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Résumé

Actuellement, le secteur des réseaux connaît un intérêt croissant pour deux technologies

majeures : la virtualisation des fonctions réseau (NFV) et les réseaux définis par logiciel

(SDN). NFV et SDN offrent des approches novatrices en matière de gestion des réseaux,

en apportant une grande flexibilité et programmabilité.

Le réseau défini par logiciel (SDN) révolutionne la gestion des réseaux en dissociant

le plan de contrôle du plan de données. Cette séparation de plans permet un contrôle

centralisé et programmable, remplaçant le contrôle traditionnel basé sur le matériel

physique par un contrôle basé sur des logiciels. Le SDN peut créer des réseaux virtuels

ou gérer efficacement des réseaux matériels existants à l’aide de logiciels offrant ainsi

une grande flexibilité et adaptabilité.

La virtualisation des fonctions réseau (NFV), quant à elle, vise à réduire les coûts et

à accélérer le déploiement des services pour les différents opérateurs de réseau. Cela est

réalisé en dissociant les fonctions réseau (NF) telles que les pare-feu ou le chiffrement

du matériel dédié et en les virtualisant sur des serveurs standards. La NFV permet de

regrouper plusieurs fonctions sur un seul serveur physique, ce qui permet d’économiser

les coûts et réduire les interventions sur site. Au lieu de déployer de nouveaux matériels,

les fournisseurs de services (opérateurs) peuvent activer des machines virtuelles (VM)

pour exécuter des fonctions réseau spécifiques (VNFs). Par exemple, le chiffrement du

réseau peut être réalisé en déployant un logiciel de chiffrement sur un serveur standard ou

un commutateur existant, ce qui élimine la nécessité de déployer de nouveaux matériels.

Le placement et le chainage des VNFs posent un problème complexe connu pour

être NP-difficile. Il s’agit de déterminer la séquence optimale de chaînes de fonctions

de service (SFC) tout en dirigeant efficacement le trafic à travers les différents VNFs.

L’objectif principal de la thèse est de développer un algorithme qui optimise le coût de

placement et chainage des VNFs dans le réseau, en tenant compte de diverses contraintes

telles que l’ordre des VNFs, la capacité de traitement et la capacité de bande passante.
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L’algorithme vise à minimiser les coûts d’allocation globaux tout en garantissant un

routage efficace des flux à travers les VNFs.

En exploitant les capacités du NFV et du SDN, la thèse vise à contribuer à

l’avancement de la virtualisation des réseaux et des réseaux définis par logiciel (SDN).

Les algorithmes proposés permettront aux opérateurs de réseau de prendre des décisions

éclairées concernant le placement des VNFs, ce qui se traduira par une amélioration de

l’efficacité du réseau, une réduction des coûts et une amélioration de la fourniture de

services. La thèse vise à permettre aux opérateurs de réseau de gérer efficacement leurs

réseaux, d’allouer les ressources de manière optimale et de fournir des services avec une

agilité et une rentabilité accrues.

Mots-clés : Virtualisation des Fonctions Réseau, Réseau Défini par Logiciel, Chaine

des Fonctions de Service, Allocation des Ressources, Optimisation, Fonctions Réseau

Virtuelles, Déploiement de Services, Optimisation des Coûts.



Abstract

The current landscape of networking has witnessed a growing interest in two significant

technologies: Network Function Virtualization (NFV) and Software-Defined Networking

(SDN). These technologies offer novel approaches to network management, bringing

flexibility and programmability to the forefront.

Software-Defined Networking (SDN) revolutionizes the network management by

decoupling the control plane from the data plane. This separation of plans allows

for centralized control and programmability, replacing traditional hardware-centric

control with software-based control. SDN can create virtual networks or efficiently

control traditional hardware networks through software, offering enhanced flexibility

and adaptability.

Network Function Virtualization (NFV), on the other hand, focuses on cost reduction

and service deployment acceleration for network operators. It achieves this by decoupling

network functions (NF), such as firewall or encryption, from dedicated hardware and

virtualizing them on standard servers. NFV enables the consolidation of multiple

functions onto a single physical server, resulting in cost savings and minimized field

interventions. Adding new network functions becomes more streamlined, requiring the

activation of virtual machines (VM) rather than deploying additional hardware across

the entire network.

The research thesis aims to tackle the NP-hard problem of optimal VNFs placement

and chaining within a NFV network. This problem involves determining the most

efficient sequence of service function chains (SFC) while directing flows through the

VNFs. The primary objective is to develop an algorithm that achieves a cost optimal

placement and chaining of VNFs, considering various constraints such as chaining order,

processing capacity, and bandwidth capacity. The algorithm seeks to minimize the

overall allocation costs while ensuring effective flow routing through the VNFs.

By leveraging the capabilities of NFV and SDN, the thesis aims to contribute to the
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advancement of network virtualization and software-defined networking. The proposed

algorithms will empower network operators to make informed decisions regarding VNFs

placement, leading to improved network efficiency, cost reduction, and enhanced service

provisioning. Ultimately, the thesis aims to enable network operators to effectively

manage their networks, allocate resources optimally and deliver services with increased

agility and cost-effectiveness.

Keywords: Network Function Virtualization, Software-Defined Networking, Service

Function Chaining, Resource Allocation, Optimization, Virtual Network Functions,

Service Deployment.
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Introduction

Walk in sandals

until wisdom gives you shoes.

Avicenna

This chapter introduces the research topic of Virtual Network Function Placement

and Chaining (VNF-PC) in the context of Network Function Virtualization (NFV)

and Software-Defined Networking (SDN). It discusses the objective of optimizing

resource allocation and minimizing costs while considering constraints. The con-

tributions of the thesis are summarized. The thesis is organized into six chapters,

each addressing different aspects of the VNF-PC problem and proposing innovative

solutions.

Abstract
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1.1 Introduction

I n this chapter, we highlight the main issues and motivations involved in network

services according to the NFV/SDN paradigms. Subsequently, we will discuss the

main characteristics of this emerging technology. Likewise, the chapter discusses

the limitations of the technology and presents the background and challenges facing

the technology. The objective of this synthesis is to give a concept and to help the

understanding of our work presented in the following chapters.

Network function virtualization (NFV) and the software defined network (SDN)

have become nowadays, interesting topics in the networking industry. The combination

of these two new paradigms can overcome the limitations of traditional networks and

clouds by improving their dynamic networking capabilities.

Nowadays, service Providers go beyond simply providing network connectivity

(internet) to their clients. They also provide additional services and network functions

such as network address translation (NAT), firewall, domain name service (DNS), etc.

To deploy these network function, providers traditionally use proprietary hardware at

the customer’s premises.

This methods provides to the providers additional revenue, but deploying multiple

proprietary hardware is expensive and makes the upgrades difficult because each time a

new network function is added to a certain service, a team is required to move to the

customer’s premises in order to install the new dedicated hardware device. As a result,

service providers have begun to explore ways to reduce costs and accelerate deployments

through the Network Functions Virtualization (NFV) [1].

Network functions virtualization (NFV) involves virtualizing network services and

functions currently made available by dedicated, proprietary hardware. NFV reduces

proprietary hardware amount required to launch and exploit network services.

Exploring Software-Defined Network (SDN) technologies and the foundations of

network virtualization, NFV helps IT professionals and providers to adapt a modern

hybrid network architecture.

Its objective is to separate the network functions from the hardware equipment

dedicated to them, such as routers, firewalls and load-balancers, to host the services they

provide on virtual machines (VM). Several use cases of Network Function Virtualization

are discussed in [2].

Software Defined Networking (SDN) is one of the most important architectures that
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allows pure software management of the network, which may require re-configurations

or re-policing from time to time [3]. For this, the control plane implemented as standard

in the hardware components or the control logic is abstracted from the hardware; in

this context, we also speak of the hardware intelligence, which is nothing more than its

specific operating software (firmware). In simple terms, the SDN concept corresponds

to the separation of the infrastructure and its configuration.

The data plane, on the other hand, remains a part of the individual network devices

(i.e. all the routers, switches and firewalls integrated into the network). However, its

task with SDN is exclusively to transmit the packets, which is why it requires little

computing power. This has the advantage, among other things, that the devices do not

need elaborate firmware and are generally much cheaper than other network concepts [4].

The task field of the abstract control plane, which is responsible for the correct data

traffic in the SDN architecture and therefore has to perform all the relevant analyses,

is considerably more complex. However, detached from hardware and implemented

in centralized software, it is highly programmable in a software-defined network and

therefore much more flexible in terms of network administration than other architectures.

Knowing that providers will no longer need to purchase dedicated network equipment,

this approach takes on its full value when building a service chain. Indeed, since it will

be possible to increase the capacity of servers by software, providers will no longer need

to over-equip their data centers, which will reduce both capital expenditure (capex) and

operational expenditure (opex) [5].

For example, if the execution of an application on a VM requires more bandwidth,

the administrator can move the corresponding VM to another physical server or make

available on the initial server another virtual machine which will absorb part of load.

This flexibility will allow providers to respond more agilely to changing business goals

and changing network service needs [6].

1.2 Research Problem and Objectives

In NFV, a service is defined as a chain composed of Virtual Network Functions (VNFs)

named Service Function Chain (SFC). The allocation process of resources from servers

to services, called VNF Placement and chaining (VNF-PC), is one of the most difficult

tasks in NFV. Dynamic nature of SFC arrivals and departures makes the problem of

VNF-PC even more difficult [7].
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For ease of understanding, we consider the example of Figure 1.1 where a network

infrastructure (NFV-I) composed of 5 servers, Service provider (Source) and 2 Routers

(Targets) is shown.

Each server of the NFV-I has different types of resources, each server with its unit

cost and limited capacity. The NFV-I servers are connected with virtual links (mapped

on physical paths) whose unit costs and capacities are negotiated and fixed for each

couple of servers.

The bottom of Figure 1.1 shows an example of a Service Function Chain comprising

Virtual Network Functions (VNFs) to be placed in the NFV-I. To provision the SFC,

all its VNFs should be placed on the NFV-I servers with enough resources. The NFV-I

Figure 1.1: An example of NFV-I topology.
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should also provide sufficient resources for the links that connect between the VNFs. For

example, let us consider the SFC of Figure 1.1 composed of 3 VNFs. We assume that

VNF1 requires 15 CPUs, VNF2 requires 20 CPUs and 10 CPUs for VNF3. The aim is to

find the optimal placement and chaining of these three VNFs on the NFV-Infrastructure

shown in Figure 1.1. The solution must ensure that the total SFC allocation cost

is minimized while respecting the capacity constraints on the NFV-I components..

Therefore, VNF1 and VNF2 will be placed on Server C and VNF3 will be placed on

Server E as shown in Figure 1.2.

The problem of VNF placement and chaining is known to be NP-Hard [8]. It consists

of placing a sequence of service function chains (SFC) while directing the flows of

through the VNFs. The objective of this paper is to provide a K-multi constrained

shortest path-based heuristic (K-MSPH) that addresses the generic problem of VNF-PC

using nodes sharing capability enabled by the NFV paradigm.

1.2.1 Scope of the thesis

The purpose of this work is to solve the VNF placement and chaining problem in the

context of Network Functions Virtualization (NFV), focusing on optimizing the overall

Figure 1.2: Optimal placement of the SFC.
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allocation cost and reducing the rejection rate. The scope of this thesis is to develop

efficient algorithms and mechanisms for placing and chaining virtual network functions

(VNFs) over a virtualized infrastructure built on commodity equipment. The research

aims to achieve the following goals:

i. SFC Placement: The primary focus is to develop efficient algorithms and method-

ologies for the optimal placement of VNFs within the virtualized infrastructure.

This involves determining the most appropriate physical servers and network

resources to host each VNF instance, taking into account factors such as resource

availability and network connectivity.

ii. Cost Optimization: The main objective is to minimize the total allocation costs

associated with the deployment of VNFs. This involves considering various cost

factors, such as resource usage, network bandwidth, and infrastructure provision.

The research will explore optimization techniques and algorithms to determine

optimal placement and chaining of VNF instances that minimize overall costs

while meeting service requirements.

iii. Reducing rejection rate: Another important aspect is to reduce rejection rates of

service requests due to resource constraints. When demand for services exceeds

available resources, service requests may be rejected, resulting in a degraded user

experience. The research will focus on developing strategies to minimize rejection

rates by dynamically managing the allocation of VNF instances.

iv. Scalability and Efficiency: As NFV environments increase in scale and complexity,

it becomes essential to develop scalable and efficient algorithms for VNF placement

and chaining. The research will explore techniques for managing large-scale

deployments, dynamic resource allocation, and efficient management of VNF

instances.

1.3 Research Contributions

This thesis makes several significant contributions to the field of resource allocation

optimization in Network Function Virtualization (NFV) environments. The primary

objective of the thesis is to optimize the placement and chaining of Virtual Network

Functions (VNFs) within NFV infrastructures to achieve efficient resource utilization



8 Chapter 1. Introduction

and cost minimization. One of the most important contributions is the introduction of

an innovative approach using integer linear programming (ILP) models. The model takes

into account factors such as computational capabilities and bandwidth requirements to

optimize resource allocation. By formulating the problem as an ILP, this work proposes

a novel framework for finding optimal solutions that minimize the costs associated with

Service Function Chain (SFC) allocation. This approach brings new perspectives to

existing research on VNF placement and chaining.

Additionally, the thesis explores a relaxed version of the VNF-PC problem in

unloaded network scenarios. Leveraging the assumption of abundant resources available

on both nodes and links, a shortest path algorithm is proposed. This algorithmic

approach combines principles from shortest path algorithms and graph transformation

techniques to address resource allocation and cost minimization objectives.

Furthermore, this thesis also addresses a specific variant of the VNF-PC problem in

network scenarios with abundant link resources but limited node resources. To address

this challenge, a genetic algorithm is proposed that combines the knapsack optimization

principle with a genetic algorithm. By iteratively refining candidate solutions using

genetic operators, the algorithm explores various potential configurations, ultimately

minimizing the overall placement cost. The paper, published in LCN 2022 ([9]), provides

a valuable tool for optimizing resource allocation in situations with abundant available

resources.

Moreover, when extending the study of the ILP using Bender decomposition, the research

led to the publication of a paper in APNOMS 2023 [10]. This paper delves into the

sophisticated realm of combinatorial Benders decomposition, systematically partitioning

the problem into a master problem and a linear sub-problem. It also explores the

formulation of combinatorial cuts, pivotal elements that pinpoint infeasibilities within

the sub-problem and propel the search for feasible solutions.

Moreover, the thesis tackles the full generic version of the VNF-PC problem, considering

limited node and link resources. To address this challenge, a multi-constrained algorithm

is adopted that takes into account multiple constraints such as computational capabilities

and bandwidth requirements. This algorithmic approach, published in ICC 2023 [11],

systematically explores potential solutions that satisfy all constraints while minimizing

the overall placement cost. By considering the various constraints, the algorithm is able

to achieve efficient resource allocation in NFV environments.
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Moreover, building upon the work presented in the ICC paper [11], we have extended

and refined our approach in the journal paper [12]. This new paper provides a more

comprehensive exploration of the Constrained Shortest Path-base Heuristic in multi-

Partite Graph (CSPH-PG). Our research in this extension demonstrates the scalability

and efficiency of CSPH-PG, particularly in the context of large NFV deployments and

scenarios with high traffic loads. It’s important to note that this work is submitted to

the Journal of Network and Computer Applications and is undergoing the peer review

procedure.

Taken together, these contributions significantly advance the understanding and

techniques for optimal resource allocation in NFV environments. By proposing novel

frameworks and algorithmic approaches and solving different versions of the VNF-PC

problem, this thesis provides valuable insights and tools to improve the performance,

efficiency, and cost-effectiveness of network operations.

1.4 Thesis Organization

This thesis is organized into six main chapters. In addition to this chapter introducing

the context, thesis objectives and contributions, the manuscript is organized as follows:

• Chapter 2 : This chapter begins by providing essential contextual information on

the thesis topic, offering an introduction to two key concepts in modern networking:

Network Function Virtualization (NFV) and Software-Defined Networking (SDN).

NFV refers to the virtualization of network functions, such as firewalls, routers,

and load balancers, decoupling them from dedicated hardware appliances and

running them as software instances on standard servers. SDN, on the other hand,

is an architectural approach that separates the network’s control plane from the

data plane, enabling centralized control and programmability of network resources.

Furthermore, the chapter presents an overview of the current state of research in

resource allocation problems within the context of NFV. Resource allocation is a

critical aspect of NFV deployments as it involves efficiently mapping virtual net-

work functions onto physical resources, such as servers, storage, and network links.

The chapter explores various resource allocation strategies, including heuristic

algorithms, optimization models, and machine learning techniques, highlighting

their strengths and limitations.
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Additionally, the chapter sheds light on the networking challenges that arise in

cloud environments, where NFV and SDN are often deployed. Cloud environments

are characterized by a dynamic and multi-tenant nature, with diverse workloads

and varying resource demands. This introduces complexities in terms of scalability,

performance, security, and resource management. The chapter discusses these

challenges and their implications on resource allocation and overall network

performance in cloud environments.

By providing this comprehensive overview, the chapter establishes a solid foun-

dation for the subsequent discussions on the specific variation of the VNF-PC

problem, focusing on networks with limited node resources but abundant link

resources. Understanding the context of NFV, SDN, resource allocation challenges,

and cloud networking sets the stage for addressing the targeted problem effectively

and proposing innovative solutions.

• Chapter 3 : This chapter focuses on tackling the issue of VNF (Virtual Network

Function) placement and chaining, with the primary goal of minimizing SFC

(Service Function Chaining) allocation costs and reducing the rejection of SFC

requests in the face of increasing demand and traffic load. To address this challenge,

an ILP (Integer Linear Programming) model is proposed, offering a novel approach

to optimize the placement and chaining of VNFs.

The ILP model aims to optimize the allocation of resources by considering factors

such as computational capabilities, bandwidth requirement. By formulating the

problem as an ILP, it becomes possible to find an optimal solution that minimizes

the costs associated with SFC allocation and ensures efficient utilization of available

resources.

This proposed ILP model presents a fresh perspective on addressing the VNF

placement and chaining problem, offering a potential solution to the challenges

posed by rising demand and traffic load. By effectively optimizing resource

allocation, it becomes feasible to mitigate the rejection of SFC requests and

enhance the overall performance of the network.

Expanding our arsenal of optimization strategies, we delve into the realm of

combinatorial Benders decomposition, a sophisticated approach that resonates with

the intricacies of the VNF-PC problem. This technique involves the systematic
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partitioning of the problem into a master problem and a linear sub-problem.

Additionally, we delve into the formulation of combinatorial cuts, pivotal elements

that pinpoint infeasibilities within the sub-problem and propel the search for

feasible solutions.

• Chapter 4 : This chapter extends the study by considering the VNF-PC problem

in an unloaded network. An unloaded network refers to a network environment

where there is an abundance of resources available on nodes and links, allowing

for the provisioning of SFCs (Service Function Chains) using any available NFV-I

(NFV Infrastructure) components. In such scenarios, traditional approaches may

not effectively leverage the available resources, leading to sub-optimal solutions. In

this particular version of the VNF-PC problem, the assumption is made that link

resources have large and sufficient capacities. The main objective is to minimize

the overall placement cost, which encompasses the costs associated with utilizing

node and link resources for the provisioning of SFCs.

The inclusion of the VNF-PC problem in an unloaded network in this chapter

expands the scope of the research, addressing a practical scenario where network

resources may not be fully utilized.

• Chapter 5 : In this chapter, we focus on addressing a specific variation of the

VNF-PC (Virtual Network Function Placement and Chaining) problem, which

targets a network with limited node resources but abundant link resources.

To address this particular version of the VNF-PC problem, we propose a knapsack-

based genetic algorithm. This algorithmic approach combines knapsack opti-

mization principles with genetic algorithms to optimize resource allocation and

minimize costs.

The knapsack-based genetic algorithm is inspired from the classical knapsack

problem (KP), where items with different weights and values are selected to

maximize the total value while respecting a weight constraint. In the context of

the VNF-PC problem, we adapt these principles to determine the optimal selection

and placement of VNFs considering the limited resources of the network nodes.

By leveraging a genetic algorithm, our approach incorporates genetic operators

such as selection, crossover, and mutation. These operators iteratively refine

the population of candidate solutions, allowing us to explore a diverse range of
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potential configurations and identify promising placements that minimize the

overall cost.

Integrating the knapsack-based genetic algorithm into the problem-solving process

enhances the efficiency and effectiveness of resource allocation and cost minimiza-

tion objectives. This approach provides a systematic and evolutionary framework

for finding optimized solutions, particularly in networks with limited node resources

but abundant link resources.

Through the utilization of this novel algorithmic approach, this section makes a

valuable contribution to the field of VNF-PC problem solving in networks with

limited node resources and abundant link resources.

• Chapter 6 : This chapter addresses the full generic version of the VNF-PC

(Virtual Network Function Placement and Chaining) problem, encompassing the

placement and chaining of VNFs in a network environment. Our objective is to

optimize resource allocation and minimize the overall placement cost, considering

various constraints and requirements.

We consider a scenario where both the node and link resources within the network

are limited. Our goal is to efficiently allocate these resources to minimize the

placement and chaining cost, which includes the costs associated with utilizing

nodes and links for SFC (Service Function Chain) provisioning.

To address this challenge, we employ a multi-constrained algorithm (KMSPH)

tailored for the VNF-PC problem. This algorithmic approach takes into ac-

count multiple constraints, such as computational capabilities and bandwidth

requirements to optimize the placement and chaining of VNFs.

By leveraging the multi-constraint algorithm, we can systematically explore poten-

tial solutions that satisfy all constraints while minimizing the overall placement

cost. This allows for efficient resource allocation, given the abundant resources

available within the network.

By addressing the full generic version of the VNF-PC problem and using the multi-

constraint algorithm, we contribute to the field of resource allocation optimization

in NFV environments.

• Chapter 7 : This chapter presents a multifaceted contribution to the domain of
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Virtual Network Function (VNF) placement and chaining. Firstly, it conducts

an extensive examination of the VNF placement and chaining problem within an

unloaded network (over-resourced network), offering a comprehensive insight into

its complexities.

Secondly, it introduces the constrained shortest paths algorithm, a pivotal tool for

tackling the VNF-PC problem. This algorithm optimizes the allocation cost of

Service Function Chains (SFCs) provisioning. Moreover, this chapter serves as

an extension and refinement of the previous chapter 6 approach, offering a more

comprehensive exploration of the Constrained Shortest Path-base Heuristic in

multi-Partite Graph (CSPH-PG).

It addresses the challenges presented by various NFV-Infrastructure (NFV-I) sizes

and diverse traffic demands. Highlighting its scalability and efficiency, the chapter

emphasizes the effectiveness of the CSPH-PG heuristic for larger NFV-Is and

extensive SFC scenarios, making it a suitable choice for managing high traffic

loads.

• Chapter 8 : The concluding section of this thesis summarizes the main findings

and contributions while also highlighting potential future research directions and

improvements to our work.
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State of the Art

The thinkers of the past believed

that the mind’s discovery of the truth

is not a strange thing, but the strange

thing is its inability to discover it.

Ibn Khaldun

This chapter discusses current state of the art related to Network Functions

Virtualization (NFV) and Software Defined Network (SDN). It also present a

taxonomy of existing research that addresses the challenge of VNF placement and

chaining.

Abstract
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2.1 Introduction

I n this chapter, we begin by introducing the concept of Network Function Vir-

tualization (NFV) and provide an overview of the NFV reference architecture,

including its various components. We then delve into the topic of Service Func-

tion Chaining (SFC), discussing its significance in the context of NFV and how it enables

the sequential routing of network functions.

Additionally, we explore Software-Defined Networking (SDN) and its architectural

framework, highlighting its role in increasing network programmability and flexibility.

To provide a comprehensive understanding of the NFV environment, we present a

taxonomy of existing studies that address VNF placement and chaining challenges.

The purpose of this literature review is to provide readers with the knowledge and

insight necessary to understand the architecture and deployment of service function

chains within NFV infrastructures.

2.2 Background of NFV

2.2.1 What is NFV ?

NFV (Network Functions Virtualization) is an architectural concept and framework

that aims to virtualize and consolidate network functions onto standard hardware

infrastructure. It is an evolution in the telecommunications industry that seeks to

replace traditional, specialized hardware appliances with software-based virtualized

network functions (VNFs) running on commodity servers, storage, and switches (Figure

2.1 illustrates the NFV principle) [13].

In NFV, network functions such as routing, firewalling, load balancing, and intrusion

detection are implemented as software instances that can be dynamically deployed,

scaled, and managed in a cloud-like environment. By virtualizing these functions, NFV

offers flexibility, scalability, and cost efficiency by leveraging standard IT hardware and

virtualization technologies [14].

Key aspects and benefits of NFV include:

i. Virtualization: NFV leverages server virtualization technologies, such as hyper-

visors, to run multiple VNFs on shared hardware, enabling efficient resource

utilization and consolidation.
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Figure 2.1: Network Function Virtualization (NFV).

ii. Agility and Scalability: VNFs can be quickly deployed, scaled up or down, and

moved to different hardware resources as network demands change. This improves

agility in deploying and scaling services.

iii. Cost Efficiency: By using off-the-shelf hardware, NFV reduces the capital and

operating costs associated with dedicated network devices. It also allows service

providers to use hardware resources more efficiently.

iv. Service Innovation and Time-to-Market: NFV allows service providers to introduce

new services more quickly by leveraging software-based VNFs and automated

orchestration, enabling faster time-to-market.

v. Network Optimization and Management: NFV provides centralized management

and orchestration of network functions, making it easier to monitor, configure and

manage network resources.

NFV is standardized and promoted by organizations such as the European Telecom-

munications Standards Institute (ETSI). These standards define the architectural

principles, interfaces, and management frameworks to ensure interoperability and com-

patibility across different NFV deployments [13].

Overall, NFV represents a shift from dedicated, proprietary hardware appliances to

flexible, scalable, software-driven network architectures. It enables service providers to

innovate, optimize their networks and deliver services more efficiently and dynamically.

2.2.2 NFV framework

Figure 2.2 provides a high-level overview of the NFV framework, which encompasses

three key domains of operation:

• NFV Infrastructure (NFVI): The NFVI comprises a collection of hardware and
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Figure 2.2: High-level view of the NFV framework.

software components that constitute the underlying environment for deploying,

managing, and executing NFV services. It encompasses various elements, including

hardware resources (such as RAM, CPU), storage hardware (e.g., disk storage,

Network Attached Storage), and network hardware (such as switches and routers).

Additionally, a virtualization layer is employed to abstract the underlying hardware

resources and facilitate the support of multiple Virtual Network Functions (VNFs)

by effectively sharing resources. Various open-source and proprietary solutions,

such as VMWare, Xen, and KVM, are available for implementing this virtualization

layer. Furthermore, the virtual infrastructure component encompasses virtual

compute (Virtual Machines or VMs), virtual storage, and virtual links [15].

• Virtualized Network Functions (VNFs): VNFs represent the virtualized instances

of distinct network functions, implemented as software, that operate within the

NFVI. These VNFs encapsulate the functionalities traditionally performed by

dedicated network hardware appliances, such as routing, firewalling, load balancing,

and intrusion detection. By virtualizing these functions, NFV introduces greater

flexibility, scalability, and cost efficiency by leveraging standard IT hardware and

virtualization technologies [14].
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• NFV Management and Orchestration (MANO): MANO involves the deployment,

operation, and lifecycle management of both the physical and software resources

necessary to support infrastructure virtualization. It also encompasses the man-

agement of VNF lifecycles. Within the NFV framework, MANO plays a crucial

role in managing the overall virtualization-specific tasks and ensuring the effective

orchestration of resources and services [13].

This high-level representation of the NFV framework provides an overview of

its underlying components and their interrelationships. NFVI, VNF, and MANO

collectively enable the virtualization and efficient management of network functions,

enabling improved network flexibility, scalability, and cost-effectiveness.

2.2.3 NFV principles

Three fundamental principles in NFV contribute to the creation of practical Network

Services (NS) [16], [17]:

i. Service Chaining: NS requires the execution of a sequence of network functions,

known as Service Function Chaining (SFC) or Virtualized Network Functions

Forwarding Graph (VNF-FG). This involves establishing specific connectivity and

sequencing between VNFs. The service chaining ensures that network traffic flows

through the required set of network functions in a predefined order.

ii. VNF Embedding: VNF embedding refers to the process of deploying VNFs on

physical servers to form SFCs. It encompasses both node embedding, which

involves mapping VNFs to the appropriate physical server resources, and link

embedding, which establishes connectivity between embedded VNFs. The or-

chestrator, responsible for managing and orchestrating software resources and

virtualized hardware infrastructure, plays a crucial role in the embedding stage of

VNF.

iii. Distributed Architecture: A VNF may consist of multiple VNF components

(VNFCs), each responsible for implementing a subset of the overall functionality.

These VNFCs can be deployed as separate instances, providing scalability and

redundancy. In a distributed architecture, VNFC instances can be deployed across

multiple hosts, enabling load balancing, fault tolerance, and efficient resource

utilization.
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By adhering to these principles, NFV enables the creation of flexible and scalable

network services. Service chaining ensures proper sequencing and connectivity between

VNFs, while VNF integration ensures their efficient deployment on physical servers.

The distributed architecture enables the deployment of VNFC instances across multiple

hosts, promoting scalability and resiliency in the delivery of network services.

2.2.4 Service Function Chaining

An essential component of network architecture is the Service Function Chain (SFC),

which represents an ordered or partially ordered set of Virtualized Network Functions

(VNFs)[18]. The ordering constraints within an SFC dictate how packets, frames, or

flows should be processed after undergoing classification. It is worth noting that the

SFC architecture permits the replication of SFCs across multiple branches and allows

flexibility in the order of applying service functions. The term "service chain" is often

used interchangeably with "service function chain" [19].

The objective of placement and chaining algorithms is to determine the optimal

placement of specific VNFs within the network. Two fundamental types of chains can be

distinguished: linear and bifurcated. In the case of linear chains, a VNF may be shared

across multiple SFC requests. Conversely, in bifurcated chains, the same VNF can be

deployed on different Physical Nodes (PNs) to handle diverse flows. This flexibility in

VNF deployment enables the creation of various SFCs tailored to specific applications

and flow requirements.

2.3 Background of SDN

2.3.1 What is SDN ?

SDN, which stands for Software-Defined Networking, is an architectural approach that

aims to separate the control plane and data plane functionalities in network devices.

In traditional networks, switches and routers perform both control plane functions

(making forwarding decisions) and data plane functions (actual traffic forwarding) [20].

In SDN, the control plane is abstracted and centralized in a dedicated software entity

known as the SDN controller (see figure 2.3). The SDN controller serves as the central

management point of the network, monitoring and controlling the behavior of network

devices.

By separating the date plane from the control plane, SDN allows more flexibility
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and programmability in network management. It allows network administrators to

dynamically control and configure the network, making it easier to adapt to changing

traffic patterns and optimize network performance.

2.3.2 SDN framework

SDN, or Software-Defined Networking, is an innovative networking approach that

revolves around several core principles [21]:

i. Centralized Control: SDN introduces a centralized control point called the SDN

controller. This controller offers administrators a unified view and control of

the entire network, enabling efficient management and configuration of network

devices from a single location.

ii. Programmability: SDN empowers network administrators to programmatically

control and configure the network using open APIs. This programmability simpli-

fies network management tasks and allows for automation, resulting in greater

operational efficiency.

iii. Separation of Control and Data Planes: SDN decouples the control plane from the

data plane, providing more flexibility and agility in network management. With

the control logic centralized in the SDN controller, network devices can focus

solely on forwarding data, making the network more scalable and adaptable.

iv. Network Virtualization: SDN facilitates network virtualization by creating virtual

network overlays that can operate independently from the underlying physical

infrastructure. This virtualization capability allows for easier provisioning, manage-

ment, and isolation of network resources, leading to improved resource utilization

and enhanced network efficiency.

SDN offers numerous benefits to network environments. It enhances network agility,

allowing for quick adaptation to changing requirements. The scalability of SDN enables

efficient resource utilization, optimizing network performance. With programmability,

administrators can automate tasks, reducing manual effort and increasing operational

efficiency. The centralized control and management simplify network administration,

leading to easier troubleshooting and configuration. Ultimately, SDN revolutionizes

traditional networking by introducing a software-centric approach that brings greater

flexibility, control, and efficiency to networks [22].
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Figure 2.3: Open Networking Foundation (ONF)/SDN architecture.

2.3.3 Integrating NFV with other technologies

In recent years, there has been a significant focus on integrating Network Function

Virtualization (NFV) with other cutting-edge technologies, including Software-Defined

Networking (SDN), Cloud computing, and 5G [23], [1]. This integration has captured the

attention of both the academic research community and industry due to the numerous

benefits it offers.

The integration of NFV with SDN and Cloud computing is particularly advantageous

because each technology brings unique features and approaches to address the challenges

faced by today’s and future networks [24]. NFV enables the abstraction of network

functions by virtualizing them, as endorsed by the European Telecommunications

Standards Institute (ETSI) [25]. SDN, on the other hand, provides network abstraction

through centralized control and programmability, as supported by the Open Networking

Foundation (ONF) [26]. Cloud computing offers computational abstraction by providing



24 Chapter 2. State of the Art

a shared pool of configurable computing resources, such as networks, servers, storage,

applications, and services, as specified by the Distributed Management Task Force

(DMTF) [27]. The core feature of Cloud computing is abstraction, allowing users and

developers to be shielded from the underlying technical complexities.

To better understand the relationships between NFV, SDN, and Cloud computing,

refer to Figure 2.4. While these technologies are complementary to each other, they can

also function independently or be combined to create a powerful network architecture

[4]. Deploying them together offers a range of advantages, including enhanced agility,

cost reduction, dynamism, automation, and efficient resource scaling.

By integrating NFV with SDN, networks can benefit from the flexibility and pro-

grammability of SDN controllers, enabling efficient management and orchestration of

virtualized network functions. Additionally, NFV leverages the scalability and resource

allocation capabilities of Cloud computing, allowing for dynamic and on-demand provi-

sioning of network resources. The combination of NFV, SDN, and Cloud computing not

only improves network efficiency and resource utilization but also facilitates the rapid

deployment of new services and applications.

Furthermore, the integration of NFV, SDN, and Cloud computing is highly relevant

in the context of emerging technologies like 5G. The flexible and scalable nature of NFV

and Cloud computing, along with the centralized control and management capabilities

of SDN, can effectively support the diverse requirements of 5G networks, such as low

latency, high bandwidth, and efficient network slicing.

In conclusion, the integration of NFV with SDN and Cloud computing presents a

promising approach to overcome the challenges of modern networks. The combination

of these technologies provides a holistic solution, offering agility, cost-effectiveness,

automation, and resource scalability. As networks continue to evolve, leveraging the

benefits of NFV, SDN, and Cloud computing in a synergistic manner will play a vital

role in building efficient, adaptive, and future-proof network architectures.

2.4 Related work

Over the past few years, there has been a growing interest in the problem of VNF-PC

(Virtual Network Function Placement and Chaining), leading to significant contributions

from the research community. This problem is known to be more challenging than

traditional virtual network embedding problems, as it involves the sharing of resources
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Figure 2.4: Relationships between NFV, SDN and cloud computing [28].

among multiple requests. Previous studies, such as [29–31], have highlighted the

complexity of this problem[32], specifically emphasized the resource sharing aspect.

Researchers have approached the VNF-PC problem using two main categories of

solution approaches. The first category consists of Mathematical Programming and

Heuristic Approaches, which aim to find optimal or near-optimal solutions through

mathematical modeling or intelligent algorithms. The second category comprises Robust

Optimization Approaches, which focus on designing solutions that are resilient to

uncertainties and variations in the network environment.

By exploring these different solution approaches, researchers have made significant

progress in addressing the challenges posed by the VNF-PC problem.

2.4.1 Mathematical Programming and Heuristic Approaches

The VNF-PC problem has seen various solution approaches, including ILP and MILP

models, which can suffer from combinatorial explosion due to their complexity. To

address this, researchers have also explored heuristic approaches as alternatives.

In their work, [32] introduced a dynamic programming based heuristic for solving

the VNF-PC problem. Their approach achieves solutions that are approximately 1.3

times the optimal solution obtained from the ILP model they presented, while being
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significantly faster, up to 3,000 times.

Another approach by [33] formulated the VNF-PC problem as a path-based Integer

Linear Program (ILP) model, aiming to maximize service provider profits. They

employed the column generation method to solve the problem. However, the time

efficiency of this proposal remains a challenge, particularly when dealing with large-scale

network scenarios.

In the study conducted by [34], the authors proposed a model for VNF chaining

and placement. They developed an algorithm formulated as a mixed integer linear

program (MILP) to address the problem. The MILP model considered various factors,

including VNF chain ordering constraints, specific VNF forwarding modes (standard

and fast-path modes), as well as variations in flow bit-rates.

On a related note, [35] investigated the energy-aware service function placement

problem for SFC in data centers. They formulated the problem as a binary integer

programming (BIP) model. Additionally, they proposed a novel SFC placement algo-

rithm called Merge-RD, aiming to minimize energy consumption in data centers. The

algorithm took into account computing and bandwidth resource constraints, as well as

power models for servers and switches.

In the research paper [36], the authors propose the use of near-optimal approximation

algorithms for VNF placement. These algorithms guarantee a placement solution with

theoretically proven performance, specifically targeting the objective of minimizing the

overall network cost.

In another study, [37] address the VNF-PC problem by formulating it as a MILP

model. The objective is to determine the optimal placement of VNFs and routing of

flows while minimizing resource utilization. Additionally, the authors propose a heuristic

solution that solves the problem incrementally, allowing for support of a large number

of SFC flows and enabling the handling of incoming flows without impacting existing

ones.

In the research paper [38], the authors propose a model for formalizing the chaining

of network functions using a context-free language. They introduce a mapping approach

based on a Mixed Integer Quadratically Constrained Program (MIQCP) to determine

the optimal placement of VNFs and their chaining while considering network resource

limitations and VNF requirements.

On a related note, [39] present a heuristic approach aimed at guiding the ILP solver
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towards feasible and near-optimal solutions for the VNF-PC problem. This heuristic

technique enhances the efficiency of the solver, albeit with a slight impact on solution

quality. By utilizing this approach, the solver can provide solutions that are both

practical and close to the optimal solution for the problem at hand.

In the research paper [40], the authors address the VNF-PC problem specifically for

real-time applications. They formulate the problem as an ILP and propose a heuristic

solution to overcome scalability issues associated with larger network instances.

Furthermore, in the work presented by [41], a suitable NFV network model for

Internet Service Providers (ISPs) operations is defined. They introduce the generic VNF

chain routing optimization problem and develop a mixed integer linear programming

formulation to address it effectively.

The research presented in [42] introduces an SDN-NFV infrastructure designed to

address the VNF placement and resource allocation (VNFPRA) problem in wireless

MEC networks. The primary objective of this work is to minimize the overall placement

and resource costs. To achieve this, the authors propose two algorithms: an optimal

solution formulated as a MILP model and a genetic-based heuristic solution. The

proposed solution is then compared with the Random-Fit Placement Algorithm (RFPA)

and the First-Fit Placement Algorithm (FFPA) to evaluate its performance.

In a different study, [43] tackle the VNF-PC problem by formulating it as an

optimization problem using the particle swarm optimization algorithm (PSO). Their

aim is to minimize the paths average propagation delay, the number of used servers and

the links average utilization while satisfying network demands and constraints. The

proposed approach aims to achieve a balance between performance optimization and

resource utilization in the VNF-PC problem.

In the study presented in [44], the authors focus on the cost-effective provision of

Service Function Chains (SFCs) with arbitrary topologies in a multi-domain elastic

optical network. The network consists of both private and public domains. The objective

of the research is to minimize the total resource cost associated with the Virtual Network

Function Placement and Chaining (VNF-PC) problem.

To meet this objective, the authors formulate the problem in the form of an integer

linear programming (ILP) model. The ILP model takes into account the specific

characteristics of the multi-domain elastic optical network and aims to find an optimal

solution that minimizes the total resource cost for VNF-PC.
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In addition to the ILP formulation, the authors propose the utilization of the minimal

k-cut problem to design two time-efficient heuristics. These heuristics provide alternative

solution approaches that prioritize computational efficiency while still aiming to achieve

a cost-effective provisioning of SFCs in the multi-domain elastic optical network.

By combining the ILP formulation and the heuristics based on the minimal k-cut

problem, [44] aims to provide effective and efficient solutions for the VNF-PC problem

in a multi-domain elastic optical network. The research considers the cost aspect of the

problem and provides different approaches to optimize resource utilization and reduce

overall provisioning costs.

2.4.2 Robust Optimisation Approaches

Indeed, recent works on the VNF-PC problem have recognized the presence of un-

certainties in real-world scenarios and have addressed them by incorporating robust

optimization (RO) techniques. Unlike the approaches assuming perfect knowledge

of all parameters, RO-based methods aim to provide solutions that are resilient to

uncertainties and variations in the network environment.

By considering uncertainties, such as changes in traffic demands, resource availability,

or link failures, RO-based approaches for the VNF-PC problem seek to find solutions

that can adapt to these uncertainties while still satisfying the desired performance

objectives. These approaches typically involve formulating optimization models that

incorporate uncertainty sets and constraints, allowing for more robust decision-making

and resilient network design.

By considering uncertainties in the VNF-PC problem, researchers aim to enhance

the practical applicability and effectiveness of their solutions in real-world network

scenarios where parameter variations and uncertainties are inevitable. RO approaches

have indeed shown success in addressing similar problems like virtual network embedding

[45]. However, it was the work of [46] that first applied robust optimization techniques

specifically to the VNF-PC problem.

In their study, [46] focused on modeling uncertainties in the VNF-PC problem by

considering demand fluctuations in the network components. They limited the number

of parameters allowed to deviate from their nominal values, taking into account the

practical constraints of the problem. By incorporating robust optimization, they aimed

to find solutions that are resilient to uncertainties and can maintain performance even
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under varying conditions.

By pioneering the application of robust optimization to the VNF-PC problem, [46]

contributed to the advancement of research in handling uncertainties in this specific

context. Their work opened up possibilities for developing more robust and adaptive

approaches for VNF-PC, enabling network operators to handle uncertainties effectively

and achieve reliable network performance.

The research presented in [47] extends the traditional view of network services as

fixed chains of functions by addressing both the composition and placement of Service

Function Chains (SFCs). The paper introduces an under-specified structure for network

composed services, allowing for the flexibility to change the order of SFC functions

without impacting the functionality of the service. To represent this flexibility, the

authors propose a YANG data model.

In addition to the proposed data model, [47] presents a heuristic algorithm for the

placement of a combination of services. The algorithm aims to find suitable placements

for service components along shortest paths in the network that have sufficient resource

capacity to accommodate the required services. By leveraging this heuristic algorithm,

the paper aims to optimize the placement of services within the network infrastructure,

considering both the functional requirements and the resource constraints.

Overall, the work in [47] provides a holistic approach that considers both the

composition and placement of SFCs, introducing flexibility in the service structure and

proposing a heuristic algorithm for effective placement decision-making.

In the research paper [48], the authors propose an approach based on the Markov

approximate method to tackle the VNF-PC problem. The method involves starting

with a random feasible solution and iteratively transforming the current solution to

another feasible solution based on the states of the substrate network. The process

continues until the steady-state distribution of the Markov chain is reached.

However, the authors note that this method has a drawback in terms of convergence

time, particularly when dealing with larger network sizes. The optimization problem’s

large state space contributes to the lengthy convergence process required by the Markov

approximate method. This limitation highlights the need for more efficient algorithms

to address the VNF-PC problem in scenarios involving larger network infrastructures.

In the research presented in [49], the authors focus on addressing the application

module placement and task scheduling in a heterogeneous "edge-cloud" network environ-
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ment. Their objective is to establish a mapping scheme between application modules

and the underlying resource equipment. To achieve this, they propose a dynamic task

processing heuristic algorithm that takes into account both tolerant task latency and

system power consumption as key factors.

On a different note, [50] proposes a resource allocation algorithm for the VNF-PC

problem, utilizing genetic algorithms (GAs). The algorithm consists of two stages: the

initial placement of Virtual Network Functions (VNFs) and the subsequent scaling of

VNFs to accommodate changes in traffic demand. However, similar to the Markov

method mentioned earlier, the GA-based solution in [50] also faces the challenge of a

lengthy convergence process due to the nature of crossover and mutation operations

inherent in genetic algorithms. Both studies highlight the need for more efficient

optimization algorithms to solve the VNF-PC problem, as the convergence time of

traditional methods can be a limiting factor, especially when dealing with larger networks

or complex scenarios. Finding ways to reduce convergence time while maintaining

solution quality remains an important area of research in this field.

In the research presented in [51], the authors address the challenge of high utilization

or fragmentation levels in a Network Function Virtualization Infrastructure (NFV-I),

which can limit the feasible solution space for Service Function Chain (SFC) embedding

methods. To overcome this issue, they propose a solution approach called SFC graph

transformation (SFC-GT). They formulate the SFC-GT as a multi-objective optimization

problem and develop a mixed-integer linear program (MILP) to solve it. The objective

is to explore the potential of expanding the SFC graph before its embedding, thereby

mitigating the constraints imposed by high utilization or fragmentation levels.

On the other hand, in [52], the authors consider both the VNF placement problem and

policy-aware traffic steering to maximize the number of served flows. They decompose

the problem into a master problem, which involves VNF placement, and a sub-problem,

which focuses on policy-aware routing for each flow. The proposed model can be applied

to both online and offline scenarios, addressing the optimization of VNF placement and

traffic steering with consideration for policy-based requirements.

Both studies contribute to addressing different aspects of the VNF-PC problem by

formulating it as an optimization problem and proposing algorithms to find optimal or

near-optimal solutions. These approaches aim to improve the efficiency and effectiveness

of VNF placement and traffic steering, considering various constraints and objectives.
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In the research presented in [53], the authors focus on the problem of decomposing

and embedding network services, specifically Network Service Chains (NSCs). They

propose two algorithms to address this problem and map NSCs onto the network

infrastructure, while considering the possibility of decomposing network functions using

Network Function Virtualization (NFV) techniques.

The first algorithm presented is based on Integer Linear Programming (ILP). It

formulates the problem as an optimization model to minimize the mapping cost, taking

into account the requirements of the NSCs and the capabilities of the network infras-

tructure. The ILP algorithm aims to make an optimal selection of the network function

decomposition to achieve the minimum mapping cost.

To address the scalability issues associated with the ILP formulation, the authors

propose a heuristic algorithm as a second approach. The heuristic algorithm provides a

practical solution that alleviates the computational complexity of the ILP algorithm

while aiming to minimize the mapping cost. By employing this heuristic algorithm,

the authors aim to achieve a good compromise between computational efficiency and

solution quality.

Overall, the work in [53] presents two novel algorithms, an ILP-based approach and

a heuristic, for the decomposition and embedding of NSCs in the network infrastructure.

These algorithms provide different strategies to optimize the mapping cost, taking into

consideration the requirements of NSCs and the capabilities of the network functions.

In their recent work, [54] present a unified framework for maximizing network

throughput while ensuring that the end-to-end delay requirements of accepted requests

are met. The goal is to accept as many requests as possible while optimizing resource

consumption and reducing network operational costs.

To address this objective, the authors propose an integer linear programming (ILP)

solution for the problem, especially when the size of the substrate network is small. The

ILP formulation considers two different techniques for scaling VNF instances: horizontal

scaling and vertical scaling.

The horizontal scaling technique involves migrating existing VNF instances from

their current locations to new locations, allowing these instances to be shared by multiple

requests. This approach aims to reduce resource consumption and operational costs by

maximizing the utilization of existing VNF instances.

On the other hand, the vertical scaling technique focuses on instantiating new VNF
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instances to meet the demands of new requests. This is done when it becomes more

expensive to share existing VNF instances or when the end-to-end delay requirements

of currently executing requests are at risk of being violated.

By jointly exploring these two scaling techniques, [54] aim to optimize resource

allocation and enhance network performance. Their unified framework provides a com-

prehensive approach to maximize network throughput while considering both resource

efficiency and end-to-end delay requirements.

Overall, the work by [54] contributes to the field by presenting a unified framework

for VNF instance scaling and proposing an ILP-based solution for optimizing network

throughput while meeting end-to-end delay requirements.

[55] focuses on deployment of virtual network functions in a highly dynamic network

where virtual nodes and virtual links are created and destroyed depending on the traffic

volumes, the service requests or high-level goals such as reduction in energy consumption.

[55] gives an architecture based on an orchestrator that ensures the automatic placement

of the VNF and the allocation of network services on them, supported by a monitoring

system that collects and reports on the behaviour of the network resources.

In their work, [56] address the challenge of routing and Virtual Network Function

(VNF) deployment in the context of network function virtualization. They propose

an optimization model that aims to minimize the maximum index of used frequency

slots, the number of initialized VNFs and the number of used frequency slots. This

model takes into account the dependency among different VNFs. To tackle the service

chain mapping problem in dynamic virtual networks, the authors introduce a novel

algorithm called PDQN-VNFSC. This algorithm combines prediction algorithms with

Deep Q-Network (DQN) to optimize the real-time mapping process of virtual network

service chains. The authors formulate the mapping problem as a partial observable

Markov decision process and employ global and long-term benefits for optimization. By

leveraging an offline learning and online deployment decision framework, the algorithm

effectively maps the service chain of virtual network functions.

The work in [57] address the problem of VNF-PC from an original perspective: it

propose an advanced and dynamic pricing algorithm for pricing the requested substrate

resources. The aim of the proposed algorithm is to increase the infrastructure provider’s

revenue on the basis of historical data, current infrastructure utilization levels and the

pricing of competitors.
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In the work by [58], the authors propose an approach for efficient and proactive

resource provisioning in the context of the VNF-PC problem. They employ a linear

programming model (ILP) with randomized rounding to find a near-optimal solution.

The proactive algorithm developed by [58] aims to dynamically allocate resources

in a way that maximizes the acceptance of requests while ensuring timing guarantees.

By formulating the problem as an ILP and using randomized rounding techniques,

the algorithm can effectively allocate resources to accommodate as many requests as

possible within the given constraints.

This approach introduces a proactive strategy to resource provisioning, allowing

for efficient and timely allocation of resources in the VNF-PC problem. By leveraging

ILP and randomized rounding, the algorithm strikes a balance between optimization

and practical feasibility, enabling the system to handle a high volume of requests while

meeting timing requirements.

The VNF-PC problem is known to be NP-Hard, which means that finding exact

solutions can be computationally expensive and time-consuming [8]. As a result, heuristic

algorithms are commonly used to tackle the problem by providing faster but approximate

solutions.

Heuristic algorithms offer a scalable approach to the VNF-PC problem, allowing for

more efficient handling of larger problem instances. While they may sacrifice solution

quality compared to exact methods, they can still provide reasonably good solutions

within a reasonable time frame.

However, despite the advancements in heuristic algorithms, there are still important

aspects that require further study in effectively managing and allocating resource usage

in NFV-I. This work aims to address these aspects by making contributions in the areas

of VNF-PC, mathematical modeling, and heuristic optimization algorithms.

The contributions of this thesis involve developing novel approaches to tackle different

versions the VNF-PC problem, including the formulation of mathematical models that

capture the complexities of resource allocation and optimization. Additionally, the

work proposes heuristic optimization algorithms that can efficiently find near-optimal

solutions in a timely manner.

By focusing on these aspects, this work aims to enhance our understanding of the

VNF-PC problem and provide practical solutions that balance solution quality and

computational efficiency.
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2.5 Conclusion

In contrast to the existing approaches discussed in this section, the primary contribution

of this thesis lies in the introduction of novel and efficient heuristic approaches to address

the VNF-PC problem. The key objective of these heuristics is to enhance scalability

while simultaneously aiming to achieve optimal solutions. By focusing on developing

innovative algorithms, this thesis aims to overcome the limitations of previous methods

and provide more effective solutions for the VNF-PC problem.

The proposed heuristics leverage advanced optimization techniques to efficiently

explore the solution space and identify near-optimal configurations. These approaches

take into account various constraints and requirements of the VNF-PC problem, such

as computational capabilities, bandwidth requirements, and overall placement costs. By

integrating these factors into the design of the heuristics, the aim is to strike a balance

between solution quality and computational efficiency.

One notable aspect of the heuristics developed in this thesis is their emphasis on

scalability. The goal is to address the challenges posed by large-scale processing networks

and service function chains, enabling efficient resource allocation and minimizing the

overall placement cost. Through careful algorithm design and optimization, the proposed

heuristics aim to handle complex and dynamic scenarios, accommodating the increasing

demands and traffic loads within NFV environments.

Moreover, the focus on finding exactly optimal solutions distinguishes this thesis from

previous approaches. While heuristics are typically employed to approximate solutions

within a reasonable time frame, the heuristics proposed in this thesis strive to achieve

solutions that are as close to the true optimum as possible. By leveraging advanced

optimization techniques and intelligent search strategies, the aim is to improve the

quality of solutions and provide more accurate representations of optimal configurations

for the VNF-PC problem.

Overall, the novelty of this thesis lies in the introduction of efficient heuristics that

address different versions of the VNF-PC problem with a focus on improved scalability

and the pursuit of exactly optimal solutions. By combining advanced optimization

techniques, intelligent search strategies, and consideration of various constraints, the

proposed heuristics aim to contribute to the field by providing more effective and

accurate solutions for the resource allocation optimization in NFV environments.
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Defining and Modeling the VNF Placement and Chain-

ing Problem: A Mathematical Approach

I have never seen a teacher better

than time, nor a learner worse than a

human being.

Al-Khwarizmi

This chapter focuses on optimizing the allocation of Virtual Network Functions

(VNFs) and their interconnections within Network Function Virtualization (NFV).

It presents a mathematical formulation using Integer Linear Programming (ILP)

to minimize placement and bandwidth costs. The chapter introduces the concept

of combinatorial Benders decomposition as an efficient solution approach.
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3.1 Introduction

I n this chapter, our attention turns to the intricate challenge of the VNF place-

ment and chaining problem within the broader landscape of Network Function

Virtualization (NFV). This intricate problem revolves around the meticulous

determination of the most optimal allocation of Virtual Network Functions (VNFs)

and the arrangement of their interconnected sequences, referred to as Service Function

Chains (SFCs), within the confines of an NFV-Infrastructure (NFV-I). The core aim is

to effectively minimize the cumulative cost associated with both VNF placements and

the allocation of bandwidth resources.

In our pursuit of a viable solution, we introduce a comprehensive mathematical

formulation that draws upon the power of Integer Linear Programming (ILP) as

the driving force behind our optimization technique. This formulation intricately

incorporates decision variables cast in the mold of binary constructs, meticulously

representing the assignment of VNFs to specific nodes as well as the embedding of

VNF-links within the infrastructure. The keystone of this formulation resides in the

definition of the objective function, masterfully tailored to minimize the collective cost

incurred by the intricate processes of VNF placement and bandwidth resource allocation.

Expanding our arsenal of optimization strategies, we delve deeper into the area of

combinatorial Benders decomposition, a sophisticated approach that resonates with the

intricacies of the VNF-PC problem. This technique involves the systematic partitioning

of the problem into a main problem, called Master problem, and a linear sub-problem.

Additionally, we delve deeper into the formulation of combinatorial cuts, essential

elements that identify infeasibilities within the sub-problem and propel the search for

feasible solutions.

3.2 VNFs placement and chaining problem

3.2.1 Problem description

In this section, we present the VNF placement and chaining (VNF-PC) problem. After

explaining the context of the problem, we define and explain the variables used to

formulate the problem as an ILP optimization problem.

To make it easier to understand, let’s consider the example of Figure 3.1 which

represents an NFV-Infrastructure (NFV-I) composed of three node servers (Server1, 2



38
Chapter 3. Defining and Modeling the VNF Placement and Chaining Problem: A

Mathematical Approach

and 3) and five switches (Switch A, Switch B, Switch C, Switch S and Switch T), where

Switch S and Switch T symbolically represent the sources S and targets T of the SFC.

Each server has a certain capacity of CPU to host VNFs and its own pricing policy. The

servers are interconnected by substrate virtual links. Each link has a given bandwidth

cost and capacity. The substrate virtual links are virtual links embedded on substrate

paths that interconnect end nodes supporting substrate servers.

The Figure 3.2 shows an SFC composed of two VNFs to be placed and chained in

the NFV-I. Each virtual network function (VNF) requires a number of CPU resource

to run properly. The optimal placement and chaining of the SFC of the figure 3.2 is

highlighted by the green lines in figure 3.3: VNF1 will be placed in Server S1 and VNF2

will be placed on Server S3 and path S-A-C-T (green arrows in Figure 3.3) determines

the flow routing for the SFC. The total allocation cost for this solution is calculated as

360 units (30×(3+1+4)+20×4+40×1=360), which is the sum of the allocated resource

for links usage and VNFs according to the specified bandwidth and CPU requirements,

and their associated costs.

Figure 3.1: An example of NFV-I topology.

Figure 3.2: An example of a Service Function Chain (SFC).



39

3.2.2 Complexity Implications

The NP-hardness of VNF-PC implies that finding an exact solution to this problem is

computationally intractable within polynomial time. As a consequence, any algorithm

attempting to solve the VNF-PC problem optimally must contend with an inherent

level of computational complexity [8].

This result has profound implications for the field of network function virtualization,

emphasizing the need for approximation algorithms, heuristics, and practical strategies

to address VNF-PC in real-world scenarios. While the problem’s complexity poses chal-

lenges, it also motivates researchers and practitioners to explore innovative algorithmic

approaches that balance computational efficiency with solution quality [59].

3.2.3 Proposals

In the context of the VNF-PC problem, we first propose an Integer Linear Programming

(ILP) solution to address it.

The ILP solution formulates the VNF-PC problem as an optimization problem using

linear equations and inequalities with integer variables. The objective function and

constraints are defined based on the problem requirements, such as resource usage.

The ILP solver then searches for the optimal values of the variables that minimize or

maximize the objective function while satisfying the constraints. By leveraging the

power of mathematical programming techniques, the ILP solution provides an optimal

solution to the VNF-PC problem.

Figure 3.3: SFC optimal placement.
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3.2.4 Mathematical Modelling of VNF-PC problem

The NFV substrate network is modeled by an undirected weighted graph, noted GS =

(VS ,ES) where VS is the set of nodes corresponding to servers and switches of the NVF-I,

and ES is the set of substrate virtual links.

Each node in the network is associated with a list of its available resources: memory,

CPU, etc.

Each type of resource r ∈ R is identified by its index number where R = {0,1,2,3, ...}.

For a given resource r of a node U , its capacities and costs are denoted by respectively

Cr
U and αr

U . Similarly, for each substrate virtual link lS = (laS , lbS), its bandwidth capacity

is denoted by CBwd
lS

, and its bandwidth cost by βlS .

Each Service Function Chain (SFC) is also modeled by a graph interconnecting a

source node (represented by US , the switch on its left side), k VNFs and a target node

(represented by UT , the switch on its right side), as shown in Figure 3.2. A SFC is

represented by a graph Gf (US ,UT ) = (Vf ,Ef ), where Ef is the set of virtual links that

connect the VNFs and Vf contains all the VNFs of the service chain plus the nodes

Bs and Bt which represent, symbolically, on Vf the two NFV-I switches US and UT ,

respectively.

Each VNF v ∈ Vf has a demand for resource r ∈R, denoted Dr
v. Each virtual link

lv ∈ Ef has a demand for bandwidth denoted DBwd
lv

.

The traffic flow coming from the source US is processed through the SFC before

being delivered to the target node UT .

For each virtual link lv ∈ Ef , its end (edges) nodes are designated by lav and lbv.

We propose, hereafter, the ILP I formulation of the VNF-PC problem:

3.2.4.1 Decision variables

xv
U =

 1, if the VNF v ∈ Vf is assigned to the node U ∈ VS ;

0, otherwise

ylv
lS

=

 1, if the SFC virtual link lv ∈ Ef is embedded on the substrate virtual link lS ∈ ES ;

0, otherwise

Table 3.1 summarizes the parameters and the used variables.
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Notation Description
GS Weighted graph modeling the NFV-I substrate network
VS Set of nodes corresponding to servers and switches of the NVF-I
ES Set of substrate virtual links
R Set of NFV-I resources
Cr

U Capacity of node U in resource r

αr
U Cost of resource r on node U

CBwd
lS

Bandwidth capacity of substrate virtual link lS
βlS Bandwidth cost on the substrate virtual link lS
laS , lbS Edges nodes of the substrate virtual link lS
Gf Weighted graph modeling the SFC
Vf Set of VNFs
Ef Set of virtual links that connect the VNFs
US Source node on NFV-I
UT Target node on NFV-I
Bs Source node on SFC
Bt Target node on SFC
Dr

v Capacity of VNF v in resource r

DBwd
lv

Demand of link lv for bandwidth
lav , lbv Edges nodes of the virtual link lv
xv

U binary variable equal to 1 if the VNF v ∈ Vf is assigned
to the node U ∈ VS , 0 otherwise.

ylv
lS

binary variable describes whether the virtual link lv ∈ Ef is
embedded on the substrate virtual link lS ∈ ES or not.

Table 3.1: Main notations

3.2.4.2 Objective Function

Our objective is to minimize the combined cost of VNF allocation (A) and bandwidth

resource allocation (B):

Z = minA + B (3.1)

Where:

• A represents the overall cost of placing VNFs on NFV infrastructure nodes:

A =
∑
r∈R

∑
v∈Vf

∑
U∈VS

xv
U ×Dr

v ×αr
U (3.2)

• B corresponds to the cost of allocating bandwidth resources:

B =
∑

lv∈Ef

∑
lS∈ES

ylv
lS
×DBwd

lv ×βlS (3.3)
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Here, αr
U and βlS denote the unitary cost of resource r and bandwidth, respectively.

3.2.4.3 Constraints

The problem is subject to the following constraints:

∑
v∈Vf

xv
U ×Dr

v ≤ Cr
U ∀U ∈ VS ∀r ∈R (3.4)

∑
lv∈Ef

ylv
lS
×DBwd

lv ≤ CBwd
lS ∀ lS ∈ ES (3.5)

∑
U∈VS

xv
U = 1 ∀ v ∈ Vf (3.6)

∑
lS∈ES

ylv
lS
≤ 1 ∀ lv ∈ Ef (3.7)

xBs
US

= 1 xBt
UT

= 1 (3.8)

x
la
v

la
S

+ x
lb
v

lb
S

− ylv
lS
≤ 1 ∀lv ∈ Ef ∀lS ∈ ES (3.9)

x
lb
v

la
S

+ x
la
v

lb
S

− ylv
lS
≤ 1 ∀lv ∈ Ef ∀lS ∈ ES (3.10)

Where:

• Constraint (3.4) ensures that the demand Dr
v of VNF v for resource r is within

the capacity Cr
U of substrate node U .

• Constraint (3.5) guarantees that the total allocated bandwidth for any substrate

virtual link lS is within its capacity CBwd
lS

.

• Constraint (3.6) ensures that each VNF v in the service function chain (SFC) is

placed on a single substrate node.

• Constraint (3.7) ensures that each virtual link lv is mapped to at most one

substrate virtual link lS .

• Constraint (3.8) associates the virtual source node Bs with the substrate source

node US , and similarly for the target nodes.
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• Constraints (3.9) and (3.10) handle the mapping of the end nodes of virtual link

lv to substrate nodes las and lbs.

3.2.5 Ordered VNF-PC

We further consider an ordered variant of ILP I formulation, in which an ordering

is imposed on the nodes of the NFV-I. Then, the VNFs of the SFC must be placed

preserving the same ordering (i.e., the label of the node VNFk is assigned to must be

smaller than all subsequent labels VNFm, where m > k). This variant ensures the VNFs

are considered in a specific order with regards to a given reference point (see e.g., [60]).

Alongside ILP I formulation, we include the following constraint on the binary xv
U

variables (∀U ∈ VS ; ∀v ∈ Vf ):

xv
U ≤

∑
b∈VS :b>U

xv
b ∀U ∈ VS ; v ∈ Vf .

It is known that including constraints on the binary variables of a MILP can lead to

faster solve times [61]; hence, we expect the ordered VNF-PC to exhibit such properties.

3.3 Model Decomposition using Combinatorial Benders Cuts

In Section 2.4, we discussed different approaches to solving the VNF-PC problem. While

heuristics can provide quick solutions, exact approaches have shown the potential to

find high-quality solutions efficiently. We don’t need to compromise solution quality

for efficiency, especially considering the significant impact of sub-optimal solutions in

real-world scenarios.

In this context, we investigate the utilization of Combinatorial Benders Decomposi-

tion (CBD) as introduced by Codato and Fischetti [62]. The Benders’ decomposition

technique, initially developed in 1962 by Benders [63], is well-documented in various

references on large-scale optimization and stochastic programming. A comprehensive

explanation of this method can be found in the book by Benders [64].

The main idea behind Benders decomposition is to decompose a complex optimization

problem into smaller, more manageable sub-problems. These sub-problems are usually

formulated as linear programs and are designed to capture some aspect of the original

problem. Benders decomposition is particularly useful when sub-problems can be solved

efficiently and their solutions can help improve the overall solution of the original
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Figure 3.4: Schematic representation of Benders decomposition method [66].

problem. (See Figure 3.4).

The decomposition process involves solving a Master problem and a series of Sub-

problems iteratively. The master problem typically deals with a subset of the original

variables and constraints and aims to find an initial feasible solution. Then, in each

iteration, a sub-problem is formulated and solved to generate a "cut" or constraint that

is added to the master problem. These cuts help to tighten the feasible region of the

master problem, bringing it closer to the optimal solution [65].

3.3.1 Master Problem

The master problem aims to find feasible solutions for the binary variables xv
U (∀U ∈

Vs; v ∈ Vf ) and treats ylv
lS

(∀lS ∈ ES ; lv ∈ Ef ) as binary for decomposition purposes.

Master:
minZ := A + B (2a)

where A :=
∑
r∈R

∑
v∈Vf

∑
U∈Vs

xv
U ·Dr

v ·αr
U

B :=
∑

lv∈Ef

∑
lS∈ES

ylv
lS
·DBwd

lv ·βlS

s.t.
∑

U∈Vs

xv
U = 1 ∀v ∈ Vf (2b)

x
la
v

la
S

+ x
lb
v

lb
S

− ylv
lS
≤ 1 ∀lv ∈ Ef ; lS ∈ ES (2c)

x
lb
v

la
S

+ x
la
v

lb
S

− ylv
lS
≤ 1 ∀lv ∈ Ef ; lS ∈ ES (2d)

xv
U ∈ {0,1} ∀U ∈ Vs;v ∈ Vf (2e)

ylv
lS
∈ [0,1] ∀lS ∈ Es; lv ∈ Ef (2f)



45

The master problem solution provides binary variable assignments. Let x̂v
U (∀U ∈

Vs; v ∈ Vf ) and ŷlv
lS

(∀lS ∈ ES ; lv ∈ Ef ) represent fixed variable values obtained from

solving the master problem.

Note that at this step, the y variables are not required to be binary, since their value is

fixed to 0 or 1 in constraints (3.9)-(3.10).

3.3.2 Sub-problem

The sub-problem checks the feasibility of the fixed binary variables from the master

problem.

Sub(x̂, ŷ):

min ξ ∈ R+ (3a)

s.t.
∑

v∈Vf

x̂v
U ·Dr

v ≤ Cr
U ∀U ∈ Vs;r ∈R (3b)

∑
lv∈Ef

ŷlv
lS
·DBwd

lv ≤ CBwd
lS ∀lS ∈ ES (3c)

If the sub-problem is feasible, the binary variable assignment from the master

problem is optimal. If not, the infeasible binary variables are identified, guiding the

search towards feasible solutions. This is achieved through combinatorial cuts introduced

to the master problem.

This process of iteratively solving the master problem and using the sub-problem to

guide variable assignments forms the basis of CBD. This approach can effectively handle

large-scale MILP problems with numerous binary variables. The formulation and de-

composition process can lead to better solution quality while maintaining computational

efficiency.

3.3.3 Formulating the Combinatorial Cuts

If the sub-problem (Sub(x̂, ŷ)) is found to be infeasible, the aim is to identify the

irreducible infeasible subsystem (IIS) within the sub-problem. The IIS comprises a

subset of the sub-problem’s constraints, such that removing any of them would render

the problem feasible. The uniqueness of IISs is not guaranteed; indeed, for a given

problem, the number of IISs can be exponential in the system’s size [67, 68]. Thus,

developing effective methods to find IISs that lead to potent combinatorial cuts can

enhance the efficiency of the CBD approach (as exemplified in [69]).
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The occurrence of an infeasibility within the IIS can be attributed to constraints (3b)-

(3c), contingent on the fixed binary variable values. Consequently, it becomes evident

that one of the binary variables within these constraints must be altered to achieve a

feasible solution.

If a constraint of the form (3b) exists within the IIS, the over-resourced node can

be precisely identified. Specifically, given a node U⋆ ∈ Vs, it can be concluded that the

assignment of VNFs to that node is infeasible. The cut then signifies that at least one

of the VNFs (v ∈ Vf ) assigned to node U⋆ must be repositioned. Formally, when a set

N ⊆ Vs is formed to identify nodes causing infeasibility (i.e., constraints appearing in

the IIS), the following term contributes to the combinatorial cut:

T1 :=
∑

n⋆∈N

∑
k∈Vf :x̂k

n⋆=1
1−xk

n ≥ 0. (3.11)

In cases where a constraint of the form (3c) is present within the IIS, the identification

of over-resourced links is approached in a similar manner. For a given link lS
⋆ ∈ Es,

it becomes apparent that assigning VNFs to the nodes composing that virtual link

(lv = (lav , lbv) ∈ Ef ) leads to infeasibility. As a result, the necessity arises for at least one

of the two nodes to be reassigned to eliminate the infeasibility. The assignment of nodes

can be derived from constraints (2c) and (2d) in the master problem. With L ⊆ Es

representing the set of links causing infeasibility (i.e., constraints appearing in the IIS),

each link lS
⋆ ∈ L consists of two nodes that satisfy either x̂ea

la
S

⋆ + x̂eb

lb
S

⋆−ylv
lS

⋆ = 1 (referred

to as event E1 for brevity) or x̂eb

la
S

⋆ + x̂ea

lb
S

⋆ − ylv
lS

⋆ = 1 (referred to as event E2). Given

that the SFC is symmetric regarding bandwidth demands, it follows that one of the

two nodes composing the link must be altered. Consequently, the following constraint

contributes to the combinatorial cut:

T2 :=
∑

lS
⋆∈L

∑
lv∈Ef :ŷlv

lS
⋆=1

1− ylv
lS
≥ 0

=⇒ T2 :=
∑

lS
⋆∈L

∑
lv∈Ef :E1||E2

2−x
la
v

la
S
−x

lb
v

lb
S

≥ 0.

(3.12)

Combining these two terms results in the combinatorial cut presented formally as:

T1 + T2 ≥ 0. (3.13)
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The combinatorial cut signifies that modifying at least one fixed binary variable

within the IIS (i.e., those causing the infeasibility) is essential to achieve a better

solution. If the sub-problem is found to be infeasible, this cut is integrated into the

master problem. Consequently, the master problem is solved while adhering to this cut,

yielding a new set of fixed binary variable values. This iterative process persists until

the optimal solution is attained (i.e., when the sub-problem is feasible).

The CBD process for addressing the VNF-PC problem is formalized in Algorithm1.

3.3.4 Evaluation of Non-Viable Solution Nodes

The combinatorial Benders decomposition (CBD) approach, as discussed in the preceding

section, generates combinatorial cuts as expressed in equation 3.13 when the master

problem (2) has been solved to its optimal solution. This occurs when a feasible

configuration of fixed binary variables xv
U and pseudo-binary variables ylv

lS
is achieved.

Furthermore, we can extract solution insights from non-feasible solutions of the

master problem, where the binary variables might assume non-binary values. Before

the CBD branch-and-cut process proceeds from these non-viable solutions, it’s possible

to assess whether such branching will result in infeasibility. If this is anticipated, we

can tailor the branching at these unviable nodes to circumvent further examination of

already identified infeasible scenarios. This integration augments the CBD approach

with the capability to swiftly identify a significant number of infeasible solutions.

Let’s consider a scenario at a given node U⋆ ∈ Vs, where ∑
v∈Vf

xv
U⋆ ·Dv > Cr

U⋆ , and

the values of xv
U⋆ at this node lie within the interval [0,1]. While such a solution is

infeasible within the master problem due to non-binary values of the xv
U variables, we

can still glean valuable insights into the feasibility of the current branch within the

branch-and-bound tree.

To address this, a pragmatic branching heuristic is incorporated within the decom-

position approach. Specifically, we design the branching direction to divert away from

nodes that are prone to infeasibility, as such paths are more likely to lead to infeasible

solutions.

In essence, we establish a new branch where all non-zero binary variables are set to 0.

This deliberate maneuver aims to facilitate the exploration of unexplored territories

within the search space. Given our overall understanding of the VNF-PC problem, we

recognize that the current branch is more predisposed to encountering infeasibilities.
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Therefore, by venturing into unexplored regions, we increase the likelihood of discovering

a feasible solution rather than persisting on the current path.

Empirical observations, presented in Section 3.3.5, suggest that the count of non-zero

variables for a given node seldom exceeds |Vf | − 4.

Algorithm 1 CBD for the VNF-PC Problem
1: Input:

NFV:
2: Cost (αr

U ) and capacity (Cr
U ) for each node n ∈ Vs;

Cost (βlS ) and capacity (CBwd
lS

) of each link lS ∈ ES .
SFC:

3: Demand (Dv) for each VNF v ∈ Vf ;
Bandwidth demand (DBwd

lv
) for each virtual link lv ∈ Ef .

4: Output:
xv

U : Optimal (ordered) assignment of VNFs v ∈ Vf to nodes U ∈ Vs.
5: Algorithm:
6: Initialise t = 0;
7: Solve master problem (2) to optimality to give (x̂t, ŷt);
8: Solve Sub(x̂t, ŷt);
9: While sub-problem is infeasible

10: t = t + 1;
11: Find IISs of sub-problem (3) and formulate (multiple) combinatorial cuts (4);
12: Add combinatorial cut (4) to the master problem;
13: Solve master problem (2) subject to added combinatorial cuts to give new

solution (x̂t, ŷt);
14: Solve Sub(x̂t, ŷt);
15: End While
16: Return (x̂t, ŷt).

3.3.5 Performance of CBD for VNF-PC

To evaluate the effectiveness of the augmented Combinatorial Benders Decomposition

(CBD) approach, along with the inclusion of the greedy branching heuristic, for solving

the VNF-PC problem, we implemented the model using C++ and integrated it with

IBM ILOG-CPLEX version 20.1.0. The experiments were conducted on a machine with

an Intel 3.00 GHz processor and 16 GB of RAM. Refer to Section 3.3.3 for insights into

the formulation of combinatorial cuts.

3.3.5.1 Simulation Setup

The simulation setup for testing the CBD approach for VNF-PC, in comparison with

the monolithic mixed-integer model as presented in ILP I formulation, involves two

NFV infrastructures: one with 30 nodes and the other with 100 nodes. In both cases,

we consider a complete graph of links (|Es|= |Vs|×(|Vs|−1)/2), focusing solely on CPU
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resources.

For the NFV:

• CPU costs and capacities for each node U ∈ Vs are randomly chosen: αr
U ∈ [5,20],

Cr
U ∈ [20,120].

• Bandwidth costs and capacities for each link lS ∈ ES are randomly chosen:

βlS ∈ [5,20], CBwd
lS

= 1000.

For the SFC:

• Size of each SFC is determined: |Vf | ∈ [2,15].

• CPU demand of each VNF v ∈ Vf is randomly selected: Dv ∈ [10,20].

• Bandwidth demand of each link lv ∈ Ef is randomly chosen: DBwd
lv
∈ [2,5].

Comparative outcomes are provided for both NFV infrastructures with varying SFC

sizes (|Vf | ∈ [2,15]).

An instance is considered infeasible for a node U ∈ Vs if its capacity surpasses

Cr
U , implying node overload. If at least one node in an instance is overloaded for any

distribution of VNFs to nodes, the instance lacks a feasible solution. Additionally, we

consider that each link can be overloaded (CBwd
lS

= 1000), though we set this high value

to focus solely on overloaded nodes.

The range of possible CPU capacities Cr
U simulates real-world network environments,

where resource availability at nodes might already be allocated for other SFCs. This

facet grants realistic insights into the performance of the proposed approach.

Two key simulation metrics are addressed:

• Solution Availability: Determines if placement and chaining of the SFC are feasible.

• Runtime: Measures the algorithm’s time taken to attain an optimal placement

and chaining solution, if available.

For solution availability, each tested instance yielded a feasible optimal solution,

benefiting from sufficiently large NFV infrastructures. For runtime assessment, an

average across 20 instances was computed, with values for fixed variables being randomly

drawn for each instance.
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3.3.5.2 Simulation Results

We first examine the standard CBD approach for the VNF-PC problem. Given the

large bandwidth capacity of links (CBwd
lS

= 1000), infeasibilities in the master problem

arise predominantly from VNF allocation to nodes. Consequently, combinatorial cuts

primarily adopt the form of T1 (see Section 3.3.3), impacting solely the binary variables

xv
U (where U ∈ Vs, v ∈ Vf ). Considering that these binary variables are governed by

knapsack-style constraint (2b) in the master problem, the resulting combinatorial cuts

only eliminate a small subset of solutions.

Hence, the incorporation of the greedy branching heuristic, as elucidated in Sec-

tion 3.3.4, is indispensable to discard a larger set of infeasible solutions. This holds true

even for non-integer solutions at non-viable points in the master problem.

Runtime results are graphically presented in Figure 3.5 (for |Vs|= 30) and Figure 3.6

(for |Vs| = 100), employing a logarithmic time scale. The standard CBD approach is

denoted as "CBD," while the combined approach with the greedy branching heuristic is

labeled as "CBDB."

Both figures reflect that while the unmodified CBD approach is relatively inefficient,

often slower than the monolithic MILP approach for larger SFC sizes, the incorporation

of the branching heuristic yields noteworthy runtime improvements. Since the proposed

approach weeds out infeasible solutions even at non-integer values, the subsequent

traversal of the branching tree becomes more efficient.

Figure 3.5 showcases that the collaborative effect of the branching heuristic with the

CBD approach performs on par with the MILP approach and occasionally outperforms it

slightly. In Figure 3.6, the benefit of employing the branching heuristic becomes evident

as the SFC size exceeds 7, as the approach consistently surpasses the MILP approach in

runtime efficiency. Notably, for larger instances, the presented decomposition approach

proves to be particularly effective as the SFC size increases. For smaller SFCs, both

methods efficiently solve the problem within 10 seconds.

In Figure 3.7, we further see comparative results between the MILP and the decom-

position approach with the greedy branching heuristic for the ordered VNF-PC variant.

We know from Section 3.2.5 that the inclusion of the ordering constraints leads to faster

solve times. Hence, we only compare for |Vs|= 100 and for |Vf | between 5 and 15.

In this case, the faster performance of the combined decomposition approach is clear

for larger SFC sizes. The ordering restrictions on the binary variables mean the cuts
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Figure 3.5: Runtime for the three approaches:
|Vs| = 30.

Figure 3.6: Runtime for the three approaches:
|Vs| = 100.

formed from the combinatorial Benders decomposition are stronger, and remove many

infeasible solutions in each iteration.
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Figure 3.7: Runtime for the two approaches for ordered VNF-PC:|Vs| = 100.
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3.4 Conclusion

The given chapter discusses the VNF placement and chaining problem in the context

of Network Function Virtualization (NFV). The chapter introduces a mathematical

formulation of the problem using Integer Linear Programming (ILP) as the optimization

technique. The VNF placement and chaining problem involve determining the optimal

allocation of VNFs and their interconnection order, known as Service Function Chains

(SFCs). The goal is to find the most cost-effective placement and routing of VNFs in the

NFV infrastructure. The chapter presents a formal representation of the problem and

its constraints, serving as a foundation for developing efficient optimization algorithms

and approaches. The problem formulation includes decision variables for VNF-node

assignments and VNF-link embeddings. The objective function aims to minimize the

total cost of VNF placement and bandwidth resource allocation.

Additionally, the chapter presents a complementary section on the application of

Combinatorial Benders Decomposition (CBD) to enhance the efficiency of solving the

VNF-PC problem. This approach leverages the power of IIS identification and combina-

torial cuts to improve the solution process, contributing to a deeper understanding of

the problem and its potential solutions. The integration of CBD into the discussion

enriches the chapter’s exploration of advanced techniques in tackling complex NFV

optimization challenges.

Furthermore, we introduce an ordered variant of the ILP formulation, imposing

constraints on the placement of VNFs according to a specified order. This ordered

VNF-PC variant enhances the algorithmic efficiency by introducing constraints on

binary variables. Such enhancements are expected to lead to faster solution times.

This chapter concludes by highlighting the significance of the discussed techniques and

approaches in addressing the challenges of VNF placement and chaining within NFV,

underscoring their potential for optimizing resource allocation and cost-effectiveness in

NFV infrastructure.
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VNF placement and chaining problem in unloaded

network

Seek knowledge from the cradle to

the grave.

Ibn al-Haytham

In this chapter, we explore a relaxed version of the VNF placement and chaining

problem in an unloaded network environment. We assume abundant resources on

nodes and links within the NFV infrastructure, aiming to minimize the overall

placement cost associated with Service Function Chains (SFCs). By disregarding

resource constraints, we analyze cost optimization aspects of VNF placement,

providing valuable insights into cost-efficient strategies for NFV deployments in

resource-rich networks.

Abstract

[11] Issam Abdeldjalil Ikhelef et al. “Multi-Constrained Routing-based Heuristic for VNF Placement and Chaining”.
In: ICC 2023 - IEEE International Conference on Communications. 2023
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4.1 Introduction

I n this chapter, we delve into a relaxed version of the VNF placement and chaining

problem, specifically focusing on an unloaded network environment. In an

unloaded network, there exists an abundance of resources available on both

nodes and links within the NFV infrastructure (NFV-I), enabling the provisioning of

Service Function Chains (SFCs) using any components.

In this relaxed scenario, we make a critical assumption that resource capacities

on nodes and links are significantly large, more than enough to accommodate the

demands of the SFCs. Within this context, our primary objective is to minimize the

overall placement cost associated with the deployment and execution of SFCs. This

cost encompasses the resource expenses incurred on nodes and links utilized during the

provisioning process.

By exploring the placement and chaining of VNFs in an unloaded network with

ample resources, we can analyze and optimize cost-related aspects of placement decisions,

such as resource utilization efficiency and overall cost minimization. The goal is to

achieve cost-effective SFC provisioning in an environment where resource constraints

are not a limiting factor.

This relaxed version of the VNF-PC problem offers valuable insights into cost

optimization in the placement process while disregarding resource limitations. These

insights serve as a foundation for understanding the cost implications of different

placement strategies and can guide decision-making in NFV-I design and deployment.

4.2 VNF placement and chaining problem in an unloaded network

In this section, the focus is on a relaxed version of the VNF-PC problem, specifically

in the context of an unloaded network. An unloaded network refers to a network

where there is an abundance of resources available on nodes and links, allowing for

the provisioning of Service Function Chains (SFCs) using any components of the NFV

infrastructure (NFV-I).

In this relaxed version, an important assumption is made that the resource capacities

of both nodes and links are significantly large and sufficient to accommodate the demands

of the SFCs. With this assumption, the objective is to minimize the overall placement

cost associated with provisioning the SFCs. This cost includes the resource costs of the

nodes and links that are utilized for the deployment and execution of the SFCs.
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By considering an unloaded network with abundant resources, it becomes possible

to explore the placement and chaining of VNFs without being constrained by resource

limitations. This allows for the analysis of cost aspects associated with the placement

decisions, such as the efficient utilization of resources and the optimization of overall

placement cost. By minimizing the placement cost, the goal is to achieve cost-effective

provisioning of SFCs in an environment where resource availability is not a limiting

factor.

The relaxed version of the VNF-PC problem provides valuable insights into the cost

optimization aspects of the placement process while disregarding resource constraints.

This analysis serves as a basis for understanding the cost implications of different

placement strategies and can help inform decision-making in the design and deployment

of NFV-I components.

By studying the relaxed version of the problem, researchers and practitioners can gain

a better understanding of the cost-related considerations involved in VNF placement.

This understanding can guide the development of more efficient and cost-effective

placement algorithms and policies, which can ultimately contribute to the optimization

of NFV deployments in networks with abundant resources.

4.2.1 NFV-I and SFC modeling and problem definition

In this subsection, we focus on the modeling and problem definition of the NFV-I and

SFC in the context of the relaxed version of the VNF-PC problem.

As presented in section 3.2.4, the substrate network NFV-I is modeled as an undi-

rected weighted graph, denoted as GS = (VS ,ES), where VS represents the set of nodes

corresponding to NFV-I servers and switches, and ES represents the set of virtual links.

To simplify the modeling, we assume that the CPU is the only resource available for

substrate nodes. Each substrate node U is associated with a CPU cost and a residual

capacity, denoted respectively as αU and CU . In the case of an NFV unloaded network,

where there is an abundance of resources, we assume that the capacity of each node is

infinite, i.e., ∀U ∈ VS : CU =∞.

Similarly, each virtual link lS = (laS , lbS) in the substrate network has a residual

bandwidth capacity denoted as CBwd
lS

and a bandwidth cost denoted as βlS . In the

context of an NFV unloaded network, where resources are abundant, the bandwidth

capacities on links are assumed to be infinite.
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Figure 4.1: SFC placement and chaining using Shortest Paths Algorithm.

The chain of virtual functions, known as the Service Function Chain (SFC), is

modeled as a graph Gf = (USrc,UT rg,Vf ,Ef ). The source node of the SFC is denoted as

USrc, which is provisioned by the NFV-I switch Src, and the target node is denoted as

UT rg, provisioned by the NFV-I switch Trg. The SFC graph interconnects the different

VNFs that compose the SFC, with Vf representing the set of VNFs and Ef representing

the set of links between the VNFs. Each VNF and link in Gf have specific resource

demands to ensure the proper functioning of the associated service. The demand of

VNF V NFi is denoted as di, and the demand of a link (V NFi,V NFi+1) in the SFC is

denoted as bi+1.

To simplify notation, we use the notation V NF0 to represent the source node USrc

and V NF|Vf |+1 to represent the target node UT rg.

To facilitate comprehension, we will begin by elucidating the graph transformation

process in the following subsection (Section 4.2.2). This transformation simplifies

the resolution of the VNF-PC problem’s relaxed version, which assumes ample and

extensive NFV-I resources. Subsequently, in Chapter 6, we will introduce and elucidate

the algorithm designed to address the generalized version of the VNF-PC problem. This

algorithm incorporates the constraints pertaining to node and link resources into the

transformed graph, enabling a comprehensive solution.

4.2.2 Graph transformation to solve the relaxed version of VNF placement and chaining

problem

To tackle the relaxed version of the VNF-PC problem, we introduce a novel k-partite

directed graph denoted as Gp = (Vp,Ep), which is derived from the NFV-I and SFC
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graphs. This transformation process is illustrated in Figure 4.1 and encompasses the

following key steps:

1. For each VNFi in the SFC, we establish a corresponding set Vi (0 < i ≤ k)

comprising server nodes capable of hosting that particular VNF. In the case of an

SFC with k VNFs, k sets (Vi, 0 < i ≤ k) are defined, along with V0 = {src0} and

Vk+1 = {tk+1}.

2. We create connections between nodes ui in Vi (0≤ i≤ k) and nodes vi+1 in Vi+1

(ui , vi+1) if and only if the corresponding edge (u, v) ∈ Es exists in the original graphs.

To compute the cost θ(ui,vi+1) of the link (ui, vi+1), we use the following equation:

θ(ui,vi+1) = αv × di+1 + β(u,v)× bi+1 (4.1)

Here, θ(ui,vi+1) encompasses the cost of mapping VNFi and VNFi+1 onto server nodes

u and v, as well as the cost of the path between servers u and v used to accommodate

the data flow between VNFi and VNFi+1.

In Figure 4.1, we provide a visual representation of the resulting 3-partite graph

derived from the NFV-I (Figure 3.1) and SFC (Figure 3.2). This example demonstrates

the process as follows:

- Assuming that all the nodes can support the SFC VNFs, we define Vi∈{0,1,2,3} as

follows:

V0 = {S0,A0}, V1 = {A1
S1

,B1
S2

,C1
S3
}

V1 = {A2
S1

,B2
S2

,C2
S3
}, V3 = {C3

S3
,T 3}

- Given that switch A connects to switch B and C and server S1, we introduce the

following links into the 3-partite graph:

(S0, A0), (A0, A1
S1

), (A0, B1
S2

), and (A0, C1
S3

).

Similarly, we incorporate the following links into the 3-partite graph:

(A1
S1

, B2
S2

), (A1
S1

, A2
S1

), (A1
S1

, C2
S3

), (B1
S2

, B2
S2

), (B1
S2

, A2
S1

), (B1
S2

, C2
S3

), (C1
S3

, B2
S2

),

(C1
S3

, A2
S1

), (C1
S3

, C2
S3

), (A2
S1

, C3
S3

), (B3
S2

, C3
S3

), (C2
S3

, T 3) and (C3
S3

, T 3).

- We compute the link costs within the 3-partite graph using equation 4.1, and these

values are represented as W0 in Figure 4.1.

Upon completing the graph transformation, the optimal mapping of the VNFs is

achieved by identifying the shortest path connecting the NFV-I source node S0 to the

NFV-I target node T k+1 within the k-partite graph. To illustrate this process using
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the example in Figures 3.1 and 3.2, the optimal mapping is determined by the shortest

path (S0, A0, C1
S3

, C2
S3

, T3). Specifically, VNF1 and VNF2 are assigned to server S3 .

The overall cost of this solution amounts to 300 as calculated below:

• w0(S0,A0)= θ(S0,A0) = 3× 30 = 90.

• w0(A0,C1
S3

) = θ(A0,C1
S3

) = 1× 30 + 1× 20 = 50.

• w0(C1
S3

,C2
S3

) = θ(C1
S3

,C2
S3

) = 1× 40 = 40.

• w0(C2
S3

,T3)) = θ(C2
S3

,T3)) = 4× 30 = 120.

Lemma 4.1. The optimal solution for the relaxed version of the VNFPC problem

corresponds to the shortest path π = (src0,a1, b2, c3, .., tk+1) in the corresponding k-

partite graph. The VNFs VNF1, VNF2, VNF3, .. are placed on the nodes a, b, c,

..

Proof. The validity of the preceding lemma is evident and can be verified by contradiction.

Assuming the existence of a VNF placement with a lower cost than that obtained with

the shortest path in the k-partite graph, it is straightforward to demonstrate that such

an assumption leads to a contradiction. (Proof complete)
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4.3 Conclusion

This chapter has delved into the relaxed version of the VNF placement and chaining

problem within unloaded network conditions, where resource constraints are not a

limiting factor.

By focusing on cost optimization aspects and disregarding resource limitations, we’ve

gained valuable insights into efficient VNF placement strategies. These insights lay the

groundwork for cost-effective NFV deployments in resource-rich network environments.

The transformation of NFV-I and SFC into a k-partite graph provides a powerful

approach for analyzing and optimizing VNF placement and chaining, as supported by

the presented lemma.

This understanding of cost-related considerations can guide the development of more

efficient placement algorithms and policies, ultimately contributing to the optimization

of VNF deployments.
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VNF placement and chaining problem in high band-

width network

Il va falloir choisir, dans un

avenir plus ou moins proche, entre le

suicide collectif ou l’utilisation

intelligente des conquêtes scientifiques.

Albert Camus

In this chapter, we address the VNF-PC problem in networks with limited node

resources but abundant link resources. We propose a knapsack-based genetic

algorithm that combines knapsack optimization principles with genetic algorithms

to optimize resource allocation and minimize costs. Benefiting from the work [9],

the objective is to minimize the overall placement cost, considering ample resource

capacities for nodes and links.

Abstract

[9] Issam Abdeldjalil Ikhelef et al. “A Knapsack-based Optimization Algorithm for VNF Placement and Chaining
Problem”. In: 2022 IEEE 47th Conference on Local Computer Networks (LCN). 2022, pp. 430–437. doi:
10.1109/LCN53696.2022.9843566

https://doi.org/10.1109/LCN53696.2022.9843566


64 Chapter 5. VNF placement and chaining problem in high bandwidth network

Chapter content
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 VNF placement and chaining problem in high band- width network 65

5.3 Knapsack Problem (KP) . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1 The Multidimensional Knapsack Problem in 0-1 Variables (MKP) 69

5.4 Genetic algorithms based meta-heuristic . . . . . . . . . . . . . . . . 70

5.4.1 Definition of Genetic algorithms . . . . . . . . . . . . . . . . 70

5.4.2 Initial Population . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.3 Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.4 Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4.5 Genetic Operators . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5.1 Compared Algorithms . . . . . . . . . . . . . . . . . . . . . . 75

5.5.2 Simulation Environment . . . . . . . . . . . . . . . . . . . . 75

5.5.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 76

5.5.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



65

5.1 Introduction

I n this chapter, our focus is on a specific variation of the VNF-PC problem, which

pertains to networks with limited node resources but abundant link resources.

To address this challenge, we propose a knapsack-based genetic algorithm that

combines knapsack optimization principles with genetic algorithms to optimize resource

allocation and minimize costs.

Inspired by the classical knapsack problem, our algorithmic approach selects and

places VNFs based on their weights and values to maximize overall value while adhering

to node resource constraints. By employing a genetic algorithm, we incorporate genetic

operators like selection, crossover, and mutation to iteratively refine candidate solutions.

This allows us to explore diverse configurations and identify placements that minimize

costs effectively.

The integration of the knapsack-based genetic algorithm enhances resource allocation

efficiency and cost minimization objectives. It provides a systematic and evolutionary

framework for finding optimized solutions, specifically tailored to networks with limited

node resources and abundant link resources.

By introducing this novel algorithmic approach, this section contributes significantly

to solving the VNF-PC problem in networks characterized by limited node resources

and abundant link resources.

5.2 VNF placement and chaining problem in high band- width network

As presented in section 3.2.4, we model the NFV-I as an undirected weighted graph,

noted GS = (VS ,ES) where VS is the set of nodes corresponding to NVF-I servers and

switches, and ES represents the set of virtual links.

For ease of understanding, we suppose that the CPU is the only resource available

for substrate nodes. Each substrate node U is associated with a CPU cost and a residual

capacity denoted respectively αU and CU . For NFV unloaded network, we assume that:

∀U ∈ VS : CU =∞.

Similarly, each virtual link lS = (laS , lbS) has a residual bandwidth capacity denoted

CBwd
lS

, and a bandwidth cost denoted βlS . For NFV unloaded network, the bandwidth

capacities on links are assumed infinite.

The chain of virtual functions (SFC) is also modeled by a graph Gf = (USrc,UT rg,Vf ,Ef ),

interconnecting its source node denoted USrc (that is provisioned by the NFV-I switch
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Src), to its target node denoted UT rg (that is provisioned by the NFV-I switch Trg) by a

path crossing the different VNFs that compose the SFC (see Figure 3.2). Vf corresponds

to the set of VNFs while the set of links interconnecting the VNFs is denoted Ef . VNFs

and links of Gf require certain amounts of resources to ensure the proper functioning of

the service associated with the SFC.

The VNF demand of VNF i is denoted di whereas the demand of a link (VNFi,VNFi+1)

in the SFC corresponds to bi+1.

To facilitate understanding and simplify notations, we denote by VNF0 and VNF |Vf |+1

respectively the source node USrc and the the target node UT rg.

In this section, we address the relaxed version of the VNF Placement and Chaining

problem (RVNF-PC) by assuming abundant bandwidth on links and limited resources

on nodes. Specifically, we focus on the CPU resource to simplify the problem, removing

the r ∈R variables from the general model.

To facilitate understanding, we first solve RVNF-PC under the assumption of negli-

gible bandwidth costs, which implies that bandwidth is superabundant and inexpensive.

We then generalize our results by considering non-negligible bandwidth costs.

For an NFV Infrastructure (NFV-I) with negligible link cost, the objective function

of the Integer Linear Programming (ILP) formulation I (Equation 3.1) reduces to the

term A, which represents the overall cost of placing VNF instances:

Z = Minimize A = Minimize
∑

U∈VS

∑
v∈Vf

xv
U ×Dv ×αU (5.1)

Here, αU denotes the unitary CPU cost on node U ∈ VS . The following constraints

are enforced:

∑
v∈Vf

xv
U ×Dv ≤ CU ∀U ∈ VS (5.2)

∑
U∈VS

xv
U = 1 ∀v ∈ Vf (5.3)

Constraint (5.2) guarantees that the CPU resource demand Dv is satisfied within

the residual capacity CU of each node of the NFV-I. Constraint (5.3) guarantees that

each VNF v ∈ Vf is placed in a single node of the NFV-I.

We can show that the solution to this problem corresponds to a variant of the

Multiple Knapsack Problem (MKP), where all objects must be placed in the knapsacks.
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This can be proven by deriving a new ILP formulation II from ILP I, which is essentially

the same as the one used to solve the multiple knapsack problem. This transformation

involves modifying the objective function (5.1) as follows:

Maximize C(x) = Maximize
∑

U∈VS

∑
V ∈Vf

xv
U (η−Dv ×αU ) (5.4)

Here, η is a high constant satisfying:

η≫
∑

U∈VS

∑
v∈Vf

Dv ×αU

We note that the objective functions (5.1) and (5.4) are equivalent, as shown by:

∑
v∈Vf

∑
U∈VS

η×xv
U = η×

∑
v∈Vf

 ∑
U∈VS

xv
U


= η×

∑
v∈Vf

(1) = η× |Vf |
(5.5)

Thus, minimizing the objective function (5.4) is equivalent to maximizing the

non-constant part of the objective (equivalent to objective function (5.1)). In other

words:

Maximize −
∑

U∈VS

∑
v∈Vf

xV
U ×Dv ×αU (5.6)

Note that ILP II can be transformed into the generic version of the Multiple Knapsack

Problem by relaxing constraint 5.3 (i.e., ∑
U∈VS

xv
U ≤ 1,∀v ∈ Vf ). In this case, ILP I is

solvable if and only if the solution of ILP II satisfies constraint 5.3.

In terms of interpretation, we can say that the RVNF-PC problem can be transformed

into an instance of the Multiple Knapsack Problem (see Figure 5.1), where VNFs

correspond to the objects and the servers correspond to the knapsacks. Specifically:

• The set of nodes in the NFV-I is modeled as the set of knapsacks, denoted by

M = {1, ...,m}.

• The Service Function Chain (SFC) composed of multiple VNFs is modeled as the

set of objects, denoted by N = {1, ...,n}.
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• Each VNF vi ∈ Vf has a CPU resource demand denoted by Dv, equivalent to the

weight Wi of the corresponding object i in the MKP.

• Placing VNF vi ∈ Vf on node Uj ∈ VS incurs a cost of (η−Dv ×αU ), equivalent

to the profit P j
i of placing object i in knapsack j.

• Each node Uj ∈ VS has a maximum CPU resource capacity denoted by CUj
, which

corresponds to the constant capacity of knapsack j denoted by Cj in the MKP.

• The objective is to minimize the total allocation cost of VNFs, which is equivalent

to maximizing the profit (or negative costs) of the placed objects.

In the case where the costs of interconnecting paths between VNF servers are equal

to or much higher than the CPU costs, the SFC optimal placement and chaining with

equal bandwidth demands can be obtained by solving the NP-hard knapsack problem

when all CPU costs are identical.

5.3 Knapsack Problem (KP)

The classical knapsack problem (KP) is a combinatorial optimization problem that

involves a single constraint on the solution objects. It is considered a challenging problem

due to its complexity and classification as an NP-hard problem. In real-life scenarios,

the knapsack problem can take various forms. For instance, imagine a mountaineer

Figure 5.1: MKP adaption of VNF-PC.
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who carries a knapsack and has a list of objects that they can potentially include in

the knapsack. Each object provides a certain level of comfort to the mountaineer while

occupying a specific amount of space. However, the capacity of the knapsack is limited.

Therefore, the mountaineer’s objective is to maximize comfort while ensuring that the

total capacity of the knapsack is not exceeded. Another example is the investment

problem, where there is a fixed budget and multiple projects to choose from. Each

project is characterized by a profit and an investment cost. The optimal investment

decision can be determined by solving a knapsack-type problem [70]. In general, the

knapsack problem involves filling a bag with a subset of objects, considering their weights

and profits, while satisfying two conditions:

• The total weight of the selected subset must not exceed the capacity of the

knapsack.

• The profit generated by the selected subset should be maximized.

The knapsack problem has many applications and often serves as a subproblem

in solving other problems. It has been extensively studied by researchers and various

formulations and solution techniques have been proposed.

5.3.1 The Multidimensional Knapsack Problem in 0-1 Variables (MKP)

The Multidimensional Knapsack Problem in 0-1 Variables (MKP), also known as the

multi-constrained knapsack or multiple knapsack problem, is a generalization of the KP

problem where there are more than one capacity constraint.

The MKP exhibits distinct characteristics compared to other knapsack problems. Firstly,

the associated matrix in MKP is typically dense. Secondly, obtaining a feasible solution

for MKP is relatively straightforward. By setting all variables of MKP to 0, a solution

with a value of 0 can be obtained. Several researchers have studied the MKP, including

[71] and [72].

The Multiple Knapsack Problem (MKP) falls under the category of NP-hard problems,

which means that finding an optimal solution can be computationally challenging and

often requires significant computational resources when using traditional numerical

methods [73]. When the number of capacity constraints, denoted as m, is equal to 1,

the MKP reduces to the knapsack problem. The MKP can be modeled as follows:
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MKP:

maxZ =
n∑

j=1
xj · pj

s.t.
n∑

j=1
xi ·wij ≤ ci for i = 1, ...,m.

xj ∈ {0,1} for j = 1, ...,n.

with pj ,wij , ci positive integers, (for j = 1, . . . , n and for i = 1, . . . , m) The

instances of the MKP which exist in the literature contain only very few constraints.

However, their resolution remains quite difficult for optimization software. For example,

instances that include 10 constraints and 500 variables are not solved optimally in a

reasonable time by optimization software.

5.4 Genetic algorithms based meta-heuristic

5.4.1 Definition of Genetic algorithms

A genetic algorithm (GA) is a powerful and versatile search and optimization technique

based on the principles of natural selection and genetics. It is a type of evolutionary

algorithm that mimics the process of biological evolution to find approximate solutions

to complex optimization problems [74].

The main idea behind a genetic algorithm is to model the problem-solving process as

an evolutionary process, where a population of potential solutions evolves over successive

generations to improve the quality of the solutions. This population of individuals

represents a pool of candidate solutions, often encoded as strings of binary digits or other

data structures [75]. Genetic algorithms (GAs) are optimization algorithms inspired

by the principles of natural selection and evolution. They operate on a population

of individuals, each representing a potential solution to the problem at hand. The

operations in a genetic algorithm include:

i. Initialization: A population of individuals is randomly generated as the initial

set of solutions. These individuals are usually encoded as binary digits strings or

other representations suitable for the problem domain.

ii. Fitness Evaluation: Each individual’s fitness is evaluated, which represents its

quality or suitability as a solution. The fitness function measures how well an

individual solves the problem and determines its likelihood of being selected for
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reproduction.

iii. Selection: Individuals with higher fitness values are more likely to be selected for

reproduction. The selection process, often implemented through mechanisms like

roulette wheel selection or tournament selection, favors individuals with better

fitness and promotes the propagation of their genetic material.

iv. Crossover: Crossover, also known as recombination, involves combining genetic

information from two parent individuals to create offspring. This operation mimics

genetic recombination in natural reproduction. Crossover points are chosen in the

parent individuals, and portions of their genetic material are exchanged to create

new offspring.

v. Mutation: Mutation introduces small random changes in the genetic material

of individuals. It helps to maintain diversity in the population and prevents

the algorithm from converging too quickly to a suboptimal solution. Randomly

selected positions in an individual’s genetic representation are altered with low

probability.

vi. Offspring Generation: The offspring generated through crossover and mutation

operations replace a portion of the existing population. This allows for exploration

of new areas of the solution space while retaining promising individuals.

vii. Termination Criteria: The algorithm continues to iterate through the selection,

crossover, and mutation operations until a termination condition is met. Common

termination criteria include reaching a maximum number of iterations, achieving a

satisfactory fitness level, or stagnation of improvement over successive generations.

By iteratively applying these operations, genetic algorithms explore the solution space

and adaptively search for optimal or near-optimal solutions. The genetic information of

fitter individuals is propagated to future generations, leading to the evolution of the

population towards better solutions [76].

To tackle the NP-hard RVNF-PC problem, we propose the use of genetic algorithms

(GA), known for their effectiveness in solving various knapsack problem variants. GAs

enable us to find near-optimal solutions from a set of feasible solutions by employing a

fitness function. The GA operates as follows.
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5.4.2 Initial Population

We begin with an initial population that promotes diversification and generates new

solutions through crossover and mutation operations. Selecting an initial population

comprising individuals with diverse and varied genes is crucial for exploring a wide range

of promising regions within the solution space. Including individuals with higher-quality

genes in the initial population often leads to swift convergence towards the best solutions.

In our approach, the following processes is used to generate the initial population:

• Random Generation: For each SFC of n VNFs, a list of n randomly selected

servers is generated and evaluated based on the fitness function.

• Constrained Shortest Paths: For an SFC composed of n VNFs, a shortest path

of n links connecting the SFC’s source to a neighbor of the SFC’s destination is

determined. The path calculation stage verifies the constraints, ensuring that only

paths satisfying the constraints are added to the initial population. We include

zero-cost reflexive links with unlimited capacities in the NFV-I to facilitate the

deployment of multiple successive VNFs on the same server. To guarantee an

adequate individuals number in the initial population, random solutions generated

using the previous process are also included.

5.4.3 Coding

The coding process transforms the real data of the problem into a format suitable for

GAs. In our approach, we employ a coding scheme using natural numbers to represent

server indices. Each VNF placement solution is encoded as an individual represented

by an array, where the indices correspond to the identifiers of the VNFs and the cell

contents represent the servers on which the VNFs are deployed. For example, an SFC

with 10 VNFs and an NFV-I with 10 servers would have a solution coding as shown in

Figure 5.2, where VNF1 and VNF10 are placed on Server 3, while VNF3 is placed on

Server 9.

Figure 5.2: Chromosome coding example
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Figure 5.3: Crossover example

5.4.4 Fitness Function

The fitness function evaluates the quality of individuals and guides the breeding process.

Individuals with higher fitness values are more likely to be selected for breeding. In our

GAs, the fitness is determined as follows:

• For feasible solutions:

fitness = cost
−(1+ index

nb_generations
)

Here, index represents the number of times the current population is regenerated

(ranging from 1 to nb_generations), nb_generations denotes the total number of

population regenerations, and cost = A+B is determined based on equations (3.2)

and (3.3). This fitness function increases the probability that an individual’s genes

are derived from the best individuals (i.e., those with the smallest costs) over

time.

• For non-feasible solutions: To prevent the algorithm from converging prematurely

without exploring promising regions in the solution space, particularly when the

initial population does not contain any feasible solutions, very small fitness values

are assigned to non-feasible solutions. For breeding, non-feasible solutions that

violate fewer constraints are preferred. In our proposal, we iterate through an

individual’s genes in the same order and count the number of times (nb_violate)

constraints are violated:

fitness = ϵ

nb_violate

Here, ϵ is a very small constant.
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Figure 5.4: Mutation example

5.4.5 Genetic Operators

The population reproduction process generates a new population i+1 from the previous

population i. This process involves selection, crossover, and mutation operations:

• Selection: The selection process determines which individuals are more likely to

produce the best results. Our algorithms utilize two selection methods:

i. tournament selection, where parents and children are randomly paired, and

the best individuals are selected in pairs,

ii. selection of the best individuals, where the next population is composed of

individuals with the highest fitness.

• Crossover: Crossover is a reproductive process that allows the exchange of genetic

information between individuals. Using two parents it produces one or two

children.

In our proposal, parents are selected using the Roulette Wheel Selection, where

the probability of choosing an individual for breeding in the next generation is

proportional to its fitness. For generating children, we use 2-point crossover,

where two points are randomly selected among the genes. Figure 5.3 illustrates

an example of crossover, where genes between the two crossover points in parents

P1 and P2 are exchanged to produce two new children, C1 and C2.

• Mutation: The mutation process randomly modifies the value of a component in

an individual with a certain probability. In our solution, we randomly select a

gene and replace the server identifier S with another randomly selected server

identifier S′ from the list of servers. Figure 5.4 illustrates an example of mutation.
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5.5 Performance Evaluation

This section provides an overview of the compared algorithms, simulation environment,

performance metrics, and simulation results.

5.5.1 Compared Algorithms

The simulation evaluates the following algorithms :

• GA-RB: Genetic Algorithm with random generation of the initial population and

selection of the next generation based on the best individuals among children and

parents.

• GA-RT: Genetic Algorithm with random generation of the initial population and

selection of the next generation through a 2-to-2 tournament between an individual

from different parents and an individual from the children. Pairing of parents and

children is done randomly.

• GA-CB: Similar to GA-RB, but the initial population consists of Shortest Con-

strained Paths to the destinations’ neighbors. Additional randomly generated

mapping solutions are included to ensure an adequate number of individuals in

the population.

• GA-CT: Similar to GA-RT, but the initial population consists of Shortest Con-

strained Paths to the destinations’ neighbors.

• CSP: Constrained Shortest Paths between the sources and destinations based

on cost. Constraints are checked during the computation to ensure that the

determined paths satisfy them. Each node is associated with a constraint vector,

and a modified version of the Ford-Bellman algorithm is used to find the best

paths satisfying the constraints.

• ES: Exhaustive Search to determine the solution with the minimum cost.

The population size is set to 100 individuals, and the mutation probability is 0.01. The

simulation time is 105 units.

5.5.2 Simulation Environment

SFC requests follow a Poisson process with an arrival rate of λ requests per time unit.

The lifetime of each request follows a uniform distribution U(10,20). The simulation
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is performed on two NFV-Infrastructures: one with 30 nodes and the other with 100

nodes. The available CPU capacity per physical node is randomly selected within the

range of 20 to 120 units, and the available bandwidth capacity per link is set to 1000

units. The requested CPU capacity of each VNF is randomly chosen from the range of

(10, 20), and the requested bandwidths are randomly selected from the interval (2, 5).

The resource costs α and β are randomly generated within the range of (5, 20).

5.5.3 Performance Metrics

This subsection defines the simulation metrics used for performance evaluation and

comparison.

• Mean SFC Cost (MSC): The Mean SFC Cost (MSC) represents the average cost

of successfully placed SFCs. It is calculated as the ratio of the total cost of CPU

and bandwidth resources allocated for SFCs to the total number of accepted SFCs.

• Ratio of Accepted Requests (RA): The Ratio of Accepted Requests (RA) is the

ratio of the number of accepted SFC requests to the total number of received SFC

requests.

5.5.4 Simulation Results

The simulation compares the proposed algorithms to ES and CSP for different sizes of

SFCs and NFV-Is. The first experiment involves small SFCs and NFV-Is, while the

second experiment includes medium and large SFCs and NFV-Is.

In the first experiment, the performance of the four variants of GAs is compared

to ES and CSP for SFCs with varying numbers of VNFs (n ∈ (2,6)) and an NFV-I

with 30 nodes. The results, shown in Figure 5.5, indicate that the compared algorithms

have similar performance. Although CSP exhibits slightly lower RA compared to GAs

and ES for SFCs with 6 or 5 VNFs (Figure 5.5a), the differences are negligible and

indistinguishable for other scenarios.

While ES guarantees optimal solutions, the probability of CSP to determine solutions

decreases as the SFC sizes increase. CSP maintains only one path per node during

computations, which reduces the probability of finding the best solutions as the SFC

sizes and path lengths increase. For example, CSP returns optimal solutions for SFCs

with 2 VNFs.

To further examine the behavior of the algorithms, the second experiment explores
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various network loads using an NFV-I with 30 nodes and randomly generated SFCs with

6 VNFs. The results in Figure 5.6 demonstrate that the GA variants have performance

similar to ES, which is slightly better than CSP in terms of RA. As the network load

increases, the ratio of accepted requests decreases, and CSP exhibits performance

close to that of ES and GAs. This can be attributed to CSP’s limited exploration of

promising regions in the solution space and its tendency to reuse the same path segments,

potentially leading to network congestion and decreased solution determination for future

requests.

Regarding MSC, the compared algorithms achieve similar results, although the

determined solutions may differ. GAs construct solutions by combining path segments

of the best solutions, similar to CSP which maintains one best path segment per node.

Consequently, both algorithms yield nearly optimal solutions, although CSP may not

explore certain promising parts of the solution space.

The first two experiments demonstrate that GAs and ES have comparable per-

formance, slightly outperforming CSP, particularly in terms of RA. To provide a

comprehensive comparison and gain further insights into the behavior of the GA vari-

ants, a third experiment is conducted with larger SFCs (size in (10, 20)) and NFV-Is

consisting of 100 nodes. The results, presented in Figure 5.7, indicate that the GA

variants GACB and GACT outperform the other algorithms, including CSP, GARB,

and GART.

In terms of RA (Figure 5.7a), all GA variants surpass CSP, indicating that diversifi-

cation and increased utilization of path segments improve RA to some extent.

Regarding MSC, Figure 5.7b shows that the GA variants GACB and GACT achieve

lower mean SFC costs compared to the other algorithms.

While the GA variants with random paths yield slightly higher SFC costs compared

to CSP due to the small population size and limited computation time, it is important

to note that CSP rejects larger SFCs, resulting in a lower RA compared to GAs.

The choice of the initial population has a significant impact on the performance

of GAs, while the selection process for the next population has negligible effects on

the overall performance. Additionally, incorporating constrained shortest paths in the

initial population can accelerate convergence and improve performance.
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(a) Ratio of acceptation (b) Mean SFC cost

Figure 5.5: Comparison results for different arrival rates and small NFV-Infrastructure and SFC sizes

(a) Ratio of acceptation (b) Mean SFC cost

Figure 5.6: Comparison results for various network loads and medium NFV-Infrastructure size

(a) Ratio of acceptation (b) Mean SFC cost

Figure 5.7: Comparison results for various network loads and large NFV-Infrastructure size
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5.6 Conclusion

In this chapter, we proposed a Knapsack-based algorithm utilizing Genetic Algorithm

(GA) for solving the VNF-PC in NFV-Infrastructures (NFV-Is). The performance of our

proposed algorithm was compared with other existing algorithms, including Exhaustive

Search (ES), Constrained Shortest Paths (CSP), and different variants of GAs.

The simulation experiments were conducted with varying sizes of SFCs and NFV-Is.

The results demonstrated that our proposed Knapsack-based algorithm using GA, along

with ES and GAs, outperformed CSP in terms of the Ratio of Accepted Requests

(RA) for small and medium-sized SFCs. This indicated that our algorithm, which

incorporated the Knapsack problem formulation into the GA framework, effectively

determined suitable placements for SFCs while considering resource constraints.

Furthermore, the Knapsack-based algorithm demonstrated comparable performance

to ES and GAs in terms of Mean SFC Cost (MSC). It produced nearly optimal solutions,

considering the trade-off between solution quality and computational complexity. The

algorithm’s performance was particularly promising for larger SFCs and NFV-Is, where

it achieved lower mean SFC costs compared to the other algorithms, including CSP.

The incorporation of the Knapsack problem formulation within the GA framework

allowed for efficient exploration of the solution space, leading to improved resource

allocation and better RA. The genetic operators, such as selection, crossover, and

mutation, facilitated the evolution of solutions, enabling the algorithm to find near-

optimal placements for SFCs.

Overall, our proposed Knapsack-based algorithm using GA demonstrated its effec-

tiveness in solving the VNF-PC problem in NFV-Is. It provided a robust and efficient

approach, considering resource constraints and achieving high RA with competitive

MSC. Further research could focus on optimizing the algorithm’s parameters, exploring

different selection mechanisms, and investigating the algorithm’s performance under

diverse scenarios.

In conclusion, the proposed Knapsack-based algorithm using GA offers a promising

solution for VNF-PC in NFV-Is. Its ability to efficiently allocate resources and achieve

high RA makes it a valuable approach in the field of network function virtualization.
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VNF placement and chaining problem in its generic

version

Science without wisdom is like a

lottery. We risk losing everything we

invested.

Albert Einstein

This Chapter tackles the comprehensive version of VNF-PC, considering lim-

ited resources and employing a multi-constrained algorithm for efficient resource

allocation. Our research contributes to optimizing resource allocation in NFV

environments, considering broader network scenarios.

Abstract

[11] Issam Abdeldjalil Ikhelef et al. “Multi-Constrained Routing-based Heuristic for VNF Placement and Chaining”.
In: ICC 2023 - IEEE International Conference on Communications. 2023
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6.1 Introduction

T his chapter tackles the comprehensive version of the VNF-PC problem, ben-

efiting from the work [11] considering limited node and link resources in

a broader network environment. Our approach employs a multi-constrained

algorithm to efficiently allocate resources for SFC provisioning. By considering compu-

tational and bandwidth requirements, we ensure resource optimization while minimizing

costs.

Our research contributes to the optimization of resource allocation in NFV envi-

ronments, encompassing the full scope of the VNF-PC problem. Through insights

gained from both the unloaded network scenario and the broader network environment,

we aim to enhance the efficiency and cost-effectiveness of resource allocation in NFV

deployments.

6.2 Multi-constrained routing to solve the VNF placement and chaining problem

6.2.1 Definition of Multi-constrained routing algorithm

Multi-constrained routing algorithms are computational techniques designed to address

the challenges of routing in networks where multiple constraints need to be considered

simultaneously. In traditional routing algorithms, paths are determined based on a

single metric, such as the shortest path or minimum hop count. However, in many

real-world scenarios, networks have diverse requirements that extend beyond a single

metric. These requirements can include factors such as bandwidth, delay, cost, reliability,

security, and quality of service (QoS) [77].

The objective of multi-constrained routing algorithms is to find optimal or near-

optimal paths in the network that satisfy a combination of these constraints. The

algorithms aim to strike a balance between different constraints while taking into

account the network topology, available resources, and the specific requirements of the

application or service being supported.

One common approach to multi-constrained routing is the use of heuristic-based

algorithms. These algorithms employ rule-based or iterative methods to find feasible

paths that satisfy the given constraints. Heuristic algorithms leverage domain-specific

knowledge or predefined metrics to guide the routing decisions. They may explore

different paths, evaluate their feasibility based on the constraints, and iteratively refine
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the routing choices until a suitable solution is found. While heuristic algorithms may

not guarantee optimality, they provide practical and efficient solutions for routing in

complex networks.

Another approach to multi-constrained routing is the use of mathematical pro-

gramming models. These models formulate the routing problem as an optimization

problem, where the objective is to find the optimal solution that satisfies the constraints.

Mathematical techniques, such as linear programming, integer programming, or mixed-

integer programming, are employed to solve these models. These methods can handle

multiple constraints and provide optimal or near-optimal solutions, but they may be

computationally intensive and may not scale well for large networks.

Evolutionary algorithms, such as genetic algorithms, have also been applied to

multi-constrained routing problems [78], [79]. These algorithms simulate the process of

natural evolution, where a population of candidate solutions evolves over generations

through mechanisms such as selection, crossover, and mutation. By iteratively exploring

and evaluating different solutions, genetic algorithms search for the best set of paths

that satisfy the given constraints. They offer a flexible and adaptive approach to finding

near-optimal solutions in complex network environments.

Multi-constrained routing algorithms have applications in various fields such as

telecommunications, transport networks, wireless sensor networks, and cloud computing.

These algorithms play an important role in ensuring efficient and reliable communication,

taking into account various constraints and requirements of the network. By providing

optimal or near-optimal routing solutions, multi-constrained routing algorithms enable

networks to effectively use available resources, optimize performance, and meet the

specific needs of applications and services [80].
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Figure 6.1: Multi-constrained routing for SFC placement and chaining.
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6.2.2 Graph transformation and application of the Multi-constrained routing to the VNF-

PC problem

To enhance clarity, let’s first revisit the graph transformation discussed in Section 4.2.2

of the chapter 4.

In this subsection, we will introduce and provide a detailed explanation of the algorithm

developed to address the generalized version of the VNF-PC problem. This algorithm

incorporates constraints related to both node and link resources into the transformed

graph, thereby providing a comprehensive solution.

This approach is designed to offer a systematic, step-by-step explanation to facilitate

a better understanding of the resolution process. In the generic version of the VNF-PC

problem, it is essential to validate node and link constraints alongside optimizing the

overall cost. To achieve this objective, we propose the following steps:

i. We extend and enhance the k-partite graph Gp defined in the section 4.2.2.

ii. We store all the nodes u ∈ Vs in an array and define the function I(u) to return

the index i (1≤ i≤ |Vs|) of node u in the array.

iii. We store all the links ls ∈ Es in an array and define the function I ′(ls) to return

the index i (|Vs|< i≤ |Vs|+ |Es|) of link ls in the array.

For the example in Figure 3.1, the indexes can be set as follows:

I(S1) = 1

I(S2) = 2

I(S3) = 3

I ′((S,A)) = 4

I ′((A,C)) = 5

I ′((C,B)) = 6

I ′((B,A)) = 7

I ′((C,T)) = 8

iv. We associate each link (ui,vi+1) in the k-partite graph with a vector −→W (ui,vi+1) =



87

(w0;w1, ..,w|Vs|+|Es|)T as follows:

w0 = θ(ui,vi+1)

∀1≤ j ≤ |Vs| :wj =


di+1 if j = I(v)

0 otherwise

∀|Vs|< j ≤ |Vs|+ |Es| :wj =


bi+1 if j = I ′((u,v))

0 otherwise

This way, each link (ui,vi+1) is associated with three non-nil weights: (1) w0

corresponding to the cost θ(ui,vi+1), (2) wI(v) corresponding to the resources

required by VNFi+1, and (3) wI′((u,v)) corresponding to the resources required by

the link connecting VNFi and VNFi+1 in the SFC. All other weights are zero.

v. We associate each path π ∈Gp with a vector −→W π determined as follows:

−→
W π =

∑
lp∈π

−→
W lp

A path π satisfies the node constraints if and only if it fulfills the following

inequality:

∀1≤ i≤ |Vs| : wi(π)≤ CI−1(i)

where I−1 is the inverse function of I.

A path π satisfies the link constraints if and only if it meets the following inequality:

∀|Vs|< i≤ |Vs|+ |Es| : wi(π)≤BI′−1(i)

where I ′−1 is the inverse function of I ′.

Hence, we say that a path π satisfies all the constraints if it complies with both

the link and node constraints.

vi. We determine the optimal multi-constrained path π∗ in Gp that minimizes the

overall cost w0 and satisfies the link and node constraints (see Figure 6.1). The

NFV-I nodes traversed by the path π∗ in Gp provide the optimal solution to the

VNF-PC problem.
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Lemma 6.1. The optimal solution to the VNF-PC problem is determined by the

optimal multi-constrained path, which not only minimizes the overall cost but also

satisfies the link and node constraints within the corresponding k-partite graph.

Proof. The correctness of this lemma is straightforward and can be demonstrated

through a proof by contradiction. Let’s assume the existence of a VNF placement

that satisfies the constraints and has a lower cost than the one obtained using the

multi-constrained shortest path in the k-partite graph. It is then evident that such an

assumption leads to a contradiction.

Therefore, we can confidently assert that the optimal solution to the VNF-PC

problem is indeed achieved through the multi-constrained shortest path in the k-partite

graph, as it simultaneously optimizes the cost while adhering to the link and node

constraints.

It is noteworthy to mention that we use the term "optimal multi-constrained path"

to refer to a path that optimizes one metric (w0) while satisfying a non-constant number

of constraints (wi with 1 ≤ i ≤ |Vs|+ |Es|). Traditionally, multi-constrained routing

problems involve a constant number of metrics/constraints.

These results underscore the significance of our findings, demonstrating that the

VNF-PC problem can be addressed using a variation of the well-known multi-constrained

routing problem. This implies that the multitude of heuristics and algorithms developed

for solving the multi-constrained routing problem [81][82] can be leveraged to solve the

VNF-PC problem effectively.

6.3 K-multi constrained shortest path-based heuristic (KMSPH) to solve VNF-PC

problem

Here, we propose a novel heuristic to efficiently solve the VNF-PC problem in polynomial

time. Our heuristic is based on the following:
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Algorithm 2 Pseudo code of K-multi constrained shortest path-based heuristic (KMSPH)
Input: K constant indicating the maximum number of paths that can be stored on
each node
Output: a path verifying the constraints and connecting the source node src with
the destination node t in NFV-I. By assumption, V NF0 is mapped on src, and
V NF|Vf |+1 is mapped on t.

1: ∀u ∈ V and ∀0 < i≤ |Vf |+ 1 : count(u,i) = 1
2: path(src0)(1)={}: the first path to src0 is empty. This path indicates that VNF0

runs on src.
3: queue.add(src,0,{}) ▷ A tuple (u,i,j) identifies node ui ∈ Vi (in the k-partite

graph) and path path(ui)(j) which is the jth path from the source node src to ui.
4: While queue.empty()=false do
5: (u, i, j) = queue.delete_min()
6: If i = |Vf |+ 1 then return path(u|Vf |+1)(j)
7: Else
8: For each v ∈ adjacent (u)∪{u}:

v.offers(V NFi+1) do
9: If wI(v)(path(ui)(j)) + di+1 ≤ Cv and

wI′((u,v))(path(ui)(j) + bi+1 ≤B(u,v) then
10: π = path(ui)(j) + (u,v)
11: If count(v, i + 1) < K then
12: path(vi+1)(count(v, i + 1)) = π
13: queue.add((v, i + 1, count(v, i + 1)))
14: count(v, i + 1) = count(v, i + 1) + 1
15: Else
16: ind = ind_high_cost(Paths(vi+1))
17: If w0(π) < w0(path(vi+1)(ind)) then
18: path(vi+1)(ind) = π
19: queue.update(v, i + 1, ind)
20: End If
21: End If
22: End If
23: End For
24: End If
25: End While

i. K-shortest paths: The solution to the VNF-PC problem is given by the shortest

path which verifies the node and link constraints. This means that the optimal

solution can be obtained by calculating the K-shortest paths with a sufficiently

large value of K (K ≥ 1).

ii. Limiting the number of stored paths on each node: On each node of the k-partite

graph, at most K paths are stored and used for path computation. Such limitation

of the stored paths number guarantees a polynomial time complexity but does

not ensure the determination of existing or optimal solutions.
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iii. Constraints verification at each step of path computation: only the paths verifying

the constraints are stored and used.

iv. No use of path dominance: unlike the most algorithms which solve the multi-

constrained routing problem (for instance, [81][82]), our heuristic does not use path

dominance. Indeed, except the paths traversing the same links in the k-partite

graph, no path can dominate another path (recall that each link corresponds to a

different constraint and note that each path contains the same number of links).

The pseudo code of our KMSPH is provided by Algorithm 2 which aims to determine

the best path connecting in the k-partite graph a source node src0 to a target node

tk+1, verifying all resource constraints and reducing cost.

At initialization, Algorithm 2 assigns at step 1 a counter for each node in the

k-partite graph. The counter guarantees that at most K paths are stored in each node.

An empty path is also created and associated with the source node src0 at step 2.

The tuple consisting of the source node, the index of the supported VNF (equal to 0

for the source node), and the empty path path(src0)(1) is then inserted into a priority

queue at step 3 of the algorithm. Obviously, the tuple storing the path with the lowest

cost has the highest priority.

As long as the priority queue is not empty, a tuple (u, i, j) identifying the next

lowest cost path is removed at step 5 and is explored in the block of instructions from 6

to 24. If the 2 first components of the removed tuple correspond respectively to the

target node t and |Vf |+ 1, the destination is reached and the path path(t|Vf |+1(j) is

returned.

Otherwise, all the neighbors nodes v to u which support VNFi+1 are explored (step

8) by adding the link (u,v) to the path path(ui)(j) (i.e., π = path(ui)(j) + (u,v)). If

the resulting path π satisfies the node and link resource constraints (step 9), the path π

is kept (instruction 10) and becomes a candidate for storage. More precisely, path π is

stored for node vi+1 if its number of stored paths is less than K (lines 11-14). Otherwise,

path π will replace the highest cost path stored for node vi+1 if its cost is also larger

than that of π (lines 15-21). The queue is updated to reflect this path replacement in

statement 18 (cost decrease of the replaced path).

The complexity of KMSPH can be obtained as follows: Instruction 1 is performed in

O(|Vf |.|Vs|). Instructions 2 and 3 are performed in O(1). Instructions 4 to 25 inside the
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do while loop can be executed K.|Vs|.|Vf |+ 2 times at most. By implementing queue

with a Fibonacci heap, instruction 5 is accomplished in O(log(K|Vs|.|Vf |)). The ‘for

loop‘ of statement 8 is invoked K.(2|Es|+ Vs).(|Vf |) to process the nodes between src

and t. The condition in line 9 is checked in O(|Vf |), and instruction 16 runs in O(K).

The other instructions 11 to 14 and 17 to 19 hold in O(1).

Therefore, the complexity of KMSPH is:

O(K|Vf |.|Vs|. log(K|Vs|.|Vf |) + K2(|Vs|+ |Es|).|Vf |2)

As log(|Vs|) < |Vs| and log(K) < K, the complexity of KMSPH can be reduced to:

O(K.|Vf |.|Vs|. log(|Vs|) + K2.(|Vs|+ |Es|).|Vf |2)

Note that for unbounded values of K (i.e., K ≥ |Vs||Vf |−1), KMSPH solves the

VNF-PC problem exactly. For constant values of K, the complexity becomes polynomial

and equal to:

O(|Vf |.|Vs|. log(|Vs|) + |Vf |2.|Vs|+ |Vf |.|Es|)

6.4 Performance Evaluation

The higher the number of paths stored on each node, the better the quality of the

solutions determined by KMSPH. The objective of our simulations is to study the

impact of the values of K on the quality of the solutions. To do this, we compared 5

instances of KMSPH obtained by setting K to the following values: 1, 5, 50, 300, and

∞. We recall that with K =∞, KMSPH gives exact solutions at the expense of a very

long running time.

In our first tests, we used SFC and NFV-I of small sizes to ensure the determination

of the optimal solutions, which will be compared to the solutions determined for K ≤ 300.

In our latest tests, we used larger SFCs and NFV-I. The objective is to experimentally

measure the impact of the increase of K on the quality of the determined solutions and

to estimate the convergence time.

6.4.1 Simulation Environment and Scenarios

In our simulation, SFC requests arrive according to a Poisson process with λ requests/-

time unit, and the lifetime of each request follows a uniform distribution U(10,20).
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Table 6.1: Ratio of Accepted requests (1st scenario)
λ K = 1 K = 5 K = 50 K = 300 Optimum

0.2 100% 100% 100% 100% 100%
0.4 99.92% 99.92% 99.95% 99.95% 99.95%
0.6 97.55% 97.70% 97.77% 97.77% 97.77%
0.8 91.33% 91.75% 91.89% 91.89% 91.89%

1 82.37% 83.21% 83.50% 83.51% 83.51%

Figure 6.2: Mean SFC costs (1st scenario)

Three scenarios are considered for the performance comparison:

• Scenario 1: with λ evolving from 0.2 to 1 (with step = 0.2). The SFC size is equal

to 8, and the NFV-Infrastructure is composed of 15 nodes and 105 links.

• Scenario 2: with λ = 1, the NFV-I is the same as Scenario 1, but the SFC sizes

change from 4 to 8 with a step of 1.

• Scenario 3: a very large NFV-I is used with the number of nodes equals 50 and

the number of links equals 1225. SFC sizes scale from 6 to 12 VNFs.

The available CPU capacity per physical node is randomly drawn within the range

of 50 to 250 units, and the available bandwidth capacity per link is randomly drawn

within the range of 10 to 50 units. The requested CPU capacity of each VNF is drawn

randomly in (10, 20) with random requested bandwidths in the interval (5, 10). The

resource costs α and β are randomly generated in the range of (5, 20). The simulation

time for the three scenarios is 100,000 units.
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Table 6.2: Ratio of Accepted requests (2nd scenario)
SFC size K = 1 K = 5 K = 50 K = 300 Optimum

4 100 % 100 % 100 % 100 % 100 %
5 99,18 % 99,25 % 99,26 % 99,26 % 99,26 %
6 95,88 % 96,16 % 96,17 % 96,17 % 96,17 %
7 89,76 % 90,50 % 90,61 % 90,61 % 90,61 %
8 82,25 % 83,05 % 83,27 % 83,27 % 83,27 %

6.4.2 Performance Metrics

For our study, we computed the two metrics defined below:

• Ratio of Accepted Requests (RA): It represents the ratio between the number of

accepted SFC requests and the total number of received SFC requests.

• Mean SFC Cost (MSC): It determines the mean cost of SFCs placed successfully.

It’s obtained by calculating the ratio between the total cost of CPU and bandwidth

resources allocated for SFCs and the total number of accepted SFCs.

6.4.3 Simulation Results

In the first scenario, the results indicate that all the compared methods have similar

acceptance rates, as shown in Table 1, when dealing with low network loads (λ = 0.2 and

λ = 0.4). This similarity can be attributed to the fact that, under conditions of ample

resources, the shortest path algorithm performs optimally, leading to nearly identical

results across the methods.

However, as the network load increases, the performance difference becomes apparent,

especially for KMSPH instances with K ≤ 50. In particular, a larger value of K means

a larger proportion of requests are accepted. This suggests that increasing K leads to

improved acceptance rate, especially under high network load.

In summary, the performance differences between methods become more prominent as

network loads intensify, and KMSPH with higher K values outperforms its counterparts

by accepting a greater proportion of SFC requests. Regarding the mean SFC cost

metric, the observations from Figure 6.2 reveal that, except for KMSPH with K = 1,

all the compared methods exhibit similar performance. Despite the potentially large

number of paths stored for each node, which can reach up to 157 for scenario 1, the

combined utilization of (1) the k-partite graph to diversify path structures (by storing

K different paths (src, vi) for each node vi ∈ Vi) and (2) the resource constraint
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Figure 6.3: Mean SFC costs (2nd scenario)

Table 6.3: Ratio of Accepted requests (3rd scenario)
λ K = 1 K = 5 K = 50 K = 300
1 100 % 100 % 100 % 100 %
2 100 % 100 % 100 % 100 %
3 97,82 % 97,98 % 98,02 % 98,05 %
4 83,03 % 83,86 % 84,31 % 84,63 %
5 68,68 % 69,98 % 70,97 % 71,19 %

verification that removes path segments not conforming to the constraints allows for

the determination of solutions that closely approximate the optima.

Scenario 2, which investigates the impact of SFC size on KMSPH’s performance, is

characterized by results presented in Table 6.2 and Figure 6.3. These results indicate

that as SFC sizes increase, the differences in performance among the compared methods

remain limited and relatively stable. The disparities are often minimal and hardly

discernible when K exceeds 50.

In summary, the mean SFC cost metric shows that KMSPH with K values greater

than 1 performs similarly to other methods, with only slight differences in performance,

even when SFC sizes increase.

Despite the exponential growth in the total number of paths resulting from the

increase in SFC size, which expands the solution space substantially, the utilization

of K-constrained shortest paths within the k-partite graph effectively facilitates the

exploration of diverse regions within the feasible solution space. This exploration process
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Figure 6.4: Mean SFC costs (3rd scenario)

frequently leads to solutions that closely approximate the optima. Consequently, in

your simulation, deploying KMSPH with a value of K = 300 enables the attainment of

performance that is remarkably close to the optimal solutions.

In the third scenario, the results clearly demonstrate that KMSPH instances rapidly

converge towards solutions that are very close to each other as the value of K increases.

This convergence is evident in Table 6.3, where the disparity between the KMSPH

instances diminishes considerably as K grows. For instance, the gap between the ratios

of accepted requests obtained with instances of K = 50 and K = 300 is quite small, and

it’s notably smaller than the difference between instances with K = 1 and K = 5. The

same behavior is observed in figure 6.4, where the average SFC costs of different KMSPH

instances are very close to each other. As the value of K increases, the difference in

average SFC costs decreases. This behavior highlights the effectiveness of KMSPH in

providing consistent near-optimal solutions as K increases.

To further quantify the differences in mean SFC costs between various instances of

KMSPH with K values less than 300 and the instance with K = 300, we calculated the

normalized difference and present it in Table 6.4. This metric, denoted as ND (K = x,

K = 300), for the KMSPH instance with K = x is computed as follows:

ND(K = x,K = 300) = MSC(K = x)−MSC(K = 300)
MSC(K = 300) × 100

The results in Table 6.4 clearly show that the normalized difference decreases rapidly
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Table 6.4: Normalized difference (3rd scenario)
λ ND (K=1, K=300) ND (K=5, K=300) ND (K=50, K=300)
1 1,18 % 0,26 % 0,03 %
2 1,48 % 0,36 % 0,05 %
3 1,75 % 0,46 % 0,07 %
4 1,37 % 0,16 % -0,13 %
5 0,94 % -0,14 % -0,01 %

as K increases. For instance, in the case where K = 50, the normalized difference is

very small and almost negligible. In some instances, it may even be negative due to the

acceptance of more requests with higher costs for K = 300.

These results from the third scenario show that as K increases, the KMSPH heuristic

rapidly converges to a solution that is very close to the optimal solution. This property

highlights the usefulness and effectiveness of KMSPH, especially for solutions close to

the optimal solution.
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6.5 Conclusion

In this chapter, we focus on the VNF Placement and Chaining (VNF-PC) problem

within the context of Network Function Virtualization (NFV) environments. We address

the general version of the problem and demonstrate that it can be effectively solved

using multi-constrained routing techniques.

We explored the transformation of this problem into a graph-based representation, facil-

itating the application of the K-Constrained Multi-Shortest Paths Heuristic (KMSPH)

algorithm. Through a systematic evaluation across various scenarios, we discovered that

KMSPH, guided by the parameter K, adeptly adapts to changing network conditions,

exhibiting remarkable performance by consistently converging toward near-optimal

solutions.

Notably, KMSPH’s ability to efficiently handle diverse SFC sizes, maintain solution

diversity, and optimize resource utilization underscores its potential as a valuable tool

for network operators seeking robust solutions for VNF placement and chaining within

NFV infrastructures.
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Exploring Constrained Shortest Paths Routing for

VNF Placement and Chaining in NFV-I

Des chercheurs qui cherchent, on

en trouve. Mais des chercheurs qui

trouvent, on en cherche.

Charles de Gaulle

This chapter delves into Virtual Network Function (VNF) placement and chaining.

We present an extended Constrained Shortest Path-base Heuristic in multi-Partite

Graph (CSPH-PG), exploring its effectiveness in diverse NFV scenarios. The

chapter details the VNF placement problem in unloaded networks and introduces

the constrained shortest paths algorithm, a core component of the CSPH-PG

approach. Based on ongoing research [12], this work demonstrates the CSPH-PG’s

scalability and efficiency, particularly for large NFV deployments and high traffic

loads.

Abstract

[12] Issam Abdeldjalil Ikhelef et al. “Constrained Routing in Multi-Partite Graph to Solve VNF Placement and
Chaining Problem”. Subbmitted to Journal of Network and Computer Applications - 2023
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7.1 Introduction

I n this chapter, we delve into the intricate realm of Virtual Network Function

(VNF) placement and chaining. Our overarching goal is to minimize the total

allocation cost for incoming Service Function Chains (SFCs), especially in the

face of surging demand and heightened traffic loads within NFV-Is.

This work serves as an extension and refinement of the approach presented in

the previous chapter 6, offering a more comprehensive exploration of the Constrained

Shortest Path-base Heuristic in multi-Partite Graph (CSPH-PG). Our objective remains

the same: to provide efficient solutions to the VNF-PC problem while addressing the

unique challenges posed by varying NFV-I sizes and traffic demands.

In this chapter, we meticulously detail the VNF placement and chaining problem in

the context of an unloaded network, providing a solid foundation for our subsequent

discussions. Then, we introduce the constrained shortest paths algorithm, a pivotal

component in our quest to solve the VNF-PC problem. This algorithm forms the core of

our heuristic approach and plays a crucial role in optimizing the allocation of resources

and achieving cost-effective SFC provisioning.

Furthermore, it’s worth noting that this chapter is the result of a submission to a

prestigious journal [12].

7.2 VNFs placement and chaining problem in an over-resourced NFV-I

To facilitate comprehension, we begin by addressing a simplified variant of the VNF

placement and chaining problem known as the RVNF-PC problem, before tackling the

more complex generic VNF-PC problem. In this section, we operate within the context

of an over-resourced NFV-I, where the available resources on all substrate components

significantly exceed the demands of the Service Function Chains (SFCs).

In this relaxed version of the VNF placement and chaining problem, our objective

is to minimize the total placement cost associated with provisioning the SFCs, with

the sole constraint being flow continuity. Clearly, this overall cost is determined by the

resources allocated to the nodes and links used for deploying and executing the SFCs.

7.2.1 Graph transformation to solve RVNF-PR problem

For ease of understanding, we only consider one node resource (e.g. CPU) as well as

one link resource (bandwidth). Similarly, to simplify the notations, we denote by vi the
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Figure 7.1: Construction of multi-partite graph to solve relaxed version of VNF-PC

ith VNF in the SFC, starting with index 0 and ending with index |Vf | − 1. In this way,

the source and target nodes of the SFC respectively correspond to v0 and v|Vf |−1

To solve RVNF-PC problem, we first derive a new multi-partite oriented graph

Gp = (Vp,Ep) from the NFV-I and SFC graphs as follows (for a good understanding of

the transformation see Figure 7.1):

• Vp = ⋃
i∈(0, |Vf |−2)Vi

p so that:

∀i ∈ (0, |Vf | − 2) : (U i ∈ V i
p⇐⇒ U ∈ Vs)

In other word, the multi-partite graph is composed of k = |Vf | − 2 different

components (sets of nodes), each one contains |Vs| nodes.

• Only node servers U i which can embed VNF vi are connected with node servers

U i−1 with links lp = (U i−1,U i) whose cost wl
0 are determined as follows:

w
lp
0 = w

(Ui−1,Ui)
0 = d1

vi
×α1

U,vi
(7.1)

• Two nodes U i, V i ∈ V i
p are interconnected with a link lp = (Ui,Vi) iff their

corresponding nodes U , V ∈ Vs are interconnected with a substrate link. In this
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way, the cost w
(Ui,Vi)
0 of link (Ui, Vi) corresponds to:

w
lp
0 = w

(Ui,Vi)
0 = dbw

(vi,vi+1)×β(U,V ) (7.2)

In Figure 7.1, the 3-partite graph obtained from the transformation of the NFV-I of

Figure 3.1 and SFC of Figure 3.2 is shown. It is determined as follows:

• We determine the components V i
p (i ∈ {0,1,2}):

V 0
p = {S0,A0,B0,C0,S0

1 ,S0
2 ,S0

3 ,T 0},

V 1
p = {S1,A1,B1,C1,S1

1 ,S1
2 ,S1

3 ,T 1},

V 2
p = {S2,A2,B2,C2,S2

1 ,S2
2 ,S2

3 ,T 2}.

• We add to the 3-partite graph the following intra-component links:

(S0,A0), (A0,C0), (A0,B0), (B0,C0), (C0,T 0), (A0,S0
1), (B0,S0

2), (C0,S0
3),

(S1,A1), (A1,C1), (A1,B1), (B1,C1), (C1,T 1), (A1,S1
1), (B1,S1

2), (C1,S1
3),

(S2,A2), (A2,C2), (A2,B2), (B2,C2), (C2,T 2), (A1,S1
1), (B1,S1

2), (C1,S1
3).

• We add to the 3-partite graph the following inter-component links:

(S0
1 ,S1

1), (S0
2 ,S1

2) and (S0
3 ,S1

3),

(S1
1 ,S2

1), (S1
2 ,S2

2) and (S1
3 ,S2

3).

• According to the equations 7.1 and 7.2, we can deduce the link costs in the

3-partite graph.

By adding reflexive links to NFV-I, we will be able to encode any solution to VNF-

PC by a substrate non elementary path connecting the source to the destination and

crossing as many reflexive links as there are VNFs in the SFC to be provisioned.

In Figure 3.3, substrate non elementary path (S,A,C,S3,S3,S3,C,T ) encodes one and

only one solution to VNF-PC problem where the flow coming from the source node S

crosses switches A and C before its is processed by VNFs 1 and 2 on server S3 (to each

reflexive link corresponds a VNF). The flow is then transmitted to the target switch T

via switch C.

It is easy to see that substrate non elementary paths can also be encoded by paths in

the multi-partite graph (inter-component links become reflexive links whereas the intra-

component paths are transformed to substrate subpaths interconnecting successive reflex-

ive links). In Figure 7.1 for instance, the multi-partite path (S0,A0,C0,S0
3 ,S1

3 ,S2
3 ,C2,T 2)
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can be transformed (vice-versa) to the substrate non elementary path (S,A,C,S3,S3,S3,C,T )

which crosses node S3 three times and node C twice.

As a result, VNF-PC can be transformed to an equivalent path search problem in a

multi-partite graph. Lemmas 7.1 and 7.2 formalize the equivalence between VNF-PC

problem and shortest path search problem in a multi-partite graph.

Lemma 7.1. The optimal solution to the relaxed version of VNF placement and

chaining problem is given by the shortest path π that interconnects S0
s and T

|Vf |−2
s in

the corresponding multi-partite graph. The first node U i traversed by π in each set of

nodes Vi
p (0 < i≤ |Ef | − 2) determines the embedding substrate node U for VNF vi.

Proof. The correctness of the previous lemma is trivial and can be proved by contradic-

tion. We assume the existence of a RVNF-PC solution that has a lower cost than that

obtained with the shortest path in the multi-partite graph and then we show that such

an assumption leads to a contradiction. Indeed, by definition, the path encoding the

solution to RVNF-PC cannot be lower than the shortest path in the k-prtite graph.

Similarly, we assume the existence of a path interconnecting the source and target

nodes in the multi-partite graph with a smaller cost than that corresponding to the

optimal solution to RVNF-PC problem, then show that such an assumption leads to

a contradiction. Indeed, as any path interconnecting the source and target nodes in

the multi-partite graph also encodes a feasible solution to RVNF-PC, its cost should be

lower or equal to that corresponding to the optimal solution to RVNF-PC.

For our example in Figures 3.1 and 3.2, we obtain the optimal solution to RVNF-

PC by determining the shortest path that connects the substrate source node S0

to the substrate target node T 2 in the 3-partite graph shown in Figure 7.1. More

specifically, the optimal mapping of the SFC is shown by the green arrows in Figure 7.1

(S0,A0,C0,S30,S31,S32,C2,T 2) where both VNF1 and VNF2 should be placed in

server S3. The overall cost of this SFC mapping is equal to 300 since:

w
(S0,A0)
0 = 30× 3 = 90,

w
(A0,C0)
0 = 30× 1 = 30,

w
(C0,S0

3)
0 = 0,

w
(S0

3 ,S1
3)

0 = 20× 1 = 20,

w
(S1

3 ,S2
3)

0 = 40× 1 = 40,
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w
(S2

3 ,C2)
0 = 0,

w
(C2,T 2)
0 = 30× 4 = 120.

7.2.1.1 Complexity

Our algorithm solves RVNF-PC in polynomial time. By applying Dijkstra’s algorithm

on the multi-partite graph, we obtain the worst-case time complexity of our algorithm

which corresponds to:

O(|Vf ||Es|+ |Vf ||Vs|+ |Vf ||Vs| log(|Vf ||Vs|)) =O(|Vf ||Es|+ |Vf ||Vs| log(|Vf ||Vs|))

7.3 Constrained Shortest Paths to solve generic version of VNF-PC

In this section, we address the generic VNF-PC problem, which involves optimizing

the cost of SFC embedding while considering limited resources on nodes and links in

an NFV infrastructure. More clearly, we assume here that the CPU and bandwidth

capacities are finite and restrained. To tackle these challenges, we extend the previous

algorithm to take into account the capacity constraints when computing the paths.

More specifically, we first define a vector of constraints −→C which include all the server

node and link capacity constraints. For instance, the vector constraints corresponding

to Figure 3.1 is as follows:
−→
C = (−;C1

S1
= 100,C1

S2
= 100,C1

S3
= 50,Cbw

SA = 70,Cbw
AB = 100,Cbw

AC = 110,Cbw
BC =

20,Cbw
CT = 50).

The three servers S1, S2 and S3 are respectively associated with the following

constraints C1
S1

= 100, C1
S2

= 100 and C1
S3

= 50 whereas the links (S,A), (A,B),

(A,C), (B,C), (C,T ) are respectively associated with the five last constraints Cbw
SA = 70,

Cbw
AB = 100, Cbw

AC = 110, Cbw
BC = 20 and Cbw

CT = 50). Note that neither the switches nor

the links with unlimited bandwidth capacities are associated with constraints because

we assumed that their resources are sufficient to accommodate the SFCs.

Second, we enriched the multi-partite graph with new weights allowing constraint

checking during the path computation. More specifically, we respectively assign to each

substrate server node U and each substrate link ls = (U,V ) in NFV-I weight metrics wU

and wUV . Besides, we propose to set the values of the weight metrics in the multi-partite

graph as follows:

• The first weight w0 of each link corresponds to its cost. It is determined according
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to equations (7.1) and (7.2).

• For an inter-component link (Ui, Ui+1) in the multi-partite graph, the value of its

corresponding weight metric wU is equal to the demand d1
vi+1 of VNF vi+1.

• For an intra-component link (Ui, Vi) in the multi-partite graph, the value of its

corresponding weight metric wUV is equal to the demand dbw
lf

where lf is the SFC

link connecting VNF vi and VNF vi+1.

As a result, each link lp in the multi-partite graph can be associated with a weight

vector −→W lp of 1 + r× |Vs|+ |Es| components with:

• at most, r +1 components in the weight vector can be non-nil for inter-component

links which represent substrate server nodes,

• at most, 2 components in the weight vector can be non-nil for intra-component

links which represent substrate links.

In Figure 7.2 where the links are labeled with their corresponding vectors, we

deliberately omit to represent the nil vector components. As we associated one resource

(cpu resource) to the server nodes, their vectors will include at most 2 non-nil components.

For instance, the weight vectors of inter-component links (S0
1 ,S1

1) (S1
3 ,S2

3) are determined

as follows:
−→
W (S0

1 ,S1
1) = (w0 = 80;w1

S1
= 20,w1

S2
= 0,w1

S3
= 0,wbw

SA = 0,wbw
AB = 0,wbw

AC = 0,wbw
BC =

0,wbw
CT = 0)

−→
W (S1

3 ,S2
3) = (w0 = 40;w1

S1
= 0,w1

S2
= 0,w1

S3
= 40,wbw

SA = 0,wbw
AB = 0,wbw

AC = 0,wbw
BC =

0,wbw
CT = 0)

In a similar way, we determine the weight vectors of intra-component links (A0,C0)

and (C2,T 2):
−→
W (A0,B0) = (w0 = 60;w1

S1
= 0,w1

S2
= 0,w1

S3
= 0,wbw

SA = 0,wbw
AB = 30,wbw

AC = 0,wbw
BC =

0,wbw
CT = 0)

−→
W (C2,T 2) = (w0 = 120;w1

S1
= 0,w1

S2
= 0,w1

S3
= 0,wbw

SA = 0,wbw
AB = 0,wbw

AC = 0,wbw
BC =

0,wbw
CT = 30)
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Figure 7.2: Multi-partite graph with link weight vectors.
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As each feasible solution to the VNF placement and chaining problem can be

encoded by one and only one path connecting S0 to T|Vf |−2 in the multi-partite graph,

we translate the objective and constraints of the SFC problem to a path computation

problem as follows:

• First, we define the weight −→W (π) of a path π as the sum of the vectors of its links,

i.e.:
−→
W (π) =

∑
lp∈Ep

−→
W lp

• Second, we determine the optimal solution to the VNF placement and chaining

problem by determining a path which: (1) connects S0 to T|Vf |−2 in the multi-

partite graph, (2) minimizes the weight metric w0 and (3) verifies the constraint
−→
W (π)≤ −→C .

We recall that −→W (π) ≤ −→C iff ∀i > 0 : wi(π) ≤ ci where wi(π) and ci correspond

respectively to the ith components of −→W (π) and −→C .

As a result, a path π in Gp satisfies the node constraints if it verifies the following

inequality:

∀U ∈ Vs : wU (π)≤ CU

Similarly, a path π in Gp satisfies the link constraints if it verifies the following

inequality:

∀ ls ∈ Es : wls(π)≤ Cls

To find the optimal solution to VNF-PC problem, we determine the constrained

shortest path π∗ in Gp that minimizes the allocation cost w0 while satisfying the link and

node capacity constraints (see Figure 7.2). The corresponding substrate non elementary

path give us the optimal routing and placement of the VNFs.

We support the optimality of this assertion with the following lemma:

Lemma 7.2. The optimal solution to VNF-PC problem is given by the constrained

shortest path π that minimizes the overall cost and satisfies the link and node capacity

constraints while connecting the nodes S0
s and T

|Vf |−2
s in the corresponding multi-

partite graph. The first node U i crossed by π in each set of nodes Vi
p (0 < i≤ |Ef |−2)

determines the embedding substrate node U for VNF vi.

Proof. The correctness of the lemma can be proven by contradiction. Assuming the
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existence of a VNF placement satisfying the constraints and having a lower cost than the

constrained shortest path in the multi-partite graph leads to a contradiction since the

latter also encodes a least-cost solution to VNF-PC. Similarly, assuming a constrained

shortest path interconnecting S0
s and T

|Vf |−2
s , we can easily prove that this path encodes

a valid and least-cost solution to VNF-PC problem, leading to a contradiction.

It is worth noting that we use the expression optimal constrained shortest path to

refer to a path verifying a varying number of constraints (wi with 1≤K ≤ |Vs|+ |Es|).

This deviates from the conventional constrained shortest paths problem, which typically

involves a fixed number of metrics or constraints.

Our results highlight the significance of the equivalence between the VNF-PC

problem and the well-known multi-constraint routing problem. This equivalence allows

us to leverage and adapt existing heuristics and algorithms developed for constrained

shortest paths to effectively solve VNF-PC problem.

Given the NP-hard nature of the problem [83], we propose below a novel heuristic

accelerating the computation by reducing the search areas in the solution space. More

precisely, by limiting the number of paths to be stored on each node, we show that

constrained shortest paths still allows determining near-optimal solutions to VNF-PC.

7.3.1 Constrained Shortest Path-base Heuristic in multi-Partite Graph (CSPH-PG) to

solve VNF-PC problem

In this subsection, we introduce a novel heuristic approach aimed at efficiently solving

the VNF-PC problem within a polynomial time complexity. Our heuristic is based on

the following:
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Algorithm 3 Pseudo code of Constrained Shortest Path-base Heuristic in multi-Partite
Graph (CSPH-PG)

Input: K constant indicating the maximum number of paths that can be stored on
each node, Gf and NFV-I
Output: a path verifying the constraints and connecting the source node Ss to the
destination node Ts in NFV-I. By assumption, VNF v0 is mapped on Ss whereas
VNF v|Vf |−2 is mapped on Ts.

1: path(Ss)(0)(1)←{} ▷ the first path to S0
s in the multi-partite graph is empty. This

path indicates that VNF v0 runs on Ss.
2: ∀U ∈ Vs and ∀0 < i≤ |Vf | − 2 : count(U,i)← 0
3: queue.add(Ss,0,1) ▷ Each tuple (U,i,j) in queue identifies node Ui ∈ V i

p (in the
multi-partite graph) and its jth stored path path(U)(i)(j).

4: While queue.empty()=false do
5: (U, i, j)← queue.delete_min()
6: If i = |Vf | − 2 and U = Ts then
7: return path(U)(|Vf | − 2)(j)
8: End If
9: If i , |Vf | − 2 and offers (U , vi+1) and

wU (path(U)(i)(j)) + d1
vi+1 ≤ CU then

10: π = path(U)(i)(j) + (U,U)
11: If count(U,i + 1) < K
12: count(U,i + 1)← count(U,i + 1) + 1
13: path(U)(i + 1)(count(U,i + 1))← π
14: queue.add(U,i + 1, count(U,i + 1))
15: Else
16: d← index_highest_cost(path(U)(i + 1))
17: If w0(π) < w0(path(U)(i + 1)(d))
18: path(U)(i + 1)(d)← π
19: queue.update(U,i + 1,d)
20: End If
21: End If
22: End If
23: bw← dbw

(vi,vi+1)
24: For each V ∈ adjacent (U,Gs) do
25: If loop_free (path(U)(i)(j) + (U,V ) and wUV (path(U)(i)(j)) + bw ≤ CUV then
26: π← path(U)(i)(j) + (U,V )
27: If count(V,i) < K then
28: count(V,i)← count(V,i) + 1
29: path(V )(i)(count(V,i))← π
30: queue.add(V,i,count(V,i))
31: Else
32: d← index_highest_cost(path(V )(i))
33: If w0(π) < w0(path(V )(i)(d))
34: path(V )(i)(d)← π
35: queue.update(V,i,d)
36: End If
37: End If
38: End If
39: End For
40: End While
41: return {}
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i. K-shortest paths: The solution to VNF-PC problem is given by the shortest path

which satisfies the node and link constraints in the multi-partite graph. Which

means that the optimal solution can be obtained by calculating the K shortest

paths with K sufficiently large. We recall that the computation of the K-shortest

paths requires the storage of up to K paths on each node.

ii. Selection of the path to be stored: An effective heuristic should not only find a

trade-off between the desired quality of solutions and the computation time but it

should also better explore the solution space by focusing more on the promising

areas. In our proposal, we have set K to a constant and chose to store on each

node the best K paths minimizing our objective which corresponds to the SFC

cost embedding. We note that it is possible to optimize others objectives such as

parameters related to load balancing (maxWi(π)/Ci) or a combination of several

metrics.

iii. Constraint verification at each path computation step: For efficiency, only paths

satisfying the constraints are stored and explored.

iv. Loop detection always limited to a single partition in the multi-partite graph.

v. No use of path dominance: Unlike most algorithms that solve the constrained

shortest paths problem, our heuristic does not use path dominance for effective

computations. Indeed, except for the paths traversing the same links in the

multi-partite graph, no path can dominate another one (because each link and

each node are associated with distinct components in the weight vector).

Algorithm 3 summarizes the steps of our Constrained Shortest Path-base Heuristic in

multi-Partite Graph (CSPH-PG). This latter is based on a modified version of Dijkstra’s

algorithm in which up to K best paths verifying the constraints are explored on each

node.

In our algorithm, each node U i in the multi-partite graph (represented by an array

U(i)) is associated with a list of paths path(U)(i) where the jth path corresponds to

path(U)(i)(j). Like Dijkstra’s Algorithm, our heuristic starts by adding an empty path

to the source node S0
s (instruction 1). The number of stored paths on each node is also

initialized to zero in line 2 before adding the tuple (Ss,0,1) to the heap identified by

the variable queue (line 3). As described in the algorithm, we used a tuple (U,i,j) to
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identify one node U i in the multi-partite graph and one stored path path(U)(i)(j) in

the list paths(U)(i).

In line 5, our algorithm removes from queue the tuple (U,i,j) that is associated with

the least costly path. If the tuple identifies the target T
|Vf |−2
s , the algorithm stops by

returning the optimal path path(Ts)(|Vf |−2)(j), otherwise the adjacent nodes to U are

explored. More specifically, for a server node U that is capable to run VNF vi+1 (i.e.,

offers (U,vi+1) is true), a new path path(U)(i)(j) + (U,U) and its corresponding tuple

are generated and respectively added to the list path(U,i+1) and queue if the constraint

associated with the reflexive link (U,U) is verified (lines from 11 to 14). Obviously, if

the list of paths path(U)(i + 1) was already full then the new path will replace the most

expensive path both in the list and in queue (lines from 15 to 22).

In the next step of our algorithm, the adjacent links (U,V ) to node U in Gs are

explored (lines from 24 to 39). If the resulting path path(U)(i)(j) + (U,V ) is loop free

and it verifies the constraint CUV (line 25), the new path and its corresponding tuple

are respectively added to list path(V )(i) and heap queue. As explained previously, for a

full path list path(V )(i), the new path will replace the most expensive path both in the

list and in queue (lines from 31 to 38).

Finally, steps from 4 to 40 are repeated until an optimal path is determined (line

10) or the heap queue is empty. In this last case, an empty path indicating that the

algorithm doesn’t find a solution is returned (line 41).

7.3.1.1 Complexity

The complexity of the Constrained Shortest Path-base Heuristic in multi-Partite Graph

(CSPH-PG) can be analyzed as follows:

i. Instructions 1 and 3 are performed in O (1) whereas instruction 2 is accomplished

in O (|Vf |).

ii. Instructions inside the while loop (line 4) are executed K(|Vf | − 1)|Vs| times at

most.

When queue is implemented with Fibonacci heap, instruction 5 is performed in

O (log(K|Vf ||Vs|)).

Like implementations of the Dijkstras’s algorithm, the path concatenation can

be performed in O(1) by simply pointing the successor of each link. As a result,

instructions 6 and 7 can be performed in O (1).
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Complexity of the statement in line 9 is dominated by the capacity constraint

verification which holds in O (|Vf ||Vs|).

Complexity of the bloc of instructions from 10 to 21 is dominated by the if

statement in line 17. It corresponds to O (|Vf ||Vs|

To summarize, lines from 5 to 22 can be executed with a complexity of O |(Vf ||Vs|+

logK)

iii. Instructions inside the for loop (line 24) are executed K|Vf |(2|Es|) times at most.

The procedure loop_free only treats path nodes in Vi
p so it holds in O (|Vs|). The

capacity constraint verification on link (U,V ) can be performed in O (|Vf ||Vs|).

The complexity of the bloc of instructions from 26 to 38 is O (|Vf ||Vs|).

iv. The overall complexity is given below:

O (K(|Vf |−1)|Vs|(|Vf ||Vs|+logK)+K|Vf |(2|Es|)(|Vf ||Vs|) = O (K|Vf |2|Es||Vs|+

(K logK)|Vf ||Vs|)

For a constant number of stored path in each node, the resulting complexity is:

O(|Vf |2|Es||Vs|)

7.4 Performance Evaluation

Through these experiments, we want to show the efficiency of our heuristic and its

ability to determine near-optimal solutions with finite and small values of K (K is the

maximum number of paths on each node). Thus, we deliberately chose to compare the

performance of our heuristic with the algorithm giving optimum. The experiment has

another objective consisting in evaluating the convergence speed towards the optimum

of our heuristic with the increase of K.

We implemented a simulation environment where the arrival and lifetime of the SFC

requests follow respectively a Poisson process (with different means λ) and uniform law

(U(10,20)). Each experiment lasts for 100,100 units and depicted metrics correspond to

mean values over the last 100,000 units to avoid side effects due to start-up period.

Below, we describe in more details the experiment environment, metrics and scenar-

ios.
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(a) Artificial Network [84] (b) European Network Cost 239 [85]

(c) US Longhaul network topology [86]

Figure 7.3: NFV Infrastructures

7.4.1 Simulation Environment and scenarios

For our experiments, we used the 3 networks (NFV-Is) depicted in Figure 7.3: (1) a

small artificial network that is generated from a network in [84], (2) European network

[85] (Cost 239) of middle size that is very connected, and (3) US Longhaul network

[86] which is a large network of intermediate connectivity. The first topology allows us

to determine the minimal values of K permitting to obtain optimal solution whereas
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we used the two last networks to measure the convergence speed and capacity of our

heuristic to scale. We note that the labels in Figure 7.3 correspond to the resource

capacities of links and nodes of the corresponding networks.

Similarly, we used various sizes of SFCs to evaluate the performance and ability of

our heuristic to effectively provision SFCs of different sizes, especially the larger ones.

The CPU demands of VNFs are uniformly distributed in interval (10,20) whereas the

bandwidth demands of SFC links are chosen in interval (1,6).

Accordingly, we considered 3 main experiments, each one with different scenarios as

described below:

7.4.2 Experiments and Scenarios

i. Experiment 1: The NFV-Infrastructure used is the artificial network shown in

Figure 7.3a [84]. This network consists in 6 switches where only 3 among them

(gray switches) are directly connected to server nodes.

(a) Scenario 1.1: To account for different network loads, we vary λ from 0.2 to 1

(with a step of 0.2). The SFC size is fixed at 6.

(b) Scenario 1.2: The SFC sizes vary from 2 to 6 with a step of 1 whereas the

arrival rate λ is fixed and equal to 1. The objective of this sub-scenario is to

measure the impact of SFC size increase on the performance of our heuristic.

ii. Experiment 2: Two NFV-Infrastructures (European Cost239 Network and the US

Long Haul Network) are used in this scenario. The main objective of this scenario

is to show that our heuristic quickly converges with the augmentation of K.

(a) Scenario 2.1: λ evolves from 0.2 to 1 (with a step of 0.2) on the Cost239

infrastructure, and from 1 to 4 (with a step of 0.5) on the Long Haul

infrastructure. The SFC size is fixed at 6.

(b) Scenario 2.2: On the Cost239 infrastructure, the SFC size varies from 2 to

12 with a step of 1 while λ is fixed at 1. On the Long Haul infrastructure,

the SFC size varies from 2 to 12 with a step of 1 whereas λ is fixed at 2.

7.4.3 Metrics

We chose 4 quality metrics to measure the performance of our proposal:
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Table 7.1: Ratio of accepted requests on Artificial Network (SFC size = 6)
λ K = 1 K = 10 K = 100 K = 1000 Optimum
0.2 99,85% 99,85% 99,85% 99,85% 99,85%
0.4 95,88% 96,48% 96,53% 96,53% 96,53%
0.6 90,76% 92,13% 92,30% 92,32% 92,32%
0.8 83,39% 85,43% 85,72% 85,72% 85,72%

1 76,96% 79,33% 79,74% 79,77% 79,78%

i. Ratio of accepted requests (RA): This metric determines the proportion of SFC

requests which are accepted. It is calculated by dividing the number of accepted

requests by the total number of received requests. Generally, service providers are

required to provide a very high acceptance rate to avoid penalties.

ii. Average Cost of accepted SFCs (AC): The AC metric measures the average cost

of the SFCs successfully placed. It is determined by dividing the total mapping

cost of accepted SFCs by their total number. We recall that both the node and

link resource are considered to determine the mapping cost (c. f., equations (7.1)

and (7.2)). Obviously, the lower the AC, the more efficient the resource utilization.

iii. Derivative Function (DF): The DF metric is a crucial indicator of convergence,

providing insight into the stability of the solution. It is calculated using the

formula:

δ(K1,K2) = Mean Cost(K2)−Mean Cost(K1)
K2−K1

where Mean Cost (K2) and Mean Cost (K1) respectively correspond to the mean

costs obtained for K =K2 and K =K1.

iv. Path Length of SFCs (PL) :The PL metric determines the average length of the

substrate paths connecting source and target servers. Generally, the greater the

path length, the greater the number of paths explored and the higher the execution

time.

7.4.4 Experiment Results

7.4.4.1 Experiment 1

Tables 7.1, 7.2 and Figures 7.4, 7.5 depict the results obtained on the artificial small

networks. As expected and regardless of values of K, the higher the arrival rates and
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Figure 7.4: AC for various loads on Artificial Network

Table 7.2: Ratio of accepted requests on Artificial Network (λ=1)
SFC
Size

K=1 K=10 K=100 K=1000 Optimum

2 92,85% 93,23% 93,23% 93,23% 93,23%
3 87,59% 88,68% 88,75% 88,75% 88,75%
4 85,47% 87,03% 87,19% 87,20% 87,20%
5 84,98% 86,57% 86,85% 86,86% 86,86%
6 76,96% 79,33% 79,74% 79,77% 79,78%

Figure 7.5: AC for different SFC sizes on Artificial Network



118
Chapter 7. Exploring Constrained Shortest Paths Routing for VNF Placement and

Chaining in NFV-I

Table 7.3: Minimum values of K for optimal solutions on Artificial Network (SFC size = 6)
λ K=1 K ∈ (1,2) K ∈ (1,9) K ∈ (1,99)

0.2 94,7% 99,23% 99,89% 100%
0.4 88,74% 89,47% 99,1% 99,95%
0.6 80,92% 90,93% 97,83% 99,82%
0.8 74,46% 86,51% 96,63% 99,78%

1 70,75% 83,17% 95,36% 99,61%

Table 7.4: Minimum values of K for optimal solutions on Artificial Network (λ = 6)
SFC size K=1 K ∈ (1,2) K ∈ (1,9) K ∈ (1,99)

2 94,14% 99,17% 99,99% 100%
3 87,68% 95,1% 99,28% 99,99%
4 85,4% 93,74% 98,86% 99,96%
5 84,52% 93,15% 98,5% 99,94%
6 70,75% 83,17 % 95,35% 99,61%

SFC sizes, the lower the ratios of accepted requests and the higher the averages of SFC

costs.

Even for high loads of networks, Table 7.1 and Figure 7.4 clearly show that the

performance of our heuristic quickly converge to the optimum with the increase of K.

Clearly, the performance of our heuristic reaches near-optimal solution as soon as K

increases and reaches the value of 10.

Similarly, we observe the same behaviour as that described previously in Table 7.2

and Figure 7.5 which show the experiment results for SFC sizes evolving from 2 to 6.

To better understand the previous results, we determined for each experiment

scenario the minimal values of K permitting to obtain optimal solutions. As shown in

Tables 7.3 and 7.4, the most of the values of K permitting to obtain optimal solutions

are very small. For instance, for K < 10, our heuristic determines optimum solutions in

more than 95% of cases.

In fact, for high and practical ratios of accepted requests (e.g. RA > 95%), the number

Table 7.5: Ratio of accepted requests on Cost239 (λ evolves from 0.2 to 1)
λ K = 1 K = 10 K = 100 K = 1000

0.2 100,00% 100,00% 100,00% 100,00%
0.4 99,20% 99,33% 99,33% 99,33%
0.6 94,82% 95,34% 95,38% 95,38%
0.8 87,60% 88,52% 88,83% 88,88%

1 80,70% 82,18% 82,42% 82,51%
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of paths to be explored in order to determine feasible solutions is low compared to those

obtained with intermediate network loads. For instance, the storage of only one path

allows to determine the optimum for very low network loads as stated by Lemma 7.1.

Thanks to our heuristic which privileges and first explores the best paths in terms of

cost, the storage of a small number of paths is often sufficient to connect the source and

target servers, and thus determine an optimal solution.

7.4.4.2 Experiment 2

In Experiment 2, we conducted a comprehensive performance analysis for Scenario 2,

focusing on two distinct network types: the Cost239 network [85] and the Long Haul

network [86]. The former is a network of medium size whereas the last one is large.

Table 7.5 and Table 7.6 provided valuable insights into the acceptance rate. As λ

increased, there was a noticeable decrease in the ratio of accepted requests, suggesting

potential congestion or resource constraints.

Additionally, it’s crucial to emphasize the impact of the parameter K on the accep-

tance rate. The higher is K, the lower are the improvements obtained by increasing K.

As a results, for quick computation of good quality path, the increase of K should be

reserved to the small values.

For instance, in our simulations, augmenting K beyond K = 10 does not yield

significant improvements in the acceptance rate. Beyond K = 10, we observe significant

diminishing returns in terms of enhancements in the acceptance rate.

In practical scenarios, the heuristic demonstrated rapid convergence to near-optimal

acceptance rates, even with relatively small values of K (K < 10). This highlights the

influence of K on the acceptance rate and computational time.

Turning to graphical representations, Figure 7.6 provided additional insights. The

left graph explored the relationship between λ and SFC costs, with a clear upward

trend as λ increased, indicating higher request arrival rates led to increased costs. This

pattern held across various values of K. Conversely, the right graph of Figure 7.6 delved

into mean SFC path lengths concerning varying values of λ and K. Here, we observed

a slight increase in mean SFC path lengths as λ increased from 0.2 to 1, suggesting

longer paths for service function chains with higher request arrival rates. The impact of

K on path lengths is clearly perceptible.

Analyzing Figure 7.7, which presented mean SFC costs and mean SFC path lengths,

we noted an upward trend in mean SFC costs as λ increased from 1 to 4 across all
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values of K. However, there was small variation in mean SFC costs as K increased,

especially for high values of K, highlighting K’s substantial influence on costs. Similarly,

the right graph of Figure 7.7, which showcased mean SFC path lengths, indicated a

slight increase as λ increased from 1 to 4. Again, K played a small and noticeable role

in determining the lengths of service function chains.

Figures 7.8 and 7.9 provided further insights, illustrating mean SFC path lengths

and mean SFC costs at a constant request arrival rate (λ = 1 for Cost and λ = 2 for

Long Haul) while varying the number of paths stored at each node (K). The right

graphs of Figures 7.8 and 7.9 demonstrated that as K increased, a small and noticeable

trend of decreasing mean SFC path lengths emerged, suggesting that a larger pool of

paths improved the heuristic’s ability to discover shorter, more efficient paths. This

emphasized the trade-off between computational resources and solution quality when

selecting an appropriate K value.

The left graphs of Figure 7.8 and 7.9 explored the relationship between SFC size

and mean SFC costs, revealing an upward trend as the SFC size increased. This implied

that larger service function chains generally incurred higher associated costs. However,

increasing the number of paths stored at each node (K) tended to decrease mean SFC

costs, indicating that a larger path pool facilitated the discovery of more cost-efficient

solutions.

It is important to emphasize that in these two scenario cases we face the challenge of

defining a single optimal value of K, mainly due to the large size of the NFV infrastructure

and SFC. Our approach focused on a detailed examination of the heuristic’s behavior

across different metrics. To achieve this, we used a differential function (DF), as shown

in figure 7.10 and figure 7.11. This tool provides valuable insight into how adjusting K

affects performance metrics and allows you to make informed decisions regarding the

selection of an appropriate K.

The derivative function (DF) results have unveiled an intriguing pattern. As

illustrated in Figure 7.10 and Figure 7.11, we have made notable observations concerning

the choice of K. For small values of K (K < 10), we observe a swift convergence towards

near-optimal solutions. However, as K increases beyond this threshold, the improvements

in performance become very low and imperceptible. This observation underscores the

pivotal role played by K in enhancing the performance of our heuristic, particularly to

determine the best values which reduce the computations while guaranteeing satisfying
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Table 7.6: Ratio of accepted requests on Long Haul (λ evolves from 1 to 4)
λ K = 1 K = 10 K = 100 K = 1000
1 99,90% 99,90% 99,90% 99,90%

1.5 99,18% 99,20% 99,21% 99,21%
2 95,89% 96,18% 96,28% 96,34%

2.5 88,27% 89,17% 89,53% 89,75%
3 79,12% 80,67% 81,41% 81,92%

3.5 69,76% 72,00% 73,02% 73,57%
4 61,38% 64,01% 65,17% 65,96%

Figure 7.6: Results of the 2.1 scenario on Cost239

solution quality.

It’s worth noting that these findings align with the outcomes reported in Table 7.4,

where we determined that K = 10 is sufficient to determine the best solutions. Indeed,

the DF exhibits rapid growth before reaching the K value of 10, followed by slower and

imperceptible increase of the DF after the point (δ(10,100)). Performance stabilizes

effectively starting from K = 10. Furthermore, for the small network topology [84], it’s

noteworthy that K = 1 often allowed us to find the optimal solution in more than 70%

of cases, and this stability in solution quality remained consistent even for the larger

network, as shown in our simulation.

Figure 7.7: Results of the 2.1 scenario on Long Haul
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Figure 7.8: Results of the scenario 2.2 on Cost239 - Lambda=1

Figure 7.9: Results of the scenario 2.2 on Long Haul - Lambda=2

Figure 7.10: Slope of the mean cost for different K and lambdas values (Cost infrastructure)
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Figure 7.11: Slope of the mean cost for different K and lambdas values (Long Haul infrastructure)

7.5 Conclusion

In this chapter, we have embarked on a comprehensive exploration of the Virtual Network

Function (VNF) placement and chaining problem, aiming to minimize the allocation

costs associated with incoming Service Function Chains (SFCs), especially in the context

of heightened demand and traffic loads within NFV-Infrastructures (NFV-Is).

Our approach in this chapter has revolved around the in-depth analysis of the

Constrained Shortest Path-base Heuristic in multi-Partite Graph (CSPH-PG). This

strategic choice stems from our emphasis on scalability and efficiency, particularly in

larger NFV-Is and extensive SFC scenarios.

By addressing the core concepts of VNF placement and chaining problem in unloaded

networks, we provided a solid foundation for subsequent discussions. The introduction

of the constrained shortest path algorithm was crucial in aiming to solve the VNF-PC

problem. This algorithm forms the backbone of the heuristic approach and enables

cost-effective SFC deployment.

This chapter represents an extension and refinement of our previous work of the Chap-
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ter 5, aiming to provide efficient solutions to the VNF-PC problem while accommodating

the diverse challenges posed by varying NFV-I sizes and traffic demands.

Our experimental results and evaluation revealed the effectiveness and scalability of

the proposed heuristic. They have demonstrated its ability to minimize allocation costs

for incoming SFCs, making it particularly well-suited for large-scale NFV-I scenarios.
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Conclusions and Future Research Directions

This most beautiful system of the

sun, planets, and comets, could only

proceed from the counsel and

dominion of an intelligent being.

Isaac Newton

This chapter summarizes the research work and contributions of the thesis on

VNF placement and chaining problem. The chapter then outlines some directions

for future research.

Abstract
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8.1 Introduction

I n this last chapter, we conclude the thesis by summarizing our main contributions

and presenting some future research directions and perspectives. Fulfilling

the promises of Network Functions Virtualization (NFV) technology requires

addressing new challenges. The main challenge of this thesis is to design an efficient

VNF placement and chaining algorithm over a virtualized infrastructure while meeting

special requirements such as optimizing the total allocation cost and respecting the

resources availability of the NFV-I. Below is a brief summary of our contribution.

8.2 Summary of contributions

In conclusion, this thesis has made significant contributions to the field of resource

allocation optimization in Network Function Virtualization (NFV) environments. By

addressing the VNF placement and chaining problem, the objective was to optimize

resource utilization and minimize costs and cost-effectiveness of network operations.

Chapter 2 served as a crucial introduction, providing essential contextual infor-

mation on NFV and SDN. NFV, the virtualization of network functions, and SDN,

the separation of the network’s control and data planes, are fundamental concepts in

modern networking. The chapter explored resource allocation strategies and highlighted

the challenges encountered in cloud environments where NFV and SDN are commonly

deployed. By gaining a comprehensive understanding of these concepts and challenges,

the subsequent chapters were able to propose innovative approaches and algorithms for

resource allocation optimization.

Chapter 3 focused on the VNF placement and chaining problem, aiming to minimize

SFC allocation costs. The chapter introduced an Integer Linear Programming (ILP)

model as a novel approach to optimize the placement and chaining of Virtual Network

Functions (VNFs). By formulating the problem as an ILP, it became possible to find an

optimal solution that minimizes the costs associated with SFC allocation and ensures

efficient utilization of available resources. Furthermore, this chapter includes a supple-

mentary section that explores the utilization of Combinatorial Benders Decomposition

(CBD) to augment the effectiveness of VNF-PC problem-solving. CBD harnesses the

capabilities of identifying Irreducible Infeasible Sets (IIS) and implementing combinato-

rial cuts, thereby enhancing the efficiency of the solution process. This addition leads

to a more profound comprehension of the problem and its prospective resolutions. The
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incorporation of CBD enriches the chapter’s examination of advanced techniques for

addressing intricate NFV optimization challenges.

Chapter 4 extended the study to the unloaded network scenario, where an abundance

of resources is available on nodes and links. To address this scenario, a graph trans-

formation and Shortest Path algorithm were proposed, effectively allocating resources

and minimizing costs. This extension provided valuable insights into resource allocation

strategies in unloaded networks and opened up possibilities for optimizing resource

utilization even in scenarios with abundant resources.

Chapter 5 tackled a specific variation of the VNF placement and chaining problem in

networks characterized by limited node resources but abundant link resources. To address

this challenge, a knapsack-based genetic algorithm was proposed. This algorithmic

approach combined the principles of knapsack optimization and genetic algorithms

to optimize resource allocation and minimize costs. By iteratively refining candidate

solutions using genetic operators like selection, crossover, and mutation, the algorithm

explored a diverse set of potential configurations, ultimately minimizing the overall

placement cost. This contribution provided a valuable tool for optimizing resource

allocation in scenarios where node resources are limited, but link resources are abundant.

Chapter 6 addressed the full generic version of the VNF placement and chaining

problem, considering limited node and link resources. To tackle this challenge, a

multi-constrained routing algorithm was employed. This algorithmic approach took

into account multiple constraints, such as computational capabilities and bandwidth

requirements, to optimize the placement and chaining of VNFs. By systematically

exploring potential solutions that satisfied all constraints while minimizing the overall

placement cost, the algorithm enabled efficient resource allocation in NFV environments.

This contribution was particularly significant as it considered the complexities arising

from limited node and link resources, offering insights into optimizing resource allocation

under various constraints.

Chapter 7 makes several significant contributions to the field of Virtual Network

Function (VNF) placement and chaining. Firstly, it conducts an in-depth analysis of

the VNF placement and chaining problem within an unloaded network, providing a

comprehensive understanding of its intricacies. Secondly, it introduces the constrained

shortest paths algorithm, a pivotal tool for solving the VNF-PC problem enabling

cost-effective provisioning of Service Function Chains (SFCs). Furthermore, this work
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represents an extension and refinement of the previous chapter’s approach, offering a

more comprehensive exploration of the Constrained Shortest Path-base Heuristic in

multi-Partite Graph (CSPH-PG) and addressing various challenges associated with

different NFV-Infrastructure (NFV-I) sizes and traffic demands. Emphasizing scala-

bility and efficiency, the chapter highlights the CSPH-PG heuristic’s effectiveness for

larger NFV-Is and extensive SFC scenarios, making it well-suited for handling high

traffic loads. Ultimately, this chapter equips network engineers and researchers with a

versatile toolkit for addressing VNF placement and chaining challenges, enhancing their

ability to optimize resource allocation and minimize allocation costs in modern network

infrastructures.

In summary, this thesis provided valuable insights, novel frameworks, and algorithmic

approaches for resource allocation optimization in NFV environments. By addressing

various versions of the VNF placement and chaining problem and considering different

resource scenarios, the thesis contributed to the understanding and techniques for

optimizing resource allocation.

8.3 Future Research Directions

In terms of future perspectives, our thesis opens up several potential directions for

further research and development of algorithms and mechanisms. Some suggested areas

for future work include:

i. Enhancing Performance Evaluation: To gain deeper insights into the performance

of the proposed algorithms and heuristics, it is recommended to conduct more

comprehensive simulations. By exploring various network conditions and con-

ducting exhaustive evaluations, we can better understand the limitations and

effectiveness of the proposed solutions.

ii. Resilient VNF-PC: Another interesting avenue for research is the exploration

of resilient SFC placement. This involves considering the possibility of SFC

placement failures within the NFV infrastructure and developing strategies to

mitigate such failures. By addressing the resilience aspect, we can enhance the

robustness and reliability of SFC provisioning.

iii. Integrating Traffic Predictions: Integrating traffic prediction techniques into

SFC placement can be highly beneficial. By leveraging predictive models to
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anticipate future demands in terms of SFC flows, it becomes possible to maintain

network stability and optimize resource allocation proactively. This area offers

opportunities to improve overall network performance and user satisfaction.

iv. Integrating Machine Learning for Fault Prediction: The integration of machine

learning technology into fault prediction can significantly enhance serviceability.

By collecting information on network failures over time, it becomes possible to

identify the most vulnerable network elements, such as VNFs or Points of Presence

(PoPs). By incorporating availability-aware placement and chaining algorithms,

it becomes feasible to predict and prevent future failures, minimizing service

interruptions.

These future research directions have the potential to further advance the field of

VNF placement and chaining, optimizing resource allocation, and improving the overall

performance and reliability of NFV environments.
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