
In this course, you will learn about software defined networking
and how it is changing the way communications networks are
managed, maintained, and secured.

School of Computer Science

Software Defined
Networking

Dr. Nick Feamster
Associate Professor

� Four Lessons
� Motivation for Programming SDNs
�  Programming Languages for SDNs
� Composing SDN Control
○  Pyretic

�  Event-Driven SDN
� Programming Assignment
� Quiz

Module 6.4: Programming SDNs

2

What is Pyretic?

� SDN Language and Runtime
�  Language: Way of expressing high-level policies
� Runtime: Way of “compiling” those policies to

OpenFlow rules

� Allows programmers to specify
policies on “located packets”
(packet + location)

Monsanto,	
 Christopher,	
 et	
 al.	
 "Composing	
 so4ware	
 defined	
 networks."	
 NSDI,	
 Apr	
 (2013).	

Features

� Network policy as function: Take as input
a packet, return packets at different locations

� Boolean predicates: In contrast to
OpenFlow “exceptions”

� Virtual packet header fields: Can refer to
locations, tags on packets, etc.

� Parallel and sequential
composition: Compose policies

4

Network Policies
�  In OpenFlow, policies are bit patterns (tough to

reason about)
�  In Pyretic, policies are functions that map

packets to other packets

5

Boolean Predicates

�  In OpenFlow, packets either match on a rule,
or they “fall through” to the next rule
�  Simple “or”, “not”, etc. is tough to reason about

� Pyretic’s match function outputs the packet
or nothing depending on the predicate

6

Virtual Packet Header Fields

� Unified way of representing packet metadata
� Packet is a dictionary that maps a field name

to a value
�  match(inport=a)
�  match(switch=T)
�  match(dstmac=b)

� The mod function can also modify
packet metadata

7

Policy Composition

� Sequential composition: Perform one
operation, then the next (e.g., firewall then
switch)

� Parallel composition: Perform both
operations simultaneously (e.g., counting,
forwarding)

8

Traffic Monitoring

� Can create a query to see packet streams

� Callbacks are invoked to handle each new
packet that arrives for the query

9

Dynamic Policies

� Policies whose forwarding behavior changes
� Represented as timeseries of static policies
� Current value is self.policy
� Common idiom

�  Set a default policy
� Register callback that updates policy

� Two examples: switch, firewall

10

Example: Pyretic Switch

�  $ sudo mn --topo single,3 --mac –arp
�  Every first packet with new source MAC at the switch is

read by a query
�  Policy is updated with new predicate

11

Switch	

h3	
 h4	
 h2	

PyreDc	
 Controller	

(simple_learner.py)	

Example: Pyretic Firewall

� Create dynamic firewall policy
� Register a callback to check rules
� Sequentially compose with

learning switch
12

Switch	

h3	
 h4	
 h2	

PyreDc	
 Controller	

(simple_firewall.py)	

Summary
� Pyretic makes writing complex policies easy

� Network policy as function
�  Predicates on packets
�  Virtual packet headers
�  Policy composition

� Composition makes it easy for policies to
build on one another

� Next: Events
13

