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� Three Lessons 
� Control Plane Basics (OpenFlow 1.0 and Beyond) 
�  SDN Controllers 
� Using SDN Controllers to Customize Control 

� Programming Assignment (and Quiz) 
� Quiz 

Module 4.2: The Control Plane 
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Lesson Overview 
� Overview of different SDN Controllers 
� Basic understanding of each controller 

� Concepts 
�  Architecture 
�  Programming Model 

� Pros and cons of each controller 
�  Ideal situations for each controller 



Many Different SDN Controllers 
�  NOX/POX 
�  Ryu 
�  Floodlight 
�  Pyretic 
�  Frenetic 
�  Procera 
�  RouteFlow 
�  Trema 
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Many Considerations 

�  Programming Language (can affect performance) 
�  Learning curve 
�  User base and community support 
�  Focus 

�  Southbound API 
�  Northbound API / “Policy Layer” 
�  Support for OpenStack 
�  Education, Research, or Production? 
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NOX: Overview 

� First-generation OpenFlow controller 
� Open source, stable, widely used 

� Two “flavors” of NOX 
� NOX-Classic: C++/Python.  No longer supported. 
� NOX (the “new NOX”) 
○  C++ only 
○  Fast, clean codebase 
○  Well maintained and supported 
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NOX: Characteristics 

� Users implement control in C++ 
� Supports OpenFlow v.1.0 

� A fork (CPqD) supports 1.1, 1.2, and 1.3 
� Programming model 

� Controller registers for events 
� Programmer writes event handler 
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When to Use NOX 

� You know C++ 

� You are willing to use low-level facilities and 
semantics of OpenFlow 

� You need good performance 
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POX: Overview 

� NOX in Python 
�  Supports OpenFlow v. 1.0 only 

� Advantages 
� Widely used, maintained, supported 
� Relatively easy to read and write code 

� Disadvantages: Performance 
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When to Use POX 

�  If you know (or can learn) Python and are not 
concerned about controller performance 

� Rapid prototyping and experimentation 
� Research, experimentation, demonstrations 
�  Learning concepts 
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Ryu 

� Open source Python controller 
�  Supports OpenFlow 1.0, 1.2, 1.3, Nicira extensions 
� Works with OpenStack 

� Aims to be an “Operating System” for SDN 
� Advantages 

� OpenStack integration, OpenFlow 1.2 and 1.3 
� Disadvantages: Performance 
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Floodlight 
�  Open-source Java controller 

�  Supports OpenFlow v. 1.0 
�  Fork from the Beacon Java OpenFlow controller 
�  Maintained by Big Switch Networks 

�  Advantages 
�  Good documentation 
�  Integration with REST API 
�  Production-level performance, OpenStack 

�  Disadvantages: Steep learning curve 
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When to Use Floodlight 

� You know Java 

� You need production-level performance and 
support 

� You will use the REST API to interact with 
the controller 
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Summary 

�  Choice of controller depends on needs, language, etc. 
�  So far: Southbound API implementations 

Next week: “Northbound” APIs 
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NOX	
   POX	
   Ryu	
   Floodlight	
  

Language	
   C++	
   Python	
   Python	
   Java	
  

Performance	
   Fast	
   Slow	
   Slow	
   Fast	
  

OpenFlow	
   1.0	
  
(CPqD:	
  1.1,	
  1.2,	
  1.3)	
  

1.0	
   1.0,	
  1.1,	
  1.3	
   1.0	
  

OpenStack	
   No	
   No	
   Yes	
   Yes	
  

Learning	
  
Curve	
  

Moderate	
   Easy	
   Moderate	
   Steep	
  


