
In this course, you will learn about software defined networking
and how it is changing the way communications networks are
managed, maintained, and secured.

School of Computer Science

Software Defined
Networking

Dr. Nick Feamster
Associate Professor

� Two Lessons
�  Programming the data plane: Click
�  Scaling programmable data planes

� Optional programming assignment (in Click)
� Quiz on Concepts

Module 5.1: Programmable Data Plane

2

3

Data Plane Review
�  Router gets packet
�  Looks at packet header for destination
�  Looks up forwarding table for output interface
�  Modifies header (TTL, IP header checksum)
�  Passes packet to appropriate output interface

Lookup	

IP	
 Address	

Update	

Header	

Header	
 Processing	

Data	
 Hdr	
 Data	
 Hdr	

Address	

Table	

IP	
 Address	
 Next	
 Hop	

Queue	

Packet	

Buffer	

Memory	

Data Plane
�  Streaming algorithms that act on packets

�  Matching on some bits, taking a simple action
�  … at behest of control and management plane

�  Wide range of functions
�  Forwarding
�  Access control
�  Mapping header fields
�  Traffic monitoring
�  Buffering and marking
�  Shaping and scheduling
�  Deep packet inspection

4

5

Motivation for Software Data Plane

� Network devices are diverse!
� Must do much more than forward/route packets
�  Adding functions difficult
� Match/Action is only one type of data plane

� Data plane design goals
�  Flexible
�  Extensible
� Clean interfaces

6

Click: A Software Data Plane

� Elements (building blocks)
�  Each individual element provides unique function
○  Packet switching
○  Lookup and Classification
○  Dropping

�  Implement functions: assemble building
blocks

h"p://www.read.cs.ucla.edu/click/	

7

8

Aspects of an Element
� Class: The code that should be executed

when an element processes a packet
� Ports: Connections go from output port of

one element to input port on another element
� Configuration: Additional arguments that

are passed to the element at configuration
time

� Method: Additional functions (e.g., reporting
queue length)

9

Connecting Elements: Push and Pull
�  Edges between two elements that could be

possible data paths for packets
�  Push: Upstream element hands over a packet to a

downstream element
○  packet-arrival element where the data is handed over to the

next unit of processing

�  Pull: Downstream element requests data from the
upstream element
○  transmit-side elements where the transmit ports will request

for a packet from the previous element

10

Packet Storage: Queues
�  Elements need to either store packets, discard them, or

forward them to the next element.
�  Data storage necessary: a push input and a pull output

necessitates storage of pushed data until it is requested.
�  Packet storage at element is not implicit.

�  Queues implemented as elements so that their insertion/
deletion becomes more configurable.
�  Need to be explicitly put at elements.

11

Configuration Language
�  Two constructs

�  Declarations create elements
�  Connections say how they are connected

�  Configuration string passed as is, as a list separated by commas to
the element

�  Other elements used as primitives to define compound elements

12

Summary

�  The data plane must also be programmable!
�  Click: Open, extensible, configurable router

framework.
�  The example router configuration proves that a

complex router can be designed using simple
building blocks.

�  Performance is acceptable for prototyping.
�  Click is still 90% as fast as the base Linux system

