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Abstract

Networks are vulnerable to disruptions caused by malicious forwarding devices. The sit-
uation is likely to worsen in Software Defined Networks (SDNs) with the incompatibility of
existing solutions, use of programmable soft switches and the potential of bringing down an
entire network through compromised forwarding devices.

In this paper, we present WedgeTail 2.0, an Intrusion Prevention System (IPS) designed to
secure the data plane of SDNs. Our solution is capable of localizing malicious forwarding de-
vices and can distinguish between the specicifc malicious actions of a compromised device such
as packet drop, fabrication and modification. WedgeTail has no reliance on pre-defined rules
by an administrator for its detection and may be easily imported into SDNs with different se-
tups, forwarding devices, and controllers. The process begins by mapping forwarding devices as
points within a geometric space and storing the path packets take when traversing the network as
trajectories. Before inspection, the forwarding devices are clustered into groups of varying prior-
ity based on the frequency of occurrence in packet trajectories over specified time periods. The
detection phase consists of computing the expected and actual trajectories of packets for each
of the forwarding devices and ‘hunting’ for those not processing packets as expected. We have
evaluated WedgeTail 2.0 in simulated environments, and it has been capable of detecting and re-
sponding to all implanted malicious forwarding devices within approximately an hour time frame
over a large network. We report on the design, implementation, and evaluation of WedgeTail 2.0
in this manuscript.

Keywords: Software Defined Networks, SDN Security, Data Plane Security, Intrusion
Prevention System

1. Introduction

Following the ‘Vault 7: CIA Hacking Tools’ revelations by WikiLeaks [12], Cisco confirmed
that 318 models of its routers may be fully compromised through a simple command that may
be invoked remotely [10]. In 2014, Edward Snowden also uncovered massive investments by
NSA targeting core infrastructure and systems [7, 8]. At the same time, device vendors have
been reported to leave backdoors in their devices as well (e.g. [4, 5]). Yet, the attack surface
against forwarding devices is not limited to resourceful adversaries. Software and hardware
Preprint submitted to Journal of Computer Networks August 21, 2017
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vulnerabilities of the devices [9, 14, 18, 40] and vulnerable implementations of network protocols
enable attackers to compromise forwarding devices. For instance, as reported in CVE-2014-9295
[11], a novice hacker could execute arbitrary code on routers simply through crafted packets
targeting a specific function of the device [6].

A compromised forwarding devices may be used to drop or slow down, clone or deviate,
inject or forge network traffic to launch attacks targeting the network operator and its users. For
instance, the documents disclosed under ‘Vault 7’ revelations indicate that compromised routers
may have been used for activities such as data collection, exfiltration (e.g. Operation Aurora [3]),
manipulation and modification (insertion of HTML code on webpages) and cover tunnelling.
A compromised routing system may be also used to bypass firewalls and intrusion prevention
systems [23], violating isolation requirements in multi-tenant data centers [30], infiltrate VPNs
[38] and more.

The emergence of Software Defined Network (SDN) paradigm brings promising opportuni-
ties to network management and security [13]. Nevertheless, SDNs are still vulnerable to data
plane attacks and researchers have shown that compromised forwarding devices may even grant
an attacker the capability to wrest control of an entire Software Defined Network [33, 35]. In this
paper we look at the specific problem of protecting SDNs from malicious forwarding devices by
determining if the traffic forwarding function of the switch itself is secure.

Securing the network against malicious switches has not been the subject of many stud-
ies in SDN security domain. The literature is mostly shaped by research towards developing
secure controllers, novel SDN-enabled security services and real-time verification of network
constraints (see [13, 52, 36] for surveys). However, no combination of these provides effective
protection against compromised forwarding devices [21, 24, 17].

Recently, a few proposals aim to detect and mitigate threats associated with malicious for-
warding devices. However, they are deemed as impractical suffering either from a simplistic
threat model (e.g. [28]) or incurring substantial processing overhead to the network (e.g.[57,
58, 32]). For example, cryptographic solutions such as [32] have been designed to enforce path
compliance in the presence of strong adversaries. Nevertheless, a universal deployment may be
infeasible due to high overload required for per packet cryptographic operations and increased
packet size.

SPHINX [21] is one of the solutions designed for securing the SDN data plane that does not
assume forwarding devices are trusted. SPHINX detects and mitigates attacks originated from
malicious forwarding devices through 1) abstracting the network operations with incremental
flow graphs and 2) pre-defined security policies specified by its administrator. It also checks for
flow consistency throughout a flow path using a similarity index metric, where this metric must
be similar for ‘good’ switches on the path. We argue the following three factors as the main
limitation of SPHINX. First, the system does not tolerate Byzantine forwarding faults. In other
words, it does not assume malicious forwarding device may behave arbitrarily and therefore,
SPHINX is not designed to detect the specific malicious actions performed such as packet drop,
fabrication and delay. Second, the detection mechanism mainly relies on the policies defined
by its administrator. In fact, the flow-graph component does not validate forwarding device
actions against the controller policies but compared to their behavior through time. Hence, if the
forwarding device(s) has been malicious since day one it will never be detected or when there are
radical network configuration changes SPHINX will have large false positives. Third, SPHINX
does not include a scanning regime and has no prioritization when inspecting the data plane
for threats. Arguably, an important factor required for optimizing the detection performance
in this context. Last but not least, SPHINX requires the majority of forwarding devices to be
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trustworthy. Although this assumption is realistic, a better solution solution will have to be
independent of it.

Here, we introduce WedgeTail 2.0, a controller-agnostic Intrusion Prevention System (IPS)
designed to ‘hunt’ for forwarding devices failing to process packets as expected. In essence,
WedgeTail 2.0 is an extension to our earlier work [53] with improved scanning method, attack
detection algorithm and packet trajectory computation engine.

The process begins by mapping forwarding devices as points within a geometric space and re-
garding packets as ‘random walkers’ among them. WedgeTail1 tracks packet paths when travers-
ing the network and generates their corresponding trajectories. At this point, in order to detect
malicious forwarding devices, locate them and identify the specific malicious actions (e.g. packet
drop, fabrication, etc.), it compares the actual packet trajectories with the expected ones (i.e.
those allowed according to the network policies). If and when a malicious forwarding device is
detected, WedgeTail responds as per the administrator-defined policies. For example, an instant
isolation policy may be composed of two actions. First, the potentially malicious device is in-
structed to reset all the flow rules and then, it is re-inspected at various intervals by re-iterating
the same packet(s) originally raising suspicion. If the malicious behaviour is persistent, the for-
warding device may be isolated from the network.

In order to increase the probability of finding malicious devices, WedgeTail begins by priori-
tizing forwarding devices for inspection. In WedgeTail 1.0, we adopted Unsupervised Trajectory
Sampling [48] to cluster forwarding devices into groups of varying priority based on the cu-
mulative frequency of occurrence in packet trajectories - i.e. all of the trajectory database was
analyzed. We improve the scanning mechanism in WedgeTail by adopting Time Period-based
Most Frequent Path (TPMFP) technique [41] for analyzing the trajectories. The latter grants an
administrator the capability to custom define the scanning periods as granular as the last few
hours, weeks or months. For instance, an administrator may instruct WedgeTail to begin inspec-
tion from forwarding devices that processed most packets since the last major network change
introduced a week ago. The latter will ensure prioritized inspection of critical forwarding devices
potentially reducing the associated risks.

Wedgetail intercepts OpenFlow messages exchanged between the control and data plane and
maintains a virtual replica of the network. It uses this virtual replica to compute the expected
packet trajectories removing any trust on forwarding devices for this. Compared to WedgeTail
1.0, it improves the efficiency and performance of expected packet trajectory computation by
replacing Header Space Analysis (HSA) [30] with NetPlumber [29], which is essentially an opti-
mized and incremental version of HSA. On the other hand, in order to compute the actual packet
trajectories, WedgeTail relies on NetSight [25] and queries for the packet history as it traverses
the network. In fact, given the immense capabilities of NetSight for network troubleshooting,
we expect this to be available as default in most SDNs. However, when NetSight is not available
(e.g. in small-sized networks), the packets may be tracked using our custom packet tracking
mechanism (see §6).

The rest of this manuscript is organized as follows. We begin with a succinct review of
background information in §2. In §3, we discuss the main factors exacerbating the protection of
SDN against malicious forwarding devices and outline the essential requirements of an effective
solution. We define our threat model in 4 and provide an overview of the proposed solution in
§5. WedgeTail’s Detection Engine is throughly discussed in §6 detailing the scanning mecha-
nism, actual and expected packet trajectory computation, and detection algorithms. WedgeTail’s

1From hereon ‘WedgeTail’ indicates ‘WedgeTail 2.0’ and ‘WedgeTail 1.0’ indicates our earlier work [53].
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Response Engine is presented in §7, followed by implementation and evaluation in §8 and §9, re-
spectively. We conclude our work with a discussion on the importance of our work, comparison
with related work and current limitations in §10.

2. Background

2.1. Header Space Analysis (HSA)

Header Space Analysis (HSA) [30] is a uniform and protocol agnostic model for debugging
network configuration. HSA deals with a L-bit packet header as L-dimensional space, and mod-
els all processes of routers and middle-boxes as transfer functions, which transform subspaces of
the L-dimensional space to other subspaces. Therefore, by analyzing forwarding rules of the net-
work, HSA can calculate all the possible paths that a packet traversing the network on a certain
port may take.

2.2. NetPlumber

NetPlumber [29] uses Header Space Analysis (HSA) as its foundation. However, it is much
faster than HSA because instead of re-running every transformation every time the network
changes, it incrementally updates only those transformations affected by the change. The heart
of NetPlumber is the plumbing graph (see Figure 4) which captures all the possible flow paths in
the network and is used to compute reachability. We discuss the integration of NetPlumber into
WedgeTail in §6.

2.3. NetSight

NetSight [25] is a network troubleshooting solution that allows SDN application to retrieve
the packet history. netshark is an example of tools built over this platform, which enables users to
define and execute filters on the entire history of packets. With this tool, a network operator can
also view the complete list of packet’s properties at each hop, such as input port, output port, and
packet header values. In §8, we present how WedgeTail inter-operates with NetSight to retrieve
the actual packet trajectories.

3. Problem Description and System Requirements

As mentioned in §1, securing SDN networks against malicious forwarding devices is chal-
lenging. In fact, similar to [21], we also argue that the problem of protecting networks and their
hosts against malicious forwarding devices is exacerbated in SDN context. We believe this is due
to the following five main reasons2:

First and foremost is the incompatibility of existing solutions to secure SDN. In fact, due to
the removal of intelligence from the forwarding devices, the defense mechanisms used for tradi-
tional networks may no longer work. Our analysis matches with the authors of [21] arguing that
to import the traditional defenses into SDN we would need a fundamental redesign of OpenFlow
[43]. A requirement which we deem as to be impractical.

The second factor is the unverified and complete reliance of control plane on forwarding
devices. SDN controllers rely on PACKET_IN messages for their view of the network, however

2The first three factors are extracted from [21] with some minor amendments and additions.
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this is not authenticated or verified. A malicious forwarding device may send forged spoofed
messages to subvert the controller view of the network – even with TLS authentication in place.
The same vulnerability enables a compromised forwarding device the capability to overload the
controller with requests launching a Denial of Service (DoS) attack.

Thirdly, securing programmable soft-switches such as Open vSwitches is more challenging
compared to switches. The former run atop of end host servers, which are more susceptible to
attacks with attack surface much larger than physical switches.

Our fourth argument is that the SDN security domain is a moving target with the protocols
and standards undergoing constant change. For example, several controllers have already been
proposed with varying specifications undergoing constant updates. Hence, relying on the capa-
bilities of one would limit practicality of a solution on another. The same argument is also valid
for the OpenFlow [2] standard.

Fifth, a number of proposals have been made to delegate more control to the SDN data plane
[46]. In fact, adding some intelligence and authority to the data plane has performance advan-
tages such as lower latency response to network events and improves the network’s fault tolerance
through continuation of basic network operations under failing controllers. Furthermore, well-
standardized protocols such as for encryption, MAC learning and codec control message (CCM)
exchanges also require some intelligence at data plane. However, this proposals revive some of
the vulnerabilities of traditional networks under SDNs and enlarge the threat vector.

Considering the aforementioned factors and driven by the limitations of existing work, we
posit the ‘must-have’ features of an effective solution against malicious forwarding devices to
include:

• Detecting and preventing all the different attacks against forwarding devices is indeed not
practical (different vendors, software, standards, etc.). Therefore, along with the efforts to
patch and protect the devices, we need to investigate the main functionality of the devices
(i.e. packet forwarding). In other words, a compromised device (irrespective of how pene-
trated) alters the packet routing when delivering an attack and the proposed solution must
be able to detect and react to this.

• To be efficient and effective, the proposed solution must be able to distinguish between
the specific malicious actions (e.g. packet drop, fabrication, delay, etc.) and localize
maliciousness.

• To reduce the detection time, it must systematically and autonomously prioritize forward-
ing devices for inspection.

• The response against threats must be programmable allowing an administrator to cus-
tomize the protection to match the higher level network policies and requirements such
as Quality of Service.

• The data plane is a critical component of the network infrastructure and the proposed
solution must not disrupt the network performance during its inspection and analysis stage.

4. Threat Model

We assume a resourceful adversary who may have taken full control over one, or all, of the
forwarding devices. This is, in fact, the strongest possible adversary that may exist at the SDN

5



data plane, which to the best of our knowledge is not considered in the related work. For example,
[21, 29, 30, 31, 42] assume all, or the majority, of the forwarding devices to be trustworthy. Inter-
estingly, we have noticed an imprecise definition of adversary leading to oversights in SPHINX
[21]. For instance, authors discuss an attack exhausting the TCAM memory of a switch that will
cause a switch dropping packets over a period of time. As devastating as this may be, this device
can not be used to execute attacks requiring packet modification or misrouting. Here, we assume
the following capabilities for the adversary:

• The attacker may drop, replay, misroute, delay and even generate packets (includes both
packet modification and fabrication), in random or selective manner over all or part of the
traffic.

The above capabilities grant the adversary the capability to launch attacks against the network
hosts, other forwarding devices or the control plane. For example, executing a Denial of Service
(DoS) attack against the control plane by replaying or spoofing Packet_In messages. Note that
detecting packet reordering is currently out of scope. The latter has previously been studied in
the literature [44] and the proposed solutions are complementary to WedgeTail.

We regard a forwarding device as ‘malicious’ when both of the following properties hold A)
the device is not handling the network packets according to the rules specified by the control
plane, and B) the maliciousness is cloaked from basic troubleshooting tools. For example, the
malicious device ‘correctly’ responds to ping or traceroute probes while corrupting other packets.

Arguably, the above characteristics may also be witnessed with a misconfigured, or faulty,
forwarding device as well. In fact, the differentiating factor between these is the underlying
intentions and hardly their behavior or impact. Hence, for the purpose of this work, we expand
the definition of a malicious forwarding device to encompass both faulty and misconfigured
devices. This implies that the proposed solution may potentially be used to detect faulty and
misconfigured forwarding devices which are functioning anomalously – see Section §10.

We make the following assumptions for WedgeTail to work:
1. The control plane and its defined policies are trustworthy and securely transferred to the

data plane (e.g. using TLS protocol [15]). There is an increasing body of literature aiming
to achieve this, see [52, 13] for surveys. In other words, with SDN, the policy definition and
enforcement points are separated in networks [36] and here, we exclusively focus on the the
Policy Enforcement Point (PEP). Hence, preventing incidents such as [26] caused by erroneous
administrator defined policies is out of scope.

2. WedgeTail is designed to detect forwarding devices failing to execute their main function
(i.e. forwarding packets) and limit their threat. It is not designed to protect the devices from
being compromised or detecting attacks targeting them. Specifically, in this context ‘prevention’
refers to the automated triggering of pre-defined policies against the identified threats.

3. The forwarding devices may not lie about their identity – a similar assumption is also
made in [21].

5. WedgeTail: An Overview

In order to secure the SDN data plane, we propose WedgeTail3. WedgeTail is a controller-
agnostic Intrusion Prevention System (IPS) designed to ‘hunt’ for forwarding devices failing to

3Australia’s largest bird of prey and frequently cited in Aboriginal Australian stories and legends.
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Figure 1: An abstract representation of WedgeTail over an ISP Network. The red devices are malicious and
have been compromised by Attacker. The paths shown in green represent the expected paths for
a packet send through forwarding device f d(a) on port pi to forwarding device f d(c1) on port p j

at Customer Network. The path shown in red depicts a path the same packet took, which is not
allowed as per the controller policies.

process packets as expected. As shown in Figure 1, it is composed of two main parts namely,
Detection Engine (§6.3) and Response Engine (§7). The Detection Engine is responsible to
retrieve the actual and expected packet trajectories, create the scanning regions and implement
the attack detection algorithms. Accordingly, whenever a compromised device is detected, the
Response Engine submits policies to the controller to protect the network.

5.1. How It Works?
Assume an ISP network as shown in Figure 1. WedgeTail retrieves 10010x10 ∪ 10011x10

as the header space of packets that may be sent over port pi from forwarding device f d(a) to
port p j of f d(c1) using its integrated NetPlumber component. It also learns that the expected
packet trajectories between these two nodes are as follows (shown in green colour in Figure 1):
f d(a)→ f d(b)→ f d(c)→ { f d(d) OR f d(i)} → f d(e)→ f d(c1).

Malicious forwarding devices are detected as following: whenever the set of forwarding
devices in the actual packet trajectories is not a subset of the expected packet trajectories then one
or more of the forwarding devices in the actual packet trajectories may have been compromised
– reminding that in §4 we extended the definition of ‘malicious’ to encompass both faulty and
misconfigured devices. For instance, in Figure 1, the red colored trajectory is a non-allowed
trajectory and f d(b) is malicious.

Algorithm 1 presents WedgeTail’s workflow. On each run, WedgeTail inspects the network
on a specific port. The detection engine entails Find-Target-Forwarding-Devices() and Inspect-
Device() functions in Algorithm 1. The former retrieves forwarding devices from the scanning
regions and the latter, applies Algorithm 2 for each of the forwarding devices. If a forwarding
device is detected as malicious, the Isolate-Forwarding-Device() function of Algorithm 1 along
with the response policies specified by administrator is called.

6. The Detection Engine

We begin this section by providing definitions for Packet Network, Packet Path and Packet
Trajectory in the context of our work. This is followed by a discussion on how WedgeTail com-
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Algorithm 1 WedgeTail Detection and Response

Response Policy RP
Select porti ∈ {Port}
Find-Target-Forwarding-Devices (Porti)
Select f d(i) ∈ {Target Forwarding Devices}
for all porti ∈ {Port} do

Inspect-Device ( f d(i))
if f d(i) is ‘Malicious’ then

Isolate-Forwarding-Device (RP, f d(i))
end if

end for

putes the actual and expected trajectories of packets. We then explain the scanning mechanism
and conclude by presenting the attack detection algorithms.

Definition 6.1. (Packet Network). Simply referred to as ‘network’ in this manuscript, is a di-
rected graph G = (V, E) where V is a set of vertices representing forwarding devices and E is a
set of edges representing links.

Definition 6.2. (Packet Path). Given G, an f d(1) → f d( j) path is a non-empty graph P =

(Vp, Ep) of the form Vp = f d(1), f d(2), ..., f d( j) and Ep = {( f d(1), f d(2)), ..., ( f d(i), f d( j)} such
that P is a sub-graph of G and the f d(x) are all distinct.

Definition 6.3. (Packet Trajectory). Given G and packet n, a Packet Trajectory PnT is a se-
quence (( f d(1), t1), ( f d(2), t2), ..., ( f d( j), t j)) where tx is a timestamp indicating the time when
PnT passes f d(x) and there exists a path f d(1)→ f d(2),→, ...,→ f d( j) on G.

Simply put, a packet trajectory is the route a uniquely identifiable packet takes while travers-
ing a network from one forwarding device to another. For each trajectory the times that the
packet meets each forwarding device along its path is recorded along with a timestamp for the
whole trajectory. For instance, the timestamp DD.MM.YY is attached to trajectory PnT , which
passes through nodes f d(i) and f d( j) at times ti and t j, respectively. We consider different paths
for the same packet as distinctive trajectories. In other words, packets with the same header
may be routed through different paths in respect to the network condition on each iteration. For
instance, as shown in Figure 1, a packet traversing through the green line from f d(a) to f d(e)
may be routed through f d(i) or f d(d) depending on the QoS requirements. Note that multiple
repetitions of the same path for the same packet is only regarded as one trajectory.

6.1. Packet Trajectories

Actual Packet Trajectories: We propose two different solutions to retrieve the packet tra-
jectories. As succinctly reviewed in §2, NetSight is a recently proposed network troubleshooting
solution that allows retrieving all the forwarding devices that a packet visited while traversing
the network. Therefore, if NetSight was deployed on a network, a convenient approach would
be to query for packet history and create the trajectories. We achieve this by developing an inte-
grated module that queries NetSight for packet histories using available APIs. This approach is
the preferred method as is systematic and scales well.

An alternative approach would be for WedgeTail to run a deterministic hash function over a
packet header and use this hash to track the packet as it traverses the network (i.e. generating
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Figure 2: Packet header fields used for labeling.

labels). The choice of an appropriate hash function would be crucial for this matter as is selecting
the proper packet header values. To achieve this, we use the packet hashing function used in
[22]. We pick packet header values such as source address, destination address from IP header
and source port and destination port in TCP header – the values used for the hashing are shown
in Figure 3. Note that in practice the labels can be quite small (e.g., 20 bit) – although the size of
the packet labels depends on the specific situation. Therefore, the overhead to collect trajectory
samples is also small since the traffic that has to be collected from nodes only consists of such
labels (plus some auxiliary information).

An issue to consider is the impact of collision in our proposed hashing-based mechanism.
First, we envision our custom hashing to be used as an alternative where NetSight is less likely
to be deployed such as in smaller networks. In other words, the the likelihood of collision
decreases with smaller traffic volumes. Second, if collisions result in ‘impossible’ paths (e.g.
f d(a) → f d( f ), where there is no direct link between the two) then this will be ignored by
WedgeTail. The only case that a collision may result in false positives is when it results in an
invalid trajectory that has at least the first two forwarding devices same as a valid trajectory.
For instance, WedgeTail falsely detects f d(b) as malicious if the invalid trajectory is f d(a) →
f d(b) → f d( f ) → f d(e) and the valid trajectory is the green ones shown in Figure 1 (see §6.3
for attack detection algorithms).

Expected Packet Trajectories: WedgeTail uses NetPlumber to compute the expected packet
trajectories. NetPlumber is run on a virtual replica of the network, which WedgeTail maintains
by intercepting the OpenFlow messages exchanged between data and control plane (see §8 for
details). The virtual replica enables computing the expected packet trajectories when traversing
the network without trusting the forwarding devices, which may be malicious.

NetPlumber is initialized by examining the forwarding tables of virtual network replica to
build its Plumbing Graph. This is then used to retrieve all the possible paths that a packet from
port pi of f d(i) may take as it moves to port p j of f d( j).

To be current, NetPlumber updates its plumbing graph whenever a new rule, link or table
is added or removed. For instance, when a new rule is added, NetPlumber first creates pipes
from the new rule to all potential next hop rules, and from all potential previous hop rules to the
new rule. It also needs to find all intra-table dependencies between the new rule and other rules
within the same table. Next, NetPlumber updates the routing of the flows. To do so, it asks all
the previous hop nodes to pass their flows on the newly created pipes. The propagation of these
flows then continues normally through the plumbing graph.

The incremental approach used in NetPlumber makes it a much more efficient solution than
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Figure 3: Forwarding devices in ISP network. The dotted lines represent packet trajectories.

HSA, which is also evident in our evaluation results (see §9). We refer the interested reader to
[29] for more information on the functioning and performance metrics of NetPlumber.

6.2. Scanning Mechanism
WedgeTail prioritizes forwarding devices for its inspection. The core idea is that the analysis

has to begin from the forwarding devices that the majority of packets encounter while traversing
the network. To identify these, WedgeTail keeps track of trajectories for all packets on all ports
over time and finds the most frequent paths over specified periods. For instance, assume the
trajectories drawn in Figure 3 represent all the trajectories recorded for ISP network in the last
7 days. It is evident that f d(b), f d(g) and f d( f ) are more commonly encountered by packets.
Indeed, identifying these is much more complicated in a large network with potentially massive
number of trajectories. We adopt the solution proposed in [41] to process the associated large-
scale trajectory database and extract the most frequent path over certain periods.

Processing trajectory datasets while focusing on their inherent spatiotemporal features has
been extensively studied in the last decade. The most popular approach is shortest path finding
[39], which does not fit our scope. Alternatively, solutions such as [51, 27] detect hot routes
and trajectory patterns with heavy traffic. We used a similar mechanism known as Unsupervised
Trajectory Sampling [48] in WedgeTail 1.0 to detect the denser regions and prioritize the related
forwarding devices in inspection. However, such solutions retrieve patterns in a global manner
with no consideration of time or specific source and destinations.

Most Frequent Path (MFP) is another way of extracting useful information from trajectory
datasets. It is mainly used to reflect on the common routing preferences and has various usages
and real world applications such as investigating people’s travel habits, path recommendations,
and etc. [41] is one of the very few solutions proposed to study the MFP problem with user-
specified time periods. Moreover, it is designed for large trajectory datasets which makes it a
perfect match for our scenario. The proposed two-step strategy first constructs a graph with
the frequencies of the candidate paths and then executes a graph search to find the results. It
proposes Footmark Index (FMI) and Containment-Based Footmark Index (CFMI) to reduce the
number of random disk accesses by only fetching the dominant trajectories. To find the results,
it proposes a new variant of the classic Bellman-Ford algorithm to deal with the sequence-valued
path properties. We refer the interested reader to [41] for algorithm listing and further details.

Using time-period based most frequent path (TPMFP), WedgeTail reduces the trajectory
dataset into a representative sample that encapsulates the most commonly visited forwarding
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devices over the specified time period. These forwarding devices are allocated a higher priority
when WedgeTail begins its inspection of data plane forwarding devices.

6.3. Attack Detection

The main attack detection algorithm (Inspect-Device()) is presented in Algorithm 2. The
algorithm takes as input a target forwarding device and a port and returns a malicious node spec-
ifying its malicious action. First, a snapshot of all network forwarding device configurations
is retrieved. Accordingly, the trajectories that a packet may take against each of the other for-
warding devices, and the control plane, is computed – note that the packets required for creating
the trajectories are chosen randomly in the control plane and cannot be known by an attacker to
influence this process. Thereafter, the actual trajectories for the selected packets are retrieved
using mechanisms discussed in §6.1. At this point, whenever the set of forwarding devices in
the actual trajectory is not a subset of the expected trajectories, a malicious forwarding device is
detected.

Formally, let A denote the total ordered set of actual forwarding devices for a packet travers-
ing from target f d(i) to f d( j) and E the ordered set of expected forwarding devices for the same
trajectory. If A * E then f d(i) is malicious. The malicious actions are identified as follows4:

Algorithm 2 Attack Detection Algorithm

Inspect-Device( f d(i), PortPi) {
Status S = Check-State-Change();
File F = Dataplane-Configurations-Snapshot(S);
while Check-State-Change() == S do

List L = F.ForwardingDevices() – f d(i)
for all f d( j) ∈ L do

Packet Pck;
Trajectory Actual, Expected;
Pck.Source() = f d(i);
Pck.Destination() = f d( j);
Pck = Find-Packet(Pck.Source, Pck.Destination);
Expected = HSA-Trajectory(Pck);
Actual = Actual-Trajectory(Pck);
if Actual , Expected then

Identify-Attack( f d(i), Port(i));
end if

end for
end while
}

1. Packet Replay: Occurs when a forwarding device sends a copy of the packet to a third
destination as well as the intended destination. Figure 1 shows a packet replication attack exam-
ple, where f d(b) replicates packets to f d( f ) which in turn an attacker may use to forward some,

4Note that to simplify the descriptions, without loss of generality we assume that there exists only one valid trajectory
between two forwarding devices.
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or all, of traffic to a machine under his control. A forwarding device that replays packets(s)
enables an attacker to execute attacks such as surveillance attack and authentication attack.

Detection: Let f d(k) be a forwarding device other than f d(i) and f d( j). A′ be the set of
forwarding devices in the actual path excluding f d(k), or A − { f d(k)}. If ∃ f d(k) ∈ A : f d(k) < E
and A′ ⊆ E then WedgeTail detects a packet replay attack.

2. Packet Misrouting: Occurs when a packet is diverged from the original destination and
does not reach its intended destination. This may be used to launch an attack against network
availability or as part of more complicated threats. For example, by forming a triangle routing
and creating routing loop resulting in packet TTL value expiration the network congestion may
result in a partial, or total, shutdown of the network.

Detection: Let f d(k) be a forwarding device other than { f d(i), f d( j)} and A′ be the set of
forwarding devices in the actual path excluding f d(k), or A − { f d(k)}. If ∃ f d(k) ∈ A : f d(k) < E
and A′ * E then WedgeTail detects a packet misrouting attack.

3. Packet Dropping: A compromised forwarding device that drops packets creates a black
or grey hole in the network. In the former, it drops all the packets, and in the latter, it drops
packets periodically or retransmission of packets or drops packets randomly. Packet dropping is
used in attacks such Denial of Service (DoS) against network provider.

Detection: WedgeTail detects packet dropping if A * E and card(A) < card(E).
4. Packet Generation: A compromised forwarding device may fabricate packets or modify

existing ones. This may be used to mount attacks such as DoS. Such changes are detected by
WedgeTail through its labeling mechanism. In other words, once any attribute used for labeling
packets is changed, the label is changed, and the trajectory is undefined.

Detection: WedgeTail detects packet generation whenever A * E and E − A = E.
5. Packet Delay: Occurs when a forwarding device delays the traffic and increases jitter. The

delay of a TCP stream may causes spurious timeouts and unnecessary re-transmissions, which
severely threatens the TCP throughput [59]. Packet delay is a serious threat against time-sensitive
traffic [24].

Detection: Let Te be the estimated time for packeti moving from f d(i) and f d( j) over a
trajectory τ̄. Accordingly, let Ta be the actual time that it took for this packet to traverse τ̄.
Assume the maximum valid delay due to network congestion on this trajectory is Td. If ∆Te,a >
Td then there is a packet delay attack.

Note that the estimated time may be set to be the average time for all packets traversing
that route or computed by sending simple ping packets. The maximum valid congestion may be
computed using [49] or [55], where it is possible to achieve real-time congestion detection and
measurement.

6.4. Malicious Localization

As mentioned a trajectory is regarded as a total ordered set. Once one of the malicious actions
are detected, it is possible to locate the associated forwarding device by comparing A and E (see
previous section). Consider Figure 1 and assume when inspecting f d(a) we retrieve E(τ̄) and
A(τ̄) as expected and actual trajectories between f d(a) and f d(e), respectively.

A(τ̄): f d(a)→ f d(b)→ f d( f )→ f d(e) equivalent to total ordered set E = { f d(b), f d( f )}.
E(τ̄): f d(a)→ f d(b)→ f d(c)→ f d(d)→ f d(e) equivalent to total ordered set A ={ f d(b),

f d(c), f d(d)}
In this case, by intersecting E and A we retrieve that { f d(b)} is the malicious node, where

packet misrouting was initiated. The analysis is continued with f d(c) and f d(d) - i.e. A − E -
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so that at the end of this process any forwarding device that my be malicious is identified. The
same approach can be used for malicious actions 1, 3 and 4. To locate a forwarding device that
is delaying packets we retrace time hop by hop in A and compare with the expected time.

6.5. Practical Considerations

Network congestion will result in packet drops and delays. Therefore, to minimize the num-
ber of false positives, WedgeTail has to estimate with a high accuracy the number of packets drops
and delays associated with network congestion. Several solutions have already been proposed in
the literature to achieve this. Authors of [45] propose a solution to detect packet dropping or gray
hole attacks in networks by exploiting the correlation between packet delays and packet losses
due to congestion. Their proposed methodology is based on passive observations of the one-way
network delay experienced. For the scope of this work, the main advantage of this solution com-
pared with the better-known proposals such as [45] is that we could implement it without any
additional overhead or support from the network. For instance, [45] assumes the routers in the
network provide real-time data related to the queue lengths at their interfaces.

6.6. Optimizing Scans

Compared to WedgeTail 1.0, we optimize attack detection by reducing the number of op-
erations while iterating through the forwarding devices in Algorithm 2. We explain this using
an example. Consider the case where WedgeTail is inspecting f d(a) on Port Pi and the green
link showing all the possible paths between f d(a) and f d(e). Referring to Algorithm 2, the pro-
cess involves setting f d(b), f d(c), f d(i) and f d(e) as destinations and comparing the actual and
expected trajectories in each case. However, there is repetition in this process, which may be
skipped. For instance, evaluating f d(a) → f d(i) involves f d(a) → f d(b), f d(b) → f d(c) and
f d(a)→ f d(i). Hence, when evaluating f d(a)→ f d(d), WedgeTail skips the repeated paths and
only inspects f d(c)→ f d(d).

7. The Response Engine

WedgeTail can be programmed to automatically reply to identified threats using its response
engine. The response engine takes as input a set of XML-formatted policies and translates them
into actions for the controller. Developing a fully fledged policy engine and ensuring the logical
correctness of them is out of scope for this work. We developed a simplified policy engine for
our initial evaluation of WedgeTail.

Policy Syntax: Each policy requires six main features and attributes describing them. The
features include Subject, Object, Actions, Condition, Exception and Expiration time. Table 1
lists the attributes currently supported for these features. The naming used for attributes are
assumed to be self-descriptive. Note that the values in parenthesis are expected to be provided as
input for each of these attributes. While each policy may have only one subject, the other features
may have more than just one associated attribute. The Exception attribute is mainly used to build
hierarchy for the policies and Expiration is used to specify the validity period.

We now look at two examples. Consider Figure 1 and assume only f d( f ) is detected as
malicious. An administrator-defined policy may specify two different policies matching this for-
warding device (i.e. one using the Forwarding Device attribute and another using Controller
attribute). First, it may specify f d(g) as subject and instruct it to use an alternative route to for-
ward traffic. Second, it may specify for the Controller to block all incoming OpenFlow messages.
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Feature Attributes

Subject Forwarding Device(id) | Controller

Object Packet(id) | Flow(id) | Switch(id)

Action Isolate(fd(id)) |

Update_forwarding_table(fd(id)) |

Alarm | Block_Messages(fd(id)) |

Test_Again(fd(id))
Exception Policy Pi

Expiration T (millisecond)

Table 1: Overview of the response engine policy syntax

Now, consider the same scenario as before but this time with only f d(b) identified as malicious.
In this case, there may be an Exception feature stating if a policy for f d( f ) is still active then no
action is executed from this policy.

8. Implementation

We envision WedgeTail to be integrated as an application for SDN controllers for both de-
tection and response. However, at this stage, to demonstrate WedgeTail’s compatibility with dif-
ferent platforms and evaluate it over different controllers we implemented the detection engine
as a proxy sitting in between the control and data plane. We report that a similar architecture is
also used in [21]. Another reason for this design choice was that the detection engine requires
advanced functions that is not consistently available across different controllers. Currently, the
response engine is programmed as an application for Floodlight [? ] controller.

WedgeTail’s architecture is shown in Figure 4. We implemented our solution mostly in Java
using approximately 2000 lines of code. WedgeTail begins by creating the scanning regions. To
do this, it creates a unique hash from a large number of packets. The packets are then continu-
ously tracked as they traverse the network by intercepting the PACKET_IN messages sent from
the data plane to control plane. Actual_Tra jectory_Extractor generates the resulting trajectories
and stores them in a trajectory database along with some packet information and timestamps.

Once the scanning zones are generated and the target forwarding devices are identified, Wed-
geTailed requires having the expected trajectories of packets to initiate its inspection. Hence, it
queries the controller for current topology and launches a Mininet matching the same setup. It
then intercepts all the OpenFlow messages exchanged between the control plane and data plane
including FLOW_MOD and PACKET_IN messages. The OpenFlow messages sent from the
controller to forwarding devices (e.g. FLOW_MOD) is first translated into a database INSERT
command. This command stores the rule, forwarding device receiving the rule along with a time
value in a MySQL database. Thereafter, using the DB_to_Mininet_Translator component, these
are retrieved from the database and translated into appropriate Mininet commands. The result
is a virtual network replica, which is continuously updated. The virtual network replica is used
by NetPlumber_Expected_Tra jectory module to compute the expected trajectories of packets.
We have noticed NetPlumber performance degrading with major network configuration changes,
therefore in such cases, NetPlumber is manually instructed to reset its Plumbing Graph.
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Figure 4: WedgeTail Architecture

9. Evaluation

We evaluated WedgeTail over simulated networks, which were different in terms of the num-
ber of forwarding devices, forwarding rules, network subnets, and trajectories – with our latest
simulation closely resembling real-world network conditions. We replicated a number of attacks
against SDN networks that were previously reported in the literature and analyzed the accuracy
of our solution in detecting these attacks. In order to further evaluate WedgeTail’s detection
engine, we wrote scripts that synthetically implanted a total of 1500 attacks covering all of the
malicious actions specified in §4 over our simulated networks.

Here, we report on WedgeTail’s accuracy and performance including metrics such as de-
tection and prevention success, average detection time, user perceived latencies and overheads
related to policy verification. To resemble real world network conditions, we introduced conges-
tion in our simulated network causing packet losses and measured the associated false alarms.

We compare our proposal with related works and argued how WedgeTail, in most cases,
outperforms them both in detection and response. Furthermore, in order to analyze the impact
of changes introduced with WedgeTail 2.0 we compare our performance metrics with that of
WedgeTail 1.0 [53]. We also show WedgeTail’s broad utility by illustrating how it can support
disparate networking requirements over 2 different cases studies.

Finally, given that target identification and virtual network replica reconstruction are new
features introduced as part of WedgeTail and may be of use in other domains, we report on their
performance separately.
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Number of AARNet Setup Zib54 Setup Sprint Setup
Forwarding

Device
12 54 316

Subnet 48 872 52,745
Rule 472 23,962 15,871,528

Trajectory 634 49,174 1,134,429

Table 2: Simulated networks compared in terms of total number of forwarding devices, subnets, rules and trajectories.

9.1. Experimental Setup

We simulated three different networks namely AARNet, Zib54 and Sprint. AARNet setup was
used in our initial feasibility study and resembles a minimalistic backbone ISP network topology
with only 12 forwarding devices. The forwarding rules in this network reached 472 and we
generated benign traffic such that about 600 trajectories were available in the trajectory database.
In Zib54 Setup, we extended the network size and had 54 forwarding devices. The trajectory
database used by WedgeTail contained about 24000 forwarding rules and 49000 trajectories over
870 subnets. A large network is presumed to have more forwarding devices as well as many more
trajectories. Therefore, we evaluated WedgeTail on the Sprint Setup, which was a much larger
network containing 316 forwarding devices with more than 1 million trajectories, 15 million
rules and 52000 subnets.

Network Topologies: The network topologies for AARNet Setup, Zib54 and Sprint were
extracted from The Internet Topology Zoo [34], SNDlib [47] and Rocketfuel [54], respectively.
Figure 11.a, 11.b (in Appendix Section) represent AARNet Setup and Zib54. In these setups,
each node is assumed to contain only one forwarding device, and there is only one link in-
between these devices as also depicted in the figures. Figure 11.c (in Appendix Section) depicts
the interconnection of different domains at Sprint backbone network, which we used as the net-
work topology for Sprint Setup. Note that in Figure 11.c, for clarity, the forwarding devices at
each node are not depicted, and only one link connects the nodes to each other.

Flow Entries: We are unaware of any publicly available flow entry data set for our simulated
networks. Hence, to add flow-entries, we created an interface for a subset of prefix found in a
full BGP table from Route Views [50] and spread them randomly and uniformly to each router
as ‘local prefixes’. We then computed forwarding tables using shortest path routing. The result-
ing forwarding rules and subnets for each setup are shown in Table I. We report that a similar
methodology is also adopted by related work such as [17], [56].

Traffic Generation: We used Mausezahn [1] and a custom script to add benign traffic to the
networks. Similar to [21], our custom written script imported three real-world network traces
from [19, 20, 37] to drive traffic into Mininet.

We hosted the simulated networks on a machine equipped with Intel Core i7, 2.66 GHz quad-
core CPU and 16 GB of RAM. The SDN controller equipped with WedgeTail was also hosted
on a machine with the same specifications.

9.2. Attack Scenarios

We revise the main characteristics of six different attack scenarios originating from the data
plane of Software-Defined Networks. Thereafter, we discuss how WedgeTail detects them in
our evaluations and compare the advantages of WedgeTail over SPHINX in terms of detection
methodology. Note that the authors of [21] did not provide the code of their solution on request
and therefore, we cannot provide a numerical performance comparison at this time.
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The following attack scenarios were evaluated over networks equipped with OpenDaylight
(ODL), Floodlight, POX and Maestro controllers.

I. Network DoS: Compromised forwarding device(s) direct traffic into a loop and magnify
a flow until it completely fills out the available link bandwidth. As also reported in [21], we
confirm that all four controllers were vulnerable to this attack and this completed in sub-second
time intervals.

DETECTION: The attack involves a compromised forwarding device that either generates,
misroutes or replays packets. These anomalies can be easily detected using the trajectory-based
attack detection algorithms presented in §6.3. Compared to SPHINX, WedgeTail does not rely
on any administrator defined policies for detection of a Network DoS attack.

II. Network-to-Host DoS: One or more forwarding devices send a large amount of traffic to
the host network causing a DoS. This may bring down a host machine in extreme cases, and when
dealing with mission critical systems, the impact would be catastrophic. Existing controllers do
not have any detection mechanism against this attack.

DETECTION: Malicious forwarding device(s) may generate, replay or misroute packets
towards a network host to cause a DoS attack. The aforementioned results into unexpected tra-
jectories, which are detected by WedgeTail. However, unless there are administrator-defined
policies for each host, SPHINX is unable to detect Network-to-Host DoS. Furthermore, the
number of policies to be processed in real-time will be a factor of the total number of hosts
and forwarding devices. The performance of SPHINX when processing such large number of
policies is unknown. Moreover, even with such policies in place, the attack may go undetected as
the downlink to host may not reach any suspicious threshold (note that in most cases this attack
adds a negligible processing overhead to the compromised forwarding device(s) and may also
have a negligible impact on the bandwidth).

III. TCAM Exhaustion: TCAM is a fast associative memory used to store flow rules. Ma-
licious hosts may send arbitrary traffic and force the controller to install a large number of flow
rules, thereby exhausting the switch’s TCAM. As also discussed in §4, this may result in signif-
icant latency or packet drops. None of the controllers tested can detect nor prevent attacks such
as TCAM exhaustion.

DETECTION: Attacks similar to III result in packet delay or drop. The latter will result in
anomalies between expected and actual trajectories, which are detected by WedgeTail. Compared
to WedgTail, SPHINX has a totally different approach in detecting such attacks. It checks for
FLOW_MOD messages sent by the controller and detects a threat if the rate continues to be
high over time. However, there may exist cases that the controller messages do not violate the
administrator defined policies and still cause the switch to fail. For instance, the switch may be
already experiencing a load higher, which may not be sought by an administrator when defining
the policies. In such cases, the attack will not be detected by SPHINX.

IV. Forwarding device Blackhole: In this case, flow path ends abruptly, and the traffic
cannot be routed to the destination. A forwarding device either drops or delays packet forwarding
to launch this attack. We installed malicious rules on switches in networks, and none of the
controllers had any mechanism to prevent nor detect them.

V. ARP Poisoning: Malicious network hosts can spoof physical hosts by forging ARP re-
quests and fool the controller to install malicious flow rules to divert traffic. This may be used
for eavesdropping or in other cases to mount IP slicing attacks and create network loops. We
replicated the attack with the exact similar setup used in [21]. We also confirm that all of the
tested controllers are vulnerable to it. Note that ARP poisoning corrupts the physical topological
state. We discuss how WedgeTail detects attacks targeting the logical topological state in §10.
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DETECTION: There are no network policies that a forged ARP request violates in a net-
work. However, the actual path that a packet traveling from hosts to the controller takes is
detected by WedgeTail. Hence, ARP requests with an anomalous trajectory (i.e. originated from
hosts rather than forwarding devices) can be monitored and blocked before poisoning the net-
work. SPHINX is also capable of detecting this attack either using its flow graph feature (which
binds MAC-IP) or using administrator defined policies.

VI. Controller DoS: With OpenFlow, a packet that does not match any of the currently in-
stalled flow rules of a forwarding device is buffered, and an associated OFPT PACKET_IN mes-
sage containing the data packet’s header fields is forwarded to the controller. When a controller
receives a large number of new packet flows within a short period, its buffer is filled up and has
to forward complete packets to the controller. This causes heavy computational load on the con-
troller, and it may bring it down altogether. We used Cbench [16] and flooded the controller with
a high throughput of PACKET_IN messages to analyze the controllers’ performance. Similar to
[21], we report that all except Floodlight controller exhibited this attack. However, while Flood-
light throttles the incoming OpenFlow messages from switches as a prevention mechanism, the
connection of the switches with the controller is broken when a large number of switches attempt
to connect with it.

DETECTION: A compromised forwarding devices may execute this attack by either replay-
ing packets or generating packets destined to the controller. If WedgeTail detects an abnormal
number of trajectories between a forwarding device and a controller it will detect a threat and
can react as per the policies defined by its administrator. Note that WedgeTail may compute the
threshold for the number of trajectories over time period ∆τ by itself or, the administrator could
custom define this. SPHINX detects a controller DoS by observing the flow-level metadata and
computing the rate of PACKET_IN messages, which is compared with the administrator-defined
policies. Compared to SPHINX, WedgeTail also has the advantage of computing the aggregated
flow heading to the controller rather than each individual link.

9.3. Attack Implantations
WedgeTail successfully detected all of the attacks discussed in §9.2. However, to cover all

of the malicious actions specified in §4 and perform extended performance analysis, we wrote
scripts to implant 1500 synthetic malicious threats in our simulated networks. The resulting
malicious forwarding devices maliciously processed: 1. All packets on all port, 2. All packets on
a specific port, 3. A subset of packets on a all port, 4. A subset of packets on a specific port and
5. Packets destined to the control plane – resembling attacks against the control plane originating
from the control plane. We regard detecting a forwarding device maliciously processing a subset
of packets on a specific port as the most challenging case.

Malicious Actions: We used custom scripts to randomly introduce synthetic malicious for-
warding devices in our networks. The resulting forwarding devices maliciously replayed packets
(40% of all attacks), dropped packets (30%), misrouted packets (5%), generated packets (10%),
and delayed packets (15%). A packet replay may be used in a range of threats (e.g. surveillance,
DDoS, etc.) and is less likely to be detected compared to packet drops – i.e. traffic not reach-
ing the destination is presumably much more noticeable. Hence, this distribution of attacks is
deemed to be reasonable.

Compound Attack: Refers to the case where more than one malicious forwarding device
are involved in an attack. For instance, a surveillance attack may involve more than one mali-
cious forwarding device (see Figure 1). Compound attacks are challenging for solutions such as
SPHINX to detect as compromised forwarding devices may intelligently install custom rules and
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avoid reporting to the controller thus aiming to conceal their maliciousness. This is less of an
issue for WedgeTail’s detection engine as any custom rule not matching those set by the control
plane will eventually result in deviation of actual trajectories from expected ones.

In our simulations a total of 326 attacks involved more than one malicious forwarding devices
(i.e. compound attacks). Specifically, 35% of these involved four malicious forwarding devices,
25% six forwarding device and 40% nine forwarding devices. In real-world scenarios, an attacker
who has taken over nine forwarding devices of a network is relatively a strong and resourceful
adversary. In AARNet Setup this means that the 75% of forwarding devices are compromised.
Evidently, the aforementioned scenario is not supported by SPHINX, as authors in [21] assume
the majority of forwarding devices to be non-malicious for their solution to work.

9.4. Accuracy & Detection Time

We measured WedgeTail’s detection accuracy respect to the following three criteria:
A. Successful detection rate against attacks implanted in our simulated networks. We mea-

sured WedgeTail’s detection accuracy in detecting attack scenarios discussed in §9.2 and the
1500 synthetic attacks implanted over our simulated networks. We report that all of the attacks
have been successfully detected by WedgeTail.

B. Successful detection rate under network congestion leading to packet loss and delay. We
added random congestion to the network leading to pack loss and delays at different nodes. We
report that the packet delay and drop estimation mechanism employed (see §6.5) has minimized
the impact of such in WedgeTail’s accuracy. In fact, the performance was quite satisfactory with
a relatively high detection accuracy (see Table 3).

C. Successful application of pre-defined policies against malicious forwarding devices. We
report whenever a threat was detected and matching policies were specified, WedgeTail success-
fully applied them.

In A, the distribution of attacks over the networks was as following: 150 were over AARNet
Setup, 750 over Zib54 Setup and 600 over Sprint Setup. We illustrate the detection time of 50
attacks separately over network AARNet Setup, B and C in Figure 5, 7 and 6, respectively. The
average detection time over AARNet Setup is approximately 37 seconds with a standard devi-
ation of 8 seconds. For Zib54 Setup, the average detection time is approximately 560 seconds
with a standard deviation of 56 seconds. For Sprint Setup, the average detection time is approx-
imately 4100 seconds with a standard 620 seconds. Moreover, the average detection times were
not affected in the presence of Compound Attacks (see §9.3). The latter is expected since 1)
the detection algorithm entails analyzing each and every forwarding device and 2) the response
engine is not triggered until the end of full scan. Figure 9 shows the average detection time with
respect to complexity of attacks present in Sprint setup evaluations. The x-axis values range
between 0 (less complicated) and 1 (most complicated) to show the complexity of attacks. The
most complicated attacks included multiple compromised forwarding devices maliciously pro-
cessing a subset of packets on a specific port (see §9.3). As illustrated in Figure 9, WedgeTail’s
average detection time does not exceed 75 minutes even in the most complicated scenarios.

The aforementioned performance metrics show that WedgeTail’s detection time scales well
as the network size increases. Simply put, for an administrator of a medium-large size network
being able to detect and locate malicious forwarding device after about half an hour without
defining any policies or manual investigation is quite satisfactory.

We also report that despite the simulation size growth in terms of subnet, rules and trajecto-
ries the detection times have substantially reduced compared to WedgeTail 1.0. This is mainly
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DD A FP FN
3 minutes 98.83 3 0.76
5 minutes 99.17 3 0.69
10 minutes 99.38 8 0.48

Table 3: Overall detection results of attacks in the presence of packet drops due to congestion. In the table,
DD: Detection Delay, A: Accuracy, FP: False Positive, FN: False Negative.

associated to: 1) improved scanning mechanism, 2) replacing HSA with NetPlumber and 3) the
improvements introduced for attack detection algorithm (see §6.6).

For B, we added random congestion over simulated networks, which resulted in packet drops
at various points in the simulated network. The dropped rate varied as 0, 0.005, 0.0075, 0.01,
0.015 and 0.02 of the 1K TCP flows sent over the simulated networks. Table 3 shows the overall
detection results after detection delays of 3, 5 and 10 minutes – WedgeTail attack detection is
started after the detection delay time. Note that we added multiple bottlenecks throughout the
networks and The results prove that packet loss due to congestion is not a prohibitive factor for
our system.

9.5. Performance Analysis
In this section, we report on some of the main performance metrics of WedgeTail. Thereafter,

we compare WedgeTail’s performance with related work and WedgeTail 1.0.
1. Scanning Mechanism: It is used to inspect the network and prioritize forwarding devices

for inspection. As mentioned in §6.2, WedgeTail can be customized to prioritizes inspection
within different user-defined time periods such as the last week, month and year. The algorithm
used has two main steps that affect its efficiency index creation and TPMFP querying time. Index
creation is only done once on the trajectory database being analyzed. The latter however is an
online process executed on each request. In Sprint setup, with more than 1 million trajectories
the index creation took a maximum of 20 minutes. Once the index are created, the query time
is dependent on two steps: footmark graph construction and the time needed for searching most
frequent path (MFP) in the graph. This process takes at most half a second for our largest dataset
and few seconds in smaller setups. Therefore, the customization supported by WedgeTail and
performance metrics are much improved compared to [53]. Figure 8 shows the processing time
growth in respect to the number of trajectories.

2. Network Replica: We calculated the replication delays after 500 instances of updates in
the original network, and we observed an upper bound of approx. 15 seconds. To the best of our
knowledge, this is the first system to maintain a virtual network replica of an SDN data plane
and might be an inspiring idea for future work.

3. Response Policy Matching: As shown in Figure 10, we observe that the average policy
matching time as we increase WedgeTail’s administrator defined policies from 0 to 1000 is ap-
proximately 120 milliseconds. Note that unlike SPHINX, WedgeTail’s policies are used by its
response engine only.

5. User Perceived Latencies: WedgeTail is not a real-time system, and it has no implication
for the network users when detecting threats. Comparatively, however, SPHINX adds overhead
to the network and causes delays. Given the various advantages of WedgeTail compared to
SPHINX in detection and prevention, we consider this a bonus feature for our system.

Comparison with Related Work: We discuss the reasons as to why WedgeTail is non-
comparable to network troubleshooting solutions in §10. However, to put WedgeTail’s perfor-
mance into perspective we report on the performance metrics of Anteater [42], which takes a
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snapshot of forwarding tables and analyze them for errors, and NetPlumber [29] that extends
HSA into a real-time verification solution. Anteater has been tested on a 178 router topology
and takes more than 5 minutes to just check for loops. NetPlumber may take up to 10 minutes
to verify network correctness after a given rule change. Comparatively, WedgeTail investigates
for every instance of malicious action and does much more than just evaluating rule sets (i.e.
creating scanning regions, tracking packets as they traverse the network, maintaining a network
replica for expected trajectory, etc.) with a reasonably added overhead.
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10. The Good, the Bad and the Ugly

As mentioned in §1, the attack surface against forwarding devices has expanded over the last
few years. However, today’s routing protocols and network troubleshooting tools continue to
assume the underlying hardware is trusted. Hence, networks require solutions to automatically
detect malicious forwarding devices and protect the network from them irrespective of the cause
and independent of underlying software and hardware.

Even with the latest network troubleshooting proposals, the main focus is on addressing
issues such as configuration conflicts, routing loops, black holes and detection of policy incon-
sistencies (e.g. [31, 29, 47]). However, even with a correct configuration, the forwarding devices
may fail in execution due to bugs in switch software, conflicts and limited memory space. De-
tecting forwarding devices not processing packets as inspected is challenging since common
verification tools such as ping or traceroute 1) require extensive engineering over large networks,
and 2) fail to detect forwarding devices cloaking their maliciousness.
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10.1. Pre-WedgeTail

Related work including [21, 24, 17] 1) rely mainly on the administrator-defined policies for
detection, 2) assume weak adversarial settings, and 3) fail to detect certain types of attacks (see
§4 and §9.2). Moreover, they do not discuss the localization of malicious forwarding devices,
impose overhead on network performance, cannot distinguish between malicious actions such as
packet drop or delay and do not prioritize the inspection of forwarding devices.

10.2. Limitations and Post-WedgeTail

We evaluated WedgeTail over various network setups, configurations, and sizes equipped
with different SDN controllers to prove its practicality under simulated environments. Specif-
ically, WedgeTail’s high accuracy and performance over Sprint Setup with a large number of
forwarding devices, rules, and trajectories forms a solid ground motivating further development
and evaluation of our proposed solution. Furthermore, we remind that WedgeTail’s core detec-
tion and response techniques such as trajectory-creation, scanning methodology and inspection
algorithms are platform independent and network dynamics do not alter these. Therefore, our
next step is to deploy our solution over a real-world network setup focusing on scalability.

We also admit that we would need exploring WedgeTail’s accuracy under more attack sce-
narios and use-cases (e.g. virtualization, VM migrations, and etc.). However, given our current
evaluations results we do not expect any major hindrance for our steps forward.

Finally, WedgeTail’s compatibility with distributed SDN controllers such as ONOS requires
further investigation – although we regard such platforms to be an enabler rather than a barrier.
We aim to address these limitations in the near future.

11. Conclusion

Information is the new gold, it is the new oil. It is worth trillions of dollars and whoever
controls it has the power to control wealth and power. Nowadays, Internet is much more than
a source of information, it is the building block of today’s democracy. Freedom is embedded
in this technology with tools such as blogs and social networks and we have to protect this
technology. In the era of cyber-war and cyber-terrorism, attackers are targeting the very core of
today’s network infrastructure including the network routers. Software Defined Networks (SDN)
is regarded as the networks of the future and it must be secured. The SDN control plane security
has been an ongoing topic of research. However, malicious forwarding devices could potentially
be a more worrying threat as these are the actual enforcement point of decisions made at the
control plane. Accordingly, SPHINX [21] was the first attempt in the literature to detect a broad
class of attacks in SDNs with a threat model not requiring trusted switches or hosts. With the
same set of goals, we proposed an alternative solution, which we call WedgeTail. Our solution is
designed against stronger adversarial settings and outperforms prior solutions in various aspects
including accuracy, performance, and autonomy.
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Appendix A. Network Topologies used in Simulations
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Figure A.11: Network Topologies used in WedgeTail Evaluations.
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