&Georgiaﬂm@ﬁﬁﬁ@ﬁ@

ot Technelogy

- Software Defined

=
ze

=2 Networking

\\\\\ CoLuY Dr. Nick Feamster
1 Associate Professor

il 2l N

N33 250,27 )
N\ 22252

Y
TN

.~ In this course, you will learn about software defined networking
' and how it is changing the way communications networks are
{ managed, maintained, and secured.

I

School of Computer Science



Georgia & Conputer
Tech | Science

=

This Lesson:
Protocol Independent Packet Processing

Motivation

Two examples

P4: Programming Protocol-Independent Packet
Processors (main focus)

POF: Protocol Oblivious Forwarding

Material adapted from Jennifer

Rexford’s talk at ONS 2014



Georgia I& Conputer
Tech | Science

=

Over the Past Five Years...

OF 1.0 Dec 2009 12
OF 1.1 Feb 2011 15
OF 1.2 Dec 2011 36
OF 1.3 Jun 2012 40
OF1.4 Oct 2013 41

e Control and data not sufficiently decoupled
* No easy way to modify packet format

* Adding new features requires changing FE
and controller




Georgia & Conputer
Tech | Science

=

Desirable Features in SDN Switches

Configurable packet parser
Not tied to a specific header format

Flexible match+action tables
Multiple tables (in series and/or parallel)
Able to match on all defined fields

General packet-processing primitives
Copy, add, remove, and modify

For both header fields and meta-data ‘



Georgia I& Conputer
Tech | Science

=

New Hardware Makes This Possible

New generation of switch ASICs

Intel FlexPipe
RMT [SIGCOMM’13]
Cisco Doppler

But, programming these chips is hard
Custom, vendor-specific interfaces
Low-level, akin to microcode programming

_4



Georgia I& Conputer
Tech | Science

=

Three Goals

Protocol independence
Configure a packet parser
Define a set of typed match+action tables

Target independence
Program without knowledge of switch details
Rely on compiler to configure the target switch

Reconfigurability

Change parsing and processing in the field l



“Classic” OpenFlow (1.x)

SDN Control Plane

A

Installing and
querying rules




Georgia I& Conputer
Tech | Science

=

“OpenFlow 2.0”

SDN Control Plane

Configuring: Populating:
Parser, tables, Installing and
and control flow guerying rules

Compiler Parser & Table Rule
Configuration Translator




Simple Motivating Example

@ Data-center routing @ Hierarchical tag (mTag)
» Top-of-rack switches * Pushed by the ToR
» Two tiers of core switches * Four one-byte fields

» Source routing by ToR * Two hops up, two down




Georgia & Conputer
Tech | Science

=

Header Formats

Ordered list of fields
A field has a name and width

header vlan { header mTag {
heaqer ethernet { fields { fields {
fields ({ pcp : 3; upl : 8;
dst_addr : 48; cfi : 1; up2 : 8;
src_addr : 48; vid : 12; downl : 8;
ethertype : 16; ethertype : 16; down2 : 8;
} } ethertype :
} } }

16;



Georgia & Conputer
Tech | Science

=

Typed Tables

Describe each packet-processing stage
What fields are matched, and in what way
What action functions are performed
(Optionally) a hint about max number of rules

table mTag table {

reads {
ethernet.dst_addr : exact;

vlan.vid : exact;
}
actions {

add_mTag;

}

max_size : 20000;

}




Control Flow

Flow of control from one table to the next
Collection of functions, conditionals, and tables

From core Source Local
Check Switching Egress

(with mTag) Table Table Geck

\ _*/ Miss: Not Local
ToR ﬂ
mTag

From local hosts Table

(with no mTag)




Georgia I& Conputer
Tech | Science

=

P4 Compiler
Parser

Programmable parser: translate to state machine
Fixed parser: verify the description is consistent

Control program
Target-independent: table graph of dependencies
Target-dependent: mapping to switch resources

Rule translation

Verity that rules agree with the
(logical) table types

Translate rules to tables




Tech ) Science

=

Georgia I& Conputer

Compiling to Target Switches

Software switches
Directly map the table graph to switch tables
Use data structure for exact/prefix/ternary match

Hardware switches with RAM and TCAM
RAM: hash table for tables with exact match
TCAM: for tables with wildcards in the match

Switches with parallel tables
Analyze table graph for

possible concurrency .



Georgia & Conputer
Tech | Science

=

Compiling to Target Switches

Applying actions at the end of pipeline
Instantiate tables that generate meta-data
Use meta-data to perform actions at the end

Switches with a few physical tables

Map multiple logical tables to one physical table
“Compose” rules from the multiple logical tables
... into “cross product” of rules in physical table

_4



Conclusion

OpenFlow 1.x
Vendor-agnostic API
But, only for fixed-function switches

An alternate future
Protocol independence
Target independence
Reconfigurability in the field

P4: a strawman proposal

Other proposals: POF ‘



