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Abstract—The link aggregation technique not only provides
robustness to computer networks, but can also be a solution to
the link saturation problem. This technique combines several
physical interfaces to create a virtual link, adding up their
existing bandwidth. In addition to increasing the throughput
for data transmission, such a technique provides a quick and
transparent recovery if a particular link becomes unavailable.
Considering that the use of Software-Defined Networking (SDN)
in business environments increases every day, this research
presents a way to create link aggregations in such environments.
This brings a better availability of services, among other benefits.
To do so, an architecture that allows automatic, scalable and self-
adaptive link aggregations was defined and implemented. As a
way of evaluating such implementation, three algorithms were
created using different premises: Hash Table, Traffic Analysis
and Virtual Round-Robin. All implementations were tested in
virtual and real environments. In both, the Open vSwitch open
platform was used for packet switching and the Ryu controller
was chosen to control the switches.

Index Terms—Communication systems, Computer networks,
LACP, Link Aggregation, Software Defined Networking

I. INTRODUCTION

The computer networks management is a big challenge
because they have become complex systems [1]. For each
network equipment installed on a data-center, administrators
need to perform unique configurations to ensure their full
operation [2].

The traffic bottleneck is one of the main existing prob-
lems in classic network environments [3]. This happens, for
instance, when multiple users try to use a single server on
a network, overloading the link that connects the switch to
that server. It is important to optimize features, including
bandwidth usage in data-centers environments. In addition, it
is necessary to create environments that have dynamic, highly
configurable and autonomously manageable topologies.

The link aggregation allows for a more fault-tolerant,
higher-availability network, which is ideal in enterprise envi-
ronments [4]. In classical switches, this technique is performed
using the open protocol LACP (Link Aggregation Control
Protocol) or proprietary protocols. However, the LACP has
several limitations. The configuration is done manually. The
maximum number of aggregated physical links is limited to
eight. In addition, all network interfaces must operate at the
same speed to be aggregated.
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To solve all these problems, a system capable to perform
link aggregation in SDN environments is proposed. Its im-
plementation is done directly on the SDN controller. Three
algorithms for aggregation are proposed and evaluated: Hash
Table, which calculates a hash based on the parameters of
the package (physical addresses and IPs); Traffic Analysis;
and Virtual Round-Robin. In this way, aggregation can be
performed dynamically and without the need for manual
configuration by a network manager.

The contributions of this work are the following: (i) a system
for using link aggregation inter-flow in SDN environments; (ii)
proposal of three algorithms for link aggregation; (iii) evalu-
ation of the three algorithms in virtual and real environments,
including a comparison with LACP and the native usage of
Linux Bounding.

The proposed system has several advantages over the state
of the art: (i) it is possible to aggregate multiple groups on
the same switch, (ii) the solution is protocol free, meaning that
there is neither dependence on LLDP nor commercial proto-
cols, (iii) better bandwidth distribution, (iv) the aggregation is
autonomous and does not require the intervention of a network
administrator, (v) open source, (vi) it is possible to have more
than eight aggregated interfaces, (vii) the aggregated links may
have different transmission speeds and still be aggregated.

The remainder of this article is organized as follows. First,
Section II discusses related work. Then, Section III reveals
the proposed architecture and the link aggregation algorithms.
Section IV describes the experiments and the results obtained.
Finally, Section V presents the conclusion and future work.

II. RELATED WORK

The LACP [5] is an open protocol that allows the configu-
ration of link aggregation in classic switches. Its latest version
is the 802.1AX-2014 standard. This protocol calculates a hash
from multiple source and destination parameters. The protocol
chooses the local switch port for the flow from that hash,
that is, all the packets of this flow are forwarded only in that
interface. When a new flow comes up, a new hash is calculated
and probably another interface will be used for it. Thus, LACP
uses all the aggregated interfaces, spreading the flows between
them. The LACP protocol has some limitations: the network
administrator must perform the configuration manually; the
amount of physical interfaces can not be greater than eight;
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all switch interfaces must be configured at the same speed.
The limitation of the number of interfaces can be overcome
by a custom implementation (made in Juniper equipment, for
example). But this approach brings interoperability issues,
creating the need to use only equipments from the same
manufacturer.

In [6], the latest searches in the SDN networks area are
discussed and exposed. The authors [7] also highlight the
benefits and differences between the classic model and the
SDN. In the mini-course [8], the usage of tools like Mininet
and POX is explored and exemplified. The work carried out
by [3], although relatively old, elucidated the real problems of
the bottleneck in computer networks.

The Open vSwitch platform was designed to be a virtual
switch capable of running in any environment [9]. Since it was
quite complete and robust, it was soon incorporated into SDN
networks. However, when considering the link aggregation
technique, this platform is not effective. The maximum amount
of aggregated physical ports is limited, and cannot exceed
four units (a limitation of the platform itself). In addition, this
setting needs to be manual.

In the Linux operating system, there is a native library
for link aggregation [10]. The link aggregation behavior de-
pends on the method selected, but the main ones are known
as balanced TCP and balanced SLB. The first uses packet
information from layers two, three and four to balance traffic
and depends on the other end (usually a switch), which needs
to have the LACP enabled and configured. The latter uses
only layer two information and is not dependent on the LACP
protocol.

The authors in [11], [12], [13] and [14] consider the path
of a TCP traffic between multiple links, without considering
a possible local aggregation between them. However, they all
consider paths through multiple hops. The difference between
this work and the others is the approach in the layer two,
that is, the communication between two switches with links
aggregated between them.

The work carried out by [15] proposes the implementation
of a platform capable of creating and managing virtual SDNs.
Both the topology and the addressing scheme of such virtual
networks are completely independent of each other. We believe
that our work has applicability in environments that use OVX,
since the physical topology necessary to support the virtual
topology could benefit from the link aggregation technique.

In order to perform the package transmission using several
paths, the authors in [16] propose the implementation of an
improved version of the TCP protocol in data-centers environ-
ments. It is a similar approach to this work, but uses a different
technique than link aggregation. In the same way, [17] presents
a platform called FlexForward which is also directed to data-
centers environments. However, its implementation is focused
on an Open vSwitch alteration.

III. INTER-FLOW IMPLEMENTATION

The system adopts the same SDN architecture where there
is a controller that sends rules to the switch tables. It was
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developed using the Ryu controller, which manages all the
details of connections between switches, interpreting and
converting network packets into easy-to-use objects.

The developed application listens for incoming packet mes-
sages in the switch, maintains an internal table of MAC ad-
dresses of all connected stations, and adds the packet switching
rules in the switches as connections are identified. For this, the
OpenFlow protocol is used.

Basically, the application performs the following steps: (i)
the application registration and initialization happen before the
switches join the Ryu controller domain and allow the appli-
cation instance to initialize the data that will be shared across
the network. For example, the switch application initializes
a table to keep information of the hosts MAC addresses and
their respective ports. Another table is used to keep the local
switch ports information. (ii) the initialization of a switch that
connects to the Ryu controller occurs when a switch joins
in the Ryu controller domain and the application checks all
its characteristics through the event EventOF PSwitchFeatures.
Also, in this process, the initial packet switching rule is added
in all switches, forcing them to send the first set of packets
to be analyzed by the controller. (iii) During the identifying
link aggregations, a data structure is created to configure and
maintain all link aggregations across the controllers domain.
(iv) Finally, during the packet sending, the application mon-
itors the event EventOFPPacketIn, which is responsible for
analyzing unknown sent packets. This always happens when
the switch does not have a specific rule to send that packet or
if it has a general forwarding rule that instructs it to send the
packet to the controller to parse it.

A. Main events processed by the controller

All events generated by both the switch and the controller
are asynchronous. In this way, neither end must wait for the
requested information to return. It is also worth mentioning
that Openflow 1.4 was used. (i) OFPFeaturesRequest is trig-
gered when a switch joins the controller domain. Its purpose
is to collect basic information, such as the switch ID and the
amount of existing tables. (ii) EventOFPSwitchFeatures is
the response event generated by the switch upon receiving
the event OF PFeaturesRequest. (iii) EventDP is sent from the
switch to the controller containing information about its local
ports (indexes and physical addresses). (iv) EventLinkAdd
is generated when a new link is added to a switch. This
link is necessarily the connection between two switches, since
the connection between stations and switches is handled by
another event. It is through this event that the link aggregation
groups are created. (v) EventLinkDelete is the opposite of
EventLinkAdd and occurs when a link between switches is
removed. It is used to remove links from aggregations. (vi)
EventOFPPacketIn: When the switch does not have enough
information in its internal tables to perform the packet switch-
ing, it sends this event with the packet information to the
controller. It is through this event that link aggregation policies
are configured. (vii) EventOFPErrorMsg is generated by
the controller when there is an incorrect parameter in the
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messages exchanged between it and the switch (e.g., creation
of a flow was sent to the switch without the destination port
information). Used to debug the system.

B. Identification of aggregated links

When the SDN controller receives a notification of the
inclusion of a switch in its domain, it checks the links of that
switch with its neighboring switches. If more than one link is
identified between the same pair, the controller assumes that
there is a link aggregation and creates a data structure to store
that information. Such structure is created using a dictionary,
where the index represents the IDs of the switches and the
values represent the interfaces of each switch that are part of
the aggregation. With this mechanism, there is no need for
manual configuration by a network administrator.

C. Loop prevention mechanism

In network environments, when a message generates a
response, that generates a new message, a cascading negative
effect is created. Whenever a switch has no information from
which to send a particular packet, it sends the packet to all its
local interfaces (with the exception of the source interface).
If there is more than one interface connected between two
switches, at a certain point the packet will be sent back to the
switch. Because there is no time-to-live in layer 2 of the net-
work protocol, multiple copies of this packet will be sent and
re-sent between the switches, eventually causing a memory
overflow and CPU exhaustion of the devices and completely
paralyzing the computer network. Known as broadcast storm,
this serious problem is prevented using a simple idea: even
with all broadcast and multicast packets being forwarded to all
ports on the local switch, the switch that receives these packets
on ports in an aggregation only processes those arriving in
the first port of the group aggregation. This means that if a
particular switch has ports 1, 2, and 3 in an aggregation, all
broadcast and multicast packets received by ports 2 and 3 are
ignored.

D. Fail-safe mode

If a given aggregation interface becomes unavailable for any
reason (disconnected cable or disabled interface, for instance),
our algorithm have the ability to recognize this failure and to
adapt the aggregation group by removing the faulty interface
from it. The opposite situation also occurs: if the same
interface becomes active again, or if a new interface is added
between a pair of switches, the aggregation group is updated
with the new interface.

E. LEDE

The LEDE project' (Linux Embedded Development Envi-
ronment) is a Linux operating system based on OpenWrt?,
Both are used to create custom firmwares from various
wireless routers manufacturers. Through these firmwares, in
addition to greater flexibility in the equipment configuration, a

Thttps://lede-project.org/
Zhttps://openwrt.org/
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large ammount of new packages can be installed. It is possible
to install Open vSwitch on small home routers.

F. Link aggregation algorithms

In SDN networks, we have the freedom to implement
our own link aggregation algorithm. During this work, we
identified and performed the aggregation using three distinct
techniques that will be described next. It is noteworthy that the
Mininet emulation platform does not support the configuration
of the LACP protocol between two virtual switches. For this
reason, we have chosen to implement an algorithm similar to
LACP, called Hash Table, to overcome this limitation.

1) Hash Table: The stations connected on the switches
start transmitting data. When the switch receives the first flow
packet, it re-transmits it to the controller, which identifies
the available fields (source and destination MAC address,
source and destination IP address) and calculates a hash, that
determines which interface will be used to transmit data from
that flow. The controller inserts the switching rule into the
flow table, which sends the packets of that flow through the
interface computed by the controller. Algorithm 1 represents
the implementation of this procedure.

Algorithm 1 Hash Policy Algorithm
1: function CALCULATE HASH(packet)

2: value = hash(source mac, destination mac, source ip,
destination ip)
3: return value

4: end function

2) Traffic Analysis: The switch, upon receiving the first
flow packet, retransmits it to the controller, which identifies the
bandwidth utilization of each aggregated interface to make the
decision of which interface will be used to transmit the data for
that particular flow. The priority is to choose interfaces with
low bandwidth usage, allowing a better distribution of traffic
between all interfaces. The controller inserts the switching rule
into the flow table. Then, the switch forwards the packets from
that flow to the interface chosen by the controller. Algorithm 2
represents the implementation of this procedure.

Algorithm 2 Traffic Analysis Policy Algorithm
1: function INTERFACE WITH LOWER TRAFFIC(switch)
2 Read traffic utilization from all interfaces
3: Identify the interface with lower traffic utilization
4
5:

return interface
end function

3) Virtual Round-Robin: The difference between this tech-
nique and the previous two ones relies in the amount of rules
created. Instead of creating rules for only one flow for each
transmission from a source to a destination, the controller
creates rules for all sources and all targets using all aggregated
interfaces. Yet, each rule is created with different priorities,
making the switch choose only one interface to transmit the
packets.
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However, from time to time, the controller changes the
priorities of all rules, forcing the switch to constantly change
the interface it will use to transmit the data. During our tests,
we have determined the update to happen every 0.2 seconds.
This value was determined after performing several tests to
identify which would lead to the best Justice Index, which is an
indicator used to determine whether users or applications are
receiving a fair share of the network bandwidth. In this way,
all the interfaces of the aggregation end up being used evenly.
Algorithm 3 represents the implementation of this procedure.

Algorithm 3 Virtual Round-Robin Policy Algorithm
1: while True do
2: next_index <—(index+1)%Number_of_rules
3: Rule[next_index].priority <— 65535;
priority of next rule

> Increase

4: Rule[index].priority <—1; > Decrease priority of
current rule

5: index < next_index; > Update index

6: Sleep T ms

7: end while

IV. EXPERIMENTAL EVALUATION AND RESULTS

The purpose of this research includes both an experimental
and a practical approach. To achieve the first objective, a vir-
tual environment with Mininet, Ryu Framework e OpenFlow
1.3 was created.

The virtual experiment was divided in two separate flows. In
the first one, we used the iperf tool to generate TCP and UDP
traffic among 16 stations in the topology. The iperf does not
consider the throughput overhead of protocol headers, such as
Ethernet, IP, UDP, or TCP. Therefore, in the presented results,
the theoretical maximum available bandwidth was not reached.
The second set of tests was performed using the tcpreplay
tool using two realistic traffic files: one captured during a file
transfer and another captured during a regular web browsing
activity.

A. Experimental Topology

CORE
LAYER

AGGREGATION
LAYER

Fig. 1. Lab topology with link aggregation

In order to evaluate and validate our research, a topology
inspired in the classic Fat-Tree topology [18] was created.
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With a total of seven switches and sixteen hosts, the topology
consists of three levels: core, edge and aggregation layers. Be-
tween each layer, two or more links were connected among the
switches to provide better throughput for the data transmission,
whereas they were all configured with a speed of 100 Mbps.
Figure 1 shows this topology.

40.00%
35.00%

30.00%

Interface 01
15.00% Interface 02
10.00% Interface 03

—Interface 04
5.00%

0.00%

12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Fig. 2. Interfaces usage during the test

Our virtual environment was built using a virtual machine
in Google’s cloud platform. Since only a basic configuration
was needed, a VM with two Intel 2.30 GHz CPUs, 8 GB of
RAM and 10 Gb of disk space was created.

Virtual Virtual Virtual Virtual
Host 01 Host 02 Host 03 Host 04

Virtual Virtual Virtual Virtual
Host 01 Host 02 Host 03 Host 04

Fig. 3. Real-life topology with link aggregation

To the extend of stressing the virtual topology with the
maximum data transmission, the iperf tool was chosen to
create flows from the first eight hosts to the last eight ones.
Both TCP and UDP transmissions were made, and all three
algorithms were tested. In this scenario, it is worth to mention
that the maximum throughput would be 400 Mbps.

1) Realistic Traffic: On account of iperf not being able to
simulate realistic traffic scenarios, we chose to use another tool
to achieve this goal. The tcpreplay tool is able to rebuild and
retransmit a given pcap file (extension generally created while
sniffing a network) from one source to one destination. With
this ability, we decided to realize a set of tests simulating an
Internet browsing, generating flows from the first eight hosts to
the last eight ones. Only the left interfaces of switch 07 were
observed during this test, since this is the core switch of the
topology and all traffic runs through it. Figure IV-B1 contains
the CDF for this test. In this case, the maximum throughput
would also be 400 Mbps.
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B. Real-life Environment

As a proof of concept to demonstrate the real-life applica-
tion of our research, we were able to execute our algorithms
in real equipments. To accomplish this milestone, we setup
the following real lab: (i) two low-cost wireless routers with
a custom firmware were purchased to create our lab. The
hardware chosen was a TP-Link WR841N wireless router, with
only 4 Mb of ROM, 32 Mb of RAM and 5 Fast Ethernet ports
(one for WAN connectivity and four for LAN connectivity).
Due to its memory limitations, a custom firmware was built
using the LEDE Project. Only two of these routers were used,
connecting all four LAN interfaces between them, creating
one single aggregation group. (ii) a Rasperry Pi was used to
connect to the switch’s WAN port. Raspbian was installed,
as well as the latest version of the Ryu controller. (iii) due
to the lack of more physical network ports, virtual interfaces
were configured in each Raspberry Pi to simulate real hosts
connected to both switches. In total, four virtual interfaces
were created in each side. Figure 3 depicts the real life
topology.

1) Realistic Traffic: ldentical to the virtual topology tests,
the realistic traffic test performed at the real-life lab uses the
tepreplay, as well as the same pcap files. Our test consisted
in generating flows from the first four hosts to the last four
ones, simulating an Internet browsing one more time.

To verify the platform behavior during an interface shut-
down, the following test was performed: (i) Using the iperf
tool, data flows were created between the first four and the last
four stations. (ii) Observing the input interfaces load connect-
ing switch 07 to the switch 5, after 15 seconds of transmission,
the interface 01 of the aggregation was shutdown. (iii) After
6 seconds, the same interface was reactivated and the test was
terminated after 30 seconds of transmission.

Figure 2 displays the distributed traffic load between the
four aggregation interfaces. It is notable that while the inter-
face was shutdown, the load was equally distributed among
the other aggregated interfaces. When this interface became
available again, the traffic was evenly distributed among all
aggregated interfaces.
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C. Discussion

However, the Traffic Analysis algorithm performed poorly
on almost all tests. This means that the implemented code
needs to be improved or the policy used is not good to be used
in a link aggregation environment. The way the aggregation
was chosen at the time of the creation of the flow also needs
to be evaluated. Probably, the initial packets are sent to the
controller without a considerably increase in the traffic of the
links, making the same interface (or the same set of interfaces
within the aggregation) to be selected at the beginning of the
flows. In any case, further analysis needs to be performed
using packet capture, thus optimizations in the algorithm code
need to be made.

It is definitely noticeable the high accuracy that our ap-
proach had in the real-life lab, against Linux’s native Ethernet
Bonding. Both our Hash Table and Virtual Round-Robin algo-
rithms were able to divide traffic equally among all interfaces
in the local aggregation.

To elucidate the results obtained, we created fours graphs:
(i) Figures IV-B1 and IV-B1 represent the cumulative distri-
bution function (CDF) for the virtual environment. In both
of them, the area between 40 Mbps and 60 Mbps represents
the best balanced distribution. (ii) Figure IV-B1 depicts the
scatter plot of fairness per throughput for all policy algorithms
in the same environment. (iii) Figure IV-B1 represents the
CDF for the real-life environment. In this one, the area
between 20 Mbps and 30 Mbps represents the best balanced
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distribution.

Despite the difference of balanced traffic in the virtual
environment, it can be noticed that our dynamic approach
had a great performance compared to native and well-known
aggregation protocols, such as Linux Ethernet Bonding.

V. CONCLUSION AND FUTURE WORK

The results obtained in this work show that the proposed
new approach for link aggregation in SDN networks presents
a better way to deal with the classical link aggregation
administration. The dynamism, complexity and scalability of
current network environments justify the need to find a new
solution to the old bottleneck problem, an that is the main
contribution presented here.

The decision to modify the packet path from time to time
was presented as the best way of balancing the traffic between
all the interfaces of an aggregation, considering all the policies
discussed. This premise made the distribution fairer and the
results presented in this work approximate the results obtained
using a solution widely adopted in real environments. In
addition, the presented solution was able to use 84% of the
available bandwidth during the TCP traffic and 91,4% during
the UDP traffic. The fairness index was also very satisfactory,
94% in TCP traffic and 98% in UDP traffic.

As future work, the integration of a system with a traffic
prediction tool to enable real-time traffic engineering is en-
visaged. Also, the complete implementation of the dynamic
and self-adaptive solution for intra-flow traffic needs to be
performed. It is also necessary to study a way to improve the
implementation of the Traffic Analysis algorithm, since the
way this policy was implemented did not bring satisfactory
results for the link aggregation. Additionally, larger tests needs
to be performed to analyze the impact of having aggregated
interfaces with different speeds. Furthermore, the overhead in
the network as the number of flows grows needs to be to
investigated when using the Virtual Round-Robin algorithm.
Finally, the impact of rewriting flows from time to time needs
to be evaluated, since this can be the cause of eventual packet
transmission delays.
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