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� Motivation 
� Why do we need a network assembly language? 
� What can a network assembly language do? 

� Example: NetASM 
� Overview 
�  Brief discussion of assembly 

language primitives 
� Open issues 

This Lesson: Network Assembly 
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Motivation 
� OpenFlow’s design was motivated by the 

underlying device layout 
� Controller is limited in supporting new functions 

not supported by OpenFlow 
� New chipsets (RMT, FlexPipe) are adding 

data plane functions 
� New languages are specifying  

data-plane at a high level 
� What’s in between? 



Need for Network Assembly 

� A low-level programming language for 
programmable network devices 

� Provides a 1-to-1 correspondence with the 
underlying hardware 

� Uses well-defined constructs to define low-
level packet operations 

� Enables writing highly  
optimized network programs 



Common Hardware Architecture 

Processing PipelinePacket
Parsing Queueing

Input 
Interfaces

Output 
Interfaces

Management

OpenFlow
or other API



Want to Specify Parsing and Processing 
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Programming in Network Assembly 
�  Explicitly describe the processing pipeline in the assembly program 

�  Series of instructions as specified by sequence of operations 
�  The constructs form an acyclic directed graph  

�  A parse graph gives a semantic meaning to the bit locations in the 
packet header 
�  Specified by the user at the time of writing  

the assembly program 



Three Types of Instructions 

�  Initialization: to create state elements (like 
tables and registers) 

� Topology: to define how the packet is 
traversed and processed in the data plane 

� Control: to provide an external control to 
populate the states (i.e., over OpenFlow or 
other interfaces) 
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Locally Contained Applications 
�  Provide the hardware pipeline the ability to 

update its states (registers, tables) locally 
�  without referring to the controller 

�  Need a new construct “update” 
�  to update the internal states (registers, tables) 
�  has the opposite semantics to that of modify construct 

which updates  
the header/metadata 

�  Examples: MAC learner 



Protocol Independence: 
Compile from Different Languages 

� NetKat 
� P4 
� OpenState 
� OpenFlow 1.x 
� Flowlog 



Compiler Can Optimize using Assembler 

� Table 
� Composition 
� Decomposition 

� Reordering  
� Optimizations based on traffic profiles 



Target Independence: 
Assemble for Different Targets 
� FPGA 
� Click 
� NPU 
� GPU 
� Open vSwitch 
� Open Data Plane 



Key NetASM Instructions 
�  MKT:  

�  MKT (Tbl, Tbl) 
�  Initialization instruction 
�  Takes two arguments (a dynamic table specification and static table with default 

values) and creates a new table.  

 
�  BRTF: 

�  BRTF (Tbl, Fld, Lbl)  
�  Topology instruction 
�  Branch to a label if the header matches with the contents of the table and set the 

given header field with the matched index,  
else, move to next instruction.  
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NetASM Instructions 
�  DRP:  

�  DRP 
�  Topology instruction 
�  Marks the packet for drop. 

�  WRT: 
�  WRT (Tbl, Ptrn, Val) 
�  Control Instruction 
�  Write the table with pattern at index value.  
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Example: Stateful MAC Learning 

� Two tables: Match and modify 
� Match: matches on dst MAC, outputs index 
� Modify: modifies output port  

depending on index 
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Other Notable Aspects 

� NetASM is in Haskell: Its semantics have 
provable, verifiable properties 

� Each assembly instruction could be 
associated with a “cost” to allow a compiler 
to make intelligent compilation decisions 
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Conclusion 
� Programmable hardware allows the data 

plane to evolve 
�  In turn, this frees the SDN control plane from 

current constraints (no longer has to be 
OpenFlow) 

� Have a high-level language specifying 
packet processing (P4), and an assembler 
(NetASM) 

� Need a compiler! 
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