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� Two Lessons 
�  Programming the data plane: Click 
�  Scaling programmable data planes 

� Optional programming assignment (in Click) 
� Quiz on Concepts 

Module 5.1: Programmable Data Plane 
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Data Plane Review 
�  Router gets packet 
�  Looks at packet header for destination 
�  Looks up forwarding table for output interface 
�  Modifies header (TTL, IP header checksum) 
�  Passes packet to appropriate output interface 
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Data Plane 
�  Streaming algorithms that act on packets 

�  Matching on some bits, taking a simple action 
�  … at behest of control and management plane 

�  Wide range of functions 
�  Forwarding 
�  Access control 
�  Mapping header fields 
�  Traffic monitoring 
�  Buffering and marking 
�  Shaping and scheduling 
�  Deep packet inspection 
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Motivation for Software Data Plane 

� Network devices are diverse! 
� Must do much more than forward/route packets 
�  Adding functions difficult 
� Match/Action is only one type of data plane 

� Data plane design goals 
�  Flexible 
�  Extensible 
� Clean interfaces 
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Click: A Software Data Plane 

� Elements (building blocks) 
�  Each individual element provides unique function 
○  Packet switching 
○  Lookup and Classification 
○  Dropping 

�  Implement functions: assemble building 
blocks 

h"p://www.read.cs.ucla.edu/click/	
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Aspects of an Element 
� Class: The code that should be executed 

when an element processes a packet 
� Ports: Connections go from output port of 

one element to input port on another element 
� Configuration: Additional arguments that 

are passed to the element at configuration 
time 

� Method: Additional functions (e.g., reporting 
queue length) 
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Connecting Elements: Push and Pull 
�   Edges between two elements that could be 

possible data paths for packets  
�  Push: Upstream element hands over a packet to a 

downstream element  
○  packet-arrival element where the data is handed over to the 

next unit of processing 

�  Pull: Downstream element requests data from the 
upstream element  
○  transmit-side elements where the transmit ports will request 

for a packet from the previous element 
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Packet Storage: Queues 
�  Elements need to either store packets, discard them, or 

forward them to the next element. 
�  Data storage necessary: a push input and a pull output 

necessitates storage of pushed data until it is requested. 
�  Packet storage at element is not implicit. 

�  Queues implemented as elements so that their insertion/
deletion becomes more configurable. 
�  Need to be explicitly put at elements. 
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Configuration Language 
�  Two constructs 

�  Declarations create elements 
�  Connections say how they are connected 

�  Configuration string passed as is, as a list separated by commas to 
the element 

�  Other elements used as primitives to define compound elements 
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Summary 

�  The data plane must also be programmable! 
�  Click: Open, extensible, configurable router 

framework. 
�  The example router configuration proves that a 

complex router can be designed using simple 
building blocks. 

�  Performance is acceptable for prototyping. 
�  Click is still 90% as fast as the base Linux system 


