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Abstract—The increase of flexibility is a common objective
of softwarized networks based on concepts such as Software De-
fined Networking, Network Function Virtualization and Network
Virtualization. Hence, in the state of the art, flexibility is used
as an argument for a certain proposed architecture, solution
mechanism or design choice in general. The meaning of flexibility
behind such rather qualitative arguments is highly diversified
in the literature, as a common understanding of flexibility is
missing so far. In this article, we survey the state of the art
in softwarized networks with a focus on the flexibility that is
provided by each proposed concept, mechanism or system. In
particular, we show that the flexibility provided by different
network softwarization technologies can be classified into six
different aspects within the three high-level flexibility categories,
i.e., configuration adaptation, functions location and scalability.
We analyze the state of the art in flexibility from several
viewpoints including flexibility aspects, network technologies,
domains and planes in order to derive a common understanding
of how flexibility can be provided in softwarized wireline and
wireless networks. Moreover, we reveal open issues, which are
mostly related to the fact that flexibility is not clearly defined in
the literature, and derive concrete research challenges accord-
ingly. Our classification of flexibility and the derived research
challenges aim at stimulating the discussion towards a more
quantitative analysis of the design requirement of flexibility
that has demonstrated increasing importance for softwarized
networks and beyond.

I. INTRODUCTION

In recent years, flexibility has emerged as a key property of
communication network designs to react to dynamic changes
that reside potentially in user demands, traffic conditions
and application requirements [1]. A recent survey on 5G
technology [2], for instance, reports “flexible and scalable
network” as the top motivation for technology investment of
297 companies. Furthermore, flexibility has become a key
decision factor for network designs, as telecom companies
seek to be able to face the uncertain future. In fact, according
to [3], regulatory changes and fast arrival of new technologies
are major concerns for 80% and 72% of these companies,
respectively.

To support network adaptation and hence flexibility, the
way we operate networks has become more software-oriented.
Those softwarized networks rely on concepts such as Software
Defined Networking (SDN) [4], Network Functions Virtualiza-
tion (NFV) [5], and Network Virtualization (NV) [6], which
provide a new level of indirection as well as new interfaces for
programming the control plane and setting up (virtual) network

functions and networks on demand.
In order to demonstrate the possibilities that we have with

softwarized networks, we refer to the scenario illustrated in
Fig. 1. A big event in the city (lower left) demands for high
quality connectivity to a service, which is realized as Virtual
Network Function (VNF) in the upper right data center. To
support the connectivity, an SDN-based controller configures
the flows on runtime and steers the traffic towards the service
(green line). With NV, the traffic of the event can acquire
its own Virtual Network (VN) and have exclusive virtual
resources on the nodes and the links. In other words, it is
isolated from other VNs, such as the one hosting the traffic
originating from the factory (upper left). When the upper right
data center becomes overloaded, one of the running VNFs
is migrated to the other data center. VNF migration requires
not only reconfiguration of NFV in the functionality, but also
reconfiguration of SDN in the network. Similarly, a link failure
in the infrastructure triggers the migration of two virtual links
(dashed blue line) to maintain connectivity of the factory. As
demonstrated by this scenario, softwarized networks support
the accommodation of more dynamic changes.

In a highly dynamic environment, network flexibility be-
comes not only desirable but sometimes critical. That is,
flexibility is considered a crucial characteristic of any network,
alongside other indicators such as performance and cost. In-
deed, when facing different network designs that have similar
latency, throughput, and physical resource consumption, we
would opt for the one that implies more flexibility. The reason
is simple: if new demands emerge in the future, network
flexibility provides us with the ability to cover those demands
without the need of jumping to a new system, which may
imply inflated costs. Therefore, a detailed quantification of
flexibility will assist us in making better decisions while
building up our network.

However, arguments about flexibility concepts are diverse
within both academia and industry. Due to the lack of com-
mon understanding, a meaningful analysis and comparison of
network designs with respect to flexibility is hardly possible.
Apart from that, the vast design space of softwarized networks
makes the comparison potentially more challenging. To cope
with these issues, we need a comprehensive analysis of flex-
ibility in softwarized networks. This analysis can help us to
clarify the essence of flexible communication networks, i.e.,
derive common characteristics from various proposals. It also



opens further challenges to fuel research efforts towards future
flexible networks.

In order to perform a comprehensive analysis with respect
to flexibility, a number of challenging questions have to be
addressed: What dynamic changes have to be supported?
In what time frame is a reaction expected? What network
domains are targeted? Wireless access, wired backbone or data
center? Which of the concepts of SDN, NFV and NV and what
combination is in focus? Which type of adaptation is applied
to the flows and network resources? And last but not least:
at what cost comes the realization of a more flexible network
design?

Before we can address these questions, we need a basic
definition of network flexibility. Recall the scenario in Fig. 1,
the network design would be considered flexible if the high
quality traffic demand of the big event, data center overload,
and physical link failure can be accommodated within a
short time frame. The definition of network flexibility we
apply for our survey is based on this understanding. We
assert that a network design is flexible, if it can support new
requests via adapting its resources if needed within a given
time threshold [7]. “New requests” stand for changes in the
requirements such as variation in the traffic demands [7] or a
set of new design goals such as shorter latency budgets [8].
The time threshold depends on the type of requests and may
be infinite to express the general potential of adaptation.
Similarly, flexibility is also an important characteristic in
other fields, such as economics [9], [10], management science
[11]–[13] and software engineering [14]–[16]. We pay special
attention to the consistency of the above definition with these
fields to make sure that we perform the analysis upon a most
common understanding.

Based on our definition, we address the above questions
with a detailed survey of the state of the art, perform a
classification towards the technical approaches, and then draw
concrete conclusions from the applied classification. In partic-
ular, the main contributions of this survey are as follows:

• We give a tutorial on network softwarization with a focus
on the applicable technologies;

• We derive flexibility aspects from the concepts of SDN,
NFV and NV to guide the classification of network
flexibility in our survey;

• We analyze the state of the art of softwarized networks
with respect to network flexibility based on our classifi-
cation from different points of view;

• We discuss common observations in a detailed lessons
learnt section and derive open research challenges for the
future.

The classification analysis together with the resulting ob-
servations serves as an overview of the current state of
the art in softwarized networks with respect to flexibility.
Moreover, it aims at providing a new structure in the scattered
network flexibility discussion and at contributing to a better
understanding of network flexibility as a design goal. For
system designers, it should support a meaningful comparison
between different network designs and foster decision making

for network design options. For researchers, it should stimulate
a detailed discussion and show new research directions to
provide flexibility in communication networks.

Whereas the input material for this survey are publications
in the fields of SDN, NFV and NV, its scope and classification
criteria are fundamentally different from those of existing
surveys on these technologies. In contrast to general surveys on
SDN, NFV and NV [4], [5], [17]–[25], [25]–[40], [40]–[44],
we provide a new perspective on those softwarized network
technologies focusing on network flexibility as a new metric
for classification and as a potentially new quality indicator.
Typical state-of-the-art surveys classify the publications with
respect to existing performance indicators (e.g., [4], [21],
[38], [44]), methodologies (e.g, [17], [19], [37], [39]), use-
cases (e.g., [4], [33], [41]), etc. We derive our own set of
flexibility aspects that are shared among softwarized network
technologies and do not rely on general technology aspects
for classification. With this, we aim at shedding new light on
the research in softwarized networks. More details on existing
surveys on SDN, NFV and NV, are given at the end of Sec.
II-A, II-B, and II-C, respectively.

The remainder of this survey is organized as follows.
Section II introduces the technologies that contribute to net-
work softwarization. In Section III we provide a definition
of network flexibility, as well as derived flexibility aspects
and incurred cost, also supported by flexibility studied in
other research areas. As the main part of the survey, Section
IV comprehensively analyzes the state of the art proposals
according to the flexibility aspects. We classify the state of
the art further with other viewpoints, namely network domains
and planes in Section V. Section VI compiles the observations
and related insights, and Section VII highlights future research
challenges. The survey is concluded finally in Section VIII.

II. TECHNOLOGIES FOR NETWORK SOFTWARIZATION

Network softwarization is enabled by various novel tech-
nologies, namely SDN, NFV and NV. In this section, we
present the concepts of the technologies and other important
terminologies that will be used throughout this survey. We also
provide Fig. 2 to conceptually illustrate the technologies.

A. Software Defined Networking

Concept. SDN is a networking paradigm that promises more
flexibility in network deployment and management. The net-
work control logic, i.e., the control plane, is decoupled from
the network forwarding entities (such as routers and switches),
i.e., the data plane. For legacy routing protocols, such as
distance-vector based IGRP [45] and link-state based OSPF
[46], each forwarding device (router) makes the forwarding
decision on its own, based on its knowledge of the network.
This knowledge is acquired with the help of control protocols,
which define the exchange of packets containing control
information. For SDN, the separation of control plane and
data plane results in “dummy” forwarding devices that only
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Fig. 1. Softwarized network scenario that combines technologies of SDN, NFV and NV. A central SDN controller directs traffic to particular network services
upon demand, and sets up new path as physical link failure occurs. Networks serving various tenants are isolated and controlled dynamically in the same
physical infrastructure. Network functions are virtualizedin different data centers. When one of the data centers is overloaded, some functions are migrated to
the other data center to ensure load balancing.

handle packet forwarding. The whole control logic is thereafter
implemented as the SDN controller, in a logically centralized
manner. Since the SDN controller has an overall view of the
underlying network topology, it could make global optimal
decisions in network traffic control, policy enforcement as well
as system reconfiguration and upgrade [4], [47].

Control Interface. A programming interface is needed to
inter-connect data plane and control plane. This interface,
which is sometimes referred to as data-control plane interface
(D-CPI), defines instructions for the forwarding devices on
how to process data packets. Candidates for such an interface
are OpenFlow [48], NETCONF [49], or OVSDB [50]. Open-
Flow, initiated by Open Network Foundation [51], is the first
standardized programming interface and becomes the most
popular protocol in SDN [19]. OpenFlow defines a flow as a
sequence of packets that share the same match, that is, some
configurable set of characteristics. Match field combination
enables different manners of flow matching, e.g., on source-
destination MAC/IP pair and on a certain ingress port. With
the OpenFlow protocol, the SDN controller can reactively
and proactively add, update or delete flow entries in the flow
tables [52].

OpenFlow Switch. According to the latest OpenFlow version
1.5.1 [52], a typical OpenFlow-enabled switch is composed
of one or more flow tables and a group table, and one or
more OpenFlow channels to external controller(s). Each flow
entry in the flow table consists of match fields, counters
and a set of instructions for successful matches. The flow
tables are recommended to be implemented as Ternary Content
Addressable Memory (TCAM) [48], [53], which supports
flexible wildcard matching. When a data packet enters the
switch, header matching starts at the first flow table and might

proceed to other flow tables in the pipeline. The first matched
entry then defines how should the packet be handled, such
as forwarding to another port, flooding to all ports, dropping
directly and forwarding to the controller. If no match is found
in a flow table (i.e. table-miss), the packet will be processed
depending on the default configuration, e.g., send to controller
or discard.

In order to facilitate the evolution of OpenFlow and
other SDN switches, programmable switching platforms have
been proposed. Namely, P4 [54] (Programming Protocol-
independent Packet Processors) was proposed to enable the
programmability of data plane behaviors. Independent from
protocols, programmers could customize the way that packets
will be processed and further optimize the performance of
network service.

Controllers. There are several SDN controller implementa-
tions that run on different platforms and feature various charac-
teristics. For example, NOX [55], Ryu [56] and Floodlight [57]
explore the possibility of different programming languages
(C++, Python and Java) and of single/multi-thread processing.
To overcome single-point-of-failure, performance and scal-
ability concerns [58], [59], physically distributed controller
implementations have drawn much more attention recently.
Onix [60], as one of the first proposals, distributes the network
state over multiple instances. On the other hand, controller
instance in HyperFlow [61] stores the whole network state
and therefore different instances can be treated as backups
of each other. ONOS [62] and OpenDaylight [63], as two
production-level SDN controller implementations that are sup-
ported by the Linux Foundation [64], natively distribute the
control logic into several instances. Network operators are
allowed to choose what information to synchronize and which
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Fig. 2. Conceptual illustration of SDN, NFV and NV..

level of consistency [65] should be followed, according to
their preferences over synchronization traffic overhead [66],
convergence time [67], and behavior correctness [66]. Notably,
when a controller instance fails, one of the other running
instances will take over and maintain network operation.
Other Surveys. [4], [17]–[20] cover general aspects of SDN.
Security of SDN, as an important issue, has been surveyed in
several articles, such as [21]–[26]. The problem of control
plane scalability has been surveyed in [68]. [27] provides
a taxonomy that classifies the reviewed research works per-
formed in SDN, whereas [69] presents a systematic survey of
up-to-date OpenFlow-based SDN programming languages and
[28] surveys network innovations with OpenFlow. Regarding
merging SDN with wireless, the work of [29] and [30] surveys
general aspects in wireless and the work of [25], [31]–[33]
focuses on SDN mobile networks.

B. Network Function Virtualization

Concept. Traditionally, network operators deploy physical
and proprietary equipment (also known as “middleboxes”)
and chain the equipment in the network, i.e., guide traffic
through each of them with or without an order, as to achieve
a full network service. With a rising diversity of requirements
and demands of network services, operators often require
many different network hardware devices, which potentially
leads to high deployment and operational costs. In order to
address these challenges, following the thrive of virtualization
techniques, NFV enables softwarization of network functions,
i.e., Virtual Network Function (VNF). VNFs can be deployed

on commodity commercial off-the shelf (COTS) (e.g. x86
based) hardware [70]. This leads to flexibility in network
function deployment and service innovation by reducing the
effort and time to design, deploy and manage various network
functions/services. It also allows network operators to flexibly
assign resources to different VNFs in the field, according to
the users’ traffic and demands or according to the operator’s
objectives, e.g., consumed energy or load balancing.

NFV Use Cases. Several use cases have been proposed in [71]
by ETSI. One of the main targets is the virtualization of mobile
networks, including both Mobile Core Network (MCN) and
Radio Access Network (RAN). The 3GPP has standardized
the network functions in the LTE MCN, also referred to as
Evolved Packet Core (EPC), which facilitates their imple-
mentation in software. Some examples of these core network
functions are the Mobility Management Entity (MME), which
manages the mobility of users, and the Serving and PDN-
Gateways (S/P-GW), which forward user data traffic under
the negotiated and predefined policies. These mobile core
functions can be implemented as different VNFs and scaled
up or down according to their own requirements. This can be
done to cope with the expected increase in mobile user traffic,
for instance. Additionally, most of the functions of the mobile
RAN are also standardized and hence can be virtualized. In
this case, virtualization can achieve higher resource efficiency
and flexibility for the radio resources. Namely, NFV enables
the pooling and consolidation of the baseband processing of
the eNodeB, including PHY, MAC, RLC and PDCP layers.

There are several other promising use cases that target



function virtualization, such as Content Distribution Networks
(CDN) [71]. The rise of video streaming poses great chal-
lenges on network operators, because of massive traffic volume
and strict QoS requirements. When receiving a request from
a user, the CDN controller selects a cache node, mostly in
geographical proximity of the user, and then redirects the user
to the VNF cache node. Since the user traffic demands follow
a predictable pattern, hardware resources can be dedicated to
other VNFs during weekday business hours for instance. It is
also more flexible to configure new VNF cache nodes in face
of new delivery requirements.
Other Surveys. The general aspects of NFV have been
surveyed in [5], [34]. Similar to SDN, security issue is also
a concern and is surveyed in [35] and [36]. Particular for the
core network, the work of [37] surveys different virtualization
architectures. The function placement problem is thoroughly
surveyed in [38].

C. Network Virtualization

Concept. Network virtualization is the technology that
provisions multiple logically isolated networks, which may
own distinct addressing schemes and forwarding policies, in
the same physical infrastructure, i.e., nodes and links. From
the operators’ point-of-view, NV splits the role of Internet
Service Provider (ISP) into two parts: infrastructure provider
and service provider [72]. The infrastructure provider manages
the physical infrastructure and provides virtual networks for
the service providers. The service providers in turn intercon-
nect end-users and offer networking services. Indeed, NV
is flexible in acquiring and changing virtual networks on-
demand depending on the users’ traffic and requirements. It
also supports the infrastructure providers with the flexibility to
lease their resources to different services providers, expediting
cost savings of operation.
Implementation. There are several approaches and technolo-
gies which enable the virtualization of network links and/or
nodes. Virtual Local Area Network (VLAN) for instance
allows a set of local networks, whose broadcast domains are
isolated, to coexist in the same physical network. The packets
of each network are recognized by the additional VLAN
headers indicating the VLAN ID. Moving further, overlay
networks are logical networks that are directly deployed in
physical networks, based on protocols like GRE and VXLAN.
The above implementations focus merely on the virtualization
of network links, whereas in a fully virtualized network, both
links and nodes should be virtualized [72]. In other words,
logical node resources, e.g., CPU processing and memory,
are assigned to the different tenants. Node virtualization is
normally realized by network hypervisor [73], which can
be deployed locally on the nodes or remotely manages the
resources of multiple network nodes.
Other Surveys. The general aspects of NV have been sur-
veyed in [6]. Various VNE algorithms are discussed in [39].
Besides the wired networks, the VN concept has also been
introduced to wireless area and thus provides much potentials,
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Fig. 3. Evolution of the number of publications containing the words
”flexible” or ”flexibility” in contrast with those containing ”bandwidth” or
”capacity” in four major IEEE journals and magazines on communication,
with respect to the number of publications in 1995.

which are surveyed in [40], [40], [41]. A particular focus
on 5G Mobile Network is unfolded in [42] and another
focus on cloud computing is elaborated in [43]. The work
of [44] surveys hypervisor implementations and proposes a
performance evaluation architecture.

III. TOWARDS A CLASSIFICATION FOR FLEXIBILITY

In recent years, flexibility has become a buzzword in com-
munication networks and has drawn more and more attention
of researchers. As an illustrative example, we perform a small
study on the literature mentioning flexibility. We look for pub-
lications containing the words “flexible” and/or “flexibility”
in their titles, abstracts or keywords in the IEEE Commu-
nications Magazine, IEEE Transactions on Communications,
IEEE Wireless Communications, and IEEE Transactions on
Wireless Communications from 1995 to the time of this survey.
We compare the evolution of the popularity of flexibility
with that of the words “bandwidth” and/or “capacity”, which
are related to the performance of a network from another
perspective. Fig. 3 shows how these terms evolve over time,
when compared to the number of publications in 1995. We can
see that bandwidth-related words were increasingly used from
around 2000 to 2009, but this trend has not continued in recent
years. On the contrary, the use of flexibility-related words
has been increasing consistently in the last decade, peaking
in 2017.

This study illustrates the growing interest in flexibility for
communication networks and even shows a change of interest
towards flexibility. When looking deeper into the literature, we
also notice the lack of consistency in defining the term “flex-
ibility” in various state of the art proposals. With this survey,
we intend to provide a common ground for understanding what
flexibility really means and how to compare different design



choices of flexible networks.

A. Definition of Flexibility

The lack of a rigorous definition of flexibility has produced
lots of different interpretations in literature. For instance, some
researchers understand flexibility as the ability of network
operators to change the network configuration with ease,
whereas others consider that their design is flexible because
it can dynamically adapt to different kinds of traffic. In any
case, almost no prior work explicitly states its definition of
flexibility. Our intention is to propose a definition of flexibility
which is based on the most common understanding to use it
throughout our survey.

Flexibility analysis is always specific to the particular
system under study, which in our case is communication
networks. Therefore, a prior understanding of the elements
of a communication network is required. A communication
network is composed of topology, flows, node functions, and
resources. The topology can be represented as a set of nodes
and links. Flows are defined as source and destination node
pairs, together with the respective data rates. Node functions
describe the specific actions applied to the network traffic,
e.g., firewalls and load balancers. Resources, e.g., computation
power, memory and bandwidth, are also mandatory for the
operation of networks. Table I demonstrates that, due to
conceptual distinctions, SDN, NFV and NV focus on different
subsets of these elements and support flexibility there in
particular. For instance, SDN enables the manipulation of the
traffic forwarding paths in the network, whereas NV empowers
multiple isolated networks with diverse topologies in the same
physical substrate.

In order to incorporate as many notions from the literature as
possible, we define network flexibility as the timely support of
changes in the network requirements. For the sake of brevity,
we refer to “changes in the requirements” as requests. We
consider two different manners in which a network could
support these requests. First, the network may be designed in
a way that it simply accommodates the requests without major
adaptations. Alternatively, the network may need to adapt the
state of the topology, flows, functions, or resources to match
the new network requirements. When the adaptation happens,
it should meet a time constraint, i.e., the adaptation should be
quick enough and finish in time.

Let us illustrate this definition with an example. Consider
the emergence of new user demands in an enterprise net-
work, which causes a traffic increase. We would deem the
enterprise network design as flexible if this traffic increase
can be accommodated within a short time frame. Using our
terminology, the traffic increase is translated into a request.
When having enough node and link capacity, the network can
accept the new traffic without any adaptation. Otherwise, the
network should possibly modify the state of flows, functions,
or resources (e.g., rearrange flows) and thereafter support the
traffic within a predefined time constraint. In both cases, the
network will be flexible according to our definition.

The concept of request is important in the analysis of
flexibility, since it triggers the demand for flexibility. Based on
the above, we consider a request as a change in the network
requirements that may imply a modification of the topology,
flows, functions, or resources. Accordingly, there are many
possible sources of requests: traffic variations, user mobility,
network upgrade, etc. A comprehensive list of all the possible
request origins will help us to perform an extensive analysis
of network flexibility.

B. Flexibility Categories and Aspects

Although these elements are conceptually very different, the
ways of changing them are yet similar. Indeed, there are three
basic abstract operations that are applicable to them.

Firstly, we can adapt the configuration of the network to
accommodate requests. The configuration can be a single pa-
rameter setting, an installation of network flows, or an outline
of how network functions behave. In turn, the adaptation
could be a change of parameters, i.e. “re-configuration”, or
an addition to the possible set of supported configurations.

Second, thanks to virtualization techniques, functions can
be dynamically placed in the network to support both latency
and service requirements. Although the placement may affect
how functions perform in some cases, in principle they can be
moved across the topology while keeping their configuration
intact. Therefore, this operation is to locate functions.

Third, the most general operation is to scale network
elements, which means adding or removing functions, links,
nodes, or resources. The ability to scale its elements enables
the network to increase or decrease link capacity, reserved
bandwidth of particular flows, allocated computation power of
network functions, as well as the number of network function
instances.

These three operations can be used to classify systems with
respect to flexibility. Indeed, we observe that a network can be
assessed in terms of its flexibility (i) to adapt the configuration
of its flows and functions, (ii) to locate functions, and (iii) to
scale its resources, functions, or topology. As a result, we
henceforth refer to these operations as flexibility categories,
which are shown in Table II.

Flexibility categories provide initial valuable insights on the
similarity of proposals that are built upon different technolo-
gies. Nonetheless, if we want to study the kind of flexibility
that is related to a specific technology, we need to look finer
granular. For a finer segmentation, we define the concept of
flexibility aspects. Flexibility aspects are the applications of
flexibility categories to topology, flows, functions, or resources
of the network. In this way, adapt configuration is split into
flow configuration and function configuration; locate functions
is reformulated as function placement; and scale is split into
function scaling, resource scaling and topology adaptation.
Additionally, we define parameter configuration as distinct
from function configuration, reflecting the ability to change
the operation parameters of a function instead of the whole
functionality.



TABLE I
COMPARISON OF SDN, NFV AND NV TECHNICAL FOCUS AREAS W.R.T. FLEXIBILITY SUPPORT.

Flows Functions Resources Topology

SDN Routing, traffic engineering,
flow monitoring – Flow bandwidth, control

plane adaptation –

NFV –
Dynamic provisioning and
placement, service function
chaining, monitoring

Adaptation of computation,
memory, I/O –

NV – Virtual network
implementation

Virtual node capacity and
link bandwidth embedding

Virtual network topology
adaptation, multi-tenancy,
isolation

TABLE II
TECHNICAL CONCEPTS AND THEIR SUPPORT OF FLEXIBILITY IN NETWORKS. (X: MAIN TARGET)

Category Aspect (see Sec. III-B) SDN NFV NV

Adapt configuration
Flow Configuration: flow steering X - -
Function Configuration: function programming - X -
Parameter Configuration: change function parameters - X X

Locate functions Function Placement: distribution, placement, chaining - X X

Scale Resource and Function Scaling: processing and storage capacity, number of functions X X X
Topology Adaptation: (virtual) network adaptation - - X

The definition of each flexibility aspect becomes clear when
we look into the technologies of softwarized networks. For in-
stance, for configuration SDN enables programmability of flow
forwarding, aided by a global view of network topology and
traffic status, thus provides flexibility in flow configuration.
NFV mainly provides flexibility in function configuration, as
it virtualizes network functions and makes them deployable on
commodity hardware. Besides, the parameters of such func-
tions can be easily tuned, thanks to software implementation,
leading to flexibility in parameter configuration. The virtu-
alized networks in NV, especially mobile networks, typically
possess a number of parameters, which can be adjusted with a
target of higher transmission throughput. That being said, NV
enables flexibility mainly in parameter configuration.

The location of network functions plays a vital role in a
system’s performance. Obviously, softwarized functions can be
more easily placed on different servers, compared with hard-
ware middleboxes, therefore enables the flexibility in function
placement in NFV. Virtual Network Embedding (VNE) han-
dles the procedure of allocating virtual nodes, which we refer
to as “functions”, and it guarantees the flexibility in function
placement in NV.

Scalability issues are also tackled by network softwarization
technologies. SDN, NFV and NV all provide flexibility in
resource and function scaling, however with different focus.
In SDN, a resource typically means the bandwidth assigned
to a particular flow and functions are in the form of con-
trollers. Virtualized functions in NFV have both properties of
assigned computation resource and deployed instance amount.
Embedding virtualized networks onto a substrate employs two
strategies. The first one is to adapt the allocated resource, i.e.,
bandwidth, for virtual links. The other one is to change the

mapping itself, migrating virtual links to other physical links,
which poses the flexibility in topology adaptation.

As a final step in the confection of our list of flexibility
aspects, we merge together resource and function scaling
based on their similarity. Although conceptually different, in
practical applications there are not many differences between
providing a VNF with more resources and creating a new VNF
that uses the additional resources. Based on our explanations,
we define six flexibility aspects as illustrated in Fig. 4 :

• Flow Configuration: Creation, removal or adaptation of
the course of flows. The steering of the flows inside a
network is usually performed by configuring forwarding
policy for a flow on each network hop. An example of
flow configuration is depicted in Fig. 4a.

• Function Configuration: Adaptation of the functionality
of network elements such as firewalls, NATs, proxies,
or load balancers, for example through software virtual
network functions or programmable bare metal switches.
Fig. 4b shows an example of function configuration.

• Parameter Configuration: Adaptation of the values and
policies applied by each network function. This means
that network functionality remain the same, however, the
parameters configured on those functions can vary. An
example of parameter configuration is depicted in Fig.
4c.

• Function Placement: Adaptation of the location of net-
work functions. The function placement has a direct
impact on the network performance, e.g., the SDN con-
troller placement with respect to switches affects control
latency. A representation of function placement is shown
in Fig. 4d.

• Resource and Function Scaling: Adaptation of the



assignment of network resources to flows or functions,
or adaptation of the number of deployed instances of a
specific function. For instance, extending the assigned
processing and storage capacities to a load-balancing
function, or increasing the number of SDN controllers.
Fig. 4e shows a simple example of resource scaling.

• Topology Adaptation: Adaptation of the graph structure
of the network through adding or removing nodes or
links. An example of topology adaptation is depicted in
Fig. 4f.

Table II gives an overview of the categories and related
aspects, as well as the major flexibility aspects that each
technology supports. The concept of flexibility aspect is very
useful to dissect the flexibility of softwarized network designs.
Owing to this, the six aspects will be used as criteria to classify
the publications that we incorporate in this survey.

C. Cost of Flexibility

The price to pay for flexibility in networks is related to the
resources and guarantees that are needed to realize and operate
a more flexible system design. For example, more data centers
have to be installed to support function or controller migration.
In addition to infrastructure cost including its operation, the
costs emerging from the reaction to changes, such as migration
overheads, need to be considered.

At the moment, we do not know how exactly costs are
related to flexibility and we expect that this will also vary with
designs and flexibility aspects. We rather argue at this state of
research that it is not enough to come up with new network
designs for flexibility, but the flexibility vs. cost trade-off has
to be considered as well. Intuitively, one might think that
costs rise with increased flexibility. However, a more flexible
design can lead to cost reductions in the longer term. For a
quantitative analysis and, in particular, for the comparison of
different design choices, we need to consider all cost factors
that are related to flexibility.

According to our previous work [1], we distinguish four
main categories of cost in relation with flexibility. To provide
more flexibility, additional resources, e.g., data centers, might
be required (CAPEX) and the respective systems might em-
ploy a more complex mechanism to support adaptation, which
also translates into cost. Operational cost (OPEX) comprises
all costs for the operation of a network that might increase due
to flexibility, e.g., control or data plane latency. In addition
to the above normal operation cost, we have cost involved
in the adaptation process, e.g., synchronization overhead or
configuration latency. Moreover, costs might occur due to
the violations of SLAs, when adaptation takes longer than
expected.

Owing to the high importance of the cost, it should always
be considered in every flexible network design. In our analysis
of the state of the art, we pay particular attention to whether
the cost of the adaptation is addressed by the proposals.

D. Flexibility in Non-softwarized Communication Networks

At the beginning of this section, we demonstrate that the
term “flexibility” is growing in popularity within the field of
communication networks. This is in line with the increasing
popularity of softwarized networks, since both concepts are
highly correlated. However, this does not mean that flexibility
is unique to softwarized networks. Indeed, a number of tech-
niques used by non-softwarized communication networks are
used to increase their flexibility.

In legacy mobile networks, examples of flexible net-
works are self-organizing or self-optimizing networks (SON),
which have been implemented in LTE networks [74]. Self-
organization refers to the ability of the network to configure
itself in order to properly operate, whereas self-optimization
takes the configuration one step further so that the operation
is enhanced [75].

A self-organizing LTE network is set to allow for automatic
configuration of new base stations, so that the operator can
extend the network easily, thus increasing the flexibility of
the network. After the connection, the base station is able
to acquire the software to operate along with the required
parameters, such as the cell identity, power settings, tracking
area code, etc. For that, the base stations are prepared to
configure themselves according to the data they receive from
the core network and from the transmissions they sniff from
neighbor cells.

Once the initial configuration is done, base stations are also
able to optimize their operation in an autonomous fashion.
For instance, they can dynamically agree with other neighbor
cells on the configuration of the random access channel. This
channel is used for initial uplink access and it is particularly
prone to suffer from interference. A more advanced technique
is inter-cell interference coordination, through which the base
stations can dynamically adapt their scheduling to the load
of neighbor cells. In order to do so, the base stations can
be configured to exchange information about the transmitted
power and received interference in each resource block.

Self-optimizing networks also cover load balancing between
base stations, which may increase the total utilization of the
network and its ability to adapt to traffic changes. For this,
the base stations can ask others about their load and perform
a handover to a less loaded cell if needed. A similar technique
can be used to improve the network configuration after a link
failure. In case of a radio link failure because of an early or late
handover, the mobile will reconnect to the old or a new cell,
respectively. In either case, both cells exchange information to
improve their handover thresholds and avoid the same problem
in the future. This technique improves the robustness of the
network. Overall, all the mentioned techniques enhance the
ability of the network to support changes, thus increasing its
flexibility.

Besides wireless networks, wire line networks also target
flexibility to some extent. Routing algorithms can be flexible
in adapting to different topologies and traffic conditions and
still achieve satisfactory performance [76]–[78]. In multicast,



(a) Example of flow configuration. The old flow
path (dashed line) is replaced with a new one
(solid line). The endpoints remain the same, but
the intermediate node have changed.

(b) Example of function configuration. A DPI
function is being replaced by a load balancing
function in the left most node.

(c) Example of parameter configuration. A new
policy is being loaded into the load balancing
function of the topmost node.

(d) Example of function placement. The firewall
function in the lower left node is being moved
to lower right node.

(e) Example of resource scaling. Additional CPU
resources are being allocated to the DPI function
in the right most node.

(f) Example of topology adaptation. The link
connecting the central and the lower right node
is being deleted, and a new link connecting the
central and the right most nodes has been created.

Fig. 4. Depiction of flexibility aspects in a simple network. Grey circles represent nodes, thick green lines are links, narrow red lines represent flows (when
relevant), and white hexagons represent functions within nodes. Three different functions are considered: firewall, Deep Packet Inspection (DPI), and load
balancer.

flexible allocation of forwarding states among routers [79] can
potentially balance the utilization of routing tables. Routing
in overlay multicast tree is also more flexible than legacy
IP multicast tree [80]. Moreover, networking protocols are
also enhanced with the consideration of flexibility, and the
examples are P2P [81], [82], Neighbor Discovery [83], BGP
[84] and OSPF [85].

There are many other examples of flexibility in legacy
networks, since adaptation to changes has been always a
desirable characteristic of any network. Nonetheless, in this
survey we limit the scope to softwarized networks, as these
are specially related to flexibility and already have a large state
of the art for a solid analysis.

E. Flexibility in Other Areas

Flexibility is a concept that is present in many fields besides
communication networks. A survey on flexibility, even if it
is focused on softwarized networks, would not be complete
without an outlook on other fields. Therefore, we present a
brief overview on the flexibility in a variety of research fields.

1) Economics: In economics, decision-making is a very
important research field, in which flexibility is a very common
term [9], [10]. Any decision or plan implies risk because it
deals with uncertain factors. The ability to adapt to changes
in these uncertain factors is very important in order to avoid
losses. For instance, in [10] the authors address the definition
and measurement of flexibility of financial decisions. They
measure the final result of such decisions with some attribute,
such as money. Then, they model the beliefs about the attribute
of the uncertain results with what they call a prospect. Finally,
they define the certain equivalence as the money that the
decision-maker would take instead of making the risky de-
cision. When comparing two different prospects, the one with
the higher certain equivalence is more flexible. Although this
definition and measurement of flexibility is rather thorough
and suitable for financial decisions, it is hardly possible to
translate it into communication networks.

2) Manufacturing: Flexibility in manufacturing has been
a major concern since the 1950s, as manufacturers want to
adapt efficiently to changes in the demand, raw materials,



regulations, etc. There are several publications that survey the
vast literature in this topic, such as [86] and [87]. In [87], the
general concept of flexibility of a system is defined as “its
adaptability to a wide range of possible environments that it
may encounter”. Moreover, they define flexibility in manufac-
turing as “being able to reconfigure manufacturing resources
so as to produce efficiently different products of acceptable
quality”. They define 11 types of flexibility: machine, ma-
terial handling, operation, process, product, routing, volume,
expansion, program, production, and market flexibilities. For
each type, they propose a definition and a measure. These
measures are often ratios between some feasible quantity and
the ideal one. Measures of manufacturing flexibility are also
the exclusive focus of some other publications. Some examples
are [88], which is dedicated to their formal definition, [89],
which proposes a framework to facilitate their development,
and [90], which addresses the problem of measuring supply
chain flexibility with updated methods.

3) Management science: Management science is also one
of the fields in which flexibility has been widely studied, since
the ability to anticipate and adapt to changes is one of its
main objectives. However, they suffer from the same vague
definitions and measurements of flexibility. Abundant research
has been done to define, categorize and measure it [11]–[13].
One example is [13], in which the authors propose a com-
prehensive definition and metrics for flexibility. They identify
four dimensions of flexibility: time, range, intention, and focus.
According to the time it takes for a system to respond to
changes, they divide flexibility into operational (short term),
tactical (medium term), and strategic (long-term) flexibility.
An alternative division is based on the range, that is, on the
number of options that a system have in order to adapt to a
change: foreseen flexibility (for likely changes) and unforeseen
flexibility (for unlikely changes). Furthermore, there are two
types of flexibility regarding intention: offensive and defensive
flexibility. Finally, they identify the focus, i.e., the area in
which the flexibility is created, as the fourth dimension, which
motivates yet another division: internal and external flexibility.
In order to measure flexibility, the authors propose a set of four
metrics: efficiency, responsiveness, versatility, and robustness.

4) Software engineering: Software flexibility is addressed
in [14]–[16], and a software can generally be tagged as flexible
or inflexible. In [16], flexibility is treated in a similar manner
to complexity. Indeed, the authors aim to model the evolu-
tion complexity of the software. In order to define evolution
complexity, they base on an evolution function, which maps
the old problem, old implementation and shifted problem into
the adjusted implementation. Then, they define a cost function
relating the evolution function to the effort needed to make
and adjustment. Depending on whether the complexity of
the cost function is constant or linear, they call the software
flexible or inflexible, respectively. The flexibility of software
is closely related to that of communication networks. In fact,
the emergence of softwarized networks is the main cause of
the interest in flexibility within communication networks.

After reviewing all these different fields, we observe that

flexibility is a desired property of a system, and it is often
regarded as an improvement over previous designs. Moreover,
we notice that our notion of network flexibility is also consis-
tent with other notions that exist in other fields. Finally, we
observe that the main problem in other fields is the lack of a
rigorous definition and a homogeneous quantitative measure.
In the following analysis, we see that this is also the main
challenge with softwarized networks.

IV. ANALYSIS OF FLEXIBILITY IN THE STATE OF THE ART

In this section, we present a comprehensive analysis of
flexibility in the literature based on a selection of publications
regarding softwarized networks. Our list of surveyed publi-
cations includes publications that explicitly claim flexibility,
either mentioning flexibility as one of the design goals or as
a consequence of the design, and publications that meet our
definition of flexibility without using this term explicitly. In
this way, we are able to investigate flexibility in the literature
based on content and not on terminology.

Our scope covers all kinds of softwarized networks, in-
cluding wireline networks, data center networks, and mobile
networks (mobile core network and radio access network).
Furthermore, the publications leverage flexibility for various
purposes, such as policy enforcement, load balancing, failure
recovery, throughput enhancement, deployment cost reduc-
tion, etc. To present the publications, we follow a structure
that combines the three categories of flexibility and further the
aspects that reside in different categories (defined in Sec. III-B)
with the different network softwarization technologies (intro-
duced in Sec. II). A summary of this classification is shown in
Table III. A more comprehensive table showing all surveyed
papers with their main objectives, as well as adaptation costs
and time, is shown in Table VII at the end of this survey.

A. Adapt Configuration

1) Flow Configuration in SDN: SDN, in principle, fur-
nishes opportunities to perform adaptive routing, load balanc-
ing and link failure recovery. This is accomplished by creat-
ing, deleting and re-configuring flows within the forwarding
devices.

Nguyen et al. [91] define an optimization problem that
maximizes the total amount of traffic delivered to the des-
tination nodes, under the constraint of restricted TCAM in an
SDN switch. Due to flow configuration flexibility of SDN for
changing traffic situation, traffic can be separated into flows for
which policies can be implemented via flow rules and others
for which policies cannot be satisfied and which have to be
routed to the controller. The authors argue that the flexibility
of optimizing such flow configuration comes at an intensive
computation cost, as the optimization problem is NP-hard.
Besides, extra forwarding latency is expected due to controller
invocation of unsatisfied flows, which leads to additional cost.

The work in [92] considers traffic engineering in a hybrid
network running SDN and legacy OSPF, and leverages flex-
ible traffic flow distribution for changing traffic loads. An



TABLE III
CLASSIFICATION ACCORDING TO FLEXIBILITY CATEGORIES AND ASPECTS

Category Aspect Publications

Adapt Configuration

Flow config in SDN [91]–[109]
Function config in NFV [103], [104], [108], [110]–[113]
Parameter config in NFV [112], [114]–[117]
Parameter config in NV [118]–[121]

Locate Functions Function placement in NFV [99], [107], [109], [112], [122]–[135]
Function placement in NV [136]–[140]

Scale

Resource and function scaling in SDN [141]–[144]
Resource and function scaling in NFV [113]–[117], [145]–[152]
Resource and function scaling in NV [106], [153]–[160]
Topology adaptation in NV [138], [161]–[165]
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Fig. 5. Example of configuration adaptation. The left hand side demonstrates
Cloud-RAN [113], in which the Baseband Units (BBUs) are centralized as a
pool so as to achieve cost savings on baseband resources. The remote radio
heads are connected to the BBU Pool via fiber, and the RAN parameters
can be dynamically configured. The right hand side is an SDN network,
whose forwarding behavior is defined by the load balancing application in
the controller. Based on the current traffic status, the controller reconfigures
the flow rules in the data plane.

optimization problem is defined to minimize the maximum
link utilization. Whereas flow forwarding in OSPF-enabled
nodes follows a strict shortest-path strategy and flows entering
an SDN-enabled node can flexibly be allocated to different
possible outgoing links, so that the global traffic distribution
becomes more balanced.

Lee et al. study the routing problem in traffic engineering
and propose a resource preference aware routing scheme [93].
The flexibility of configuring flows with SDN helps to balance
the load in the network, which is illustrated conceptually
on the right-hand side in Fig. 5. Two types of resource are
identified while making routing decisions, i.e., link bandwidth

usage and flow table usage. First the analytic hierarchy process
analyzes the characteristics of network traffic and quantifies
the resource preference. Second, the k-shortest path algorithm
creates a list of candidate paths. With the resource preference
value, the RPA-RA algorithm evaluates the path candidates
and returns the best candidate.

For network management, SDN can also enforce dynamic
traffic policies in a flexible manner, under changing network
statistics. [94] proposes a policy-based management approach
which gathers the monitoring statistics and reconfigures the
data plane forwarding accordingly. Monitoring statistics are
the context to tune predefined policy templates, and based
on the templates, the controller generates and pushes unique
flow rules that accommodate the current traffic situation. The
authors evaluate a link failure scenario, and emphasize the time
factor in adaptation: traffic redirecting to the backup server
should happen within a short time. However, they scale time
only in “periods”, ignoring the actual values.

To help flexibly route traffic and mitigate frequent controller
invocation of new flows, Su et al. leverage machine learning
techniques and blocking island paradigm and propose the
CheetahFlow scheme [95]. A support vector machine pre-
dicts frequent communication pairs and the controller sets up
wildcard flow rules accordingly. Blocking island represents
the network topology in the form of a tree and demonstrates
available bandwidth information. Experiments show that the
framework can significantly reduce forwarding latency and
decrease the number of flow rule entries in the switches.

The work [96] studies routing in data center networks.
Applying flow configuration flexibility to a multi-path routing
scenario, the authors focus on decreasing the involved cost
of route adaptation. Whenever the controller detects over-
utilization of a certain link, it automatically calculates a list
of candidate routes, which bypass the congested link, and
choose the one with lowest congestion level. The overhead
of managing flow rules is considered as a cost factor for
adaptation, and such cost grows significantly when flow migra-
tion is frequent. To solve this issue, the Segmented Wildcard
Forwarding scheme potentially shrinks the number of flows



that need to be updated and can still achieve a high overall
throughput.

Cascone et al. advocate enforcing some of the forwarding
policies directly at the data plane [97], i.e. SDN switches, with
the support of OpenState [166] that allows packet processing in
a stateful manner. In the application that guarantees forwarding
consistency, OpenState allows a flexible choice of granularity
and lifetime of a forwarding decision. Experiments indicate
a significantly smaller switch processing latency than in the
case of invoking the controller every time a flow emerges.

By decreasing the convergence time, SDN enables faster
recovery from failures. [98] shows that rule installation time
during flow setup is significant and thus suggests a new
systematic architecture MAZU, which “provides operators ad-
ditional flexibility in designing schemes to better meet failover
requirements in their networks”. The packet-ins of new flows
are redirected to a fast proxy that takes over the task of inter-
acting with the controller. Furthermore, an algorithm running
inside the controller orders the flow rules before pushing them
to the switches in order to further shorten the installation time.
The latency to update the network state (adaptation) upon
failure refers to a time constraint with the target adaptation
time in the order of tens of seconds. Implementation based
evaluation shows that MAZU can decrease such latency by up
to 5 times.

To enable a flexible network with middleboxes of abun-
dant functionalities, several works propose the integration of
SDN and NFV. One example is [99], which simultaneously
optimizes the maximum link usage/CPU utilization and the
maximum delay of flows. A joint optimization model places
network functions and embeds flow paths at the same time.
Here the flexibility in flow configuration serves as a supporting
aspect, as after placing network functions, routing is manda-
tory to guide data traffic to traverse those functions.

Another work in this direction is SDNFV [100], in which
the authors claim that SDN alone cannot tackle complex
packet processing functionality, such as proxies and deep
packet inspection, which rely on a per-packet process and have
to be performed by virtual network functions. To demonstrate
the efficiency and flexibility of SDNFV, a prototype moni-
tors flow statistics and once it detects elephant flows, it re-
orchestrates the service chain and re-routes other mice flows
to decrease the average latency.

Other than data plane flows, control plane flows can also
be potentially configured in a dynamic manner. Basta et al.
consider virtualization of SDN networks, where distributed
hypervisors support the isolation of tenant networks [101].
As the network requirement changes, the adaptation of hy-
pervisors’ locations and the reroute of control paths enable
a more flexible control plane. The authors clearly state the
adaptation time as the time to reroute control paths, and they
design an elaborate protocol to speed up path migration. Pro-
totype evaluation shows that the migration takes maximum 50
milliseconds, and during the migration execution, the average
control latency increases.

[102] considers a combination of SDN and IoT (Internet

of Things), where flexible flow management for the control
plane is as important as that for the data plane. The authors
propose a game theory approach to increase the controller’s
utility and reduce latency simultaneously. They calculate a
pay-off function of each controller instance and forward it
to a global decision maker which decides when and where to
offload control traffic.

Flow configuration also plays a role in several mobile
network scenarios. Mobile networks usually experience large
variability in user distribution and traffic demand, which
demands for flexibility as a somehow mandatory characteristic.
This explains why a large amount of research effort has
been put into designing and implementing Software Defined
Mobile Networks (SDMN). Nonetheless, proposals featuring
flow configuration in SDMN are less abundant than in non-
mobile SDN domains. The reason is that flows in the wireless
network have much less alternative paths, i.e. single path
between base station and mobile device, than in the wireline
mobile core network, for example. Nevertheless, there are
notable Software Defined Mobile Networks (SDMN) that have
been proposed featuring flow configuration focusing on the
core part.

The first example is CellSDN [103], which is an SDN-
based architecture for the LTE core network. Four extensions
help to adopt the SDN architecture in the mobile scenario:
routing policies based on subscriber attributes instead of IPs,
presence of local agents at the switches to enhance scalability,
ability to configure actions at the switches, and network
virtualization. The first extension groups devices according to
their attributes, such as cellular network provider or device
type. After grouping, the network can deal with large flows of
similar characteristics, instead of small, single-device flows.
Then, the controller can decide how to route those flows in
order to fulfill the QoS requirements.

In [104], the SDN-based mobile core network architecture
SoftCell is presented. This architecture provides flexibility to
the mobile core network to be prepared for changing traffic
and network increase via reconfiguration of data and control
flows. Instead of the classical LTE core, in which the flow-
forwarding functions (S-GW and P-GW) are performed on
dedicated hardware, SoftCell proposes to use simple com-
modity switches connected to a central controller, which takes
over routing decisions. The controller steers the flows through
different switches and middleboxes (devices implementing
network functions), according to their QoS requirements.

MobileFlow [105] is a further proposal to combine SDN
with mobile networks. Here, SDN provides the ability to
reconfigure the flows, thus granting flexibility to ossified, con-
ventional mobile networks. The main feature of MobileFlow
is the use of MobileFlow Forward Engines (MFFE), similar
to OpenFlow switches, and MobileFlow Controllers (MFCs),
similar to OpenFlow controllers, instead of the conventional
architecture of the LTE core. MFFEs are able to route the data
flows to different network functions (like DPI), PDNs, and the
Internet, according to the decisions of the MFCs.

Akyildiz et al. present SoftAir [106], a comprehensive



description of a virtualized SDN architecture for both core
and radio access networks. Among other characteristics, it
includes the ability of flexibly steering the traffic across
data-plane nodes to balance the load, support mobility and
guarantee QoS. Within the core network, SoftAir proposes to
use simple software defined switches and a network controller
implementing re-routing algorithms to dynamically adapt the
forwarding rules. For the RAN, the support of OpenFlow
is envisioned in order to enable smooth transitions among
different radio technologies, which will increase the number
of options to re-route flows.

KLEIN [107] is another detailed SDN design of a flexible
mobile core, which also features virtualization of functions.
Its flexibility relies on a special resource management module,
which can steer the traffic coming from users to the optimal
data center. The goal is to balance the load among the
data centers while meeting the delay, bandwidth and service
constraints. To achieve this goal efficiently, the authors propose
to aggregate user flows into group flows, hierarchically divide
the problem into more convenient subproblems, and solve
separately these subproblems for the control and data planes.
According to the evaluation results, KLEIN is scalable and
achieves nearly optimal flow management.

SoftNet [108] is a mobile network architecture that proposes
SDN- and NFV-based core and radio access networks. It
features flow configuration among multiple Radio Access
Technologies (RAT), which makes the network more flexible
when facing user mobility. Namely, it includes unified support
for multiple RATs, enabling multiple alternative paths toward a
single user. The authors of SoftNet emphasize that these paths
can be used to set different flows, in order to offload traffic
from the core network. This flow steering is performed by
leveraging the SDN core network, whose control is centralized.

Finally, in [109] the authors present the 5G NORMA
project, which provides a design for a highly flexible mobile
network architecture following the SDN and NFV paradigms.
Among other characteristics, it features flexible routing of
flows to deal with traffic variations or application require-
ments. The routing task is mainly performed by a so-
called Software-Defined Mobile Network Controller (SDM-
C), which is one of the elements of the proposed control
plane. Furthermore, re-routing motivated by user mobility is
also assisted by the Mobility Management entity.

In summary, we observe that the advantages of flexible
flow configuration in SDN have been applied to all kinds of
SDN networks, including wired and wireless networks. The
implementation of this aspect is the same among all of them,
since it is a standard feature in SDN networks. Nonetheless,
the goals of exploiting this aspect are different: maximize
traffic delivered ([91], [167]), minimize link utilization ([92],
[99]), balance the load ([93], [106]–[108]), dynamically adapt
network policies ([94], [101], [104]–[106]), reduce switching
latency ([95], [97], [99], [102]), decrease the adaptation cost
([96]), fast recovery from failures ([98]), or support numerous
or complex virtual network functions ([100], [101], [103],
[109]).

2) Function Configuration in NFV: Compared with hard-
ware middleboxes, network operators would encounter less
constraints in managing virtualized NFs that run in commodity
servers. Indeed, virtualization techniques enable the flexibility
to configure various functionalities at runtime.

Hwang et al. present a platform called NetVM [110] that
allows middleboxes such as firewalls, proxies, and routers
running in virtual machines, as a complement to the con-
trol plane capabilities in SDN. The flexibility of configuring
various functions could fulfill the dynamic requests from the
tenants. NetVM is supported by DPDK, which guarantees
packet processing at near line speed. In order to facilitate
different functions, abstractions of different network services
are also imported to DPDK.

As with SDN, mobile networks have also benefited from
the advantages of NFV. Virtualizing mobile functions allows
them to be placed in a centralized data center instead of remote
dedicated hardware, thus simplifying the management of core
functions and paving the way towards enhanced inter-cell
coordination. Since this characteristic perfectly complements
the advantages of SDN, many SDMN proposals also feature
NFV. This is especially prominent for mobile core network
architectures, as the ones presented in the previous section.

The authors of CellSDN [103] consider an early form of
function configuration in their SDN design. They do not
explicitly mention NFV, since this concept was coined at the
same time as the publication of CellSDN, but the underlying
idea is that of NFV. Indeed, CellSDN describes how functions
should be abstracted from hardware and flexibly located at
the optimal positions. They argue that some (virtualized)
functions, such as DPI or header compression, would be better
performed at the switches than at the central controller. For
instance, with DPI at the switches, it would be easier to
identify applications and hence improve flow creation and
routing. With that in mind, the authors consider that not every
switch in the network should support these virtual functions,
but only those configured by the central controller to do so.

SoftCell [104], which is introduced in the previous section,
also features function configuration. Specifically, the SoftCell
architecture allows to flexibly implement mobile network
functions on off-the-shelf middleboxes. The authors suggest
replacing all functions in the MCN with software implemented
on commodity servers, which are referred to as middleboxes.
In SoftCell, every middlebox can be configured to implement
different functions, such as firewalls or video transcoders.

Following the lead of CellSDN and SoftCell, SoftNet [108]
also includes the flexible configuration of virtual mobile net-
work functions as one of its main features. Indeed, the authors
describe functions dealing with communication control and
network management, which can be turned on or off according
to the state of the network. This ability is included in order to
deal with different communication scenarios.

The use of NFV over mobile networks also extends to the
RAN. In this regard, the most popular NFV-based RAN archi-
tecture is Cloud-RAN [113] (illustrated on the left-hand side
in Fig. 5), upon which many other mobile NFV proposals are



built. This includes proposals featuring function configuration
in softwarized mobile networks.

In [111], Sundaresan et al. present an architecture based on
Cloud-RAN, in which Baseband Units (BBUs) can flexibly
reconfigure their functionality, in contrast with the static
configurations of Cloud-RAN. Specifically, BBUs can decide
to use Fractional Frequency Reuse (FFR), Distributed Antenna
Systems (DAS), or a combination of them. They claim that
FFR is best suited for static users demanding high throughput,
whereas DAS saves spectrum and power usage in the case of
low-traffic mobile users. The selection is made in order to both
fulfill the user requirements and minimize the resource usage.
The time needed to perform the adaptation is also considered,
since the RAN imposes strict delay constraints.

Another example of function configuration in mobile net-
works can be found in FlexRAN [112], a platform for im-
plementing a software defined RAN. In FlexRAN, the control
functions are softwarized and either delegated to a controller or
handled by the eNodeBs. The location and operation of these
control functions can be flexibly modified in order to face
traffic changes or to meet operator decisions. Centralizing the
control functions in the controller allows for a general view
of the network, which provides better scheduling decisions.
In contrast, distributing these functions over the eNodeBs
enables faster responses for time-critical decisions. Further-
more, the authors present a highly configurable architecture,
in which different implementations of the control functions
can be dynamically updated in the network elements. This
implies that the functions that are executed in the controller
or in the eNodeB can vary according to the requirements
of the operator and the state of the network. Although the
latency between controller and eNodeBs is mentioned as a
possible requirement, the latency caused by the function self-
configuration is not directly considered.

To sum up, we see that function configuration in NFV
is a lot leveraged in the area of mobile networks, although
the concept is also investigated in other networks [110].
Within mobile networks, this aspect is exploited in both the
core network to enable management and application functions
complementing the core functions ([103], [104], [108]), and
by radio access networks to switch between radio technologies
[111], or dynamically vary RAN functions [112].

3) Parameter Configuration in NFV: Although NFV is first
appeared with wireline networks, little prior work intention-
ally leverages or enhances flexible parameter configuration.
Nonetheless, proposals of NFV mobile networks tackling
parameter configuration are abundant. Many proposed Cloud-
RAN-based networks dynamically seek the best configuration
of their function parameters, especially when they are com-
bined with other technologies such as Coordinated MultiPoint
(CoMP).

CoMP is a technology that aims at wisely combining the
transmissions of multiple base stations to improve the through-
put and latency of data flows. Behind this simple underlying

idea, a high number of parameters need to be carefully chosen:
the set of base stations covering a user, beamforming param-
eters for each antenna of those base stations, transmission
power, etc. Since an NFV architecture such as Cloud-RAN
facilitates communication between base stations, configuring
CoMP parameters in a dynamic and coordinated manner has
become interesting for many researchers.

The first example of this interest is [114], where Ha et al.
develop two algorithms for implementing CoMP over Cloud-
RAN. They enable the configuration of the parameters of the
functions handling CoMP in a flexible way, thus allowing
the network to adapt to changes in the distribution of users,
link qualities, etc. Specifically, they focus on the optimal
selection of the downlink transmission power between the
baseband units (BBUs) and mobile users, such that they
reach the desired user QoS without exceeding the maximum
capacity of the fronthaul link. At the same time, the authors
emphasize that their algorithms are faster than other state-of-
the-art algorithms, thus enabling their use in a more dynamic
environment. Nonetheless, they express their convergence time
only in terms of iterations, so an actual estimation of the
adaptation time is not provided.

The implementation of CoMP over Cloud-RAN is also
addressed in [115]. Its contribution on selecting and changing
CoMP parameters in a fast manner allows the network to better
support changes, thus making it more flexible. The authors
focus on the optimal clustering of users and beamforming,
such that a QoS-related utility function is maximized. In order
to solve the optimization problem efficiently, they develop two
algorithms that solve both problems suboptimally with relaxed
constraints. Since the re-selection of parameters happens every
scheduling slot, the adaptation time should be less than 1
millisecond.

The combination of CoMP and Cloud-RAN is tackled
once again in [116], with a different objective in mind. This
time, the authors present two low-complexity algorithms to
select the optimal allocation of computational resources, RRH
selection, and the beamforming in order to minimize the
power consumption for Cloud-RAN. The fast adaptation of
BBU and RRH parameters clearly improves the flexibility of
the network. The work confirms the importance of jointly
optimizing the power usage of the BBUs and the RRHs and
proposes a cross-layer optimization scheme. The computation
time required for the algorithms to converge, i.e., the adapta-
tion time, is not presented, but the authors mention that real-
time operation is still not possible in realistic scenarios.

Although the implementation of CoMP is a good opportu-
nity to target flexible parameter configuration, there are other
functions in a mobile network with configurable parameters.
For example, Wang et al. focus on the scheduling parameters
in [117]. They present a two-level scheduling algorithm for
Cloud-RAN, in which scheduling parameters are dynamically
configured to adapt to changes. These changes are usually
traffic variations and user mobility, which could threaten com-
pliance with computational or delay requirements. In response
to this, the scheduler is designed to schedule users in a



wireless network while taking into account both requirements.
The optimal beamforming parameters, modulation and coding
schemes (MCS) and data rates are selected in a way that the
system power is minimized and the required QoSs for the users
are fulfilled.

Finally, FlexRAN [112], which is presented in the previous
section, also features parameter configuration in virtualized
control functions. Namely, it supports flexible reconfiguration
of the policies (i.e., sets of parameters) that rule the control
functions. In order to enable such reconfigurations, the au-
thors design specific messages within the FlexRAN protocol
that connects the central controller with distributed FlexRAN
agents. By using this protocol, the parameters of the virtualized
control functions can be updated at runtime in response to
changes in the network.

In summary, parameter configuration in NFV is particu-
larly important in virtualized radio access networks. More
specifically, it is popular among those solutions including
Cloud-RAN and CoMP ([114]–[116]), although the presence
of CoMP is not mandated ([112], [117]).

4) Parameter Configuration in NV: Virtual networks, which
are embedded in physical nodes and links, are logically
isolated from each other. Every virtual network has its own
policies and parameter settings, which can be updated by
tenants or network providers. We analyze the flexibility of
changing virtual network parameters in the following publica-
tions.

Bhatia et al. propose Trellis as a platform to provision
virtual networks on commodity hardware in a flexible manner
[118]. They criticize that container-based virtualization is in-
flexible, because all virtual hosts share the same data structures
in the OS kernel, which potentially limits the diversity of
virtual networks. As an improvement, Trellis can provide the
possibility for tenants to customize their own IP network stack,
such as parameters in congestion control and other algorithms.
In the meantime, conflicting parameters of different virtual
networks do not impact on the substrate’s stability.

Gatekeeper [119] studies the problem of network virtual-
ization in data center networks and targets virtual network
performance isolation as the main design goal. The parameters
are defined as the minimum guaranteed and the maximal
allowed data rate among VMs of a network slice. Tenants are
endowed the flexibility to set the bandwidth parameters, and
at the same time, data center operators could still ensure the
effective usage of underlying resources. To achieve such goals,
tenant VMs are placed close to each other in the topology
and built-in monitors report periodically traffic status to help
control the transmission rate of VMs.

FlowVisor [120], as one of the first proposals of an SDN
network hypervisor, virtualizes SDN networks on top of an
SDN-based physical network. In the form of user defined
policies, the parameters of each tenant virtual network slice
can be flexibly supported and extended in the hypervisor. The
policies in turn define the allocation of network resources.
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Fig. 6. In CoVisor [121], the policies from different applications are
incrementally combined with the order specified by network administrator.
Thereafter the combined policies are translated into flow rules, with the
information of physical to virtual switch mapping.

Evaluation suggests that such switch-level virtualization al-
lows isolation of various traffic, and still achieves hardware
forwarding latency.

The policy configuration of virtual SDN under hybrid net-
work control is studied in [121]. The authors propose CoVisor
(illustrated in Fig. 6) to process policies from multiple applica-
tions of different programming languages and from different
controller platforms in a flexible manner. Each application,
with its own virtual network view, updates the policies in
response to different network events. CoVisor incrementally
compiles such policies into a single composed one and sets up
flow rules afterwards, which is several magnitude faster than a
naive implementation. Therefore, the design could potentially
adapt within a brief time upon network changes.

As expected, we observe that parameter configuration in NV
mainly addresses the policies of the different network slices
([119]–[121]). However, other parameters of virtual networks,
such as those of congestion control algorithms, can be also
flexibly adapted by tenants [119].

B. Locate Functions

1) Function Placement in NFV: When functions are soft-
warized, they can be installed in any hardware that supports
virtualization, regardless of vendors and models. Based on
this premise, we may locate functions to achieve optimal
performance metrics. For example, functions can be placed
closer to traffic hot spots to avoid potential performance
degradation that comes from increased buffer congestion level.
Besides, migrating functions to unaffected area when node or
link goes down ensures minor service interruption.

vConductor [122] is an advanced NFV management solution
which manages multiple physical domains in a flexible and



automatic way. The authors apply a resource scheduler to
decide the placement of virtual network functions in the
underlying physical infrastructure, as well as the amount of
resources that should be reserved to guarantee the perfor-
mance of the functions. With traditional WAN (Wide Area
Network) infrastructure, vConductor provisions cloud services
that would span several data centers. Therefore, end users may
enjoy shorter response time when applying services from a
data center within close proximity.

Similarly, [123] also targets NFV orchestration that supports
automatic function placement and dynamic lifetime control of
the functions. The authors specifically consider a virtual router
as a network function, and the adaptation of virtual router
locations embodies the flexibility in function placement. Given
a continuous knowledge of physical resource usage from
the system monitor, three placement strategies dynamically
propose candidates of new locations of virtual routers. A
bagging scheme then decides the best one from the candidate
list. As a result, different virtual routers can be instantiated
on different physical hosts depending on several factors, e.g.,
infrastructure metrics and virtual network metrics.

As mentioned in flow configuration in SDN, [99] integrates
SDN with NFV to enable a flexible function deployment,
supported by traffic routing. In order to host possible new
functions in the future, the placement of network functions
takes system capacity into consideration. The authors devise
a heuristic that clusters flows into groups and for each group
incrementally places functions demanded by the flows. There-
fore, function placement represents the major flexibility aspect
of this work.

In [124], Chang et al. consider the use case of an SDN
network offering abundant functionalities. They notice that one
controller hosting all functions is inflexible and the overall
performance could potentially suffer. To solve this issue, they
propose an architecture named Hydra that performs functional
slicing. Function scaling separates control plane functions and
therefore they could be located in different servers. Mean-
while, a communication-aware function placement algorithm
places the separated functions under the constraint of conver-
gence time. The function reconfiguration latency is regarded
as the adaptation time and such latency should be extremely
small (in the order of milliseconds) for real time applications.

NetFATE [125] considers the function placement problem
from a broader perspective, which incorporates end-users as
potential locations to place functions. When considering traffic
emerging from end-users, shifting functions towards them
could in principle reduce the forwarding latency, as well
as reduce the number of network entities in the forwarding
paths. According to the authors, such shift could also make
the service management more flexible. Given the topology
and traffic distribution, the mathematical model minimizes
end-to-end delay and therefore increases QoE for the users.
Afterwards, the orchestrator can orchestrate network resources,
allocate functions and decide traffic paths accordingly.

The problem of placing and chaining functions in data cen-
ters is studied in [126], which shows the flexibility in function

placement. It is expensive to perform the optical-electrical-
optical conversions between the optical steering domain and
pods. Therefore, the VNFs from the same service chain are
placed in the same pod under resource constraints, to lower the
total embedding cost. The authors formulate a binary integer
programming problem and propose a heuristic that produces
nearly-optimal solutions.

Regarding mobile networks, function placement is quite
popular for the core network, and is also featured in some
NFV-based architectures of the RAN. The possibility to im-
plement softwarized core functions in off-the-shelf equipment
is very attractive for mobile operators, since it is cost-effective
and softwarized functions allow for easy reallocations. Be-
sides, function virtualization in the RAN facilitates centraliza-
tion of the processing and hence coordination among cells, but
at the same time it poses difficulties for cells to meet delay
requirements. This dilemma has fostered flexible designs of
the RAN that can take the best of both worlds.

Basta et al. in [127] present four alternative core network
architectures for the location of virtualized S-GW and P-GW
functions. Three of those alternatives imply a splitting between
centralized and distributed functions, which can be flexibly
chosen to meet delay or data rate requirements. In their study,
the authors investigate the possibility to dynamically move
the different functions to seek the optimal performance. The
authors argue that the more functions are virtualized, the less
the overall cost for the operators.

In [128], the authors analyze the optimization problem of
placing the S-GW and P-GW functions within a network
topology, considering two different scenarios: virtualized and
decomposed functions. When functions are virtualized, both
the control and data planes of the functions are softwarized
and moved to a data center (shown in Fig. 7). In case of
decomposed functions, only the control plane is implemented
in the data center, along with an SDN controller. In both
cases, an optimization problem tries to find the best function
placement in terms of network load that fulfills the delay
requirements.

The authors of [129] also tackle the problem of optimally
placing virtualized S-GWs and P-GWs, but with the extra
objective of minimizing the number of S-GW reallocations that
user mobility can cause. Since their proposal allows for live
migrations of the virtualized gateways, it can flexibly adapt
to changes in user mobility. This mobility implies a trade-off
between delay and signaling. Whereas it is advisable for the
P-GW to be close to the UEs in order to avoid unnecessary
delays, it may also cause problems if the S-GW are too close
to the users. As a remedy, the authors allow for these functions
to be located in separated, federated clouds and solve the
optimization problem with these two conflicting constraints.

In [130], Bagaa et al. present a problem description similar
to the last one, but they consider the existence of multiple
PDNs providing different services or applications. In this
case, the authors consider that a flexible placement of P-GW
functions is necessary. In order to do so, they present and
solve the optimization problem of placing these functions and



assigning them to UEs according to the services that the users
demand. For this study, the objectives are twofold: reducing
the operator costs and providing high quality of service.

A formulation for the problem of optimally placing the
whole LTE service chain of softwarized functions (MME,
HSS, SGW and PGW) is proposed in [131]. This proposal is
another example of flexibility based on the dynamic placement
of core network functions. The objectives are minimizing
costs and meeting latency bounds for both user and control
planes. After solving the optimization problem, the authors
find that time required for the calculation of the optimal
solution in a realistic scenario is usually less than an hour,
low enough to allow for function reallocations in response to
traffic variations.

The 5G NORMA project [109], already presented in Sec.
IV-A1, also includes a high-level description of function place-
ment in its proposed architecture. In fact, its design includes
flexible allocation of mobile functions between the central
and edge clouds, depending on the service requirements. This
time, the task of moving functions relies on another element
of the control plane: the Software-Defined Mobile Network
Orchestrator (SDM-O). The SDM-O is in charge of locating
functions in the optimal geographical locations, so that the
latency and bandwidth constraints are met by the appropriate
function chain.

Besides flexible in flow configuration, KLEIN [107] can
also locate mobile core functions in a flexible manner, ac-
cording to the required latency and function service chains. A
key difference of KLEIN with respect to other proposals is the
decoupling of control and data plane functions. That is, control
and data plane functions can be placed in different data centers,
even if they process the same flows. This decoupling reduces
the complexity of the optimization problem. As an example,
KLEIN is able to find the optimal function placement and
flow configuration for a network of 2000 cells and 50 billion
devices in around 20 seconds.

Regarding the RAN, in [132] the authors present RANaaS,
a Cloud-RAN-based network in which functions can be either
centralized (located at the data center within the BBUs) or
distributed (located near the RRHs). The authors claim that the
ability to move these virtual functions makes their proposed
network more flexible than conventional mobile networks. The
main feature of RANaaS is that the split between centralized
and distributed functions can be flexibly moved along the
functionality stack. In many situations, neither a centralized
nor a distributed approach would be optimal, but a combina-
tion between the two. In order to allow such a trade-off, the
functions in RANaaS can be dynamically placed, such that
some functions are centralized in the data center and some are
distributed in the RRHs. The details about the implementation
of such a flexible functional split are explained further in
[133]. Nonetheless, neither of the two proposals addresses the
additional cost of provisioning both the RRHs and the BBUs
to run the same functions.

Mountaser et al. [134] further elaborate on the idea of a
flexible functional split in the RAN. They do not focus on the
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Fig. 7. Example of locating functions. The data center infrastructure consists
of three interconnected data centers, hosting NFV 5G mobile core network
functions, i.e., vMME and vS/PGW ([128], [168]), and legacy network
functions, i.e., Firewall and NAT (Network Address Translation). Two service
chains traverse the same order of functions, however with different latencies.
Depending on the SLA that users choose, their traffic will be routed through
different chains.

abstract design of a flexible splitting as previous work does,
but on the implementation and measurement of one splitting
option. These measurements provide information about the
relation among latency, splitting and cell load, which is very
important not only for the network design, but for triggering
function reallocation. The authors consider a scenario of
MAC-PHY splitting and Ethernet-based fronthaul, and they
conclude that such a scenario fulfills the delay requirements for
a 5G network, and thus can be applied to real networks. This
paper is a good example of the impact of a allegedly flexible
design on the latency of the network. However, similarly to
the previous proposal, they lack an analysis on the additional
costs.

In [135], the authors build upon Cloud-RAN to propose
FlexCRAN, an architecture that supports a flexible splitting
between those RAN functions that are at the BBU and those
located at Remote Radio Unit (RRU). Since the flexible
RRU/BBU splitting consists of dynamically moving RAN
functions up and down, FlexCRAN is more flexible than
conventional Cloud-RAN, as it can better adapt to changes
in delay requirements. For this, they derive a framework that
contains all the components that are necessary to support that
flexible splitting, such as interface functions, compression and
synchronization units.

Finally, FlexRAN [112] also performs virtual function
placement, as briefly mentioned in previous sections. In fact,
the ability to dynamically place control functions is one of
the most important flexibility aspects in FlexRAN. These
functions can be dynamically allocated either in a central
controller or in the eNodeB, with the intention of fulfilling the
required delay constraints. In order to move these functions,
the authors of FlexRAN have designed a mechanism to push
code from the controller to the FlexRAN agents at the remote
locations, which allows to effectively delegate functionality.



In summary, we observe that function placement in NFV is
a very attractive aspect for all kinds of networks. For a generic
wired network, the most pursued goals when dynamically
placing functions are: reducing latency ([99], [123]–[125]),
adapting the resource consumption [122], and reducing cost
[126]. Regarding mobile networks, placing core or RAN
functions to reduce the cost while meeting delay and data
rate constraints is usually the main objective ([107], [109],
[112], [127], [128], [131], [132], [134], [135]), although there
are others such as reducing signaling overhead [129], or
supporting multiple applications [130].

2) Function Placement in NV: The flexibility of placing
functions, i.e., virtual nodes, is explored by the embedding
process, i.e., Virtual Network Embedding (VNE) [139], [169].
A straightforward approach tackling VNE implies provid-
ing concise mappings in a centralized manner, with a full
knowledge of the virtual network requests. Because network
virtualization is applied mostly in wired networks, we provide
an overview of the publications only in that domain.

Yu et al. in [138] observe that besides virtual node place-
ment, virtual link assignment can also improve the embedding
performance. They propose the “path split” mechanism, which
allows provisioning virtual link with multiple physical links. In
order to do this, they decompose physical link bandwidth into
smaller resource blocks and then build up virtual links with
the blocks. Consequently, the whole embedding process can
happen in a more flexible manner and provides the potential
to find solutions of VN requests in extreme cases.

The authors in [139] define formally the VNE problem
with practical constraints, i.e. delay, routing and location
requirements. An integer linear program optimizes the total
cost of used substrate nodes and links, which benefits from the
flexibility in function placement that NV offers. A benchmark
set includes synthetic substrate topology and random virtual
networks which arrive in a Poisson manner, and therefore
produces promising comparison results.

[136] considers leveraging the flexibility of NV in function
placement to guarantee reliability of virtual networks. Each
virtual network, upon initialization, will be augmented with
backup node and link resources. Without virtualization, such
scheme may consume twice the amount of substrate resources.
The backup resource pool provides the flexibility in provision-
ing recovered virtual networks under reduced cost.

The work in [137] moves one step forward, and enhances
the flexibility to embed virtual networks in a pool of hetero-
geneous resources. Non-uniform substrates (e.g., servers and
routers from various cloud service providers) are virtualized
and treated fairly by the embedding engine. The authors design
an Iterated Local Search algorithm to solve the optimization
problem efficiently. Evaluation results show a great cost effi-
ciency over a large number of VN requests, with minimum
computation time.

Ludwig et al. [140] claim that while some parts of virtual
network are fully specified by the tenants, e.g., the node and

link locations, other parts may be flexible to decide by the
providers, which can be exploited to improve the embedding
of virtual networks. They develop an algorithm FlexMIP to
leverage the specification flexibilities and are able to decrease
the total resource cost under that specification. The work
is further extended in [170], where they consider the time
allowed to embed (i.e., schedule) the virtual network and they
argue that time tolerance can bring in temporal flexibility.

In conclusion, we see that function placement in NV
is mainly tackled by solutions addressing VNE problems.
However, the objectives of these problems are rather diverse:
minimal embedding cost [139], [140], maximal resource uti-
lization ([138], [139]), enhanced reliability [136], or support
of heterogeneous substrates [137].

C. Scale

1) Resource and Function Scaling in SDN: In SDN, the
typical resource is the controller, as it implies limited process-
ing power and I/O bandwidth. Therefore, proposals featuring
this flexibility aspect in SDN wired networks usually tackle
the management of controller resources.

Yao et al. assume that a controller is a network entity
with a limited processing capacity and generalize the capaci-
tated controller placement problem (CCPP) as an optimization
problem [141]. Depending on the distribution of flows in the
network, the minimum number of controllers that satisfies such
traffic will be decided under the constraint controller capacity.
Consequently, the load of maximum-load controller and the
worst control latency are reduced at the same time. Because
the problem is NP-hard, an efficient algorithm solves a series
relaxed linear programing problems so as to gradually find the
minimal number of required controllers and their locations.

The work [142] considers the controller placement prob-
lem in an SDN network consisting of a huge number of
switches. Since it is not realistic that each node is a candidate
for a controller location, the authors propose a hierarchical
SDN controller deployment scheme. First, a fixed number of
controller modules are placed to minimize worst-case control
latency. Afterwards, a certain number of controllers in each
module are instantiated (as in Fig. 8). For the first step, it shall
be executed only if the topology changes, whereas the second
step shall run more frequently to adapt to the traffic, thus
increase system’s flexibility. An algorithm called DyFlow is
suggested which periodically estimates the number of packet-
in messages from switches and activates only the required
number of controllers.

Other than modeling and optimization, there are also works
that prototype the scaling of controllers. ElastiCon [143] is a
distributed controller architecture in which a set of controllers
constitute a pool and its size could either grow or shrink
depending on the traffic conditions. A monitor module collects
load measurements at all active controllers and adjusts the
number of controllers (adaptation). The authors treat packet
loss and control channel interruption as cost of adaptation,
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Fig. 8. Example of scale. The virtual SDN network experiences a dramatic
increase of traffic and scaling is triggered to better accommodate the traffic.
On the one hand, the mapping of virtual links moves to the substrate link
with higher bandwidth, meaning topology adaptation. On the other hand, the
controller pool assigns more resources to this tenant network, in order to
handle the potentially rising number of OpenFlow messages.

and suggest a four-phase switch migration protocol to reduce
the cost. The prototype evaluation suggests a much more flat
response time curve with a changing packet-in rate.

Resource scaling, or resource allocation, is also a critical
aspect of mobile networks. Apart from the computational and
bandwidth resources that are usual in the wired domain, a
RAN needs to manage additional resources such as spectrum
or transmission power. In general, proposals in SDN featuring
resource scaling are not as common as those in NFV and NV.

The most relevant example of resource scaling in an SDN-
based mobile network is SoftRAN [144], a software defined
architecture for the RAN, in which scheduling decisions are
handled by a centralized controller. The controller is able to
make better scheduling decisions since it manages all the
resources. This increases network flexibility, as it increases
the ability of the network to face changes in users distribution
or channel quality. The reason is that the controller knows
the users that are attached to all eNodeBs and their mutual
interference, therefore it can allocate the demanded resources
by using a time-frequency-eNodeB grid, which allows for less
interference and more efficient use of resources.

To sum up, we observe that resource and function scaling
in SDN may appear in two different ways. On the one hand,
the controller itself can be considered as the function, or the
resource, to be scaled ([141]–[143]). On the other hand, the
separation between the control and the data plane may provide
additional benefits of managing the rest of the resources in the
network [144].

2) Resource and Function Scaling in NFV: The resource
associated with a network function is intuitively the resource
we would allocate for a piece of software, i.e. CPU cycles, I/O
bandwidth, memory and hard disk size, etc. Following are the
proposals that deal with the flexible scaling of NFV resources.

Carella et al. in [145] present an Autoscaling Engine (AE) to
automate the process of NFV resource scaling. The implemen-
tation builds on top of Open Baton [171] and can be integrated
in the ETSI NFV information model. Performance evaluation
shows that in an IP Multimedia Subsystem (IMS) scenario,
the scaling in procedure takes in total 513 ms. When CPU
load goes beyond the threshold and scaling out is triggered,
only 0.2% time of total procedure is spent in detection and
decision-making, whereas 99.8% time is spent in deploying
new function instances. The fast scaling process supports the
flexible resource allocation to a great extent.

Data centers, as typical NFV infrastructure, provides both
physical and virtual resources and compared with legacy cloud
computing environment, resource management for NFV is
more complex. In [146], the MORSA framework incorporates
an NFV infrastructure resource filter and a resource sched-
uler to achieve flexible resource management in data center.
Firstly the filter selects potential resources that could meet the
requirements, e.g. hardware requirements and QoS levels. The
scheduler then decides the best combination of resources and
stakeholder policies. Because various stakeholders, i.e., end-
user, data center operators and telecommunication operators,
may have scheduling policies with contradictory objectives,
MORSA leverages a genetic algorithm to fetch a list of Pareto
optimal solutions, from which operators can freely choose
according to their preference.

If we consider virtual machines in data centers as a bundle
of resources, dynamic allocation during runtime enables work-
loads balancing across servers, racks and even data centers.
The process of re-allocation improves the system’s flexibility
of resource scaling to a larger extent. VMs that are involved
in the same task could show inherent dependency, therefore
it is not practical to migrate a VM to a less overloaded
server without checking the interconnection with other VMs.
AppAware [147] is a novel scheme addressing such problem,
which incorporates the information of VM dependencies as
well as network topology. Evaluation results suggest more
than 80 % network traffic decrease of the proposed scheme,
compared with the state of the art.

Williams et al. study data center virtualization and argue
that users should be assigned the title to flexibly control the
virtualized resources, which consists of CPU, memory and
hard disk, in data center [148]. They introduce Xen-Blanket
to homogenize distinct cloud infrastructures, thus allowing live
VM migration between enterprise cloud and public cloud. The
actual migration time, however, is not clearly demonstrated.
Besides, an elaborate coordination mechanism enables over-
subscription of physical resources, which in turn increases the
total revenue.

We mentioned in the previous section that resource scaling
is very important in mobile networks, specially in the RAN.
Furthermore, a technology like NFV facilitates the manage-
ment of resources. Owing to this, it is not difficult to find
proposals for an NFV-based flexible mobile network featuring
resource scaling as their main flexibility aspect.

The most relevant example of flexible resource scaling in



an NFV-based architecture is Cloud-RAN [113]. Although it
has been used by many researchers as a basis to develop
multiple flexibility aspects, the main aspect of unflavored
Cloud-RAN relies on the possibility of dynamically allocating
the computational resources that the BBUs need. As it was
previously explained, the basic idea of Cloud-RAN is to
virtualize and pool the baseband processing of the eNodeBs
into a centralized data center, whereas the remote locations
keep only the electronic parts that are required to transmit a
RF signal. This strategy allows for enhanced coordination and
saves costs to the operators.

Based on the original idea of Cloud-RAN, [149] investi-
gates further the flexible allocation of computational resources
among cells in the BBU pool. The authors present this alloca-
tion as an optimization problem, which is solved by means
of a Heuristic Simulated Annealing (HSA) algorithm. The
simulations performed confirm that computational complexity
of the HSA algorithm is linear, which enables its use when
the number of cells in the BBU pool is large.

Moreover, all the proposals that combine CoMP and Cloud-
RAN can be considered to be flexible at resource scaling, since
they need to dynamically allocate power, time or CPU usage.
For instance, in [114], the authors develop an algorithm to
implement CoMP over Cloud-RAN. They focus on flexibly
selecting the optimal allocation of the downlink transmission
power between the baseband units (BBUs) and mobile users.
Although the main focus of this algorithm is to dynamically
select CoMP parameters, the selection of the transmission
power can be regarded as a resource allocation problem, since
the power is limited. The same can be applied to [115], [116],
and [117].

Apart from the previous examples, there are a number of
high level proposals of flexible mobile networks that include
the resource scaling as a main aspect. In [150], the authors
propose a cloud based platform for mobile network. In their
design, the cloud should be able to dynamically allocate
resources for the BBU when they are demanded. In [151],
the authors emphasize the importance of a flexible resource
allocation in the RAN as well as in the data center in the core
network. Finally, in [152], the authors envision a Management
and Orchestration (MANO) system that dynamically allocates
the required computational resources for the virtual functions
that are present in the control part of the network.

In summary, we conclude that resource and function scaling
in NFV networks is a frequently exploited aspect, as the
virtualization needs to deal with a variety of resources. More
specifically, we identify three types of resources that an NFV
network can flexibly scale: computational resources used by
the virtual functions ([113], [145], [146], [148], [149]), virtual
machines themselves ([147]), radio resources ([114], [115],
[117]), and abstract resources in high-level designs ([150]–
[152]).

3) Resource and Function Scaling in NV: VNE techniques
tailor the allocated link bandwidth according to actual vir-

tual link usage, and thus contributes to resource scaling of
embedded virtual networks. [153] proposes a dynamic adap-
tive virtual network resource allocation algorithm Adaptive-
VNE, which achieves flexible bandwidth reservation. Since the
already embedded virtual links would normally not occupy
the full bandwidth that they require, the unused bandwidth
will be released and assigned to later new incoming requests.
A monitoring module predicts an upper-bound of virtual
link usage rate. Compared with static bandwidth allocation
schemes, Adaptive-VNE maximizes bandwidth utilization and
minimizes the bottleneck rate of virtual links.

He et al. study the problem of resource adaptation of virtual
networks when facing multiple traffic classes [154]. They
present DaVinci: an architecture that optimizes the aggregate
utility of all virtual networks and can flexibly adapt to traffic
variations. Every 10 seconds, it checks current link mappings
and re-balances the bandwidth among virtual networks. Nu-
merical experiments suggest that the adaptation to traffic shifts
takes constant step sizes, however the actual time magnitude
is not clarified.

Based on the well-studied multi-commodity flow problem
(MFP), [155] tackles bandwidth allocation in network virtual-
ization. The infeasibility of the optimization problem normally
comes from substrate links that do not have enough capacity
(i.e., bottleneck links). Therefore, granular allocation of link
bandwidth, as well as adjustment of reserved bandwidth of
bottleneck links, are jointly applied to enable flexibility in
bandwidth scaling.

Virtualized SDN, as its name suggests, combines SDN and
NV, and has emerged to an important research topic. Blenk
et al. argue that the dynamics of networks not only reside at
the physical infrastructure, but also at the controllers [156].
Accordingly, they introduce Hyperflex (i.e., a hypervisor) to
isolate the control planes of different virtual SDN networks
and thus flexibly manages substrate resources. The hypervisor
forwards control messages coming from a tenant controller to
the substrate switches that belong to the tenant. Both CPU and
network bandwidth are treated as resources and are allocated
accordingly with respect to a real time traffic scenario.

In data centers, networking bandwidth proves to be a scarce
resource, for which various tenant networks compete. QJUMP
[157] is proposed to tackle the recurring network interference,
caused by virtual networks owned by different data center
applications. The idea is to couple priority values and rate-
limits. It guarantees high priorities by allowing data packets
“jump-the-queue” over other packets with lower priorities.
Therefore, bandwidth resource of each virtual network can
be flexibly arranged according to user’s demand. As a whole,
QJUMP does not sacrifice transmission of high throughput
applications; however, provides bounded latency for latency-
sensitive applications.

Regarding mobile networks, there is a clear distinction
between NV at the core network and at the RAN. Cur-
rently, network virtualization at the core network is just one
application of network virtualization in the wired domain.
Although there are proposals tackling the virtualization of a



mobile core network, few of them have specifically addressed
any kind of resource scaling, to the best of our knowledge.
Nevertheless, virtualization of the RAN resources does require
special attention, due to the particular characteristics of this
network.

SoftAir [106], which is already mentioned in Sec. IV-A1,
includes a detailed study on the allocation of core and access
resources for virtual slices of the mobile network. The authors
propose to flexibly assign high- and low-level resources by
using three different hypervisors. A network hypervisor is in
charge of allocating high-level resources, such as the wireless
spectrum, wireless infrastructure resources, and radio access
technology options. A wireless hypervisor manages the low-
level wireless resources, that is, the scheduling. Finally, a
switch hypervisor assigns the low-level switch resources, i.e.,
the appropriate bandwidths for the different flows or virtual
slices in every switch.

In [158], the authors present a two-level algorithm for
allocating resources in a sliced RAN. Since this allocation is
done in an adaptive manner, the network can flexibly cope with
variations in the traffic required by the users. The first level of
the algorithm schedules abstract resources within each slice,
whereas the second level schedules actual resources to the
slices. By using this scheduling strategy, the network operator
is able to divide the RAN into virtual RANs, which can be
rented to different tenants.

The authors of [159] propose a framework for RAN sharing,
which abstracts real resources into virtual resources to be
used by tenants. As a result, the flexibility of the RAN in
terms of a more adaptive resource scaling is improved. Their
key contribution relies on that they provide application-level
services with guaranteed QoS, such that the scheduling of the
slices takes into account the required QoS. With this cross-
layer slicing, the network is able to allocate resources to those
that need them the most, even if they belong to different
tenants.

Finally, in [160], the authors present a scheme for resource
reservation in the RAN that can flexibly adapt to the different
traffic loads of each tenant. With such a strategy, this scheme
provides better flexibility than previous alternatives of RAN
virtualization. This is accomplished by using partial resource
reservation, that is, a minimum slice of resources is guaranteed
to each tenant, while the remaining resources can be shared by
all of them. A custom scheduler is designed with the objective
of allocating these common resources, in accordance with the
amount of resources required by each tenant. Therefore, the
share of resources actually used by any tenant at any time is
dependent on their traffic loads.

To sum up, resource scaling in NV mainly applies to
three resources: link bandwidth ([106], [153]–[157]), CPU
usage [156], and radio resources ([106], [158]–[160]). Flexible
solutions adapt these resources dynamically according to the
requirements of the supported slices.

Core

Aggregation

Edge

Servers

Fig. 9. A Fat-tree topology with k = 4, which illustrates a tree-like structure.
Three layers of switches, i.e. core, aggregation and edge, enable multiple paths
between different servers. A virtual environment (request), which consists of
two VMs and a virtual link with a certain bandwidth, is embedded in the
topology. As other requests come in and leave, the mapping of this request
could be adapted from inside the same pod (orange) to stretching over different
pods (blue), so as to ensure better resource utilization.

4) Topology Adaptation in NV: Another potential of NV is
to change the mapping, which maps from virtual links/nodes to
physical ones [172]. This helps to accept more virtual networks
and to potentially gain more revenue. In other words, unlike
changing the bandwidth assigned to a certain virtual link (as
resource scaling would normally do), we embed it to another
substrate link which possesses more capacity. Fig. 9 illustrates
such an adaptation. As virtual network requests dynamically
arrive and leave, topology adaptation achieves a more balanced
resource usage distribution.

[138] introduces a path migration mechanism, which pe-
riodically monitors link usage information and forces new
optimization of link mapping. It is an obvious indicator of
flexibility in topology adaptation. The path migration time
is treated as the adaptation time, and the service disruption
during path migration is the adaptation cost. To minimize the
adaptation time, node mapping is not dealt with; nevertheless,
enabling node migration could provide even higher flexibility
in adapting topology. Simulation results show in total an
80% (65% comes from path split and 15% comes from
path migration) increase of revenue compared with a baseline
algorithm.

[161] provides a greedy approach for network embedding.
Fajjari et al. observe that most virtual network embedding
rejections are due to bottleneck substrate links, which could be
alleviated to accept more requests. The flexible topology adap-
tation comes from the reconfiguration of the embedded VNs,
whose goal is to minimize the number of overloaded substrate
links. In the meantime, the cost of reconfiguration in terms
of service interruption duration is considered as the second
minimization target. The cost is modeled as the weighted sum
of migrated virtual nodes and links. The proposed heuristic
reduces the rejection rate of VN requests by at least 83%.

Butt et al. [162] applies a new perspective to online re-
optimizing the embedding. After a VN request is rejected, it
recognizes the virtual link and node that cause such rejection.
Next, the embedded links and nodes are reallocated to balance



the overall resource usage, leveraging the flexibility of embed-
ding. By doing this, it can potentially accept large VN request
by making more room of available resource. The embedding
cost increase is considered in their evaluation, which is defined
as the additional cost to re-embed VNs. The increase in cost
ranges up to 250%, whereas the acceptance ratio improvement
varies from 7% to 77%.

[163] studies the problem of recovering VNs affected by a
substrate node failure, and proposes a reactive mechanism to
get rid of inefficient pre-allocation of backup resources. The
flexible adaptation of topology helps to achieve high reliability
of VNs. Upon a single node failure happens, the proposed
mathematical model maximizes the number of recovered vir-
tual links across all the affected VNs and at the same time
minimizes total bandwidth required for recovery.

Other than designing algorithms that output dynamic opti-
mized topology mapping, there are also proposals that enable
the flexible migration of virtual nodes and links from an imple-
mentation point of view. The authors in [164] propose LIME
that migrates virtual machines together with the associated
network and management system. To achieve transparency
to running applications, LIME first copies data-plane state
to new switches, and then migrates VMs in an incremental
manner. During the migration, the states of both networks are
synchronized to avoid inconsistent behaviors and interruption
of applications.

The work in [165] moves one step further and tackles
live migration of virtual SDNs. The migration, as the authors
claim it, should be transparent to tenant controller and end-
host applications. To reduce packet loss, clones of all or
part of the virtual switch need to be created and afterwards
synchronized to keep a consistent view of the virtual network.
Obviously, synchronization prolongs the total migration time;
however, prototype evaluation shows an acceptable migration
time, which is around 0.2 seconds.

In summary, topology adaptation in NV is considered by the
research community in two separate ways. On the one hand,
some publications propose algorithms to adapt the topology
based on changes in the link usages ([138], [161], [162]), or
failure recovery [163]. On the other hand, other publications
provide the technical details which allow for the topology
adaptation: for a generic virtual network [164], or for virtual
SDN networks [165].

D. Summary and Insights

In this section, we classify publications according to their
flexibility aspect(s). In order to enhance the comprehension
of this classification, we provide here a short summary of the
whole section. A more complete analysis of observations and
lessons learnt can be found in Sec. VI.

We first analyze publications which feature configuration
adaptation. Unsurprisingly, we see that flow configuration is
the main exploited aspect in SDN networks, as it focuses on
creating, deleting and re-configuring flows within the network
([91]–[109]). In NFV networks, the most popular aspects

are function and parameter configuration. We see that func-
tion configuration, which according to our definition implies
completely changing the function operation, is more popular
among mobile networks ([103], [104], [108], [110]–[113]).
Parameter configuration is frequent in NFV and NV networks,
specially for changing radio parameters ([112], [114]–[117])
and virtualization policies ([118]–[121]), respectively.

Regarding function placement, there are two possible re-
alizations in the state of the art. The most straightforward
realization is that of NFV networks, in which software func-
tions (such as firewalls, load balancers, or LTE core functions)
are moved from one possible location to another ([99], [107],
[109], [112], [122]–[135]). Alternatively, this aspect is featured
in some NV networks, when the problem is the location of the
nodes of the virtual networks ([136]–[140]).

With respect to network scaling, it can be applied to all
three technologies: SDN, NFV, and NV, although the imple-
mentation details are rather different. In SDN, the network
controller itself can be considered as a type of resource that is
susceptible to be scaled ([141]–[143]), or its presence can help
to better manage other resources [144]. In NFV and NV, it is
common that physical resources such as bandwidth or CPU
usage are allocated dynamically among the virtual functions
([106], [113]–[117], [145]–[160]). Finally, topology adaptation
is only possible in virtual networks, where it is indeed an
important research topic ([138], [161]–[165]).

V. CLASSIFICATION ACCORDING TO NETWORK DOMAINS
AND PLANES

In the last section, we perform a detailed survey of the state
of the art on flexible networks and classify various works
according to their respective focused flexibility aspects. In
this section, we analyze the same publications from other
viewpoints, in particular network domains and network planes.
We do this to illustrate the impact of flexibility for different
system types and the newly emerging split of data and control
planes with SDN.

A. Network Domains

We primarily focus on three network domains in this
section, i.e., Wide Area Network (WAN) and Mobile Core
Network (MCN), access networks, and data center networks.
Fig. 10 gives an overview of the classification according to
network domains, where with each domain we associate the
flexibility aspects that are primarily related to it according to
our survey.

1) WAN and MCN: WANs typically span large geographi-
cal areas and offer high-speed data exchange between subnet-
works. MCNs are a kind of WAN providing various services
to mobile end-users, which are connected to MCN by Radio
Access Networks (RAN). We find all three technologies of
softwarized networks applied to WANs and MCNs therefore
related proposals cover most of the flexibility aspects.

Flow configuration is the flexibility aspect that is featured
most frequently in proposals. This is a consequence of the
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great popularity of applying SDN in WAN and MCN. Ex-
amples include modeling and optimization in [91], [92], [99],
routing algorithm design in [93] and the architecture proposals
in [94], [97], [98], [100], [101]. We can also observe this in
MCN papers, in which SDN is deemed to be a main driver
of future 5G networks. Examples of this kind of proposals
are CellSDN [103], SoftCell [104], MobileFlow [105], SoftAir
[106], KLEIN [107], and SoftNet [108].

The second most popular aspect in WAN and MCN is
function placement. Here, NFV is often regarded as a nec-
essary complement of SDN. Examples range from use case
feasibility studies ([101], [127], [129]–[131]) to implemented
frameworks such as Hydra [124], vConductor [122], NetFate
[125] and [99], [123]. Besides, function configuration is also
often featured by flexible MCNs. This arises with the combi-
nation of NFV and SDN in core network proposals, therefore
the examples for this aspect are similar to those of the previous
one: CellSDN [103], SoftCell [104], and SoftNet [108].

NV is a main enabler for the remaining two major flexibility
aspects, i.e. resource and function scaling and topology adap-
tation. For the former, virtual network embedding algorithms
such as [138], [153]–[155] provide various solutions. More-
over, there are some proposals tackling the dynamic allocation
of computational resources for mobile core functions, such as
[106]. HyperFlex [156] investigates resource scaling of SDN

control plane. Meanwhile, proposals, such as ([138], [161],
[162], [174]), provide insights on embedding virtual networks
more efficiently by adapting the embedded topology.

2) Access Networks: Access networks connect end-users
with MCNs or backbone networks [175]. This definition
implies that it has to include the required means to connect
user devices to the rest of the network, by using special
technologies and protocols, and to deal with user data, whose
characteristics are often difficult to predict.

Not surprisingly, the most relevant flexibility aspect within
Radio Access Networks is resource and function scaling, with
a focus on resource scaling. This is due to the considerable
number of wireless resources that have to be allocated in a
flexible way, such as spectrum, time or transmission power. We
can classify the access network proposals featuring resource
scaling according to the resource they focus on the most: spec-
trum (SoftRAN [144], [158], [159], and [160]), computational
resources (Cloud-RAN [113] and [116]), transmission power
([114]–[117]), and just a generic resource ([150], [151]).

Since it is quite related to resource scaling, parameter
configuration plays also a significant role among flexible
access networks. Most of the proposals featuring parameter
configuration also include resource scaling, such as ([114],
[115], [116], and [117]). Nonetheless, this combination is not
always present, as in FlexRAN [112].



In addition, function placement in the radio access network
has become important owing to the emergence of Cloud-RAN.
Cloud-RAN enables the division between centralized and dis-
tributed units, which has triggered the research for the optimal
functional splitting between RRHs and BBUs. Examples of
proposals investigating the placement of functions between
these units are [132]–[135], and FlexRAN [112].

Finally, there are two flexibility aspects that appear to be less
popular, but still relevant in flexible access networks. These
are function configuration ([111], and FlexRAN [112]), and
flow configuration (of data plane and of control plane [102],
[106]).

3) Data center networks: A data center network is the
communication infrastructure in a data center, and it inter-
connects servers (physical machines) and storage devices in
a data center facility. End-hosts in a data center network are
VMs residing inside the servers, and the traffic behavior shows
some unique patterns, i.e., (i) uneven distribution of traffic
volumes among VMs, (ii) stable per-VM traffic at large time
scale, (iii) weak correlation between rate and latency [176].
With load balancing and scalability issues in mind, data center
topologies, e.g. Three-Tier, Clos [177], Fat-Tree [178], BCube
[179] and Jellyfish [180], are designed, .

The special architecture of data center networks intuitively
allows flexibility in flow configuration. For instance, SWF [96]
handles the problem of dynamic routing in data centers with
the support of SDN. Moving one step further, CheetahFlow
[95] predicts frequent and heavy load transmission pairs and
setup flow rules accordingly.

Flexibility regarding function placement can also be ob-
served. Instead of deploying middleboxes, [127] proposes
running mobile core functions in data center so as to save
reconfiguration cost. Other works are demonstrated in ([122],
[132]).

Moreover, since data centers provide resource sharing
among multiple tenants or applications, efficient resource
management is mandatory. With the help of softwarization
techniques, data center solutions employ the flexibility aspect
of resource and function scaling, supported by ([146]–[148],
[157]). One the other hand, the topology adaptation aspect can
be observed in ([138], [162]–[165]).

B. Network Control and Data Plane

Legacy communication networks are mostly vertically inte-
grated. The part that decides how to process network traffic,
i.e. control plane, and the part that decides how to perform
forwarding actions, i.e. data plane, are rigidly compressed
inside network devices. SDN separates the two network planes,
and thus gives rise to higher flexibility in handling network’s
control logic and forwarding behaviors. Note that we do not
differentiate control plane and management plane in this sur-
vey. Fig. 11 gives an overview of our classification according
to network planes.

1) Data Plane: Data plane covers more than half of the
papers that we have collected. Flow configuration tends to
be the most popular aspect ([91]–[100]), as data plane traffic

routing is a very basic task in data plane. In NV, virtual
networks are embedded in data plane, we therefore attach
all related flexibility aspects, i.e., function placement ([136]–
[138], [173], [181]), resource and function scaling with a
focus on resource scaling ([138], [153]–[155]), and topology
adaptation ([138], [161], [162]).

Regarding wireless networks, a flexible data plane is also the
main characteristic of most proposals. For instance, solutions
dealing with CoMP ([114]–[116]), RAN virtualization ([103],
[158]–[160]), and software-defined RAN ([144]) are focused
primarily on the data plane.

2) Control Plane: In wired networks, SDN supports control
plane flexibility. Intuitively, the number of controllers could
vary according to the asynchronous message rate of the
switches [141]–[143]. Regarding SDN virtualization, the con-
trol function, also known as hypervisor, can also be replaced
and reconfigured on demand, e.g., Hydra [124], HyperFlex
[101], [156], FlowVisor [120], LIME [165].

In wireless networks, a flexible control plane is usually
linked to a flexible data plane, as in [102], [107], [109], or
[132]. Nevertheless, in some cases the focus is set mainly on
the control plane. Some examples of this are [104], [112] or
[134].

C. Summary and insights

In this section, we reclassify the publications in the state
of the art according to network domains and planes. Like in
the previous section, we briefly summarize the highlights of
this new classification here. We refer to Sec. VI for a more
complete analysis of observations and lessons learnt.

First, we categorize the publications according to the net-
work domain on which they focus: WAN and MCN, access
networks, and data center networks. In WAN and MCN, we
observe that flow configuration is the most exploited flexibil-
ity aspect ([91]–[94], [97]–[101], [103]–[108]), followed by
function placement ([99], [101], [122]–[125], [127], [129]–
[131]), and, to a lesser extent, function configuration ([103],
[104], [108]), resource and function scaling ([106], [138],
[153]–[155]), and topology adaptation ([138], [161], [162],
[174]). In access networks, we identify resource scaling as the
main aspect ([113]–[116], [116], [117], [144], [150], [151],
[158]–[160]), followed by parameter configuration ([112],
[114]–[117]) and function placement ([112], [132]–[135]).
Conversely, in data center networks, there is not a single main
flexibility aspect, as they typically combine the SDN, NFV
and NV paradigms. As a consequence, the most frequently
exploited aspects are flow configuration ([95], [96]), function
placement ([122], [127], [132]), resource and function scaling
([146]–[148], [157]), and topology adaptation ([138], [162]–
[165]).

Finally, we classify the publications according to the fo-
cused network plane: data or control. We realize that the
majority of the publications mainly addresses the flexibility of
the data plane ([91]–[100], [103], [114]–[116], [136]–[138],
[138], [138], [144], [153]–[155], [158]–[162], [173], [181]),
whereas that of the control plane is reserved for some SDN
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solutions ([101], [102], [104], [107], [109], [112], [120], [124],
[132], [134], [141]–[143], [156], [165]).

VI. OBSERVATIONS AND LESSONS LEARNT

In this section, we compile observations and insights from
the detailed analysis of the state of the art considering various
flexibility aspects, as well as network domains and planes.

A. Presence of Flexibility in the Literature

After a thorough analysis, we can observe that the six
flexibility aspects defined in Sec. III-B cover all surveyed
publications. In other words, the flexibility in each publication
could be categorized and decomposed into one or more of the
aspects. This also includes those papers where flexibility is
not claimed explicitly but identified from the content.

In some publications, only one flexibility aspect was ex-
ploited. In other cases, two or more aspects appear. Indeed,
many flexible proposals do not stick to a single aspect but
feature a combination of them. The reason is that usually a
variation in a network element (e.g., a topology modification)
implies a change in another element (e.g., new flows). Be-
sides, technologies like NFV enable flexible manipulation of
several aspects simultaneously. Therefore, multiple flexibility
aspects can be leveraged when addressing a single request. We

observe that frequent combinations of aspects are parameter
configuration and resource and function scaling [114]–[117],
function placement and flow configuration [99], [101], [107],
[109], and function configuration and flow configuration [103],
[104], [108].

B. Requests for Flexibility

Flexibility comes as a response to changes of network
requirements. In Sec. III-A, we define those as requests. From
our analysis of the publications included in this survey, we can
draw some conclusions about the various sources of requests.

We observe that, in softwarized networks, there are at least
five main sources of requests: traffic variation, user mobility,
network upgrades, network lease and failure mitigation. In
Table IV, we classify the surveyed proposals according to their
considered source of requests. Depending on their main source
of requests, proposals tend to exhibit similar characteristics, as
explained in the following.

• Traffic Variation: It usually requires a flexible network
to reconfigure flows, scale resources and even replace
and configure functions. It is the most common source
of requests for different types of networks.

• User Mobility: It typically requires the ability to con-
figure flows, parameters, scale resources. It is one of the
most common sources of requests in wireless networks.



TABLE IV
DEMONSTRATION OF VARIOUS REQUEST TYPES IN THE SURVEYED PAPERS

Request Source Proposals

Traffic Variation [91]–[97], [99]–[105], [107]–[113], [121]–[135], [138], [139], [141]–[145], [147], [150]–
[154], [156], [161], [162], [164], [165]

User Mobility [106], [111], [112], [114]–[117], [129], [132], [135], [144], [149]

Network Lease [103], [118]–[120], [136], [137], [146], [148], [155], [157]–[160], [181]

Network Upgrades [103], [104], [112]

Failure Mitigation [94], [97], [98], [163]

• Network Lease: The network has to cope with changes
coming from tenants’ requirements, such as VM size,
inter-connection bandwidth, and virtual topology, thus
resource scaling and topology adaptation are the most
exploited flexibility aspects in this case.

• Network Upgrades: The network operator could ei-
ther enhance network performance (e.g., lower latency
and higher throughput), or just employ new proto-
col/mechanism/solution in the system.

• Failures Mitigation: It entails the ability to reconfigure
new service or restore network connectivity upon failures.

Although these sources of requests employ some flexibility
aspects more frequently than others, there is no one-to-one
correspondence between them. This means that the same
request may be fulfilled by exploiting various aspects. For
example, in order to respond to a change in the requirements
that demands a lower latency constraint between an SDN
controller and a switch, the network could either move the
controller function to a location closer to the node or forward
the control traffic through a shorter path. In this case, both
function placement and flow configuration are valid solutions
to the request of decreasing the control latency.

C. Adaptation Time

The support of requirement changes should come in a timely
manner, i.e., the time spent to adapt the system ought to
be considered. The ability to adapt rapidly is a necessary
condition for flexibility, regardless of any other feature. For
instance, a self-healing network could hardly be asserted as
flexible if automatic link failure detection and repair is slower
than manual intervention. surveyed.

After analyzing the surveyed papers, we observe that the
adaptation time depends on technology, network domain, and
use-case. Owing to this, we observe different values for the
required adaptation time, ranging from minutes to millisec-
onds. At one end of the spectrum, virtual function placement
in the mobile core network can take up to an hour [131],
as the optimization problem is computationally hard. Faster
adaptations are featured by SDN-based solutions, including
flow path redirection, switch migration, and control plane
reconfiguration. The goal of flow path redirection latency is
in the order of tens of seconds, as the flow rule installation
time can be significant due to traits of underlying hardware

[98]. Migrating switch between two controllers should take
less than 100 milliseconds [143], and it also depends on the
OpenFlow packet rates. The control plane reconfiguration, i.e.,
control channel migration, should be in the order of tens of
milliseconds [101] to avoid delays of OpenFlow packets.

Shorter adaptation times can be observed in other use-
cases. In a real-time NFV scenario, function reconfiguration is
expected to meet the deadline of 10 milliseconds, indicated by
the heart-beat synchronization event [124]. Similarly, flexible
proposals concerning the RAN often consider adaptation times
in the order of milliseconds. For example, [111] states that the
switching between FFR and DAS configurations must be done
within 10 milliseconds. Another example is [133], in which
a deadline of 3 milliseconds is considered for the function
placement, based on the restrictions imposed by the Hybrid-
ARQ. We can see from these examples that stringent target
adaptation times are usually motivated by the presence of
external deadlines.

On the other hand, some publications do not mention the
target adaptation times while proposing their new algorithm,
mechanism, or system architecture. For instance, [94] stud-
ies the link failure recovery on SDN-based clouds, where
the recovery directly relates to the adaptation, but it does
not explain how fast this recovery should be. Neither does
[138], which discusses the impact of link migration on virtual
network service interruption. Finally, [129] and [130] address
the problem of virtual function placement in the MCN, but,
as opposed to [131], they do not provide an estimation of
the placement time. In these cases, it is assumed that the
adaptation is done as fast as possible, but this is not enough
for a proper definition of flexibility.

In conclusion, we observe that the adaptation time is
indeed technology- and domain-specific. In addition, the
adaptation time is still not paid attention to in some work,
specially if no tight delay constraints are present. We therefore
advocate keeping the time aspect in mind while designing
flexible systems to indicate that the adaptation is indeed useful.

D. Cost of Flexibility

Cost-Effectiveness. Regarding cost, there are only a handful
of proposals that leverage the concept of flexibility to achieve
cost-effectiveness. In mobile networks, for instance, network



operators could reduce their cost in two directions. On the one
hand, investment could be saved by virtualizing the network
functions and operating them on cloud platforms (e.g., [111],
[113], [114], [132], [135]). In fact, the authors of Cloud-
RAN [113] envision 15% CAPEX and 50% OPEX savings
when compared to previous less flexible RAN designs. On the
other hand, slicing RAN resources (e.g., [159], [182], [183])
promotes high network utilization ratio via network leasing,
and therefore potentially increases the total revenue. In [183],
the authors expect savings from mobile network slicing up to
40% for OPEX and up to 15% for CAPEX.

Potential savings are not unique to mobile networks, but a
similar trend can be observed also in the domain of WAN
and data center networks. Network service providers will
potentially see a reduction in OPEX, because SDN and NFV
enable further optimization of network resource and surround-
ing operation model [184]. As a concrete example, [126]
places network functions of a service chain in the same PoD
and thus decreases the embedding cost of service chaining by
eliminating frequent optical to electrical conversion. Besides,
the use of resource pool, composing of virtual nodes and links,
shrinks the cost of re-embedding [136], when virtual networks
need to be recovered from infrastructure failure.
Implicit Cost Factors. Even though cost-effectiveness is
targeted among surveyed papers, we can still observe that
cost factors are overlooked among some others. For instance,
SDN enables reconfiguration of flow paths on run-time and
leveraging this advantage, proposals like [91]–[94], [96]
manage to adapt the forwarding path according to the demand
changes. However, if the reconfiguration takes place while
packets forwarding is still happening, longer latency or packet
drops are expected. To avoid this drawback, an elaborate
coordination mechanism should be designed to ensure the
correct transition from the old to the new forwarding rules.
Such mechanism in turn may introduce additional signaling
and leads to increasing the system’s cost, which we refer to as
implicit cost factors. Another intuitive example is the “over-
provisioning” strategy. Proposals like [136] suggest providing
more resources than what is actually needed to avoid frequent
reconfiguration that may lead to system instability. The
resource headroom could be seen as non-negligible cost
at the start-up phase, however, its impact could also be
diluted if we consider from a longer time span, as all later
requirement changes would be satisfied without any violation
of SLAs. Therefore, we strongly call for the attention of all
cost factors involved while evaluating the network’s flexibility.

Impact on Network Performance. Flexibility enhancements
can also affect the performance of some network transactions,
which has a clear impact on the cost. For instance, the net-
work’s latency is prone to be affected by such enhancements.
A latency increase implies additional cost, since the network
needs to reduce the number of supported users, compensate
with over-provisioning, or face fines for service infringement.
Owing to that, high latencies are in general avoided in flexible
designs, but there are still some cases in which a flexible

TABLE V
NUMBER DEFINED OF MATCH FIELDS AND ACTIONS IN DIFFERENT

OPENFLOW VERSIONS

OpenFlow Version 1.0 1.1 1.2 1.3 1.4 1.5

# Match Fields 12 15 36 40 42 45

# Actions 4 6 7 7 7 9

network comes at that additional cost. Among those, we can
find proposals based on the Cloud-RAN architecture[113],
which introduces delay in the link between the baseband
and RF processing parts of the eNodeB, in return for lower
hardware costs and better resource management.

On the other hand, in many cases a flexible network can
perform better than an inflexible network, resulting in reduced
costs. For example, efficient and optimized algorithm designs
contribute to fast decision making ([96], [100], [114], [116],
[124], [185]). Besides, better coordination of information
exchange between functions [115] is also beneficial, if the
information plays a key role in the system performance.
Finally, in the context of failure recovery [94], [98], shorter
time heralds less number of dropped packets upon link/node
failures.

E. Impact of Standards and Technology Realization

Standards. Hanseth et al. [186] explore the limitations of
flexibility due to standardization in legacy communication
networks. Even though network softwarization enables more
flexibility, it still inherits such standards limitations. SDN,
as a main technology of network softwarization, supports
programmable flow forwarding based on packet headers. Its
flexibility nevertheless has an apparent upper bound and the
reasons are threefold. First, the supported match fields in
the SDN de-facto protocol, i.e., OpenFlow, to filter out a
target flow are still limited, even though the number has
increased from only 12 match fields in v1.0 to 45 in v1.5
(shown in table V). Second, an OpenFlow switch has also
some limitations in packet forwarding, a simple example being
stateful operation. Only basic operations like set, copy, incre-
ment/decrement, pop/push are defined in the standard speci-
fication. Last, the new features brought in by new OpenFlow
versions typically indicates minor changes (if not dramatic as
from v1.0 to v1.1). Similarly, research on flexible solutions for
mobile networks are often weighed down by the modifications
of the standard that they target. Indeed, one can find that
the ability of making the network flexible without a lot of
modifications to the standard is presented as an attractive
feature [107], [112].
Technology Realization. In some cases, the realization of
flexible concepts poses problems that are difficult to predict
at the design phase. As a result, the details of this realization
may restrict the final flexibility of the network. In NFV, for
instance, the implementation of computing hypervisors has a
direct impact on virtualized network functions. Different virtu-
alization techniques, i.e., full virtualization, para-virtualization



and binary translation [187], could incur various issues. Para-
virtualization requires the kernel of the guest system to be
aware of the virtualization and thus the guest system lacks
the full support of instructions on the computing processor.
Full virtualization, on the other hand, authorizes the guest
system to operate without any modification, which offers
more flexibility to VNFs. In conclusion, flexible proposals
should carefully consider the implementation problems that
may appear when bringing the design into fruition, as they
can impact on flexibility.

F. Towards Other Indicators

Finally, we observe that under certain contexts, other net-
working performance indicators, such as QoS, security and
resilience, are also influenced by flexibility.
QoS. Flexibility, in general, can help guarantee or even
improve QoS. With a global QoS level and changing input
traffic, flexible configuration of flow paths can help enforce
the latency, bandwidth, jitter, and other requirements [104],
[115]. Furthermore, function placement is exploited by several
solutions to help meet the promised QoS constraints [109],
[127], [130]. In the case of [109], even a dedicated QoS mon-
itoring infrastructure is envisioned. Finally, resource scaling
and parameter configuration are very useful means to achieve
a required QoS, as shown in [114].
Security. Flexibility can pose either positive or negative influ-
ence on network security. For the former case, we can model
network attacks as requests, so that defending against such at-
tacks is the same as accommodating the requests. An example
of this is [100], in which the flexibility in flow configuration
improves network security. Conversely, the reconfigurability
that is associated with flexibility can open the doors for new
attacks. For instance, in [112] new security threats appear,
due to the possibility of an attacker to exploit the function
placement mechanism to alter the code of legitimate functions.
Resilience. Similar to security, the influence of flexibility
on resilience can go in two directions. On the one hand,
network failures can also be modeled as requests and treated
accordingly. Concretely, we observe some potential failures
that flexible softwarized networks would encounter and cope
with, e.g., inactive SDN switch [94], [98], commodity server
fault and link failure [136]. On the other hand, some flexibility-
enabling technologies can decrease the resilience of the net-
work. For instance, the central pooling of resources that
enables resource scaling flexibility implies increased risks with
respect to distributed solutions, as the resource pool is a single
point of failure [113].

VII. OPPORTUNITIES AND RESEARCH CHALLENGES

From the flexibility analysis and observations, we can infer
that the goal of higher flexibility incurs both future opportu-
nities and challenges for researchers. In this section, we start
with highlighting the opportunities, i.e., how the flexibility can
enable the goals specific to various network applications. Af-
terwards, we collect the potential research challenges, ranging

from the buildup of the flexibility quantification framework
to the application of automation and AI, and identify the
needed steps to achieve a flexible network design. Table VI
summarizes all the challenges and the potential methodology.

A. Opportunities Towards Flexible Network Applications

Considering flexibility can benefit greatly the design of
future network applications. In this section, we demonstrate
this benefit by introducing five network applications (i.e.,
enterprise network, smart grid, 5G, wireless sensor network
and Internet of Things) and discussing the relation between
the requirements of the applications and our derived flexibility
aspects. With flexibility in mind, network designers can quan-
tify the degree to which a certain design option can satisfy the
requirements and therefore compare different design options.

Enterprise network. Managing an enterprise network used
to be expensive and error-prone, because of a variety of run-
ning applications and protocols [188]. The high management
cost derives from the rigidity of the middleboxes and the
operation complexity to recognize and resolve the errors and
anomalies in a timely manner. To address this issue, an enter-
prise network should be able to provide on-demand network
services with software NFs [189], [190] (function placement,
function configuration, and resource and function scaling).
Besides, the network needs to be flexible in routing traffic
flows (flow configuration) towards an optimal and seamless
operation.

Smart grid. A smart grid is composed of several electrical,
control, and electronic devices, and it provides power supply
to end-users in an efficient and reliable manner [191]. The
network supporting a smart grid should provide strict QoS
guarantees and ultra-reliability. Hence, a smart grid network
design needs to incorporate flexibility of recovering flows (flow
configuration) in failure situations as well as flexibility of
changing the network parameters (parameter configuration) to
adapt to changing services and serve the demands of various
use-cases.

Fifth Generation Mobile Communication (5G). The next-
generation mobile network poses challenging requirements
with respect to LTE, such as higher capacity, higher data
rate, lower device-to-device latency, and consistent QoE pro-
visioning [192]. These requirements have to be fulfilled while
facing constant changes in user traffic, interference conditions,
operator demands, and future standards. Thus, a 5G network
design needs to offer flexibility in terms of intelligently
routing fronthaul/backhaul traffic (flow configuration), switch-
ing between alternative RAN and core functions (function
configuration), moving those functions to the most convenient
locations (function placement), dynamically adapting function
policies (parameter configuration), efficiently managing radio
and computing resources [193] (resource and function scal-
ing), and providing configurable slicing for virtual operators
(topology adaptation). However, the ability of performing the
actions above is not enough. For a flexible 5G network, such
adaptation also needs to consider time constraints, which range
from the order of microseconds for adapting radio resources



TABLE VI
SUMMARY OF RESEARCH CHALLENGES

Challenge Potential Methodology/Solution Comment

Flexibility measure
Ratio supported requests (=challenges) over the total number of
requests can serve as a measure to compare different systems w.r.t.
the same flexibility aspect.

-

Network architecture design Optimization for a flexibility aspect as a special performance metric
to derive insights towards a flexible architecture design. -

Trade-off between
over-provisioning &
adaptation

Model all the cost factors, including CAPEX and OPEX, and analyze
the trade-off with the achieved flexibility value in mind.

Different network systems
may have different
preferences.

Manage unpredictability &
instability

Perform measurements on physical devices, collect performance
issues, and consider the issues when designing flexible systems.

Hard to predict exact
performance

Combine software &
hardware

Integrate hardware acceleration for computation-intensive tasks,
implement software network function with high efficiency and
reliability, design hybrid resource management mechanism.

-

Algorithm Design and
Artificial Intelligence

Design more efficient algorithms to address more complex
optimization problems, and apply AI for faster decision making in
network management.

-

Automation
The SDN controller implements the automation of traffic monitoring
and flow path engineering. For NFV and NV, the resource manager
reacts to request input and potential failures.

The full process of network
service provisioning should
be automated.

Benchmarking Based on measurements, generate realistic datasets of different
request sets that demand for flexibility. -

[194], to the order of minutes for the modification of virtual
slices [195].

Wireless Sensor Network (WSN). By means of sensors
that can measure physical and environmental parameters, a
WSN collects data over a certain area and forwards them to a
central location for processing [196]. As a great constraint to
WSNs, all forwarding nodes are supplied with limited supply
of energy. WSNs should also be able to timely adapt to sudden
events, change of interference conditions, and future updates.
A flexible WSN should implement an efficient radio resource
algorithm (resource and function scaling) for dynamic channel
condition to save energy, as well as a multi-hop strategy for
data collection [197] (flow configuration), especially when new
sensors join and existing sensors die during the operation. In
the meantime, the topology should adapt to various use-cases
(topology adaptation) in the field such as tracking, moving
components, environmental setups, etc.

Internet of Things (IoT). The future networking paradigm
entails the inter-connection of nearly every device in our daily
life. It is estimated that 20 billion to 50 billion devices will
be connected to the Internet by the year 2020 [198]. Clearly,
a network exploiting this paradigm needs to exhibit a design
able to scale with the huge amount of devices, which varies
over time and location, and handle the highly-variable traffic
generated by the devices. Specifically, the flexible coordination
of network resources can address the large amount of differ-
ent service requirements originating from the heterogeneous
devices [199] (flow configuration), and, by utilizing SDN and
NFV, the resources for individual IoT use-cases can be flexibly

allocated [200] as well as contribute to the global resource
efficiency (resource and function scaling).

B. Flexibility Quantification Framework

1) Flexibility Measure: Flexibility is a desirable charac-
teristic of a network. However, it is usually ambiguous how
to quantify network flexibility and compare different network
design choices. For this purpose, a quantitative flexibility
measure is needed. Such measure could take into account
three components, as explained in Section III: (i) definition
of requests, (ii) definition of flexibility aspects, and (iii)
adaptation time constraints.

One possible way is to measure flexibility as the ratio of
the number of supported requests, that can be realized under
an adaptation time constraint, over the number of all given
requests. In our preliminary work we apply this methodology
and draw useful insights by comparing different system design
choices, e.g., for mobile core network functions placement
[8] and for dynamic SDN control plane [7]. The dynamic
SDN control plane, for instance, evaluates the question “is
a distributed control plane more flexible?”, which may look
intuitive. However, it turns out that under some circumstances,
a centralized control plane is also flexible enough to handle the
varying traffic, while adding only relatively low cost overhead.

2) Requests and State Representation: The quantitative
evaluation of the flexibility of a system could be a complex
and challenging task. First, the full set of all possible requests
that could change in a networking system should be defined,



whose cardinality can be infinite. For example, the data and
control latency requirement is theoretically any real number
that falls into the range of acceptable operation. Second,
in case an adaptation is required, the state of the system
also poses an impact. Consider the case of dynamic SDN
controller placement for example as in [7]. The migration
time of the SDN controller to the optimal location depends
on the original location of the controller, i.e., current system
state. Therefore, the representation of the request space,
together with the system state, is one of the most important
challenges to overcome.

3) System Comparison: Moving one step further, we throw
out another interesting question: “is it possible to compare
the flexibility of any two networks?”. This question can be
trivial if we examine two networks that are intended for the
same type of requests. For example, consider two SDN WANs
with the same topology and facing the same requests (new
traffic distributions), but with a different number of controllers.
The network that can accommodate more traffic distributions
can be easily seen as more flexible. Moreover, we can even
compare networks realized with different technologies, e.g.,
SDN-based and NFV-based MCN, provided that we have
carefully designed a set of requests and a common adaptation
time constraint.

The same question, however, becomes challenging if we
generalize the comparison even more. It is not evident either
how to compare flexibility of networks that face different
requests, or that have different time constraints. Still consider
the case of two SDN WANs, but this time they face different
sets of traffic distributions. One can accommodate five
out of five distributions, while the other is only able to
accommodate eight out of ten distributions. If we opt for
the absolute number of supported requests, the later one is
more flexible. On the other hand, if we prefer the ratio of
supported requests, the former one becomes more flexible. A
difference in comparison methodology results in completely
different conclusions. To this end, we need to think of how to
get rid of such ambiguity, i.e., normalize the various factors,
and thereafter perform comparisons that make perfect sense.

C. Flexible Network Architecture Design

Having a flexibility quantification framework will enable the
design of future flexible network architectures, which is also a
challenging task. The first step is request representation, i.e., to
define all possible network requests that show both temporal
and spatial changing behavior. Examples of such inputs are
traffic, function (including type and location) and topology
variation. Next the flexibility aspects should be modeled as
network design optimization problems, which targets specific
technology and concept details. The optimization objective
is to maximize the number of supported requests, under the
constraint of adaptation time, as well as the constraints that
are inferred from other network indicators, e.g., data plane
latency, signaling overhead, or bandwidth usage ratio. In

the end, by analyzing solutions to the optimization problem,
we could hopefully derive patterns and insights that attain
a flexible architecture. One possible pattern would be that
topologies with a specific property, such as high betweenness
centrality, could accommodate more traffic variations without
much need of reconfiguration. We would like to see more work
on elaborating such a flexible network architecture design
methodology.

D. Over-provisioning vs. Adaptation

As mentioned in Sec. III-A, the network may accom-
modate the requests by modifying its topology, functions,
flows, and resources. Nonetheless, such modifications are not
always required, as adaptation may be compensated with over-
provisioning.

By assigning more resources than actually needed, the
network would be able to address common challenges, such
as increased traffic demands and more stringent latency
requirement, without the need for any change in its state.
This might be beneficial from a performance point of view,
since adaptation may incur reconfiguration latency. Indeed,
performing adaptations means higher risk of violating the time
constraint, which is a severe problem in many communication
networks. However, such a method obviously calls for
higher CAPEX in contrast to a network with less resources
that can dynamically adapt them. Conversely, the OPEX
might be lower in an over-provisioned system, because the
operation of the network would be less complex. However,
as more resources need to be utilized, the related operational
cost can also increase. To this end, a clear analysis of all
OPEX components is needed to clarify its relationship with
over-provisioning. In conclusion, any flexible design should
carefully consider the actual benefits and costs of performing
adaptation, in contrast to resource over-provisioning.

E. Unpredictability and Instability

The performance guarantees in flexible network systems are
another important challenge. For instance, virtualized network
functions are hosted in VMs, and the isolation of VMs guaran-
tees the agreed service level between tenant and infrastructure
operator. Indeed, a given fraction of every resource type, i.e.,
processor, memory and I/O bandwidth, is defined for each
VM. However, as pointed out in [201] and [202], micro-
architectural level resources such as the caches inside a proces-
sor cannot be divided and then dedicated to each VM. In other
words, all running VMs share them in a competitive manner,
which may result in cache contention. A CPU intensive VM
would keep overwriting the cache, resulting in higher latency
of retrieving data for other VMs. The exact performance of
network functions therefore becomes harder to predict.

In addition, as softwarization introduces one more
virtualization layer to the system, the errors of the physical
layer, even tiny ones, will be propagated to the above
virtualization layer and trigger instability of virtual networks
[5]. For instance, a misconfigured routing protocol in the



substrate causes routing oscillation and as a result, virtual
networks suffer from instable packet forwarding delays and
probably packet losses.

F. Software and Hardware

There has been a long history of discussion about software
and hardware, which also relates to flexible communication
networks. We envision softwarization as the key enabler
of flexibility, and in the meantime, we are also aware that
compared with proprietary and rigid hardware network
equipment, software solutions are not competitive in terms of
absolute processing speed. To this end, the idea of leveraging
commodity hardware for various network services is widely
adopted both within academia and industry, e.g., P4 ([54]) that
enables data plane programmability and white box switching
([203], [204]) that leverages switch commoditization. Software
programs, as an effective supplement, not only implement
network services, but also operate hardware resources and
orchestrate the implemented services [205]. There are several
available directions of improvement that we need to work on,
namely (i) integrating hardware acceleration configuration,
e.g., advanced memory read/write and I/O speedup, into
the servers to enhance the packet processing capability;
(ii) implementing network functions in software with high
efficiency and reliability; (iii) designing sophisticated resource
management mechanism to utilize hardware in an optimal
manner.

G. Algorithm Design and Artificial Intelligence

Flexibility brings in new challenges to network
optimization, since the problem space grows drastically
with more degrees of freedom in the system choices. For
example, the placement of virtualized network functions is
harder than that of hardware middleboxes, because VNFs can
be instantiated and distributed among more locations, i.e.,
servers and cloud platforms, than in case of middleboxes.
Efficient algorithms as in [91], [92], [99], [115], [206] are
needed to speed up the procedure. Since the time aspect plays
a vital role in flexibility, if the system could make faster
decisions, it will be able to handle more requests and therefore
be more flexible. We envision machine learning as a promising
approach to boost the process of decision making. Take the
area of virtual network embedding or cluster assignment in
data centers as an example. For virtual network embedding,
a recurrent neural network learned from algorithm results to
predict the outcome of future algorithm executions [207]. In
data centers, a data-driven approach [208] performs admission
control and even increases the embedding efficiency; for data
center job scheduling, a reinforcement learning approach
outperforms shortest job scheduling [167]. Generally, the
idea to learn from algorithm data has been demonstrated for
facility location problems, virtual network embedding, and
the dynamic controller placement problem [209], [210]. In
order to fully exploit the flexibilities of softwarized networks,

we envision a high demand for such algorithmic concepts in
the future, i.e., a high demand for conducting future work in
this area.

H. Automation

Another challenge is that the complete process of statis-
tics monitoring, decision making and adaptation execution
is required to be fully automated for flexible softwarized
networks. Indeed, autonomous networking has become a hot
topic recently, showing a trend of less human intervention
in network management. In SDN, the controller acts as the
network brain that controls the underlying switches and their
supported functionalities. We would like to see more contri-
bution in controller implementation that handles automated
network provisioning.

Similar trend of automation in demand-driven elastic
management of infrastructure also happens in NFV. The tasks
becomes even more complicated when facing heterogeneous
hardware resources, which is exactly the case nowadays,
as servers with different capabilities need to be treated
equally and virtualized. According to [211], automatic
NFV management should be able to: (i) estimate VNF
capacity, (ii) compute virtualization and system overhead, (iii)
determine the optimal resource configuration, (iv) evaluate
different virtualization and hardware options, and (v) tune
VNF implementation and performance. Researchers should
pay attention to all five components when proposing an
automation framework.

I. Benchmarking

For classical problems, e.g., Traveling Salesman Problem,
Facility Location Problem and Time Scheduling Problem,
common datasets have been proposed as benchmarks to com-
pare those different algorithms. This is yet not the case
for most of the problems occurred in flexible softwarized
networks. One example is the study of dynamic control plane,
which depends on the distribution of control plane traffic.
However, uniform distribution, while mostly used, does not
reflect the realistic property of traffic. Another example can
be observed with the VNE problem in the area of NV.
Concretely, the structure of VN requests has a considerable
influence on the VNE algorithm performance. There is yet
no common dataset of VN requests [173] in the community.
The majority of VNE papers apply VNs that are randomly
generated, without consistency in the number of nodes or the
distribution of links.

In order to target this challenge, we advocate the necessity
to have common practical datasets of each request types,
e.g., traffic variation, user movement, VN request, etc., to
evaluate the flexibility of different proposals. Of course, such
datasets should be built upon comprehensive measurements
with different use cases in mind.



VIII. CONCLUSION

Communication networks have to cope with frequent
changes in user requirements, traffic distributions, service
demands, and system anomalies. This has boosted research
efforts towards designing flexible networks, in order to ac-
commodate such changes in a timely manner. Such efforts
have flourished in softwarized networks, that is, SDN, NFV,
and NV, as they provide a high level of adaptability and
reconfigurability. However, a common understanding of flexi-
bility is missing in the networking literature. This hinders the
comparison of different network designs, and also challenges
developing even more flexible network concepts. In order to
address this, we initiate the study of network flexibility and
present this survey as a comprehensive analysis of flexibility
in softwarized networks.

We first propose a definition of network flexibility, based on
the common notion existing in the literature. We expose the
multifaceted nature of flexibility by decomposing it into three
categories and six flexibility aspects. We rely on a combination
of those flexibility aspects and network technologies to analyze
and classify the state of the art. Moreover, our classification
also covers different network domains (such as wide area,
mobile and data center networks) and control and date plane.

In the light of this classification, we derive common ob-
servations from the various network flexibility proposals, e.g.,
the importance of adaptation time and the relationship of flex-
ibility with other networking performance indicators. We also
relate flexibility to cost, which provides better understanding
of the price that we have to pay in order to face changes in
the network.

We identify a wide range of future research directions
towards flexible communication networks. Among them, we
consider that a quantification framework is especially im-
portant for the future improvement of network flexibility, as
it would enable to measure and compare flexibility among
different design choices. Besides, several trade-offs, e.g., over-
provision vs. adaptation and software vs. hardware, need to be
exploited in order to blueprint flexible network architectures.
Applying hot topics such as AI and management automation
would further improve the network’s ability to accommodate
future unknown changes.

ACKNOWLEDGMENT

This work is part of a project that has received funding from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant
agreement No 647158 - FlexNets). The authors alone are
responsible for the content of the paper.

REFERENCES

[1] W. Kellerer, A. Basta et al., “How to measure network flexibility? a
proposal for evaluating softwarized networks,” IEEE Communications
Magazine, 2018.

[2] Sdxcentral. Carriers 5G Plans are Rooted in SDN/NFV, Says Ixia
Survey. [Online]. Available: https://www.sdxcentral.com/articles/news/
carriers-5g-plans-rooted-sdnnfv-says-ixia-survey/2017/09/?c action=
related articles

[3] BDO International Limited, “2017 telecommunications risk factor
survey,” Tech. Rep., 2017. [Online]. Available: https://www.
bdo.global/en-gb/insights/global-industries/technology,-life-sciences,
-media-entertainment-a/2017-telecommunications-risk-factor-survey

[4] D. Kreutz, F. M. Ramos et al., “Software-defined networking: A
comprehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp.
14–76, 2015.

[5] R. Mijumbi, J. Serrat et al., “Network function virtualization: State-
of-the-art and research challenges,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pp. 236–262, 2016.

[6] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtual-
ization,” Computer Networks, vol. 54, no. 5, pp. 862–876, 2010.

[7] M. He, A. Basta et al., “How Flexible is Dynamic SDN Control
Plane?” in Proceedings of the 2017 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE, 2017.

[8] W. Kellerer, A. Basta et al., “Using a flexibility measure for network
design space analysis of SDN and NFV,” in Proceedings of the 2016
IEEE Conference on Computer Communications Workshops (INFO-
COM WKSHPS). IEEE, 2016, pp. 423–428.

[9] A. Gamba and A. Triantis, “The value of financial flexibility,” The
Journal of Finance, vol. 63, no. 5, pp. 2263–2296, 2008.

[10] R. D. Shachter and M. Mandelbaum, “A measure of decision flex-
ibility,” in Proceedings of the Twelfth International Conference on
Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers
Inc., 1996, pp. 485–491.

[11] W. J. Hopp, S. M. Iravani et al., “Vertical flexibility in supply chains,”
Management Science, vol. 56, no. 3, pp. 495–502, 2010.

[12] S. C. Graves and B. T. Tomlin, “Process flexibility in supply chains,”
Management Science, vol. 49, no. 7, pp. 907–919, 2003.

[13] W. Golden and P. Powell, “Towards a definition of flexibility: in search
of the holy grail?” Omega, vol. 28, no. 4, pp. 373–384, 2000.

[14] S. Peng, L. Shen et al., “User-oriented measurement of software
flexibility,” in Proceedings of the 2009 WRI World Congress on
Computer Science and Information Engineering, vol. 7. IEEE, 2009,
pp. 629–633.

[15] H. Subramaniam and H. Zulzalil, “Software quality assessment using
flexibility: A systematic literature review,” International Review on
Computers and Software, vol. 7, no. 5, 2012.

[16] A. H. Eden and T. Mens, “Measuring software flexibility,” IEEE
Proceedings of Software, vol. 153, no. 3, pp. 113–125, 2006.

[17] B. A. A. Nunes, M. Mendonca et al., “A survey of software-defined
networking: Past, present, and future of programmable networks,” IEEE
Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1617–1634,
2014.

[18] W. Xia, Y. Wen et al., “A survey on software-defined networking,”
IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 27–51,
2015.

[19] F. Hu, Q. Hao et al., “A survey on software-defined network and
openflow: From concept to implementation,” IEEE Communications
Surveys & Tutorials, vol. 16, no. 4, pp. 2181–2206, 2014.

[20] H. Farhady, H. Lee et al., “Software-defined networking: A survey,”
Computer Networks, vol. 81, pp. 79–95, 2015.

[21] Q. Yan, F. R. Yu et al., “Software-defined networking (SDN) and
distributed denial of service (DDoS) attacks in cloud computing
environments: A survey, some research issues, and challenges,” IEEE
Communications Surveys & Tutorials, vol. 18, no. 1, pp. 602–622,
2016.

[22] S. Scott-Hayward, S. Natarajan et al., “A survey of security in software
defined networks,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 1, pp. 623–654, 2016.

[23] I. Ahmad, S. Namal et al., “Security in software defined networks: A
survey,” IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp.
2317–2346, 2015.

[24] M. Coughlin, “A survey of SDN security research,” University of
Colorado Boulder, 2014.

[25] M. Chen, Y. Qian et al., “Software-defined mobile networks security,”
Mobile Networks and Applications, vol. 21, no. 5, pp. 729–743, 2016.

[26] D. B. Rawat and S. R. Reddy, “Software defined networking architec-
ture, security and energy efficiency: A survey,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 1, pp. 325–346, 2017.

[27] Y. Jarraya, T. Madi et al., “A survey and a layered taxonomy of
software-defined networking,” IEEE Communications surveys & tuto-
rials, vol. 16, no. 4, pp. 1955–1980, 2014.

https://www.sdxcentral.com/articles/news/carriers-5g-plans-rooted-sdnnfv-says-ixia-survey/2017/09/?c_action=related_articles
https://www.sdxcentral.com/articles/news/carriers-5g-plans-rooted-sdnnfv-says-ixia-survey/2017/09/?c_action=related_articles
https://www.sdxcentral.com/articles/news/carriers-5g-plans-rooted-sdnnfv-says-ixia-survey/2017/09/?c_action=related_articles
https://www.bdo.global/en-gb/insights/global-industries/technology,-life-sciences,-media-entertainment-a/2017-telecommunications-risk-factor-survey
https://www.bdo.global/en-gb/insights/global-industries/technology,-life-sciences,-media-entertainment-a/2017-telecommunications-risk-factor-survey
https://www.bdo.global/en-gb/insights/global-industries/technology,-life-sciences,-media-entertainment-a/2017-telecommunications-risk-factor-survey


[28] A. Lara, A. Kolasani et al., “Network innovation using openflow: A
survey,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp.
493–512, 2014.

[29] I. T. Haque and N. Abu-Ghazaleh, “Wireless software defined net-
working: A survey and taxonomy,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 4, pp. 2713–2737, 2016.

[30] S. Costanzo, L. Galluccio et al., “Software defined wireless networks:
Unbridling sdns,” in Proceedings of the 2012 European Workshop on
Software Defined Networking (EWSDN). IEEE, 2012, pp. 1–6.

[31] S. Tomovic, M. Pejanovic-Djurisic et al., “SDN based mobile networks:
concepts and benefits,” Wireless Personal Communications, vol. 78,
no. 3, pp. 1629–1644, 2014.

[32] T. Chen, M. Matinmikko et al., “Software defined mobile networks:
concept, survey, and research directions,” IEEE Communications Mag-
azine, vol. 53, no. 11, pp. 126–133, 2015.

[33] V.-G. Nguyen, T.-X. Do et al., “SDN and virtualization-based LTE mo-
bile network architectures: A comprehensive survey,” Wireless Personal
Communications, vol. 86, no. 3, pp. 1401–1438, 2016.

[34] Y. Li and M. Chen, “Software-defined network function virtualization:
A survey,” IEEE Access, vol. 3, pp. 2542–2553, 2015.

[35] W. Yang and C. Fung, “A survey on security in network functions
virtualization,” in Proceedings of the 2016 IEEE NetSoft Conference
and Workshops (NetSoft). IEEE, 2016, pp. 15–19.

[36] H. Jang, J. Jeong et al., “A survey on interfaces to network security
functions in network virtualization,” in Proceedings of the 2015 IEEE
29th International Conference on Advanced Information Networking
and Applications Workshops (WAINA). IEEE, 2015, pp. 160–163.

[37] V.-G. Nguyen, A. Brunstrom et al., “Sdn/nfv-based mobile packet core
network architectures: A survey,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1567–1602, 2017.

[38] X. Li and C. Qian, “A survey of network function placement,” in
Proceedings of the 2016 13th IEEE Annual Consumer Communications
& Networking Conference (CCNC). IEEE, 2016, pp. 948–953.

[39] A. Fischer, J. F. Botero et al., “Virtual network embedding: A survey,”
IEEE Communications Surveys & Tutorials, vol. 15, no. 4, pp. 1888–
1906, 2013.

[40] C. Liang and F. R. Yu, “Wireless network virtualization: A survey,
some research issues and challenges,” IEEE Communications Surveys
& Tutorials, vol. 17, no. 1, pp. 358–380, 2015.

[41] M. Yang, Y. Li et al., “Software-defined and virtualized future mobile
and wireless networks: A survey,” Mobile Networks and Applications,
vol. 20, no. 1, pp. 4–18, 2015.

[42] C. Liang, F. R. Yu et al., “Information-centric network function virtu-
alization over 5G mobile wireless networks,” IEEE network, vol. 29,
no. 3, pp. 68–74, 2015.

[43] Q. Duan, Y. Yan et al., “A survey on service-oriented network virtual-
ization toward convergence of networking and cloud computing,” IEEE
Transactions on Network and Service Management, vol. 9, no. 4, pp.
373–392, 2012.

[44] A. Blenk, A. Basta et al., “Survey on network virtualization hypervisors
for software defined networking,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pp. 655–685, 2016.

[45] C. Hedrick and L. Bosack, “An introduction to IGRP,” Rutgers-The
State University of New Jersey Technical Publication, Laboratory for
Computer Science, 1991.

[46] J. T. Moy, OSPF: anatomy of an Internet routing protocol. Addison-
Wesley Professional, 1998.

[47] H. Kim and N. Feamster, “Improving network management with soft-
ware defined networking,” IEEE Communications Magazine, vol. 51,
no. 2, pp. 114–119, 2013.

[48] N. McKeown, T. Anderson et al., “Openflow: enabling innovation
in campus networks,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, pp. 69–74, 2008.

[49] R. Enns, “Netconf configuration protocol,” Internet Requests for
Comments, RFC Editor, RFC 4741, December 2006. [Online].
Available: http://www.rfc-editor.org/rfc/rfc4741.txt

[50] B. Pfaff and B. Davie, “The open vswitch database management
protocol,” Internet Requests for Comments, RFC Editor, RFC 7047,
December 2013. [Online]. Available: http://www.rfc-editor.org/rfc/
rfc7047.txt

[51] Open network foundation. [Online]. Available: https://www.
opennetworking.org/

[52] OpenFlow Switch Specifications 1.5.1, Open Networking Foundation,
3 2015.

[53] S. Sharma, D. Staessens et al., “Openflow: Meeting carrier-grade
recovery requirements,” Computer Communications, vol. 36, no. 6, pp.
656–665, 2013.

[54] P. Bosshart, D. Daly et al., “P4: Programming protocol-independent
packet processors,” ACM SIGCOMM Computer Communication Re-
view, vol. 44, no. 3, pp. 87–95, 2014.

[55] N. Gude, T. Koponen et al., “NOX: towards an operating system
for networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 3, pp. 105–110, 2008.

[56] Ryu: Component-based software defined networking framework.
[Online]. Available: https://osrg.github.io/ryu/

[57] Project floodlight. [Online]. Available: http://www.projectfloodlight.
org/floodlight/

[58] S. H. Yeganeh, A. Tootoonchian et al., “On scalability of software-
defined networking,” IEEE Communications Magazine, vol. 51, no. 2,
pp. 136–141, 2013.

[59] S. Sezer, S. Scott-Hayward et al., “Are we ready for sdn? implementa-
tion challenges for software-defined networks,” IEEE Communications
Magazine, vol. 51, no. 7, pp. 36–43, 2013.

[60] T. Koponen, M. Casado et al., “Onix: A distributed control platform for
large-scale production networks.” in Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
vol. 10, 2010, pp. 1–6.

[61] A. Tootoonchian and Y. Ganjali, “HyperFlow: A distributed control
plane for OpenFlow,” in Proceedings of the 2010 Internet Network
Management Conference on Research on Enterprise Networking, 2010,
pp. 3–3.

[62] P. Berde, M. Gerola et al., “ONOS: towards an open, distributed SDN
OS,” in Proceedings of the Third ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking. ACM, 2014, pp. 1–6.

[63] J. Medved, R. Varga et al., “Opendaylight: Towards a model-driven
sdn controller architecture,” in Proceedings of the 2014 IEEE 15th In-
ternational Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM). IEEE, 2014, pp. 1–6.

[64] The linux foundation. [Online]. Available: https://www.
linuxfoundation.org/

[65] P. P.-S. Chen, “The entity-relationship modeltoward a unified view of
data,” ACM Transactions on Database Systems (TODS), vol. 1, no. 1,
pp. 9–36, 1976.

[66] D. Levin, A. Wundsam et al., “Logically centralized?: state distribu-
tion trade-offs in software defined networks,” in Proceedings of the
First ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking. ACM, 2012, pp. 1–6.

[67] T. Zhang, A. Bianco et al., “The Role of Inter-Controller Traf-
fic for Placement of Distributed SDN Controllers,” arXiv preprint
arXiv:1605.09268, 2016.

[68] M. Karakus and A. Durresi, “A survey: Control plane scalability issues
and approaches in Software-Defined Networking (SDN),” Computer
Networks, vol. 112, pp. 279–293, 2017.

[69] C. Trois, M. D. Del Fabro et al., “A survey on sdn programming
languages: toward a taxonomy,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 4, pp. 2687–2712, 2016.

[70] M. F. Bari, S. R. Chowdhury et al., “On orchestrating virtual network
functions,” in Proceedings of the 2015 11th International Conference
on Network and Service Management (CNSM). IEEE, 2015, pp. 50–
56.

[71] ETSI. Network Function Virtualiyation (NFV): Use Cases. [Online].
Available: http://www.etsi.org/deliver/etsi gs/NFV/001 099/001/01.01.
01 60/gs NFV001v010101p.pdf

[72] N. M. K. Chowdhury and R. Boutaba, “Network virtualization: state
of the art and research challenges,” IEEE Communications magazine,
vol. 47, no. 7, 2009.

[73] A. Khan, A. Zugenmaier et al., “Network virtualization: a hypervisor
for the internet?” IEEE Communications Magazine, vol. 50, no. 1,
2012.

[74] 3GPP, “Evolved Universal Terrestrial Radio Access Network (E-
UTRAN); Self-configuring and self-optimizing network (SON) use
cases and solutions,” 3rd Generation Partnership Project (3GPP),
TR 36.902, Apr. 2011. [Online]. Available: http://www.3gpp.org/ftp/
Specs/html-info/36902.htm

[75] C. Cox, n Introduction to LTE: LTE, LTE-Advanced, SAE and 4G
Mobile Communications. Wiley, 2012.

http://www.rfc-editor.org/rfc/rfc4741.txt
http://www.rfc-editor.org/rfc/rfc7047.txt
http://www.rfc-editor.org/rfc/rfc7047.txt
https://www.opennetworking.org/
https://www.opennetworking.org/
https://osrg.github.io/ryu/
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/
https://www.linuxfoundation.org/
https://www.linuxfoundation.org/
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf
http://www.3gpp.org/ftp/Specs/html-info/36902.htm
http://www.3gpp.org/ftp/Specs/html-info/36902.htm


[76] M. Koibuchi, A. Funahashi et al., “L-turn routing: An adaptive routing
in irregular networks,” in Proceedings of the 2001 IEEE International
Conference onParallel Processing. IEEE, 2001, pp. 383–392.

[77] I. Theiss and O. Lysne, “Froots: a fault tolerant and topology-flexible
routing technique,” IEEE Transactions on Parallel and Distributed
Systems, vol. 17, no. 10, pp. 1136–1150, 2006.

[78] J. Flich, T. Skeie et al., “A survey and evaluation of topology-agnostic
deterministic routing algorithms,” IEEE Transactions on Parallel and
Distributed Systems, vol. 23, no. 3, pp. 405–425, 2012.

[79] D.-N. Yang and W. Liao, “Optimizing state allocation for multicast
communications,” in Proceedings of the 2004 IEEE Conference on
Computer Communications (INFOCOM), vol. 4. IEEE, 2004, pp.
2719–2730.

[80] ——, “On bandwidth-efficient overlay multicast,” IEEE Transactions
on Parallel and Distributed Systems, vol. 18, no. 11, 2007.

[81] F. Pianese, J. Keller et al., “Pulse, a flexible p2p live streaming
system,” in Proceedings of the 2006 IEEE Conference on Computer
Communications (INFOCOM). IEEE, 2006, pp. 1–6.

[82] A. P. C. da Silva, E. Leonardi et al., “Chunk distribution in mesh-
based large-scale p2p streaming systems: A fluid approach,” IEEE
Transactions on Parallel and Distributed Systems, vol. 22, no. 3, pp.
451–463, 2011.

[83] W. Sun, Z. Yang et al., “Hello: A generic flexible protocol for neighbor
discovery,” in Proceedings of the 2014 IEEE Conference on Computer
Communications (INFOCOM). IEEE, 2014, pp. 540–548.

[84] Y. Zhang, Z. Zhang et al., “Hc-bgp: A light-weight and flexible scheme
for securing prefix ownership,” in Proceedings of the 2009 IEEE/IFIP
International Conference on Dependable Systems & Networks. IEEE,
2009, pp. 23–32.

[85] K. Xu, H. Liu et al., “One more weight is enough: Toward the
optimal traffic engineering with ospf,” in Proceedings of the 2011 31st
International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2011, pp. 836–846.

[86] A. De Toni and S. Tonchia, “Manufacturing flexibility: a literature
review,” International journal of production research, vol. 36, no. 6,
pp. 1587–1617, 1998.

[87] A. K. Sethi and S. P. Sethi, “Flexibility in manufacturing: a survey,”
International journal of flexible manufacturing systems, vol. 2, no. 4,
pp. 289–328, 1990.

[88] P. H. Brill and M. Mandelbaum, “On measures of flexibility in
manufacturing systems,” THE INTERNATIONAL JOURNAL OF PRO-
DUCTION RESEARCH, vol. 27, no. 5, pp. 747–756, 1989.

[89] R. P. Parker and A. Wirth, “Manufacturing flexibility: measures and
relationships,” European journal of operational research, vol. 118,
no. 3, pp. 429–449, 1999.

[90] Y. Xiao, “Flexibility measure analysis of supply chain,” International
Journal of Production Research, vol. 53, no. 10, pp. 3161–3174, 2015.

[91] X.-N. Nguyen, D. Saucez et al., “Optimizing rules placement in open-
flow networks: Trading routing for better efficiency,” in Proceedings
of the Third ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking. ACM, 2014, pp. 127–132.

[92] Y. Guo, Z. Wang et al., “Traffic engineering in SDN/OSPF hybrid net-
work,” in Proceedings of the 2014 IEEE 22nd International Conference
on Network Protocols (ICNP). IEEE, 2014, pp. 563–568.

[93] D. Lee, P. Hong et al., “RPA-RA: A resource preference aware routing
algorithm in software defined network,” in Proceedings of the 2015
IEEE Global Communications Conference (GLOBECOM). IEEE,
2015, pp. 1–6.

[94] K. Toumi, M. S. Idrees et al., “Usage Control Policy Enforcement
in SDN-Based Clouds: A Dynamic Availability Service Use Case,” in
Proceedings of the 2016 IEEE 18th International Conference on High
Performance Computing and Communications. IEEE, 2016, pp. 578–
585.

[95] Z. Su, T. Wang et al., “Cheetahflow: Towards low latency software-
defined network,” in Proceedings of the 2014 IEEE International
Conference on Communications (ICC). IEEE, 2014, pp. 3076–3081.

[96] K.-T. Kuo, C. H.-P. Wen et al., “SWF: Segmented Wildcard Forwarding
for flow migration in OpenFlow datacenter networks,” in Proceedings
of the 2015 IEEE International Conference on Communications (ICC).
IEEE, 2015, pp. 313–318.

[97] C. Cascone, L. Pollini et al., “Traffic management applications for
stateful SDN data plane,” in Proceedings of the 2015 Fourth European
Workshop on Software Defined Networks (EWSDN). IEEE, 2015, pp.
85–90.

[98] K. He, J. Khalid et al., “Mazu: Taming latency in software defined
networks,” University of Wisconsin-Madison Technical Report, 2014.

[99] A. Mohammadkhan, S. Ghapani et al., “Virtual function placement and
traffic steering in flexible and dynamic software defined networks,” in
Proceedings of the 2015 IEEE International Workshop on Local and
Metropolitan Area Networks (LANMAN). IEEE, 2015, pp. 1–6.

[100] W. Zhang, G. Liu et al., “Sdnfv: Flexible and dynamic software defined
control of an application-and flow-aware data plane,” in Proceedings
of the 17th International Middleware Conference. ACM, 2016, p. 2.

[101] A. Basta, A. Blenk et al., “Towards a dynamic sdn virtualization
layer: A control path migration protocol,” in Proceedings of the 2015
11th International Conference on Network and Service Management
(CNSM). IEEE, 2015, pp. 354–359.

[102] K. Sood, S. Yu et al., “Control layer resource management in SDN-
IoT networks using multi-objective constraint,” in Proceedings of the
2016 IEEE 11th Conference on Industrial Electronics and Applications
(ICIEA). IEEE, 2016, pp. 71–76.

[103] X. Jin, L. Li et al., “Cellsdn: Software-defined cellular core networks,”
Proceedings of the Open Networking Summit SDN Event, 2013.

[104] X. Jin, L. E. Li et al., “Softcell: Scalable and flexible cellular core
network architecture,” in Proceedings of the ninth ACM Conference
on Emerging Networking Experiments and Technologies (CoNEXT).
ACM, 2013, pp. 163–174.

[105] K. Pentikousis, Y. Wang et al., “Mobileflow: Toward software-defined
mobile networks,” IEEE Communications magazine, vol. 51, no. 7, pp.
44–53, 2013.

[106] I. F. Akyildiz, P. Wang et al., “Softair: A software defined networking
architecture for 5g wireless systems,” Computer Networks, vol. 85, pp.
1–18, 2015.

[107] Z. A. Qazi, P. K. Penumarthi et al., “Klein: A minimally disruptive
design for an elastic cellular core,” in Proceedings of the Symposium
on SDN Research. ACM, 2016, p. 2.

[108] H. Wang, S. Chen et al., “Softnet: A software defined decentralized
mobile network architecture toward 5g,” IEEE Network, vol. 29, no. 2,
pp. 16–22, 2015.

[109] M. Gramaglia, I. Digon et al., “Flexible connectivity and QoE/QoS
management for 5G Networks: The 5G NORMA view,” in Proceed-
ings of the 2016 IEEE International Conference on Communications
Workshop. IEEE, 2016, pp. 373–379.

[110] J. Hwang, K. K. Ramakrishnan et al., “NetVM: high performance
and flexible networking using virtualization on commodity platforms,”
IEEE Transactions on Network and Service Management, vol. 12, no. 1,
pp. 34–47, 2015.

[111] K. Sundaresan, M. Y. Arslan et al., “FluidNet: A flexible cloud-based
radio access network for small cells,” IEEE/ACM Transactions on
Networking, vol. 24, no. 2, pp. 915–928, 2016.

[112] X. Foukas, N. Nikaein et al., “FlexRAN: A Flexible and Programmable
Platform for Software-Defined Radio Access Networks,” in Proceed-
ings of the 13th International Conference on emerging Networking
EXperiments and Technologies (CoNEXT), 2016, pp. 427–441.

[113] A. Checko, H. L. Christiansen et al., “Cloud RAN for mobile
networksA technology overview,” IEEE Communications Surveys &
Tutorials, vol. 17, no. 1, pp. 405–426, 2015.

[114] V. N. Ha, L. B. Le et al., “Coordinated multipoint transmission design
for cloud-RANs with limited fronthaul capacity constraints,” IEEE
Transactions on Vehicular Technology, vol. 65, no. 9, pp. 7432–7447,
2016.

[115] T. X. Tran and D. Pompili, “Dynamic Radio Cooperation for User-
Centric Cloud-RAN With Computing Resource Sharing,” IEEE Trans-
actions on Wireless Communications, vol. 16, no. 4, pp. 2379–2393,
2017.

[116] J. Tang, W. P. Tay et al., “Cross-layer resource allocation with elastic
service scaling in cloud radio access network,” IEEE Transactions on
Wireless Communications, vol. 14, no. 9, pp. 5068–5081, 2015.

[117] K. Wang and Y. Cen, “Real-Time Partitioned Scheduling in Cloud-
RAN with Hard Deadline Constraint,” in Proceedings of the 2017
IEEE Wireless Communications and Networking Conference (WCNC).
IEEE, 2017, pp. 1–6.

[118] S. Bhatia, M. Motiwala et al., “Trellis: A platform for building flexible,
fast virtual networks on commodity hardware,” in Proceedings of the
2008 ACM CoNEXT Conference. ACM, 2008, p. 72.

[119] H. Rodrigues, J. R. Santos et al., “Gatekeeper: Supporting bandwidth
guarantees for multi-tenant datacenter networks.” in Proceedings of the
USENIX Third Workshop on IO Virtualization (WIOV), 2011.



[120] R. Sherwood, G. Gibb et al., “Flowvisor: A network virtualization
layer,” OpenFlow Switch Consortium, Tech. Rep, vol. 1, p. 132, 2009.

[121] X. Jin, J. Gossels et al., “Covisor: A compositional hypervisor for
software-defined networks.” in Proceedings of the 12th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI),
2015.

[122] W. Shen, M. Yoshida et al., “vConductor: An NFV management solu-
tion for realizing end-to-end virtual network services,” in Proceedings
of the 2014 16th Asia-Pacific Network Operations and Management
Symposium (APNOMS). IEEE, 2014, pp. 1–6.

[123] S. Clayman, E. Maini et al., “The dynamic placement of virtual net-
work functions,” in Proceedings of the 2014 IEEE Network Operations
and Management Symposium (NOMS). IEEE, 2014, pp. 1–9.

[124] Y. Chang, A. Rezaei et al., “Hydra: Leveraging Functional Slic-
ing for Efficient Distributed SDN Controllers,” arXiv preprint
arXiv:1609.07192, 2016.

[125] V. Riccobene, A. Lombardo et al., “Network functions at the edge
(NetFATE): design and implementation issues,” National Telecommu-
nications and Information Theory Group (GTTI), 2014.

[126] M. Xia, M. Shirazipour et al., “Network function placement for
NFV chaining in packet/optical datacenters,” Journal of Lightwave
Technology, vol. 33, no. 8, pp. 1565–1570, 2015.

[127] A. Basta, W. Kellerer et al., “A virtual SDN-enabled LTE EPC
architecture: A case study for S-/P-gateways functions,” in Proceedings
of the 2013 IEEE SDN for Future Networks and Services (SDN4FNS).
IEEE, 2013, pp. 1–7.

[128] ——, “Applying NFV and SDN to LTE mobile core gateways, the
functions placement problem,” in Proceedings of the 4th Workshop on
All things cellular: Operations, Applications, & Challenges. ACM,
2014, pp. 33–38.

[129] T. Taleb, M. Bagaa et al., “User mobility-aware virtual network func-
tion placement for virtual 5G network infrastructure,” in Proceedings
of the 2015 IEEE International Conference on Communications (ICC).
IEEE, 2015, pp. 3879–3884.

[130] M. Bagaa, T. Taleb et al., “Service-aware network function placement
for efficient traffic handling in carrier cloud,” in Proceedings of the
2014 IEEE Wireless Communications and Networking Conference
(WCNC). IEEE, 2014, pp. 2402–2407.

[131] A. Baumgartner, V. S. Reddy et al., “Combined virtual mobile core
network function placement and topology optimization with latency
bounds,” in Proceedings of the 2015 Fourth European Workshop on
Software Defined Networks (EWSDN). IEEE, 2015, pp. 97–102.

[132] D. Sabella, P. Rost et al., “RAN as a service: Challenges of designing
a flexible RAN architecture in a cloud-based heterogeneous mobile
network,” in Proceedings of the 2013 Future Network and Mobile
Summit. IEEE, 2013, pp. 1–8.

[133] A. Maeder, M. Lalam et al., “Towards a flexible functional split
for cloud-RAN networks,” in Proceedings of the 2014 European
Conference on Networks and Communications (EuCNC). IEEE, 2014,
pp. 1–5.

[134] G. Mountaser, M. L. Rosas et al., “On the feasibility of MAC and
PHY split in Cloud RAN,” in Proceedings of the 2017 IEEE Wireless
Communications and Networking Conference (WCNC). IEEE, 2017,
pp. 1–6.

[135] C.-Y. Chang, N. Nikaein et al., “FlexCRAN: A flexible functional split
framework over ethernet fronthaul in Cloud-RAN,” in Proceedings of
the 2017 IEEE International Conference on Communications (ICC).
IEEE, 2017, pp. 1–7.

[136] W.-L. Yeow, C. Westphal et al., “Designing and embedding reliable
virtual infrastructures,” ACM SIGCOMM Computer Communication
Review, vol. 41, no. 2, pp. 57–64, 2011.

[137] A. Leivadeas, C. Papagianni et al., “Efficient resource mapping frame-
work over networked clouds via iterated local search-based request
partitioning,” IEEE Transactions on Parallel and Distributed Systems,
vol. 24, no. 6, pp. 1077–1086, 2013.

[138] M. Yu, Y. Yi et al., “Rethinking virtual network embedding: substrate
support for path splitting and migration,” ACM SIGCOMM Computer
Communication Review, vol. 38, no. 2, pp. 17–29, 2008.

[139] N. M. K. Chowdhury, M. R. Rahman et al., “Virtual network embed-
ding with coordinated node and link mapping,” in Proceedings of the
2009 IEEE Conference on Computer Communications (INFOCOM).
IEEE, 2009, pp. 783–791.

[140] A. Ludwig, S. Schmid et al., “Specificity vs. flexibility: On the

embedding cost of a virtual network,” in Proceedings of the 2013 25th
International Teletraffic Congress (ITC). IEEE, 2013, pp. 1–9.

[141] G. Yao, J. Bi et al., “On the capacitated controller placement problem
in software defined networks,” IEEE Communications Letters, vol. 18,
no. 8, pp. 1339–1342, 2014.

[142] M. T. I. ul Huque, W. Si et al., “Large-scale dynamic controller
placement,” IEEE Transactions on Network and Service Management,
vol. 14, no. 1, pp. 63–76, 2017.

[143] A. Dixit, F. Hao et al., “ElastiCon; an elastic distributed SDN
controller,” in Proceedings of the 2014 ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS).
IEEE, 2014, pp. 17–27.

[144] A. Gudipati, D. Perry et al., “SoftRAN: Software defined radio access
network,” in Proceedings of the Second ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking. ACM, 2013, pp. 25–30.

[145] G. A. Carella, M. Pauls et al., “An extensible Autoscaling Engine (AE)
for Software-based Network Functions,” in Proceedings of the 2016
IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN). IEEE, 2016, pp. 219–225.

[146] M. Yoshida, W. Shen et al., “MORSA: A multi-objective resource
scheduling algorithm for NFV infrastructure,” in Proceedings of the
2014 16th Asia-Pacific Network Operations and Management Sympo-
sium (APNOMS). IEEE, 2014, pp. 1–6.

[147] V. Shrivastava, P. Zerfos et al., “Application-aware virtual machine
migration in data centers,” in Proceedings of the 2011 IEEE Conference
on Computer Communications (INFOCOM). IEEE, 2011, pp. 66–70.

[148] D. Williams, H. Jamjoom et al., “The Xen-Blanket: virtualize once, run
everywhere,” in Proceedings of the 7th ACM European Conference on
Computer Systems. ACM, 2012, pp. 113–126.

[149] M. Qian, W. Hardjawana et al., “Baseband processing units virtualiza-
tion for cloud radio access networks,” IEEE Wireless Communications
Letters, vol. 4, no. 2, pp. 189–192, 2015.

[150] N. Zhang, N. Cheng et al., “Cloud assisted HetNets toward 5G wireless
networks,” IEEE Communications Magazine, vol. 53, no. 6, pp. 59–65,
2015.

[151] M. Chen, Y. Zhang et al., “Cloud-based wireless network: Virtualized,
reconfigurable, smart wireless network to enable 5G technologies,”
Mobile Networks and Applications, vol. 20, no. 6, pp. 704–712, 2015.

[152] Y. Fengyi, W. Haining et al., “A flexible three clouds 5G mobile
network architecture based on NFV & SDN,” China Communications,
vol. 12, no. Supplement, pp. 121–131, 2015.

[153] I. Fajjari, N. Aitsaadi et al., “Adaptive-VNE: A flexible resource
allocation for virtual network embedding algorithm,” in Proceedings
of the 2012 IEEE Global Communications Conference (GLOBECOM).
IEEE, 2012, pp. 2640–2646.

[154] J. He, R. Zhang-Shen et al., “Davinci: Dynamically adaptive virtual
networks for a customized internet,” in Proceedings of the 2008 ACM
CONEXT Conference. ACM, 2008, p. 15.

[155] Y. Wei, J. Wang et al., “Bandwidth allocation in virtual network based
on traffic prediction,” in Proceedings of the 2010 6th International
Conference on Wireless Communications Networking and Mobile Com-
puting (WiCOM). IEEE, 2010, pp. 1–4.

[156] A. Blenk, A. Basta et al., “HyperFlex: An SDN virtualization archi-
tecture with flexible hypervisor function allocation,” in Proceedings of
the 2015 IFIP/IEEE International Symposium on Integrated Network
Management (IM). IEEE, 2015, pp. 397–405.

[157] M. P. Grosvenor, M. Schwarzkopf et al., “Queues Don’T Matter
when You Can JUMP Them!” in Proceedings of the 12th USENIX
Conference on Networked Systems Design and Implementation (NSDI),
ser. NSDI’15. Berkeley, CA, USA: USENIX Association, 2015, pp.
1–14.

[158] A. Ksentini and N. Nikaein, “Toward Enforcing Network Slicing on
RAN: Flexibility and Resources Abstraction,” IEEE Communications
Magazine, vol. 55, no. 6, pp. 102–108, 2017.

[159] J. He and W. Song, “AppRAN: Application-oriented radio access
network sharing in mobile networks,” in Proceedings of the 2015 IEEE
International Conference on Communications (ICC). IEEE, 2015, pp.
3788–3794.

[160] T. Guo and R. Arnott, “Active LTE RAN sharing with partial resource
reservation,” in Proceedings of the 2013 IEEE 78th Vehicular Technol-
ogy Conference (VTC Fall). IEEE, 2013, pp. 1–5.

[161] I. Fajjari, N. Aitsaadi et al., “VNR algorithm: A greedy approach for
virtual networks reconfigurations,” in Proceedings of the 2011 IEEE



Global Telecommunications Conference (GLOBECOM). IEEE, 2011,
pp. 1–6.

[162] N. F. Butt, M. Chowdhury et al., “Topology-awareness and reoptimiza-
tion mechanism for virtual network embedding,” in Proceedings of the
International Conference on Research in Networking. Springer, 2010,
pp. 27–39.

[163] N. Shahriar, R. Ahmed et al., “Generalized recovery from node failure
in virtual network embedding,” IEEE Transactions on Network and
Service Management, 2017.

[164] E. Keller, S. Ghorbani et al., “Live migration of an entire network (and
its hosts),” in Proceedings of the 11th ACM Workshop on Hot Topics
in Networks (HotNets). ACM, 2012, pp. 109–114.

[165] S. Ghorbani, C. Schlesinger et al., “Transparent, live migration of a
software-defined network,” in Proceedings of the 2014 ACM Sympo-
sium on Cloud Computing. ACM, 2014, pp. 1–14.

[166] G. Bianchi, M. Bonola et al., “Openstate: programming platform-
independent stateful openflow applications inside the switch,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 2, pp. 44–
51, 2014.

[167] H. Mao, M. Alizadeh et al., “Resource management with deep rein-
forcement learning.” in Proceedings of the 15th ACM Workshop on Hot
Topics in Networks (HotNets), 2016, pp. 50–56.

[168] A. Basta, A. Blenk et al., “Towards a cost optimal design for a 5G
mobile core network based on SDN and NFV,” IEEE Transactions on
Network and Service Management, 2017.

[169] Y. Zhu and M. H. Ammar, “Algorithms for assigning substrate network
resources to virtual network components.” in Proceedings of the 2006
IEEE Conference on Computer Communications (INFOCOM), no.
2006. IEEE, 2006, pp. 1–12.

[170] M. Rost, S. Schmid et al., “It’s about time: On optimal virtual network
embeddings under temporal flexibilities,” in The Proceedings of the
2014 IEEE 28th International Parallel and Distributed Processing
Symposium. IEEE, 2014, pp. 17–26.

[171] (2017) Open Baton - An Extensible and Customizable NFV MANO-
Compliant Framework. [Online]. Available: https://openbaton.github.io/

[172] J. Fan and M. H. Ammar, “Dynamic topology configuration in service
overlay networks: A study of reconfiguration policies,” in Proceedings
of the 2006 IEEE Conference on Computer Communications (INFO-
COM). IEEE, 2006, pp. 1–12.
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TABLE VII: TABLE OF ALL PROPOSALS.

Prop. Tech. Cat. Asp. Dom. Pl. Main objective Adaptation Cost Adp. Time

[91] SDN Config FlC WAN DP Accommodate high traffic rate Computation, extra forwarding latency -

[92] SDN Config FlC WAN DP Link load balancing - -

[93] SDN Config FlC WAN DP Link load balancing - -

[94] SDN Config FlC WAN DP Policy enforcement Overhead of flow rules managing X

[95] SDN Config FlC WAN DP Forwarding latency improvement Computation, overhead of flow rules
managing -

[96] SDN Config FlC DC DP Forwarding latency improvement Overhead of flow rules managing -

[97] SDN Config FlC WAN DP Forwarding latency improvement Extra inter-switch signaling -

[98] SDN Config FlC WAN DP Failure recovery - X

[99] SDN Config,
Locat

FlC,
FuP WAN DP NFV management and routing - -

[100] SDN Config FlC WAN DP General routing Extra latency of flow redirection X

[101] SDN Config FlC WAN CP Control plane management Sync overhead, extra latency of flow
migration X

[102] SDN Config FlC AN CP Control plane management - -

[103] SDN Config FlC,
FuC MCN DP,

CP Flow aggregation Additional equipment and steering
strategy -

[104] SDN Config FlC,
FuC MCN CP Traffic and upgrades adaptation Additional equipment and steering

strategy -

[105] SDN Config FlC MCN DP,
CP Traffic adaptation Additional equipment and steering

strategy -

[106] SDN Config FlC,
RFS

MCN,
RAN

DP,
CP Traffic adaptation - -

[107] SDN Config FlC,
FuP MCN DP,

CP Core load balancing Computation time, extra delays, im-
pact on standards X

[108] SDN Config FlC,
FuC

MCN,
RAN

DP,
CP User mobility adaptation Extra delays, additional bandwidth us-

age, impact on standards -

[109] SDN Config FlC,
FuP MCN DP,

CP Traffic adaptation Additional equipment, suboptimal
handovers -

[110] NFV Config FuC WAN DP Fast packet processing - -

[111] NFV Config FuC RAN DP,
CP User mobility adaptation Suboptimal mobility management, ad-

ditional energy consumption X

[112] NFV Config,
Locat

FuC,
PaC,
FuP

RAN CP Traffic and upgrades adaptation Signaling overhead, extra delays, secu-
rity risks -

[114] NFV Config PaC,
RFS RAN DP,

CP Transmission power selection Computation time -

[115] NFV Config PaC,
RFS RAN DP,

CP Optimal user clustering Computation time, better channel esti-
mation and synchronization X

[116] NFV Config PaC,
RFS RAN DP,

CP Optimal allocation of resources Signaling overhead, high bandwidth
links -

[117] NFV Config PaC,
RFS RAN DP,

CP Optimal scheduling Computation time, high CPU usage -

[118] NV Config PaC DC CP Virtual IP network customization - -

[119] NV Config PaC DC CP Performance isolation of VN Extra configuration latency -

[120] NV Config PaC DC CP High performance virtual SDN - -

[121] NV Config PaC WAN CP Hypervisor design Computation, overhead of flow rules
managing X

[122] NFV Locat FuP WAN DP Automatic NFV management - -

[123] NFV Locat FuP WAN DP Automatic NFV management - -

[124] NFV Locat FuP WAN DP NFV placement Sync overhead, overhead of flow rules
managing X

[125] NFV Locat FuP WAN DP NFV placement Overhead of function, flow migration -

[126] NFV Locat FuP DC DP NFV placement - -

[127] NFV Locat FuP MCN CP,
DP Mobile core function placement - X

[128] NFV Locat FuP MCN CP,
DP Mobile core function placement - -

[129] NFV Locat FuP MCN DP,
CP Mobile core function placement Computation time, additional band-

width usage -



Continuation of Table VII

Prop. Tech. Cat. Asp. Dom. Pl. Main objective Adaptation Cost Adp. Time

[130] NFV Locat FuP MCN DP,
CP Mobile core function placement Computation time, additional band-

width usage -

[131] NFV Locat FuP MCN DP,
CP Mobile core function placement Computation time, additional band-

width usage X

[132] NFV Locat FuP RAN DP,
CP RAN function splitting Low latency links, extra delays, addi-

tional equipment -

[133] NFV Locat FuP RAN DP,
CP RAN function splitting Low latency links, extra delays, addi-

tional equipment -

[134] NFV Locat FuP RAN DP,
CP RAN function splitting Low latency links; extra delays X

[135] NFV Locat FuP RAN DP,
CP RAN function splitting Low latency links, extra delays, addi-

tional equipment -

[139] NV Locat FuP DC DP VNE with practical constraints - -

[140] NV Locat FuP DC DP VNE with partially specified con-
straints - -

[136] NV Locat FuP DC DP Reliable virtual networks imple-
mentation - -

[137] NV Locat FuP DC DP VNE with heterogeneous resources - -

[138] NV Locat,
Scale

FuP,
ToA DC DP General VNE Service interruption during migration X

[141] SDN Scale RFS WAN CP Controller placement optimization - -

[142] SDN Scale RFS WAN CP Controller placement optimization - -

[143] SDN Scale RFS WAN CP Controller pool scaling Packet loss during migration -

[144] SDN Scale RFS RAN CP Optimal scheduling Low latency links, extra delays, addi-
tional equipment -

[145] NFV Scale RFS WAN DP Automatic NFV resource scaling - X

[146] NFV Scale RFS DC DP NFV resource management in DC - -

[147] NFV Scale RFS DC DP VM management in DC - -

[148] NFV Scale RFS DC DP Data center virtualization - X

[113] NFV Scale RFS RAN DP,
CP RAN functions virtualization Low latency links, extra delays -

[149] NFV Scale RFS RAN DP,
CP RAN functions virtualization Computation time -

[150] NFV Scale RFS RAN DP,
CP RAN functions virtualization Security risks, suboptimal mobility

management -

[151] NFV Scale RFS RAN DP,
CP RAN functions virtualization - -

[152] NFV Scale RFS RAN DP,
CP RAN functions virtualization - -

[153] NV Scale RFS WAN DP Adaptive bandwidth reservation - -

[154] NV Scale RFS WAN DP Dynamic link bandwidth adapta-
tion - X

[155] NV Scale RFS WAN DP Adaptive bandwidth reservation - -

[156] NV Scale RFS WAN CP Virtual SDN hypervisor - -

[157] NV Scale RFS DC DP Virtual network provision - -

[158] NV Scale RFS RAN DP,
CP RAN slicing - -

[159] NV Scale RFS RAN DP,
CP RAN slicing Computation time -

[160] NV Scale RFS RAN DP,
CP RAN slicing Suboptimal network utilization -

[161] NV Scale ToA WAN DP Heuristic VNE algorithm Service interruption during migration -

[162] NV Scale ToA WAN DP Re-optimize VNE. - -

[163] NV Scale ToA WAN DP VN failure recovery Computation -

[164] NV Scale ToA DC DP VM migration mechanism Service interruption during migration -

[165] NV Scale ToA DC CP,
DP Virtual SDN migration mechanism Packet loss during vSDN migration -


