
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 7, No. 5, October 2017, pp. 2706~2712

ISSN: 2088-8708, DOI: 10.11591/ijece.v7i5.pp2706-2712  2706

Journal homepage: http://iaesjournal.com/online/index.php/IJECE

Link Aggregation Control Protocol on Software Defined

Network

I. D. Irawati
1
, Y. Sun Hariyani

2
, S. Hadiyoso

3

Telkom Applied Science School, Telkom University, Indonesia

Article Info ABSTRACT

Article history:

Received Mar 29, 2017

Revised May 31, 2017

Accepted Aug 11, 2017

 A physical connection of computer network must be made reliably. Breaking

connection will cause communication between nodes (for example routers,

switches, hosts) can be disconnected. One of the solutions is implemention of

link aggregation (LA). LA integrates several of physical ports together to

make a single logical communication link. Accordingly, there is load sharing

traffic among the member port of the group, high-throughput increasing via a

single link, and redundancy providing for broken links. We present the

implementation of link aggregation using Ryu controller on Software

Defined Network (SDN) topology. The results show that the implementation

of SDN with OpenvSwitch and Ryu controller can successfully run link

aggregation function to solve the problem of link failure.

Keywords:

Link Aggregation,

Redudancy,

Ryu controller,

SDN,

Traffic Copyright © 2017 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

I. D. Irawati,

Telkom Applied Science School,

Telkom University,

Telekomunikasi Rd. Terusan Buah Batu,

Bandung 40257 Indonesia.

Email: indrarini@telkomuniversity.ac.id

1. INTRODUCTION

Switch or router over the network [4]. OpenFlow is developed by Open Networking Foundation

(ONF) Today, the performance of computer networks is a great concern by the customers. Network

performance is influenced by the reliability of the physical network topology. When the physical connection

between two nodes is failed, then the packet can not be sent through the link. Otherwise, if a physical

connection is a good condition with limited bandwidth, it can cause congestion since several nodes using the

link for delivery. This problem can be solved by Link Aggregation (LA). LA is a method that aggregates

multiple network connections acts as a single logical interface using software. LA provides redundancy for

link failure, for example: if one or more physical interface on a logical aggregate loss, the other physical

connection still up and operate. Moreover, LA increases throughput passing through a single link which can

reduce bottleneck by allowing packets to be traversed over multiple interfaces. LA is defined in IEEE

802.3ad that allows to group Ethernet interface at the physical layer to form a single link interface, namely

Link Aggregation Group (LAG). Link Aggregation Control Protocol (LACP) is a mechanism for changing

the port to preserve LAG bundles. LACP provides a dynamic configuration that means the other end can

handle link aggregation. In addition, it handles failover automatically when a link failed [1].

Software Defined Network (SDN) is a new architecture for a computer network that separates

network control and forwarding functions, which allowing the controller can connect directly programmable.

SDN’s characteristics are manageable, adaptable, scalable, appropriate for high bandwidth, and dynamic

features of recent applications compared to traditional network architecture [2]. Hence, users can assign the

logical network topology using software, regardless of underlying network structure [3]. In general, SDN

IJECE ISSN: 2088-8708 

Link Aggregation Control Protocol on Software Defined Network (I. D. Irawati)

2707

associates with OpenFlow protocol as a communication protocol that remote communication to the

forwarding plane of a network as an organization that promotes networking through SDN and standardizing

the OpenFlow protocol. The OpenFlow architecture consists of OpenFlow controller and OpenFlow Switch.

The function of OpenFlow controller manages OpenFlow switch.

Studies on link redundancy on SDN had been done [5]-[7]. For example, M. Steinbacher et al.

presented LACP implementation using Floodlight OpenFlow controller [5] and P. Skoldstrom et al. proposed

virtual aggregation forwarding model on backbone topology [7]. While I.D. Irawati et al. designed link

redundancy for high availability network based on OpenFlow fast-failover for cascade SDN topology.

Other related research in terms of maintaining quality and network performance presented

in [8]-[9]. Yahya et.al present Extended Dijkstra's with (edges and nodes weights) parameters to find the

shortest server [8]. This algorithm is used for SDN applications. The use of a genetic algorithm load balancer

for service recovery on the intercloud network is done by Jena et al. [9].

In this paper, we present the implementation of IEEE 802.3ad dynamic LACP configuration on

SDN topology. We apply the LACP between a server and a switch using OpenFlow, i.e., Ryu controller.

Ryu manages LACP function to perform failover functionality.

2. BASIC THEORY

2.1. SDN Architecture
Software Defined Network (SDN) is an approach to apply open protocols, such as OpenFlow to

implement software control by the edge of the network to access the entire network devices. The architecture

of SDN is as shown in Figure 1. It composes by three layers, such as infrastructure layer, control layer, and

application layer. An Infrastructure layer represents network device as a switch. Control layer manages both

Southern interface and northern interface. The Southern interface is used to control the state of the network.

While northern interface provides program applications to configure, supervise, and optimize the service

applications [10].

Figure 1. SDN architecture [8]

2.2. Link Aggregation Control Protocol (LACP)

Link aggregation is a technique noted in IEEE 802.1ax-2008 by David Law for local and

metropolitan area network link aggregation standard [11]. And an automatic configuration feature that known

as link aggregation control protocol (LACP) is determined in IEEE 802.3ad [1]. LA combines several

physical interfaces to be as a logical link that useful for increasing bandwidth between network devices and

handling fault tolerance by link redundancy. LA functions are shown in Figure 2 [11].

There are several features of LACP. The maximum quantity of integrated port appropriates with

the channels of the device, usually 1 to 8 channels. LACP packets use multicast MAC address

01:80:c2:00:00:02 for sending packets. LACP provides a load-balance mode that identifies the member of

links which serve load balancing. LACP mode has two states, i.e., active and passive. Active mode enables

LACP unconditionally, while passive mode allows LACP only when an LACP device is detected [12].

https://en.wikipedia.org/wiki/OpenFlow

  ISSN: 2088-8708

IJECE Vol. 7, No. 5, October 2017 : 2706 – 2712

2708

Increasing Bandwidth

100Mbps

100Mbps

200Mbps

Fault Tolerance

100Mbps

100Mbps

Link used

 (a). LA for increasing bandwidth (b). LA for fault tolerance

Figure 2. Link aggregation function, (a). Increasing bandwidth, (b). Fault tolerance [12]

3. DESIGN AND IMPLEMENTATION

We design and implement LACP according to the Ryu controller using Python programming

language. The topology consists of Controller (C0), Switch (S1), Host 1 (H1) as a server, and Host 2 (H2) as

a client that is shown in Figure 3. Host1 configuration is intended to create a server that supports link

aggregation capabilities. It is configured by using modprobe bonding mode four that indicates the dynamic

LA is performed using LACP. There is two physical link connection between S1 and server H1 via eth0 and

eth1 that run LACP function.

Figure 3. Implementation topology

4. RESULTS AND ANALYSIS

The configuration of link aggregation on server H1 is shown in Figure 4. The LACP setup is

successful. LACP rate is slow with 30-second intervals.

Figure 4. LA configuration on server H1

IJECE ISSN: 2088-8708 

Link Aggregation Control Protocol on Software Defined Network (I. D. Irawati)

2709

H1-eth0 and H2-eth1 act as link aggregation with up status and each link have 10000 Mbps rate.

Ryu controller runs LACP function to perform fault tolerance functionality. SDN Apps operates

simple_switch_lacp_13 that running on OpenFlow 1.3. When server H1 transmits LACP data unit every 30

seconds, the Switch S1 takes in the LACP data unit from server H1. We can see the process that occurs on

the controller C0 as shown in Figure 5. LACP received status indicates an LACP data unit was received by

the port and LACP sent satus means an LACP data unit was sent by the port. Whereas the slave i/f has just

working state represents a change in state from disable to enable. The state of the LACP data unit time has

changed denotes that the time for communication monitoring was changed. In this event, the standard state is

converted into long timeout periode (0 to 90 seconds).

Figure 5. Ryu controller runs LACP

The information of flow entry on S1 is shown in Figure 6. LACP data unit from server H1 is

received by the Switch S1. Switch S1 responds by sending LACP data unit. The Switch S1 replays by

Packet-In message in case LACP data unit with ethernet type 0x8809 is transmitted from H1-eth0 using the

s1-eth1 input port and the MAC address 00:00:00:00:00:11. Moreover, the Switch S1 replays by the Packet-

In message in case LACP data unit with ethernet type 0x8809 is transmitted from H1-eth1 using the s1-eth2

input port and the MAC address 00:00:00:00:00:21. The switch ports have been able to perform the LACP

functions.

Figure 6. Switch LACP

  ISSN: 2088-8708

IJECE Vol. 7, No. 5, October 2017 : 2706 – 2712

2710

In Figure 7, we test the LACP fault tolerance by breaking the link of H1-eth0. We run the

command ip link set h1-eth0 nomaster. The state of controller C0 is shown in Figure 8. The state of LACP

exchange timeout has occured denotes that there is no communication controlling until elapsed time. In

addition, the satus of slave state changed port: 1 enable: False represents that there is a change in handling of

data transmission from port 2 to port 1. Then, all listed that contained previous MAC addresses and flow

entries will deleted automatically. If the new communication will be recreated, the new flow entries and new

MAC addresses are registered again.

Figure 7. Link broken scenario

Figure 8. Ryu controller is shown link break

In Figure 9 is shown the ping state of H1 to S1 connection. Because of broken link on H1-eth0 to

S1, ping can not be sent from H1 to S1. The time required for recovery is about 90 seconds. The throughput

result is shown in figure 10. The observation is done in 600 seconds. When the event of link failure, the

throughput will decrease until 0 Mbps over 90 seconds. The average of throughput in normal condition is

about 7413.33 Mbps.

The port state changed

into false

IJECE ISSN: 2088-8708 

Link Aggregation Control Protocol on Software Defined Network (I. D. Irawati)

2711

Figure 9. Ping state observation using Wireshark

Figure 10. Throughput observation in link failure period

5. CONCLUSION

We implement link aggregation successfully using Ryu controller on SDN topology. LACP

provides fault tolerance in the communication monitoring between nodes in the network. The recovery time

is about 90 seconds. This procedure can apply for all connection entire the network. For improving the

performance, we can set the input parameter of LACP according to the network requirements.

recovery

time

The process is

restarted

State before link

broken

  ISSN: 2088-8708

IJECE Vol. 7, No. 5, October 2017 : 2706 – 2712

2712

REFERENCES
[1] IEEE Standard for Ethernet Link Aggregation: IEEE802.3ad, available: http://www.ieee802.org/3/ad/, accessed

at: June 13, 2016, 2016-01-10.

[2] L. Junyi, L. Lin, Z. Yongxin, "Direct Radio Frequency Sampling System on Softwaredefined Radio,”

TELKOMNIKA Indonesian Journal of Electrical Engineering., vol. 12, no. 11, pp. 7824-7831, 2014.

[3] K. Greene. TR10: Software-Defined Networking. MIT Technology Review. 2009; March–April.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker and J. Turner.

OpenFlow: Enabling Innovation in Campus Networks. ACM SIGCOMM Computer Communication Review.

2008; 38(2): 69-74.

[5] M. Steinbacher and M. Bredel. LACP Meets OpenFlow – Seamless Link Aggregation to OpenFlow Networks.

Available: https://tnc15.terena.org/getfile/1867. Accessed at: January 13, 2016.

[6] I.D. Irawati, S. Hadiyoso and Y. S. Hariyani. Link Redudancy for High Availability Network based on Software

Defined Network. Pertanika Journal of Science & Technology. (under review)

[7] P. Skoldstrom and B. C. Sanchez. Virtual Aggregation using SDN. IEEE Proceeding: European Workshop on

Software Defined Networks. 2013.

[8] W. Yahya, A. Basuki and J.R. Jiang. The Extended Dijkstra’s-based Load Balancing for OpenFlow Network.

International Journal of Electrical and Computer Engineering (IJECE). 2015; 5(2): 289-296.

[9] T. Jena and J. R. Mohanty, Disaster Recovery Services in Intercloud Using Genetic Algorithm Load Balancer.

International Journal of Electrical and Computer Engineering (IJECE). 2016; 6(4); 1828-1838.

[10] Y. Zhou, L. Ruan, L. Xiao and R. Liu. A Method for Load Balancing based on Software-Defined Network.

Advanced Science and Technology Letters. 2014; 45: 43-48.

[11] D. Law, IEEE Standard for Local and Metropolitan Area Network-Link Aggregation. Available:

http://standards.ieee.org/findstds/standard/802.1AX-2008.html. Accessed at: February 10, 2016.

[12] R. P. Team. RYU SDN Framework. Available: https://osrg.github.io/ryu-book/en/Ryubook.pdf. Accessed at:

January 4, 2016.

