rules and provide high measurement accuracy
without incurring in extra memory or control plane traffic
overhead [302], and special monitoring functions (extensions
to OpenFlow) in forwarding devices to reduce traffic and
processing load on the control plane [355]. Point-to-point
traffic matrix estimation, in particular, can help in network
design and operational tasks such as load balancing, anomaly
detection, capacity planning and network provisioning. With

information on the set of active flows in the network, routing
information (e.g., from the routing application), flow paths,
and flow counters in the switches it is possible to construct a
traffic matrix using diverse aggregation levels for sources and
destinations [260].

Other initiatives of this second class propose a stronger de-
coupling between basic primitives (e.g., matching and count-
ing) and heavier traffic analysis functions such as the detection
of anomaly conditions attacks [356]. A stronger separation
favors portability and flexibility. For instance, a functionality
to detect abnormal flows should not be constrained by the
basic primitives or the specific hardware implementation. Put
another way, developers should be empowered with streaming
abstractions and higher level programming capabilities.

In that vein, some data and control plane abstractions
have been specifically designed for measurement purposes.
OpenSketch [309] is a special-purpose southbound API de-
signed to provide flexibility for network measurements. For
instance, by allowing multiple measurement tasks to execute
concurrently without impairing accuracy. The internal design
of an OpenSketch switch can be thought of as a pipeline
with three stages (hashing, classification, and counting). Input
packets first pass through a hashing function. Then, they are
classified according to a matching rule. Finally, the match
rule identifies a counting index, which is used to calculate the
counter location in the counting stage. While a TCAM with
few entries is enough for the classification stage, the flexible
counters are stored in SRAM. This makes the OpenSketch’s
operation efficient (fast matching) and cost-effective (cheaper
SRAMs to store counters).

Other monitoring frameworks, such as OpenSample [307]
and PayLess [311], propose different mechanisms for deliv-
ering real-time, low-latency and flexible monitoring capabil-
ities to SDN without impairing the load and performance
of the control plane. The proposed solutions take advantage
of sampling technologies like sFlow [308] to monitor high-
speed networks, and flexible collections of loosely coupled
(plug-and-play) components to provide abstract network views
yielding high-performance and efficient network monitoring
approaches [307], [311], [353].

Security & Dependability
An already diverse set of security and dependability propos-

als is emerging in the context of SDNs. Most take advantage of
SDN for improving services required to secure systems and
networks, such as policy enforcement (e.g., access control,
firewalling, middleboxes as middlepipes [27]) [100], [326],
[335], [324], [27], DoS attacks detection and mitigation [323],
[334], random host mutation [324] (i.e., randomly and fre-
quently mutate the IP addresses of end-hosts to break the
attackers’ assumption about static IPs, which is the common
case) [329], monitoring of cloud infrastructures for fine-
grained security inspections (i.e., automatically analyze and
detour suspected traffic to be further inspected by specialized
network security appliances, such as deep packet inspec-
tion systems) [321], traffic anomaly detection [352], [323],
[334], fine-grained flow-based network access control [325],
fine-grained policy enforcement for personal mobile applica-

VERSION 2.01 28

tions [327] and so forth [100], [326], [323], [329], [321], [324],
[335], [352]. Others address OpenFlow-based networks issues,
such as flow rule prioritization, security services composition,
protection against traffic overload, and protection against ma-
licious administrators [201], [258], [320], [328], [199].

There are essentially two approaches, one involves using
SDNs to improve network security, and another for improving
the security of the SDN itself. The focus has been, thus far,
in the latter.
Using SDN to improve the security of current networks. Prob-
ably the first instance of SDN was an application for security
policies enforcement [100]. An SDN allows the enforcement
to be done on the first entry point to the network (e.g., the Eth-
ernet switch to which the user is connected to). Alternatively,
in a hybrid environment, security policy enforcement can be
made on a wider network perimeter through programmable
devices (without the need to migrate the entire infrastructure
to OpenFlow) [326]. With either application, malicious actions
are blocked before entering the critical regions of the network.

SDN has been successfully applied for other purposes,
namely for the detection (and reaction) against DDoS flooding
attacks [323], and active security [319]. OpenFlow forwarding
devices make it easier to collect a variety of information from
the network, in a timely manner, which is very handy for
algorithms specialized in detecting DDoS flooding attacks.

The capabilities offered by software-defined networks in
increasing the ability to collect statistics data from the network
and of allowing applications to actively program the forward-
ing devices, are powerful for proactive and smart security pol-
icy enforcement techniques such as Active security [319]. This
novel security methodology proposes a novel feedback loop
to improve the control of defense mechanisms of a networked
infrastructure, and is centered around five core capabilities:
protect, sense, adjust, collect, counter. In this perspective,
active security provides a centralized programming interface
that simplifies the integration of mechanisms for detecting
attacks, by a) collecting data from different sources (to identify
attacks), b) converging to a consistent configuration for the
security appliances, and c) enforcing countermeasures to block
or minimize the effect of attacks.
Improving the security of SDN itself. There are already some
research efforts on identifying the critical security threats of
SDNs and in augmenting its security and dependability [201],
[258], [357]. Early approaches try to apply simple techniques,
such as classifying applications and using rule prioritization,
to ensure that rules generated by security applications will
not be overwritten by lower priority applications [201]. Other
proposals try to go a step further by providing a framework
for developing security-related applications in SDNs [258].
However, there is still a long way to go in the development of
secure and dependable SDN infrastructures [357]. An in-deep
overview of SDN security issues and challenges can be found
in Section V-F.

Data Center Networking
From small enterprises to large scale cloud providers,

most of the existing IT systems and services are strongly
dependent on highly scalable and efficient data centers. Yet,

these infrastructures still pose significant challenges regarding
computing, storage and networking. Concerning the latter, data
centers should be designed and deployed in such a way as
to offer high and flexible cross-section bandwidth and low-
latency, QoS based on the application requirements, high
levels of resilience, intelligent resource utilization to reduce
energy consumption and improve overall efficiency, agility
in provisioning network resources, for example by means of
network virtualization and orchestration with computing and
storage, and so forth [358], [359], [360]. Not surprisingly,
many of these issues remain open due to the complexity and
inflexibility of traditional network architectures.

The emergence of SDN is expected to change the current
state of affairs. Early research efforts have indeed showed
that data center networking can significantly benefit from
SDN in solving different problems such as live network
migration [316], improved network management [316], [315],
eminent failure avoidance [316], [315], rapid deployment
from development to production networks [316], troubleshoot-
ing [316], [317], optimization of network utilization [317],
[312], [314], [315], dynamic and elastic provisioning of
middleboxes-as-a-service [27], minimization of flow setup
latency and reduction of controller operating costs [361].
SDN can also offer networking primitives for cloud appli-
cations, solutions to predict network transfers of applica-
tions [312], [314], mechanisms for fast reaction to operation
problems, network-aware VM placement [317], [313], QoS
support [317], [313], realtime network monitoring and prob-
lem detection [317], [314], [315], security policy enforcement
services and mechanisms [317], [313], and enable program-
matic adaptation of transport protocols [312], [318].

SDN can help infrastructure providers to expose more
networking primitives to their customers, by allowing virtual
network isolation, custom addressing, and the placement of
middleboxes and virtual desktop cloud applications [313],
[362]. To fully explore the potential of virtual networks
in clouds, an essential feature is virtual network migration.
Similarly to traditional virtual machine migration, a virtual
network may need to be migrated when its virtual machines
move from one place to another. Integrating live migration of
virtual machines and virtual networks is one of the forefront
challenges [316]. To achieve this goal it is necessary to dynam-
ically reconfigure all affected networking devices (physical or
virtual). This was shown to be possible with SDN platforms,
such as NVP [112].

Another potential application of SDN in data centers is
in detecting abnormal behaviors in network operation [315].
By using different behavioral models and collecting the nec-
essary information from elements involved in the operation
of a data center (infrastructure, operators, applications), it is
possible to continuously build signatures for applications by
passively capturing control traffic. Then, the signature history
can be used to identify differences in behavior. Every time a
difference is detected, operators can reactively or proactively
take corrective measures. This can help to isolate abnormal
components and avoid further damage to the infrastructure.

Towards SDN App Stores

VERSION 2.01 29

As can be observed in Tables IX and X, most SDN
applications rely on NOX and OpenFlow. NOX was the first
controller available for general use, making it a natural choice
for most use-cases so far. As indicated by the sheer number
of security-related applications, security is probably one of
the killer applications for SDNs. Curiously, while most use
cases rely on OpenFlow, new solutions such as SoftRAN
are considering different APIs, as is the case of the Femto
API [252], [301]. This diversity of applications and APIs will
most probably keep growing in SDN.

There are other kinds of network applications that do not
easily fit in our taxonomy, such as Avior [363], OESS [364],
and SDN App Store [365], [366]. Avior and OESS are
graphical interfaces and sets of software tools that make it
easier to configure and manage controllers (e.g., Floodlight)
and OpenFlow-enabled switches, respectively. By leveraging
their graphical functions it is possible to program OpenFlow
enabled devices without coding in a particular programming
language.

The SDN App Store [365], [366], owned by HP, is probably
the first SDN application market store. Customers using HP’s
OpenFlow controller have access to the online SDN App
Store and are able to select applications to be dynamically
downloaded and installed in the controller. The idea is similar
to the Android Market or the Apple Store, making it easier
for developers to provide new applications and for customers
to obtain them.

I. Cross-layer issues

In this section we look at cross-layer problems such as de-
bugging and troubleshooting, testing, verification, simulation
and emulation.

Debugging and troubleshooting
Debugging and troubleshooting have been important sub-

jects in computing infrastructures, parallel and distributed
systems, embedded systems, and desktop applications [367],
[368], [369], [370], [371], [372], [373]. The two predomi-
nant strategies applied to debug and troubleshoot are runtime
debugging (e.g., gdb-like tools) and post-mortem analysis
(e.g., tracing, replay and visualization). Despite the constant
evolution and the emergence of new techniques to improve
debugging and troubleshooting, there are still several open
avenues and research questions [368].

Debugging and troubleshooting in networking is at a very
primitive stage. In traditional networks, engineers and de-
velopers have to use tools such as ping, traceroute,
tcpdump, nmap, netflow, and SNMP statistics for de-
bugging and troubleshooting. Debugging a complex network
with such primitive tools is very hard. Even when one con-
siders frameworks such as XTrace [372], Netreplay [374]
and NetCheck [375], which improve debugging capabilities
in networks, it is still difficult to troubleshoot networking
infrastructures. For instance, these frameworks require a huge
effort in terms of network instrumentation. The additional
complexity introduced by different types of devices, tech-
nologies and vendor specific components and features make
matters worse. As a consequence, these solutions may find

it hard to be widely implemented and deployed in current
networks.

SDN offers some hope in this respect. The hardware-
agnostic software-based control capabilities and the use of
open standards for control communication can potentially
make debug and troubleshoot easier. The flexibility and pro-
grammability introduced by SDN is indeed opening new
avenues for developing better tools to debug, troubleshoot,
verify and test networks [376], [377], [378], [379], [380],
[381], [382], [383], [382].

Early debugging tools for OpenFlow-enabled networks,
such as ndb [376], OFRewind [377] and NetSight [384], make
it easier to discover the source of network problems such as
faulty device firmware [376], inconsistent or non-existing flow
rules [376], [377], lack of reachability [376], [377], and faulty
routing [376], [377]. Similarly to the well-known gdb soft-
ware debugger, ndb provides basic debugging actions such as
breakpoint, watch, backtrace, single-step, and continue. These
primitives help application developers to debug networks in a
similar way to traditional software. By using ndb’s postcards
(i.e., a unique packet identifier composed of a truncated copy
of the packet’s header, the matching flow entry, the switch, and
the output port), for instance, a programmer is able to quickly
identify and isolate a buggy OpenFlow switch with hardware
or software problems. If the switch is presenting abnormal
behavior such as corrupting parts of the packet header, by
analyzing the problematic flow sequences with a debugging
tool one can find (in a matter of few seconds) where the
packets of a flow are being corrupted, and take the necessary
actions to solve the problem.

The OFRewind [377] tool works differently. The idea is
to record and replay network events, in particular control
messages. These usually account for less than 1% of the data
traffic and are responsible for 95%-99% of the bugs [383].
This tool allows operators to perform fine-grained tracing
of network behavior, being able to decide which subsets of
the network will be recorded and, afterwards, select specific
parts of the traces to be replayed. These replays provide
valuable information to find the root cause of the network
misbehavior. Likewise, NetRevert [385] also records the state
of OpenFlow networks. However, the primary goal is not to
reproduce network behavior, but rather to provide rollback
recovery in case of failures, which is a common approach
used in distributed systems for eliminating transient errors in
nodes [386], [387].

Despite the availability of these debugging and verification
tools, it is still difficult to answer questions such as: What is
happening to my packets that are flowing from point A to point
B? What path do they follow? What header modifications do
they undergo on the way? To answer some of these questions
one could recur to the history of the packets. A packet’s history
corresponds to the paths it uses to traverse the network, and the
header modifications in each hop of the path. NetSight [384]
is a platform whose primary goal is to allow applications
that use the history of the packets to be built, in order to
find out problems in a network. This platform is composed
of three essential elements: (1) NetSight, with its dedicated
servers that receive and process the postcards for building

VERSION 2.01 30

the packet history, (2) the NetSigh-SwitchAssist, which can
be used in switches to reduce the processing burden on the
dedicated servers, and (3) the NetSight-HostAssist to generate
and process postcards on end hosts (e.g., in the hypervisor on
a virtualized infrastructure).
netwatch [384], netshark [384] and nprof [384] are

three examples of tools built over NetSight. The first is a
live network invariant monitor. For instance, an alarm can be
trigged every time a packet violates any invariant (e.g., no
loops). The second, netshark, enables users to define and
execute filters on the entire history of packets. With this tool,
a network operator can view a complete list of properties of
packets at each hop, such as input port, output port, and packet
header values. Finally, nprof can be used to profile sets of
network links to provide data for analyzing traffic patterns and
routing decisions that might be contributing to link load.

Testing and verification
Verification and testing tools can complement debugging

and troubleshooting. Recent research [381], [383], [380],
[378], [382], [388], [389] has shown that verification tech-
niques can be applied to detect and avoid problems in SDN,
such as forwarding loops and black holes. Verification can
be done at different layers (at the controllers, network appli-
cations, or network devices). Additionally, there are different
network properties – mostly topology-specific – that can be
formally verified, provided a network model is available.
Examples of such properties are connectivity, loop freedom,
and access control [29]. A number of tools have also been pro-
posed to evaluate the performance of OpenFlow controllers by
emulating the load of large-scale networks (e.g., Cbench [390],
OFCBenchmark [391], PktBlaster [392]). Similarly, bench-
marking tools for OpenFlow switches are also available (e.g.,
OFLOPS [379], FLOPS-Turbo [393]).

Tools such as NICE [378] generate sets of diverse streams
of packets to test as many as possible events, exposing corner
cases such as race conditions. Similarly, OFLOPS [379] pro-
vides a set of features and functions that allow the development
and execution of a rich set of tests on OpenFlow-enabled
devices. Its ultimate goal is to measure the processing ca-
pacity and bottlenecks of control applications and forwarding
devices. With this tool, users are able to observe and evaluate
forwarding table consistency, flow setup latency, flow space
granularity, packet modification types, and traffic monitoring
capabilities (e.g., counters).

FlowChecker [380], OFTEN [382], and VeriFlow [381]
are three examples of tools to verify correctness properties
violations on the system. While the former two are based
on offline analysis, the latter is capable of online checking
of network invariants. Verification constraints include security
and reachability issues, configuration updates on the network,
loops, black holes, etc.

Other formal modeling techniques, such as Alloy, can be
applied to SDNs to identify unexpected behavior [388]. For
instance, a protocol specification can be weak when it under-
specifies some aspects of the protocol or due to a very specific
sequence of events. In such situations, model checking tech-
niques such as Alloy can help to find and correct unexpected

behaviors.
Tools such as FLOWGUARD [394] are specifically de-

signed to detect and resolve security policy violations in
OpenFlow-enabled networks. FLOWGUARD is able to exam-
ine on-the-fly network policy updates, check indirect security
violations (e.g., OpenFlow’s Set-Field actions modifica-
tion) and perform stateful monitoring. The framework uses
five resolution strategies for real-time security policy violation
resolution, flow rejecting, dependency breaking, update reject-
ing, flow removing, and packet blocking [394]. These resolu-
tions are applied over diverse update situations in OpenFlow-
enabled networks.

More recently, tools such as VeriCon [395] have been
designed to verify the correctness of SDN applications in a
large range of network topologies and by analyzing a broad
range of sequences of network events. In particular, VeriCon
confirms, or not, the correct execution of the SDN program.

One of the challenges in testing and verification is to verify
forwarding tables in very large networks to find routing errors,
which can cause traffic losses and security breaches, as quickly
as possible. In large scale networks, it is not possible to assume
that the network snapshot, at any point, is consistent, due
to the frequent changes in routing state. Therefore, solutions
such as HSA [396], Anteater [397], NetPlumber [398], Veri-
Flow [381], and assertion languages [399] are not suited for
this kind of environment. Another important issue is related
on how fast the verification process is done, especially in
modern data centers that have very tight timing requirements.
Libra [389] represents one of the first attempts to address these
particular challenges of large scale networks. This tool pro-
vides the means for capturing stable and consistent snapshots
of large scale network deployments, while also applying long
prefix matching techniques to increase the scalability of the
system. By using MapReduce computations, Libra is capable
of verifying the correctness of a network with up to 10k nodes
within one minute.

Anteater [397] is a tool that analyzes the data plane state of
network devices by encoding switch configurations as boolean
satisfiability problems (SAT) instances, allowing to use a SAT
solver to analyze the network state. The tool is capable of
verifying violations of invariants such as loop-free forwarding,
connectivity, and consistency. These invariants usually indicate
a bug in the network, i.e., their detection helps to increase the
reliability of the network data plane.

Simulation and Emulation
Simulation and emulation software is of particular im-

portance for fast prototyping and testing without the need
for expensive physical devices. Mininet [110] is the first
system that provides a quick and easy way to prototype and
evaluate SDN protocols and applications. One of the key
properties of Mininet is its use of software-based OpenFlow
switches in virtualized containers, providing the exact same
semantics of hardware-based OpenFlow switches. This means
that controllers or applications developed and tested in the
emulated environment can be (in theory) deployed in an
OpenFlow-enabled network without any modification. Users
can easily emulate an OpenFlow network with hundreds of

VERSION 2.01 31

nodes and dozens of switches by using a single personal
computer. Mininet-HiFi [400] is an evolution of Mininet
that enhances the container-based (lightweight) virtualization
with mechanisms to enforce performance isolation, resource
provisioning, and accurate monitoring for performance fidelity.
One of the main goals of Mininet-HiFi is to improve the
reproducibility of networking research.

Mininet CE [401] and SDN Cloud DC [402] are extensions
to Mininet for enabling large scale simulations. Mininet CE
combines groups of Mininet instances into one cluster of simu-
lator instances to model global scale networks. SDN Cloud DC
enhances Mininet and POX to emulate an SDN-based intra-
DC network by implementing new software modules such as
data center topology discovery and network traffic generation.
Recent emulation platform proposals that enable large scale
experiments following a distributed approach include Max-
iNet [403], DOT [404], and CityFlow [405]. The latter is a
project with the main goal of building an emulated control
plane for a city of one million inhabitants. Such initiatives are
a starting point to provide experimental insights for large-scale
SDN deployments.

The capability of simulating OpenFlow devices has also
been added to the popular ns-3 simulator [406]. Another sim-
ulator is fs-sdn, which extends the fs simulation engine [407]
by incorporating a controller and switching components with
OpenFlow support. Its main goal is to provide a more realistic
and scalable simulation platform as compared to Mininet.
Finally, STS [408] is a simulator designed to allow developers
to specify and apply a variety of test cases, while allowing
them to interactively examine the state of the network.

V. ONGOING RESEARCH EFFORTS AND CHALLENGES

The research developments we have surveyed so far seek to
overcome the challenges of realizing the vision and fulfilling
the promises of SDN. While Section IV provided a perspec-
tive structured across the layers of the “SDN stack”, this
section highlights research efforts we consider of particular
importance for unleashing the full potential of SDN, and that
therefore deserves a specific coverage in this survey.

A. Switch Designs

Currently available OpenFlow switches are very diverse and
exhibit notable differences in terms of feature set (e.g., flow
table size, optional actions), performance (e.g., fast vs. slow
path, control channel latency/throughput), interpretation and
adherence to the protocol specification (e.g., BARRIER com-
mand), and architecture (e.g., hardware vs. software designs).

Heterogenous Implementations
Implementation choices have a fundamental impact on the

behavior, accuracy, and performance of switches, ranging from
differences in flow counter behavior [416] to a number of
other performance metrics [379]. One approach to accommo-
date such heterogeneity is through NOSIX, a portable API
that separates the application expectations from the switch
heterogeneity [245]. To do so, NOSIX provides a pipeline
of multiple virtual flow tables and switch drivers. Virtual

flow tables are intended to meet the expectations of appli-
cations and are ultimately translated by the drivers into actual
switch flow tables. Towards taming the complexity of multiple
OpenFlow protocol versions with different sets of required
and optional capabilities, a roadblock for SDN practitioners,
tinyNBI [417] has been proposed as a simple API providing a
unifying set of core abstractions of five OpenFlow protocol
versions (from 1.0 to 1.4). Ongoing efforts to introduce a
new Hardware Abstraction Layer (HAL) for non-OpenFlow
capable devices [418] include the development of open source
artifacts like ROFL (Revised OpenFlow Library) and the xDPd
(eXtensible DataPath daemon), a framework for creating new
OpenFlow datapath implementations based on a diverse set
of hardware and software platforms. A related open source
effort to develop a common library to implement OpenFlow
1.0 and 1.3 protocol endpoints (switch agents and controllers)
is libfluid [419], winner of the OpenFlow driver competition
organized by the ONF.

Within the ONF, the Forwarding Abstraction Working
Group (FAWG) is pursuing another solution to the heterogene-
ity problem, through Table Type Patterns (TTPs) [121]. A TTP
is a standards-based and negotiated switch-level behavioral
abstraction. It consists of the relationships between tables
forming a graph structure, the types of tables in the graph,
a set of the parameterized table properties for each table in
the graph, the legal flow-mod and table-mod commands
for each flow table, and the metadata mask that can be passed
between each table pair in the graph.

Flow Table Capacity
Flow matching rules are stored in flow tables inside network

devices. One practical challenge is to provide switches with
large and efficient flow tables to store the rules [420]. TCAMs
are a common choice to hold flow tables. While flexible and
efficient in terms of matching capabilities, TCAMs are costly
and usually small (from 4K to 32K entries). Some TCAM
chips today integrate 18 M-bit (configured as 500k entries ∗
36 bit per entry) into a single chip working at 133 Mhz [421],
i.e., capable of 133M lookups per second. However, these
chips are expensive and have a high-power consumption [422],
representing a major power drain in a switching device [423].
These are some of the reasons why currently available Open-
Flow devices have TCAMs with roughly 8K entries, where
the actual capacity in terms of OpenFlow table size has
a non-trivial relationship to the type of flow entries being
used [424], [425]. OpenFlow version 1.1 introduced multiple
tables, thereby adding extra flexibility and scalability. Indeed,
OpenFlow 1.0 implied state explosion due to its flat table
model [121]. However, supporting multiple tables in hardware
is challenging and limited – yet another motivation for the
ongoing ONF FAWG work on TTPs [121].

Some efforts focus on compression techniques to reduce
the number of flow entries in TCAMs [426], [427], [428].
The Espresso heuristic [428] can be used to compress wild-
cards of OpenFlow-based inter-domain routing tables, re-
ducing the forwarding information base (FIB) by 17% and,
consequently, saving up to 40,000 flow table entries [426].
Shadow MACs [427] propose label switching for solving two

VERSION 2.01 32

TABLE XI
DEBUGGING, VERIFICATION AND SIMULATION

Group Solution Main purpose Short description

Debugging

ndb [376] gdb alike SDN debugging Basic debugging primitives that help developers to debug their networks.

NetSight [384] multi purpose packet history Allows to build flexible debugging, monitoring and profiling applications.

OFRewind [377] tracing and replay OFRewind allows operators to do a fine-grained tracing of the network behavior.
Operators can decide which subsets of the network will be recorded.

PathletTracer [409] inspect layer 2 paths Allows to inspect low-level forwarding behavior through on-demand packet
tracing capabilities.

SDN traceroute [410] query OpenFlow paths Allows users to discover the forwarding behavior of any Ethernet packet and
debug problems regarding both forwarding devices and applications.

Verification

Assertion
language [399]

debug SDN apps Enables assertions about the data plane on the apps with support to dynamic
changing verification conditions.

Cbench [390] evaluate OpenFlow controllers The Cbench framework can be used to emulate OpenFlow switches which are
configured to generate workload to the controller.

FLOVER [259] model checking for security
policies

FLOVER provides a provably correct and automatic method for verifying security
properties with respect to a set of flow rules committed by an OF controller.

FlowChecker [380] flow table config verification A tool used to verify generic properties of global behaviors based on flow tables.

FLOWGUARD [394] verify security policy Provides mechanisms for accurate detection and resolution of firewall policy
violations in OpenFlow-based networks.

FlowTest [411] verify network policies Provides the means for testing stateful and dynamic network policies by system-
atically exploring the state space of the network data plane.

NetPlumber [398] real time policy checking NetPlumber uses a set of policies and invariants to do real time checking. It
leverages header space analysis and keeps a dependency graph between rules.

NICE [378] remove bugs in controllers Its main goal is to test controller programs without requiring any type of
modification or extra work for application programmers.

OFCBenchmark [391] evaluate OpenFlow controllers creates independent virtual switches, making is possible to emulate different
scenarios. Each switch has its how configuration and statistics.

OFTEN [382] catch correctness property vio-
lations

A framework designed to check SDN systems, analyzing controller and switch
interaction, looking for correctness condition violation.

OFLOPS [379] evaluate OpenFlow switches A framework with a rich set of tests for OpenFlow protocol, enabling to measure
capabilities of both switch and applications.

OFLOPS-Turbo [393] evaluate OpenFlow switches A framework that integrates OFLOPS with OSNT [412], a 10GbE traffic
generation and monitoring system based on NetFPGA.

PktBlaster [392] emulation / benchmarking Integrated test and benchmarking solution that emulates large scale software-
defined networks.

SDLoad [413] evaluate OpenFlow controllers A traffic generation framework with customizable workloads to realistically
represent different types of applications.

VeriCon [395] verify SDN apps Is a tool for verifying the correctness of SDN applications on large range of
topologies and sequences of network events.

VeriFlow [381] online invariant verification It provides real time verification capabilities, while the network state is still
evolving.

Simulation
&
Emulation

DOT [404] network emulation Leverages VMs for large scale OpenFlow-based network emulations with re-
source allocation guarantees.

fs-sdn [414] fast simulation Like Mininet, it provides a simulation environment, but with speed and scalability
advantages.

MaxiNet [403] network simulation Similarly to Mininet CE, it is a combination of Mininet tools for large scale
simulation of network topologies and architectures.

Mininet [110] fast prototyping It emulates and OpenFlow network using Open vSwitches to provide the exact
same semantics of hardware devices.

Mininet CE [401] global network modeling It is a combination of tools to create a Mininet cluster for large scale simulation
of network topologies and architectures.

Mininet-HiFi [400] reproducible experimentation Evolution of Mininet to enable repeatable and high fidelity experiments.

ns-3 [406] network simulation The latest version of ns-3 simulator provides support to OpenFlow, enabling to
create programmable network devices.

SDN Cloud DC [402] cloud data center emulation The SDN Cloud DC solution allows users to evaluate the performance of their
controllers at scale.

STS [408] troubleshooting It simulates a network, allows to generate tricky test cases, and allows interac-
tively examine the state of the network.

VND-SDN [415] simulation and analysis Makes it easier to define experiments via GUI authoring of SDN scenarios and
automatic generation of NSDL.

VERSION 2.01 33

problems, consistent updates and rule space exhaustion, by
using opaque values (similar to MPLS labels) to encode fine-
grained paths as labels. A major benefit of fixed-size labels is
relying on exact-math lookups which can be easily and cost-
effectively implemented by simple hardware tables instead of
requiring rules to be encoded in expensive TCAM tables.

Performance
Today, the throughput of commercial OpenFlow switches

varies from 38 to 1000 flow-mod per second, with most
devices achieving a throughput lower than 500 flow-mod
per second [429], [430]. This is clearly a limiting factor that
shall be addressed in the switch design process – support of
OpenFlow in existing product lines has been more a retrofitting
activity than a clean feature planning and implementation
activity. Deployment experiences [431] have pointed to a
series of challenges stemming from the limited embedded
CPU power of current commercial OpenFlow switches. One
approach to handle the problem consists of adding more
powerful CPUs into the switches, as proposed in [432]. Others
have proposed to rethink the distribution of control actions
between external controllers and the OpenFlow agent inside
the switch [416]. Our current understanding indicates that an
effective way forward is a native design of SDN switches
consistent with the evolution of the southbound API standard-
ization activities [433], [121].

Evolving Switch Designs & Hardware Enhancements
As in any software/hardware innovation cycle, a number

of advancements are to be expected from the hardware per-
spective to improve SDN capabilities and performance. New
SDN switch designs are appearing in a myriad of hardware
combinations to efficiently work together with TCAMs, such
as SRAM, RLDRAM, DRAM, GPU, FPGA, NPs, CPUs,
among other specialized network processors [434], [435],
[436], [437], [438], [439]. These early works suggest the need
for additional efforts into new hardware architectures for future
SDN switching devices. For instance, some proposals target
technologies such as GPUs that have demonstrated 20 Gbps
with flow tables of up to 1M exact match entries and up to 1K
wildcard entries [436]. Alternatives to TCAM-based designs
include new hardware architectures and components, as well
as new and more scalable forwarding planes, such as the
one proposed by the Rain Man firmware [440]. Other design
solutions, such as parallel lookup models [441], can also be
applied to SDN to reduce costs in switching and routing
devices. Recent proposals on cache-like OpenFlow switch ar-
rangements [442] shed some light on overcoming the practical
limitations of flow table sizes with clever switching designs.
Additionally, counters represent another practical challenge in
SDN hardware implementations. Many counters already exists,
and they could lead to significant control plane monitoring
overhead [416]. Software-defined counters (SDC) [432] have
been proposed to provide both scalability and flexibility.

Application-aware SDN architectures are being proposed to
generalize the standard OpenFlow forwarding abstractions by
including stateful actions to allow processing information from
layers 4 to 7 [443]. To this end, application flow tables are
proposed as data plane application modules that require only

local state, i.e., do not depend on a global view of the network.
Those tiny application modules run inside the forwarding
devices (and can be installed on-demand), alleviating the
overhead on the control plane and augmenting the efficiency
of certain tasks, which can be kept in the data plane. Similarly,
other initiatives propose solutions based on pre-installed state
machines. FAST (Flow-level State Transitions) [444] allows
controllers to proactively program state transitions in forward-
ing devices, allowing switches to run dynamic actions that
require only local information.

Other approaches towards evolving switch designs include
CAching in Buckets (CAB), a reactive wildcard caching
proposal that uses a geometric representation of the rule set,
which is divided into small logical structures (buckets) [445].
Through this technique CAB is able to solve the rule depen-
dency problem and achieve efficient usage of control plane
resources, namely bandwidth, controller processing load, and
flow setup latency.

New programmable Ethernet switch chips, such as XPliant
Ethernet [446], are emerging into this new market of pro-
grammable networks. Its main aim is enabling new protocol
support and the addition of new features through software
updates, increasing flexibility. One example of such flexibility
is the support of GENEVE [39], a recent effort towards generic
network virtualization encapsulation protocols, and OpenFlow.
The throughput of the first family of XPliant Ethernet chip
varies from 880 Gbps to 3.2 Tbps, supporting up to 64 ports
of 40 GbE or 50 GbE, for instance.

Microchip companies like Intel are already shipping proces-
sors with flexible SDN capabilities to the market [447]. Recent
advances in general-purpose CPU technology include a data-
plane development kit (DPDK) [448] that allows high-level
programming of how data packets shall be processed directly
within network interface cards. Prototype implementations
of Intel DPDK accelerated switch shows the potential to
deliver high-performance SDN software switches [439]. This
trend is likely to continue since high-speed and specialized
hardware is needed to boost SDN performance and scalability
for large, real-world networks. Hardware-programmable tech-
nologies such as FPGA are widely used to reduce time and
costs of hardware-based feature implementations. NetFPGA,
for instance, has been a pioneering technology used to imple-
ment OpenFlow 1.0 switches [435], providing a commodity
cost-effective prototyping solution. Another line of work on
SDN data planes proposes to augment switches with FPGA
to (remotely) define the queue management and scheduling
behaviour of packet switches [449]. Finally, recent develop-
ments have shown that state-of-the-art System-on-chip (SoC)
platforms, such as the Xilinx Zynq ZC706 board, can be used
to implement OpenFlow devices yielding 88 Gpbs throughput
for 1K flow supporting dynamic updates [450].

Native SDN Switch Designs
Most of the SDN switch (re)design efforts so far follow

an evolutionary approach to retrofit OpenFlow-specific pro-
grammable features into existing hardware layouts, following
common wisdom on switch/router designs and consolidated
technologies (e.g., SRAM, TCAM, FPGA). One departure

VERSION 2.01 34

from this approach is the ongoing work on forwarding meta-
morphosis [433], a reconfigurable match table model inspired
from RISC-like pipeline architecture applied to switching
chips. This work illustrates the feasibility of realizing a
minimal set of action primitives for flexible header processing
in hardware, at almost no additional cost or power. Also in
line with the core SDN goals of highly flexible and pro-
grammable (hardware-based) data planes, Protocol-Oblivious
Forwarding (POF) [120] aims at overcoming some of the
limitations of OpenFlow (e.g., expressiveness, support of user-
defined protocols, memory efficiency), through generic flow
instruction sets. Open-source prototypes are available [31] as
well as evaluation results showing the line-speed capabilities
using a network processing unit (NPU)-based [451] proof of
concept implementation. In this line, we already mentioned
OpenState [155], another initiative that aims to augment the
capability and flexibility of forwarding devices. By taking
advantage of eXtended Finite State Machines (XFSM) [452],
[453], OpenState proposes an abstraction – as a super set
of OpenFlow primitives – to enable stateful handling of
OpenFlow rules inside forwarding devices.

In the same way as TTPs allow controllers to compile
the right set of low-lever instructions known to be supported
by the switches, a new breed of switch referred to as P4
(programmable, protocol-independent packet processor) [454]
suggests an evolution path for OpenFlow, based on a high-
level compiler. This proposal would allow the functionality
of programmable switches (i.e., pipeline, header parsing, field
matching) to be not only specified by the controller but also
changed in the field. In this model, programmers are able to
decide how the forwarding plane processes packets without
caring about implementation details. It is then the compiler
that transforms the imperative program into a control flow
graph that can be mapped to different target switches.

B. Controller Platforms

In the SDN model, the controller platform is a critical pillar
of the architecture, and, as such, efforts are being devoted
to turn SDN controllers into high-performance, scalable, dis-
tributed, modular, and highly-available programmer-friendly
software. Distributed controller platforms, in particular, have
to address a variety of challenges. Deserving special consid-
eration are the latency between forwarding devices and con-
troller instances, fault-tolerance, load-balancing, consistency
and synchronization, among other issues [7], [455], [456].
Operators should also be able to observe and understand how
the combination of different functions and modules can impact
their network [457].

As the SDN community learns from the development
and operational experiences with OpenFlow controllers (e.g.,
Beacon [186]), further advancements are expected in terms
of raw performance of controller implementations, including
the exploitation of hierarchical designs and optimized buffer
sizing [458]. One approach to increase the performance of
controllers is the IRIS IO engine [459], enabling significant
increases in the flow-setup rate of SDN controllers. Another
way of reducing the control plane overhead is by keeping

a compressed copy of the flow tables in the controller’s
memory [460].

Modularity & Flexibility
A series of ongoing research efforts target the modular and

flexible composition of controllers. RAON [461] proposes a
recursive abstraction of OpenFlow controllers where each con-
troller sees the controllers below as OpenFlow switches. Open
research issues include the definition of suitable interfaces
between the different layers in such a hierarchy of controllers.

Other open issues to be further investigated in this context
are the East/westbound APIs, and their use in enabling suitable
hierarchical designs to achieve scalability, modularity, and
security [218]. For instance, each level of a hierarchy of
controllers can offer different abstractions and scopes for either
intra- and inter-data center routing, thus increasing scalability
and modularity. Similarly, from a security perspective, each
hierarchical level may be part of a different trust domain.
Therefore, east/westbound interfaces between the different
layers of controllers should be capable of enforcing both intra-
and inter-domain security policies.

Another important observation is that, currently, the lack of
modularity in most SDN controllers forces developers to re-
implement basic network services from scratch in each new
application [29]. As in software engineering in general, lack of
modularity results in controller implementations that are hard
to build, maintain, and extend – and ultimately become resis-
tant to further innovations, resembling traditional “hardware-
defined” networks. As surveyed in Section IV-G, SDN pro-
gramming abstractions (e.g., Pyretic [225]) introduce mod-
ularity in SDN applications and simplify their development
altogether. Further research efforts (e.g., Corybantic [462])
try to achieve modularity in SDN control programs. Other
contributions towards achieving modular controllers can be
expected from other areas of computer science (e.g., principles
from Operating System [196]) and best practices of modern
cloud-scale software applications.

Interoperability and application portability
Similarly to forwarding device vendor agnosticism that

stems from standard southbound interfaces, it is impor-
tant to foster interoperability between controllers. Early ini-
tiatives towards more interoperable control platforms in-
clude portable programming languages such as Pyretic [225]
and east/westbound interfaces among controllers, such as
SDNi [209], ForCES CE-CE interface [30], [211], and ForCES
Intra-NE mechanisms [212]. However, these efforts are yet far
from fully realizing controller interoperability and application
portability.

In contrast to Pyretic [247], PANE [197], Maple [262], and
Corybantic [462], which are restricted to traffic engineering
applications and/or impose network state conflict resolution at
the application level (making application design and testing
more complicated), Statesman [463] proposes a framework
to enable a variety of loosely-coupled network applications
to co-exist on the same control plane without compromising
network safety and performance. This framework makes ap-
plication development simpler by automatically and transpar-
ently resolving conflicts. In other words, Statesman allows a

VERSION 2.01 35

safe composition of uncoordinated or conflicting application’s
actions.

Another recent approach to simplify network management
is the idea of compositional SDN hypervisors [181]. Its main
feature is allowing applications written in different languages,
or on different platforms, to work together in processing the
same traffic. The key integration component is a set of simple
prioritized lists of OpenFlow rules, which can be generated by
different programming languages or applications.

High-Availability
In production, SDN controllers need to sustain healthy

operation under the pressure of different objectives from
the applications they host. Many advances are called for in
order to deal with potential risk vectors of controller-based
solutions [357]. Certainly, many solutions will leverage on
results from the distributed systems and security communities
made over the last decade. For instance, recent efforts pro-
pose consistent, fault-tolerant data stores for building reliable
distributed controllers [213], [198], [456].

Another possible approach towards building low latency,
highly available SDN controllers is to exploit controller lo-
cality [455], [464]. Classical models of distributed systems,
such as LOCAL and CONGEST [465], can be explored to
solve this problem. Those models can be used to develop
coordination protocols that enable each controller to take
independent actions over events that take place in its local
neighborhood [455].

Another core challenge relates to the fundamental trade-
offs between the consistency model of state distribution in
distributed SDN controllers, the consistency requirements of
control applications, and performance [464]. To ease devel-
opment, the application should ideally not be aware of the
vagaries of distributed state. This implies a strong consistency
model, which can be achieved with distributed data stores as
proposed recently [213]. However, keeping all control data
in a consistent distributed data store is unfeasible due to the
inherent performance penalties. Therefore, hybrid solutions
are likely to co-exist requiring application developers to be
aware of the trade-offs and penalties of using, or not, a
strong consistency model, a tenet of the distributed Onix
controller [7].

High availability can also be achieved through improved
southbound APIs and controller placement heuristics and
formal models [466], [467], [468]. These aim to maximize
resilience and scalability by allowing forwarding devices to
connect to multiple controllers in a cost-effective and efficient
way [467]. Early efforts in this direction have already shown
that forwarding devices connecting to two or three controllers
can typically achieve high availability (up to five nines)
and robustness in terms of control plane connectivity [466],
[468]. It has also been shown that the number of required
controllers is more dependent on the topology than on network
size [466]. Another finding worth mentioning is the fact that
for most common topologies and network sizes fewer than ten
controllers seem to be enough [466].

Delegation of control
To increase operational efficiency, SDN controllers can

delegate control functions to report state and attribute value
changes, threshold crossing alerts, hardware failures, and so
forth. These notifications typically follow a publish/subscribe
model, i.e., controllers and applications subscribe (on-demand)
to the particular class of notifications they are interested in.
In addition, these subsystems may provide resilience and
trustworthiness properties [469].

Some reasons for delegating control to the data plane
include [218]:

• Low latency response to a variety of network events;
• The amount of traffic that must be processed in the data

plane, in particular in large-scale networks such as data
centers;

• Low level functions such as those (byte- or bit-oriented)
required by repetitive SDH (Synchronous Digital Hierar-
chy) [470] multiplex section overhead;

• Functions well-understood and standardized, such as en-
cryption, BIP [471], AIS [472] insertion, MAC learning,
and CCM (Codec Control Messages) [473] exchanges;

• Controller failure tolerance, i.e., essential network func-
tions should be able to keep a basic network operation
even when controllers are down;

• Basic low-level functions usually available in data plane
silicon, such as protection switching state machines,
CCM counters and timers;

• All those functions that do not add any value when moved
from the data to the control plane.

Strong candidates for execution in the forwarding devices
instead of being implemented in the control platforms thus
include OAM, ICMP processing, MAC learning, neighbor
discovery, defect recognition and integration [218]. This would
not only reduce the overhead (traffic and computing) of the
control plane, but also improve network efficiency by keeping
basic networking functions in the data plane.

C. Resilience

Achieving resilient communication is a top purpose of
networking. As such, SDNs are expected to yield the same
levels of availability as legacy and any new alternative tech-
nology. Split control architectures as SDN are commonly
questioned [474] about their actual capability of being resilient
to faults that may compromise the control-to-data plane com-
munications and thus result in “brainless” networks. Indeed,
the malfunctioning of particular SDN elements should not
result in the loss of availability. The relocation of SDN control
plane functionality, from inside the boxes to remote, logically
centralized loci, becomes a challenge when considering critical
control plane functions such as those related to link failure
detection or fast reaction decisions. The resilience of an Open-
Flow network depends on fault-tolerance in the data plane (as
in traditional networks) but also on the high availability of
the (logically) centralized control plane functions. Hence, the
resilience of SDN is challenging due to the multiple possible
failures of the different pieces of the architecture.

As noted in [475], there is a lack of sufficient research
and experience in building and operating fault-tolerant SDNs.
Google B4 [8] may be one of the few examples that have

VERSION 2.01 36

proven that SDN can be resilient at scale. A number of related
efforts [355], [476], [477], [261], [478], [479], [480], [481],
[361] have started to tackle the concerns around control plane
split architectures. The distributed controller architectures sur-
veyed in Section IV-D are examples of approaches towards
resilient SDN controller platforms with different tradeoffs in
terms of consistency, durability and scalability.

On a detailed discussion on whether the CAP theorem [482]
applies to networks, Panda et al. [477] argue that the trade-
offs in building consistent, available and partition-tolerant
distributed databases (i.e., CAP theorem) are applicable to
SDN. The CAP theorem demonstrates that it is impossible
for datastore systems to simultaneously achieve strong con-
sistency, availability and partition tolerance. While availability
and partition tolerance problems are similar in both distributed
databases and networks, the problem of consistency in SDN
relates to the consistent application of policies.

Considering an OpenFlow network, when a switch detects
a link failure (port-down event), a notification is sent to
the controller, which then takes the required actions (re-
route computation, pre-computed back-up path lookup) and
installs updated flow entries in the required switches to redirect
the affected traffic. Such reactive strategies imply (1) high
restoration time due to the necessary interaction with the
controller; and (2) additional load on the control channel. One
experimental work on OpenFlow for carrier-grade networks
investigated the restoration process and measured a restoration
times in the order of 100 ms [476]. The delay introduced by
the controller may, in some cases, be prohibitive.

In order to meet carrier grade requirements (e.g., 50 ms of
recovery time), protection schemes are required to mitigate
the effects of a separate control plane. Suitable protection
mechanisms (e.g., installation of pre-established backup paths
in the forwarding devices) can be implemented by means of
OpenFlow group table entries using “fast-failover” actions.
An OpenFlow fault management approach [355] similar to
MPLS global path protection could also be a viable solution,
provided that OpenFlow switches are extended with end-to-
end path monitoring capabilities similarly to those specified
by Bidirectional Forwarding Detection (BFD) [483]. Such
protection schemes are a critical design choice for larger
scale networks and may also require considerable additional
flow space. By using primary and secondary path pairs pro-
grammed as OpenFlow fast failover group table entries, a path
restoration time of 3.3 ms has been reported [484] using BFD
sessions to quickly detect link failures.

On a related line of data plane resilience, SlickFlow [480]
leverages the idea of using packet header space to carry alter-
native path information to implement resilient source routing
in OpenFlow networks. Under the presence of failures along
a primary path, packets can be rerouted to alternative paths
by the switches themselves without involving the controller.
Another recent proposal that uses in-packet information is
INFLEX [481], an SDN-based architecture for cross-layer
network resilience which provides on-demand path fail-over
by having end-points tag packets with virtual routing plane
information that can be used by egress routers to re-route by
changing tags upon failure detection.

Similarly to SlickFlow, OSP [279] proposes a protection
approach for data plane resilience. It is based on protecting
individual segments of a path avoiding the intervention of
the controller upon failure. The recovery time depends on
the failure detection time, i.e., a few tens of milliseconds in
the proposed scenarios. In the same direction, other proposals
are starting to appear for enabling fast failover mechanisms
for link protection and restoration in OpenFlow-based net-
works [485].

Language-based solutions to the data plane fault-tolerance
problem have also been proposed [261]. In this work the
authors propose a language that compiles regular expressions
into OpenFlow rules to express what network paths packets
may take and what degree of (link level) fault tolerance
is required. Such abstractions around fault tolerance allow
developers to build fault recovery capabilities into applications
without huge coding efforts.

D. Scalability

Scalability has been one of the major concerns of SDNs
from the outset. This is a problem that needs to be addressed
in any system – e.g., in traditional networks – and is obviously
also a matter of much discussion in the context of SDN [11].

Most of the scalability concerns in SDNs are related to
the decoupling of the control and data planes. Of particu-
lar relevance are reactive network configurations where the
first packet of a new flow is sent by the first forwarding
element to the controller. The additional control plane traffic
increases network load and makes the control plane a potential
bottleneck. Additionally, as the flow tables of switches are
configured in real-time by an outside entity, there is also the
extra latency introduced by the flow setup process. In large-
scale networks controllers will need to be able to process
millions of flows per second [486] without compromising the
quality of its service. Therefore, these overheads on the control
plane and on flow setup latency are (arguably) two of the major
scaling concerns in SDN.

As a result, several efforts have been devoted to tackle the
SDN scaling concerns, including DevoFlow [416], Software-
Defined Counters (SDCs) [432], DIFANE [487], Onix [7], Hy-
perFlow [195], Kandoo [228], Maestro [188], NOX-MT [187],
and Maple [262]. Still related to scalability, the notion of
elasticity in SDN controllers is also being pursued [479],
[361]. Elastic approaches include dynamically changing the
number of controllers and their locations under different
conditions [488].

Most of the research efforts addressing scaling limitations
of SDN can be classified in three categories: data plane,
control plane, and hybrid. While targeting the data plane,
proposals such as DevoFlow [416] and Software-Defined
Counters (SDC) [432] actually reduce the overhead of the
control plane by delegating some work to the forwarding
devices. For instance, instead of requesting a decision from
the controller for every flow, switches can selectively iden-
tify the flows (e.g., elephant flows) that may need higher-
level decisions from the control plane applications. Another
example is to introduce more powerful general purpose CPUs

VERSION 2.01 37

in the forwarding devices to enable SDCs. A general purpose
CPU and software-defined counters offer new possibilities for
reducing the control plane overhead by allowing software-
based implementations of functions for data aggregation and
compression, for instance.

Maestro [188], NOX-MT [187], Kandoo [228], Bea-
con [186], and Maple [262] are examples of the effort on
designing and deploying high performance controllers, i.e.,
trying to increase the performance of the control plane.
These controllers mainly explore well-known techniques from
networking, computer architectures and high performance
computing, such as buffering, pipelining and parallelism, to
increase the throughput of the control platform.

The hybrid category is comprised of solutions that try to
split the control logic functions between specialized data plane
devices and controllers. In this category, DIFANE [487] pro-
poses authoritative (intermediate) switches to keep all traffic in
the data plane, targeting a more scalable and efficient control
plane. Authoritative switches are responsible for installing
rules on the remaining switches, while the controller is still
responsible for generating all the rules required by the logic
of applications. By dividing the controller work with these
special switches, the overall system scales better.

Table XII provides a non-exhaustive list of proposals ad-
dressing scalability issues of SDN. We characterize these
issues by application domain (control or data plane), their
purpose, the throughput in terms of number of flows per
second (when the results of the experiments are reported), and
the strategies used. As can be observed, the vast majority are
control plane solutions that try to increase scalability by using
distributed and multi-core architectures.

Some figures are relatively impressive, with some solutions
achieving up to 20M flows/s. However, we should caution
the reader that current evaluations consider only simple ap-
plications and count basically the number of packet-in
and packet-out messages to measure throughput. The
actual performance of controllers will be affected by other
factors, such as the number and complexity of the applications
running on the controller and security mechanisms imple-
mented. For example, a routing algorithm consumes more
computing resources and needs more time to execute than a
simple learning switch application. Also, current evaluations
are done using plain TCP connections. The performance is
very likely to change when basic security mechanisms are
put in place, such as TLS, or more advanced mechanisms to
avoid eavesdropping, man-in-the-middle and DoS attacks on
the control plane.

Another important issue concerning scalability is data dis-
tribution among controller replicas in distributed architectures.
Distributed control platforms rely on data distribution mech-
anisms to achieve their goals. For instance, controllers such
as Onix, HyperFlow, and ONOS need mechanisms to keep a
consistent state in the distributed control platform. Recently,
experimental evaluations have shown that high performance
distributed and fault-tolerant data stores can be used to tackle
such challenges [213]. Nevertheless, further work is necessary
to properly understand state distribution trade-offs [464].

E. Performance evaluation

As introduced in Section IV-A, there are already several
OpenFlow implementations from hardware and software ven-
dors being deployed in different types of networks, from
small enterprise to large-scale data centers. Therefore, a grow-
ing number of experiments over SDN-enabled networks is
expected in the near future. This will naturally create new
challenges, as questions regarding SDN performance and scal-
ability have not yet been properly investigated. Understanding
the performance and limitation of the SDN concept is a
requirement for its implementation in production networks.
There are very few performance evaluation studies of Open-
Flow and SDN architecture. Although simulation studies and
experimentation are among the most widely used performance
evaluation techniques, analytical modeling has its own benefits
too. A closed-form description of a networking architecture
paves the way for network designers to have a quick (and
approximate) estimate of the performance of their design,
without the need to spend considerable time for simulation
studies or expensive experimental setup [431].

Some work has investigated ways to improve the perfor-
mance of switching capabilities in SDN. These mainly consist
of observing the performance of OpenFlow-enabled networks
regarding different aspects, such as lookup performance [490],
hardware acceleration [437], the influence of types of rules and
packet sizes [491], performance bottlenecks of current Open-
Flow implementations [416], how reactive settings impact the
performance on data center networks [492], and the impact of
configuration on OpenFlow switches [390].

Design choices can have a significant impact on the lookup
performance of OpenFlow switching in Linux operating sys-
tem using standard commodity network interface cards [490].
Just by using commodity network hardware the packet switch-
ing throughput can be improved by up to 25% when compared
to one based on soft OpenFlow switching [490]. Similarly,
hardware acceleration based on network processors can also be
applied to perform OpenFlow switching. In such cases, early
reports indicate that performance, in terms of packet delay,
can be improved by 20% when compared to conventional
designs [437].

By utilizing Intel’s DPDK library [448], it has been shown
that is possible to provide flexible traffic steering capability
at the hypervisor level (e.g., KVM) without the performance
limitations imposed by traditional hardware switching tech-
niques [493], such as SR-IOV [494]. This is particularly
relevant since most of the current enterprise deployments
of SDN are in virtualized data center infrastructures, as in
VMware’s NVP solution [112].

Current OpenFlow switch implementations can lead to per-
formance bottlenecks with respect to the CPU load [416]. Yet,
modifications on the protocol specification can help reduce the
occurrence of these bottlenecks. Further investigations provide
measurements regarding the performance of the OpenFlow
switch for different types of rules and packet sizes [491].

In data centers, a reactive setting of flow rules can lead
to an unacceptable performance when only eight switches are
handled by one OpenFlow controller [492]. This means that

VERSION 2.01 38

TABLE XII
SUMMARY AND CHARACTERIZATION OF SCALABILITY PROPOSALS FOR SDNS.

Solution Domain Proposes Main purpose Flows/s Resorts to
Beacon [186] control plane a multi-threaded control-

ler
improve controller
performance

12.8M High performance flow processing capabilities us-
ing pipeline threads and shared queues.

Beacon
cluster [489]

control plane coordination framework create clusters of con-
trollers

6.2M A coordination framework to create high-
performance clusters of controllers.

DevoFlow [416] data plane thresholds for counters,
type of flow detection

reduce the control
plane overhead

— Reduce the control traffic generated by counters
statistics monitoring.

DIFANE [487] control and
data plane

authoritative specialized
switches

improve data plane
performance

500K Maintain flows in the data plane reducing controller
work.

Floodlight [186] control plane a multi-threaded control-
ler

Improve controller
performance

1.2M High performance flow processing capabilities.

HyperFlow [195] control plane a distributed controller distribute the control
plane

— Application on top of NOX to provide control
message distribution among controllers.

Kandoo [228] control plane a hierarchical controller distribute the control
plane hierarchically

— Use two levels of controller (local and root) to
reduce control traffic.

Maestro [188] control plane a multi-threaded control-
ler

improve controller
performance

4.8M High performance flow processing capabilities.

Maestro
cluster [489]

control plane coordination framework create clusters of con-
trollers

1.8M A coordination framework to create high-
performance clusters of controllers.

Maple [262] control plane programming language scaling algorithmic
policies

20M Algorithmic policies and user- and OS-level
threads on multicore systems (e.g., 40+ cores).

NOX [186] control plane a multi-threaded control-
ler

improve controller
performance

5.3M High performance flow processing capabilities.

NOX-MT [187] control plane a multi-threaded control-
ler

improve controller
performance

1.8M High performance flow processing capabilities.

NOX
cluster [489]

control plane coordination framework create clusters of con-
trollers

3.2M A coordination framework to create high-
performance clusters of controllers.

Onix [7] control plane a distributed control
platform

robust and scalable
control platform

— Provide a programmable and flexible distributed
NIB for application programmers.

SDCs [432] data plane Software-Defined Coun-
ters

reduce the control
plane overhead

— Remove counters from the ASIC to a general
purpose CPU, improving programmability.

large-scale SDN deployments should probably not rely on a
purely reactive “modus operandi”, but rather on a combination
of proactive and reactive flow setup.

To foster the evaluation of different performance aspects
of OpenFlow devices, frameworks such as OFLOPS [379],
OFLOPS-Turbo [393], Cbench [187], and OFCBench-
mark [391] have been proposed. They provide a set of tools
to analyze the performance of OpenFlow switches and con-
trollers. Cbench [187], [390] is a benchmark tool developed
to evaluate the performance of OpenFlow controllers. By
taking advantage of the Cbench, it is possible to identify
performance improvements for OpenFlow controllers based
on different environment and system configurations, such as
the number of forwarding devices, network topology, overall
network workload, type of equipments, forwarding complexity,
and overhead of the applications being executed on top of con-
trollers [187]. Therefore, such tools can help system designers
make better decisions regarding the performance of devices
and the network, while also allowing end-users to measure
the device performance and better decide which one is best
suited for the target network infrastructure.

Surprisingly, despite being designed to evaluate the perfor-
mance of controllers, Cbench is currently a single-threaded
tool. Therefore, multiple instances have to be started to utilize

multiple CPUs. It also only establishes one controller con-
nection for all emulated switches. Unfortunately, this means
little can be derived from the results in terms of controller
performance and behavior or estimation of different bounds
at the moment. For instance, aggregated statistics are gathered
for all switches but not for each individual switch. As a result,
it is not possible to identify whether all responses of the
controller are for a single switch, or whether the capacity of
the controller is actually shared among the switches. Flex-
ible OpenFlow controller benchmarks are available though.
OFCBenchmark [391] is one of the recent developments. It
creates a set of message-generating virtual switches, which
can be configured independently from each other to emulate
a specific scenario and to maintain their own statistics.

Another interesting question to pose when evaluating the
performance of SDN architectures is what is the required
number of controllers for a given network topology and
where to place the controllers [495], [467]. By analyzing the
performance of controllers in different network topologies, it
is possible to conclude that one controller is often enough
to keep the latency at a reasonable rate [495]. Moreover, as
observed in the same experiments, in the general case adding k
controllers to the network can reduce the latency by a factor of
k. However, there are cases, such as large scale networks and

VERSION 2.01 39

WANs, where more controllers should be deployed to achieve
high reliability and low control plane latency.

Recent studies also show that the SDN control plane cannot
be fully physically centralized due to responsiveness, reliabil-
ity and scalability metrics [464], [467]. Therefore, distributed
controllers are the natural choice for creating a logically
centralized control plane, while being capable of coping with
the demands of large scale networks. However, distributed
controllers bring additional challenges, such as the consistency
of the global network view, which can significantly affect the
performance of the network if not carefully engineered. Taking
two applications as examples, one that ignores inconsistencies
and another that takes inconsistency into consideration, it is
possible to observe that optimality is significantly affected
when inconsistencies are not considered and that the robust-
ness of an application is increased when the controller is aware
of the network state distribution [464].

Most of these initiatives towards identifying the limita-
tions and bottlenecks of SDN architectures can take a lot
of time and effort to produce consistent outputs due to the
practical development and experimentation requirements. As
mentioned before, analytic models can quickly provide per-
formance indicators and potential scalability bottlenecks for
an OpenFlow switch-controller system before detailed data is
available. While simulation can provide detailed insight into
a certain configuration, the analytical model greatly simplifies
a conceptual deployment decision. For instance, a Network
calculus-based model can be used to evaluate the performance
of an SDN switch and the interaction of SDN switches and
controllers [496]. The proposed SDN switch model captured
the closed form of the packet delay and buffer length inside
the SDN switch according to the parameters of a cumulative
arrival process. Using recent measurements, the authors have
reproduced the packet processing delay of two variants of
OpenFlow switches and computed the buffer requirements of
an OpenFlow controller. Analytic models based on queuing
theory for the forwarding speed and blocking probability of
current OpenFlow switches can also be used to estimate the
performance of the network [490].

F. Security and Dependability
Cyber-attacks against financial institutions, energy facilities,

government units and research institutions are becoming one
of the top concerns of governments and agencies around
the globe [497], [498], [499], [500], [501], [502]. Different
incidents, such as Stuxnet [501], have already shown the per-
sistence of threat vectors [503]. Put another way, these attacks
are capable of damaging a nation’s wide infrastructure, which
represent a significant and concerning issue. As expected,
one of the most common means of executing those attacks
is through the network, either the Internet or the local area
network. It can be used as a simple transport infrastructure
for the attack or as a potentialized weapon to amplify the
impact of the attack. For instance, high capacity networks can
be used to launch large-scale attacks, even though the attacker
has only a low capacity network connection at his premises.

Due to the danger of cyber-attacks and the current landscape
of digital threats, security and dependability are top priorities

in SDN. While research and experimentation on software-
defined networks is being conducted by some commercial
players (e.g., Google, Yahoo!, Rackspace, Microsoft), com-
mercial adoption is still in its early stage. Industry experts
believe that security and dependability are issues that need to
be addressed and further investigated in SDN [357], [504],
[505].

Additionally, from the dependability perspective, availabil-
ity of Internet routers is nowadays a major concern with the
widespread of clouds and their strong expectations about the
network [506]. It is therefore crucial to achieve high levels of
availability on SDN control platforms if they are to become
the main pillars of networked applications [466].

Different threat vectors have already been identified in SDN
architectures [357], as well as several security issues and
weaknesses in OpenFlow-based networks [507], [508], [509],
[201], [510], [194], [511], [512]. While some threat vectors
are common to existing networks, others are more specific to
SDN, such as attacks on control plane communication and
logically-centralized controllers. It is worth mentioning that
most threats vectors are independent of the technology or
the protocol (e.g., OpenFlow, POF, ForCES), because they
represent threats on conceptual and architectural layers of SDN
itself.

As shown in Figure 10 and Table XIII, there are at least
seven identified threats vector in SDN architectures. The first
threat vector consists of forged or faked traffic flows in the
data plane, which can be used to attack forwarding devices
and controllers. The second allows an attacker to exploit
vulnerabilities of forwarding devices and consequently wreak
havoc with the network. Threat vectors three, four and five
are the most dangerous ones, since they can compromise the
network operation. Attacks on the control plane, controllers
and applications can easily grant an attacker the control of
the network. For instance, a faulty or malicious controller or
application could be used to reprogram the entire network for
data theft purposes, e.g., in a data center. The sixth threat
vector is linked to attacks on and vulnerabilities in admin-
istrative stations. A compromised critical computer, directly
connected to the control network, will empower the attacker
with resources to launch more easily an attack to the controller,
for instance. Last, threat vector number seven represents the
lack of trusted resources for forensics and remediation, which
can compromise investigations (e.g., forensics analysis) and
preclude fast and secure recovery modes for bringing the
network back into a safe operation condition.

As can be observed in Table XIII, threat vectors 3 to 5
are specific to SDN as they stem from the separation of the
control and data planes and the consequent introduction of
a new entity in these networks – the logically centralized
controller. The other vectors were already present in traditional
networks. However, the impact of these threats could be larger
than today – or at least it may be expressed differently – and
as a consequence it may need to be dealt with differently.

OpenFlow networks are subject to a variety of security
and dependability problems such as spoofing [507], tamper-
ing [507], repudiation [507], information disclosure [507],
denial of service [507], [509], [510], elevation of privi-

VERSION 2.01 40

1	

2	

3	

7	

5	
 4	
 6	

Fig. 10. Main threat vectors of SDN architectures

TABLE XIII
SDN SPECIFIC VS. NON-SPECIFIC THREATS

Threat
vectors

Specific
to SDN?

Consequences in software-defined net-
works

Vector 1 no Open door for DDoS attacks.

Vector 2 no Potential attack inflation.

Vector 3 yes Exploiting logically centralized controllers.

Vector 4 yes Compromised controller may compromise the
entire network.

Vector 5 yes Development and deployment of malicious
applications on controllers.

Vector 6 no Potential attack inflation.

Vector 7 no Negative impact on fast recovery and fault
diagnosis.

leges [507], and the assumption that all applications are
benign and will not affect SDN operation [194]. The lack
of isolation, protection, access control and stronger security
recommendations [508], [509], [201], [510], [194] are some
of the reasons for these vulnerabilities. We will explore these
next.

OpenFlow security assessment
There is already a number of identified security issues

in OpenFlow-enabled networks. Starting from a STRIDE
methodology [513], it is possible to identify different attacks
to OpenFlow-enabled networks. Table XIV summarizes these
attacks (based on [507]). For instance, information disclosure
can be achieved through side channel attacks targeting the
flow rule setup process. When reactive flow setup is in place,
obtaining information about network operation is relatively
easy. An attacker that measures the delay experienced by the
first packet of a flow and the subsequent can easily infer that
the target network is a reactive SDN, and proceed with a
specialized attack. This attack – known as fingerprinting [509]
– may be the first step to launch a DoS attack intended to
exhaust the resources of the network, for example. If the SDN
is proactive, guessing its forwarding rule policies is harder,
but still feasible [507]. Interestingly, all reported threats and
attacks affect all versions (1.0 to 1.3.1) of the OpenFlow

specification. It is also worth emphasizing that some attacks,
such as spoofing, are not specific to SDN. However, these
attacks can have a larger impact in SDNs. For instance, by
spoofing the address of the network controller, the attacker
(using a fake controller) could take over the control of the
entire network. A smart attack could persist for only a few
seconds, i.e., just the time needed to install special rules on
all forwarding devices for its malicious purposes (e.g., traffic
cloning). Such attack could be very hard to detect.

Taking counters falsification as another example, an attacker
can try to guess installed flow rules and, subsequently, forge
packets to artificially increase the counter. Such attack would
be specially critical for billing and load balancing systems, for
instance. A customer could be charged for more traffic than
she in fact used, while a load balancing algorithm may take
non-optimal decisions due to forged counters.

Other conceptual and technical security concerns in Open-
Flow networks include the lack of strong security recommen-
dations for developers, the lack of TLS and access control
support on most switch and controller implementations [508],
the belief that TCP is enough because links are “physically
secure” [510], [508], the fact that many switches have listener
mode activated by default (allowing the establishment of
malicious TCP connections, for instance) [510] or that flow
table verification capabilities are harder to implement when
TLS is not in use [508], [259]. In addition, it is worth
mentioning the high denial of service risk posed to centralized
controllers [509], [259], the vulnerabilities in the controllers
themselves [259], [357], bugs and vulnerabilities in applica-
tions [514], targeted flooding attacks [16], insecure northbound
interfaces that can lead to security breaches [16], and the
risk of resource depletion attacks [509], [510]. For instance,
it has been shown that an attacker can easily compromise
control plane communications through DoS attacks and launch
a resource depletion attack on control platforms by exploiting
a single application such as a learning switch [510], [509].

Another point of concern is the fact that current controllers,
such as Floodlight, OpenDaylight, POX, and Beacon, have
several security and resiliency issues [194]. Common applica-
tion development problems (bugs), such as the sudden exit
of an application or the continuous allocation of memory
space, are enough to crash existing controllers. On the security
perspective, a simple malicious action such as changing the
value of a data structure in memory can also directly affect
the operation and reliability of current controllers. These
examples are illustrative that from a security and dependability
perspective, there is still a long way to go.

Countermeasures for OpenFlow based SDNs
Several countermeasures can be put in place to mitigate the

security threats in SDNs. Table XV summarizes a number of
countermeasures that can be applied to different elements of
an SDN/OpenFlow-enabled network. Some of these measures,
namely rate limiting, event filtering, packet dropping, shorter
timeouts, and flow aggregation, are already recommended
in the most recent versions of the OpenFlow specification
(version 1.3.1 and later). However, most of them are not yet
supported or implemented in SDN deployments.

VERSION 2.01 41

TABLE XIV
ATTACKS TO OPENFLOW NETWORKS.

Attack Security Property Examples
Spoofing Authentication MAC and IP address spoofing, forged ARP and IPv6 router advertisement

Tampering Integrity Counter falsification, rule installation, modification affecting data plane.

Repudiation Non-repudiation Rule installation, modification for source address forgery.

Information disclosure Confidentiality Side channel attacks to figure out flow rule setup.

Denial of service Availability Flow requests overload of the controller.

Elevation of privilege Authorization Controller take-over exploiting implementation flaws.

TABLE XV
COUNTERMEASURES FOR SECURITY THREATS IN OPENFLOW NETWORKS.

Measure Short description
Access control Provide strong authentication and authorization

mechanisms on devices.

Attack detection Implement techniques for detecting different types
of attacks.

Event filtering Allow (or block) certain types of events to be
handled by special devices.

Firewall and IPS Tools for filtering traffic, which can help to prevent
different types of attacks.

Flow aggregation Coarse-grained rules to match multiple flows to
prevent information disclosure and DoS attacks.

Forensics support Allow reliable storage of traces of network activities
to find the root causes of different problems.

Intrusion tolerance Enable control platforms to maintain correct oper-
ation despite intrusions.

Packet dropping Allow devices to drop packets based on security
policy rules or current system load.

Rate limiting Support rate limit control to avoid DoS attacks on
the control plane.

Shorter timeouts Useful to reduce the impact of an attack that diverts
traffic.

Traditional techniques such as access control, attack detec-
tion mechanisms, event filtering (e.g., controller decides which
asynchronous messages he is not going to accept), firewalls,
and intrusion detection systems, can be used to mitigate the
impact of or to avoid attacks. They can be implemented in
different devices, such as controllers, forwarding devices, mid-
dleboxes, and so forth. Middleboxes can be a good option for
enforcing security policies in an enterprise because they are (in
general) more robust and special purpose (high performance)
devices. Such a strategy also reduces the potential overhead
cause by implementing these countermeasures directly on
controllers or forwarding devices. However, middleboxes can
add extra complexity to the network management, i.e., increase
the OPEX at the cost of better performance.

Rate limiting, packet dropping, shorter timeouts and flow
aggregations are techniques that can be applied on controllers
and forwarding devices to mitigate different types of attacks,
such as denial-of-service and information disclosure. For in-
stance, reduced timeouts can be used to mitigate the effect
of an attack exploring the reactive operation mode of the

network to make the controller install rules that divert traffic
to a malicious machine. With reduced timeouts, the attacker
would be forced to constantly generate a number of forged
packets to avoid timeout expiration, making the attack more
likely to be detected. Rate limiting and packet dropping can be
applied to avoid DoS attacks on the control plane or stop on-
going attacks directly on the data plane by installing specific
rules on the devices where the attacks is being originated.

Forensics and remediation encompass mechanisms such as
secure logging, event correlation and consistent reporting. If
anything wrong happens with the network, operators should
be able to safely figure out the root cause of the problem
and put the network to work on a secure operation mode as
fast as possible. Additionally, techniques to tolerate faults and
intrusions, such as state machine replication [515], proactive-
reactive recovery [516], and diversity [210], can be added to
control platforms for increasing the robustness and security
properties by automatically masking and removing faults. Put
differently, SDN controllers should be able to resist against
different types of events (e.g., power outages, network dis-
ruption, communication failures, network partitioning) and
attacks (e.g., DDoS, resource exhaustion) [357], [213]. One
of the most traditional ways of achieving high availability
is through replication. Yet, proactive-reactive recovery and
diversity are two examples of crucial techniques that add value
to the system for resisting against different kinds of attacks
and failures (e.g., those exploring common vulnerabilities or
caused by software aging problems).

Other countermeasures to address different threats and is-
sues of SDN include enhancing the security and dependability
of controllers, protection and isolation of applications [504],
[357], [201], [194], trust management between controllers and
forwarding devices [357], integrity checks of controllers and
applications [357], forensics and remediation [504], [357],
verification frameworks [517], [201], [518], and resilient con-
trol planes [519], [518], [357], [504]. Protection and isolation
mechanisms should be part of any controller. Applications
should be isolated from each other and from the controller.
Different techniques such as security domains (e.g., kernel,
security, and user level) and data access protection mecha-
nisms should be put in place in order to avoid security threats
from network applications.

Implementing trust between controllers and forwarding is
another requirement for insuring that malicious elements can-
not harm the network without being detected. An attacker can

VERSION 2.01 42

try to spoof the IP address of the controller and make switches
connect to its own controller. This is currently the case since
most controllers and switches only establish insecure TCP
connections. Complementarly, integrity checks on controller
and application software can help to ensure that safe code
is being bootstrapped, which eliminates harmful software
from being started once the system restarts. Besides integrity
checks, other things such as highly specialized malware de-
tection systems should be developed for SDN. Third-party
network applications should always be scanned for bad code
and vulnerabilities because a malicious application represents
a significant security threat to the network.

It is worth mentioning that there are also other approaches
for mitigating security threats in SDN, such as declarative
languages to eliminate network protocol vulnerabilities [264].
This kind of descriptive languages can specify semantic con-
straints, structural constraints and safe access properties of
OpenFlow messages. Then, a compiler can use these inputs
to find programmers’ implementation mistakes on message
operations. In other words, such languages can help find
and eliminate implementation vulnerabilities of southbound
specifications.

Proposals providing basic security properties such as au-
thentication [520] and access control [521] are starting to ap-
pear. C-BAS [520] is a certificate-based AAA (Authentication,
Authorization and Accounting) architecture for improving the
security control on SDN experimental facilities. Solutions in
the spirit of C-BAS can be made highly secure and dependable
through hybrid system architectures, which combine different
technologies and techniques from distributed systems, security,
and fault and intrusion tolerance [522], [523], [524].

G. Migration and Hybrid deployments

The promises by SDN to deliver easier design, operation
and management of computer networks are endangered by
challenges regarding incremental deployability, robustness,
and scalability. A prime SDN adoption challenge relates to
organizational barriers that may arise due to the first (and
second) order effects of SDN automation capabilities and
“layer/domain blurring”. Some level of human resistance is
to be expected and may affect the decision and deployment
processes of SDN, especially by those that may regard the
control refactorization of SDN as a risk to the current chain
of control and command, or even to their job security. This
complex social challenge is similar (and potentially larger) to
known issues between the transport and IP network divisions
of service providers, or the system administrator, storage,
networking, and security teams of enterprise organizations.
Such a challenge is observable on today’s virtualized data
centers, through the shift in role and decision power between
the networking and server people. Similarly, the development
and operations (DevOps) movement has caused a shift in
the locus of influence, not only on the network architecture
but also on purchasing, and this is an effect that SDN may
exacerbate. These changes in role and power causes a second
order effect on the sales division of vendors that are required
to adapt accordingly.

Pioneering SDN operational deployments have been mainly
greenfield scenarios and/or tightly controlled single admin-
istrative domains. Initial roll-out strategies are mainly based
on virtual switch overlay models or OpenFlow-only network-
wide controls. However, a broader adoption of SDN beyond
data center silos – and between themselves – requires con-
sidering the interaction and integration with legacy control
planes providing traditional switching; routing; and operation,
administration, and management (OAM) functions. Certainly,
rip-and-replace is not a viable strategy for the broad adoption
of new networking technologies.

Hybrid networking in SDN should allow deploying Open-
Flow for a subset of all flows only, enable OpenFlow on a
subset of devices and/or ports only, and provide options to
interact with existing OAM protocols, legacy devices, and
neighboring domains. As in any technology transition period
where fork-lift upgrades may not be a choice for many,
migration paths are critical for adoption.

Hybrid networking in SDN spans several levels. The Mi-
gration Working Group of the ONF is tackling the scenario
where hybrid switch architectures and hybrid (OpenFlow
and non-OpenFlow) devices co-exist. Hybrid switches can be
configured to behave as a legacy switch or as an OpenFlow
switch and, in some cases, as both simultaneously. This can
be achieved, for example, by partitioning the set of ports of a
switch, where one subset is devoted to OpenFlow-controlled
networks, and the other subset to legacy networks. For these
subsets to be active at the same time, each one having its
own data plane, multi-table support at the forwarding engine
(e.g., via TCAM partitioning) is required. Besides port-based
partitioning, it is also possible to rely on VLAN-based (prior
to entering the OpenFlow pipeline) or flow-based partitioning
using OpenFlow matching and the LOCAL and/or NORMAL
actions to redirect packets to the legacy pipeline or the switch’s
local networking stack and its management stack. Flow-based
partitioning is the most flexible option, as it allows each
packet entering a switch to be classified by an OpenFlow
flow description and treated by the appropriate data plane
(OpenFlow or legacy).

There are diverse controllers, such as OpenDaylight [13],
HP VAN SDN [184], and OpenContrail [183], that have
been designed to integrate current non-SDN technologies (e.g.,
SNMP, PCEP, BGP, NETCONF) with SDN interfaces such
as OpenFlow and OVSDB. Nonetheless, controllers such as
ClosedFlow [219] have been recently proposed with the aim of
introducing SDN-like programming capabilities in traditional
network infrastructures, making the integration of legacy and
SDN-enabled networks a reality without side effects in terms
of programmability and global network control. ClosedFlow
is designed to control legacy Ethernet devices (e.g., Cisco
3550 switches with a minimum IOS of 12.2 SE) in a similar
way an OpenFlow controller allows administrators to control
OpenFlow-enabled devices. More importantly, ClosedFlow
does not impose any change on the forwarding devices. It
only takes advantage of the existing hardware and firmware
capabilities to mimic an SDN control over the network,
i.e., allow dynamic and flexible programmability in the data
plane. The next step could be the integration of controllers

VERSION 2.01 43

like ClosedFlow and OpenFlow-based controllers, promoting
interoperability among controllers and a smooth transition
from legacy infrastructures to SDN-enabled infrastructure with
nearly all the capabilities of a clean-slate SDN-enabled infras-
tructure.

Furthermore, controllers may have to be separated into
distinct peer domains for different reasons, such as scalability,
technology, controllers from different vendors, controllers with
different service functionality, and diversity of administrative
domains [218]. Controllers from different domains, or with
distinct purposes, are also required to be backwards compatible
either by retrofitting or extending existing multi-domain pro-
tocols (e.g. BGP) or by proposing new SDN-to-SDN protocols
(aka east/westbound APIs).

Some efforts have been already devoted to the challenges
of migration and hybrid SDNs. RouteFlow [525] implements
an IP level control plane on top of an OpenFlow network,
allowing the underlying devices to act as IP routers under
different possible arrangements. The Cardigan project [526],
[50] has deployed RouteFlow at a live Internet eXchange now
for over a year. LegacyFlow [527] extends the OpenFlow-
based controlled network to embrace non-OpenFlow nodes.
There are also some other early use cases on integrating com-
plex legacy system such as DOCSIS [161], Gigabit Ethernet
passive optical network and DWDM ROADM (Reconfigurable
Optical Add/Drop Multiplexer) [157], [158]. The common
grounds of these pieces of work are (1) considering hybrid as
the coexistence of traditional environments of closed vendor’s
routers and switches with new OpenFlow-enabled devices; (2)
targeting the interconnection of both control and data planes of
legacy and new network elements; and (3) taking a controller-
centric approach, drawing the hybrid line outside of any device
itself, but into the controller application space.

Panopticon [528] defines an architecture and methodol-
ogy to consistently implement SDN inside enterprise legacy
networks through network orchestration under strict budget
constraints. The proposed architecture includes policy config-
urations, troubleshooting and maintenance tasks establishing
transitional networks (SDN and legacy) in structures called
Solitary Confinement Trees (SCTs), where VLAN IDs are
efficiently used by orchestration algorithms to build paths in
order to steer traffic through SDN switches. Defying the partial
SDN implementation concept, they confirm that this could
be a long-term operational strategy solution for enterprise
networks.

HybNET [529] presents a network management framework
for hybrid OpenFlow-legacy networks. It provides a common
centralized configuration interface to build virtual networks us-
ing VLANs. An abstraction of the physical network topology
is taken into account by a centralized controller that applies
a path finder mechanism, in order to calculate network paths
and program the OpenFlow switches via REST interfaces and
legacy devices using NETCONF [44].

More recently, frameworks such as ESCAPE [530] and its
extensions have been proposed to provide multi-layer service
orchestration in multi-domains. Such frameworks combine dif-
ferent tools and technologies such as Click [531], POX [230],
OpenDaylight [13] and NETCONF [44]. In other words, those

frameworks integrate different SDN solutions with traditional
ones. Therefore, they might be useful tools on the process of
integrating or migrating legacy networking infrastructure to
SDN.

Other hybrid solutions starting to emerge include Open
Source Hybrid IP/SDN (OSHI) [532]. OSHI combines Quagga
for OSPF routing and SDN capable switching devices (e.g.,
Open vSwitch) on Linux to provide backwards compatibility
for supporting incremental SDN deployments, i.e., enabling
interoperability with non-OF forwarding devices in carrier-
grade networks.

While full SDN deployments are straightforward only in
some green field deployments such as data center networks
or by means of an overlay model approach, hybrid SDN
approaches represent a very likely deployment model that can
be pursued by different means, including [533]:

• Topology-based hybrid SDN: Based on a topological
separation of the nodes controlled by traditional and SDN
paradigms. The network is partitioned in different zones
and each node belongs to only one zone.

• Service-based hybrid SDN: Conventional networks and
SDN provide different services, where overlapping nodes,
controlling a different portion of the FIB (or generalized
flow table) of each node. Examples include network-wide
services like forwarding that can be based on legacy
distributed control, while SDN provides edge-to-edge
services such as enforcement of traffic engineering and
access policies, or services requiring full traffic visibility
(e.g., monitoring).

• Class-based hybrid SDN: Based on the partition of traffic
in classes, some controlled by SDN and the remaining
by legacy protocols. While each paradigm controls a
disjoint set of node forwarding entries, each paradigm
is responsible for all network services for the assigned
traffic classes.

• Integrated hybrid SDN: A model where SDN is respon-
sible for all the network services, and uses traditional
protocols (e.g., BGP) as an interface to node FIBs. For
example, it can control forwarding paths by injecting
carefully selected routes into a routing system or adjust-
ing protocol settings (e.g., IGP weights). Past efforts on
RCPs [85] and the ongoing efforts within ODL [13] can
be considered examples of this hybrid model.

In general, benefits of hybrid approaches include enabling
flexibility (e.g., easy match on packet fields for middlebox-
ing) and SDN-specific features (e.g., declarative management
interface) while partially keeping the inherited characteristics
of conventional networking such as robustness, scalability,
technology maturity, and low deployment costs. On the neg-
ative side, the drawbacks of hybridization include the need
for ensuring profitable interactions between the networking
paradigms (SDN and traditional) while dealing with the het-
erogeneity that largely depends on the model.

Initial trade-off analyses [533] suggest that the combination
of centralized and distributed paradigms may provide mutual
benefits. However, future work is required to devise techniques
and interaction mechanisms that maximize such benefits while
limiting the added complexity of the paradigm coexistence.

VERSION 2.01 44

H. Meeting carrier-grade and cloud requirements

A number of carrier-grade infrastructure providers (e.g.,
NTT, AT&T, Verizon, Deutsche Telekom) are at the core of
the SDN community with the ultimate goal of solving their
long standing networking problems. In the telecom world,
NTT can be considered one of the forefront runners in terms
of investing in the adoption and deployment of SDN in all
kinds of network infrastructures, from backbone, data center,
to edge customers [268]. In 2013, NTT launched an SDN-
based, on-demand elastic provisioning platform of network
resources (e.g., bandwidth) for HD video broadcasters [534].
Similarly, as a global cloud provider with data centers spread
across the globe [535], the same company launched a similar
service for its cloud customers, who are now capable of taking
advantage of dynamic networking provisioning intra- and
inter-data centers [536]. AT&T is another telecom company
that is investing heavily in new services, such as user-defined
network clouds, that take advantage of recent developments
in NFV and SDN [537]. As we mentioned before, SDN and
NFV are complementary technologies that can be applicable
to different types of networks, from local networks and data
centers to transport networks [538], [539], [540], [541], [542],
[543]. Recently, several research initiatives have worked to-
wards combining SDN and NFV through Intel’s DPDK, a
set of libraries and drivers that facilitates the development of
network-intensive applications and allows the implementation
of fine-grained network functions [544]. Early work towards
service chaining have been proposed by combining SDN and
NFV technologies [545], [546], [547], [27], [548], and studies
around the ForCES’s [30] applicability to SDN-enhanced NFV
have also come to light [538]. These are some of the early
examples of the opportunities SDNs seem to bring to telecom
and cloud providers.

Carrier networks are using the SDN paradigm as the
technology means for solving a number of long standing
problems. Some of these efforts include new architectures for
a smooth migration from the current mobile core infrastructure
to SDN [222], and techno-economic models for virtualization
of these networks [549], [550]; carrier-grade OpenFlow vir-
tualization schemes [551], [112], including virtualized broad-
band access infrastructures [552], techniques that are allowing
the offer of network-as-a-service [553]; programmable GE-
PON and DWDM ROADM [157], [158], [159], [160]; large-
scale inter-autonomous systems (ASs) SDN-enabled deploy-
ments [554]; flexible control of network resources [555], in-
cluding offering MPLS services using an SDN approach [556];
and the investigation of novel network architectures, from
proposals to separate the network edge from the core [557],
[558], with the latter forming the fabric that transports packets
as defined by an intelligent edge, to software-defined Internet
exchange points [559], [526].

Use-case analysis [560] of management functions required
by carrier networks have identified a set of requirements
and existing limitations in the SDN protocol toolbox. For
instance, it has been pinpointed that OF-Config [54] needs
a few extensions in order to meet the carrier requirements,
such as physical resource discovery, logical link configuration,

logical switch instantiation, and device and link OAM config-
uration [560]. Similarly, OpenFlow extensions have also been
proposed to realize packet-optical integration with SDN [561].
In order to support SDN concepts in large-scale wide area
networks, different extensions and mechanisms are required,
both technology-specific (e.g., MPLS BFD) and technology
agnostic, such as: resiliency mechanisms for surviving link
failures [484], failures of controller or forwarding elements;
solutions for integrating residential customer services in dif-
ferent forms (i.e., support also current technologies); new
energy-efficient networking approaches; QoS properties for
packet classification, metering, coloring, policing, shaping and
scheduling; and multi-layer aspects outlining different stages
of packet-optical integration [562], [563], [561].

SDN technology also brings new possibilities for cloud
providers. By taking advantage of the logically centralized
control of network resources [564], [8] it is possible to sim-
plify and optimize network management of data centers and
achieve: (i) efficient intra-datacenter networking, including fast
recovery mechanisms for the data and control planes [476],
[565], [566], adaptive traffic engineering with minimal modi-
fications to DCs networks [277], simplified fault-tolerant rout-
ing [567], performance isolation [568], and easy and efficient
resource migration (e.g., of VMs and virtual networks) [476];
(ii) improved inter-datacenter communication, including the
ability to fully utilize the expensive high-bandwidth links
without impairing quality of service [8], [569]; (iii) higher
levels of reliability (with novel fault management mechanisms,
etc.) [567], [565], [476], [484]; and (iv) cost reduction by
replacing complex, expensive hardware by simple and cheaper
forwarding devices [570], [8].

Table XVI summarizes some of the carrier-grade network
and cloud infrastructure providers’ requirements. In this table
we show the current challenges and what is to be expected
with SDN. As we saw before, some of the expectations are
already becoming a reality, but many are still open issues.
What seems to be clear is that SDN represents an opportunity
for telecom and cloud providers, in providing flexibility, cost-
effectiveness, and easier management of their networks.

I. SDN: the missing piece towards Software-Defined Environ-
ments

The convergence of different technologies is enabling the
emergence of fully programmable IT infrastructures. It is
already possible to dynamically and automatically configure
or reconfigure the entire IT stack, from the network infras-
tructure up to the applications, to better respond to workload
changes. Recent advances makes on-demand provisioning of
resources possible, at nearly all infrastructural layers. The fully
automated provisioning and orchestration of IT infrastruc-
tures as been recently named Software-Defined Environments
(SDEs) [171], [172], by IBM. This is a novel approach that
is expected to have significant potential in simplifying IT
management, optimizing the use of the infrastructure, reduce
costs, and reduce the time to market of new ideas and products.
In an SDE, workloads can be easily and automatically assigned
to the appropriate IT resources based on application character-
istics, security and service level policies, and the best-available

VERSION 2.01 45

TABLE XVI
CARRIER-GRADE AND CLOUD PROVIDER EXPECTATIONS & CHALLENGES

What Currently Expected with SDN

Resource
Provisioning

Complex load balancing configuration. Automatic load balancing reconfiguration. [571], [8]

Low virtualization capabilities across hardware plat-
forms

NFV for virtualizing network functionality across hardware appli-
ances. [570], [537]

Hard and costly to provide new services. Create and deploy new network service quickly. [570], [537]

No bandwidth on demand. Automatic bandwidth on demand. [550]

Per network element scaling. Better incremental scaling. [571], [565]

Resources statically pre-provisioned. Dynamic resource provisioning in response to load. [571], [8], [570],
[549], [564]

Traffic Steering

All traffic is filtered. Only targeted traffic is filtered. [571]

Fixed only. Fixed and mobile. [571]

Per network element scaling. Better incremental scaling. [549], [565]

Statically configured on a per-device basis. Dynamically configurable. [8], [550], [572]

Ad Hoc Topologies

All traffic from all probes collected. Only targeted traffic from targeted probes is collected.

Massive bandwidth required. Efficient use of bandwidth. [8], [550]

Per network element scaling. Better incremental scaling. [571], [550]

Statically configured. Dynamically configured. [571], [573], [534]

Managed Router
Services

Complex configuration, management and upgrade. Simplified management and upgrade. [8], [571], [570], [550], [565]

Different kinds of routers, such as changeover (CO). No need for CO routers, reducing aggregation costs. [571], [570], [549]

Manual provisioning. Automated provisioning. [571], [550], [572]

On-premises router deployment. Virtual routers (either on-site or not). [550], [571], [549]

Operational burden to support different equipments. Reduced technology obsolescence. [549]

Router change-out as technology or needs change. Pay-as-you grow CAPEX model. [549]

Systems complex and hard to integrate. Facilitates simplified system integrations. [571], [570], [573]

Revenue Models
Fixed long term contracts. More flexible and on-demand contracts. [550], [555]

Traffic consumption. QoS metrics per-application. [550], [565], [565], [574]

Middleboxes
Deployment &
Management

Composition of services is hard to implement. Easily expand functionality to meet the infrastructure needs. [570]

Determine where to place middleboxes a priori (e.g.,
large path inflation problems).

Dynamic placement using shortest or least congested path. [290], [574],
[573]

Excessive over-provisioning to anticipate demands. Scale up to meet demands, and scale down to conserve resources (elastic
middleboxes). [571], [549]

Other Issues

Energy saving strategies are hard to implement. Flexible and easy to deploy energy saving strategies. [565]

Complex and static control and data plane restoration
techniques.

Automated and flexible restoration techniques for both control and data
plane. [565]

resources to deliver continuous, dynamic optimization and
reconfiguration to address infrastructure issues in a rapid and
responsive manner. Table XVII summarizes the traditional
approaches and some of the key features being enabled by
SDEs [575], [576].

In an SDE the workloads are managed independently of
the systems and underlying infrastructure, i.e., are not tied to
a specific technology or vendor [172], [171]. Another charac-
teristic of this new approach is to offer a programmatic access
to the environment as a whole, selecting the best available
resources based on the current status of the infrastructure,
and enforcing the policies defined. In this sense, it shares
much of the philosophy of SDN. Interestingly, one of the
missing key pieces of an SDE was, until now, Software-
Defined Networking.

The four essential building blocks of an SDE [172], [171],
[576] are:

• Software-Defined Networks (SDN) [577], [578],

• Software-Defined Storage (SDS) [575],
• Software-Defined Compute (SDC) [171], and
• Software-Defined Management (SDM) [579].

In the last decade the advances in virtualization of compute
and storage, together with the availability of sophisticated
cloud orchestration tools have enabled SDS, SDC and SDM.
These architectural components have been widely used by
cloud providers and for building IT infrastructures in different
enterprise environments. However, the lack of programmable
network control has so far hindered the realization of a
complete Software-Defined Environment. SDN is seen as the
technology that may fill this gap, as attested by the emergence
of cloud-scale network virtualization platforms based on this
new paradigm [112].

The IBM SmartCloud Orchestrator is one of the first
examples of an SDE [172], [171]. It integrates compute,
storage, management and networking in a structured way.
Figure 11 gives a simplified overview of an SDE, by taking

VERSION 2.01 46

TABLE XVII
SDE PUSHING IT TO THE NEXT FRONTIER

Traditionally Expected with SDEs
IT operations manually map the resources for apps for software deployment. Software maps resources to the workload and deploys the workload.

Networks are mostly statically configured and hard to change. Networks are virtualized and dynamically configured on-demand.

Optimization and reconfiguration to reactively address issues are manual. Analytics-based optimization and reconfiguration of infrastructure issues.

Workloads are typically manually assigned to resources. Workloads are dynamically assigned.

Business	
 Need	

Workload	
 Defini2on,	

Orchestra2on,	
 and	
 Op2miza2on	

So<ware-­‐Defined	
 Environments	

So<ware-­‐Defined	

Network	

So<ware-­‐Defined	

Compu2ng	

So<ware-­‐Defined	

Storage	

Service	
 Delivery	

Opera2onal	

Level	

Agreement	

So<ware-­‐Defined	

Management	

Fig. 11. Overview of an IT infrastructure based on a SDE.

the approach developed by IBM as its basis. The main idea
of an SDE-based infrastructure is that the business needs
that define the workloads trigger the reconfiguration of the
global IT infrastructure (compute, storage, network). This is an
important step towards a more customizable IT infrastructure
that focuses on the business requirements rather than on the
limitations of the infrastructure itself.

VI. CONCLUSION

Traditional networks are complex and hard to manage. One
of the reasons is that the control and data planes are vertically
integrated and vendor specific. Another, concurring reason, is
that typical networking devices are also tightly tied to line
products and versions. In other words, each line of product
may have its own particular configuration and management
interfaces, implying long cycles for producing product updates
(e.g., new firmware) or upgrades (e.g., new versions of the
devices). All this has given rise to vendor lock-in problems
for network infrastructure owners, as well as posing severe
restrictions to change and innovation.

Software-Defined Networking (SDN) created an opportunity
for solving these long-standing problems. Some of the key
ideas of SDN are the introduction of dynamic programmability
in forwarding devices through open southbound interfaces,
the decoupling of the control and data plane, and the global
view of the network by logical centralization of the “network
brain”. While data plane elements became dumb, but highly
efficient and programmable packet forwarding devices, the
control plane elements are now represented by a single en-
tity, the controller or network operating system. Applications
implementing the network logic run on top of the controller
and are much easier to develop and deploy when compared
to traditional networks. Given the global view, consistency

of policies is straightforward to enforce. SDN represents a
major paradigm shift in the development and evolution of
networks, introducing a new pace of innovation in networking
infrastructure.

In spite of recent and interesting attempts to survey this new
chapter in the history of networks [14], [16], [15], the literature
was still lacking, to the best of our knowledge, a single
extensive and comprehensive overview of the building blocks,
concepts, and challenges of SDNs. Trying to address this gap,
the present paper used a layered approach to methodically
dissect the state of the art in terms of concepts, ideas and
components of software-defined networking, covering a broad
range of existing solutions, as well as future directions.

We started by comparing this new paradigm with traditional
networks and discussing how academy and industry helped
shape software-defined networking. Following a bottom-up
approach, we provided an in-depth overview of what we
consider the eight fundamental facets of the SDN problem:
1) hardware infrastructure, 2) southbound interfaces, 3) net-
work virtualization (hypervisor layer between the forward-
ing devices and the network operating systems), 4) network
operating systems (SDN controllers and control platforms),
5) northbound interfaces (common programming abstractions
offered to network applications), 6) virtualization using slicing
techniques provided by special purpose libraries and/or pro-
gramming languages and compilers, 7) network programming
languages, and finally, 8) network applications.

SDN has successfully managed to pave the way towards a
next generation networking, spawning an innovative research
and development environment, promoting advances in sev-
eral areas: switch and controller platform design, evolution
of scalability and performance of devices and architectures,
promotion of security and dependability.

We will continue to witness extensive activity around SDN
in the near future. Emerging topics requiring further research
are, for example: the migration path to SDN, extending SDN
towards carrier transport networks, realization of the network-
as-a-service cloud computing paradigm, or software-defined
environments (SDE). As such, we would like to receive
feedback from the networking/SDN community as this novel
paradigm evolves, to make this a “live document” that gets
updated and improved based on the community feedback. We
have set up a github page2 for this purpose, and we invite our
readers to join us in this communal effort.

2https://github.com/SDN-Survey/latex/wiki

VERSION 2.01 47

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
and a number of fellows that have contributed to this work.
Jennifer Rexford for her feedback on an early version of this
work and encouragement to get it finished. Srini Seetharaman
for reviewing the draft and providing inputs to alternative SDN
views. David Meyer for his thoughts on organizational chal-
lenges. Thomas Nadeau for his inputs on OpenDaylight. Luis
Miguel Contreras Murillo for his contributions to SDN stan-
dardization. In addition, we would like also to acknowledge
the several contributions from the community, namely from
Aurel A. Lazar, Carmelo Cascone, Gyanesh Patra, Haleplidis
Evangelos, Javier Ancieta, Joe Stringer, Kostas Pentikousis,
Luciano de Paula, Marco Canini, Philip Wette, Ramon Fontes,
Raphael Rosa, Regivaldo Costa, Ricardo de Freitas Gesuatto,
Wolfgang John.

REFERENCES

[1] T. Benson, A. Akella, and D. Maltz, “Unraveling the complexity of
network management,” in Proceedings of the 6th USENIX Symposium
on Networked Systems Design and Implementation, ser. NSDI’09,
Berkeley, CA, USA, 2009, pp. 335–348.

[2] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Ghodsi,
and S. Shenker, “Software-defined internet architecture: Decoupling
architecture from infrastructure,” in Proceedings of the 11th ACM
Workshop on Hot Topics in Networks, ser. HotNets-XI. New York,
NY, USA: ACM, 2012, pp. 43–48.

[3] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and
J. Wilcox, “Intelligent design enables architectural evolution,” in Pro-
ceedings of the 10th ACM Workshop on Hot Topics in Networks, ser.
HotNets-X. New York, NY, USA: ACM, 2011, pp. 3:1–3:6.

[4] N. Mckeown, “How SDN will Shape Networking,” October 2011.
[Online]. Available: http://www.youtube.com/watch?v=c9-K5O qYgA

[5] S. Schenker, “The Future of Networking, and the Past of Protocols,”
October 2011. [Online]. Available: http://www.youtube.com/watch?v=
YHeyuD89n1Y

[6] H. Kim and N. Feamster, “Improving network management with soft-
ware defined networking,” Communications Magazine, IEEE, vol. 51,
no. 2, pp. 114–119, 2013.

[7] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
a distributed control platform for large-scale production networks,”
in Proceedings of the 9th USENIX conference on Operating systems
design and implementation, ser. OSDI’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 1–6.

[8] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat, “B4: experience with a globally-deployed software
defined wan,” in Proceedings of the ACM SIGCOMM 2013 conference
on SIGCOMM, ser. SIGCOMM ’13. New York, NY, USA: ACM,
2013, pp. 3–14.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Mar. 2008.

[10] ONF, “Open networking foundation,” 2014. [Online]. Available:
https://www.opennetworking.org/

[11] S. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability
of software-defined networking,” Communications Magazine, IEEE,
vol. 51, no. 2, pp. 136–141, 2013.

[12] VMware, Inc., “VMware NSX Virtualization Platform,” 2013.
[Online]. Available: https://www.vmware.com/products/nsx/

[13] OpenDaylight, “OpenDaylight: A Linux Foundation Collaborative
Project,” 2013. [Online]. Available: http://www.opendaylight.org

[14] A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation
using OpenFlow: A survey,” Communications Surveys Tutorials, IEEE,
vol. 16, no. 1, pp. 493–512, First 2014.

[15] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,
“A survey of software-defined networking: Past, present, and future of
programmable networks,” Communications Surveys Tutorials, IEEE,
vol. 16, no. 3, pp. 1617–1634, Third 2014.

[16] Y. Jarraya, T. Madi, and M. Debbabi, “A survey and a layered taxonomy
of software-defined networking,” Communications Surveys Tutorials,
IEEE, vol. PP, no. 99, pp. 1–1, 2014.

[17] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN,” Queue,
vol. 11, no. 12, pp. 20:20–20:40, Dec. 2013.

[18] R. Presuhn, “Version 2 of the Protocol Operations for the Simple
Network Management Protocol (SNMP),” RFC 3416 (INTERNET
STANDARD), Internet Engineering Task Force, Dec. 2002. [Online].
Available: http://www.ietf.org/rfc/rfc3416.txt

[19] J. Pan, S. Paul, and R. Jain, “A survey of the research on future internet
architectures,” Communications Magazine, IEEE, vol. 49, no. 7, pp.
26–36, July 2011.

[20] N. Feamster and H. Balakrishnan, “Detecting BGP configuration faults
with static analysis,” in Proceedings of the 2nd conference on Sympo-
sium on Networked Systems Design & Implementation - Volume 2, ser.
NSDI’05. Berkeley, CA, USA: USENIX Association, 2005, pp. 43–
56.

[21] R. Barrett, S. Haar, and R. Whitestone, “Routing snafu causes internet
outage,” Interactive Week, 1997.

[22] K. Butler, T. Farley, P. McDaniel, and J. Rexford, “A survey of BGP
security issues and solutions,” Proceedings of the IEEE, vol. 98, no. 1,
pp. 100–122, Jan 2010.

[23] J. Sherry and S. Ratnasamy, “A survey of enterprise middlebox
deployments,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2012-24, Feb 2012.

[24] K. Greene, “MIT Tech Review 10 Breakthrough Technologies:
Software-defined Networking,” http://www2.technologyreview.com/
article/412194/tr10-software-defined-networking/, 2009.

[25] P. Newman, G. Minshall, and T. L. Lyon, “Ip switching—atm
under ip,” IEEE/ACM Trans. Netw., vol. 6, no. 2, pp. 117–129, Apr.
1998.

[26] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenker, “NOX: towards an operating system for networks,” Comp.
Comm. Rev., 2008.

[27] H. Jamjoom, D. Williams, and U. Sharma, “Don’t call them middle-
boxes, call them middlepipes,” in Proceedings of the Third Workshop
on Hot Topics in Software Defined Networking, ser. HotSDN ’14. New
York, NY, USA: ACM, 2014, pp. 19–24.

[28] H. Alkhatib, P. Faraboschi, E. Frachtenberg, H. Kasahara, D. Lange,
P. Laplante, A. Merchant, D. Milojicic, and K. Schwan, “IEEE CS 2022
report (draft),” IEEE Computer Society, Tech. Rep., February 2014.

[29] M. Casado, N. Foster, and A. Guha, “Abstractions for software-defined
networks,” Commun. ACM, vol. 57, no. 10, pp. 86–95, Sep. 2014.

[30] A. Doria, J. H. Salim, R. Haas, H. Khosravi, W. Wang, L. Dong,
R. Gopal, and J. Halpern, “Forwarding and Control Element Separation
(ForCES) Protocol Specification,” Internet Engineering Task Force,
Mar. 2010. [Online]. Available: http://www.ietf.org/rfc/rfc5810.txt

[31] H. Song, “Protocol-oblivious Forwarding: Unleash the power of SDN
through a future-proof forwarding plane,” in Proceedings of the Sec-
ond ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’13. New York, NY, USA: ACM, 2013, pp.
127–132.

[32] T. D. Nadeau and K. Gray, SDN: software defined networks, 1st ed.
O’Reilly, 2013, vol. 1.

[33] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtual-
ization,” Computer Networks, vol. 54, no. 5, pp. 862 – 876, 2010.

[34] B. Davie and J. Gross, “A Stateless Transport Tunneling Protocol for
Network Virtualization (STT),” Internet Engineering Task Force, April
2014. [Online]. Available: http://tools.ietf.org/html/draft-davie-stt-06

[35] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar,
M. Bursell, and C. Wright, “VXLAN: A Framework for Overlaying
Virtualized Layer 2 Networks over Layer 3 Networks,” Internet Draft,
Internet Engineering Task Force, November 2013. [Online]. Available:
http://www.ietf.org/id/draft-mahalingam-dutt-dcops-vxlan-06.txt

[36] M. Sridharan, A. Greenberg, Y. Wang, P. Garg, N. Venkataramiah,
K. Duda, I. Ganga, G. Lin, M. Pearson, P. Thaler, and
C. Tumuluri, “NVGRE: Network Virtualization using Generic
Routing Encapsulation,” Internet Draft, Internet Engineering Task
Force, August 2013. [Online]. Available: http://tools.ietf.org/id/draft-
sridharan-virtualization-nvgre-03.txt

[37] F. Maino, V. Ermagan, Y. Hertoghs, D. Farinacci, and M. Smith,
“LISP Control Plane for Network Virtualization Overlays,” Internet
Engineering Task Force, Oct 2013. [Online]. Available: http:
//tools.ietf.org/html/draft-maino-nvo3-lisp-cp-03

[38] Y. Hertoghs, F. Maino, V. Moreno, M. Smith, D. Farinacci, and
L. Iannone, “A Unified LISP Mapping Database for L2 and L3
Network Virtualization Overlays,” Internet Engineering Task Force,

http://www.youtube.com/watch?v=c9-K5O_qYgA
http://www.youtube.com/watch?v=YHeyuD89n1Y
http://www.youtube.com/watch?v=YHeyuD89n1Y
https://www.opennetworking.org/
https://www.vmware.com/products/nsx/
http://www.opendaylight.org
http://www.ietf.org/rfc/rfc3416.txt
http://www2.technologyreview.com/article/412194/tr10-software-defined-networking/
http://www2.technologyreview.com/article/412194/tr10-software-defined-networking/
http://www.ietf.org/rfc/rfc5810.txt
http://tools.ietf.org/html/draft-davie-stt-06
http://www.ietf.org/id/draft-mahalingam-dutt-dcops-vxlan-06.txt
http://tools.ietf.org/id/draft-sridharan-virtualization-nvgre-03.txt
http://tools.ietf.org/id/draft-sridharan-virtualization-nvgre-03.txt
http://tools.ietf.org/html/draft-maino-nvo3-lisp-cp-03
http://tools.ietf.org/html/draft-maino-nvo3-lisp-cp-03

VERSION 2.01 48

Feb 2014. [Online]. Available: http://tools.ietf.org/html/draft-hertoghs-
nvo3-lisp-controlplane-unified-01

[39] J. Gross, T. Sridhar, P. Garg, C. Wright, and I. Ganga, “Geneve:
Generic network virtualization encapsulation,” Internet Draft, Internet
Engineering Task Force, February 2014. [Online]. Available: http:
//tools.ietf.org/id/draft-gross-geneve-00.txt

[40] R. Jain and S. Paul, “Network virtualization and software defined
networking for cloud computing: a survey,” Communications Magazine,
IEEE, vol. 51, no. 11, pp. 24–31, 2013.

[41] E. Haleplidis, S. Denazis, K. Pentikousis, S. Denazis, J. H. Salim,
D. Meyer, and O. Koufopavlou, “SDN Layers and Architecture
Terminology,” Internet Draft, Internet Engineering Task Force,
September 2014. [Online]. Available: http://www.ietf.org/id/draft-irtf-
sdnrg-layer-terminology-02.txt

[42] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-
4),” RFC 4271 (Draft Standard), Internet Engineering Task Force, Jan.
2006. [Online]. Available: http://www.ietf.org/rfc/rfc4271.txt

[43] J. Vasseur and J. L. Roux, “Path Computation Element (PCE)
Communication Protocol (PCEP),” RFC 5440 (Proposed Standard),
Internet Engineering Task Force, Mar. 2009. [Online]. Available:
http://www.ietf.org/rfc/rfc5440.txt

[44] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network
Configuration Protocol (NETCONF),” RFC 6241 (Proposed Standard),
Internet Engineering Task Force, Jun. 2011. [Online]. Available:
http://www.ietf.org/rfc/rfc6241.txt

[45] A. Corradi, M. Fanelli, and L. Foschini, “VM consolidation: A real
case based on openstack cloud,” Future Generation Computer Systems,
vol. 32, no. 0, pp. 118 – 127, 2014.

[46] A. Shang, J. Liao, and L. Du, “Pica8 Xorplus,” 2014. [Online].
Available: http://sourceforge.net/projects/xorplus/

[47] P. Jakma and D. Lamparter, “Introduction to the quagga routing suite,”
Network, IEEE, vol. 28, no. 2, pp. 42–48, March 2014.

[48] “NetFPGA,” 2014. [Online]. Available: http://netfpga.org/
[49] Linux Foundation, “Open platform for NFV,” https://www.opnfv.org,

Sep 2014.
[50] C. E. Rothenberg, R. Chua, J. Bailey, M. Winter, C. Correa, S. Lu-

cena, and M. Salvador, “When open source meets network control
planes,” IEEE Computer Special Issue on Software-Defined Network-
ing, November 2014.

[51] ONF, “SDN architecture,” Open Networking Foun-
dation, Tech. Rep., June 2014. [Online]. Avail-
able: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/technical-reports/TR SDN ARCH 1.0 06062014.pdf

[52] ONF, “Conformance test specification for OpenFlow switch
specification,” Open Networking Foundation, Tech. Rep.,
June 2013. [Online]. Available: https://www.opennetworking.org/
images/stories/downloads/sdn-resources/onf-specifications/openflow-
test/conformance-test-spec-openflow-1.0.1.pdf

[53] ONF, “OpenFlow switch specification,” Open Networking
Foundation, Tech. Rep., October 2013. [Online]. Avail-
able: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf

[54] ONF, “OpenFlow management and configuration pro-
tocol (OF-CONFIG) v1.2,” Open Networking Foun-
dation, Tech. Rep., 2014. [Online]. Avail-
able: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow-config/of-config-1.2.pdf

[55] ONF, “OpenFlow notifications framework OpenFlow
management,” October 2013. [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow-config/of-notifications-
framework-1.0.pdf

[56] ONF, “OpenFlow table type patterns,” Open Networking
Foundation, Tech. Rep., August 2014. [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/OpenFlow%20Table%20Type%
20Patterns%20v1.0.pdf

[57] ONF, “Optical transport use cases,” Open Network-
ing Foundation, Tech. Rep., 2014. [Online]. Avail-
able: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/technical-reports/optical-transport-use-cases.pdf

[58] ONF, “Requirements analysis for transport OpenFlow/SDN,” Open
Networking Foundation, Tech. Rep., August 2014. [Online]. Available:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/technical-reports/onf2014.227 Optical Transport
Requirements.pdf

[59] ONF - Migration Working Group, “Migration use cases and
methods,” Open Networking Foundation, Tech. Rep., 2014. [Online].
Available: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/use-cases/Migration-WG-Use-Cases.pdf

[60] ONF, “Software-defined networking: The new norm for networks,”
Open Networking Foundation, Tech. Rep., April 2012. [Online].
Available: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/white-papers/wp-sdn-newnorm.pdf

[61] H. Xie, T. Tsou, D. Lopez, and H. Yin, “Use cases for ALTO with
software defined networks,” Internet Draft, Internet Engineering Task
Force, June 2012. [Online]. Available: http://tools.ietf.org/html/draft-
xie-alto-sdn-use-cases-01

[62] A. Atlas, J. Halpern, S. Hares, D. Ward, and T. Nadeau, “An
architecture for the interface to the routing system,” Internet Draft,
Internet Engineering Task Force, July 2014. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-i2rs-architecture-05

[63] R. Enns, “NETCONF configuration protocol,” Internet Draft, Internet
Engineering Task Force, December 2004. [Online]. Available:
http://tools.ietf.org/html/rfc4741

[64] L. Kreeger, D. Dutt, T. Narten, and D. Black, “Network virtualization
NVE to NVA control protocol requirements,” Internet Draft,
Internet Engineering Task Force, April 2014. [Online]. Available:
http://tools.ietf.org/html/draft-ietf-nvo3-nve-nva-cp-req-02

[65] D. King and A. Farrel, “A PCE-based architecture for application-based
network operationss,” Internet Draft, Internet Engineering Task Force,
August 2014. [Online]. Available: https://tools.ietf.org/html/draft-
farrkingel-pce-abno-architecture-11

[66] D. Dhody, L. C. Y. Lee, O. Gonzalez, and N. Ciulli, “Cross stratum
optimization enabled path computation,” Internet Draft, Internet
Engineering Task Force, July 2014. [Online]. Available: http://tools.
ietf.org/html/draft-dhody-pce-cso-enabled-path-computation-06

[67] B. K. F. Hu and H. Cankaya, “SPRING OpenFlow interworking
requirements,” Internet Draft, Internet Engineering Task Force,
September 2014. [Online]. Available: https://tools.ietf.org/html/draft-
khc-spring-openflow-interworking-req-00

[68] E. P. S. Kim, J. Park and L. Contreras, “SPRING use cases for
software-defined networking,” Internet Draft, Internet Engineering Task
Force, July 2014. [Online]. Available: http://tools.ietf.org/html/draft-
kim-spring-use-cases-00

[69] D. Ceccarelli, L. Fang, Y. Lee, and D. Lopez, “Framework
for abstraction and control of transport networks,” Internet Draft,
Internet Engineering Task Force, February 2014. [Online]. Available:
https://xml.resource.org/html/draft-ceccarelli-actn-framework-01

[70] M. Boucadair and C. jacquenet, “Software-defined networking: A
perspective from within a service provider environment,” Internet
Draft, Internet Engineering Task Force, March 2014. [Online].
Available: https://tools.ietf.org/html/rfc7149

[71] E. Haleplidis, K. Pentikousis, S. Denazis, J. Salem, D. Meyer,
and O. Koufopavlou, “SDN layers and architecture terminology,”
Internet Draft, Internet Engineering Task Force, August 2014.
[Online]. Available: http://tools.ietf.org/html/draft-haleplidis-sdnrg-
layer-terminology-07

[72] C. B. L. Contreras and D. Lopez, “Cooperating layered architecture
for SDN,” Internet Draft, Internet Engineering Task Force, August
2014. [Online]. Available: http://tools.ietf.org/html/draft-contreras-
sdnrg-layered-sdn-00

[73] Y. Cheng and C. Zhou, “Framework of signalling for SDN -
working document,” ITU-T, Tech. Rep., July 2014, work item:
Q.Supplement-SDN. [Online]. Available: http://www.itu.int

[74] ITU-T SG 11, “Scenarios and signalling requirements for software-
defined BAN (SBAN) - working document,” ITU-T, Tech. Rep., July
2014, work item: Q.SBAN. [Online]. Available: http://www.itu.int

[75] ITU-T, “Framework of software-defined networking,” ITU-T, Tech.
Rep., June 2014, recommendation ITU-T Y.3300. [Online]. Available:
http://www.itu.int/rec/T-REC-Y.3300-201406-I/en

[76] Broadband Forum SD-313, “High level requirements and framework
for SDN in telecommunication broadband networks,” Broadband
Forum, Tech. Rep., September 2014. [Online]. Available: http:
//www.broadband-forum.org/technical/technicalwip.php

[77] OIF, “Requirements on transport networks in SDN architectures,”
Optical Interworking Forum, Tech. Rep., September 2013. [Online].
Available: http://www.oiforum.com/public/documents/OIF Carrier
WG Requirements on Transport Networks in SDN Architectures
Sept2013.pdf

[78] Open Data Center Alliance, “Open Data Center Alliance: Software-
Defined Networking Rev. 2.0,” Open Data Center Alliance, Tech.

http://tools.ietf.org/html/draft-hertoghs-nvo3-lisp-controlplane-unified-01
http://tools.ietf.org/html/draft-hertoghs-nvo3-lisp-controlplane-unified-01
http://tools.ietf.org/id/draft-gross-geneve-00.txt
http://tools.ietf.org/id/draft-gross-geneve-00.txt
http://www.ietf.org/id/draft-irtf-sdnrg-layer-terminology-02.txt
http://www.ietf.org/id/draft-irtf-sdnrg-layer-terminology-02.txt
http://www.ietf.org/rfc/rfc4271.txt
http://www.ietf.org/rfc/rfc5440.txt
http://www.ietf.org/rfc/rfc6241.txt
http://sourceforge.net/projects/xorplus/
http://netfpga.org/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-test/conformance-test-spec-openflow-1.0.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-test/conformance-test-spec-openflow-1.0.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-test/conformance-test-spec-openflow-1.0.1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-notifications-framework-1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-notifications-framework-1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-notifications-framework-1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/OpenFlow%20Table%20Type%20Patterns%20v1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/OpenFlow%20Table%20Type%20Patterns%20v1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/OpenFlow%20Table%20Type%20Patterns%20v1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/optical-transport-use-cases.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/optical-transport-use-cases.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/onf2014.227_Optical_Transport_Requirements.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/onf2014.227_Optical_Transport_Requirements.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/onf2014.227_Optical_Transport_Requirements.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/use-cases/Migration-WG-Use-Cases.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/use-cases/Migration-WG-Use-Cases.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
http://tools.ietf.org/html/draft-xie-alto-sdn-use-cases-01
http://tools.ietf.org/html/draft-xie-alto-sdn-use-cases-01
https://tools.ietf.org/html/draft-ietf-i2rs-architecture-05
http://tools.ietf.org/html/rfc4741
http://tools.ietf.org/html/draft-ietf-nvo3-nve-nva-cp-req-02
https://tools.ietf.org/html/draft-farrkingel-pce-abno-architecture-11
https://tools.ietf.org/html/draft-farrkingel-pce-abno-architecture-11
http://tools.ietf.org/html/draft-dhody-pce-cso-enabled-path-computation-06
http://tools.ietf.org/html/draft-dhody-pce-cso-enabled-path-computation-06
https://tools.ietf.org/html/draft-khc-spring-openflow-interworking-req-00
https://tools.ietf.org/html/draft-khc-spring-openflow-interworking-req-00
http://tools.ietf.org/html/draft-kim-spring-use-cases-00
http://tools.ietf.org/html/draft-kim-spring-use-cases-00
https://xml.resource.org/html/draft-ceccarelli-actn-framework-01
https://tools.ietf.org/html/rfc7149
http://tools.ietf.org/html/draft-haleplidis-sdnrg-layer-terminology-07
http://tools.ietf.org/html/draft-haleplidis-sdnrg-layer-terminology-07
http://tools.ietf.org/html/draft-contreras-sdnrg-layered-sdn-00
http://tools.ietf.org/html/draft-contreras-sdnrg-layered-sdn-00
http://www.itu.int
http://www.itu.int
http://www.itu.int/rec/T-REC-Y.3300-201406-I/en
http://www.broadband-forum.org/technical/technicalwip.php
http://www.broadband-forum.org/technical/technicalwip.php
http://www.oiforum.com/public/documents/OIF_Carrier_WG_Requirements_on_Transport_Networks_in_SDN_Architectures_Sept2013.pdf
http://www.oiforum.com/public/documents/OIF_Carrier_WG_Requirements_on_Transport_Networks_in_SDN_Architectures_Sept2013.pdf
http://www.oiforum.com/public/documents/OIF_Carrier_WG_Requirements_on_Transport_Networks_in_SDN_Architectures_Sept2013.pdf

VERSION 2.01 49

Rep., 2014. [Online]. Available: http://www.opendatacenteralliance.
org/docs/software defined networking master usage model rev2.pdf

[79] ETSI GS NFV 002, “Network functions virtualization (NFV);
architectural framework v1.1.1,” ETSI, Tech. Rep., October 2013.
[Online]. Available: http://www.etsi.org/deliver/etsi gs/NFV/001 099/
002/01.01.01 60/gs NFV002v010101p.pdf

[80] ATIS, “Operational opportunities and challenges of SDN/NFV
programmable infrastructure,” ATIS-I-0000044, Tech. Rep., October
2014. [Online]. Available: https://www.atis.org/docstore/product.aspx?
id=28143

[81] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall, and G. Minden,
“A survey of active network research,” Communications Magazine,
IEEE, vol. 35, no. 1, pp. 80–86, 1997.

[82] A. Lazar, K.-S. Lim, and F. Marconcini, “Realizing a foundation
for programmability of atm networks with the binding architecture,”
Selected Areas in Communications, IEEE Journal on, vol. 14, no. 7,
pp. 1214–1227, Sep 1996.

[83] A. Lazar, “Programming telecommunication networks,” Network,
IEEE, vol. 11, no. 5, pp. 8–18, Sep 1997.

[84] D. Sheinbein and R. P. Weber, “800 service using SPC network
capability,” The Bell System Technical Journal, vol. 61, no. 7, Sep.
1982.

[85] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe, “Design and implementation of a routing control
platform,” in Proceedings of the 2nd conference on Symposium on Net-
worked Systems Design & Implementation - Volume 2, ser. NSDI’05.
Berkeley, CA, USA: USENIX Association, 2005, pp. 15–28.

[86] J. Biswas, A. A. Lazar, J. F. Huard, K. Lim, S. Mahjoub, L. F.
Pau, M. Suzuki, S. Torstensson, W. Wang, and S. Weinstein, “The
IEEE P1520 standards initiative for programmable network interfaces,”
Comm. Mag., vol. 36, no. 10, pp. 64–70, Oct. 1998.

[87] B. Schwartz, A. Jackson, W. Strayer, W. Zhou, R. Rockwell, and C. Par-
tridge, “Smart packets for active networks,” in Open Architectures and
Network Programming Proceedings, 1999. OPENARCH’99. 1999 IEEE
Second Conference on, Mar 1999, pp. 90–97.

[88] D. Wetherall, J. V. Guttag, and D. Tennenhouse, “Ants: a toolkit
for building and dynamically deploying network protocols,” in Open
Architectures and Network Programming, 1998 IEEE, Apr 1998, pp.
117–129.

[89] D. Alexander, W. Arbaugh, M. Hicks, P. Kakkar, A. Keromytis,
J. Moore, C. Gunter, S. Nettles, and J. Smith, “The switchware active
network architecture,” Network, IEEE, vol. 12, no. 3, pp. 29–36, May
1998.

[90] K. Calvert, S. Bhattacharjee, E. Zegura, and J. Sterbenz, “Directions
in active networks,” Communications Magazine, IEEE, vol. 36, no. 10,
pp. 72–78, Oct 1998.

[91] T. Wolf and J. Turner, “Design issues for high performance active
routers,” in Broadband Communications, 2000. Proceedings. 2000
International Zurich Seminar on, 2000, pp. 199–205.

[92] S. da Silva, Y. Yemini, and D. Florissi, “The NetScript active network
system,” IEEE J.Sel. A. Commun., vol. 19, no. 3, pp. 538–551, Mar.
2001.

[93] D. L. Tennenhouse and D. J. Wetherall, “Towards an active network
architecture,” SIGCOMM Comput. Commun. Rev., vol. 37, no. 5, pp.
81–94, Oct. 2007.

[94] P. Newman, W. Edwards, R. Hinden, E. Hoffman, F. C. Liaw,
T. Lyon, and G. Minshall, “Ipsilon’s General Switch Management
Protocol Specification Version 1.1,” RFC 1987 (Informational),
Internet Engineering Task Force, Aug. 1996, updated by RFC 2297.
[Online]. Available: http://www.ietf.org/rfc/rfc1987.txt

[95] A. Doria and K. Sundell, “General Switch Management
Protocol (GSMP) Applicability,” RFC 3294 (Informational),
Internet Engineering Task Force, Jun. 2002. [Online]. Available:
http://www.ietf.org/rfc/rfc3294.txt

[96] J. Van der Merwe, S. Rooney, I. Leslie, and S. Crosby, “The tempest-
a practical framework for network programmability,” Network, IEEE,
vol. 12, no. 3, pp. 20–28, May 1998.

[97] T. Lakshman, T. Nandagopal, R. Ramjee, K. Sabnani, and T. Woo,
“The SoftRouter Architecture,” in Third ACM Workshop on Hot Topics
in Networks (HotNets-III), San Diego, CA, November 2004.

[98] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang, “A clean slate 4D approach
to network control and management,” SIGCOMM Comput. Commun.
Rev., vol. 35, no. 5, pp. 41–54, Oct. 2005.

[99] J. Van der Merwe, A. Cepleanu, K. D’Souza, B. Freeman, A. Green-
berg, D. Knight, R. McMillan, D. Moloney, J. Mulligan, H. Nguyen,
M. Nguyen, A. Ramarajan, S. Saad, M. Satterlee, T. Spencer, D. Toll,

and S. Zelingher, “Dynamic connectivity management with an intel-
ligent route service control point,” in Proceedings of the SIGCOMM
workshop on Internet network management, ser. INM ’06. New York,
NY, USA: ACM, 2006, pp. 29–34.

[100] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh,
N. McKeown, and S. Shenker, “SANE: a protection architecture for
enterprise networks,” in Proceedings of the 15th conference on USENIX
Security Symposium - Volume 15, ser. USENIX-SS’06, Berkeley, CA,
USA, 2006.

[101] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: taking control of the enterprise,” in Proceedings of
the 2007 conference on Applications, technologies, architectures, and
protocols for computer communications, ser. SIGCOMM ’07. New
York, NY, USA: ACM, 2007, pp. 1–12.

[102] M. Macedonia and D. Brutzman, “Mbone provides audio and video
across the internet,” Computer, vol. 27, no. 4, pp. 30–36, 1994.

[103] R. Fink and R. Hinden, “6bone (IPv6 Testing Address Allocation)
Phaseout,” RFC 3701 (Informational), Internet Engineering Task Force,
Mar. 2004. [Online]. Available: http://www.ietf.org/rfc/rfc3701.txt

[104] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient
overlay networks,” SIGOPS Oper. Syst. Rev., vol. 35, no. 5, pp. 131–
145, Oct. 2001.

[105] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzoniak,
and M. Bowman, “Planetlab: An overlay testbed for broad-coverage
services,” SIGCOMM Comput. Commun. Rev., vol. 33, no. 3, pp. 3–
12, Jul. 2003.

[106] T. Anderson, L. Peterson, S. Shenker, and J. Turner, “Overcoming the
internet impasse through virtualization,” Computer, vol. 38, no. 4, pp.
34–41, Apr. 2005.

[107] L. Peterson, T. Anderson, D. Blumenthal, D. Casey, D. Clark, D. Estrin,
J. Evans, D. Raychaudhuri, M. Reiter, J. Rexford, S. Shenker, and
J. Wroclawski, “Geni design principles,” Computer, vol. 39, no. 9, pp.
102–105, Sept 2006.

[108] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford,
“In VINI veritas: realistic and controlled network experimentation,”
SIGCOMM Comput. Commun. Rev., vol. 36, no. 4, pp. 3–14, Aug.
2006.

[109] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker,
“Extending networking into the virtualization layer,” in Proc. of work-
shop on Hot Topics in Networks (HotNets-VIII), 2009.

[110] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-
IX. New York, NY, USA: ACM, 2010, pp. 19:1–19:6.

[111] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,
N. McKeown, and G. Parulkar, “Can the production network be the
testbed?” in Proceedings of the 9th USENIX conference on Operating
systems design and implementation, ser. OSDI’10, Berkeley, CA, USA,
2010, pp. 1–6.

[112] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, P. Ingram, E. Jackson, A. Lambeth, R. Lenglet,
S.-H. Li, A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan,
S. Shenker, A. Shieh, J. Stribling, P. Thakkar, D. Wendlandt, A. Yip,
and R. Zhang, “Network virtualization in multi-tenant datacenters,” in
11th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 14), Seattle, WA, Apr. 2014, pp. 203–216.

[113] V. Bollapragada, C. Murphy, and R. White, Inside Cisco IOS software
architecture, 1st ed. Cisco Press, Jul 2000.

[114] Juniper Networks, “Junos OS Architecture Overview,” 2012.
[Online]. Available: http://www.juniper.net/techpubs/en US/junos12.
1/topics/concept/junos-software-architecture.html

[115] Extreme Networks, “ExtremeXOS Operating System, Version
15.4,” 2014. [Online]. Available: http://learn.extremenetworks.com/
rs/extreme/images/EXOS-DS.pdf

[116] Alcatel-Lucent, “SR OS,” 2014. [Online]. Available: http://www3.
alcatel-lucent.com/products/sros/

[117] U. Krishnaswamy, P. Berde, J. Hart, M. Kobayashi, P. Radoslavov,
T. Lindberg, R. Sverdlov, S. Zhang, W. Snow, and G. Parulkar,
“ONOS: An open source distributed SDN OS,” 2013.
[Online]. Available: http://www.slideshare.net/umeshkrishnaswamy/
open-network-operating-system

[118] A. T. Campbell, I. Katzela, K. Miki, and J. Vicente, “Open signaling for
atm, internet and mobile networks (opensig’98),” SIGCOMM Comput.
Commun. Rev., vol. 29, no. 1, pp. 97–108, Jan. 1999.

[119] R. Sherwood, M. Chan, A. Covington, G. Gibb, M. Flajslik, N. Hand-
igol, T.-Y. Huang, P. Kazemian, M. Kobayashi, J. Naous, S. Seethara-
man, D. Underhill, T. Yabe, K.-K. Yap, Y. Yiakoumis, H. Zeng,

http://www.opendatacenteralliance.org/docs/software_defined_networking_master_usage_model_rev2.pdf
http://www.opendatacenteralliance.org/docs/software_defined_networking_master_usage_model_rev2.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf
https://www.atis.org/docstore/product.aspx?id=28143
https://www.atis.org/docstore/product.aspx?id=28143
http://www.ietf.org/rfc/rfc1987.txt
http://www.ietf.org/rfc/rfc3294.txt
http://www.ietf.org/rfc/rfc3701.txt
http://www.juniper.net/techpubs/en_US/junos12.1/topics/concept/junos-software-architecture.html
http://www.juniper.net/techpubs/en_US/junos12.1/topics/concept/junos-software-architecture.html
http://learn.extremenetworks.com/rs/extreme/images/EXOS-DS.pdf
http://learn.extremenetworks.com/rs/extreme/images/EXOS-DS.pdf
http://www3.alcatel-lucent.com/products/sros/
http://www3.alcatel-lucent.com/products/sros/
http://www.slideshare.net/umeshkrishnaswamy/open-network-operating-system
http://www.slideshare.net/umeshkrishnaswamy/open-network-operating-system

VERSION 2.01 50

G. Appenzeller, R. Johari, N. McKeown, and G. Parulkar, “Carving
research slices out of your production networks with OpenFlow,”
SIGCOMM Comput. Commun. Rev., vol. 40, no. 1, pp. 129–130, Jan.
2010.

[120] H. Song, J. Gong, J. Song, and J. Yu, “Protocol Oblivious Forwarding
(POF),” 2013. [Online]. Available: http://www.poforwarding.org/

[121] ONF, “Charter: Forwarding Abstractions Working Group,” April
2014. [Online]. Available: https://www.opennetworking.org/images/
stories/downloads/working-groups/charter-forwarding-abstractions.pdf

[122] Centec Networks, “V350 - centec open SDN platform,” 2013.
[Online]. Available: http://www.valleytalk.org/wp-content/uploads/
2013/04/Centec-Open-SDN-Platform.pdf

[123] NEC, “Nec ProgrammableFlow UNIVERGE PF5820,” 2013.
[Online]. Available: http://www.nec.com/en/global/prod/pflow/images
documents/ProgrammableFlow Switch PF5820.pdf

[124] NoviFlow, “NoviSwitch 1248 High Performance OpenFlow
Switch,” 2013. [Online]. Available: http://205.236.122.20/gestion/
NoviSwitch1248Datasheet.pdf

[125] HP, “HP 8200 ZL switch series,” 2013. [Online]. Avail-
able: http://h17007.www1.hp.com/us/en/networking/products/switches/
HP 8200 zl Switch Series/

[126] Arista Networks, “7150 series,” 2013. [Online]. Available: http://www.
aristanetworks.com/media/system/pdf/Datasheets/7150S Datasheet.pdf

[127] Extreme Networks, “Blackdiamond x8,” 2013. [Online]. Available:
http://www.extremenetworks.com/libraries/products/DSBDX 1832.pdf

[128] Huawei Technologies Co., Ltd., “Cx600 metro services platform,”
2013. [Online]. Available: http://www.huawei.com/ucmf/groups/public/
documents/attachments/hw 132369.pdf

[129] Juniper Networks, “Ex9200 ethernet switch,” 2013. [Online]. Available:
http://www.juniper.net/us/en/local/pdf/datasheets/1000432-en.pdf

[130] I. Yokneam, “EZchip announces OpenFlow 1.1 implementations on
its NP-4 100-Gigabit network processor,” 2011. [Online]. Available:
http://www.ezchip.com/pr 110713.htm

[131] BROCADE, “Brocade MLX series,” 2013. [On-
line]. Available: http://www.brocade.com/products/all/routers/product-
details/netiron-mlx-series/system-options.page

[132] IBM, “IBM System Networking RackSwitch G8264,” 2013. [Online].
Available: http://www-03.ibm.com/systems/networking/switches/rack/
g8264/

[133] NEC, “Nec ProgrammableFlow family of products,” 2013. [Online].
Available: http://www.necam.com/SDN/

[134] Pica8, “Pica8 3920,” 2013. [Online]. Available: http://www.pica8.org/
documents/pica8-datasheet-64x10gbe-p3780-p3920.pdf

[135] Plexxi, “Plexxi Switch 1,” 2013. [Online]. Avail-
able: http://www.plexxi.com/wp-content/themes/plexxi/assets/pdf/
Plexxi Switch 1 Datasheet Dec 2012.pdf

[136] Centec Networks, “Centec v330 OpenFlow switch reference
design,” 2013. [Online]. Available: http://www.centecnetworks.com/
en/SolutionList.asp?ID=42

[137] Cyan, Inc., “Z-series,” 2013. [Online]. Available: http://www.cyaninc.
com/en/our-solutions/z-series/

[138] Juniper Networks, Inc., “Contrail virtual router,” 2013. [Online].
Available: https://github.com/Juniper/contrail-vrouter

[139] FlowForwarding, “LINC-Switch,” 2013. [Online]. Available: http:
//www.flowforwarding.org/

[140] K. Rutka, K. Kaplita, S. Narayan, and S. Bailey, “LINC Switch,”
2013. [Online]. Available: http://www.opennetsummit.org/pdf/2013/
research track/poster papers/ons2013-final36.pdf

[141] E. L. Fernandes and C. E. Rothenberg, “OpenFlow 1.3 software
switch,” In SBRC’2014, 2014. [Online]. Available: https://github.com/
CPqD/ofsoftswitch13

[142] “Open vSwitch,” 2013. [Online]. Available: http://vswitch.org/
[143] OpenFlow Community, “OpenFlow switching reference system,”

2009. [Online]. Available: http://www.openflow.org/wp/downloads/
[144] Y. Mundada, R. Sherwood, and N. Feamster, “An OpenFlow

switch element for click,” in in Symposium on Click Modular Router,
2009. [Online]. Available: http://www.cc.gatech.edu/∼yogeshm3/click
symposium2009.pdf

[145] Big Switch Networks, “Project Floodlight,” 2013. [Online]. Available:
http://www.projectfloodlight.org/

[146] Y. Yiakoumis, J. Schulz-Zander, and J. Zhu, “Pantou : OpenFlow 1.0
for OpenWRT,” 2011. [Online]. Available: http://www.openflow.org/
wk/index.php/OpenFlow 1.0 for OpenWRT

[147] A. Weissberger, “VMware’s Network Virtualization Poses Huge
Threat to Data Center Switch Fabric Vendors,” 2013.
[Online]. Available: http://viodi.com/2013/05/06/vmwares-network-
virtualization-poses-huge-threat-to-data-center-switch-fabric-vendors/

[148] S. Shenker, “Stanford Seminar - Software-Defined Networking at the
Crossroads,” June 2013. [Online]. Available: http://www.youtube.com/
watch?v=WabdXYzCAOU

[149] M. Casado, “OpenStack and Network Virtualization,” April
2013. [Online]. Available: http://blogs.vmware.com/vmware/2013/
04/openstack-and-network-virtualization.html

[150] Pica8 Open Networking, “Pica8’s os for open switches,”
2013. [Online]. Available: http://www.pica8.org/open-switching/open-
switching-overview.php

[151] ONIE, “Open Network Install Environment,” 2013. [Online]. Available:
http://onie.org/

[152] T. Kato, M. Kawakami, T. Myojin, H. Ogawa, K. Hirono, and
T. Hasegawa, “Case study of applying SPLE to development of network
switch products,” in Proceedings of the 17th International Software
Product Line Conference, ser. SPLC ’13. New York, NY, USA: ACM,
2013, pp. 198–207.

[153] B. Pfaff and B. Davie, “The Open vSwitch Database Management
Protocol,” RFC 7047 (Informational), Internet Engineering Task Force,
Dec. 2013. [Online]. Available: http://www.ietf.org/rfc/rfc7047.txt

[154] M. Smith, M. Dvorkin, Y. Laribi, V. Pandey, P. Garg, and
N. Weidenbacher, “OpFlex Control Protocol,” Internet Draft, Internet
Engineering Task Force, April 2014. [Online]. Available: http:
//tools.ietf.org/html/draft-smith-opflex-00

[155] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState: Pro-
gramming platform-independent stateful OpenFlow applications inside
the switch,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 2, pp.
44–51, Apr. 2014.

[156] M. Sune, V. Alvarez, T. Jungel, U. Toseef, and K. Pentikousis, “An
OpenFlow implementation for network processors,” in Third European
Workshop on Software Defined Networks, 2014, pp. –.

[157] D. Parniewicz, R. Doriguzzi Corin, L. Ogrodowczyk, M. Rashidi Fard,
J. Matias, M. Gerola, V. Fuentes, U. Toseef, A. Zaalouk, B. Belter,
E. Jacob, and K. Pentikousis, “Design and implementation of an
OpenFlow hardware abstraction layer,” in Proceedings of the 2014
ACM SIGCOMM Workshop on Distributed Cloud Computing, ser. DCC
’14. New York, NY, USA: ACM, 2014, pp. 71–76.

[158] B. Belter, D. Parniewicz, L. Ogrodowczyk, A. Binczewski, M. Stroin-
ski, V. Fuentes, J. Matias, M. Huarte, and E. Jacob, “Hardware abstrac-
tion layer as an SDN-enabler for non-OpenFlow network equipment,”
in Third European Workshop on Software Defined Networks, 2014,
pp. –.

[159] B. Belter, A. Binczewski, K. Dombek, A. Juszczyk, L. Ogrodowczyk,
D. Parniewicz, M. Stroinski, and I. Olszewski, “Programmable abstrac-
tion of datapath,” in Third European Workshop on Software Defined
Networks, 2014, pp. –.

[160] R. G. Clegg, J. Spencer, R. Landa, M. Thakur, J. Mitchell, and M. Rio,
“Pushing software defined networking to the access,” in Proceedings
of Third European Workshop on SDN, 2014.

[161] V. Fuentes, J. Matias, A. Mendiola, M. Huarte, J. Unzilla, and E. Jacob,
“Integrating complex legacy systems under OpenFlow control: The
DOCSIS use case,” in Third European Workshop on Software Defined
Networks, 2014, pp. –.

[162] T. J. Bittman, G. J. Weiss, M. A. Margevicius, and P. Dawson, “Magic
Quadrant for x86 Server Virtualization Infrastructure,” Gartner, Tech.
Rep., June 2013.

[163] D. W. Cearley, D. Scott, J. Skorupa, and T. J. Bittman,
“Top 10 Technology Trends, 2013: Cloud Computing and
Hybrid IT Drive Future IT Models,” February 2013. [Online].
Available: http://www.gartnersummit.com/Gartnertop 10 technology
trends 201 237716.pdf

[164] C. Peng, M. Kim, Z. Zhang, and H. Lei, “VDN: virtual machine
image distribution network for cloud data centers,” in INFOCOM, 2012
Proceedings IEEE, March 2012, pp. 181–189.

[165] Z. Zhang, Z. Li, K. Wu, D. Li, H. Li, Y. Peng, and X. Lu, “VMThunder:
fast provisioning of large-scale virtual machine clusters,” Parallel and
Distributed Systems, IEEE Transactions on, vol. PP, no. 99, pp. 1–1,
2014.

[166] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,
N. McKeown, and G. Parulkar, “FlowVisor: A Network Virtualization
Layer,” Deutsche Telekom Inc. R&D Lab, Stanford, Nicira Networks,
Tech. Rep., 2009.

[167] S. Azodolmolky, R. Nejabati, S. Peng, A. Hammad, M. P. Chan-
negowda, N. Efstathiou, A. Autenrieth, P. Kaczmarek, and D. Sime-
onidou, “Optical FlowVisor: An OpenFlow-based Optical Network Vir-
tualization Approach,” in National Fiber Optic Engineers Conference,
ser. OSA Technical Digest. Optical Society of America, Mar. 2012.

http://www.poforwarding.org/
https://www.opennetworking.org/images/stories/downloads/working-groups/charter-forwarding-abstractions.pdf
https://www.opennetworking.org/images/stories/downloads/working-groups/charter-forwarding-abstractions.pdf
http://www.valleytalk.org/wp-content/uploads/2013/04/Centec-Open-SDN-Platform.pdf
http://www.valleytalk.org/wp-content/uploads/2013/04/Centec-Open-SDN-Platform.pdf
http://www.nec.com/en/global/prod/pflow/images_documents/ProgrammableFlow_Switch_PF5820.pdf
http://www.nec.com/en/global/prod/pflow/images_documents/ProgrammableFlow_Switch_PF5820.pdf
http://205.236.122.20/gestion/NoviSwitch1248Datasheet.pdf
http://205.236.122.20/gestion/NoviSwitch1248Datasheet.pdf
http://h17007.www1.hp.com/us/en/networking/products/switches/HP_8200_zl_Switch_Series/
http://h17007.www1.hp.com/us/en/networking/products/switches/HP_8200_zl_Switch_Series/
http://www.aristanetworks.com/media/system/pdf/Datasheets/7150S_Datasheet.pdf
http://www.aristanetworks.com/media/system/pdf/Datasheets/7150S_Datasheet.pdf
http://www.extremenetworks.com/libraries/products/DSBDX_1832.pdf
http://www.huawei.com/ucmf/groups/public/documents/attachments/hw_132369.pdf
http://www.huawei.com/ucmf/groups/public/documents/attachments/hw_132369.pdf
http://www.juniper.net/us/en/local/pdf/datasheets/1000432-en.pdf
http://www.ezchip.com/pr_110713.htm
http://www.brocade.com/products/all/routers/product-details/netiron-mlx-series/system-options.page
http://www.brocade.com/products/all/routers/product-details/netiron-mlx-series/system-options.page
http://www-03.ibm.com/systems/networking/switches/rack/g8264/
http://www-03.ibm.com/systems/networking/switches/rack/g8264/
http://www.necam.com/SDN/
http://www.pica8.org/documents/pica8-datasheet-64x10gbe-p3780-p3920.pdf
http://www.pica8.org/documents/pica8-datasheet-64x10gbe-p3780-p3920.pdf
http://www.plexxi.com/wp-content/themes/plexxi/assets/pdf/Plexxi_Switch_1_Datasheet_Dec_2012.pdf
http://www.plexxi.com/wp-content/themes/plexxi/assets/pdf/Plexxi_Switch_1_Datasheet_Dec_2012.pdf
http://www.centecnetworks.com/en/SolutionList.asp?ID=42
http://www.centecnetworks.com/en/SolutionList.asp?ID=42
http://www.cyaninc.com/en/our-solutions/z-series/
http://www.cyaninc.com/en/our-solutions/z-series/
https://github.com/Juniper/contrail-vrouter
http://www.flowforwarding.org/
http://www.flowforwarding.org/
http://www.opennetsummit.org/pdf/2013/research_track/poster_papers/ons2013-final36.pdf
http://www.opennetsummit.org/pdf/2013/research_track/poster_papers/ons2013-final36.pdf
https://github.com/CPqD/ofsoftswitch13
https://github.com/CPqD/ofsoftswitch13
http://vswitch.org/
http://www.openflow.org/wp/downloads/
http://www.cc.gatech.edu/~yogeshm3/click_symposium2009.pdf
http://www.cc.gatech.edu/~yogeshm3/click_symposium2009.pdf
http://www.projectfloodlight.org/
http://www.openflow.org/wk/index.php/OpenFlow_1.0_for_OpenWRT
http://www.openflow.org/wk/index.php/OpenFlow_1.0_for_OpenWRT
http://viodi.com/2013/05/06/vmwares-network-virtualization-poses-huge-threat-to-data-center-switch-fabric-vendors/
http://viodi.com/2013/05/06/vmwares-network-virtualization-poses-huge-threat-to-data-center-switch-fabric-vendors/
http://www.youtube.com/watch?v=WabdXYzCAOU
http://www.youtube.com/watch?v=WabdXYzCAOU
http://blogs.vmware.com/vmware/2013/04/openstack-and-network-virtualization.html
http://blogs.vmware.com/vmware/2013/04/openstack-and-network-virtualization.html
http://www.pica8.org/open-switching/open-switching-overview.php
http://www.pica8.org/open-switching/open-switching-overview.php
http://onie.org/
http://www.ietf.org/rfc/rfc7047.txt
http://tools.ietf.org/html/draft-smith-opflex-00
http://tools.ietf.org/html/draft-smith-opflex-00
http://www.gartnersummit.com/Gartnertop_10_technology_trends_201_237716.pdf
http://www.gartnersummit.com/Gartnertop_10_technology_trends_201_237716.pdf

VERSION 2.01 51

[168] D. A. Drutskoy, “Software-Defined Network Virtualization with
FlowN,” Ph.D. dissertation, Department of Computer Science of
Princeton University, Jun 2012.

[169] A. Al-Shabibi, M. D. Leenheer, M. Gerolay, A. Koshibe, W. Snow, and
G. Parulkar, “OpenVirteX: A Network Hypervisor,” 2014. [Online].
Available: http://ovx.onlab.us/wp-content/uploads/2014/04/ovx-ons14.
pdf

[170] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. Parulkar,
E. Salvadori, and B. Snow, “OpenVirteX: Make your virtual SDNs
programmable,” in Proceedings of the Third Workshop on Hot Topics
in Software Defined Networking, ser. HotSDN ’14. New York, NY,
USA: ACM, 2014, pp. 25–30.

[171] S. Racherla, D. Cain, S. Irwin, P. Ljungstrom, P. Patil, and A. M.
Tarenzio, Implementing IBM Software Defined Network for Virtual
Environments. IBM RedBooks, May 2014.

[172] C. Li, B. Brech, S. Crowder, D. Dias, H. Franke, M. Hogstrom,
D. Lindquist, G. Pacifici, S. Pappe, B. Rajaraman, J. Rao, R. Ratna-
parkhi, R. Smith, and M. Williams, “Software defined environments:
An introduction,” IBM Journal of Research and Development, vol. 58,
no. 2, pp. 1–11, March 2014.

[173] A. Gudipati, L. E. Li, and S. Katti, “Radiovisor: A slicing plane for
radio access networks,” in Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, ser. HotSDN ’14. New York,
NY, USA: ACM, 2014, pp. 237–238.

[174] H. Yamanaka, E. Kawai, S. Ishii, and S. Shimojo, “AutoVFlow:
Autonomous virtualization for wide-area OpenFlow networks,” in Third
European Workshop on Software Defined Networks, 2014, pp. –.

[175] Berlin Institute for Software Defined Networks (BISDN) GmbH, “The
eXtensible OpenFlow datapath daemon (xdpd) bringing innovation
into the fast path,” 2014. [Online]. Available: http://xdpd.org/

[176] R. Doriguzzi-Corin, E. Salvadori, M. Gerola, M. Sune, and H. Woesner,
“A datapath-centric virtualization mechanism for OpenFlow networks,”
in Third European Workshop on Software Defined Networks, 2014,
pp. –.

[177] T. Szyrkowiec, A. Autenrieth, J.-P. Elbers, W. Kellerer, P. Kaczmarek,
V. Lopez, L. Contreras, O. G. de Dios, J. P. Fernandez-Palacios,
R. Munoz, R. Vilalta, R. Casellas, R. Martnez, A. Mayoral, M. Chan-
negowda, S. Peng, R. Nejabati, and D. Simeonidou, “Demonstration
of SDN based optical network virtualization and multidomain service
orchestration,” in Third European Workshop on Software Defined
Networks, 2014, pp. –.

[178] D. Depaoli, R. Doriguzzi-Corin, M. Gerola, and E. Salvadori, “Demon-
strating a distributed and version-agnostic OpenFlow slicing mecha-
nism,” in Third European Workshop on Software Defined Networks,
2014, pp. –.

[179] Z. Bozakov and P. Papadimitriou, “AutoSlice: automated and scalable
slicing for software-defined networks,” in Proceedings of the 2012 ACM
conference on CoNEXT student workshop, ser. CoNEXT Student ’12.
New York, NY, USA: ACM, 2012, pp. 3–4.

[180] D. Drutskoy, E. Keller, and J. Rexford, “Scalable network virtualization
in software-defined networks,” Internet Computing, IEEE, vol. 17,
no. 2, pp. 20–27, 2013.

[181] X. Jin, J. Rexford, and D. Walker, “Incremental update for a composi-
tional SDN hypervisor,” in Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, ser. HotSDN ’14. New York,
NY, USA: ACM, 2014, pp. 187–192.

[182] S. Ghorbani and B. Godfrey, “Towards correct network virtualization,”
in Proceedings of the Third Workshop on Hot Topics in Software
Defined Networking, ser. HotSDN ’14. New York, NY, USA: ACM,
2014, pp. 109–114.

[183] Juniper Networks, “Opencontrail,” 2013. [Online]. Available: http:
//opencontrail.org/

[184] HP, “Hp SDN controller architecture,” Hewlett-Packard Development
Company, L.P., Tech. Rep., September 2013.

[185] K. Phemius, M. Bouet, and J. Leguay, “DISCO: Distributed Multi-
domain SDN Controllers,” ArXiv e-prints, Aug. 2013.

[186] D. Erickson, “The Beacon OpenFlow controller,” in Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined
networking, ser. HotSDN ’13. New York, NY, USA: ACM, 2013, pp.
13–18.

[187] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sher-
wood, “On controller performance in software-defined networks,” in
Proceedings of the 2nd USENIX conference on Hot Topics in Manage-
ment of Internet, Cloud, and Enterprise Networks and Services, ser.
Hot-ICE’12. Berkeley, CA, USA: USENIX Association, 2012, pp.
10–10.

[188] Z. Cai, A. L. Cox, and T. S. E. Ng, “Maestro: A System for Scalable
OpenFlow Control,” Rice University, Tech. Rep., 2011.

[189] “Floodlight is a Java-based OpenFlow controller,” 2012. [Online].
Available: http://floodlight.openflowhub.org/

[190] Y. Takamiya and N. Karanatsios, “Trema OpenFlow controller
framework,” 2012. [Online]. Available: https://github.com/trema/trema

[191] Nippon Telegraph and Telephone Corporation, “Ryu Network
Operating System,” 2012. [Online]. Available: http://osrg.github.com/
ryu/

[192] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey, and G. Wang,
“Meridian: an SDN platform for cloud network services,” Communi-
cations Magazine, IEEE, vol. 51, no. 2, pp. 120–127, 2013.

[193] NEC, “Award-winning Software-defined Networking NEC
ProgrammableFlow Networking Suite,” September 2013. [On-
line]. Available: http://www.necam.com/docs/?id=67c33426-0a2b-
4b87-9a7a-d3cecc14d26a

[194] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran,
J. Noh, and B. B. Kang, “Rosemary: A robust, secure, and high-
performance network operating system,” in Proceedings of the 21st
ACM Conference on Computer and Communications Security (CCS),
Nov. 2014, To appear.

[195] A. Tootoonchian and Y. Ganjali, “HyperFlow: a distributed control
plane for OpenFlow,” in Proceedings of the 2010 internet network
management conference on Research on enterprise networking, ser.
INM/WREN’10. Berkeley, CA, USA: USENIX Association, 2010,
pp. 3–3.

[196] M. Monaco, O. Michel, and E. Keller, “Applying Operating System
Principles to SDN Controller Design,” in Twelfth ACM Workshop on
Hot Topics in Networks (HotNets-XII), College Park, MD, November
2013.

[197] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi,
“Participatory networking: an API for application control of SDNs,” in
Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM,
ser. SIGCOMM ’13. New York, NY, USA: ACM, 2013, pp. 327–338.

[198] F. Botelho, A. Bessani, F. M. V. Ramos, and P. Ferreira, “On the
design of practical fault-tolerant SDN controllers,” in Third European
Workshop on Software Defined Networks, 2014, pp. –.

[199] S. Matsumoto, S. Hitz, and A. Perrig, “Fleet: Defending SDNs from
malicious administrators,” in Proceedings of the Third Workshop on
Hot Topics in Software Defined Networking, ser. HotSDN ’14. New
York, NY, USA: ACM, 2014, pp. 103–108.

[200] A. Bierman, M. Bjorklund, K. Watsen, and R. Fernando, “RESTCONF
protocol,” Internet Draft, Internet Engineering Task Force, July
2014. [Online]. Available: http://tools.ietf.org/html/draft-ietf-netconf-
restconf-01

[201] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A
security enforcement kernel for OpenFlow networks,” in Proceedings
of the First Workshop on Hot Topics in Software Defined Networks,
ser. HotSDN ’12. New York, NY, USA: ACM, 2012, pp. 121–126.

[202] L. Richardson and S. Ruby, RESTful web services. O’Reilly Media,
Inc., 2008.

[203] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker,
“Practical declarative network management,” in Proceedings of the 1st
ACM workshop on Research on enterprise networking, ser. WREN ’09.
New York, NY, USA: ACM, 2009, pp. 1–10.

[204] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: a network programming language,”
SIGPLAN Not., 2011.

[205] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler and
run-time system for network programming languages,” SIGPLAN Not.,
vol. 47, no. 1, pp. 217–230, Jan. 2012.

[206] A. Singla and B. Rijsman, “Contrail Architecture,” Juniper Networks,
Tech. Rep., 2013.

[207] ONF, “OpenFlow management and configuration proto-
col (OF-Config 1.1.1),” March 2014. [Online]. Avail-
able: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow-config/of-config-1-1-1.pdf

[208] D. Harrington, R. Presuhn, and B. Wijnen, “An Architecture
for Describing Simple Network Management Protocol (SNMP)
Management Frameworks,” Internet Engineering Task Force, dec
2002. [Online]. Available: http://www.ietf.org/rfc/rfc3411.txt

[209] H. Yin, H. Xie, T. Tsou, D. Lopez, P. Aranda, and R. Sidi, “SDNi: A
Message Exchange Protocol for Software Defined Networks (SDNS)
across Multiple Domains,” Internet Draft, Internet Engineering Task
Force, June 2012. [Online]. Available: http://tools.ietf.org/id/draft-yin-
sdn-sdni-00.txt

http://ovx.onlab.us/wp-content/uploads/2014/04/ovx-ons14.pdf
http://ovx.onlab.us/wp-content/uploads/2014/04/ovx-ons14.pdf
http://xdpd.org/
http://opencontrail.org/
http://opencontrail.org/
http://floodlight.openflowhub.org/
https://github.com/trema/trema
http://osrg.github.com/ryu/
http://osrg.github.com/ryu/
http://www.necam.com/docs/?id=67c33426-0a2b-4b87-9a7a-d3cecc14d26a
http://www.necam.com/docs/?id=67c33426-0a2b-4b87-9a7a-d3cecc14d26a
http://tools.ietf.org/html/draft-ietf-netconf-restconf-01
http://tools.ietf.org/html/draft-ietf-netconf-restconf-01
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1-1-1.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow-config/of-config-1-1-1.pdf
http://www.ietf.org/rfc/rfc3411.txt
http://tools.ietf.org/id/draft-yin-sdn-sdni-00.txt
http://tools.ietf.org/id/draft-yin-sdn-sdni-00.txt

VERSION 2.01 52

[210] M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro, “Anal-
ysis of operating system diversity for intrusion tolerance,” Software:
Practice and Experience, vol. 44, no. 6, pp. 735–770, 2014.

[211] Z. Wang, T. Tsou, J. Huang, X. Shi, and X. Yin, “Analysis of
Comparisons between OpenFlow and ForCES,” Internet Draft, Internet
Engineering Task Force, December 2011. [Online]. Available: http:
//tools.ietf.org/id/draft-wang-forces-compare-openflow-forces-00.txt

[212] K. Ogawa, W. M. Wang, E. Haleplidis, and J. H. Salim, “ForCES
Intra-NE High Availability,” Internet Draft, Internet Engineering Task
Force, October 2013. [Online]. Available: http://tools.ietf.org/id/draft-
ietf-forces-ceha-08.txt

[213] F. A. Botelho, F. M. V. Ramos, D. Kreutz, and A. N. Bessani, “On
the feasibility of a consistent and fault-tolerant data store for SDNs,”
in Proceedings of the 2013 Second European Workshop on Software
Defined Networks, ser. EWSDN ’13. Washington, DC, USA: IEEE
Computer Society, 2013, pp. 38–43.

[214] S. Vinoski, “Advanced message queuing protocol,” IEEE Internet
Computing, vol. 10, no. 6, pp. 87–89, Nov. 2006.

[215] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, “Software trans-
actional networking: concurrent and consistent policy composition,” in
Proceedings of the second ACM SIGCOMM workshop on Hot topics
in software defined networking, ser. HotSDN ’13. New York, NY,
USA: ACM, 2013, pp. 1–6.

[216] A. Ghodsi, “Distributed k-ary system: Algorithms for distributed hash
tables,” Ph.D. dissertation, KTH-Royal Institute of Technology, 2006.

[217] W. Stallings, “Software-defined networks and OpenFlow,” The Internet
Protocol Journal, vol. 16, no. 1, 2013.

[218] ONF, “SDN architecture,” June 2014. [Online]. Avail-
able: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/technical-reports/TR SDN ARCH 1.0 06062014.pdf

[219] R. Hand and E. Keller, “ClosedFlow: OpenFlow-like control over
proprietary devices,” in Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, ser. HotSDN ’14. New York,
NY, USA: ACM, 2014, pp. 7–12.

[220] M. Jarschel, T. Zinner, T. Hoßfeld, P. Tran-Gia, and W. Kellerer,
“Interfaces, attributes, and use cases: A compass for SDN,” IEEE
Communications Magazine, vol. 52, no. 6, pp. 210–217, 2014.

[221] E. Mannie, “Generalized Multi-Protocol Label Switching (GMPLS)
Architecture,” RFC 3945 (Proposed Standard), Internet Engineering
Task Force, Oct. 2004, updated by RFC 6002. [Online]. Available:
http://www.ietf.org/rfc/rfc3945.txt

[222] K. Pentikousis, Y. Wang, and W. Hu, “MobileFlow: Toward software-
defined mobile networks,” Communications Magazine, IEEE, vol. 51,
no. 7, pp. 44–53, 2013.

[223] A. Voellmy and P. Hudak, “Nettle: taking the sting out of programming
network routers,” in Proceedings of the 13th international conference
on Practical aspects of declarative languages, ser. PADL’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 235–249.

[224] A. Voellmy, H. Kim, and N. Feamster, “Procera: a language for high-
level reactive network control,” in Proceedings of the first workshop
on Hot topics in software defined networks, ser. HotSDN ’12. New
York, NY, USA: ACM, 2012, pp. 43–48.

[225] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Com-
posing software-defined networks,” in Proceedings of the 10th USENIX
conference on Networked Systems Design and Implementation, ser.
nsdi’13. Berkeley, CA, USA: USENIX Association, 2013, pp. 1–14.

[226] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “NetKAT: Semantic foundations for
networks,” SIGPLAN Not., vol. 49, no. 1, pp. 113–126, Jan. 2014.

[227] S. Narayana, J. Rexford, and D. Walker, “Compiling path queries in
software-defined networks,” in Proceedings of the Third Workshop on
Hot Topics in Software Defined Networking, ser. HotSDN ’14. New
York, NY, USA: ACM, 2014, pp. 181–186.

[228] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient
and scalable offloading of control applications,” in Proceedings of
the First Workshop on Hot Topics in Software Defined Networks, ser.
HotSDN ’12. New York, NY, USA: ACM, 2012, pp. 19–24.

[229] D. Saikia, “MuL OpenFlow controller,” 2013. [Online]. Available:
http://sourceforge.net/projects/mul/

[230] M. McCauley, “POX,” 2012. [Online]. Available: http://www.noxrepo.
org/

[231] H. Shimonishi and S. Ishii, “Virtualized network infrastructure using
OpenFlow,” in Network Operations and Management Symposium Work-
shops (NOMS Wksps), 2010 IEEE/IFIP, 2010, pp. 74–79.

[232] G. Appenzeller, “SNAC,” 2011. [Online]. Available: http://www.
openflowhub.org/display/Snac

[233] B. Casemore, “SDN controller ecosystems critical to market success,”
2012. [Online]. Available: http://nerdtwilight.wordpress.com/2012/06/
05/sdn-controller-ecosystems-critical-to-market-success/

[234] R. Kwan and C. Leung, “A survey of scheduling and interference
mitigation in lte,” JECE, vol. 2010, pp. 1:1–1:10, Jan. 2010.

[235] A. Gudipati, D. Perry, L. E. Li, and S. Katti, “SoftRAN: Software
defined radio access network,” in Proceedings of the second workshop
on Hot topics in software defined networks, ser. HotSDN ’13. New
York, NY, USA: ACM, 2013.

[236] J. Dix, “Clarifying the role of software-defined networking northbound
APIs,” May 2013. [Online]. Available: http://www.networkworld.com/
news/2013/050213-sherwood-269366.html

[237] I. GUIS, “The SDN Gold Rush To The Northbound API,” November
2012. [Online]. Available: http://www.sdncentral.com/technology/the-
sdn-gold-rush-to-the-northbound-api/2012/11/

[238] B. Salisbury, “The northbound API- a big little problem,” 2012.
[239] G. Ferro, “Northbound API, southbound api, east/north lan navigation

in an OpenFlow world and an SDN compass,” Aug. 2012.
[240] B. Casemore, “Northbound API: The standardization debate,” Sept.

2012. [Online]. Available: http://nerdtwilight.wordpress.com/2012/09/
18/northbound-api-the-standardization-debate/

[241] I. Pepelnjak, “SDN controller northbound API is the crucial missing
piece,” Sept. 2012. [Online]. Available: http://blog.ioshints.info/2012/
09/sdn-controller-northbound-api-is.html

[242] S. Johnson, “A primer on northbound APIs: Their role in
a software-defined network,” December 2012. [Online]. Avail-
able: http://searchsdn.techtarget.com/feature/A-primer-on-northbound-
APIs-Their-role-in-a-software-defined-network

[243] R. G. Little, “ONF to standardize northbound
API for SDN applications?” October 2013. [Online].
Available: http://searchsdn.techtarget.com/news/2240206604/ONF-to-
standardize-northbound-API-for-SDN-applications

[244] Austin Common Standards Revision Group, “POSIX,” 2014. [Online].
Available: http://standards.ieee.org/develop/wg/POSIX.html

[245] M. Yu, A. Wundsam, and M. Raju, “NOSIX: A lightweight portability
layer for the SDN OS,” SIGCOMM Comput. Commun. Rev., vol. 44,
no. 2, pp. 28–35, Apr. 2014.

[246] R. Chua, “OpenFlow northbound API: A new olympic sport,” 2012.
[Online]. Available: http://www.sdncentral.com/sdn-blog/openflow-
northbound-api-olympics/2012/07/

[247] J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker, “Modular
SDN Programming with Pyretic,” USENIX ;login, vol. 38, no. 5,
October 2013.

[248] K.-K. Yap, T.-Y. Huang, B. Dodson, M. S. Lam, and N. McKeown,
“Towards software-friendly networks,” in Proceedings of the first ACM
asia-pacific workshop on Workshop on systems, ser. APSys ’10. New
York, NY, USA: ACM, 2010, pp. 49–54.

[249] S. Gutz, A. Story, C. Schlesinger, and N. Foster, “Splendid isolation:
A slice abstraction for software-defined networks,” in Proceedings of
the First Workshop on Hot Topics in Software Defined Networks, ser.
HotSDN ’12. New York, NY, USA: ACM, 2012, pp. 79–84.

[250] D. Turull, M. Hidell, and P. Sjödin, “Evaluating OpenFlow in lib-
netvirt,” in The 8th Swedish National Computer Networking Workshop
2012 (SNCNW 2012), Oct 2012.

[251] Quantum Communicty, “OpenStack Networking (”Quantum”),” 2012.
[252] Small Cell Forum, “Femto APIs,” 2013. [Online]. Available:

http://www.smallcellforum.org/developers/
[253] M. Guzdial, “Education: Paving the way for computational thinking,”

Commun. ACM, vol. 51, no. 8, pp. 25–27, Aug. 2008.
[254] M. S. Farooq, S. A. Khan, F. Ahmad, S. Islam, and A. Abid, “An

evaluation framework and comparative analysis of the widely used first
programming languages,” PLoS ONE, vol. 9, no. 2, 02 2014.

[255] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi,
“Hierarchical policies for software defined networks,” in Proceedings
of the first workshop on Hot topics in software defined networks, ser.
HotSDN ’12. New York, NY, USA: ACM, 2012, pp. 37–42.

[256] T. Nelson, A. D. Ferguson, M. J. Scheer, and S. Krishnamurthi, “Tier-
less Programming and Reasoning for Software-Defined Networks,” in
11th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 14). Seattle, WA: USENIX Association, Apr. 2014,
pp. 519–531.

[257] N. P. Katta, J. Rexford, and D. Walker, “Logic programming for
software-dedefine networks,” in ACM SIGPLAN Workshop on Cross-
Model Language Design and Implementation, ser. XLDI, 2012.

[258] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson,
“FRESCO: Modular composable security services for software-defined
networks,” in Internet Society NDSS., Feb 2013.

http://tools.ietf.org/id/draft-wang-forces-compare-openflow-forces-00.txt
http://tools.ietf.org/id/draft-wang-forces-compare-openflow-forces-00.txt
http://tools.ietf.org/id/draft-ietf-forces-ceha-08.txt
http://tools.ietf.org/id/draft-ietf-forces-ceha-08.txt
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
http://www.ietf.org/rfc/rfc3945.txt
http://sourceforge.net/projects/mul/
http://www.noxrepo.org/
http://www.noxrepo.org/
http://www.openflowhub.org/display/Snac
http://www.openflowhub.org/display/Snac
http://nerdtwilight.wordpress.com/2012/06/05/sdn-controller-ecosystems-critical-to-market-success/
http://nerdtwilight.wordpress.com/2012/06/05/sdn-controller-ecosystems-critical-to-market-success/
http://www.networkworld.com/news/2013/050213-sherwood-269366.html
http://www.networkworld.com/news/2013/050213-sherwood-269366.html
http://www.sdncentral.com/technology/the-sdn-gold-rush-to-the-northbound-api/2012/11/
http://www.sdncentral.com/technology/the-sdn-gold-rush-to-the-northbound-api/2012/11/
http://nerdtwilight.wordpress.com/2012/09/18/northbound-api-the-standardization-debate/
http://nerdtwilight.wordpress.com/2012/09/18/northbound-api-the-standardization-debate/
http://blog.ioshints.info/2012/09/sdn-controller-northbound-api-is.html
http://blog.ioshints.info/2012/09/sdn-controller-northbound-api-is.html
http://searchsdn.techtarget.com/feature/A-primer-on-northbound-APIs-Their-role-in-a-software-defined-network
http://searchsdn.techtarget.com/feature/A-primer-on-northbound-APIs-Their-role-in-a-software-defined-network
http://searchsdn.techtarget.com/news/2240206604/ONF-to-standardize-northbound-API-for-SDN-applications
http://searchsdn.techtarget.com/news/2240206604/ONF-to-standardize-northbound-API-for-SDN-applications
http://standards.ieee.org/develop/wg/POSIX.html
http://www.sdncentral.com/sdn-blog/openflow-northbound-api-olympics/2012/07/
http://www.sdncentral.com/sdn-blog/openflow-northbound-api-olympics/2012/07/
http://www.smallcellforum.org/developers/

VERSION 2.01 53

[259] S. Son, S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Model check-
ing invariant security properties in OpenFlow,” in Communications
(ICC), 2013 IEEE International Conference on, June 2013, pp. 1974–
1979.

[260] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “OpenTM: traffic matrix
estimator for OpenFlow networks,” in Proceedings of the 11th inter-
national conference on Passive and active measurement, ser. PAM’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 201–210.

[261] M. Reitblatt, M. Canini, A. Guha, and N. Foster, “Fattire: Declarative
fault tolerance for software defined networks,” in Proceedings of the
second workshop on Hot topics in software defined networks, ser.
HotSDN ’13. New York, NY, USA: ACM, 2013.

[262] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak, “Maple:
simplifying SDN programming using algorithmic policies,” in Pro-
ceedings of the ACM SIGCOMM 2013 conference on SIGCOMM, ser.
SIGCOMM ’13. New York, NY, USA: ACM, 2013, pp. 87–98.

[263] R. Soule, S. Basu, R. Kleinberg, E. G. Sirer, and N. Foster, “Managing
the Network with Merlin,” in Twelfth ACM Workshop on Hot Topics
in Networks (HotNets-XII), College Park, MD, November 2013.

[264] C. Jasson Casey, A. Sutton, G. Dos Reis, and A. Sprintson, “Eliminat-
ing Network Protocol Vulnerabilities Through Abstraction and Systems
Language Design,” ArXiv e-prints, Nov. 2013.

[265] X. Wen, C. Diao, X. Zhao, Y. Chen, L. E. Li, B. Yang, and
K. Bu, “Compiling minimum incremental update for modular SDN
languages,” in Proceedings of the Third Workshop on Hot Topics in
Software Defined Networking, ser. HotSDN ’14. New York, NY, USA:
ACM, 2014, pp. 193–198.

[266] P. Pereini, M. Kuzniar, and D. Kostic, “OpenFlow needs you! a call
for a discussion about a cleaner OpenFlow API,” in Software Defined
Networks (EWSDN), 2013 Second European Workshop on, Oct 2013,
pp. 44–49.

[267] F. Facca, E. Salvadori, H. Karl, D. Lopez, P. Aranda Gutierrez,
D. Kostic, and R. Riggio, “NetIDE: First steps towards an integrated
development environment for portable network apps,” in Software
Defined Networks (EWSDN), 2013 Second European Workshop on, Oct
2013, pp. 105–110.

[268] E. Reinecke, “Mapping the future of software-defined networking,”
2014. [Online]. Available: http://goo.gl/fQCvRF

[269] M. Scharf, V. Gurbani, T. Voith, M. Stein, W. Roome, G. Soprovich,
and V. Hilt, “Dynamic VPN optimization by ALTO guidance,” in Soft-
ware Defined Networks (EWSDN), 2013 Second European Workshop
on, Oct 2013, pp. 13–18.

[270] M. Stiemerling, S. Kiesel, S. Previdi, and M. Scharf, “ALTO
Deployment Considerations,” Internet Draft, Internet Engineering Task
Force, February 2014. [Online]. Available: http://tools.ietf.org/html/
draft-ietf-alto-deployments-09

[271] R. Alimi, R. Penno, and Y. Yang, “ALTO Protocol,” Internet Draft,
Internet Engineering Task Force, March 2014. [Online]. Available:
https://datatracker.ietf.org/doc/draft-ietf-alto-protocol/

[272] N. Handigol, S. Seetharaman, M. Flajslik, A. Gember, N. McKeown,
G. Parulkar, A. Akella, N. Feamster, R. Clark, A. Krishnamurthy,
V. Brajkovic, and T. A. and, “Aster*x: Load-Balancing Web Traffic
over Wide-Area Networks,” 2009.

[273] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown, “ElasticTree: saving energy in data
center networks,” in Proceedings of the 7th USENIX conference on
Networked systems design and implementation, ser. NSDI’10. Berke-
ley, CA, USA: USENIX Association, 2010, pp. 17–17.

[274] M. S. Seddiki, M. Shahbaz, S. Donovan, S. Grover, M. Park, N. Feam-
ster, and Y.-Q. Song, “FlowQoS: QoS for the rest of us,” in Proceedings
of the Third Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN ’14. New York, NY, USA: ACM, 2014, pp. 207–208.

[275] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: dynamic flow scheduling for data center networks,” in Pro-
ceedings of the 7th USENIX conference on Networked systems design
and implementation, ser. NSDI’10. Berkeley, CA, USA: USENIX
Association, 2010, pp. 19–19.

[276] C. Macapuna, C. Rothenberg, and M. Magalhaes, “In-packet bloom
filter based data center networking with distributed OpenFlow con-
trollers,” in GLOBECOM Workshops (GC Wkshps), 2010 IEEE, 2010,
pp. 584–588.

[277] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE: Fine
grained traffic engineering for data centers,” in Proceedings of the
Seventh COnference on Emerging Networking EXperiments and Tech-
nologies, ser. CoNEXT ’11. New York, NY, USA: ACM, 2011, pp.
8:1–8:12.

[278] H. Egilmez, S. Dane, K. Bagci, and A. Tekalp, “OpenQoS: An Open-
Flow controller design for multimedia delivery with end-to-end quality
of service over software-defined networks,” in Signal Information
Processing Association Annual Summit and Conference (APSIPA ASC),
2012 Asia-Pacific, 2012, pp. 1–8.

[279] A. Sgambelluri, A. Giorgetti, F. Cugini, F. Paolucci, and P. Castoldi,
“OpenFlow-based segment protection in Ethernet networks,” Optical
Communications and Networking, IEEE/OSA Journal of, vol. 5, no. 9,
pp. 1066–1075, Sept 2013.

[280] M. Bari, S. Chowdhury, R. Ahmed, and R. Boutaba, “PolicyCop: An
autonomic QoS policy enforcement framework for software defined
networks,” in Future Networks and Services (SDN4FNS), 2013 IEEE
SDN for, Nov 2013, pp. 1–7.

[281] K. Nagaraj and S. Katti, “ProCel: Smart traffic handling for a scalable
software epc,” in Proceedings of the Third Workshop on Hot Topics
in Software Defined Networking, ser. HotSDN ’14. New York, NY,
USA: ACM, 2014, pp. 43–48.

[282] P. Xiong and H. Hacigümüs, “Pronto: A software-defined networking
based system for performance management of analytical queries on
distributed data stores,” PVLDB, vol. 7, no. 13, pp. 1661–1664, 2014.

[283] P. Xiong, H. Hacigumus, and J. F. Naughton, “A software-defined
networking based approach for performance management of analytical
queries on distributed data stores,” in Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data, ser.
SIGMOD ’14. New York, NY, USA: ACM, 2014, pp. 955–966.

[284] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Johari,
“Plug-n-Serve: Load-balancing web traffic using OpenFlow,” 2009.

[285] K. Jeong, J. Kim, and Y.-T. Kim, “QoS-aware network operating
system for software defined networking with generalized OpenFlows,”
in Network Operations and Management Symposium (NOMS), 2012
IEEE, April 2012, pp. 1167 –1174.

[286] S. Sharma, D. Staessens, D. Colle, D. Palma, J. G. R. Figueiredo,
D. Morris, M. Pickavet, and P. Demeester, “Implementing quality of
service for the software defined networking enabled future internet,” in
Third European Workshop on Software Defined Networks, 2014, pp. –.

[287] W. Kim, P. Sharma, J. Lee, S. Banerjee, J. Tourrilhes, S.-J. Lee, and
P. Yalagandula, “Automated and scalable QoS control for network
convergence,” in Proceedings of the 2010 internet network management
conference on Research on enterprise networking, ser. INM/WREN’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 1–1.

[288] A. Ishimori, F. Farias, E. Cerqueira, and A. Abelem, “Control of
multiple packet schedulers for improving QoS on OpenFlow/SDN
networking,” in Software Defined Networks (EWSDN), 2013 Second
European Workshop on, Oct 2013, pp. 81–86.

[289] D. Palma, J. Goncalves, B. Sousa, L. Cordeiro, P. Simoes, S. Sharma,
and D. Staessens, “The QueuePusher: Enabling queue management
in OpenFlow,” in Third European Workshop on Software Defined
Networks, 2014, pp. –.

[290] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying middlebox policy enforcement using SDN,” in Pro-
ceedings of the Conference on Applications, technologies, architectures,
and protocols for computer communications, ser. SIGCOMM ’13.
New York, NY, USA: ACM, 2013.

[291] P. Skoldstrom and B. C. Sanchez, “Virtual aggregation using SDN,”
in 2013 Second European Workshop on Software Defined Networks,
2013, pp. –.

[292] J. Schulz-Zander, N. Sarrar, and S. Schmid, “AeroFlux: A near-
sighted controller architecture for software-defined wireless networks,”
in Presented as part of the Open Networking Summit 2014 (ONS 2014).
Santa Clara, CA: USENIX, 2014.

[293] J. Schulz-Zander, N. Sarrar, and S. Schmid, “Towards a scalable and
near-sighted control plane architecture for WiFi SDNs,” in Proceedings
of the Third Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN ’14, 2014.

[294] H. Ali-Ahmad, C. Cicconetti, A. de la Oliva, M. Draxler, R. Gupta,
V. Mancuso, L. Roullet, and V. Sciancalepore, “CROWD: An SDN
approach for densenets,” in Software Defined Networks (EWSDN), 2013
Second European Workshop on, Oct 2013, pp. 25–31.

[295] J. Vestin, P. Dely, A. Kassler, N. Bayer, H. Einsiedler, and C. Peylo,
“CloudMAC: towards software defined WLANs,” SIGMOBILE Mob.
Comput. Commun. Rev., vol. 16, no. 4, pp. 42–45, Feb. 2013.

[296] A. Dawson, M. K. Marina, and F. J. Garcia, “On the benefits of RAN
virtualisation in C-RAN based mobile networks,” in Third European
Workshop on Software Defined Networks, 2014, pp. –.

[297] Y. Yamasaki, Y. Miyamoto, J. Yamato, H. Goto, and H. Sone, “Flexible
access management system for campus VLAN based on OpenFlow,”

http://goo.gl/fQCvRF
http://tools.ietf.org/html/draft-ietf-alto-deployments-09
http://tools.ietf.org/html/draft-ietf-alto-deployments-09
https://datatracker.ietf.org/doc/draft-ietf-alto-protocol/

VERSION 2.01 54

in Applications and the Internet (SAINT), 2011 IEEE/IPSJ 11th Inter-
national Symposium on, 2011, pp. 347–351.

[298] J. Schulz-Zander, L. Suresh, N. Sarrar, A. Feldmann, T. Hühn, and
R. Merz, “Programmatic orchestration of WiFi networks,” in 2014
USENIX Annual Technical Conference (USENIX ATC 14), 2014.

[299] M. Yang, Y. Li, D. Jin, L. Su, S. Ma, and L. Zeng, “OpenRAN: a
software-defined ran architecture via virtualization,” in Proceedings of
the ACM SIGCOMM 2013 conference on SIGCOMM, ser. SIGCOMM
’13. New York, NY, USA: ACM, 2013, pp. 549–550.

[300] K.-K. Yap, M. Kobayashi, R. Sherwood, T.-Y. Huang, M. Chan,
N. Handigol, and N. McKeown, “OpenRoads: empowering research in
mobile networks,” SIGCOMM Comput. Commun. Rev., vol. 40, no. 1,
pp. 125–126, Jan. 2010.

[301] V. Chandrasekhar, J. Andrews, and A. Gatherer, “Femtocell networks:
a survey,” Communications Magazine, IEEE, vol. 46, no. 9, pp. 59–67,
September 2008.

[302] Y. Yu, C. Qian, and X. Li, “Distributed and collaborative traffic
monitoring in software defined networks,” in Proceedings of the Third
Workshop on Hot Topics in Software Defined Networking, ser. HotSDN
’14. New York, NY, USA: ACM, 2014, pp. 85–90.

[303] S. Shirali-Shahreza and Y. Ganjali, “FleXam: flexible sampling ex-
tension for monitoring and security applications in OpenFlow,” in
Proceedings of the second ACM SIGCOMM workshop on Hot topics
in software defined networking, ser. HotSDN ’13. New York, NY,
USA: ACM, 2013, pp. 167–168.

[304] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V.
Madhyastha, “FlowSense: monitoring network utilization with zero
measurement cost,” in Proceedings of the 14th international conference
on Passive and Active Measurement, ser. PAM’13. Berlin, Heidelberg:
Springer-Verlag, 2013, pp. 31–41.

[305] L. Jose, M. Yu, and J. Rexford, “Online measurement of large traf-
fic aggregates on commodity switches,” in Proceedings of the 11th
USENIX conference on Hot topics in management of internet, cloud,
and enterprise networks and services, ser. Hot-ICE’11. Berkeley, CA,
USA: USENIX Association, 2011, pp. 13–13.

[306] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, “OpenNetMon:
Network monitoring in openflow software-defined networks,” in 2014
IEEE Network Operations and Management Symposium, NOMS 2014,
Krakow, Poland, May 5-9, 2014, 2014, pp. 1–8.

[307] J. Suh, T. Kwon, C. Dixon, W. Felter, and J. Carter, “OpenSample:
A low-latency, sampling-based measurement platform for commodity
SDN,” in Distributed Computing Systems (ICDCS), 2014 IEEE 34th
International Conference on, June 2014, pp. 228–237.

[308] sFlow.org Forum, “sFlow,” 2012. [Online]. Available: http://www.
sflow.org/

[309] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with OpenSketch,” in Proceedings of the 10th USENIX conference on
Networked Systems Design and Implementation, ser. nsdi’13. Berke-
ley, CA, USA: USENIX Association, 2013, pp. 29–42.

[310] C. Argyropoulos, D. Kalogeras, G. Androulidakis, and V. Maglaris,
“PaFloMon – a slice aware passive flow monitoring framework for
OpenFlow enabled experimental facilities,” in Software Defined Net-
working (EWSDN), 2012 European Workshop on, 2012, pp. 97–102.

[311] S. R. Chowdhury, M. F. Bari, R. Ahmed, and R. Boutaba, “PayLess:
A Low Cost Netowrk Monitoring Framework for Software Defined
Networks,” in 14th IEEE/IFIP Network Operations and Management
Symposium (NOMS 2014), 2014.

[312] G. Wang, T. E. Ng, and A. Shaikh, “Programming your network at
run-time for big data applications,” in HotSDN. ACM, 2012.

[313] T. Benson, A. Akella, A. Shaikh, and S. Sahu, “Cloudnaas: a cloud
networking platform for enterprise applications,” in Proceedings of the
2nd ACM Symposium on Cloud Computing, ser. SOCC ’11. New
York, NY, USA: ACM, 2011, pp. 8:1–8:13.

[314] A. Das, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and C. Yu,
“Transparent and flexible network management for big data processing
in the cloud,” in Proceedings of the 5th USENIX conference on Hot
Topics in Cloud Ccomputing, ser. HotCloud’13. Berkeley, CA, USA:
USENIX Association, 2013.

[315] A. Arefin, V. K. Singh, G. Jiang, Y. Zhang, and C. Lumezanu, “Diag-
nosing data center behavior flow by flow,” in IEEE 33rd International
Conference on Distributed Computing Systems. Philadelphia, USA:
IEEE, July 2013.

[316] E. Keller, S. Ghorbani, M. Caesar, and J. Rexford, “Live migration of
an entire network (and its hosts),” in Proceedings of the 11th ACM
Workshop on Hot Topics in Networks, ser. HotNets-XI. New York,
NY, USA: ACM, 2012, pp. 109–114.

[317] R. Raghavendra, J. Lobo, and K.-W. Lee, “Dynamic graph query
primitives for SDN-based cloudnetwork management,” in Proceedings
of the first workshop on Hot topics in software defined networks, ser.
HotSDN ’12. New York, NY, USA: ACM, 2012, pp. 97–102.

[318] M. Ghobadi, “TCP Adaptation Framework in Data Centers,” Ph.D.
dissertation, Graduate Department of Computer Science of University
of Toronto, 2013.

[319] R. Hand, M. Ton, and E. Keller, “Active Security,” in Twelfth ACM
Workshop on Hot Topics in Networks (HotNets-XII), College Park, MD,
November 2013.

[320] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
Scalable and Vigilant Switch Flow Management in Software-De?ned
Networks,” in Proceedings of the 2013 ACM conference on Computer
and communications security, ser. CCS ’13. New York, NY, USA:
ACM, 2013.

[321] S. Shin and G. Gu, “CloudWatcher: Network security monitoring using
OpenFlow in dynamic cloud networks (or: How to provide security
monitoring as a service in clouds?),” in Proceedings of the 2012 20th
IEEE International Conference on Network Protocols (ICNP), ser.
ICNP ’12. Washington, DC, USA: IEEE Computer Society, 2012,
pp. 1–6.

[322] E. Tantar, M. Palattella, T. Avanesov, M. Kantor, and T. Engel, “Cog-
nition: A tool for reinforcing security in software defined networks,” in
EVOLVE - A Bridge between Probability, Set Oriented Numerics, and
Evolutionary Computation V, ser. Advances in Intelligent Systems and
Computing, A.-A. Tantar, E. Tantar, J.-Q. Sun, W. Zhang, Q. Ding,
O. Schtze, M. Emmerich, P. Legrand, P. Del Moral, and C. A.
Coello Coello, Eds. Springer International Publishing, 2014, vol. 288,
pp. 61–78.

[323] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack
detection using NOX/OpenFlow,” in Local Computer Networks (LCN),
2010 IEEE 35th Conference on, Oct 2010, pp. 408 –415.

[324] G. Stabler, A. Rosen, S. Goasguen, and K.-C. Wang, “Elastic ip
and security groups implementation using OpenFlow,” in Proceedings
of the 6th international workshop on Virtualization Technologies in
Distributed Computing Date, ser. VTDC ’12. New York, NY, USA:
ACM, 2012, pp. 53–60.

[325] J. Matias, J. Garay, A. Mendiola, N. Toledo, and E. Jacob, “FlowNAC:
Flow-based network access control,” in Third European Workshop on
Software Defined Networks, 2014, pp. –.

[326] K. Wang, Y. Qi, B. Yang, Y. Xue, and J. Li, “LiveSec: Towards
Effective Security Management in Large-Scale Production Networks,”
in Distributed Computing Systems Workshops (ICDCSW), 2012 32nd
International Conference on, june 2012, pp. 451 –460.

[327] A. Sapio, M.Baldi, Y.Liao, G.Ranjan, F. Risso, A. Tongaonkar,
R.Torres, and A. Nucci, “MAPPER: A mobile application personal
policy enforcement router for enterprise networks,” in Third European
Workshop on Software Defined Networks, 2014, pp. –.

[328] Y. Wang, Y. Zhang, V. Singh, C. Lumezanu, and G. Jiang, “NetFuse:
Short-Circuiting Traffic Surges in the Cloud,” in IEEE International
Conference on Communications, 2013.

[329] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “OpenFlow random host
mutation: transparent moving target defense using software defined
networking,” in Proceedings of the first workshop on Hot topics in
software defined networks, ser. HotSDN ’12. New York, NY, USA:
ACM, 2012, pp. 127–132.

[330] J. R. Ballard, I. Rae, and A. Akella, “Extensible and scalable network
monitoring using OpenSAFE,” in Proceedings of the 2010 internet net-
work management conference on Research on enterprise networking,
ser. INM/WREN’10. Berkeley, CA, USA: USENIX Association, 2010,
pp. 8–8.

[331] A. Zaalouk, R. Khondoker, R. Marx, and K. Bayarou, “OrchSec: An
orchestrator-based architecture for enhancing network-security using
network monitoring and SDN control functions,” in Network Opera-
tions and Management Symposium (NOMS), 2014 IEEE, May 2014,
pp. 1–9.

[332] Flow-RT group, “sFlow-RT,” 2014. [Online]. Available: http://www.
inmon.com/products/sFlow-RT.php

[333] D. Kotani, K. Suzuki, and H. Shimonishi, “A design and implemen-
tation of OpenFlow controller handling ip multicast with fast tree
switching,” in Applications and the Internet (SAINT), 2012 IEEE/IPSJ
12th International Symposium on, 2012, pp. 60–67.

[334] K. Giotis, G. Androulidakis, and V. Maglaris, “Leveraging SDN for
efficient anomaly detection and mitigation on legacy networks,” in
Third European Workshop on Software Defined Networks, 2014, pp. –.

[335] G. Yao, J. Bi, and P. Xiao, “Source address validation solution with

http://www.sflow.org/
http://www.sflow.org/
http://www.inmon.com/products/sFlow-RT.php
http://www.inmon.com/products/sFlow-RT.php

VERSION 2.01 55

OpenFlow/NOX architecture,” in Network Protocols (ICNP), 2011 19th
IEEE International Conference on, 2011, pp. 7–12.

[336] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-based server load
balancing gone wild,” in Proceedings of the 11th USENIX conference
on Hot topics in management of internet, cloud, and enterprise net-
works and services, ser. Hot-ICE’11. Berkeley, CA, USA: USENIX
Association, 2011, pp. 12–12.

[337] X.-N. Nguyen, D. Saucez, C. Barakat, and T. Turletti, “Optimizing
rules placement in OpenFlow networks: Trading routing for better
efficiency,” in Proceedings of the Third Workshop on Hot Topics in
Software Defined Networking, ser. HotSDN ’14. New York, NY, USA:
ACM, 2014, pp. 127–132.

[338] A. Schwabe and H. Karl, “Using MAC addresses as efficient routing
labels in data centers,” in Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, ser. HotSDN ’14. New York,
NY, USA: ACM, 2014, pp. 115–120.

[339] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap
for traffic engineering in SDN-OpenFlow networks,” Comput. Netw.,
vol. 71, pp. 1–30, Oct. 2014.

[340] H. Ballani, P. Francis, T. Cao, and J. Wang, “Making routers last
longer with viaggre,” in Proceedings of the 6th USENIX symposium
on Networked systems design and implementation, ser. NSDI’09.
Berkeley, CA, USA: USENIX Association, 2009, pp. 453–466.

[341] D. Meyer, L. Zhang, and K. Fall, “Report from the IAB
Workshop on Routing and Addressing,” RFC 4984 (Informational),
Internet Engineering Task Force, Sep. 2007. [Online]. Available:
http://www.ietf.org/rfc/rfc4984.txt

[342] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia, “SDN-
based application-aware networking on the example of youtube video
streaming,” in Software Defined Networks (EWSDN), 2013 Second
European Workshop on, Oct 2013, pp. 87–92.

[343] T. G. Edwards and W. Belkin, “Using SDN to facilitate precisely
timed actions on real-time data streams,” in Proceedings of the Third
Workshop on Hot Topics in Software Defined Networking, ser. HotSDN
’14. New York, NY, USA: ACM, 2014, pp. 55–60.

[344] H. Kumar, H. H. Gharakheili, and V. Sivaraman, “User control of
quality of experience in home networks using SDN,” in Advanced
Networks and Telecommuncations Systems (ANTS), 2013 IEEE Inter-
national Conference on, 2013.

[345] L. Li, Z. Mao, and J. Rexford, “Toward software-defined cellular
networks,” in Software Defined Networking (EWSDN), 2012 European
Workshop on, 2012, pp. 7–12.

[346] X. Jin, L. Erran Li, L. Vanbever, and J. Rexford, “SoftCell: Scalable
and Flexible Cellular Core Network Architecture,” in Proceedings of
the 9th international conference on Emerging networking experiments
and technologies, ser. CoNEXT ’13. New York, NY, USA: ACM,
2013.

[347] P. Dely, A. Kassler, and N. Bayer, “OpenFlow for wireless mesh
networks,” in Computer Communications and Networks (ICCCN), 2011
Proceedings of 20th International Conference on, 31 2011-aug. 4 2011,
pp. 1 –6.

[348] M. J. Yang, S. Y. Lim, H. J. Park, and N. H. Park, “Solving the data
overload: Device-to-device bearer control architecture for cellular data
offloading,” Vehicular Technology Magazine, IEEE, vol. 8, no. 1, pp.
31–39, March 2013.

[349] K.-K. Yap, R. Sherwood, M. Kobayashi, T.-Y. Huang, M. Chan,
N. Handigol, N. McKeown, and G. Parulkar, “Blueprint for introducing
innovation into wireless mobile networks,” in Proceedings of the second
ACM SIGCOMM workshop on Virtualized infrastructure systems and
architectures, ser. VISA ’10. New York, NY, USA: ACM, 2010, pp.
25–32.

[350] M. Bansal, J. Mehlman, S. Katti, and P. Levis, “Openradio: a pro-
grammable wireless dataplane,” in Proceedings of the first workshop
on Hot topics in software defined networks, ser. HotSDN ’12. New
York, NY, USA: ACM, 2012, pp. 109–114.

[351] S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira, S. Crawford,
and A. Pescapè, “Broadband internet performance: a view from the
gateway,” SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp. 134–
145, Aug. 2011.

[352] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting traffic anomaly
detection using software defined networking,” in Proceedings of the
14th international conference on Recent Advances in Intrusion Detec-
tion, ser. RAID’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp.
161–180.

[353] P. Wette and H. Karl, “Which flows are hiding behind my wildcard
rule?: adding packet sampling to OpenFlow,” in Proceedings of the

ACM SIGCOMM 2013 conference on SIGCOMM, ser. SIGCOMM ’13.
New York, NY, USA: ACM, 2013, pp. 541–542.

[354] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and prac-
tice of bloom filters for distributed systems,” IEEE Communications
Surveys and Tutorials, vol. 14, no. 1, pp. 131–155, 2012.

[355] J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takacs, and P. Skold-
strom, “Scalable fault management for OpenFlow,” in Communications
(ICC), 2012 IEEE International Conference on, June 2012, pp. 6606–
6610.

[356] G. Bianchi, M. Bonola, G. Picierro, S. Pontarelli, and M. Monaci,
“StreaMon: a data-plane programming abstraction for Software-defined
Stream Monitoring,” ArXiv e-prints, Nov. 2013.

[357] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards secure and
dependable software-defined networks,” in Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined network-
ing, ser. HotSDN ’13. New York, NY, USA: ACM, 2013, pp. 55–60.

[358] K. Kant, “Data center evolution: A tutorial on state of the art, issues,
and challenges,” Computer Networks, vol. 53, no. 17, pp. 2939 – 2965,
2009, virtualized Data Centers.

[359] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost
of a cloud: Research problems in data center networks,” SIGCOMM
Comput. Commun. Rev., vol. 39, no. 1, pp. 68–73, Dec. 2008.

[360] M. Bari, R. Boutaba, R. Esteves, L. Granville, M. Podlesny, M. Rab-
bani, Q. Zhang, and M. Zhani, “Data center network virtualization: A
survey,” Communications Surveys Tutorials, IEEE, vol. 15, no. 2, pp.
909–928, 2013.

[361] A. Krishnamurthy, S. P. Chandrabose, and A. Gember-Jacobson,
“Pratyaastha: An efficient elastic distributed SDN control plane,” in
Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’14. New York, NY, USA: ACM, 2014, pp.
133–138.

[362] P. Calyam, S. Rajagopalan, A. Selvadhurai, S. Mohan, A. Venkatara-
man, A. Berryman, and R. Ramnath, “Leveraging OpenFlow for
resource placement of virtual desktop cloud applications,” in Integrated
Network Management (IM 2013), 2013 IFIP/IEEE International Sym-
posium on, 2013, pp. 311–319.

[363] J. Parraga, “Avior,” 2013. [Online]. Available: http://openflow.marist.
edu/avior

[364] GlobalNOC, “OESS - Open Exchange Software Suite,” 2013. [Online].
Available: http://globalnoc.iu.edu/sdn/oess.html

[365] C. Duckett, “Software Defined Networking: HP has an App Store
for that,” 2013. [Online]. Available: http://www.zdnet.com/software-
defined-networking-hp-has-an-app-store-for-that-7000021365/

[366] Hewlett-Packard Company (HP), “SDN App Store,” 2013.
[Online]. Available: http://h17007.www1.hp.com/us/en/networking/
solutions/technology/sdn/devcenter/#sdnAppstore

[367] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale dis-
tributed systems tracing infrastructure,” Google, Inc., Tech. Rep., 2010.

[368] L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline, and G. Veno-
lia, “Debugging revisited: Toward understanding the debugging needs
of contemporary software developers,” in Empirical Software Engineer-
ing and Measurement, 2013 ACM / IEEE International Symposium on,
Oct 2013, pp. 383–392.

[369] U. Erlingsson, M. Peinado, S. Peter, M. Budiu, and G. Mainar-Ruiz,
“Fay: Extensible distributed tracing from kernels to clusters,” ACM
Trans. Comput. Syst., vol. 30, no. 4, pp. 13:1–13:35, Nov. 2012.

[370] S. Tomaselli and O. Landsiedel, “Towards Lightweight Logging and
Replay of Embedded, Distributed Systems,” in Proceedings of Work-
shop ASCoMS (Architecting Safety in Collaborative Mobile Systems)
of the 32nd International Conference on Computer Safety, Reliability
and Security, M. ROY, Ed., Toulouse, France, Sep. 2013.

[371] J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan, “Visual, log-based
causal tracing for performance debugging of mapreduce systems,” in
Distributed Computing Systems (ICDCS), 2010 IEEE 30th Interna-
tional Conference on, June 2010, pp. 795–806.

[372] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, “X-trace:
a pervasive network tracing framework,” in Proceedings of the 4th
USENIX conference on Networked systems design & implementation,
ser. NSDI’07. Berkeley, CA, USA: USENIX Association, 2007, pp.
20–20.

[373] V. Trivedi, “Software development: Debugging and testing,” in How to
Speak Tech. Apress, 2014, pp. 89–95.

[374] A. Anand and A. Akella, “Netreplay: a new network primitive,”
SIGMETRICS Perform. Eval. Rev., vol. 37, no. 3, pp. 14–19, Jan. 2010.

[375] Y. Zhuang, E. Gessiou, S. Portzer, F. Fund, M. Muhammad, I. Beschast-
nikh, and J. Cappos, “Netcheck: Network diagnoses from blackbox

http://www.ietf.org/rfc/rfc4984.txt
http://openflow.marist.edu/avior
http://openflow.marist.edu/avior
http://globalnoc.iu.edu/sdn/oess.html
http://www.zdnet.com/software-defined-networking-hp-has-an-app-store-for-that-7000021365/
http://www.zdnet.com/software-defined-networking-hp-has-an-app-store-for-that-7000021365/
http://h17007.www1.hp.com/us/en/networking/solutions/technology/sdn/devcenter/#sdnAppstore
http://h17007.www1.hp.com/us/en/networking/solutions/technology/sdn/devcenter/#sdnAppstore

VERSION 2.01 56

traces,” in 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14). Seattle, WA: USENIX Association,
Apr. 2014, pp. 115–128.

[376] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKe-
own, “Where is the debugger for my software-defined network?” in
Proceedings of the First Workshop on Hot Topics in Software Defined
Networks, ser. HotSDN ’12. New York, NY, USA: ACM, 2012, pp.
55–60.

[377] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann,
“OFRewind: enabling record and replay troubleshooting for networks,”
in Proceedings of the 2011 USENIX conference on USENIX annual
technical conference, ser. USENIXATC’11. Berkeley, CA, USA:
USENIX Association, 2011, pp. 29–29.

[378] M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and J. Rexford, “A NICE
way to test OpenFlow applications,” in Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, ser.
NSDI’12. Berkeley, CA, USA: USENIX Association, Apr. 2012, pp.
127–140.

[379] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore,
“OFLOPS: an open framework for OpenFlow switch evaluation,” in
Proceedings of the 13th international conference on Passive and Active
Measurement, ser. PAM’12. Berlin, Heidelberg: Springer-Verlag,
2012, pp. 85–95.

[380] E. Al-Shaer and S. Al-Haj, “FlowChecker: configuration analysis and
verification of federated OpenFlow infrastructures,” in Proceedings of
the 3rd ACM workshop on Assurable and usable security configuration,
ser. SafeConfig ’10. New York, NY, USA: ACM, 2010, pp. 37–44.

[381] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, “VeriFlow:
verifying network-wide invariants in real time,” in HotSDN, 2012.

[382] M. Kuzniar, M. Canini, and D. Kostic, “OFTEN Testing OpenFlow
Networks,” in Proceedings of the 1st European Workshop on Software
Defined Networks (EWSDN), 2012.

[383] G. Altekar and I. Stoica, “Focus Replay Debugging Effort On the Con-
trol Plane,” Electrical Engineering and Computer Sciences University
of California at Berkeley, Tech. Rep., May 2010.

[384] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown,
“I know what your packet did last hop: Using packet histories to
troubleshoot networks,” in 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). Seattle, WA: USENIX
Association, Apr. 2014, pp. 71–85.

[385] Y. Zhang, N. Beheshti, and R. Manghirmalani, “NetRevert: Rollback
recovery in SDN,” in Proceedings of the Third Workshop on Hot Topics
in Software Defined Networking, ser. HotSDN ’14. New York, NY,
USA: ACM, 2014, pp. 231–232.

[386] J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt: Transparent
checkpointing under unix,” in Proceedings of the USENIX 1995 Tech-
nical Conference Proceedings, ser. TCON’95. Berkeley, CA, USA:
USENIX Association, 1995, pp. 18–18.

[387] J. S. Plank, Y. Chen, K. Li, M. Beck, and G. Kingsley, “Memory
exclusion: Optimizing the performance of checkpointing systems,”
Softw. Pract. Exper., vol. 29, no. 2, pp. 125–142, Feb. 1999.

[388] N. Ruchansky and D. Proserpio, “A (not) nice way to verify the
OpenFlow switch specification: formal modelling of the OpenFlow
switch using alloy,” in Proceedings of the ACM SIGCOMM 2013
conference on SIGCOMM, ser. SIGCOMM ’13. New York, NY, USA:
ACM, 2013, pp. 527–528.

[389] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu, N. McKeown,
and A. Vahdat, “Libra: Divide and conquer to verify forwarding
tables in huge networks,” in 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). Seattle, WA: USENIX
Association, Apr. 2014, pp. 87–99.

[390] R. Sherwood and K.-K. Yap, “Cbench controller benchmarker,” 2011.
[Online]. Available: http://www.openflow.org/wk/index.php/Oflops

[391] M. Jarschel, F. Lehrieder, Z. Magyari, and R. Pries, “A flexible
OpenFlow-controller benchmark,” in Proceedings of the 2012 Euro-
pean Workshop on Software Defined Networking, ser. EWSDN ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 48–53.

[392] Veryx Technologies, “PktBlaster SDN controller test.” [Online].
Available: http://sdn.veryxtech.com/

[393] C. Rotsos, G. Antichi, M. Bruyere, P. Owezarski, and A. W. Moore,
“An open testing framework for next-generation OpenFlow switches,”
in Third European Workshop on Software Defined Networks, 2014,
pp. –.

[394] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “FLOWGUARD: Building
robust firewalls for software-defined networks,” in Proceedings of the
Third Workshop on Hot Topics in Software Defined Networking, ser.
HotSDN ’14. New York, NY, USA: ACM, 2014, pp. 97–102.

[395] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv,
M. Schapira, and A. Valadarsky, “Vericon: Towards verifying controller
programs in software-defined networks,” SIGPLAN Not., vol. 49, no. 6,
pp. 282–293, Jun. 2014.

[396] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation, ser.
NSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 9–9.

[397] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King, “Debugging the data plane with anteater,” SIGCOMM Comput.
Commun. Rev., vol. 41, no. 4, pp. 290–301, Aug. 2011.

[398] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in Proceedings of the 10th USENIX conference on Networked
Systems Design and Implementation, ser. NSDI’13. Berkeley, CA,
USA: USENIX Association, 2013, pp. 99–112.

[399] R. Beckett, X. K. Zou, S. Zhang, S. Malik, J. Rexford, and D. Walker,
“An assertion language for debugging SDN applications,” in Pro-
ceedings of the Third Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’14. New York, NY, USA: ACM, 2014, pp.
91–96.

[400] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,”
in Proceedings of the 8th international conference on Emerging net-
working experiments and technologies, ser. CoNEXT ’12. New York,
NY, USA: ACM, 2012, pp. 253–264.

[401] V. Antonenko and R. Smelyanskiy, “Global network modelling based
on Mininet approach.” in Proceedings of the second ACM SIGCOMM
workshop on Hot topics in software defined networking, ser. HotSDN
’13. New York, NY, USA: ACM, 2013, pp. 145–146.

[402] J. Teixeira, G. Antichi, D. Adami, A. Del Chiaro, S. Giordano, and
A. Santos, “Datacenter in a box: Test your SDN cloud-datacenter
controller at home,” in Software Defined Networks (EWSDN), 2013
Second European Workshop on, Oct 2013, pp. 99–104.

[403] P. Wette, M. Draxler, A. Schwabe, F. Wallaschek, M. Zahraee, and
H. Karl, “Maxinet: Distributed emulation of software-defined net-
works,” in Networking Conference, 2014 IFIP, June 2014, pp. 1–9.

[404] A. Roy, M. Bari, M. Zhani, R. Ahmed, and R. Boutaba, “Design and
management of DOT: A distributed OpenFlow testbed,” in Network
Operations and Management Symposium (NOMS), 2014 IEEE, May
2014, pp. 1–9.

[405] A. Carter, D. Morris, S. Sharma, L. Cordeiro, R. Figueiredo,
J. Goncalves, D. Palma, N. Johnson, and D. Staessens, “CityFlow:
OpenFlow city experiment - linking infrastructure and applications,” in
Third European Workshop on Software Defined Networks, 2014, pp. –.

[406] ns-3 project, “ns-3: OpenFlow switch support,” 2013. [Online]. Avail-
able: http://www.nsnam.org/docs/release/3.13/models/html/openflow-
switch.html

[407] J. Sommers, R. Bowden, B. Eriksson, P. Barford, M. Roughan, and
N. Duffield, “Efficient network-wide flow record generation,” in IN-
FOCOM, 2011 Proceedings IEEE, 2011, pp. 2363–2371.

[408] ucb-sts, “STS - SDN troubleshooting simulator,” 2013. [Online].
Available: http://ucb-sts.github.io/sts/

[409] H. Zhang, C. Lumezanu, J. Rhee, N. Arora, Q. Xu, and G. Jiang,
“Enabling layer 2 pathlet tracing through context encoding in software-
defined networking,” in Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, ser. HotSDN ’14. New York,
NY, USA: ACM, 2014, pp. 169–174.

[410] K. Agarwal, E. Rozner, C. Dixon, and J. Carter, “SDN traceroute:
Tracing SDN forwarding without changing network behavior,” in
Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’14. New York, NY, USA: ACM, 2014, pp.
145–150.

[411] S. K. Fayaz and V. Sekar, “Testing stateful and dynamic data planes
with FlowTest,” in Proceedings of the Third Workshop on Hot Topics
in Software Defined Networking, ser. HotSDN ’14. New York, NY,
USA: ACM, 2014, pp. 79–84.

[412] M. Shahbaz, G. Antichi, Y. Geng, N. Zilberman, A. Covington,
M. Bruyere, N. Feamster, N. McKeown, B. Felderman, M. Blott, A. W.
Moore, and P. Owezarski, “Architecture for an open source network
tester,” in Architectures for Networking and Communications Systems
(ANCS), 2013 ACM/IEEE Symposium on, Oct 2013, pp. 123–124.

[413] N. Laurent, S. Vissicchio, and M. Canini, “SDLoad: An extensible
framework for SDN workload generation,” in Proceedings of the Third
Workshop on Hot Topics in Software Defined Networking, ser. HotSDN
’14. New York, NY, USA: ACM, 2014, pp. 215–216.

http://www.openflow.org/wk/index.php/Oflops
http://sdn.veryxtech.com/
http://www.nsnam.org/docs/release/3.13/models/html/openflow-switch.html
http://www.nsnam.org/docs/release/3.13/models/html/openflow-switch.html
http://ucb-sts.github.io/sts/

VERSION 2.01 57

[414] M. Gupta, J. Sommers, and P. Barford, “Fast, accurate simulation for
SDN prototyping,” in Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking, ser. HotSDN
’13. New York, NY, USA: ACM, 2013, pp. 31–36.

[415] R. R. FONTES, A. L. C. OLIVEIRA, T. R. PINHEIRO, P. N.
SAMPAIO, and R. A. FIGUEIRA, “Authoring of OpenFlow networks
with visual network description (SDN version),” in Proceedings of the
Summer Computer Simulation Conference, ser. SCSC ’14, 2014.

[416] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: scaling flow management for high-
performance networks,” Comput. Commun. Rev., vol. 41, no. 4, pp.
254–265, Aug. 2011.

[417] C. J. Casey, A. Sutton, and A. Sprintson, “tinyNBI: Distilling an
API from essential OpenFlow abstractions,” CoRR, vol. abs/1403.6644,
2014.

[418] L. Ogrodowczyk et al., “Hardware abstraction layer for non-OpenFlow
capable devices,” in The 30th Trans European Research and Education
Networking Conference (TNC). TERENA, 2014.

[419] A. Vidal, C. E. Rothenberg, and F. L. Verdi, “The libfluid OpenFlow
driver implementation,” in SBRC, 2014.

[420] M. APPELMAN and M. D. BOER, “Performance Analysis of Open-
Flow Hardware,” University of Amsterdam, Tech. Rep., Feb 2012.

[421] K. Kannan and S. Banerjee, “Compact TCAM: Flow entry compaction
in TCAM for power aware SDN,” in Distributed Computing and Net-
working, ser. Lecture Notes in Computer Science, D. Frey, M. Raynal,
S. Sarkar, R. Shyamasundar, and P. Sinha, Eds. Springer Berlin
Heidelberg, 2013, vol. 7730, pp. 439–444.

[422] J. Liao, “SDN System Performance,” June 2012. [Online]. Available:
http://pica8.org/blogs/?p=201

[423] B. Agrawal and T. Sherwood, “Modeling TCAM power for next
generation network devices,” in Performance Analysis of Systems and
Software, 2006 IEEE International Symposium on, 2006, pp. 120–129.

[424] B. Owens, “OpenFlow switching performance: Not all TCAM is cre-
ated equal,” February 2013. [Online]. Available: http://packetpushers.
net/openflow-switching-performance-not-all-tcam-is-created-equal/

[425] B. Salisbury, “TCAMs and OpenFlow - what every SDN practitioner
must know,” Jul. 2012. [Online]. Available: http://www.sdncentral.
com/technology/sdn-openflow-tcam-need-to-know/2012/07/

[426] W. Braun and M. Menth, “Wildcard compression of inter-domain
routing tables for OpenFlow-based software-defined networking,” in
Third European Workshop on Software Defined Networks, 2014, pp. –.

[427] K. Agarwal, C. Dixon, E. Rozner, and J. Carter, “Shadow MACs:
Scalable label-switching for commodity ethernet,” in Proceedings of
the Third Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN ’14. New York, NY, USA: ACM, 2014, pp. 157–162.

[428] R. Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued mini-
mization for pla optimization,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 6, no. 5, pp. 727–750,
September 1987.

[429] R. Bifulco and M. Dusi, “Reactive logic in software-defined network-
ing: Accounting for the limitations of the switches,” in Third European
Workshop on Software Defined Networks, 2014, pp. –.

[430] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter, “Past: scalable
ethernet for data centers,” in Proceedings of the 8th international
conference on Emerging networking experiments and technologies, ser.
CoNEXT ’12. New York, NY, USA: ACM, 2012, pp. 49–60.

[431] M. Kobayashi, S. Seetharaman, G. Parulkar, G. Appenzeller, J. Little,
J. van Reijendam, P. Weissmann, and N. McKeown, “Maturing of
OpenFlow and software-defined networking through deployments,”
Computer Networks, vol. 61, no. 0, pp. 151 – 175, 2014, special issue
on Future Internet Testbeds Part I.

[432] J. C. Mogul and P. Congdon, “Hey, you darned counters!: Get off my
asic!” in Proceedings of the First Workshop on Hot Topics in Software
Defined Networks, ser. HotSDN ’12. New York, NY, USA: ACM,
2012, pp. 25–30.

[433] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: fast
programmable match-action processing in hardware for SDN,” in
Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM,
ser. SIGCOMM ’13. New York, NY, USA: ACM, 2013, pp. 99–110.

[434] O. Ferkouss, I. Snaiki, O. Mounaouar, H. Dahmouni, R. Ben Ali,
Y. Lemieux, and C. Omar, “A 100gig network processor platform for
openflow,” in Network and Service Management (CNSM), 2011 7th
International Conference on, 2011, pp. 1–4.

[435] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and N. McK-
eown, “Implementing an OpenFlow switch on the netfpga platform,”
in Proceedings of the 4th ACM/IEEE Symposium on Architectures for

Networking and Communications Systems, ser. ANCS ’08. New York,
NY, USA: ACM, 2008, pp. 1–9.

[436] G. Memon, M. Varvello, R. Laufer, T. Lakshman, J. Li, and M. Zhang,
“FlashFlow: a GPU-based Fully Programmable OpenFlow Switch,”
University of Oregon, Tech. Rep., 2013.

[437] Y. Luo, P. Cascon, E. Murray, and J. Ortega, “Accelerating Open-
Flow switching with network processors,” in Proceedings of the 5th
ACM/IEEE Symposium on Architectures for Networking and Commu-
nications Systems, ser. ANCS ’09. New York, NY, USA: ACM, 2009,
pp. 70–71.

[438] A. Rostami, T. Jungel, A. Koepsel, H. Woesner, and A. Wolisz,
“Oran: OpenFlow routers for academic networks,” in High Performance
Switching and Routing (HPSR), 2012 IEEE 13th International Confer-
ence on, 2012, pp. 216–222.

[439] G. Pongracz, L. Molnar, and Z. Kis, “Removing roadblocks from SDN:
OpenFlow software switch performance on Intel DPDK,” in Software
Defined Networks (EWSDN), 2013 Second European Workshop on, Oct
2013, pp. 62–67.

[440] B. Stephens, “Designing Scalable Networks for Future Large Datacen-
ters,” Ph.D. dissertation, Rice University, May 2012.

[441] Y. Li, D. Zhang, K. Huang, D. He, and W. Long, “A memory-efficient
parallel routing lookup model with fast updates,” Comput. Commun.,
vol. 38, pp. 60–71, Feb. 2014.

[442] N. Katta, J. Rexford, and D. Walker, “Infinite CacheFlow in Software-
Defined Networks,” Princeton School of Engineering and Applied
Science, Tech. Rep., October 2013.

[443] H. Mekky, F. Hao, S. Mukherjee, Z.-L. Zhang, and T. Lakshman,
“Application-aware data plane processing in SDN,” in Proceedings of
the Third Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN ’14. New York, NY, USA: ACM, 2014, pp. 13–18.

[444] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan,
“Flow-level state transition as a new switch primitive for SDN,” in
Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’14. New York, NY, USA: ACM, 2014, pp.
61–66.

[445] B. Yan, Y. Xu, H. Xing, K. Xi, and H. J. Chao, “CAB: A reactive
wildcard rule caching system for software-defined networks,” in Pro-
ceedings of the Third Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’14. New York, NY, USA: ACM, 2014, pp.
163–168.

[446] S. McGillicuddy, “XPliant ethernet chip sets new standard for
programmability,” 2014. [Online]. Available: http://goo.gl/xE8K9B

[447] Intel Processors, “Software Defined Networking and Softwarebased
Services with Intel Processors,” Intel Corporation, 2012.
[Online]. Available: http://www.intel.com/content/dam/doc/white-
paper/communications-ia-software-defined-networking-paper.pdf

[448] Intel Corporation, “Intel data plane development kit,” 2014.
[Online]. Available: http://www.intel.com/content/dam/www/public/us/
en/documents/guides/intel-dpdk-getting-started-guide.pdf

[449] A. Sivaraman, K. Winstein, S. Subramanian, and H. Balakrishnan,
“No silver bullet: Extending SDN to the data plane,” in Twelfth ACM
Workshop on Hot Topics in Networks (HotNets-XII), College Park, MD,
November 2013.

[450] S. Zhou, W. Jiang, and V. Prasanna, “A programmable and scalable
OpenFlow switch using heterogeneous SoC platforms,” in Proceedings
of the Third Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN ’14. New York, NY, USA: ACM, 2014, pp. 239–240.

[451] S. Hauger, T. Wild, A. Mutter, A. Kirstaedter, K. Karras, R. Ohlendorf,
F. Feller, and J. Scharf, “Packet processing at 100 Gbps and beyond -
challenges and perspectives,” in Photonic Networks, 2009 ITG Sympo-
sium on, May 2009, pp. 1–10.

[452] G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, F. Gringoli, and I. Tin-
nirello, “MAClets: Active MAC protocols over hard-coded devices,”
in Proceedings of the 8th International Conference on Emerging
Networking Experiments and Technologies, ser. CoNEXT ’12. New
York, NY, USA: ACM, 2012, pp. 229–240.

[453] I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, and
F. Gringoli, “Wireless MAC processors: Programming MAC protocols
on commodity hardware,” in INFOCOM, 2012 Proceedings IEEE,
March 2012, pp. 1269–1277.

[454] P. Bosshart, D. Daly, M. Izzard, N. McKeown, J. Rexford, D. Talayco,
A. Vahdat, G. Varghese, and D. Walker, “Programming protocol-
independent packet processors,” CoRR, vol. abs/1312.1719, 2013.

[455] S. Schmid and J. Suomela, “Exploiting locality in distributed SDN
control,” in Proceedings of the second ACM SIGCOMM workshop on
Hot topics in software defined networking, ser. HotSDN ’13. New
York, NY, USA: ACM, 2013, pp. 121–126.

http://pica8.org/blogs/?p=201
http://packetpushers.net/openflow-switching-performance-not-all-tcam-is-created-equal/
http://packetpushers.net/openflow-switching-performance-not-all-tcam-is-created-equal/
http://www.sdncentral.com/technology/sdn-openflow-tcam-need-to-know/2012/07/
http://www.sdncentral.com/technology/sdn-openflow-tcam-need-to-know/2012/07/
http://goo.gl/xE8K9B
http://www.intel.com/content/dam/doc/white-paper/communications-ia-software-defined-networking-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/communications-ia-software-defined-networking-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-dpdk-getting-started-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-dpdk-getting-started-guide.pdf

VERSION 2.01 58

[456] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“ONOS: Towards an open, distributed SDN OS,” in Proceedings of
the Third Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN ’14. New York, NY, USA: ACM, 2014, pp. 1–6.

[457] D. M. Volpano, X. Sun, and G. G. Xie, “Towards systematic detection
and resolution of network control conflicts,” in Proceedings of the Third
Workshop on Hot Topics in Software Defined Networking, ser. HotSDN
’14. New York, NY, USA: ACM, 2014, pp. 67–72.

[458] S. Azodolmolky, P. Wieder, and R. Yahyapour, “Performance evaluation
of a scalable software-defined networking deployment,” in Software
Defined Networks (EWSDN), 2013 Second European Workshop on, Oct
2013, pp. 68–74.

[459] S. H. Park, B. Lee, J. Shin, and S. Yang, “A high-performance IO
engine for SDN controllers,” in Third European Workshop on Software
Defined Networks, 2014, pp. –.

[460] Y. Zhang, S. Natarajan, X. Huang, N. Beheshti, and R. Manghirmalani,
“A compressive method for maintaining forwarding states in SDN
controller,” in Proceedings of the Third Workshop on Hot Topics in
Software Defined Networking, ser. HotSDN ’14. New York, NY, USA:
ACM, 2014, pp. 139–144.

[461] S. H. Park, B. Lee, J. You, J. Shin, T. Kim, and S. Yang, “RAON:
Recursive abstraction of OpenFlow networks,” in Third European
Workshop on Software Defined Networks, 2014, pp. –.

[462] A. AuYoung, S. Banerjee, J. Lee, J. C. Mogul, J. Mudigonda, L. Popa,
P. Sharma, and Y. Turner, “Corybantic: Towards the Modular Compo-
sition of SDN Control Programs,” in Twelfth ACM Workshop on Hot
Topics in Networks (HotNets-XII), College Park, MD, November 2013.

[463] P. Sun, R. Mahajan, J. Rexford, L. Yuan, M. Zhang, and A. Arefin, “A
network-state management service,” in Proceedings of the 2014 ACM
Conference on SIGCOMM, ser. SIGCOMM ’14. New York, NY, USA:
ACM, 2014, pp. 563–574.

[464] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann,
“Logically centralized? state distribution trade-offs in software defined
networks,” in Proceedings of the first workshop on Hot topics in
software defined networks, ser. HotSDN ’12. New York, NY, USA:
ACM, 2012, pp. 1–6.

[465] D. Peleg, Distributed Computing: A Locality-sensitive Approach.
Philadelphia, PA, USA: Society for Industrial and Applied Mathemat-
ics, 2000.

[466] F. J. Ros and P. M. Ruiz, “Five nines of southbound reliability in
software-defined networks,” in Proceedings of the Third Workshop on
Hot Topics in Software Defined Networking, ser. HotSDN ’14. New
York, NY, USA: ACM, 2014, pp. 31–36.

[467] V. Daniel Philip and Y. Gourhant, “Cross-control: A scalable multi-
topology fault restoration mechanism using logically centralized con-
trollers,” in High Performance Switching and Routing (HPSR), 2014
IEEE 15th International Conference on, July 2014, pp. 57–63.

[468] M. Borokhovich, L. Schiff, and S. Schmid, “Provable data plane
connectivity with local fast failover: Introducing OpenFlow graph
algorithms,” in Proceedings of the Third Workshop on Hot Topics in
Software Defined Networking, ser. HotSDN ’14. New York, NY, USA:
ACM, 2014, pp. 121–126.

[469] D. Kreutz, A. Casimiro, and M. Pasin, “A trustworthy and resilient
event broker for monitoring cloud infrastructures,” in Proceedings of
the 12th IFIP WG 6.1 DAIS. Springer-Verlag, 2012, pp. 87–95.

[470] K. Tesink, “Definitions of managed objects for the synchronous optical
network/synchronous digital hierarchy (SONET/SDH) interface type,”
Internet Draft, Internet Engineering Task Force, September 2003.
[Online]. Available: http://tools.ietf.org/html/rfc3592

[471] R. Prasanna, “BIP: Billing Information Protocol,” Internet Draft,
Internet Engineering Task Force, December 2002. [Online]. Available:
http://tools.ietf.org/html/draft-prasanna-bip-00

[472] G. Swallow, A. Fulignoli, M. Vigoureux, S. Boutros, and
D. Ward, “MPLS Fault Management Operations, Administration,
and Maintenance (OAM),” RFC 6427 (Proposed Standard),
Internet Engineering Task Force, Nov. 2011. [Online]. Available:
http://www.ietf.org/rfc/rfc6427.txt

[473] D. Whiting, R. Housley, and N. Ferguson, “Counter with CBC-MAC
(CCM),” RFC 3610 (Informational), Internet Engineering Task Force,
Sep. 2003. [Online]. Available: http://www.ietf.org/rfc/rfc3610.txt

[474] M. Desai and T. Nandagopal, “Coping with link failures in centralized
control plane architectures,” in Communication Systems and Networks
(COMSNETS), 2010 Second International Conference on. IEEE, 2010,
pp. 1–10.

[475] H. Kim, J. Santos, Y. Turner, M. Schlansker, J. Tourrilhes, and
N. Feamster, “Coronet: Fault tolerance for software defined networks,”

in Network Protocols (ICNP), 2012 20th IEEE International Confer-
ence on, Oct 2012, pp. 1–2.

[476] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“OpenFlow: Meeting carrier-grade recovery requirements,” Comput.
Commun., vol. 36, no. 6, pp. 656–665, Mar. 2013.

[477] A. Panda, C. Scott, A. Ghodsi, T. Koponen, and S. Shenker, “Cap for
networks,” in Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking, ser. HotSDN ’13. New
York, NY, USA: ACM, 2013, pp. 91–96.

[478] M. Kuźniar, P. Perešı́ni, N. Vasić, M. Canini, and D. Kostić, “Automatic
failure recovery for software-defined networks,” in Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’13. New York, NY, USA: ACM, 2013, pp.
159–160.

[479] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Towards an elastic distributed SDN controller,” in Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined
networking, ser. HotSDN ’13. New York, NY, USA: ACM, 2013, pp.
7–12.

[480] R. Ramos, M. Martinello, and C. Esteve Rothenberg, “SlickFlow: Re-
silient source routing in data center networks unlocked by OpenFlow,”
in Local Computer Networks (LCN), 2013 IEEE 38th Conference on,
Oct 2013, pp. 606–613.

[481] J. T. Araújo, R. Landa, R. G. Clegg, and G. Pavlou, “Software-defined
network support for transport resilience,” in IEEE NOMS, 2014.

[482] E. Brewer, “Pushing the cap: Strategies for consistency and availabil-
ity,” Computer, vol. 45, no. 2, pp. 23–29, Feb. 2012.

[483] D. Katz and D. Ward, “Bidirectional Forwarding Detection (BFD),”
RFC 5880 (Proposed Standard), Internet Engineering Task Force, Jun.
2010. [Online]. Available: http://www.ietf.org/rfc/rfc5880.txt

[484] N. L. M. van Adrichem, B. J. van Asten, and F. A. Kuipers, “Fast
recovery in software-defined networks,” in Third European Workshop
on Software Defined Networks, 2014, pp. –.

[485] N. M. Sahri and K. Okamura, “Fast failover mechanism for software
defined networking: Openflow based,” in Proceedings of The Ninth
International Conference on Future Internet Technologies, ser. CFI ’14.
New York, NY, USA: ACM, 2014, pp. 16:1–16:2.

[486] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, ser. IMC ’10. New York, NY,
USA: ACM, 2010, pp. 267–280.

[487] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based
networking with difane,” SIGCOMM Comput. Commun. Rev., vol. 41,
no. 4, pp. –, Aug. 2010.

[488] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani,
R. Ahmed, and R. Boutaba, “Dynamic controller provisioning in soft-
ware defined networks,” in 9th International Conference on Network
and Service Management, ser. CNSM’13, 2013.

[489] V. Yazici, M. O. Sunay, and A. O. Ercan, “Controlling a software-
defined network via distributed controllers,” in Proceedings of the
Conference on Implementing Future Media Internet Towards New
Horizons, ser. 2012 NEM SUMMIT. Heidelberg, Germany: Eurescom
GmbH, Oct 2012, pp. 16–22.

[490] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-
Gia, “Modeling and performance evaluation of an OpenFlow archi-
tecture,” in Teletraffic Congress (ITC), 2011 23rd International, Sept
2011, pp. 1–7.

[491] A. Bianco, R. Birke, L. Giraudo, and M. Palacin, “OpenFlow switch-
ing: Data plane performance,” in Communications (ICC), 2010 IEEE
International Conference on, may 2010, pp. 1 –5.

[492] R. Pries, M. Jarschel, and S. Goll, “On the usability of OpenFlow
in data center environments,” in Communications (ICC), 2012 IEEE
International Conference on, June 2012, pp. 5533–5537.

[493] J. Hwang, K. K. Ramakrishnan, and T. Wood, “Netvm: High per-
formance and flexible networking using virtualization on commodity
platforms,” in 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14). Seattle, WA: USENIX Association,
Apr. 2014, pp. 445–458.

[494] Y. Dong, Z. Yu, and G. Rose, “Sr-iov networking in xen: Architecture,
design and implementation,” in Proceedings of the First Conference
on I/O Virtualization, ser. WIOV’08. Berkeley, CA, USA: USENIX
Association, 2008, pp. 10–10.

[495] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in Proceedings of the first workshop on Hot topics in
software defined networks, ser. HotSDN ’12. New York, NY, USA:
ACM, 2012, pp. 7–12.

http://tools.ietf.org/html/rfc3592
http://tools.ietf.org/html/draft-prasanna-bip-00
http://www.ietf.org/rfc/rfc6427.txt
http://www.ietf.org/rfc/rfc3610.txt
http://www.ietf.org/rfc/rfc5880.txt

VERSION 2.01 59

[496] S. Azodolmolky, R. Nejabati, M. Pazouki, P. Wieder, R. Yahyapour, and
D. Simeonidou, “An analytical model for software defined networking:
A network calculus-based approach,” in IEEE GlobeCom 2013, Oct
2013.

[497] M. Marchetti, M. Colajanni, M. Messori, L. Aniello, and Y. Vigfusson,
“Cyber attacks on financial critical infrastructures,” in Collaborative
Financial Infrastructure Protection, R. Baldoni and G. Chockler, Eds.
Springer Berlin Heidelberg, 2012, pp. 53–82.

[498] S. Amin and A. Giacomoni, “Smart grid, safe grid,” Power and Energy
Magazine, IEEE, vol. 10, no. 1, pp. 33–40, 2012.

[499] A. Nicholson, S. Webber, S. Dyer, T. Patel, and H. Janicke, “SCADA
security in the light of cyber-warfare,” Computers & Security, vol. 31,
no. 4, pp. 418 – 436, 2012.

[500] K.-K. R. Choo, “The cyber threat landscape: Challenges and future
research directions,” Computers & Security, vol. 30, no. 8, pp. 719 –
731, 2011.

[501] D. Kushner, “The Real Story of Stuxnet,” IEEE Spectrum, Mar 2013.
[Online]. Available: http://spectrum.ieee.org/telecom/security/the-real-
story-of-stuxnet

[502] R. Perez-Pena, “Universities face a rising barrage of cyberattacks,”
Jul. 2013. [Online]. Available: http://www.nytimes.com/2013/07/17/
education/barrage-of-cyberattacks-challenges-campus-culture.html

[503] C. Tankard, “Advanced persistent threats and how to monitor and deter
them,” Network Security, vol. 2011, no. 8, pp. 16 – 19, 2011.

[504] S. Sorensen, “Security implications of software-defined networks,”
2012. [Online]. Available: http://www.fiercetelecom.com/story/
security-implications-software-defined-networks/2012-05-14

[505] S. M. Kerner, “Is SDN Secure?” Mar 2013. [Online]. Available: http:
//www.enterprisenetworkingplanet.com/netsecur/is-sdn-secure.html

[506] A. Agapi, K. Birman, R. Broberg, C. Cotton, T. Kielmann, M. Millnert,
R. Payne, R. Surton, and R. van Renesse, “Routers for the cloud: Can
the internet achieve 5-nines availability?” Internet Computing, IEEE,
vol. 15, no. 5, pp. 72–77, 2011.

[507] R. Kloti, “OpenFlow: A security analysis,” Master’s thesis, Swiss
Federal Institute of Technology Zurich (ETH), Zurich, Swiss, 2013.

[508] M. Wasserman and S. Hartman, “Security analysis of the open
networking foundation (onf) OpenFlow switch specification,” Internet
Engineering Task Force, Apr 2013. [Online]. Available: https:
//datatracker.ietf.org/doc/draft-mrw-sdnsec-openflow-analysis/

[509] S. Shin and G. Gu, “Attacking software-defined networks: A first
feasibility study,” in Proceedings of the second workshop on Hot topics
in software defined networks, ser. HotSDN ’13. New York, NY, USA:
ACM, 2013, pp. 1–2.

[510] K. Benton, L. J. Camp, and C. Small, “OpenFlow vulnerability
assessment,” in Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking, ser. HotSDN ’13. New
York, NY, USA: ACM, 2013, pp. 151–152.

[511] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “SDN security: A
survey,” in Future Networks and Services (SDN4FNS), 2013 IEEE SDN
for, Nov 2013, pp. 1–7.

[512] S. Sezer, S. Scott-Hayward, P. Chouhan, B. Fraser, D. Lake,
J. Finnegan, N. Viljoen, M. Miller, and N. Rao, “Are we ready
for SDN? implementation challenges for software-defined networks,”
Communications Magazine, IEEE, vol. 51, no. 7, pp. 36–43, July 2013.

[513] S. Hernan, S. Lambert, T. Ostwald, and A. Shostack, “Uncover security
design flaws using the STRIDE approach,” MSDN Magazine, Nov.
2006.

[514] B. Chandrasekaran and T. Benson, “Tolerating SDN application failures
with LegoSDN,” in Proceedings of the Third Workshop on Hot Topics
in Software Defined Networking, ser. HotSDN ’14. New York, NY,
USA: ACM, 2014, pp. 235–236.

[515] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, and P. Li,
“Paxos replicated state machines as the basis of a high-performance
data store,” in Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2011, pp. 141–154.

[516] P. Sousa, A. Bessani, M. Correia, N. Neves, and P. Verissimo, “Highly
available intrusion-tolerant services with proactive-reactive recovery,”
Parallel and Distributed Systems, IEEE Transactions on, vol. 21, no. 4,
pp. 452–465, April 2010.

[517] R. Chua, “SDN security: Oxymoron? new interview with phil porras of
SRI international,” 2013. [Online]. Available: http://www.sdncentral.
com/technology/sdn-security-oxymoron-phil-porras-sri/2013/02/

[518] J. Korniak, “The GMPLS controlled optical networks as industry
communication platform,” Industrial Informatics, IEEE Transactions
on, vol. 7, no. 4, pp. 671–678, Nov 2011.

[519] P. Fonseca, R. Bennesby, E. Mota, and A. Passito, “A replication
component for resilient OpenFlow-based networking,” in Network
Operations and Management Symposium (NOMS), 2012 IEEE, April
2012, pp. 933 –939.

[520] U. Toseef, A. Zaalouk, T. Rothe, M. Broadbent, and K. Pentikousis,
“C-BAS: Certificate-based AAA for SDN experimental facilities,” in
Third European Workshop on Software Defined Networks, 2014, pp. –.

[521] F. Klaedtke, G. O. Karame, R. Bifulco, and H. Cui, “Access control
for SDN controllers,” in Proceedings of the Third Workshop on Hot
Topics in Software Defined Networking, ser. HotSDN ’14. New York,
NY, USA: ACM, 2014, pp. 219–220.

[522] D. Kreutz, A. Bessani, E. Feitosa, and H. Cunha, “Towards secure
and dependable authentication and authorization infrastructures,” in
Pacific Rim International Symposium on Dependable Computing, ser.
PRDC’14, Nov. 2014.

[523] D. Kreutz and E. Feitosa, “Identity providers-as-a-service built as
cloud-of-clouds: challenges and opportunities,” in Position Papers of
the 2014 Federated Conference on Computer Science and Information
Systems, ser. Annals of Computer Science and Information Systems,
M. P. M. Ganzha, L. Maciaszek, Ed., vol. 3. PTI, 2014, pp. pages
101–108.

[524] P. Verssimo, N. Neves, and M. Correia, “Intrusion-tolerant architec-
tures: Concepts and design,” in Architecting Dependable Systems, ser.
Lecture Notes in Computer Science, R. de Lemos, C. Gacek, and
A. Romanovsky, Eds. Springer Berlin Heidelberg, 2003, vol. 2677,
pp. 3–36.

[525] C. E. Rothenberg, M. R. Nascimento, M. R. Salvador, C. N. A.
Corrêa, S. Cunha de Lucena, and R. Raszuk, “Revisiting routing control
platforms with the eyes and muscles of software-defined networking,”
in Proceedings of the First Workshop on Hot Topics in Software Defined
Networks, ser. HotSDN ’12. New York, NY, USA: ACM, 2012, pp.
13–18.

[526] J. P. Stringer, Q. Fu, C. Lorier, R. Nelson, and C. E. Rothenberg,
“Cardigan: deploying a distributed routing fabric,” in Proceedings of
the second ACM SIGCOMM workshop on Hot topics in software
defined networking, ser. HotSDN ’13. New York, NY, USA: ACM,
2013, pp. 169–170.

[527] C. E. Rothenberg, A. Vidal, M. R. Salvador, C. Correa, S. Lucena,
F. Farias, E. Cerqueira, and A. Abelem, “Hybrid networking towards
a software defined era,” in Network Innovation through OpenFlow and
SDN: Principles and Design book, Taylor & Francis LLC, CRC Press.,
2014.

[528] D. Levin, M. Canini, S. Schmid, F. Schaffert, and A. Feldmann,
“Panopticon: Reaping the benefits of incremental SDN deployment
in enterprise networks,” in Proceedings of the 2014 USENIX Annual
Technical Conference, ser. USENIX ATC ’14. USENIX Association,
Jun 2014, pp. 333–345.

[529] H. Lu, N. Arora, H. Zhang, C. Lumezanu, J. Rhee, and G. Jiang,
“Hybnet: Network manager for a hybrid network infrastructure,” in
Proceedings of the Industrial Track of the 13th ACM/IFIP/USENIX
International Middleware Conference, ser. Middleware Industry ’13.
New York, NY, USA: ACM, 2013, pp. 6:1–6:6.

[530] A. Csoma, B. Sonkoly, L. Csikor, F. Nemeth, A. Gulyas, D. Jocha,
J. Elek, W. Tavernier, and S. Sahhaf, “Multi-layered service orches-
tration in a multi-domain network environment,” in Third European
Workshop on Software Defined Networks, 2014, pp. –.

[531] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The click
modular router,” SIGOPS Oper. Syst. Rev., vol. 33, no. 5, pp. 217–
231, Dec. 1999.

[532] S. Salsano, P. L. Ventre, L. Prete, G. Siracusano, M. Gerola, and
E. Salvadori, “OSHI - open source hybrid IP/SDN networking (and
its emulation on mininet and on distributed SDN testbeds),” ArXiv e-
prints, Apr. 2014.

[533] S. Vissicchio, L. Vanbever, and O. Bonaventure, “Opportunities and
research challenges of hybrid software defined networks,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 2, pp. 70–75, Apr. 2014.

[534] P. Bernier, “NTT Recognized with IBC Award for
SDN-based HDTV Service,” September 2013. [Online].
Available: http://www.sdnzone.com/topics/software-defined-network/
articles/353466-ntt-recognized-with-ibc-award-sdn-based-hdtv.htm

[535] NTT DATA, “Infrastructure Services,” 2014. [Online]. Available:
http://www.nttdata.com/global/en/services/infrastructure/solution.html

[536] M. Wagner, “NTT Taps SDN to Enhance Cloud Flexibility,” March
2014. [Online]. Available: http://www.lightreading.com/ntt-taps-sdn-
to-enhance-cloud-flexibility/d/d-id/708133

[537] AT&T Inc., “AT&T Introduces the ”User-Defined Network
Cloud”: A Vision for the Network of the Future,”

http://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet
http://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet
http://www.nytimes.com/2013/07/17/education/barrage-of-cyberattacks-challenges-campus-culture.html
http://www.nytimes.com/2013/07/17/education/barrage-of-cyberattacks-challenges-campus-culture.html
http://www.fiercetelecom.com/story/security-implications-software-defined-networks/2012-05-14
http://www.fiercetelecom.com/story/security-implications-software-defined-networks/2012-05-14
http://www.enterprisenetworkingplanet.com/netsecur/is-sdn-secure.html
http://www.enterprisenetworkingplanet.com/netsecur/is-sdn-secure.html
https://datatracker.ietf.org/doc/draft-mrw-sdnsec-openflow-analysis/
https://datatracker.ietf.org/doc/draft-mrw-sdnsec-openflow-analysis/
http://www.sdncentral.com/technology/sdn-security-oxymoron-phil-porras-sri/2013/02/
http://www.sdncentral.com/technology/sdn-security-oxymoron-phil-porras-sri/2013/02/
http://www.sdnzone.com/topics/software-defined-network/articles/353466-ntt-recognized-with-ibc-award-sdn-based-hdtv.htm
http://www.sdnzone.com/topics/software-defined-network/articles/353466-ntt-recognized-with-ibc-award-sdn-based-hdtv.htm
http://www.nttdata.com/global/en/services/infrastructure/solution.html
http://www.lightreading.com/ntt-taps-sdn-to-enhance-cloud-flexibility/d/d-id/708133
http://www.lightreading.com/ntt-taps-sdn-to-enhance-cloud-flexibility/d/d-id/708133

VERSION 2.01 60

February 2014. [Online]. Available: http://www.att.com/gen/press-
room?pid=25274&cdvn=news&newsarticleid=37439&mapcode=

[538] E. Haleplidis, S. Denazis, O. Koufopavlou, D. Lopez, D. Joachimpillai,
J. Martin, J. H. Salim, and K. Pentikousis, “ForCES applicability
to SDN-enhanced NFV,” in Third European Workshop on Software
Defined Networks, 2014, pp. –.

[539] Open Networking Foundation, “OpenFlow-enabled SDN and
network functions virtualization,” Feb 2014. [Online]. Avail-
able: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/solution-briefs/sb-sdn-nvf-solution.pdf

[540] I. Cerrato, A. Palesandro, F. Risso, T. Jungel, M. Sune, and H. Woesner,
“User-specific network service functions in an SDN-enabled network
node,” in Third European Workshop on Software Defined Networks,
2014, pp. –.

[541] M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takacs, “Sdn and
optical flow steering for network function virtualization,” in Presented
as part of the Open Networking Summit 2014 (ONS 2014). Santa
Clara, CA: USENIX, 2014.

[542] E. Haleplidis, J. Hadi Salim, S. Denazis, and O. Koufopavlou, “Towards
a network abstraction model for SDN,” Journal of Network and Systems
Management, pp. 1–19, 2014.

[543] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: Enabling innovation in network
function control,” in Proceedings of the 2014 ACM Conference on
SIGCOMM, ser. SIGCOMM ’14. New York, NY, USA: ACM, 2014,
pp. 163–174.

[544] I. Cerrato, M. Annarumma, and F. Risso, “Supporting fine-grained
network functions through Intel DPDK,” in Third European Workshop
on Software Defined Networks, 2014, pp. –.

[545] J. Ruckert, J. Blendin, N. Leymann, G. Schyguda, and D. Hausheer,
“Demo: Software-defined network service chaining,” in Third European
Workshop on Software Defined Networks, 2014, pp. –.

[546] J. Blendin, J. Ruckert, N. Leymann, G. Schyguda, and D. Hausheer,
“Software-defined network service chaining,” in Third European Work-
shop on Software Defined Networks, 2014, pp. –.

[547] P. Skoldstrom, B. Sonkoly, A. Gulyas, F. Nemeth, M. Kind, F.-J.
Westphal, W. John, J. Garay, E. Jacob, D. Jocha, J. Elek, R. Szabo,
W. Tavernier, G. Agapiou, A. Manzalini, M. Rost, and N. S. adn
Stefan Schmid, “Towards unified programmability of cloud and carrier
infrastructure,” in Third European Workshop on Software Defined
Networks, 2014, pp. –.

[548] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A. Manzalini,
F. Risso, D. Staessens, R. Steinert, and C. Meirosu, “Research direc-
tions in network service chaining,” in Future Networks and Services
(SDN4FNS), 2013 IEEE SDN for, Nov 2013, pp. 1–7.

[549] B. Naudts, M. Kind, F. Westphal, S. Verbrugge, D. Colle, and M. Pick-
avet, “Techno-economic analysis of software defined networking as
architecture for the virtualization of a mobile network,” in Software
Defined Networking (EWSDN), 2012 European Workshop on, Oct 2012,
pp. 67–72.

[550] Open Networking Foundation, “Operator network monetization
through OpenFlow-enabled SDN,” Apr. 2013. [Online]. Avail-
able: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/solution-briefs/sb-network-monetization.pdf

[551] P. Skoldstrom and W. John, “Implementation and evaluation of a
carrier-grade OpenFlow virtualization scheme,” in Software Defined
Networks (EWSDN), 2013 Second European Workshop on, Oct 2013,
pp. 75–80.

[552] H. H. Gharakheili and V. Sivaraman, “Virtualizing National Broad-
band Access Infrastructure,” in Proceedings of the 9th international
conference on Emerging networking experiments and technologies, ser.
CoNEXT ’13. New York, NY, USA: ACM, 2013.

[553] Pacnet Australia, “Pacnet offers first Pan-Asia Network-
as-a-Service architecture,” November 2013. [Online]. Avail-
able: http://www.cmo.com.au/mediareleases/17701/pacnet-offers-first-
pan-asia-network-as-a-service/

[554] R. Bennesby, P. Fonseca, E. Mota, and A. Passito, “An inter-AS routing
component for software-defined networks,” in Network Operations and
Management Symposium (NOMS), 2012 IEEE, April 2012, pp. 138–
145.

[555] N. D. Corporation, “NTT DATA Advance in SDN Business
Provides Highly-Flexible Control of Network by Software,” June
2012. [Online]. Available: http://www.nttdata.com/global/en/news-
center/pressrelease/2012/060801.html

[556] S. Das, A. Sharafat, G. Parulkar, and N. McKeown, “MPLS with
a simple OPEN control plane,” in Optical Fiber Communication

Conference and Exposition (OFC/NFOEC), 2011 and the National
Fiber Optic Engineers Conference, 2011, pp. 1–3.

[557] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, “Fabric: a
retrospective on evolving SDN,” in Proceedings of the first workshop
on Hot topics in software defined networks, ser. HotSDN ’12. New
York, NY, USA: ACM, 2012, pp. 85–90.

[558] M. Martinello, M. Ribeiro, R. de Oliveira, and R. de Angelis Vitoi,
“Keyflow: a prototype for evolving SDN toward core network fabrics,”
Network, IEEE, vol. 28, no. 2, pp. 12–19, March 2014.

[559] N. Feamster, J. Rexford, S. Shenker, R. Clark, R. Hutchins, D. Levin,
and J. Bailey, “SDX: A software-defined internet exchange,” IETF
86 Proceedings, Orlando, US, March 2013. [Online]. Available:
http://www.ietf.org/proceedings/86/slides/slides-86-sdnrg-6

[560] A. Devlic, W. John, and P. Skoldstrom, “A use-case based analysis of
network management functions in the ONF SDN model,” in Software
Defined Networking (EWSDN), 2012 European Workshop on, Oct 2012,
pp. 85–90.

[561] M. Shirazipour, W. John, J. Kempf, H. Green, and M. Tatipamula,
“Realizing packet-optical integration with SDN and OpenFlow 1.1
extensions,” in Communications (ICC), 2012 IEEE International Con-
ference on, 2012, pp. 6633–6637.

[562] W. John, A. Kern, M. Kind, P. Skoldstrom, D. Staessens, and H. Woes-
ner, “SplitArchitecture: SDN for the carrier domain,” IEEE Communi-
cations Magazine, Oct. 2014.

[563] W. John, A. Devlic, Z. Ding, D. Jocha, A. Kern, M. Kind, A. Köpsel,
V. Nordell, S. Sharma, P. Sköldström, D. Staessens, A. Takacs, S. Topp,
F.-J. Westphal, H. Woesner, and A. Gladisch, “Split Architecture for
Large Scale Wide Area Networks,” ArXiv e-prints, Feb. 2014.

[564] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
WAN,” in Proceedings of the ACM SIGCOMM 2013 conference on
SIGCOMM, ser. SIGCOMM ’13. New York, NY, USA: ACM, 2013,
pp. 15–26.

[565] D. Staessens, S. Sharma, D. Colle, M. Pickavet, and P. Demeester,
“Software Defined Networking: Meeting Carrier Grade Requirements,”
in Local Metropolitan Area Networks (LANMAN), 2011 18th IEEE
Workshop on, Oct 2011, pp. 1 –6.

[566] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“A demonstration of automatic bootstrapping of resilient OpenFlow
networks,” in Integrated Network Management (IM 2013), 2013
IFIP/IEEE International Symposium on, 2013, pp. 1066–1067.

[567] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat, “PortLand: A
scalable fault-tolerant layer 2 data center network fabric,” SIGCOMM
Comput. Commun. Rev., vol. 39, no. 4, pp. 39–50, Aug. 2009.

[568] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: a scalable and flexible
data center network,” in Proceedings of the ACM SIGCOMM 2009
conference on Data communication, ser. SIGCOMM ’09. New York,
NY, USA: ACM, 2009, pp. 51–62.

[569] A. Sadasivarao, S. Syed, P. Pan, C. Liou, I. Monga, C. Guok, and
A. Lake, “Bursting data between data centers: Case for transport SDN,”
in High-Performance Interconnects (HOTI), 2013 IEEE 21st Annual
Symposium on, 2013, pp. 87–90.

[570] J. C. Tanner, “Taking SDN to transport and beyond,” 2013.
[Online]. Available: http://www.telecomasia.net/content/taking-sdn-
transport-and-beyond

[571] S. Elby, “Carrier Vision of SDN,” 2012. [Online]. Available:
http://www.brighttalk.com/webcast/6985/58527

[572] B. Anwer, T. Benson, N. Feamster, D. Levin, and J. Rexford, “A
slick control plane for network middleboxes,” in Proceedings of the
second ACM SIGCOMM workshop on Hot topics in software defined
networking, ser. HotSDN ’13. New York, NY, USA: ACM, 2013, pp.
147–148.

[573] C. Gerlach and H.-M. Foisel, “OIF carrier WG requirements on trans-
port networks in SDN architectures,” Optical Internetworking Forum,
The Optical Internetworking Forum, 48377 Fremont Blvd., Suite 117,
Fremont, CA 94538, Tech. Rep., September 2013.

[574] L. Velasco, A. Asensio, J. Berral, A. Castro, and V. Lopez, “Towards
a carrier SDN: An example for elastic inter-datacenter connectivity,”
in Optical Communication (ECOC 2013), 39th European Conference
and Exhibition on, 2013, pp. 1–3.

[575] A. Alba, G. Alatorre, C. Bolik, A. Corrao, T. Clark, S. Gopisetty,
R. Haas, R. Kat, B. Langston, N. Mandagere, D. Noll, S. Padbidri,
R. Routray, Y. Song, C. Tan, and A. Traeger, “Efficient and agile
storage management in software defined environments,” IBM Journal
of Research and Development, vol. 58, no. 2, pp. 1–12, March 2014.

http://www.att.com/gen/press-room?pid=25274&cdvn=news&newsarticleid=37439&mapcode=
http://www.att.com/gen/press-room?pid=25274&cdvn=news&newsarticleid=37439&mapcode=
https://www.opennetworking.org/images/stories/downloads/sdn-resources/solution-briefs/sb-sdn-nvf-solution.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/solution-briefs/sb-sdn-nvf-solution.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/solution-briefs/sb-network-monetization.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/solution-briefs/sb-network-monetization.pdf
http://www.cmo.com.au/mediareleases/17701/pacnet-offers-first-pan-asia-network-as-a-service/
http://www.cmo.com.au/mediareleases/17701/pacnet-offers-first-pan-asia-network-as-a-service/
http://www.nttdata.com/global/en/news-center/pressrelease/2012/060801.html
http://www.nttdata.com/global/en/news-center/pressrelease/2012/060801.html
http://www.ietf.org/proceedings/86/slides/slides-86-sdnrg-6
http://www.telecomasia.net/content/taking-sdn-transport-and-beyond
http://www.telecomasia.net/content/taking-sdn-transport-and-beyond
http://www.brighttalk.com/webcast/6985/58527

VERSION 2.01 61

[576] W. Arnold, D. Arroyo, W. Segmuller, M. Spreitzer, M. Steinder, and
A. Tantawi, “Workload orchestration and optimization for software
defined environments,” IBM Journal of Research and Development,
vol. 58, no. 2, pp. 1–12, March 2014.

[577] C. Dixon, D. Olshefski, V. Jain, C. DeCusatis, W. Felter, J. Carter,
M. Banikazemi, V. Mann, J. Tracey, and R. Recio, “Software defined
networking to support the software defined environment,” IBM Journal
of Research and Development, vol. 58, no. 2, pp. 1–14, March 2014.

[578] IBM Systems and Technology Group, “IBM software defined network
for virtual environments,” IBM Corporation, Tech. Rep., January 2014.

[579] IBM Systems, “Manage all workloads with an efficient, scalable
software defined environment (SDE),” 2014. [Online]. Avail-
able: http://www-03.ibm.com/systems/infrastructure/us/en/software-
defined-environment/

Diego Kreutz received his Computer Science degree, MSc degree in Infor-
matics, and MSc degree in Production Engineering from Federal University
of Santa Maria. Over the past 11 years he has worked as an Assistant
Professor in the Lutheran University of Brazil and in the Federal University
of Pampa, and as a researcher member of the Software/Hardware Integration
Lab (LISHA) at Federal University of Santa Catarina. Out of the academia,
he has also experience as an independent technical consultant on network
operations and management for small and medium enterprises and government
institutions. Currently, he is a PhD student at Faculty of Sciences of Univer-
sity of Lisbon, Portugal, involved in research projects related to intrusion
tolerance, security, and future networks including the TRONE, and SecFuNet
international projects. His main research interests are in network control
platforms, software-defined networks, intrusion tolerance, system security and
dependability, high performance computing, and cloud computing.

Fernando M. V. Ramos is an Assistant Professor in the University of
Lisbon. Previous academic positions include those of Teaching Assistant
(supervisor) in the University of Cambridge, in the ISEL and in the University
of Aveiro. Over the past 12 years he has taught over a dozen courses:
from physics (Electromagnetism) to EE (digital electronics, electric circuits,
telecommunication systems and foundations) to CS (operating and distributed
systems, computer networks, algorithms, programming languages). Periods
outside academia include working as a researcher in Portugal Telecom and in
Telefonica Research. He holds a PhD degree from the University of Cambridge
where he worked on IPTV networks. His current research interests are:
software-defined networking, network virtualization, and cloud computing,
with security and dependability as an orthogonal concern.

Paulo Verı́ssimo is a Professor of the Interdisciplinary Centre for Security,
Reliability and Trust (SnT), University of Luxembourg3. He is currently Chair
of the IFIP WG 10.4 on Dependable Computing and Fault-Tolerance and vice-
Chair of the Steering Committee of the IEEE/IFIP DSN conference. PJV
is Fellow of the IEEE and Fellow of the ACM. He is associate editor of
the Elsevier Int’l Journal on Critical Infrastructure Protection. Verı́ssimo is
currently interested in distributed architectures, middleware and algorithms
for: adaptability and safety of real-time networked embedded systems; and
resilience of secure and dependable large-scale systems. He is author of over
170 peer-refereed publications and co-author of 5 books.

3This work was performed whilst this author was at the U. of Lisbon Faculty
of Sciences

Christian Esteve Rothenberg is an Assistant Professor in the Faculty of
Electrical and Computer Engineering at University of Campinas (UNICAMP),
where he received his Ph.D. in 2010. From 2010 to 2013, he worked as
Senior Research Scientist in the areas of IP systems and networking at CPqD
Research and Development Center in Telecommunications (Campinas, Brazil),
where he was technical lead of R&D acitivities in the field of OpenFlow/SDN
such as the RouteFlow project, the OpenFlow 1.3 Ericsson/CPqD softswitch,
or the ONF Driver competition. Christian holds the Telecommunication
Engineering degree from Universidad Politécnica de Madrid (ETSIT - UPM),
Spain, and the M.Sc. (Dipl. Ing.) degree in Electrical Engineering and
Information Technology from the Darmstadt University of Technology (TUD),
Germany, 2006. Christian holds two international patents and has over 50
publications including scientific journals and top-tier networking conferences
such as SIGCOMM and INFOCOM. Since April 2013, Christian is an ONF
Research Associate.

Siamak Azodolmolky received his Computer Engineering degree from
Tehran University and his first MSc. degree in Computer Architecture from
Azad University in 1994 and 1998 respectively. He was employed by Data
Processing Iran Co. (IBM in Iran) as a Software Developer, Systems Engineer,
and as a Senior R& D Engineer during 1992-2001. He received his second
MSc. degree with distinction from Carnegie Mellon University in 2006. He
joined Athens Information Technology (AIT) as a Research Scientist and
Software Developer in 2007, while pursuing his PhD degree. In August 2010,
he joined the High Performance Networks research group of the School of
Computer Science and Electronic Engineering (CSEE) of the University of
Essex as a Senior Research Officer. He received his PhD from Universitat
Politécnica de Catalunya (UPC) in 2011. He has been the technical investigator
of various national and EU funded projects. Software Defined Networking
(SDN) has been one of his research interests since 2010, in which he has
been investigating the extension of OpenFlow towards its application in
core transport (optical) networks. He has published more than 50 scientific
papers in international conferences, journals, and books. Software Defined
Networking with OpenFlow is one of his recent books. Currently, he is
with Gesellschaft für Wissenschaftliche Datenverarbeitung mbH Göttingen
(GWDG) as a Senior Researcher and has lead SDN related activities since
September 2012. He is a professional member of ACM and a senior member
of IEEE.

Steve Uhlig obtained a Ph.D. degree in Applied Sciences from the University
of Louvain, Belgium, in 2004. From 2004 to 2006, he was a Postdoctoral
Fellow of the Belgian National Fund for Scientific Research (F.N.R.S.).
His thesis won the annual IBM Belgium/F.N.R.S. Computer Science Prize
2005. Between 2004 and 2006, he was a visiting scientist at Intel Research
Cambridge, UK, and at the Applied Mathematics Department of University
of Adelaide, Australia. Between 2006 and 2008, he was with Delft University
of Technology, the Netherlands. Prior to joining Queen Mary, he was a Senior
Research Scientist with Technische Universität Berlin/Deutsche Telekom
Laboratories, Berlin, Germany. Starting in January 2012, he is the Professor
of Networks and Head of the Networks Research group at Queen Mary,
University of London.

http://www-03.ibm.com/systems/infrastructure/us/en/software-defined-environment/
http://www-03.ibm.com/systems/infrastructure/us/en/software-defined-environment/

	I Introduction
	II State of Quo in Networking
	III What is Software-Defined Networking?
	III-A Terminology
	III-B Alternative and Broadening Definitions
	III-C Standardization Activities
	III-D History of Software-Defined Networking

	IV Software-Defined Networks: Bottom-up
	IV-A Layer I: Infrastructure
	IV-B Layer II: Southbound Interfaces
	IV-C Layer III: Network Hypervisors
	IV-D Layer IV: Network Operating Systems / Controllers
	IV-E Layer V: Northbound Interfaces
	IV-F Layer VI: Language-based Virtualization
	IV-G Layer VII: Programming languages
	IV-H Layer VIII: Network Applications
	IV-I Cross-layer issues

	V Ongoing Research Efforts and Challenges
	V-A Switch Designs
	V-B Controller Platforms
	V-C Resilience
	V-D Scalability
	V-E Performance evaluation
	V-F Security and Dependability
	V-G Migration and Hybrid deployments
	V-H Meeting carrier-grade and cloud requirements
	V-I SDN: the missing piece towards Software-Defined Environments

	VI Conclusion
	References
	Biographies
	Diego Kreutz
	Fernando M. V. Ramos
	Paulo Veríssimo
	Christian Esteve Rothenberg
	Siamak Azodolmolky
	Steve Uhlig

