
In this course, you will learn about software defined networking
and how it is changing the way communications networks are
managed, maintained, and secured.

School of Computer Science

Software Defined
Networking

Dr. Nick Feamster
Associate Professor

� Motivation
� Why do we need a network assembly language?
� What can a network assembly language do?

� Example: NetASM
� Overview
�  Brief discussion of assembly

language primitives
� Open issues

This Lesson: Network Assembly

2

Motivation
� OpenFlow’s design was motivated by the

underlying device layout
� Controller is limited in supporting new functions

not supported by OpenFlow
� New chipsets (RMT, FlexPipe) are adding

data plane functions
� New languages are specifying

data-plane at a high level
� What’s in between?

Need for Network Assembly

� A low-level programming language for
programmable network devices

� Provides a 1-to-1 correspondence with the
underlying hardware

� Uses well-defined constructs to define low-
level packet operations

� Enables writing highly
optimized network programs

Common Hardware Architecture

Processing PipelinePacket
Parsing Queueing

Input
Interfaces

Output
Interfaces

Management

OpenFlow
or other API

Want to Specify Parsing and Processing

Processing PipelinePacket
Parsing Queueing

Input
Interfaces

Output
Interfaces

Management

OpenFlow
or other API

Specified using
Network Assembly

Programming in Network Assembly
�  Explicitly describe the processing pipeline in the assembly program

�  Series of instructions as specified by sequence of operations
�  The constructs form an acyclic directed graph

�  A parse graph gives a semantic meaning to the bit locations in the
packet header
�  Specified by the user at the time of writing

the assembly program

Three Types of Instructions

�  Initialization: to create state elements (like
tables and registers)

� Topology: to define how the packet is
traversed and processed in the data plane

� Control: to provide an external control to
populate the states (i.e., over OpenFlow or
other interfaces)

8

Locally Contained Applications
�  Provide the hardware pipeline the ability to

update its states (registers, tables) locally
�  without referring to the controller

�  Need a new construct “update”
�  to update the internal states (registers, tables)
�  has the opposite semantics to that of modify construct

which updates
the header/metadata

�  Examples: MAC learner

Protocol Independence:
Compile from Different Languages

� NetKat
� P4
� OpenState
� OpenFlow 1.x
� Flowlog

Compiler Can Optimize using Assembler

� Table
� Composition
� Decomposition

� Reordering
� Optimizations based on traffic profiles

Target Independence:
Assemble for Different Targets
� FPGA
� Click
� NPU
� GPU
� Open vSwitch
� Open Data Plane

Key NetASM Instructions
�  MKT:

�  MKT (Tbl, Tbl)
�  Initialization instruction
�  Takes two arguments (a dynamic table specification and static table with default

values) and creates a new table.

�  BRTF:

�  BRTF (Tbl, Fld, Lbl)
�  Topology instruction
�  Branch to a label if the header matches with the contents of the table and set the

given header field with the matched index,
else, move to next instruction.

13

NetASM Instructions
�  DRP:

�  DRP
�  Topology instruction
�  Marks the packet for drop.

�  WRT:
�  WRT (Tbl, Ptrn, Val)
�  Control Instruction
�  Write the table with pattern at index value.

14

Example: Stateful MAC Learning

� Two tables: Match and modify
� Match: matches on dst MAC, outputs index
� Modify: modifies output port

depending on index
15

Match	
 Modify	
 Register	
 (r)	

[size	
 of	
 table]	

Switch	

Other Notable Aspects

� NetASM is in Haskell: Its semantics have
provable, verifiable properties

� Each assembly instruction could be
associated with a “cost” to allow a compiler
to make intelligent compilation decisions

16

Conclusion
� Programmable hardware allows the data

plane to evolve
�  In turn, this frees the SDN control plane from

current constraints (no longer has to be
OpenFlow)

� Have a high-level language specifying
packet processing (P4), and an assembler
(NetASM)

� Need a compiler!
17

