
In this exercise, you will be learning how to build custom topologies using Mininet Python API 
and how certain parameters like bandwidth, delay, loss and queue size can be set individually 
for different links in the topology. You’ll also learn how to do performance testing of these 
custom topologies using ping and iperf. 
 
After the overview, you will be asked to create and submit your own custom topology based on 
the most common 3-tier Datacenter architecture i.e., core, aggregation and edge. More details 
on creating and submitting the code will be provided later on in the instructions. So, make sure 
that you follow each step carefully. 
 

Overview 

 

The network you'll use in this exercise includes hosts and switches connected in a linear 
topology, as shown in the figure below. 
 

 
Figure 1: hosts and switches connected in a linear topology 



Creating Topology 

 

Mininet supports ​parametrized topologies​. With a few lines of Python code, you can create a 
flexible topology which can be configured based on the parameters you pass into it, and reused 
for multiple experiments. 
 
For example, here is a simple network topology (based on Figure 1) which consists of a 
specified number of hosts (​h1​ through ​hN​) connected to their individual switches (​s1​ through 
sN​): 
 

Linear Topology (without Performance Settings) 

#!/usr/bin/python 

 

from​ ​mininet.topo​ ​import​ Topo 

from​ ​mininet.net​ ​import​ Mininet 

from​ ​mininet.util​ ​import​ irange,dumpNodeConnections 

from​ ​mininet.log​ ​import​ setLogLevel 

 

class​ ​LinearTopo​(Topo): 

   ​"Linear topology of k switches, with one host per switch." 

 

   ​def​ ​__init__​(​self​, k​=​2​, ​**​opts): 

       ​"""Init. 

           k: number of switches (and hosts) 

           hconf: host configuration options 

           lconf: link configuration options""" 

 

       ​super​(LinearTopo, ​self​)​.​__init__(​**​opts) 

 

       ​self​.​k ​=​ k 

 

       lastSwitch ​=​ ​None 

       ​for​ i ​in​ irange(​1​, k): 

           host ​=​ ​self​.​addHost(​'h%s'​ ​%​ i) 

           switch ​=​ ​self​.​addSwitch(​'s%s'​ ​%​ i) 

           ​self​.​addLink( host, switch) 



           ​if​ lastSwitch: 

               ​self​.​addLink( switch, lastSwitch) 

           lastSwitch ​=​ switch 

 

def​ ​simpleTest​(): 

   ​"Create and test a simple network" 

   topo ​=​ LinearTopo(k​=​4​) 

   net ​=​ Mininet(topo) 

   net​.​start() 

   ​print​ ​"Dumping host connections" 

   dumpNodeConnections(net​.​hosts) 

   ​print​ ​"Testing network connectivity" 

   net​.​pingAll() 

   net​.​stop() 

 

if​ __name__ ​==​ ​'__main__'​: 

   ​# Tell mininet to print useful information 

   setLogLevel(​'info'​) 

   simpleTest() 

Figure 1. LinearTopo.py 
 

The important classes, methods, functions and variables in the above code include: 
 

● Topo​: the base class for Mininet topologies 
● addSwitch()​: adds a switch to a topology and returns the switch name 
● addHost()​: adds a host to a topology and returns the host name 
● addLink()​: adds a bidirectional link to a topology (and returns a link key, but 
this is not important). Links in Mininet are bidirectional unless noted otherwise. 
● Mininet​: main class to create and manage a network 
● start()​: starts your network 
● pingAll()​: tests connectivity by trying to have all nodes ping each other 
● stop()​: stops your network 
● net.hosts​: all the hosts in a network 
● dumpNodeConnections()​: dumps connections to/from a set of nodes. 
● setLogLevel( 'info' | 'debug' | 'output' )​: set Mininet's default 
output level; 'info' is recommended as it provides useful information. 

 
Additional example code may be found in ​mininet/examples​. 
 

https://github.com/mininet/mininet/tree/master/examples


Setting Performance Parameters 

 

In addition to basic behavioral networking, Mininet provides performance limiting and isolation 
features, through the ​CPULimitedHost​ and ​TCLink​ classes. 
 
There are multiple ways that these classes may be used, but one simple way is to specify them 
as the default host and link classes/constructors to ​Mininet()​, and then to specify the 
appropriate parameters in the topology. 
 

Linear Topology (with Performance Settings) 

#!/usr/bin/python 

 

from​ ​mininet.topo​ ​import​ Topo 

from​ ​mininet.net​ ​import​ Mininet 

from​ ​mininet.node​ ​import​ CPULimitedHost 

from​ ​mininet.link​ ​import​ TCLink 

from​ ​mininet.util​ ​import​ irange,dumpNodeConnections 

from​ ​mininet.log​ ​import​ setLogLevel 

 

class​ ​LinearTopo​(Topo): 

   ​"Linear topology of k switches, with one host per switch." 

 

   ​def​ ​__init__​(​self​, k​=​2​, ​**​opts): 

       ​"""Init. 

           k: number of switches (and hosts) 

           hconf: host configuration options 

           lconf: link configuration options""" 

 

       ​super​(LinearTopo, ​self​)​.​__init__(​**​opts) 

 

       ​self​.​k ​=​ k 

 

       lastSwitch ​=​ ​None 

       ​for​ i ​in​ irange(​1​, k): 

           host ​=​ ​self​.​addHost(​'h%s'​ ​%​ i, cpu​=.​5​/​k) 

           switch ​=​ ​self​.​addSwitch(​'s%s'​ ​%​ i) 



           ​# 10 Mbps, 5ms delay, 1% loss, 1000 packet queue 

           ​self​.​addLink( host, switch, bw​=​10​, delay​=​'5ms'​, loss​=​1​, 

max_queue_size​=​1000​, use_htb​=​True​) 

           ​if​ lastSwitch: 

               ​self​.​addLink(switch, lastSwitch, bw​=​10​, delay​=​'5ms'​, loss​=​1​, 

max_queue_size​=​1000​, use_htb​=​True​) 

           lastSwitch ​=​ switch 

 

def​ ​perfTest​(): 

   ​"Create network and run simple performance test" 

   topo ​=​ LinearTopo(k​=​4​) 

   net ​=​ Mininet(topo​=​topo, 

                 host​=​CPULimitedHost, link​=​TCLink) 

   net​.​start() 

   ​print​ ​"Dumping host connections" 

   dumpNodeConnections(net​.​hosts) 

   ​print​ ​"Testing network connectivity" 

   net​.​pingAll() 

   ​print​ ​"Testing bandwidth between h1 and h4" 

   h1, h4 ​=​ net​.​get(​'h1'​, ​'h4'​) 

   net​.​iperf((h1, h4)) 

   net​.​stop() 

 

if​ __name__ ​==​ ​'__main__'​: 

   setLogLevel(​'info'​) 

   perfTest() 

 
Some important methods and parameters: 
 
self.addHost(name, cpu=f): ​This allows you to specify a fraction of overall system CPU 
resources which will be allocated to the virtual host. 
 
self.addLink( node1, node2, bw=10, delay='5ms', max_queue_size=1000, 

loss=1, use_htb=True)​: adds a bidirectional link with bandwidth, delay and loss 
characteristics, with a maximum queue size of 1000 packets using the Hierarchical Token 
Bucket rate limiter and netem delay/loss emulator. The parameter bw is expressed as a number 
in Mb/s; delay is expressed as a string with units in place (e.g. '5ms', '100us', '1s'); loss is 
expressed as a percentage (between 0 and 100); and max_queue_size is expressed in packets. 



 
You may find it useful to create a Python dictionary to make it easy to pass the same 
parameters into multiple method calls, for example: 
 
 

linkopts = dict(bw=10, delay='5ms', loss=1, max_queue_size=1000, 

use_htb=True) 

’’’ 

alternately: linkopts = {'bw':10, 'delay':'5ms', 'loss':1, 

'max_queue_size':1000, 'use_htb':True} 

’’’ 

 

self.addLink(node1, node2, **linkopts) 

 

Running in Mininet 

 

To run the custom topology you have created above, follow the instructions below: 
 

● Create a LinearTopo.py script on your Mininet VM and copy the contents of 
Linear Topology (without Performance Settings), listed above in it. 
● Make the script executable 
$​ chmod u+x LinearTopo.py 
● Execute the script 

        ​$​  sudo ./LinearTopo.py 
 

Output 

 

*** Creating network 

*** Adding controller 

*** Adding hosts: 

h1 h2 h3 h4 

*** Adding switches: 

s1 s2 s3 s4 

*** Adding links: 

(h1, s1) (h2, s2) (h3, s3) (h4, s4) (s1, s2) (s2, s3) (s3, s4) 

*** Configuring hosts 

h1 h2 h3 h4 

*** Starting controller 

*** Starting 4 switches 

s1 s2 s3 s4 

Dumping host connections 

h1 h1-eth0:s1-eth1 



h2 h2-eth0:s2-eth1 

h3 h3-eth0:s3-eth1 

h4 h4-eth0:s4-eth1 

Testing network connectivity 

*** Ping: testing ping reachability 

h1 -> h2 h3 h4 

h2 -> h1 h3 h4 

h3 -> h1 h2 h4 

h4 -> h1 h2 h3 

*** Results: 0% dropped (0/12 lost) 

*** Stopping 4 hosts 

h1 h2 h3 h4 

*** Stopping 4 switches 

s1 ...s2 ....s3 ....s4 ... 

*** Stopping 1 controllers 

c0 

*** Done 

 

 

Assignment 

Background 

Data center networks typically have a tree-like topology. End-hosts connect to top-of-rack 
switches, which form the leaves (edges) of the tree; one or more core switches form the root; 
and one or more layers of aggregation switches form the middle of the tree.  In a basic tree 
topology, each switch (except the core switch) has a single parent switch.  Additional switches 
and links may be added to construct more complex tree topologies (e.g., fat tree) in an effort to 
improve fault tolerance or increase inter-rack bandwidth. 
 
In this assignment, your task is to create a simple tree topology. You will assume each level i.e., 
core, aggregation, edge and host to be composed of a single layer of switches/hosts with a 
configurable fanout value (k). For example, a simple tree network having a single layer per each 
level and a fanout of 2 looks like: 



 
 

Figure 2: Simple Tree Topology with Fanout 2 
 
To start this exercise, download ​module3-assignment1.zip​. It consists of two files: 
 

● CustomTopo.py​: a sekleton class which you will update with the logic for 
creating the datacenter topology described above. 
● submit.py​: used to submit your code and output to the coursera servers for 
grading. You don’t have to do any modifications in here. 

 

CustomTopo.py 

 

The skeleton class takes following arguments as input: 
 

● linkopts1​: for specifying performance parameters for the links between core 
and aggregation switches. 
● linkopts2​: for specifying performance parameters for the links between 
aggregation and edge switches. 
● linkopts3​: for specifying performance parameters for the links between edge 
switches and host 
● Fanout​: to specify fanout value i.e., number of childs per node. 

 
Your logic should support setting at least ​bw​ and ​delay​ parameters for each link. 
 

Submitting your Code 

 

https://d19vezwu8eufl6.cloudfront.net/sdn/srcs/module3-assignment1.zip


To submit your code, run the submit.py script: 
 
$ ​sudo python submit.py 
 

Make sure that ​CustomTopo.py ​is in the same directory as ​submit.py​. Your mininet VM 
should have internet access by default, but still verify that it has internet connectivity (i.e., eth0 
set up as NAT). Otherwise submit.py will not be able to post your code and output to our 
coursera servers. 
 
The submission script will ask for your login and password. This password is not the general 
account password, but an assignment-specific password that is uniquely generated for each 
student. You can get this from the assignments listing page. 
 
Once finished, it will prompt the results on the terminal (either passed or failed). 
 
Note, if during the execution ​submit.py ​script crashes for some reason or you terminate it 
using CTRL+C, make sure to clean mininet environment using: 
 
$ ​sudo mn -c 
 

Also, if it still complains about the controller running. Execute the following command to kill it: 
 
$ ​sudo fuser -k 6633/tcp 

 

 

* These instructions are adapted from ​mininet.org​ and ​wisc-cs838 

http://mininet.org/
http://pages.cs.wisc.edu/~akella/CS838

