
In this exercise, you will be working with the Kinetic controller, which permits event-driven
network control.

Kinetic is an SDN control module that can dynamically react to various types of network events
(e.g., intrusion detection, bandwidth limit reached, etc.) by changing the applied network policy
dynamically. Event-driven SDN control makes networks easier to manage by automating many
tasks that are currently performed by manually modifying multiple distributed device
configuration files, which are expressed in low-level, vendor-specific CLI commands.

Kinetic augments the original Pyretic code base with many useful features to present an
attractive and engaging environment for implementing an event-driven SDN controller.
Moreover, Pyretic's modular programming model allows programmers to build a complex
network policy by composing multiple network policies together (sequential or parallel). Unlike
previous weeks, this week you will be taken through the steps of writing reactive network
applications using Kinetic—giving operators access to dynamically changing network
policies—and testing them using Mininet. The purpose of this exercise is to show you yet
another way of writing dynamic network applications.

Another benefit to Kinetic is that its dynamic behavior is verifiable. A network operator can write
dynamic network policies in terms of a Finite State Machine (FSM), and these policies are
automatically translated into a form that a model checker can verify for certain properties. For
example, it is possible to verify certain properties such as “when an intrusion detection system
indicates that a host is infected, the host will always be blocked from the network”

After the walkthrough, you will be asked to implement a simple server load-balancing application
on Kinetic and test it using Mininet. More details on creating and submitting the code will be
provided later on in the instructions. So, as always, make sure that you follow each step
carefully.

Walkthrough

The network you'll use in this exercise includes 3 hosts and a switch. This time, you will use the
Kinetic controller to express your network applications.

Figure 1: Topology for the Network under Test

What is Kinetic?

Kinetic is an SDN control framework where operators define a network policy as a Finite State
Machine (FSM). Transitions between states are triggered by different types of dynamic events in
the network, (e.g., intrusion detection, authentication of hosts, data usage cap reached, etc.)
Based on different network events, operators can enforce different policies to the network using
an intuitive FSM model. Kinetic is implemented as a Pyretic module. You can build multiple
network policies and compose them (sequential or parallel) together to express an overall
network policy for the target network. For each network policy, you can have multiple states.

A Kinetic control program permits programmer-defined events to dynamically change forwarding
behavior for an arbitrary set of flows. Such events can range from topology changes (generated
by the Pyretic runtime) to security incidents (generated by an intrusion detection system). The
programmer specifies an FSM description that contains set of states, each of which maps to
some network behavior that are encoded using Pyretic’s policy language; and a set of
transitions between those states, each of which may be triggered by events that the operator
defines.

For more details on Kinetic, see http://kinetic.noise.gatech.edu.

We will be using the Kinetic controller, so make sure that the default, POX or Pyretic controller is
not running in the background. Also, confirm that the port ‘6633’ used to communicate with
OpenFlow switches by the runtime is not bounded:

http://kinetic.noise.gatech.edu/

$ sudo fuser -k 6633/tcp

This will kill any existing TCP connection, using this port.

You should also run sudo mn -c and restart Mininet to make sure that everything is
clean.From you Mininet console:

mininet> exit

$ sudo mn -c

Installing Kinetic on Your VM

Make sure that you have Pyretic and Pyretic installed in your VM. We recommend using the VM
we have provided on the course website. It comes pre-installed with Mininet, Pox, and Pyretic.

In the VM, go to "/home/mininet/pyretic/".

$ cd ~/pyretic

Make sure you have the latest Kinetic branch.

$ git pull

$ git checkout kinetic

Check if "home/mininet/pyretic/pyretic/kinetic" directory exists.

$ ls home/mininet/pyretic/pyretic/kinetic

Now run Kinetic module for testing.

Before running any kinetic application, we must issue this
$export KINETICPATH=$HOME/pyretic/pyretic/kinetic

or add the following line in ~/.bashrc to make it permanent.
export KINETICPATH=$HOME/pyretic/pyretic/kinetic

Move back to directory "/home/mininet/pyretic" and run:

$ python pyretic.py pyretic.kinetic.apps.ids

Check if this command produces any errors. It should start a controller and not output any error
messages.

A Simple Kinetic Example

In this simple example, you’ll fire up an authentication policy module, which drops traffic from
any host that is not authenticated.

First, fire up mininet with the following topology:

$ sudo mn --controller=remote --topo=single,3 --mac --arp

This will create a network topology as shown in figure 1.

Now, start the Kinetic “simple” application using the Pyretic runtime:

$ pyretic.py pyretic.kinetic.apps.ids

In mininet, send a ping to host h2 (with IP address 10.0.0.2) from host h1:

mininet> h1 ping -c3 h2

You should see that host h1 can reach host h2. This is because the traffic coming from these
hosts is not authenticated.

Use the JSON client included with Kinetic to send JSON events to the Kinetic controller to
indicate that host h1 is infected:

$ python json_sender.py -n infected -l True --flow="{srcip=10.0.0.1}"

-a 127.0.0.1 -p 50001

This command sends a JSON message to the Kinetic controller indicating that host h1 is
infected. The Kinetic control program you are running has a Finite State Machine (FSM) policy
that says when a host corresponding to the flow space with a specific source IP address
transitions to an infected state, the policy for that part of flow space should transition from
“passthrough” to “drop”.

Sending an event that indicates that the host is no longer infected should cause h1 to no longer
be blocked:

$ python json_sender.py -n infected -l False

--flow="{srcip=10.0.0.1}" -a 127.0.0.1 -p 50001

Now, the ping will pass and you should see replies coming back from host h2.

Let’s have a closer look at the code:

from pyretic.lib.corelib import *

from pyretic.lib.std import *

from pyretic.kinetic.fsm_policy import *

from pyretic.kinetic.drivers.json_event import JSONEvent

from pyretic.kinetic.smv.model_checker import *

class auth(DynamicPolicy):

 def __init__(self):

 ### DEFINE THE LPEC FUNCTION

 def lpec(f):

 return match(srcip=f['srcip'])

 ## SET UP TRANSITION FUNCTIONS

 @transition

 def authenticated(self):

 self.case(occurred(self.event),self.event)

 @transition

 def policy(self):

 self.case(is_true(V('authenticated')),C(identity))

 self.default(C(drop))

 ### SET UP THE FSM DESCRIPTION

 self.fsm_def = FSMDef(

 authenticated=FSMVar(type=BoolType(),

 init=False,

 trans=authenticated),

 policy=FSMVar(type=Type(Policy,{drop,identity}),

 init=drop,

 trans=policy))

 ### SET UP POLICY AND EVENT STREAMS

 fsm_pol = FSMPolicy(lpec,self.fsm_def)

 json_event = JSONEvent()

 json_event.register_callback(fsm_pol.event_handler)

 super(auth,self).__init__(fsm_pol)

def main():

 pol = auth()

 return pol >> flood()

Table 1: Simple Kinetic IDS application.

Notice how short and concise the code is. We will now walk through the application to help
explain how to write a Kinetic control program.

Writing Kinetic Control Programs

A Kinetic program has several parts:

● The LPEC function. An LPEC refers to the maximal set of located packets (i.e.,
flowspace) that one independent FSM instance will handle. A programmer can represent
a LPEC using any Pyretic filter. For example, the LPEC containing all packets whose
source IP address is 10.0.0.1 can be expressed simply as
match(srcip=IPAddr(’10.0.0.1’)).

● Transition functions. A transition function encodes logic that indicates the new value a
variable should take when a particular event arrives at the controller. For example, the
that the infected transition function encodes contains a single case: when an infected
event occurs, the new value taken by the infected variable is the value of that event.
Changes to any given FSM state variable (i.e., transitions) are triggered for one of two
reasons:

○ exogenous, the arrival of an external event upon which this variable’s value
depends; and

○ endogenous, the change of another variable upon which this variable’s value
depends.

● FSM definition. The FSM associates the transition functions that we define with the
appropriate state variables. The FSM definition consists of a set of state variable
definitions. Each variable definition simply specifies the variable’s type (i.e., set of
allowable values), initial value, and associated transition functions. The infected
variable is a boolean whose initial value is False (representing the assumption that hosts
are initially uninfected), and transitions based on the infected function defined previously.
Likewise, the policy variable can take the values drop or identity, initially starts off in
the identity state, and transitions based on the policy function defined previously.

● Policy and event streams. The FSMPolicy that Kinetic provides automatically directs
each incoming event to the appropriate LPEC FSM, where it will be handled by the
exogenous transition function specified in the FSM description (e.g., fsm_desc above).

Example with Sequential Composition

A more complicated example shows the power of having multiple FSMs to process events and
then using sequential composition to apply policies to the traffic.

Start the Mininet Topology, as in the previous example:

$ sudo mn --controller=remote --topo=single,3 --mac --arp

Run the Kinetic “main” application:

$ pyretic.py pyretic.kinetic.examples.auth_ml_ids

In mininet, send a ping to host h2 (with IP address 10.0.0.2) from host h1:

mininet> h1 ping -c3 h2

You should see that host h1 is not able to reach host h2. This is because the traffic coming
from these hosts is not yet authenticated.

Use JSON client to send JSON events to the Kinetic controller, to authenticate the two hosts:

$ cd ~/pyretic/pyretic/kinetic

$ python json_sender.py -n authenticated -l True

--flow="{srcip=10.0.0.1}" -a 127.0.0.1 -p 50001

$ python json_sender.py -n authenticated -l True

--flow="{srcip=10.0.0.2}" -a 127.0.0.1 -p 50001

You will see that sending a ping this time to host h2 from h1 now succeeds.

Similarly, you can block traffic as before, with an IDS event:

$ python json_sender.py -n infected -l True --flow="{srcip=10.0.0.1}"

-a 127.0.0.1 -p 50002

This is because the policy on the packets is a sequential composition of the authentication
policy and the IDS policy, no packets go through until both of these policies have a passthrough
policy.

Note: The "infected" event should be sent to port 50002. Port 50001 is solely used by the auth
application in this case. There is one TCP port number assigned per FSM, which is incremented
by one as new FSMs that take external events are instantiated. (Yes, this is not the most
intuitive behavior, and we are working to address this in future versions!)

Resetting the infected variable to false will again allow traffic to pass from h1 to other hosts on
the network.

Here’s the code for the “main” application:

from pyretic.kinetic.apps.ids import ids

from pyretic.kinetic.apps.mac_learner import mac_learner

from pyretic.kinetic.apps.auth import auth

def main():

 return auth() >> mac_learner() >> ids()

Table 2: Kinetic application with sequential composition.

Composing event-driven FSM policies is as easy as it was in Pyretic. Simply use Pyretic’s
sequential composition policies to compose policies that you have already specified. In this
particular example, we compose the authentication policy above with a MAC learning switch,
followed by the IDS policy. As it turns out, you can also write a MAC learning switch in Kinetic.
The policy above is actually a Kinetic policy that changes states in conjunction with topology
events. You can see that policy here.

Model Checking and Verification with Kinetic

You’ll also note that the example IDS application has some logical assertions that the Kinetic
controller attempts to verify using a model checker called NuSMV. There are three statements
that are listed in the example code.

The first statement says that an infected event for some LPEC should result in the next policy
being “drop” (i.e., policy_1). The second statement says that if an infected variable
transitions to false, the next policy should be “passthrough” (i.e., policy_2). The final
statement says that the default policy should be “allow” until the infected variable becomes true.

 ### If infected event is true, next policy state is 'drop'

https://github.com/frenetic-lang/pyretic/blob/kinetic/pyretic/kinetic/apps/mac_learner.py
http://nusmv.fbk.eu/

 mc.add_spec("SPEC AG (infected -> AX policy=policy_1)")

 ### If infected event is false, next policy state is 'allow'

 mc.add_spec("SPEC AG (!infected -> AX policy=policy_2)")

 ### Policy state is 'allow' until infected is true.

 mc.add_spec("SPEC A [policy=policy_2 U infected]")

Below is the set of NuSMV logical operators that can help you understand the modifiers A, G, X,
and U above. The logic is a little tricky and takes some getting the hang of. The trick with
reasoning about CTL is to realize that all computation paths are represented as a tree from the
current state. Any transition will result in transitioning down the tree to another node. A “path”
in CTL is not a network path, but rather an execution path in this tree. So, in the table below,
“all paths from the current state” basically means “for all nodes on paths in the tree rooted at the
current state”.

So, reading for example the first SMV specification literally, you might say “for all paths globally
from the current state, an infected transition should always result in the policy becoming
policy_2 as the next state from the current state”. You should practice reading and writing
these logical statements. This additional background on computation tree logic (CTL) may also
be useful.

The other inconvenience is that you first have to write your policy to determine that policy_1
corresponds to drop and policy_2 corresponds to allow.

Assignment

The assignment has two parts. You’ll first use Kinetic to make small modifications to the
authentication module (and write some rules to verify that it is correct). You’ll then use Kinetic to
implement some server load balancing logic (and verify the correctness of your logic). To start
this exercise, download module8-assignment1.zip. All parts of this assignment use the topolgy
below. Put these files in a directory called ~/pyretic/pyretic/kinetic/ext.

You will use the following files:

● gardenwall.py: Skeleton code for the gardenwall application.

http://www.cs.cmu.edu/~emc/15-820A/reading/lecture_0.pdf
https://www.dropbox.com/s/lh1is9jbi20exm6/8-kinetic.zip

● primary_backup.py:Skeleton code for the primary/backup
● submit.py: used to submit your code and output to the coursera servers for

grading.

Figure 2: Topology for the network under test for this assignment.

Part 1: Host Gardenwall

In this part of the assignment, you will augment the IDS module that we have been studying so
that some hosts might be classified as “exempt” from blocking, even if they transition to an
infected state. In our simple example, the hosts that are in an “exempt” but “infected” state will
be redirected to different server whenever they attempt to access any destination. An
application of this example might be in an enterprise network setting, where infected hosts
belonging to guests are simply cut off of the network entirely, but hosts belonging to employees,
students, etc. are instead redirected to a “garden wall”.

Your example application should have the following modifications:

● Modify the finite state machine to have an “exempt” state, in addition to the “infected”
state. (So, a host can either be infected or not, and exempt or not.)

● Create a new policy using Pyretic, gardenwall, which modifies traffic in the example
topology to redirect all traffic from an infected but exempt host to any destination to host
10.0.0.3 (let’s assume that 10.0.0.3 is a host where the gardenwall server would be
located).

● Write and check your CTL logic to verify that your host machine satisfies the following
table of policies:

 Infected Not Infected

Exempt “gardenwall”:
Redirect to 10.0.0.3
(rewrite dst IP)

“identity” (allow)

Not Exempt “drop”:
Drop

“identity” (allow)

The following function will be helpful:

● rewriteDstIPAndMAC(): This is to change the dstip addres to a specific IP address
whatever the dstip is (more exactly, if the dstip matches any of the given client IPs).

Testing Your Code

Run your Kinetic controller application:

$ cd ~/pyretic

$ pyretic.py pyretic.kinetic.ext.gardenwall &

Start a ping from h1 to h2
mininet> h1 ping h2

Send Event to block traffic "h1 ping h2" (in "~/pyretic/pyretic/kinetic" directory)
$ python json_sender.py -n infected -l True --flow="{srcip=10.0.0.1}"

-a 127.0.0.1 -p 50001

Make h1's flow not be affected by IDS infection event, h1's traffic should be forwarded to
10.0.0.3 after issuing this command:
$ python json_sender.py -n exempt -l True --flow="{srcip=10.0.0.1}"

-a 127.0.0.1 -p 50001

Events to now allow traffic again:
$ python json_sender.py -n infected -l False

--flow="{srcip=10.0.0.1}" -a 127.0.0.1 -p 50001

Part 2: Server Load Balancing / Backup

Server load balancing improves network performance by distributing traffic efficiently so that
individual servers are not overwhelmed by sudden fluctuations in activity. In this assignment,
your will implement a simple server load balancing application using Kinetic, where the load

balancer is implemented as a primary/backup. The load balancer that we are asking you to
implement is a load balancer that responds to events that explicitly redirect a source’s traffic to a
particular server, as opposed to the load balancer that we included in the Kinetic example
applications that is based on random assignment. In this sense, the controller application you
are writing could be used to process different types of events that might occur in the network
(e.g., server failure, overload, etc.)

The network topology that you are using has three hosts (h1, h2 and h3) directly connected to
the switch s1. For this part of the assignment, let’s assume that h1 is a client, and h2 and h3
are servers for which you will do load balancing.

In the setup script that we have provided, host h1 sends a ping request to a “public” IP address
(10.0.0.100), which will direct the traffic to either host h2 (10.0.0.2) or h3 (10.0.0.3) based on
the policy configured on the Kinetic controller.
Specifically, when you issue the following command:

$ python json_sender.py -n backup -l True --flow="{srcip=10.0.0.1}"

-a 127.0.0.1 -p 50001

Your traffic from h1 should be redirected to host h3 (the backup). When the backup variable is
false, the traffic should be directed to h2 (the “primary”).

Your example application should have the following modifications:
● Create a finite state machine where host h1’s flows are directed either to primary or

backup, using a variable called “backup”.
● Create a new policy using Pyretic, fwdtobackup, which modifies traffic in the example

topology to redirect all traffic from host h1 to the backup server, h3.
● Write and check your CTL logic to verify that your host machine satisfies the following

policy: “When h1 receives a backup event, the controller transitions to run the
fwdtobackup policy.”

The following function will be helpful:

● rewriteDstIPAndMAC_Public(). This is to change the dstip address to a specific
IP address if the dstip matches a public IP (e.g., 10.0.0.100). This is used in the
“primary-backup” application where the src host knows that it has to send traffic to a
specific public IP.

Testing Your Code

Run your Kinetic controller application:

$ cd ~/pyretic

$ pyretic.py pyretic.kinetic.ext.primary_backup &

Now, open another terminal and run mininet to create your topology:

$ sudo mn --controller=remote,ip=127.0.0.1 --mac --arp --switch ovsk

--link=tc --topo=single,3

Start a ping from h1 to the public IP address:
mininet> h1 ping 10.0.0.100

Now, make h1's flow use backup server:
$ python json_sender.py -n backup -l True --flow="{srcip=10.0.0.1}"

-a 127.0.0.1 -p 50001

You can make h1's flow use the primary server again as follows:
$ python json_sender.py -n backup -l False --flow="{srcip=10.0.0.1}"

-a 127.0.0.1 -p 50001

Submitting Your Code

Part 1:

Run Kinetic controller application:

$ pyretic.py pyretic.kinetic.ext.gardenwall &

Configure the following policy using sendy_json.py:

$./sendy_json.py -i 10.0.0.1 -e lb -V portA

Method 1:

To submit your code, run the submit.py script, under the ~/pyretic/pyretic/kinetic
directory:

$ cd ~/pyretic/pyretic/kinetic

$ sudo python submit.py

Your mininet VM should have internet access by default, but still verify that it has Internet
connectivity (i.e., eth0 set up as NAT). Otherwise submit.py will not be able to post your code
and output to our Coursera servers.

The submission script will ask for your login and password. This password is not the general
account password, but an assignment-specific password that is uniquely generated for each
student. You can get this from the assignments listing page.

Once finished, it will prompt the results on the terminal (either passed or failed).

Method 2: (alternative for those not able to submit using the above script)

Download and run the following script:

$ wget https://d396qusza40orc.cloudfront.net/sdn/srcs/m7-output.py

$ sudo python m7a-output.py

This will create an output-1.log file in the same folder. Upload this log file on
coursera using the submit button for Module 7 under the Week 6 section on the
Programming Assignment page.

Once uploaded, it will results the results on a new page (either passed or failed).

Note, if during the execution submit.py script crashes for some reason or you terminate it
using CTRL+C, make sure to clean mininet environment using:
$ sudo mn -c

Also, if it still complains about the controller running. Execute the following command to kill it:

$ sudo fuser -k 6633/tcp

Appendix: Steps to Make an Kinetic Application

1. Define class for the application, subclassed from DynamicPolicy
2. Define LPEC

a. Define the packet space fields that will used to categorize packets to have
equivalent policies applied. Unspecified fields will be wildcarded.

3. Set up transition functions
a. Use “@transition” decorator

i. Ensures it is fed into the NuSMV input automatic translator
b. For events
c. For policies

4. Set up the FSM description
a. Define variable’s type, initial value, and transition function
b. Both event and policy are variables

i. type: Type of this variable (e.g., boolean, integer, Pyretic policy)
ii. init: Initial value for this variable

https://d396qusza40orc.cloudfront.net/sdn/srcs/m7-output.py

iii. trans: transition function for this variable. Whenever an event arrives, the
specified transition function is called.

5. Set up policy and event streams
a. Create FSMPolicy.
b. Register for events (e.g,. JSON events), so that it’s called every time an event

arrives.
● Note: Normally, this part pretty much remains the same for any application, so no

need to add/modify unless your application listens to non-JSON events.
6. Define “main” method

a. Add methods to get ready for NuSMV model checker, if you want verification.
● smv_str = fsm_def_to_smv_model(pol.fsm_def)
● mc = ModelChecker(smv_str,'ids')

7. Add SPEC lines, which is in CTL (Computation Tree Logic) language.
a. Add statements that should be verified.
b. Some IDS examples:

i. If infected event is true, next policy state is 'drop':
● mc.add_spec("SPEC AG (infected -> AX policy=drop)")

ii. Policy state is 'allow' until infected is true.
● mc.add_spec("SPEC A [policy=allow U infected]")

8. Return DynamicPolicy instance.

