
In this course, you will learn about software defined networking
and how it is changing the way communications networks are
managed, maintained, and secured.

School of Computer Science

Software Defined
Networking

Dr. Nick Feamster
Associate Professor

� Three Lessons
� Control Plane Basics (OpenFlow 1.0 and Beyond)
�  SDN Controllers
� Using SDN Controllers to Customize Control

� Programming Assignment (and Quiz)
� Quiz

Module 4.2: The Control Plane

2 (with	
 help	
 from	
 Hyojoon	
 Kim,	
 Ph.D.	
 student	
 at	
 Georgia	
 Tech)	

Lesson Overview
� Overview of different SDN Controllers
� Basic understanding of each controller

� Concepts
�  Architecture
�  Programming Model

� Pros and cons of each controller
�  Ideal situations for each controller

Many Different SDN Controllers
�  NOX/POX
�  Ryu
�  Floodlight
�  Pyretic
�  Frenetic
�  Procera
�  RouteFlow
�  Trema

4

Many Considerations

�  Programming Language (can affect performance)
�  Learning curve
�  User base and community support
�  Focus

�  Southbound API
�  Northbound API / “Policy Layer”
�  Support for OpenStack
�  Education, Research, or Production?

5

Many Different SDN Controllers
�  NOX/POX
�  Ryu
�  Floodlight
�  Pyretic
�  Frenetic
�  Procera
�  RouteFlow
�  Trema

6

NOX: Overview

� First-generation OpenFlow controller
� Open source, stable, widely used

� Two “flavors” of NOX
� NOX-Classic: C++/Python. No longer supported.
� NOX (the “new NOX”)
○  C++ only
○  Fast, clean codebase
○  Well maintained and supported

7 h@p://www.noxrepo.org	

NOX: Characteristics

� Users implement control in C++
� Supports OpenFlow v.1.0

� A fork (CPqD) supports 1.1, 1.2, and 1.3
� Programming model

� Controller registers for events
� Programmer writes event handler

8

When to Use NOX

� You know C++

� You are willing to use low-level facilities and
semantics of OpenFlow

� You need good performance

9

POX: Overview

� NOX in Python
�  Supports OpenFlow v. 1.0 only

� Advantages
� Widely used, maintained, supported
� Relatively easy to read and write code

� Disadvantages: Performance

10

h@p://www.noxrepo.org/pox/about-­‐pox/	

h@ps://openflow.stanford.edu/display/ONL/POX+Wiki	

When to Use POX

�  If you know (or can learn) Python and are not
concerned about controller performance

� Rapid prototyping and experimentation
� Research, experimentation, demonstrations
�  Learning concepts

11

Ryu

� Open source Python controller
�  Supports OpenFlow 1.0, 1.2, 1.3, Nicira extensions
� Works with OpenStack

� Aims to be an “Operating System” for SDN
� Advantages

� OpenStack integration, OpenFlow 1.2 and 1.3
� Disadvantages: Performance

12
	

	

h@p://osrg.github.io/ryu/	

Floodlight
�  Open-source Java controller

�  Supports OpenFlow v. 1.0
�  Fork from the Beacon Java OpenFlow controller
�  Maintained by Big Switch Networks

�  Advantages
�  Good documentation
�  Integration with REST API
�  Production-level performance, OpenStack

�  Disadvantages: Steep learning curve
13 h@p://www.projecNloodlight.org/floodlight/	

When to Use Floodlight

� You know Java

� You need production-level performance and
support

� You will use the REST API to interact with
the controller

14

Summary

�  Choice of controller depends on needs, language, etc.
�  So far: Southbound API implementations

Next week: “Northbound” APIs
15

NOX	
 POX	
 Ryu	
 Floodlight	

Language	
 C++	
 Python	
 Python	
 Java	

Performance	
 Fast	
 Slow	
 Slow	
 Fast	

OpenFlow	
 1.0	

(CPqD:	
 1.1,	
 1.2,	
 1.3)	

1.0	
 1.0,	
 1.1,	
 1.3	
 1.0	

OpenStack	
 No	
 No	
 Yes	
 Yes	

Learning	

Curve	

Moderate	
 Easy	
 Moderate	
 Steep	

