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� Four Lessons 
� Motivation for Programming SDNs 
�  Programming Languages for SDNs 
� Composing SDN Control 
○  Pyretic 

�  Event-Driven SDN 
� Programming Assignment 
� Quiz 

Module 6.4: Programming SDNs 
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What is Pyretic? 

� SDN Language and Runtime 
�  Language: Way of expressing high-level policies 
� Runtime: Way of “compiling” those policies to 

OpenFlow rules 

� Allows programmers to specify  
policies on “located packets”  
(packet + location) 
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Features 

� Network policy as function: Take as input 
a packet, return packets at different locations 

� Boolean predicates: In contrast to 
OpenFlow “exceptions” 

� Virtual packet header fields: Can refer to 
locations, tags on packets, etc. 

� Parallel and sequential  
composition: Compose policies 
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Network Policies 
�  In OpenFlow, policies are bit patterns (tough to 

reason about) 
�  In Pyretic, policies are functions that map 

packets to other packets 
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Boolean Predicates 

�  In OpenFlow, packets either match on a rule, 
or they “fall through” to the next rule 
�  Simple “or”, “not”, etc. is tough to reason about 

� Pyretic’s match function outputs the packet 
or nothing depending on the predicate 
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Virtual Packet Header Fields 

� Unified way of representing packet metadata 
� Packet is a dictionary that maps a field name 

to a value 
�  match(inport=a) 
�  match(switch=T) 
�  match(dstmac=b) 

� The mod function can also modify  
packet metadata 
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Policy Composition 

� Sequential composition: Perform one 
operation, then the next (e.g., firewall then 
switch) 

� Parallel composition: Perform both 
operations simultaneously (e.g., counting, 
forwarding) 
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Traffic Monitoring 

� Can create a query to see packet streams 

� Callbacks are invoked to handle each new 
packet that arrives for the query 
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Dynamic Policies 

� Policies whose forwarding behavior changes  
� Represented as timeseries of static policies 
� Current value is self.policy 
� Common idiom 

�  Set a default policy 
� Register callback that updates policy 

� Two examples: switch, firewall 
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Example: Pyretic Switch 

�  $ sudo mn --topo single,3 --mac –arp 
�  Every first packet with new source MAC at the switch is 

read by a query 
�  Policy is updated with new predicate 
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Example: Pyretic Firewall 

� Create dynamic firewall policy 
� Register a callback to check rules 
� Sequentially compose with  

learning switch 
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Summary 
� Pyretic makes writing complex policies easy 

� Network policy as function 
�  Predicates on packets 
�  Virtual packet headers 
�  Policy composition 

� Composition makes it easy for policies to 
build on one another 

� Next: Events 
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