
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/320554481

Improving	SDN	Scalability	with	Protocol-
Oblivious	Source	Routing:	A	System-Level	Study

Article		in		IEEE	Transactions	on	Network	and	Service	Management	·	October	2017

DOI:	10.1109/TNSM.2017.2766159

CITATION

1

READS

59

8	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Network	Protection	View	project

wireless	sensor	networks	View	project

Shengru	Li

University	of	Science	and	Technology	of	China

14	PUBLICATIONS			71	CITATIONS			

SEE	PROFILE

Nirwan	Ansari

New	Jersey	Institute	of	Technology

616	PUBLICATIONS			10,934	CITATIONS			

SEE	PROFILE

Qinkun	Bao

University	of	Science	and	Technology	of	China

4	PUBLICATIONS			5	CITATIONS			

SEE	PROFILE

Zuqing	Zhu

University	of	Science	and	Technology	of	China

217	PUBLICATIONS			2,002	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Zuqing	Zhu	on	22	October	2017.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/320554481_Improving_SDN_Scalability_with_Protocol-Oblivious_Source_Routing_A_System-Level_Study?enrichId=rgreq-b653cafc3ac1c4176e7e1ce8accda863-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU1NDQ4MTtBUzo1NTIxNTU4ODk1MDQyNTZAMTUwODY1NTYzMDQzNA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/320554481_Improving_SDN_Scalability_with_Protocol-Oblivious_Source_Routing_A_System-Level_Study?enrichId=rgreq-b653cafc3ac1c4176e7e1ce8accda863-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU1NDQ4MTtBUzo1NTIxNTU4ODk1MDQyNTZAMTUwODY1NTYzMDQzNA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Network-Protection?enrichId=rgreq-b653cafc3ac1c4176e7e1ce8accda863-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU1NDQ4MTtBUzo1NTIxNTU4ODk1MDQyNTZAMTUwODY1NTYzMDQzNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/wireless-sensor-networks-4?enrichId=rgreq-b653cafc3ac1c4176e7e1ce8accda863-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU1NDQ4MTtBUzo1NTIxNTU4ODk1MDQyNTZAMTUwODY1NTYzMDQzNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-b653cafc3ac1c4176e7e1ce8accda863-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU1NDQ4MTtBUzo1NTIxNTU4ODk1MDQyNTZAMTUwODY1NTYzMDQzNA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shengru_Li2?enrichId=rgreq-b653cafc3ac1c4176e7e1ce8accda863-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU1NDQ4MTtBUzo1NTIxNTU4ODk1MDQyNTZAMTUwODY1NTYzMDQzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shengru_Li2?enrichId=rgreq-b653cafc3ac1c4176e7e1ce8accda863-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU1NDQ4MTtBUzo1NTIxNTU4ODk1MDQyNTZAMTUwODY1NTYzMDQzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Science_and_Technology_of_China?enrichId=rgreq-b653cafc3ac1c4176e7e1ce8accda863-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU1NDQ4MTtBUzo1NTIxNTU4ODk1MDQyNTZAMTUwODY1NTYzMDQzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shengru_Li2?enrichId=rgreq-b653cafc3ac1c4176e7e1ce8accda863-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU1NDQ4MTtBUzo1NTIxNTU4ODk1MDQyNTZAMTUwODY1NTYzMDQzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nirwan_Ansari?enrichId=rgreq-b653cafc3ac1c4176e7e1ce8accda863-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU1NDQ4MTtBUzo1NTIxNTU4ODk1MDQyNTZAMTUwODY1NTYzMDQzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nirwan_Ansari?enrichId=rgreq-b653cafc3ac1c4176e7e1ce8accda863-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU1NDQ4MTtBUzo1NTIxNTU4ODk1MDQyNTZAMTUwODY1NTYzMDQzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/New_Jersey_Institute_of_Technology?enrichId=rgreq-b653cafc3ac1c4176e7e1ce8accda863-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU1NDQ4MTtBUzo1NTIxNTU4ODk1MDQyNTZAMTUwODY1NTYzMDQzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nirwan_Ansari?enrichId=rgreq-b653cafc3ac1c4176e7e1ce8accda863-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU1NDQ4MTtBUzo1NTIxNTU4ODk1MDQyNTZAMTUwODY1NTYzMDQzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qinkun_Bao?enrichId=rgreq-b653cafc3ac1c4176e7e1ce8accda863-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU1NDQ4MTtBUzo1NTIxNTU4ODk1MDQyNTZAMTUwODY1NTYzMDQzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qinkun_Bao?enrichId=rgreq-b653cafc3ac1c4176e7e1ce8accda863-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU1NDQ4MTtBUzo1NTIxNTU4ODk1MDQyNTZAMTUwODY1NTYzMDQzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Science_and_Technology_of_China?enrichId=rgreq-b653cafc3ac1c4176e7e1ce8accda863-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU1NDQ4MTtBUzo1NTIxNTU4ODk1MDQyNTZAMTUwODY1NTYzMDQzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qinkun_Bao?enrichId=rgreq-b653cafc3ac1c4176e7e1ce8accda863-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU1NDQ4MTtBUzo1NTIxNTU4ODk1MDQyNTZAMTUwODY1NTYzMDQzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zuqing_Zhu?enrichId=rgreq-b653cafc3ac1c4176e7e1ce8accda863-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU1NDQ4MTtBUzo1NTIxNTU4ODk1MDQyNTZAMTUwODY1NTYzMDQzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zuqing_Zhu?enrichId=rgreq-b653cafc3ac1c4176e7e1ce8accda863-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU1NDQ4MTtBUzo1NTIxNTU4ODk1MDQyNTZAMTUwODY1NTYzMDQzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Science_and_Technology_of_China?enrichId=rgreq-b653cafc3ac1c4176e7e1ce8accda863-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU1NDQ4MTtBUzo1NTIxNTU4ODk1MDQyNTZAMTUwODY1NTYzMDQzNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zuqing_Zhu?enrichId=rgreq-b653cafc3ac1c4176e7e1ce8accda863-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU1NDQ4MTtBUzo1NTIxNTU4ODk1MDQyNTZAMTUwODY1NTYzMDQzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zuqing_Zhu?enrichId=rgreq-b653cafc3ac1c4176e7e1ce8accda863-XXX&enrichSource=Y292ZXJQYWdlOzMyMDU1NDQ4MTtBUzo1NTIxNTU4ODk1MDQyNTZAMTUwODY1NTYzMDQzNA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


1

Improving SDN Scalability with Protocol-Oblivious
Source Routing: A System-Level Study

Shengru Li, Kai Han, Nirwan Ansari, Fellow, IEEE, Qinkun Bao, Daoyun Hu, Junjie Liu,
Shui Yu, Senior Member, IEEE, and Zuqing Zhu, Senior Member, IEEE

Abstract—Software-defined networking (SDN) has been con-
sidered as a break-through technology for the next-generation
Internet. It enables fine-grained flow control that can make
networks more flexible and programmable. However, this might
lead to scalability issues due to the possible flow state explo-
sion in SDN switches. SDN-based source routing can reduce
the volume of flow-tables significantly by encoding the path
information into packet headers. In this paper, we leverage
the protocol-oblivious forwarding instruction set (POF-FIS) to
design protocol-oblivious source routing (POSR), which is a
protocol-independent, bandwidth-efficient and flow-table-saving
packet forwarding technique. We lay out the packet format for
POSR, come up with the packet processing pipelines for realizing
unicast, multicast and link failure recovery, and implement POSR
in a POF-enabled SDN network system. Experiments are then
performed in a network testbed, which consists of 14 stand-
alone SDN switches, and to validate the advantages of POSR.
Specifically, we compare POSR with several OpenFlow-based
benchmarks for unicast, multicast and link failure recovery, and
confirm that POSR can reduce flow-table utilization effectively,
shorten path setup latency and expedite link failure recovery.

Index Terms—Software-defined networking (SDN), Protocol-
oblivious forwarding (POF), Source routing.

I. INTRODUCTION

NOWADAYS, to provision emerging network applications,
software-defined networking (SDN) has been proposed

to make networks more programmable and application-aware,
and has attracted intensive interests from both academia and
industry [1, 2]. SDN decouples the control and forwarding
planes of a network and leverages the centralized network
control and management (NC&M) to make the network more
programmable and adaptive. Hence, network innovations for
new applications and services can be easily realized through
the forwarding plane abstraction provided by the control
plane. As one of the most popular implementations of SDN,
OpenFlow [3] specifies the protocol for the communication
between the control and forwarding planes. It abstracts the
behaviors of SDN switches into flow-tables, with which they
process packets using the “match-and-action” principle.

However, the centralized NC&M in SDN might lead to scal-
ability issues. For instance, in a relatively large SDN network,

S. Li, K. Han, Q. Bao, D. Hu, J. Liu and Z. Zhu are with the School of
Information Science and Technology, University of Science and Technology
of China, Hefei 230027, China. E-mail: zqzhu@ieee.org.

N. Ansari is with the Advanced Networking Laboratory, Department of
Electrical and Computer Engineering, New Jersey Institute of Technology,
Newark, NJ 07102 USA. Email: nirwan.ansari@njit.edu.

S. Yu is with the School of Information Technology, Deakin University,
VIC 3125, Australia. Email: syu@deakin.edu.au.

Manuscript received on February 8, 2017.

the communication between the centralized controller and
geographically-distributed switches could bear long latency,
which might make the path setup time-consuming since the
controller needs to install flow-tables on each switch along
the routing path of a flow. Although the path setup latency
might not be an issue for long-lasting elephant flows, it can
degrade the quality-of-service (QoS) of latency-sensitive flows
significantly [4]. In the meantime, the processing capacity of
SDN switches to handle OpenFlow messages might also be
an issue, since most of the commercially-available OpenFlow
switches cannot process more than 500 FlowMod messages in
one second [4]. Moreover, the “match-and-action” principle
can impact the granularity of flow control due to the fact
that each SDN switch can only store a limited number of
flow-tables. This is because an SDN switch usually stores
the flow-tables in the ternary content addressable memory
(TCAM), which is expensive and power hungry [5]. In general,
a switch’s TCAM can only carry hundreds to thousands of flow
entries [6]. Therefore, if we want to realize per-flow-based
fine-grained traffic control, the controller needs to install at
least one flow-entry per flow in each switch along the path
used by the flow. This mechanism can use up the TCAM on
switches quickly under high traffic load conditions [7].

Recently, source routing has been considered as a promising
technique to improve the scalability of SDN, i.e., simplifying
the message exchange between the controller and switches and
reducing the numbers of flow-tables in switches [8–10]. The
basic idea of SDN-based source routing is to encapsulate a
flow’s path information into the headers of its packets at the
source switch. Then, each intermediate switch along the path
would only need to pop out the corresponding output port from
the packet header and then forward the packet accordingly.
Hence, none of the intermediate switches needs to interact
with the controller during the path setup, and a small and
fixed number of flow-entries can be shared by all the flows to
realize per-flow based fine-grained traffic control.

Previously, people have considered to implement SDN-
based source routing with OpenFlow [8–10]. Nevertheless, s-
ince the forwarding plane of OpenFlow is protocol-dependent,
i.e., matching fields and actions are defined based on existing
network protocols, the source routing approaches designed in
previous studies only have limited system flexibility and packet
transmission efficiency. For instance, OpenFlow switches can
only leverage the header fields of an existing protocol to en-
capsulate the path information, which is apparently not flexible
and compromises protocol compatibility, i.e., the switches may
have difficulties to support the actual forwarding mechanisms



2

defined in the existing protocol simultaneously. More impor-
tantly, most of these studies only used the SDN-based source
routing to realize 1-to-1 unicast [11], while more sophisticated
scenarios such as multicast and link failure recovery have not
been considered yet. Note that multicast is frequently used in
the Internet to realize services such as video delivery [12–14]
and data backup [15, 16], and as SDN switches count on the
controller to calculate routing paths, how to realize link failure
recovery in a fast and resource-efficient way has become a
critical problem in SDN. Therefore, SDN-based source routing
needs to be further optimized and enhanced, which can be
done by leveraging the forwarding plane programmability
provided by the protocol-oblivious forwarding (POF) [17–19].

It is known that similar to the programming protocol-
independent processors (P4) [20], POF tries to decouple net-
work protocols from the forwarding processing in SDN-based
switches and to make the forwarding plane reconfigurable, pro-
grammable and future-proof. More specifically, POF provides
a protocol-oblivious forwarding instruction set (POF-FIS) [21]
that enables system designers to define protocol stack and
packet processing procedure in a much more flexible manner
than what they can get from OpenFlow. Hence, with POF,
we can tailor the packet design for source routing and adapt
it to the actual networking scenario, and by leveraging the
forwarding plane programmability provided by POF, we can
address not only unicast but also multicast and link failure
recovery to deliver a more comprehensive solution.

In this work, we propose protocol-oblivious source routing
(POSR), which is a protocol-independent, bandwidth-efficient
and flow-table-saving packet forwarding technique based on
POF-FIS. We design the packet format for POSR, develop the
packet processing pipelines for realizing unicast, multicast and
link failure recovery, and implement POSR in a POF-enabled
SDN network system. Experimental demonstrations are then
performed in a network testbed, which consists of 14 stand-
alone SDN switches. Our experimental results validate that
as compared with OpenFlow-based benchmarks, the proposed
POSR can reduce flow-table utilization effectively, shorten
path setup latency and expedite link failure recovery. The
contributions of this work can be summarized as follows.

• We design the packet format and packet forwarding
procedure for POSR to realize flow-table-saving and
bandwidth-efficient source routing. To the best of our
knowledge, this is the first system work that addresses
protocol-independent source routing in SDN networks.

• We extend the use cases of SDN-based source routing to
multicast and fast link failure recovery with POSR, and
design the corresponding packet processing procedures.

• We implement the proposed POSR schemes in a POF-
enabled network system that consists of 14 stand-alone
SDN switches, and conduct experimental demonstrations
to verify the effectiveness of our proposals.

The rest of the paper is organized as follows. Section II
introduces the backgrounds of POF and source routing, and
provides a brief survey on related work. Our design of POSR is
described in Section III to layout the basic packet processing
principle for unicast. Then, we discuss how to realize link

failure recovery and multicast with POSR in Sections V and
IV, respectively. Section VI analyzes the overhead and scal-
ability of POSR. The experimental evaluations are presented
in Section VII. Finally, Section VIII summarizes the paper.

II. BACKGROUND AND RELATED WORK

A. Protocol-Oblivious Forwarding (POF)

We first review the operation principle of POF and its flow
instruction set (POF-FIS) briefly to provide a context for the
rest of this paper. The architecture of a POF-enabled SDN
network is similar to that of an OpenFlow-enabled one, i.e., a
centralized controller residing in the control plane manages the
behaviors of switches in the forwarding plane with flow-tables.
The main innovation of POF lies in its more generic packet
field description scheme for flow matching and processing.
Fig. 1 shows the packet processing procedure in a POF switch,
with which we can explain the basic concepts of POF.

!"#$"% & !"#$"%'( !"#$"%') *#+,-#$

.,-/'0#1," &

.2",$ 3"4 &
5-663"47 ,"894:;

*<.=.>?

@#,A"3( >834%AB42-83(

@#,A"3) >834%AB42-83)

C C

*#BD"4'*%-B"33'
*-284"%

.,-/'0#1," (

.2",$ 3"4 (
5-663"47 ,"894:;

*<.=.>?

@#,A"3( >834%AB42-83(

@#,A"3) >834%AB42-83)

C C

.,-/'0#1," )

.2",$ 3"4 )
5-663"47 ,"894:;

*<.=.>?

@#,A"3( >834%AB42-83(

@#,A"3) >834%AB42-83)

C C

E"4#$#4# E"F-%+

.2",$ ( 5-663"4(7 ,"894:(;

.2",$ ) 5-663"4)7 ,"894:);

C

Fig. 1. Packet forwarding procedure in a POF switch.

• Matching Fields: As depicted in Fig. 1, POF defines
the flow-table search key of a packet field in an protocol-
independent way, as a tuple <offset, length>. Here, offset
represents the start location of the field in a packet, while
length indicates the field’s length in bits [17]. A flow-table
can contain multiple flow entries, each of which is based
on <offset, length> tuples and specifies matching fields,
its values, and the match action(s) defined with POF-FIS.

• POF-FIS: It defines the instructions/actions supported
by POF that also utilize the tuple <offset, length> to
locate data in a packet [22–24]. Hence, with POF-FIS,
the controller can manipulate any part of a packet freely
without protocol-dependent restrictions. This is much
more flexible than the scheme used in OpenFlow. For
instance, in OpenFlow v1.5.0 [3], Push actions is bound
to specific protocol fields (e.g., PushMPLS, PushPBB,
and PushVLAN), while all these actions can be merged
in POF-FIS as a generic AddField, with which we can
insert any fields at any locations in a packet.

• Flow-Tables: Fig. 1 also shows that each POF flow-
table can specify several packet fields by using multiple
<offset, length> tuples. Hence, with the flow-tables, we
can abstract the packet forwarding procedure in a switch
as a data-path pipeline to achieve enhanced network
programmability and flexibility. The packet processing in



3

such a pipeline, which consists of multiple flow-tables, is
steered according to the GotoTable instruction defined in
POF-FIS. Specifically, when a flow-table has matched to
certain field(s) in a packet and executed the corresponding
action(s), GotoTable can send the packet to the desired
next flow-table as shown in Fig. 1. Here, each flow-table
can contain multiple flow-entries, each of which specifies
a match field, its value and the corresponding action(s).

• Metadata Memory: It is allocated on a POF switch to
buffer the packet information that is needed when the
switch processes packets. POF-FIS provides the instruc-
tions to write/read data in metadata memory based on
<offset, length> tuples, as illustrated in Fig. 1.

B. Related Work

Technically speaking, source routing itself is not a brand-
new idea. It was originally designed for the traditional IP
networks to enable a source host to specify how its packets will
be routed through the network [25]. This scheme, however, can
be easily compromised by malicious users to instigate source
address spoofing attacks, thus resulting in security breaches.
For these security issues, source routing was not widely de-
ployed in traditional IP networks that use distributed NC&M.
On the other hand, since SDN-based source routing counts
on the centralized controller to determine the routing paths
for packet flows, the aforementioned security breaches can be
avoided as long as the controller is safe and uncompromised.

Nevertheless, as OpenFlow [3] uses a protocol-dependent
forwarding plane to implement SDN, existing SDN-based
source routing schemes can only leverage the legacy protocol
fields that are supported by OpenFlow. In [8], the authors
proposed an SDN-based source routing system (i.e., SwitchRe-
duce), which uses multiple VLAN tags to encode a path in the
packet header. A source routing scheme that leverages MPLS
label fields was designed in [9], which encapsulates the output
port of each hop in an MPLS label. Guo et al. [26] introduced a
port-switching based source routing scheme in their datacenter
network virtualization system (i.e., SecondNet), which also
overwrites the MPLS label fields to encode the output port
sequence of a packet. As source routing pushes all the routing-
related fields at the source switch and lets each intermediate
switch pop the corresponding routing instruction (i.e., the
output port of the switch) out, the length of a routing-related
field can affect the transmission efficiency of the whole system
significantly. Hence, the two aforementioned schemes should
be further optimized because the length of a VLAN or MPLS
label field (i.e., 32 bits) is too long to encode a switch output
port, thus incurring a relatively large transmission overhead,
especially in large-scale networks.

To avoid the unnecessary transmission overhead, one can try
to squeeze more routing instructions into one legacy protocol
field. For instance, Guo et al. [27] used the VID field in a
VLAN tag to encode the output ports of four consecutive
switches. However, their implementation has a restriction on
each SDN switch’s output port number, i.e., a 12-bit VID field
can encode the routing instructions of 4 hops provided that
each switch cannot have more than 8 output ports. Moreover,

!"#$%&$" '()%*$ +()",&-./$01$% 23 40"0

556 3(%" 7 3(%".8 9 3(%".:

; < 7=>??@$" AB,"@C D8

Fig. 2. Header format design of POSR packets.

the other fields (i.e., 20 bits) in the VLAN tag are still not
properly utilized. On the other hand, we can also reduce the
transmission overhead of source routing by reusing the fields
in the Ethernet header. For example, the studies in [10, 28]
reused the Ethernet header to encode the path information for
source routing. This source routing packet design is still not
flexible and might cause compatibility issues.

Existing SDN-based source routing schemes either have
relatively large transmission overhead or only provide limited
flexibility and backward compatibility. More importantly, a
comprehensive experimental investigation covering the use
cases of SDN-based source routing for not only unicast but
also multicast and link failure recovery is missing in the
literature, to the best of our knowledge. These issues can
be properly addressed by leveraging the protocol-independent
nature and enhanced forwarding plane programmability of
POF. In [29], we have presented some preliminary results
on protocol-oblivious source routing (POSR), but we only
designed the packet processing pipeline for unicast and did
not optimize it for efficient data transmission.

III. PROTOCOL-OBLIVIOUS SOURCE ROUTING

In this section, we describe the operation principle of our
proposed POSR, including the packet format design and packet
processing procedure in POF switches.

A. POSR Packet Format Design

Thanks to the protocol-independent nature of POF, the pack-
et format design of POSR does not need to reuse the packet
fields of existing protocols, which were designed for other
purposes (e.g., VLAN and MPLS), any more. Specifically, the
POSR packet format can be tailored for source routing exactly
to adapt to the actual networking scenario. Fig. 2 shows the
design of POSR packet header fields. We insert the source
routing related header fields in between the Ethernet and IP
headers. After inserting the source routing related fields, we
modify the Type field in the Ethernet header to “0x0908” for
indicating that it is a POSR packet. Various source routing
related header fields are detailed as follows.

• Time-to-live (TTL): It is an 8-bit field that indicates the
remaining hops of the packet. Note that, in source routing,
the destination switch needs to know that it is the last hop
to pop out a routing instruction from the packet header.
Hence, TTL is designed for this purpose, and its value is
set at the source switch and will be decreased by one in
each subsequent hop. Finally, the destination switch will
remove this field by applying the DeleteField instruction
provided by POF-FIS.

• Port: It is also an 8-bit field, which stores the packet’s
designated output port on the switch of a hop (i.e., the



4

hop’s routing instruction). In general, each POSR packet
contains multiple Port fields to encode its routing path.
Each intermediate switch always pops out the outmost
Port field (i.e., <offset=120 bits, length=8 bits>) and
parses it to find the designated output port of the packet.

Note that, for SDN networks with various scales, the lengths
of TTL and Port fields can actually be changed to minimize the
transmission overhead. Specifically, the length of TTL should
be determined based on the diameter of the network, i.e., an n-
bit field can support the longest path of 2n hops, while the Port
field should be designed according to the maximum number
of output ports per switch, i.e., an n-bit field can support
2n output ports per switch. Since POF has the protocol-
independent nature and provides enhanced forwarding plane
programmability, the lengths of TTL and Port fields can be
adjusted flexibly without any restriction.

B. Packet Processing Procedure for POSR

Fig. 3 shows the operation principle of POSR in a POF
network. In this paper, when showing a network topology as
in Fig. 3, we mark the ID of a switch’s port with a number
beside it. When the first packet of a flow arrives at the ingress
POF switch, it will trigger a PacketIn message from the switch
to the controller because no flow entry has been set up for the
flow. Upon receiving the PacketIn, the controller calculates a
path for the flow and then installs a flow entry in the ingress
switch for the flow, which instructs the switch to encode the
path information in the flow’s packets with the POSR format.

!"# $%&'()*

!"#+,(-&)(..%)

/

0

!"#$%&

'

( )

'

(

)

'
'

*+,-#%./+,&012.3%"4%-

)'(
'

1/

'
)

(

)

'

(

)

'''
(

)

(
'

(((

)))

!"#+2'3&45

Fig. 3. Operation principle of POSR in a POF network.

Meanwhile, since for all the POSR packets, their packet
processing procedure in any intermediate switches (including
the destination ones) is the same, we can install the corre-
sponding flow entries in all the POF switches during network
initialization and make the POSR packets share them. Algo-
rithm 1 provides the detailed processing procedure on each
intermediate switch. The intermediate switches on the path
pop out the outmost Port field, and write the field’s value in its
metadata memory by applying the WriteMetadataFromPacket
instruction as shown in Line 4. Then, the switch checks
the TTL field in the POSR header with the ConditionJump
instruction, which operates as an “if-else” statement in a
generic programming language. If the TTL field has a value
that is greater than 1, the switch knows that it is not the last hop
and hence only removes the outmost Port field and substrates
the value of TTL by 1, as indicated in Lines 7-8. Otherwise,
the switch removes the whole POSR header. Finally, in Line

15, the packet is forwarded to its designated output port, i.e.,
the Port field stored in the metadata memory. This packet
processing procedure carried out in intermediate switches can
be shared by all the POSR flows, and the switches do not need
to interact with the controller during the whole process.

Algorithm 1: Procedure for POF Switches to Forward
POSR Packets

Input: Packet P arrives at Switch S
1 // Realized with flow-table
2 if P.Ether.Type == 0x0908 then
3 // It is a POSR packet
4 P.Metadata.Port buffer =

WriteMetadataFromPacket(P.Port) ;
5 if P.TTL > 1 then
6 // Not the last hop
7 DeleteField(P.Port) ;
8 P.TTL = P.TTL - 1;
9 else

10 // The last hop
11 DeleteField(P.POSR header) ;
12 P.Ether.Type = 0x0800
13 end
14 // Send packet to designated port
15 Output(P) to P.Metadata.Port buffer ;
16 else
17 // It is not a POSR packet
18 AddField(P.POSR header) ;
19 Output(P) ;
20 end

POF-FIS greatly enhances the forwarding plane programma-
bility of POF switches, and thus with it, we can reduce
the burden of the controller and make the data-path more
intelligent. We define the following notations to explain the
operations with POF-FIS.

• <offset, length>: the field starting from the offset with
length.

• {offset, length}: the value of field at <offset, length> in
the packet.

• [offset, length]: the value of field at <offset, length> in
the metadata memory.

!"#$%&'

(")*+ ,-.!/01 234)56*)7834

!"#$%&#$'(()*)")+

,-./0120/343/315-671839:0/;<

=)$%+$>((!&?)$%<+$'@

A6B4./.6B1CD7E; .F !&&?$% +$' G&; 6FFH0/(&%

0IH0; 6FFH0/(?@

JEEIK1J9/.6BH

L0I0/015.0I4; M&?)$% +$G@

26415.0I4; !&&?$% +$' 1&@

ND/ED/; E6-/O.4(=)$%+$>@

JEEIK1J9/.6BH

L0I0/015.0I4; M&&?$%&#$G@

P0/15.0I4; M"#$% &#$G()*)+))@

ND/ED/; E6-/O.4(=)$%+$>@

!"#$%$#$&!"'()*

!"#$%&'(()#%*+,- .,/

QBR-0HH

SR-0HH

8N5<PT./9U

Fig. 4. Flow-table on intermediate POF switches for POSR.



5

Fig. 4 shows the flow-table that we design with POF-FIS
to realize the procedure in Algorithm 1, i.e., processing POSR
packets in intermediate switches. When a POSR packet arrives
at an intermediate switch, it is first processed by Table 0, which
includes an entry to check the Ethernet Type field (i.e., <96
bits, 16 bits>) of the packet. If the Type field has a value of
“0x0908”, which indicates that the packet is a POSR one, the
switch will apply the WriteMetadataFromPacket instruction
to write the value of the outmost Port field in its metadata
memory. The switch then uses the ConditionJump instruction
to check whether the value of the TTL field (i.e., {112 bits,
8 bits}) is greater than 1. If yes, the switch executes the
subsequent instructions in order, otherwise, it will jump 1 in-
struction ahead (i.e., offset = 2) to execute the last instruction
in the flow-entry, which removes the whole POSR header and
restores the value of Ethernet Type field to its original value
(e.g., 0x0800 for IPv4).

Here, the processing in a POF switch behaves like a
software program. The procedure defined in the flow-entry
can be considered as a function to achieve certain forwarding
behavior(s), whose inputs and outputs are the packet fields
and the processed packet, respectively. The metadata mem-
ory is the storage space for variables used in the function,
which buffers the packet information temporarily. Hence, the
intermediate POF switches can process the POSR packets
according to a predefined generic flow-table, and save the
overhead to communicate with the controller during the flow
setup. More importantly, Fig. 4 indicates that with POSR, the
number of flow-entries in each intermediate switch becomes 1
and would not increase with the number of packet flows or the
number of switch output ports. Therefore, in contrast to the
OpenFlow-based source routing schemes [8–10], our proposed
POSR introduces less communication overhead between the
controller and switches and further reduces the number of
flow-entries used in the network. As we will show later in
the experimental demonstrations, these advantages help to
improve the scalability of SDN effectively.

IV. FAST LINK FAILURE RECOVERY WITH POSR

Note that, SDN switches rely on the controller to calculate
routing paths, and hence without specific design, they cannot
automatically recover from link failures as IP routers do.
Therefore, how to achieve link failure recovery [30] in a fast
and resource-efficient way is a must-solve problem in SDN
[31]. Fortunately, with simple extensions, POSR can handle
link failures fast and effectively, and all the failure recovery
operations are conducted on related POF switches locally
without the need to interact with the controller.

We implement the fast failover (FF) group table [3] in
POF switches to monitor the status of switch ports. If a port-
down event is detected, the related switch (i.e., the upstream
switch of the broken link) will conduct POSR-based link
failure recovery. Specifically, the switch will use the routing
instructions of the backup path segment to replace that of the
broken link in the headers of all the affected POSR packets.
Fig. 5 provides an intuitive example on POSR-based fast link
failure recovery. During network initialization, the controller

calculates a backup path for each link1, encodes the backup
path in POSR Port fields for an FF group table, and installs
the FF group table with correct recovery actions in the source
switch of the link. Fig. 5 illustrates the above procedure, in
which S1 encodes path S2→S3→S4→S5 in the headers of
the POSR packets from S1 to S5. When a link failure brings
down link S3→S4 (i.e., Port 3 of S3 encounters a port-down
event), its upstream switch S3 detects the failure. Then, S3
uses the routing instructions of S3→S6→S7→S4 to replace
that of S3→S4 in the POSR headers to redirect all the POSR
packets that originally go to Port 3 to Port 1.

!" !#

!$

!%

!&

!'
!

!(
"

#
! #

!

"
#

#

#"

!

# !"

! "#( ! #(

!
(

"
#

! ( "

!
(

!

!

$%&'()

*)+,-./,-%.

012 $3-,(4

5/(6&7 4)/8)'

0/(6),

Fig. 5. Example on POSR-based fast link failure recovery.

!"#$%&' ()"*+, -./!0123

!"#$%$#$&!"'()*

!"#$%&'(()#%*+,- .,/

!#"$)0$1"2 3"'$)

4)56)#

!"#$%&&

'#$%&&

()*+,-./01

!"#$%&4

)"*+, 156* 789*6:+*;589

234567+869::;
<$./%=>%/?@?/?

A$BCD ;

E E

<65:=&> (?"9* ?";$5@%63

A"*+, 156* B+*;589

; )C/DC/F DB$/G.@:2567869H

3
DC&1 ($B/%0/.B" IBC/% J%?@%$H

)C/DC/F DB$/G.@ : 3H

Fig. 6. Flow-tables on switch S3 for fast link failure recovery.

To realize the aforementioned POSR-based link failure
recovery, we design the flow-tables as shown in Fig. 6 and
implement them in the related POF switches. Here, Table
0 is still the same as the one in Fig. 4, which is used for
normal POSR packet processing. After being processed by
Table 0, a packet goes to Table 1, which determines the
backup path segment based on the packet’s output port, writes
the Protection Route Header that represents the backup path
segment in metadata memory, and sends the packet to the FF
group table that corresponds to its output port. The number of
FF group tables is equal to the number of output ports in a
switch. Each FF group table includes two entries. The first one
is for forwarding packets as normal when the output port is

1Considering the facts that link failures might not happen frequently in
a well-maintained network and not all the link failures should be addressed
with fast recovery, we may only need to calculate the backup paths for a few
critical links in a practical situation.



6

up and running, and the second one takes care of the situation
in which the port is down, i.e., the Protection Route Header
stored in metadata memory should be used.

V. MULTICAST WITH POSR

In addition to unicast [32], multicast is also a frequently-
used communication scheme in today’s Internet, which can
realize services such as video conferencing and data backup
with high data transmission efficiency [33]. In this section, we
discuss how to realize efficient multicast with POSR.

!

"

#

"

!

$

"

!
#

"

!

"

!

"

!

"

#

$

#

"

!

!

%&'()*

+*,-./0-.&/

123 %4.-)5

61&(-

#$

#"

#!

#%

#&

#' #(

#)

#*

10)7*-

+$

+"

+!

+%

+&

1&(-89+

1&(-89+

Fig. 7. Example on POSR-based multicast.

The major challenge of realizing multicast with source
routing is that it is difficult to encode a whole multicast tree
in a packet header. In order to address this issue, we design
our POSR-based multicast to take a recursive approach.

Definition 1: The primary path of a multicast tree is its
shortest branch (in terms of hop-count), which connects the
source switch to one of the destination switches.

Definition 2: A fork node on a multicast tree is a switch
from which multiple branches originates.

After obtaining a multicast tree, we first find its prima-
ry path. Here, if the tree contains more than one shortest
branches, we randomly select one as the primary path. Then,
on the primary path, we treat each fork node as the source
switch of a subtree and find the primary path in the subtree
accordingly. This procedure is repeated recursively until all
the destination switches are connected with primary paths.
Therefore, we basically partition the multicast tree into a few
non-overlapping branches, which can be leveraged to realize
POSR-based multicast. Fig. 7 shows an example on the tree-
partition procedure discussed above, which indicates that the
multicast tree is transformed into four primary paths, each of
which ends at a destination switch.

To realize POSR-based multicast, we design a VPort field
to replace the Port field in the POSR header, as shown in Fig.
8. The length of this field is determined by its two sub-fields,
which help to realize the multicast operation on a fork node
and are defined as follows.

!"#$ !%&' (#")* +&,-%

. /0112-3 4,5326 7

88+ 9"#3 7 :9"#3 ; < 9"#3=>

. / 7?0112-3 4,5326 @;

Fig. 8. Header format design of POSR multicast packets.

• Fork Flag: It is the first bit in a VPort field, which takes
0 if the corresponding switch is not a fork node on the
packet’s multicast tree, and 1 otherwise.

• Group Label: It covers the remaining bits in a VPort field.
We assign a Group Label to each active multicast session,
and thus this sub-field can be used to identify the packet’s
multicast operation at a fork node, i.e., forwarding the
packet to multiple output ports and encoding a new POSR
header on it if necessary.

Note that the length of the Group Label sub-field should
be determined based on the maximum number of concurrent
multicast sessions in the network. For instance, a 1-Byte VPort
field contains a 7-bit Group Label sub-field, which can support
up to 128 concurrent multicast sessions.

Fig. 7 shows an intuitive example on POSR-based multicast.
When a packet arrives at the source switch S1, S1 encodes the
primary path of the multicast tree originating from S1 onto it,
which is S2→S3→S5→H3. Meanwhile, the VPort fields for
S2 and S5 are encoded with their Fork Flag sub-fields turned
on, for identifying the switches as fork nodes. Then, when the
packet reaches S2, it is duplicated to two copies. One of them
is forwarded to S3 with the packet’s original POSR header,
while the other one is encapsulated with a new POSR header
to indicate the primary path of the subtree originating from
S2, i.e., S4→S7→H5. The forwarding procedure performed
at S5 and S4 is similar to that at S2.

Algorithm 2 presents the procedure of POSR-based mul-
ticast on a POF switch. If the switch is not a fork node
for the packet, the processing procedure is similar to that of
the POSR-based unicast discussed in Section III. However, if
the Fork Flag sub-field in the outmost VPort field equals 1,
the packet is handled as on a fork node. Specifically, it is
sent to the Group Label matching table, where the designated
output ports are first determined and then for each output
port, if it is not for the original primary path but starts a new
subtree, a new POSR header is assembled in metadata memory
for it by leveraging the WriteMetadata instruction. Then, the
new POSR headers are encapsulated onto the packet’s copies
according to their output ports, i.e., when applying the Output
action to them. Fig. 9 shows the flow-tables for realizing the
aforementioned procedure in POF switches. We use three stage
flow-tables that leverage two types of POF flow-tables (i.e.,
the masked-match and direct tables) to realize POSR-based
multicast.Here, Tables 0 and 2 are mask-match tables, while
Table 1 is a direct table that only contains instructions. The
processing in Table 0 corresponds to Lines 2 to 12 in Algorithm
2, which is for forwarding the packet in the POSR manner,
similar to the case in the unicast scheme. Moreover, the packet
will also be processed by Table 1, which checks whether the
current switch is a fork node by examining the Fork Flag of



7

!"#$%&'
(")*+

,-.!/01
234)56*)7834

!"#$%&#$'(()*)")+

,-./0120/343/315-671839:0/;<

=)$%+$>((!&?)$%<+$'@

A6B4./.6B1CD7E; .F !&&?$% +$' G&; 6FFH0/(&%

0IH0; 6FFH0/(J@

KEEIL1K9/.6BH
M0I0/015.0I4; N&?)$% +$G@

26415.0I4; !&&?$% +$' 1&@

O61P61M.-09/1P3$I0; &

KEEIL1K9/.6BH
M0I0/015.0I4; N&&?$%&#$G@

Q0/15.0I4; N"#$% &#$G()*)+))@

O61P61M.-09/1P3$I0; &

(%)"9")"!"#$%&
86-/<RDFF0-<=)$% +$>

QD$1/-00 8SQT U0340- &

V

QD$1/-00 8SQT U0340- W

,-./0120/343/315-671839:0/

XBY-0HH ZY-0HH

8S5<Q[./9\

!"#$%&:
(")*+

;586<.-"#%$
234)56*)7834

!&?&$%]$'

,-./0120/343/3; QD$1/-00 E-.73-L E3/\ 8SQT \0340- &

V

,-./0120/343/3; QD$1/-00 E-.73-L E3/\ 8SQT \0340- W

KEEIL1K9/.6BH

SD/ED/;

E6-/^.4(8-.73-L E3/\ 6D/ED/ E6-/ @

SD/ED/ [./\ 8SQT \0340- &

SD/ED/ [./\ 8SQT \0340- W

V V

!"#$% =
234)56*)7834

A6B4./.6B1CD7E; .F =)$% &$> G); 6FFH0/(&%

0IH0; 6FFH0/(?@

KEEIL1K9/.6BH SD/ED/; E6-/^.4(=)$%+$>@

O61P61P3$I0; ?

…

Fig. 9. Flow-tables on intermediate POF switches for POSR-based multicast.

Algorithm 2: Procedure for POF Switches to Realize
POSR-based Multicast
Input: Packet P arrives at Switch S

1 // Realized with flow-tables
2 if P.Ether.Type == 0x0908 then
3 // It is a POSR packet
4 P.Metadata.Port buffer =

WriteMetadataFromPacket(P.Port) ;
5 if P.TTL ̸= 1 then
6 // Not the last hop
7 DeleteField(P.Port) ;
8 P.TTL = P.TTL - 1;
9 else

10 // The last hop
11 DeleteField(P.POSR header) ;
12 end
13 if P.Metadata.Port buffer.Fork Flag == 1 then
14 // Switch is a fork node
15 if P matches S.Flow Table.Group Label then
16 for each subtree rooted from S do
17 WriteMetadata(POSR header of the

primary path of each subtree) ;
18 Output(P) with POSR header in

metadata;
19 end
20 end
21 else
22 // Switch is not the fork node,

send packet to designated port
23 Output(P) to P.Metadata.Port buffer ;
24 end
25 end

the buffered Port/VPort field. If not, the switch will just output
the packet. Otherwise, if the switch is a fork node, the packet
will be sent to Table 2, which encapsulates the primary path
of the current sub-tree in the POSR header according to the
Group Label and then outputs the packet.

Note that since our POSR scheme encodes the routing
path(s) of a unicast or multicast session as a shim header,
the sizes of the resulting POSR packets have to be monitored

)*+"

,--+"-#.'*(

/0-"

(a) A 4-ary fat-tree topology.

!"#$

%&'("

(b) A leaf-spine topology with s = 4 and l = 6.

Fig. 10. Examples on datecenter network topologies.

carefully to avoid violating the maximum transmission unit
(MTU) of the switches in the network. One way to achieve
this is to let the operator set the MTU of each switch in
its network to be slightly longer than the size of a standard
Ethernet frame (i.e., 1500 Bytes). Also, in this work, we focus
on designing the packet forwarding mechanisms to realize
POSR-based unicast, fast link failure recovery, and multicast,
while the proposed POSR system should be able to work with
any algorithms for calculating the unicast paths, backup paths,
and multicast trees, as long as they can be implemented in a
time efficient manner in the POF controller.

VI. PERFORMANCE ANALYSIS

In this section, we use theoretical analysis to evaluate the
proposed POSR in terms of flow-table size and transmission
overhead, and compare it with some existing benchmarks.

A. Flow-Table Size

In datacenter networks, topologies such as fat-tree and leaf-
spine are widely used [34]. Therefore, we first use them to
analyze the performance of POSR in terms of flow-table size.
It is known that for a k-ary fat-tree topology, the node degree
of each core/aggregation switch is k, the switches are grouped
into k pods, and each pod consists of k

2 aggregation switches
and k

2 edge switches. Hence, there are k2

2 edge switches in
total. Fig. 10(a) shows a fat-tree topology with k = 4. Hence,



8

TABLE I
MAXIMUM FLOW ENTRIES USED IN DATACENTER NETWORKS

Fat-Tree Topology (k) Leaf-Spine Topology (l, s)

Traditional OpenFlow 5·k4

8
· ( k

2

2
− 1) 3 · l · (l − 1) · s

Existing SDN-based Source Routing k4

8
· ( k

2

2
− 1) + 3·k3

4
l2 · s

POSR k4

8
· ( k

2

2
− 1) + 3·k2

4
l · (l − 1) · s+ s

the number of edge switch pairs is k2

2 ·(k
2

2 −1). Meanwhile, for
each edge switch pair, there are k2

4 alternative paths. Hence,
in the worst case, we need to support k4

8 · (k
2

2 − 1) paths
simultaneously in the network. Considering the fact that the
length of each path in a fat-tree is 5 hops, the maximum
number of flow entries used in the network by using the normal
per-hop configuration with OpenFlow would be

5 · k4

8
· (k

2

2
− 1). (1)

On the other hand, since the existing SDN-based source
routing schemes (e.g., SecondNet [26], SlickFlow [28], Path
Switching [10], and SwitchReduce [8]) use port matching
to reduce flow entries, the number of required flow entries
equals the total number of switch ports in the network in the
worst case scenario. Hence, each switch uses at most k flow
entries to process source routing packets. Meanwhile, a fat-
tree topology consists of 3·k2

4 non-edge switches [35], and
thus, when using these existing SDN-based source routing
schemes, the maximum number of flow entries used in the
network would be

k4

8
· (k

2

2
− 1) +

3 · k3

4
. (2)

With our POSR, each intermediate switch only needs one flow
entry to process POSR packets, and the maximum number of
flow entries used in the network would be

k4

8
· (k

2

2
− 1) +

3 · k2

4
. (3)

In a leaf-spine topology, there are s spine switches and l leaf
switches. Hence, the number of leaf switch pairs is l · (l− 1),
and for each pair, there are s alternative paths. Hence, in the
worst case, we need to support l·(l−1)·s paths simultaneously
in the network. Fig. 10(b) shows a leaf-spine topology with
s = 4 and l = 6. The length of each path between a leaf switch
pair is 3. When using the normal per-hop configuration with
OpenFlow, the maximum number of flow entries used in the
network would be

3 · l · (l − 1) · s. (4)

Similarly, we can obtain the maximum numbers of flow entries
used in the network as

l2 · s (5)

and
l · (l − 1) · s+ s, (6)

for the existing SDN-based source routing schemes and our
POSR, respectively. Table I summarizes the results. We ob-
serve that in terms of the maximum flow entries used in the

datacenter networks, POSR only slightly outperforms the ex-
isting SDN-based source routing because the most significant
entries in Table I are the same. Actually, the most significant
advantage of POSR over the existing SDN-based source rout-
ing is that POSR makes the source routing packet design very
flexible. while keeping the maximum flow entries compatible
with other algorithms. Specifically, the existing SDN-based
source routing schemes can only leverage the legacy protocol
fields supported by OpenFlow in their packet designs, while
POSR removes this restriction by using a protocol-independent
forwarding plane. The direct benefit brought by this feature is
that the transmission overhead incurred by the source routing
packet headers can be reduced significantly, which will be
analyzed in the next subsection.

In addition to the structural topologies that are normally
used in datacenter networks, we also analyze the flow-table
size in a non-structural topology that is for a wide-area
network (WAN), i.e., the 14-node NSFNET topology in Fig.
11 [36]. Here, if we calculate 5 shortest paths between each
node pair, we totally get 910 paths with a mean length of 5
hops. Therefore, our POSR requires 910 flow entries in the
network in the worst case because it only installs flow entries
in source switches. On the other hand, when using the normal
per-hop configuration with OpenFlow, the maximum number
of flow entries used in the network would be 12740.

B. Transmission Overhead

As source routing encodes path information into packet
headers, additional transmission overhead will be incurred.
POSR can set the length of the Port field as ⌈log2 (d)⌉ bits,
if the maximum node degree of a network is d. Then, if we
assume the diameter of the network is h (i.e., the longest path
has h hops), the size of the longest POSR packet header would
be (h · ⌈log2 (d)⌉ + 8) bits since there is an 8-bit TTL field
in each header too. On the other hand, the existing SDN-
based source routing schemes usually utilize the MPLS or
VLAN header to encode the path information. Specifically, the
output port on each hop is encapsulated in either the Label
field of MPLS header or the VID field of VLAN header.
Nevertheless, as both MPLS and VLAN headers are 32-bit
long, the resulting overhead would be much more significant.
For instance, we use a real traffic trace captured on an OC-
192 link at Chicago [37] (i.e., with an average data-rate of
2.31 Gbps and a mean throughput of 4.75× 105 packets/s) to
conduct a simple simulation, and find that for an average path
length of 5 hops, the existing schemes that use MPLS/VLAN
headers can have an average bandwidth overhead of 75 Mbps,
while POSR can reduce the overhead down to 23 Mbps.



9

VII. EXPERIMENTAL DEMONSTRATION

In this section, we discuss the experimental setup and results
to demonstrate the performance of our proposed POSR.

A. System Implementation

We build a POF network testbed to verify the functionality
and performance of our proposed POSR. The testbed consists
of 14 software-based POF switches, each of which runs on
a stand-alone high-performance Linux server (i.e., Lenovo
RD540 server equipped with an Intel Ethernet Gigabit server
adapter I340-T4 that uses Intel 82580 Ethernet controller).
The software-based POF switch was originally developed
in the open-source POFSwitch project initiated by Huawei
[38], and we took over the development task to extend its
functionality and improve the forwarding performance [39].
Similar to the well-known OpenvSwitch [40] for OpenFlow,
our POFSwitch can run on a general-purpose server and realize
high-throughput packet forwarding based on POF. Each POF
switch is equipped with the network interfaces based on 1GbE,
and is locally connected to a host that is realized by a virtual
machine to generate traffic. We have verified that when each
packet has a size of 64 Bytes (i.e., the smallest packet size), our
POFSwitch can still achieve 1 Gbps forwarding rate per port
for POSR packets, which corresponds to a packet forwarding
throughput of around 1.95 million packets/s. The topology of
the testbed is shown in Fig. 11, and Fig. 13 illustrates the
actual equipment in the setup. The home-made POF controller
[39] also runs on a Linux server, and we implement it by
extending the POX platform [41].

!

"

#

$

!
%

""

"#

&

"'

(

) *

"$

"!

+,-./0123 +,- 4561758897

#

$

$

"

#

"

$

#

#

"

$

$

!

"
#

$

#

"
"

$
#

#

"

#

$

"

"$

#

$

"

#

#

"

$

!

"

$

#

"

$

#

"

$

!

!

% !

!

!

!

!

%

!

!

!

!

Fig. 11. Experimental topology.

Fig. 12 shows the architecture of our software-based POF
switch (i.e., POFSwitch [39]) and also explains its position
in the operating system. Specifically, POFSwitch runs in the
Linux user space, and the Intel data plane development kit
(DPDK)2 [42] is leveraged to realize fast packet processing
in POFSwitch. Note that, DPDK provides a set of data plane
libraries for Intel network adapters to accelerate the packet
processing in X86 platforms. It uses poll-mode to handle
packets and avoids the cost of context switching in the tradi-
tional interrupt-mode. More specifically, the packets handled
by DPDK are processed in the Linux user space and attached
to one CPU core in its whole lifetime in POFSwitch; this

2Here, we use DPDK version 2.2.0.

helps to avoid the memory copies between the kernel and user
spaces as well as frequent switches among CPU cores. With
these benefits, we improve the forwarding performance of
POFSwitch by leveraging DPDK. Here, with the DPDK driver,
packets from the network interface cards (NICs) bypass the
Linux kernel space and enter the data-path of the POF switch
directly, to accelerate packet processing and forwarding. The
switch control module manages the POF switch. Specifically,
it installs flow-tables and flow entries according to the parsing
results from the POF protocol stack and updates resource
usage status in the switch resource database.

!"#$%&' ()#"&*+," -+&. /!(-0

1213 1&45"&

3"&)"6 78+,"

9:"& 78+,"

;6%$ <+=6":

7$4#,> ?":%@&,"

1+#+=+:"

-%)#&%6 ;6%$

2+,'"#

2&%,"::4)A

1+#+B8+#>

1213 2%&#:

7$4#,> -%)#&%6

()#"&*+," $C 2D; -%)#&%66"&

2D; 7$4#,>

2D; 2&%#%,%6 7#+,'

Fig. 12. Architecture of software-based POF switch (i.e., POFSwitch [39]).

Fig. 13 explains the functional designs in POF controller
and switches to realize POSR. The controller parses the POF
messages from switches with the POF protocol stack, which
defines the message formats. Then, the parsing results are
sent to the POSR manager for further processing. The POSR
manager provides the north-bound APIs to implement POSR-
based network applications and it also instructs the POF
protocol stack to encode related messages. In this work, we
develop the multicast handler and protection scheme installer
modules based on the north-bound APIs to realize POSR-
based multicast and link failure recovery, respectively, while
the unicast handler is leveraged from our previous work [29]
and is optimized to enhance efficiency.

During network initialization, the protection scheme in-
staller calculates the backup paths and installs the corre-
sponding FF group tables to related POF switches. When
the network is operational, the unicast/multicast handler is
responsible for installing the flow-tables and flow entries that
we designed in Figs. 4 and 9 for unicast/multicast services.
Specifically, the service requests are encoded in PacketIn
messages by the switches. Each PacketIn message encodes
the first packet of a flow, and when it has been parsed by
the POF protocol stack and a corresponding service request is
initialized in the POSR manager. The POSR manager classifies
the service as unicast or multicast by checking its destination
IP address. Next, if it is a unicast request, the unicast handler
calculates the shortest routing path and determines the output
port on each switch along the path in sequence. Then, the APIs
in the POSR manager are invoked to build flow entries based
on the request’s original information and the calculated output
port sequence. Otherwise, for a multicast request, the multicast
handler first finds its multicast group and calculates a multicast



10

tree (MST) to cover all the group members. It then generates
the output port sequence for each primary path rooted from a
fork node and invokes the APIs in the POSR manager to install
the flow entries to related POF switches. Since the POSR-
based multicast does not specify the algorithm to calculate
the multicast trees, we leave the choice of the algorithms to
the ISPs and let them implement whatever they need.

Each POF switch also has the POF protocol stack to
communicate with the controller for receiving flow-tables and
flow entries. When a packet arrives at the switch, it is first
processed by the packet classification table to determine the
packet type. If it is a POSR packet, the service classification
table will find whether it is for unicast or multicast. Then,
the corresponding service pipeline is applied as discussed in
Sections III and V. Otherwise, if it is an IP packet, the switch
sends it to the table for POSR header encapsulation, where
the packet is converted into the POSR format by matching to
the flow entries installed for it. After having been processed
by these pipelines, the packet is sent to the FF group table for
executing the output action. We run a thread in each switch to
monitor the status of each output port, and when a link failure
is detected, it notifies the FF group tables to update the related
group entries for failure recovery immediately.

B. Experiment for Function Verification

To verify the functionality of POSR, we send ICM-
P Request packets from the host attached to Node 4 to the
one attached to Node 9. When the first ICMP Request packet
arrives at Node 4, the switch finds that there is no flow
entry to match against. Then, Node 4 encapsulates this packet
into a PacketIn message and sends it to the controller. The
controller calculates the path for the packet as 4→5→7→8→9,
and instructs the switch on Node 4 to insert a POSR header
into the packet to carry the path information (i.e., the output
port on each switch along the path). Next, each intermediate
switch only needs to forward the packet according to the
corresponding output port stored in its header.

Fig. 14(a) shows the packets captured at Ports 4 and 2 on
Node 4. Here, we record four packets among which the first
and fourth ones are captured at Port 4 while the remaining
two are captured at Port 2. We can see that the first packet
is a 98-Byte ICMP Request packet entering from Port 4, and
when it leaves the switch at Port 2 (i.e., the second packet), it
is converted to a POSR-based one whose Eth Type field is set
to “0x0908”. Also, the packet length increases from 98 Bytes
to 103 Bytes because a POSR header has been encapsulated
into the packet. The TTL field is set to 4 and the Port fields
are encoded with the output ports of the intermediate switches
along the path. The third and fourth packets in Fig. 14(a) are
for the ICMP Reply packet traveling in the opposite direction.
We observe that the packet has been restored to the original
format at Port 4, by looking at the Eth type of the fourth
packet. This verifies that the POSR encapsulated packet can
be restored to the original packet at the egress node.

Fig. 14(b) illustrates two packets captured at Ports 2 and
3, respectively, on Node 5, which is an intermediate switch.
We find that at the output of Node 5 (i.e., Port 3), the second

!"#$%&'()'*+ ,-./'+ 01 *2)3.' 32)+456 7'-8'3

!"#$%&',9: ,-./'+ 01 *2)3.' 32)+456 7'-8'3

;+7 <:,' <<= >)+,)+ ,23+*

(a) ICMP packets captured on Node 4.

!"# $%&' $$( )*"&*" &+,"-

(b) ICMP packets captured on Node 5.

Fig. 14. Wireshark captures to verify POSR functionality.

packet has one Port field popped out and its TTL field’s value
becomes 3. These results suggest that the packet processing
pipeline in Fig. 4 is correctly implemented in intermediate
switches to forward POSR packets.

C. Experiments for Performance Evaluation

1) Unicast Scenario: For the unicast scenario, we design
experiments to perform stress tests on SDN switches while
restricting the maximum number of flow entries on each
switch. Specifically, an experiment simultaneously generates
400 UDP flows, each of which has a throughput of 0.25 Mbps
and a random destination, on each host with iPerf [43], and
compares POSR with a traditional OpenFlow-based scheme
that uses shortest path routing (OF-SP)3. Fig. 15 shows the
experimental results on the percentage of throughput that can
be successfully received at destinations, i.e., the receiving
throughput, which indicate that the flow entry capacity of each
switch does impact the receiving throughput of both schemes.

Fig. 15 indicates that with POSR, we can achieve a receiving
throughput of 100% with only less than 1000 flow entries per
switch. This is because POSR makes the flows share flow
entries on intermediate switches, while only needs to install

3Note that, to guarantee a comparable comparison, we configure our POF-
Switch as an OpenFlow switch because POFSwitch is backward-compatible
and can be configured to organize the flow-tables as defined in the OpenFlow
specification. Also, we have verified that by doing so, POFSwitch functions
as an OpenFlow switch well and does not bring any unfair drawbacks to the
traditional OpenFlow-based scheme.



11

!"# $%&'(%))*(

!"# +,-'./ #)%, 012)*3
!1.4*'

$)133-5-.1'-%&
+*(6-.*7

$)133-5-.1'-%&
8&-.13'

!-9*)-&*

:;)'-.13'

!-9*)-&*

<!

!"+=
8&-.13'

:;)'-.13'

!"+= >*1?*( @&.193;)1'-%&

##

A(%;9

012)*3

!%(' #1-);(*

B*'*.'-%&

!"# !(%'%.%) +'1.4

!"# !(%'%.%) +'1.4

!"+= :1&1C*(

!(%'*.'-%& +./*D* <&3'1))*(
+*(6-.* $)133-5-.1'-%&

8&-.13' >1&?)*( :;)'-.13' >1&?)*(

!
%
('

!
%
('

!
%
('

!
%
('

!
%
('

!
%
('

Fig. 13. Architecture of POSR system.

per-flow-based flow entries on ingress switches. However,
since OF-SP needs to install per-flow-based flow entries on
every hop along the forwarding paths, each switch requires
many more flow entries to forward the packets correctly. More
specifically, the receiving throughput of OF-SP would not
reach 100% until each switch is allocated more than 2200
flow entries. This is because when the capacity of flow entries
on each switch is insufficient, the flow entries of existing
flows would be overwritten before they actually expire and
this would make the switches send PacketIn messages to
the controller very frequently, thus restricting the receiving
throughput. The experimental results verify that for flow-level
traffic management, POSR utilizes flow entries much more
efficiently than the traditional OpenFlow-based scheme. Since
each host generates 400 UDP flows and there are 14 hosts,
there are 5600 flows in the network. However, the flow-entry
utilization among the switches might not be uniform, and
for OF-SP, the switches that are located at the center of the
topology would consume more flow-entries than others. This
is the reason why the results in Fig. 15 indicate that when
2200 flow-entries are allocated for each switch, OF-SP can
reach a receiving throughput of 100%, i.e., the requirement of
the most loaded switch can be satisfied in this case.

Note that, the experiments restrict the number of flow entries
per switch below 2200, which could be less than the actual T-
CAM capacity of a practical hardware SDN switch. Neverthe-
less, our experiments use software-based POF switches with
1GbE NICs, which make their traffic throughput significantly
smaller than that of practical hardware SDN switches, which
are usually equipped with 10GbE NICs. Therefore, since the
traffic throughput has been scaled down, the setting on the
flow entry capacity per switch would be reasonable and fair.

Moreover, since POSR only needs to install flow entry
on the first switch along a routing path, it saves a lot of
communications between the controller and switches and thus
would reduce the path setup latency effectively. To verify
this, we measure the path setup latency of 4→5→7→8→9
under different traffic loads (i.e., different loads of PacketIn
messages to the controller), and plot the results in Fig. 16.
We observe that POSR does achieve much shorter path setup
latency than OF-SP, especially when the traffic load is higher
than 5100 flows/sec. The reason behind this appears to be two-
fold. Firstly, to setup a path, OF-SP has to install flow entries

1000 1200 1400 1600 1800 2000 2200

Number of Flow Entries per Switch

50

55

60

65

70

75

80

85

90

95

100

R
ec

ei
vi

ng
 T

hr
ou

gh
pu

t (
%

)

POSR
OF-SP

Fig. 15. Experimental results on receiving throughput of unicast.

5000 5050 5100 5150 5200 5250

Traffic Load (Flows/s)

0

50

100

150

200

250

300

P
at

h 
S

et
up

 L
at

en
cy

 (
m

s)

POSR
OF-SP

Fig. 16. Experimental results on path setup latency.

on all the switches along it, which results in significantly
higher north-/south-bound communication loads than the case
in POSR. This can actually congest the controller and result
in long message processing time there. Secondly, processing
the FlowMod messages from the controller and installing the
corresponding flow entries on each switch also takes time.

2) Fast Link Failure Recovery: We then evaluate the per-
formance of POSR on fast link failure recovery. We set up
the working path as 4→5→7→8→9 and transfer traffic with
different data-rates over it. The experiments compare the link
failure recovery with POSR and OpenFlow. Specifically, POSR
allocates a backup path segment for each link along the
working path, e.g., using segment 5→6→10→7 to protect
link 5→7, while the OpenFlow-based scheme assigns a link-



12

disjoint backup path (e.g., using backup path 4→11→13→9
to protect working path 4→5→7→8→9) for link failure re-
covery. Note that, to ensure fairness, the experiments compare
the OpenFlow and POSR based schemes under the assumption
that the numbers of backup flow-tables used by them are the
same. Hence, the OpenFlow scheme has to use path protection
because link protection would make it consume many more
backup flow-tables. Here, as the backup path consists of four
switches, the OpenFlow scheme pre-installs four backup flow-
tables in them. Meanwhile, since POSR needs to pre-install
an additional FF group table for each protected link and the
working path consists of four links, four backup flow-tables
are pre-installed too. Therefore, we can realize an apple-to-
apple comparison in this way. Note that since an FF group
table does not contain match fields, it actually occupies less
switch memory than an OpenFlow-based backup flow-table.
Then, in the experiments, we interrupt link 5→7 randomly
and measure the packet loss due to the link failure. The traffic
over the working path is generated by iPerf and the packet
length is fixed as 1250 Bytes.

Fig. 17 shows the experimental results on the number of
packet losses. We can see that the OpenFlow-based scheme not
only induces many more packet losses than the POSR-based
one but also increases the number of packet losses faster with
the transfer data-rate. This is because the OpenFlow-based
scheme makes the switches interact with the controller during
the link failure recovery and hence prolongs the recovery
latency. While with our POSR-based scheme, the upstream
switch (i.e., the one in Node 4) can directly switch the traffic
flow to its backup path after detecting the link failure, and
there is no need to interact with the controller in the process.
The above analysis can be verified by the results in Table
II, which indicate that the average failure recovery time of
POSR is shorter. Note that, in the network system, the recovery
procedure would only be invoked when the link failure has
been detected by the operating system (OS) of an affected
switch. Hence, the failure recovery time includes the time used
for the failure detection in the OS, which is also shown in
Table II. We observe that the failure detection actually takes
most of the failure recovery time. Therefore, if we exclude it,
the advantage of POSR would become much more significant.
We also hope to point out that the advantage of POSR on fast
link failure recovery would become even more significant in
a wide-area network, since the messaging delay between the
controller and switches will be much longer than that in the
experimental testbed.

TABLE II
EXPERIMENTAL RESULTS ON AVERAGE FAILURE RECOVERY TIME

Average Failure Recovery Time of POSR (msec) 70.38

Average Failure Recovery Time of OpenFlow (msec) 85.36

Failure Detection in OS (msec) 54.13

3) Multicast Scenario: Finally, we evaluate the perfor-
mance of POSR-based multicast. The experiments simulta-
neously generate 100 multicast sessions on each host, and
each multicast session tries to deliver 0.25 Mbps UDP traffic

0 20 40 60 80 100

Transfer Data-Rate (Mbps)

0

100

200

300

400

500

600

700

800

900

1000

N
um

be
r 

of
 P

ac
ke

t L
os

se
s

POSR
OF

Fig. 17. Experimental results of packet loss ratio for single link failure.

to 2 to 3 destinations randomly. Here, we still compare the
results on receiving capacity while restricting the maximum
number of flow entries on each switch. Note that, since POSR-
based multicast scheme needs to install different types of flow-
tables on the source and fork nodes on a multicast tree, i.e.,
a flow match table on the source node and a Group Label
match table on each fork node, we assume that on each POF
switch, the capacities of flow match and Group Label match
tables are equal. The benchmark scheme is the OpenFlow-
based multicast (OF-MST). In the experiments, both schemes
use the minimum Steiner tree (MST) algorithm in [44] to
calculate the multicast trees. Fig. 18 shows the experimental
results on receiving throughput. It can be seen that similar
to the unicast scenario, our POSR-based scheme can achieve
a receiving throughput of 100% with much less flow entry
utilization. Hence, the experimental results confirm that our
POSR-based scheme uses flow entries much more efficiently
not only for unicast but also for multicast.

VIII. CONCLUSION

In this paper, we leveraged POF-FIS to design protocol-
oblivious source routing (POSR), which can realize
SDN-based packet forwarding in a protocol-independent,
bandwidth-efficient and flow-table-saving packet forwarding
manner. We designed the packet format for POSR, formulated
the packet processing pipelines for realizing unicast, multicast
and link failure recovery, and implemented POSR in a
POF-enabled SDN network system. Then, we built a network
testbed that included 14 SDN switches and demonstrated
the advantages of POSR experimentally. Specifically, we
compared POSR with several OpenFlow-based benchmarks
for unicast, multicast and link failure recovery, and verified
that POSR can reduce flow-table utilization effectively,
shorten path setup latency and expedite link failure recovery.

We will consider further research from two perspectives.
First, we would like to study how to provide differentiated
services with POSR because its current design would simply
process all the traffic flows in the same way in intermedi-
ate switches, no matter what kinds of network services are
provisioned by them. Second, we would like to improve the
performance of POFSwitch such that POFSwitch could pro-
cess packets more efficiently and work smoothly for switches
equipped with 10GbE NICs.



13

600 700 800 900 1000 1100 1200 1300 1400

Number of Flow Entries per Switch

30

40

50

60

70

80

90

100

R
ec

ei
vi

ng
 T

hr
ou

gh
pu

t (
%

)

POSR
OF-MST

Fig. 18. Experimental results of throughput for multicast.

ACKNOWLEDGMENTS

This work was supported in part by the NSFC Project
61371117, the Key Project of the CAS (QYZDY-SSW-
JSC003), the NGBWMCN Key Project under Grant No.
2017ZX03001019-004, and the Strategic Priority Research
Program of the CAS (XDA06011202).

REFERENCES

[1] D. Kreutz et al., “Software-defined networking: A comprehensive sur-
vey,” Proc. IEEE, vol. 103, pp. 14–76, Jan. 2015.

[2] P. Lu et al., “Highly-efficient data migration and backup for big data
applications in elastic optical inter-datacenter networks,” IEEE Netw.,
vol. 29, pp. 36–42, Sept./Oct. 2015.

[3] OpenFlow Switch Specifications. [Online]. Available: https:
//www.opennetworking.org/images/stories/downloads/sdn-resources/
onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf

[4] S. Shirali-Shahreza and Y. Ganjali, “ReWiFlow: Restricted wildcard
OpenFlow rules,” Comput. Commun. Rev., no. 45, pp. 29–35, Sept. 2015.

[5] H. Huang et al., “Cost minimization for rule caching in software defined
networking,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 4, pp.
1007–1016, Apr. 2016.

[6] S. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability of
software-defined networking,” IEEE Commun. Mag., vol. 51, pp. 136–
141, Feb. 2013.

[7] M. Rifai, D. Lopez-Pacheco, and G. Urvoy-Keller, “Coarse-grained
scheduling with software-defined networking switches,” in Proc. of
SIGCOMM 2015, pp. 95–96, Aug. 2015.

[8] A. Iyer, V. Mann, and N. Samineni, “SwitchReduce: Reducing switch
state and controller involvement in OpenFlow networks,” in Proc. of
NETWORKING 2013, May. 2013.

[9] S. Jyothi, M. Dong, and P. Godfrey, “Towards a flexible data center fabric
with source routing,” in Proc. of ACM SOSR 2015, pp. 10:1–10:8, Jun.
2015.

[10] A. Hari, T. Lakshman, and G. Wilfong, “Path Switching: Reduced-state
flow handling in SDN using path information,” in Proc. of CoNEXT
2015, Dec. 2015.

[11] Z. Zhu et al., “Demonstration of cooperative resource allocation in an
OpenFlow-controlled multidomain and multinational SD-EON testbed,”
J. Lightw. Technol., vol. 33, pp. 1508–1514, Apr. 2015.

[12] N. Xue et al., “Demonstration of OpenFlow-controlled network orches-
tration for adaptive SVC video manycast,” IEEE Trans. Multimedia,
vol. 17, pp. 1617–1629, Sept. 2015.

[13] Z. Zhu, S. Li, and X. Chen, “Design QoS-aware multi-path provisioning
strategies for efficient cloud-assisted SVC video streaming to heteroge-
neous clients,” IEEE Trans. Multimedia, vol. 15, pp. 758–768, Jun. 2013.

[14] K. Wu, P. Lu, and Z. Zhu, “Distributed online scheduling and routing
of multicast-oriented tasks for profit-driven cloud computing,” IEEE
Commun. Lett., vol. 20, pp. 684–687, Apr. 2016.

[15] J. Yao, P. Lu, L. Gong, and Z. Zhu, “On fast and coordinated data
backup in geo-distributed optical inter-datacenter networks,” J. Lightw.
Technol., vol. 33, pp. 3005–3015, Jul. 2015.

[16] Z. Zhu et al., “Impairment- and splitting-aware cloud-ready multicast
provisioning in elastic optical networks,” IEEE/ACM Trans. Netw.,
vol. 25, pp. 1220–1234, Apr. 2017.

[17] H. Song, “Protocol-oblivious forwarding: Unleash the power of SDN
through a future-proof forwarding plane,” in Proc. of ACM HotSDN
2013, pp. 127–132, Aug. 2013.

[18] D. Hu et al., “Flexible flow converging: A systematic case study
on forwarding plane programmability of protocol-oblivious forwarding
(POF),” IEEE Access, vol. 4, pp. 4707–4719, 2016.

[19] S. Li et al., “SR-PVX: A source routing based network virtualization hy-
pervisor to enable POF-FIS programmability in vSDNs,” IEEE Access,
vol. 5, pp. 7659–7666, 2017.

[20] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” Comput. Commun. Rev., vol. 44, pp. 87–95, Jul. 2014.

[21] S. Li et al., “Protocol oblivious forwarding (POF): Software-defined
networking with enhanced programmability,” IEEE Netw., vol. 31, pp.
12–20, Mar./Apr. 2017.

[22] D. Hu et al., “Design and demonstration of SDN-based flexible flow
converging with protocol-oblivious forwarding (POF),” in Proc. of
GLOBECOM 2015, pp. 1–6, Dec. 2015.

[23] K. Han et al., “Leveraging protocol-oblivious forwarding (POF) to
realize NFV-assisted mobility management,” in Proc. of GLOBECOM
2017, pp. 1–6, Dec. 2017.

[24] S. Li, K. Han, H. Huang, and Z. Zhu, “PVFlow: flow-table virtualization
in POF-based vSDN hypervisor (PVX),” in Proc. of ICNC 2018, pp. 1–
5, Mar. 2018.

[25] RFC 791: Internet Protocol. [Online]. Available: https://tools.ietf.org/
html/rfc791

[26] C. Guo et al., “SecondNet: A data center network virtualization ar-
chitecture with bandwidth guarantees,” in Proc. of CoNEXT 2010, pp.
15:1–15:12, 2010.

[27] Z. Guo et al., “JumpFlow: Reducing flow table usage in software-defined
networks,” Comput. Netw., vol. 92, Part 2, pp. 300 – 315, Dec. 2015.

[28] R. Ramos, M. Martinello, and C. Rothenberg, “SlickFlow: Resilient
source routing in data center networks unlocked by OpenFlow,” in Proc.
of LCN 2013, pp. 606–613, Oct. 2013.

[29] S. Li, D. Hu, W. Fang, and Z. Zhu, “Source routing with protocol-
oblivious forwarding (POF) to enable efficient e-health data transfers,”
in Proc. of ICC 2016, pp. 1–6, May. 2016.

[30] F. Ji et al., “Dynamic p-cycle protection in spectrum-sliced elastic optical
networks,” J. Lightw. Technol., vol. 32, pp. 1190–1199, Mar. 2014.

[31] X. Chen et al., “Flexible availability-aware differentiated protection in
software-defined elastic optical networks,” J. Lightw. Technol., vol. 33,
pp. 3872–3882, Sept. 2015.

[32] S. Li et al., “Flexible traffic engineering (F-TE): When OpenFlow meets
multi-protocol IP-forwarding,” IEEE Commun. Lett., vol. 18, pp. 1699–
1702, Oct. 2014.

[33] L. Gong et al., “Efficient resource allocation for all-optical multicasting
over spectrum-sliced elastic optical networks,” J. Opt. Commun. Netw.,
vol. 5, pp. 836–847, Aug. 2013.

[34] Y. Zhang and N. Ansari, “On architecture design, congestion notification,
tcp incast and power consumption in data centers,” IEEE Commun.
Surveys Tuts., vol. 15, no. 1, pp. 39–64, First Quarter 2013.

[35] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proc. of SIGCOMM 2008, pp. 63–74,
2008.

[36] W. Lu and Z. Zhu, “Dynamic service provisioning of advance reservation
requests in elastic optical networks,” J. Lightw. Technol., vol. 31, pp.
1621–1627, May 2013.

[37] The CAIDA chicago statistical information for the CAIDA anonymized
internet traces. [Online]. Available: http://www.caida.org/data/realtime/
passive/?monitor=equinix-chicago-dirB

[38] POFSwitch. [Online]. Available: http://www.poforwarding.org
[39] POFSwitch and POX-based POF controller developed by the team

in the University of Science and Technology of China. [Online].
Available: https://github.com/USTC-INFINITELAB

[40] OpenvSwitch. [Online]. Available: http://openvswitch.org/
[41] POX. [Online]. Available: https://openflow.stanford.edu/display/ONL/

POX+Wiki#POXWiki-InstallingPOX
[42] DPDK: Data Plane Development Kit. [Online]. Available: http:

//dpdk.org/
[43] iPerf. [Online]. Available: https://iperf.fr
[44] L. Kou, G. Markowsky, and L. Berman, “A fast algorithm for steiner

trees,” Acta Informatica, vol. 15, no. 2, pp. 141–145, 1981.

View publication statsView publication stats

https://www.researchgate.net/publication/320554481

