
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

On the (in)Security of the Control Plane
of SDN Architecture: A Survey
ZAHEED AHMED BHUIYAN, SALEKUL ISLAM (SENIOR MEMBER, IEEE), MD. MOTAHARUL
ISLAM (MEMBER, IEEE), A B M AHASAN ULLAH, FARHA NAZ AND MOHAMMAD
SHAHRIAR RAHMAN (MEMBER, IEEE)
Department of Computer Science and Engineering, United International University
United City, Madani Avenue, Badda, Dhaka 1212, Bangladesh.

Corresponding author: Mohammad Shahriar Rahman (e-mail: mshahriar@cse.uiu.ac.bd).

This work was supported by the United International University (UIU) Institute of Advanced Research (IAR) Research Grant Scheme
under Grant IAR-2023-Pub-028.

ABSTRACT Software-Defined Networking (SDN) has revolutionized the networking landscape by
offering programmable control and optimization of network resources. However, SDN architecture’s
inherent flexibility and centralized control expose it to new security risks. In this paper, we have presented a
comprehensive study focused on the security implications associated with the control plane of SDN, which
serves as a critical layer responsible for its network orchestration. We have addressed some pressing security
concerns in SDN deployments by examining control plane vulnerabilities and explicit attacks. Through
extensive analysis, we have investigated various control plane attacks. By meticulously exploring each attack
vector, we have shed light on its mechanisms, potential impact and countermeasures. Furthermore, we have
emphasized the interdependencies between the control plane, application plane, and data plane, highlighting
how compromises in the control plane can propagate and impact the entire network infrastructure. Our
research contributes to a deeper understanding of the specific vulnerabilities within SDN, focusing on the
control plane as the primary target. By providing insights into the security landscape of SDN, network
administrators, researchers, and security practitioners can develop proactive defense strategies and fortify
the security posture of SDN deployments. We have underscored the importance of integrating robust security
mechanisms to safeguard the control plane and maintain the overall security of SDN architectures. Our
comprehensive analysis of control plane attacks in SDN elucidates the evolving security challenges posed
by the programmability and centralization of network control. By addressing these vulnerabilities, we have
tried to pave the way for future researchers to develop effective security solutions and ensure SDN networks’
resilience and integrity.

INDEX TERMS Software-Defined Networking, SDN, Control Plane, Data Plane, Application Plane, SDN
Controller, OpenFlow, SDN Attacks, DoS/DDoS Attacks

I. INTRODUCTION
Long before this design started to be utilized in data net-
works, the separation of the control and data plane was orig-
inally employed in the public switched telephone network to
streamline the installation and management process.

In a proposed interface standard titled "Forwarding and
Control Element Separation," released in 2004, the Internet
Engineering Task Force (IETF) began exploring several op-
tions for separating the control and forwarding operations,
which in short is known as ForCES [1]. The ForCES Work-
ing Group also suggested a related SoftRouter Architecture
[2]. The Linux Netlink IP Services Protocol [3] and a path

computation element (PCE)-based architecture are two other
early standards from the IETF that sought to separate control
from data.

The first instance of separating control and data plane de-
signs using open-source software was the Ethane [4] project
at Stanford University’s computer sciences division. The
simple switch architecture of Ethane led to the creation of
OpenFlow. The initial OpenFlow API was developed in 2008
[5]. NOX, an OS for networks, was developed that same year
[6].

In SDN frameworks, network control and forwarding tasks

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

are separated, allowing network control to be directly pro-
grammable and the supporting infrastructure insulated from
the networking services and applications [7]. Some historical
advancements in programmable networking and early SDN
use cases are illustrated in Figure 1.

FIGURE 1. Chronology of major events during the evolution of SDN as well as
programmable networking technologies [8]

SDN architecture is intended to be directly programmable,

flexible, centrally controllable, programmatically adjustable,
open standards-based, and vendor-neutral. Traditional ap-
proaches we usually follow to design and maintain networks
change because of Software Defined Networking (SDN).
Two factors distinguish SDN from traditional networking
frameworks. An SDN splits the control plane from the data
plane in the first place, with the control plane making deci-
sions about how to manage traffic and the data plane forward-
ing that traffic in accordance with those decisions. An SDN
also unifies the control plane, allowing a single software con-
trol program to manage numerous data-plane components.
Through a well-defined Application Programming Interface
(API), the SDN control plane directly manipulates the state
of the network’s data-plane components (such as routers,
switches, and other middleboxes) [8]. Figure 2 illustrates how
data would traditionally go via a networking infrastructure
before the development of SDN, and Figure 3 illustrates how
things have altered as a result of the development of SDN.

FIGURE 2. Data Travelling Scenario Before SDN

FIGURE 3. Data Travelling Scenario After SDN

The control layer of SDN and its component SDN con-
troller are the most crucial elements of the SDN architecture,
as is evident from the explanation above. As a result, even if
it offers certain noteworthy benefits, it is also vulnerable to
several threats. The SDN controller, the connection between
two SDN controllers (in the case of multiple controllers in

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

the control layer), the northbound APIs at the northbound
interface, which ensures communication with the controller,
and the southbound APIs at the southbound interface, which
ensures the communication with the controller can be con-
sidered the four main components of the attack surface [8].
Figure 5, Figure 6, and Figure 9 can help understand the idea.

This paper had made several contributions to the field of
SDN security. The following bullet points outline the key
contributions:

1) Attack classification and taxonomy: Our research clas-
sifies attacks against SDN control planes and organizes
them based on different attack surfaces, including the
Northbound Interface (NBI), the Southbound Inter-
face (SBI), the SDN Controller, and the link between
two SDN controllers (in multi-controller environment).
This classification provides a structured understanding
of the various attack vectors in SDN environments.

2) Taxonomical representation of findings: Our paper
presents a taxonomical representation of the identi-
fied attacks, offering a systematic framework for an-
alyzing and comprehending their characteristics. This
taxonomical approach facilitates a clear and organized
view of the attacks, aiding researchers and practitioners
in understanding the relationships between different
attack types.

3) Countermeasure taxonomies: In addition to attack clas-
sification, our research provides detailed countermea-
sure taxonomies aligned with the attack taxonomy.
Our paper shows the corresponding countermeasures
for each attack category to mitigate or prevent such
attacks. These countermeasure taxonomies serve as
practical guidance for implementing effective security
measures in SDN environments.

4) Research gap analysis: The paper conducts a compre-
hensive research gap analysis, identifying limitations
and research needs in SDN security. By highlighting
these gaps, our research offers valuable insights for
future researchers, enabling them to identify potential
research directions and address the current shortcom-
ings in the field.

These contributions enhance the understanding of attacks
against SDN control planes by providing a structured clas-
sification, offering taxonomical representations, proposing
countermeasure taxonomies, and identifying research gaps.
The findings of this research paper contribute to the body
of knowledge on SDN security and provide a foundation for
future research and development in the field.

We have organized the paper in the following frameworks
(Figure 4); after the abstract, Section I, Introduction, contains
the historical evolution of SDN, motivation & contributions
of the work, and general discussion. Section II describes the
background of SDN and SDN working architecture. Section
III describes the comparative study of the papers we have
reviewed and a comparison table. Section IV describes the

attack taxonomy where different attacks targeting different
entry points SDN architecture are discussed. Section V de-
scribes the countermeasures for the attacks targeting different
entry points SDN architecture. In Section VI, Distributed
Denial of Service Attacks in the SDN environment has been
discussed. Section VII describes some research gaps; Section
VIII describes the future work parts. Sections IX describes
the conclusion and is followed by references in Section X.

FIGURE 4. Organization of the Paper

II. BACKGROUND
A. SDN ARCHITECTURE
Some key features of SDN include the capability of config-
uring virtual networks, dynamic policy enforcement for net-
works, and a wider control for managing networks through
a well-laid-out centralized console. The overall operational
cost is also significantly lower than in conventional ways. It
isolates the control logic from the network devices (switches
and routers), aiming at substituting the conventional net-
works. The centralized control plane puts an extra burden
on administrators to ensure overall network security and
usual functionality. Compromised network objects can be a
source to repossess delicate information regarding network
structure and users. That information can later be used for
unauthorized activities, such as bringing the network down.

The architecture of SDN is a layered approach, as shown
in Figure 5. A detailed diagram is also displayed in Figure
6. SDN has three layers – i) (Network) Application layer, ii)
Control layer, and iii) Infrastructure or data forwarding layer
[9]. The application and control layers communicate between
them using the Northbound API. The control layer and the
data forwarding layer communicate using the Southbound
API. OpenFlow protocol is the most common form of South-
bound API in use. Different layers of SDN, along with their
various components and functions, are briefly stated below –

1) Application Plane
In SDN (Software-Defined Networking) architecture, the Ap-
plication Plane refers to the top layer of the SDN stack. It is
responsible for hosting and executing network applications,
management systems, and control applications that define
network policies and behaviour. The Application Plane in-
teracts with the Control Plane and the Infrastructure Plane to
configure, monitor, and control the network.

The Application Plane is where network administrators
and developers deploy and manage applications that utilize

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 5. SDN Architecture (Generic)

FIGURE 6. SDN Architecture (Comprehensive)

the programmability and flexibility of the SDN infrastruc-
ture. It allows for developing innovative network services
and applications that dynamically control network behaviour
based on specific requirements.

Key characteristics and functionalities of the Application
Plane in SDN architecture include:

1) Application Development: The Application Plane pro-
vides a platform for developing and deploying network
applications. It offers APIs (Application Programming
Interfaces) [10] and software development kits (SDKs)
that enable developers to create applications that con-
trol and manage the network.

2) Network Policy and Control: Applications in the Ap-
plication Plane define network policies and rules for
traffic forwarding, security, Quality of Service (QoS),
and other network functions. These policies are imple-
mented by communicating with the Control Plane to
configure network devices accordingly.

3) Network Monitoring and Analytics: The Application
Plane collects network data, monitors network perfor-
mance, and performs analytics to gain insights into
network behaviour and make informed decisions for
network optimization and troubleshooting.

4) Service Orchestration: Applications in the Application
Plane can orchestrate network services and resources to
meet specific application requirements. This includes
dynamic provisioning, scaling, and coordination of
network functions and services.

5) Integration with Management Systems: The Applica-
tion Plane interfaces with management systems, such
as network management systems (NMS) or orchestra-
tion platforms, to provide a unified management and
control framework for the network.

The Application Plane in SDN architecture plays a crucial
role in enabling the deployment, management, and control
of network applications and services. It provides a pro-
grammable interface for developers and administrators to
define network behaviour, implement network policies, and
leverage the flexibility of the underlying SDN infrastructure
[9].

2) Control Plane
In SDN architecture, the control plane refers to the compo-
nent responsible for managing and controlling the network.
It is one of the three main components of SDN, alongside the
data plane and the application plane.

The control plane is responsible for making decisions and
implementing network policies that govern how data packets
are forwarded within the network. It centralizes network
intelligence and allows for programmability and flexibility
in managing network operations. The control plane abstracts
the network hardware and provides a logical network view,
enabling network administrators to define and enforce net-
work policies through software-based controllers.

The control plane in SDN architecture typically consists
of one or more controllers. These controllers act as the brains
of the network, overseeing the network operations and man-
aging network devices such as switches and routers. They
communicate with the data plane, which consists of network
devices, through standardized protocols like OpenFlow [5],
[7], Netconf [11].

The control plane performs several essential functions
[12], including:

1) Network topology discovery: The control plane dis-
covers the network topology by collecting information
about connected network devices and their intercon-

4 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

nections. It maintains a network topology view, allow-
ing for efficient routing and forwarding decisions.

2) Flow control and forwarding: The control plane defines
and manages flow rules that dictate how data packets
are forwarded within the network. It determines the op-
timal paths for packet routing and controls traffic flows
based on defined policies and network conditions.

3) Network policy enforcement: The control plane en-
forces network policies by configuring and managing
the behaviour of network devices. It ensures that traf-
fic is classified, prioritized, and treated according to
specified policies, such as Quality of Service (QoS)
requirements or security measures.

4) Network orchestration and management: The control
plane provides a centralized management interface for
configuring and monitoring the network. It enables
network administrators to provision network resources,
set up virtual networks, and monitor network perfor-
mance.

By separating the control plane from the data plane, SDN
architecture offers advantages such as centralized manage-
ment, programmability, and agility. It enables network ad-
ministrators to dynamically adapt the network behaviour, au-
tomate network operations, and efficiently respond to chang-
ing requirements.

The control plane in SDN architecture plays a critical role
in managing and controlling network operations, facilitating
the software-defined nature of the network, and enabling
efficient network management and automation [6], [13], [14].

3) Infrastructure or Data Forwarding Plane

In SDN architecture, the infrastructure or data forwarding
plane is one of the three key components, along with the con-
trol and application planes. The data forwarding plane, also
known as the data plane or forwarding plane, is responsible
for the actual forwarding and processing of network traffic
within an SDN network. In this layer, there is a coexistence
of both virtual switches like Open vSwitch [15], Indigo
[16], Pica8 [17], Nettle [18], Pantou [19], XorPlus [20] and
physical switches [21]–[23].

The infrastructure or data forwarding plane consists of
network devices such as switches, routers, and access points
responsible for receiving, processing, and forwarding data
packets based on the instructions from the SDN controller.
These devices form the physical or virtual network infras-
tructure over which data flows.

In traditional networking architectures, the control and
data planes are tightly coupled within each network device.
However, in SDN, the data forwarding plane is decoupled
from the control plane, allowing for centralized control
and programmability of network behaviour. This separation
enables dynamic network management and flexible traffic
handling in SDN networks.

In an SDN architecture, the controller communicates with
the infrastructure or data forwarding plane through the south-
bound interface (SBI). The controller instructs the network
devices to handle and forward traffic by installing flow rules
or policies in their forwarding tables. These flow rules define
the desired behaviour for specific packets or flows, such as
routing, traffic prioritization, and security policies.

The infrastructure or data forwarding plane plays a critical
role in SDN as it is responsible for executing the forwarding
decisions made by the SDN controller. It processes incom-
ing packets, matches them against the installed flow rules,
and determines the appropriate action, such as forwarding
the packets to the intended destination or applying specific
treatments or modifications to the packets.

SDN architecture provides flexibility, programmability,
and centralized control over the network by separating the
control plane from the data forwarding plane. This enables
network administrators to efficiently manage and control
network behaviour, optimize traffic flow, and implement ad-
vanced network services and policies.

Overall, the infrastructure or data forwarding plane in SDN
architecture encompasses the network devices responsible
for forwarding and processing network traffic based on the
instructions received from the centralized SDN controller [9].

B. WORKING STAGES OF SDN
The working stages of SDN are represented in Figure 7.
These below-mentioned 10 stages are required to complete
a single packet transfer from host A to host D. However,
when the controller has the flow rules installed, a packet will
follow only stage 1, 4, 7 and 10 to travel from host A to host
D. When a first packet travels from host D to host A it will
follow the stages in reverse order.

C. OPENFLOW
OpenFlow is a protocol that facilitates the implementation of
Software-Defined Networking (SDN) architecture by defin-
ing the communication between the control plane and the
data forwarding plane. It provides a standardized interface
for controlling network devices in an SDN network, such as
switches, routers, and access points [5], [7].

Here are some key aspects of OpenFlow:

1) OpenFlow Protocol: OpenFlow uses a well-defined
and standardized protocol for communication between
the SDN controller and the network devices. The proto-
col specifies message formats, message types, and pro-
cedures for exchanging information and instructions.

2) Centralized Control: In an SDN architecture utilizing
OpenFlow, the control plane is centralized in the SDN
controller. The controller acts as the brain of the net-
work, making intelligent decisions about how network
traffic should be handled based on the network’s over-
all state and policies.

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 7. Working Stages of SDN

3) Flow Tables and Flow Entries: OpenFlow switches
maintain flow tables, which are data structures that
store flow entries. A flow entry consists of a set of
match fields and corresponding actions. The match
fields define the packet header attributes that the switch
uses to match incoming packets, while the actions
determine how the switch should process or forward
the matched packets.

4) Match Fields: OpenFlow supports a range of match
fields, including source and destination IP addresses,
transport protocol (e.g., TCP, UDP), source and des-
tination ports, VLAN tags, MPLS labels, and various
other packet header fields. These match fields allow for
fine-grained packet matching and control.

5) Actions: Each flow entry in the flow table has as-
sociated actions that specify how the switch should
handle packets that match the entry. Actions can in-
clude forwarding packets to a specific port, modifying
packet headers (e.g., rewriting MAC addresses, chang-
ing VLAN tags), applying QoS policies (e.g., setting

packet priorities or bandwidth limitations), dropping
packets, redirecting packets to the controller for further
processing, or even invoking custom actions defined by
network administrators.

6) Flow Entry Installation and Modification: The SDN
controller uses the OpenFlow protocol to interact with
OpenFlow switches through the southbound interface
(SBI). It instructs switches to dynamically install, mod-
ify, or delete flow entries in their flow tables. This
allows the controller to adapt network behavior based
on changing network conditions, policies, or security
requirements.

7) Flow-Based Forwarding: Once flow entries are in-
stalled in the switches’ flow tables, the switches use
hardware-based or software-based matching mecha-
nisms to process incoming packets efficiently. They
compare packet headers against the flow entries in
their flow tables and execute the corresponding actions
defined in the flow entries based on the match results.

8) Programmability and Innovation: OpenFlow’s pro-

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

grammable nature enables network administrators, re-
searchers, and developers to create custom network
control applications, often referred to as network ap-
plications or network control programs. These applica-
tions interact with the SDN controller using the Open-
Flow protocol, allowing for flexible and dynamic con-
trol over network behavior. This programmability fos-
ters innovation, enabling the deployment of advanced
network services, traffic engineering techniques, net-
work slicing, network function virtualization (NFV),
and other emerging networking paradigms.

9) Standardization and Ecosystem: OpenFlow has
gained significant industry-wide adoption, becoming a
widely accepted standard for SDN. A broad range of
network equipment vendors and open-source software
platforms supports it. The standardization of Open-
Flow encourages interoperability, promotes the devel-
opment of a diverse ecosystem, and fosters collabora-
tive efforts in SDN research and deployment.

Overall, OpenFlow provides a standardized and extensi-
ble protocol for implementing SDN architecture. It enables
centralized control, flow-based forwarding, dynamic network
management, and programmability. It empowers network
administrators and researchers to design, customize, and op-
timize network behavior based on evolving requirements and
emerging technologies. In Figure 8, it displays a simplified
version of the logical structure of an OpenFlow switch [24],
[25].

FIGURE 8. Simple Architecture of OpenFlow Switch

III. LITERATURE REVIEWS
In order to support our research framework, we reviewed
related research papers in a particular way. The evolution
of SDN and other programmable networks has first been

researched from a historical perspective. Then, we have
narrowed the scope of our research to include OpenFlow and
SDN architecture. Finally, we have narrowed the scope of
our research to the attacks that frequently target particular
SDN architecture planes. Thanks to our review’s final step,
we have categorized the attacks related to the SDN control
plane and illustrated our findings in the attack taxonomy
and countermeasure sections by using the diagrams we have
shown.

The conceptual history of programmable networks, en-
compassing active networks, early attempts to divide the
control and data plane, and more recent work on OpenFlow
and network operating systems, was documented and traced
by N. Feamster et al. [8]. They emphasized fundamental
ideas and the technological and practical pulls and pushed
behind each breakthrough. They also discussed network
virtualization, typical myths and misconceptions, and other
technologies linked to SDN.

In their research, V. Thirupathi et al. [32] provided an
overview of the advantages of employing SDN technology
and the straightforward development of SDN and OpenFlow.
Additionally, they summarized the need for OpenFlow in
SDN design. To lessen traffic overhead to the controller
for enabling NFV, Y. D. Lin et al. [33] developed an en-
hanced SDN architecture. They discovered that extending the
OpenFlow specification to allow NFV modules in SDN is
doable using their enhanced architecture. In their research, C.
Janz et al. [34] looked at a few used scenarios for transport
SDN (T-SDN), such as service bandwidth on demand, virtual
transport network services, multi-layer control convergence,
and resource optimization. Their analysis demonstrated that
T-SDN might play a significant role in the utility framework’s
adoption of upcoming SDN technology. They also examined
the multi-vendor T-SDN proof of concept. In their article,
K. Raghunath et al. [35] evaluated existing defense strate-
gies for SDN-enabled networks and tested those strategies
on their own attack testbed. Additionally, they suggested
possibly incorporating a defensive layer into the future SDN
architecture’s data plane. In their article, K. Cabaj et al.
[36] examined the security implications of the SDN architec-
tural components. To enhance its security capabilities, they
suggested several improvements to SDN. They suggested a
Distributed Frequent Sets Analyzer (DFSA) system, which
employs SDN network properties, can be employed for ef-
fective and reliable detection of various network attacks.

S. Dong et al. [26] described a number of DDoS at-
tacks against the SDN and cloud environments. They pre-
sented some unresolved issues with identifying and miti-
gating DDoS attacks, with a particular focus on SDN and
cloud computing architecture. In their research, around 70
well-known DDoS detection and mitigation strategies in
SDN networks were comprehensively reviewed by J. Singh
et al. [27]. They divided these processes into four groups:
information theory-based methods, machine learning-based

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1. Comparison Table for Related Works

Area S. Dong et
al. [26]

J. Singh et
al. [27]

M. Arif et
al. [28]

J. C. C. Chica
et al. [29]

F. S. D. Silva
et al. [30]

A. N. Alhaj
et al. [31]

Our
Work

Architecture of SDN ✓ ✓ ✓ ✓ × ✓ ✓

Attack Entry Points of
Control Plane ✓ × ✓ ✓ × × ✓

Types of DDoS attacks in
the Control Plane ✓ ✓ × × ✓ × ✓

Attacks Specifically Tar-
geting the Controller × ✓ × ✓ × ✓ ✓

Attack Taxonomy ✓ ✓ × ✓ ✓ × ✓

Countermeasures × × × ✓ ✓ × ✓

Countermeasures for
Controllers-based Attacks × × × × × × ✓

Countermeasures for NBI-
based Attacks × × × × × × ✓

Countermeasures for SBI-
based Attacks × × × × × × ✓

Countermeasures for At-
tacks between Controllers × × × × × × ✓

Research Gaps × ✓ × × × × ✓

Future Work ✓ ✓ ✓ × ✓ × ✓

methods, artificial neural network (ANN)-based methods,
and other ad hoc methods. They also explained SDN’s
layered architecture thoroughly, outlining its advantages in
preventing DDoS attacks and its weaknesses, allowing for
developing new DDoS attacks instead of more traditional
ones. In their article, M. Arif et al. [28] analyzed security
threats that future SDN-based VANETs will have to deal with
and looked at how SDNs could be helpful in developing new
defenses against those threats. In their research, J. C. C. Chica
et al. [29] described some security risks SDN faces and a
list of attacks that prey on weaknesses, particularly incorrect
configurations of SDN’s fundamental elements. They also
talked about the duality of SDN, which means that sometimes
it is used specifically for security concerns, and other times
there are concerns about security in the SDN architecture
itself. They carried out a comprehensive survey to cover
these issues. The Internet of Things (IoT) is becoming an
emerging technology. Still, because of its size, it is chal-
lenging to implement security measures to protect against
various attacks, particularly DDoS attacks. There have been
past studies about using SDN to reduce DDoS assaults in IoT
scenarios. F. S. D. Silva et al. [30] attempted to map out the
existing solutions and their limitations and categorize them
through a taxonomical representation in the hope that their
survey may aid future researchers. Designing new solutions
to mitigate these DDoS attacks is difficult as IoT technologies
evolve quickly and become more complex. The research
presented by S. M. Mousavi et al. [37] demonstrates how
DDoS attacks particularly impact and deplete SDN controller
resources in the control plane of SDN architecture. They
also offered a method to identify such attacks based on the
entropy fluctuation of the target IP address. Within the first

500 packets of the attack traffic, they could identify a DDoS
attack.

In Table 1, we have shown some comparisons with related
works.

IV. ATTACK TAXONOMY
In Figure 9, we designed an attack taxonomy showing dif-
ferent types of attacks that affect SDN control planes. We
have grouped these attacks according to four attack entry
points at the SDN control plane (North Bound Interface,
Controller, South Bound Interface, and Link between two
controllers). We have also designed other partial taxonomies
showing respective countermeasures for the attacks in Figure
12, Figure 14, Figure 15, and Figure 16.

A. CONTROLLER BASED ATTACKS
Controller Based Attacks are described below:

1) Packet In Flooding (DoS/DDoS)
Due to the fact that these attacks are created by taking
advantage of compromised controllers, corrupted switches,
etc., they specifically target the southbound interface and the
controller itself.

A new point of failure is added to the network due to
centralizing the control plane. Using several controllers can
minimize this, but controllers may still be vulnerable to
denial-of-service (DoS) attacks without careful rule imple-
mentation. The control plane must handle some edge-case
packets in present network devices. On the other hand, in
OpenFlow, bad rule design might result in saturation levels
of controller inquiries, which will impact all switches that
depend on that controller.

8 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 9. Attack Taxonomy

Most of these DoS threats affect networks that employ
reactive policies. As soon as no traffic can produce random
Packet-In events, networks focused on proactive rule place-
ment do not have the same risk. These switches are still
susceptible to a DoS brought on by a controller that makes
too many flow adjustments. Developers of applications must
take extra care to avoid situations that result in an abundance
of Flow-Mod notifications. The OpenFlow 1.3 design recom-
mends monitoring packets with a controller destination, but it
also clarifies that this is not covered by definition. It does not
guide rate-limiting signals to the controller and rule entries to
the switches [38], [39].

2) Saturation of Controller (DoS/DDoS)

The Saturation of Controller attack is a Denial-of-Service
(DoS) attack targeting the SDN controller in an SDN archi-
tecture. This attack aims to overwhelm the SDN controller’s
resources, causing it to become unresponsive and preventing
it from managing network traffic effectively [40].

The SDN controller manages and orchestrates network
traffic flows in an SDN architecture. The Saturation of Con-
troller attack involves an attacker sending large traffic to the
controller, typically via the Northbound API. This results in
a high processing load on the controller, which can cause the
resources of the controller to become overwhelmed, leading
to a slowdown or even a complete shutdown of the controller.

This type of attack can be executed using various methods,
such as network flooding or SYN flooding, where the attacker
sends high traffic to the controller or exploits vulnerabilities
in the controller software or firmware. The goal is to create
congestion that ultimately affects the ability of the controller
to manage network traffic, which can result in serious secu-
rity concerns and compromise the integrity of the network
[41].

To mitigate the Saturation of Controller attacks, network
administrators can employ measures such as implementing
rate-limiting mechanisms to restrict the number of requests

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

per second, monitoring network traffic patterns to detect
anomalies, and deploying load-balancing techniques to dis-
tribute traffic across multiple controllers. Additionally, it is
crucial to ensure that the controller software and firmware
are up-to-date and apply access control policies to limit the
number of users that can access the Northbound API [42].

Finally, it is important to have a response plan in place
in the event of a Saturation of Controller attack, which
includes procedures for isolating the affected controller and
redirecting traffic to backup controllers or other components
in the network. This can help minimize the attack’s impact
and ensure that the network remains available and responsive.

3) Flow Table Flooding/Overflow (DoS/DDoS)
These attacks target the southbound interface and the con-
troller itself because they use faulty controllers, manipulated
switches, etc. A scenario is shown in Figure 10

In software-defined networking (SDN), flow tables that
route and analyze packets of flows are consumed by flow
table overflow attacks, leaving no room for additional flows
to implement flow rules and resulting in network denial of
service (DoS). Such attacks pose severe security risks to SDN
because they can be quickly launched by an enemy with hosts
in the target network or have compromised those hosts [43],
[44].

FIGURE 10. Flow Table Overflow Attack Scenario

4) Abuse of Privilages & Authority
These particular attacks, brought about by malicious SDN
applications, impact the northbound interface (NBI) and the
SDN controller itself. Researchers have illustrated the kind
of attacks that rogue SDN applications can carry out.

To harm a NOS, malicious SDN applications (Sh14 [45],
RH15a [46], RH [47]) take advantage of crucial system
operations. Malicious SDN applications, for instance, can
quickly crash SDN controllers, alter internal data structures,
or create remote channels to access a C & C server and get
shell commands, which are then performed on behalf of the

NOS. Another case involves a rogue SDN application that
downloads and runs any file with root access [48].

5) Service Disruption

These particular attacks, which have an impact on the SDN
controller directly, come from a variety of domains.

By either faking northbound API communications or
southbound communications to the network elements, the
attacker would like to spawn new flows. If an attacker can
effectively spoof flows from the authorized controller, they
will have the power to alter how traffic moves through the
SDN and may even be able to get around security-related
regulations.

A DoS attack against the controller or some other tech-
nique to bring about the controller’s inevitable failure might
be attempted by an attacker. The attacker may utilize a
resource-consumption attack to slow down the controller,
making it react to Packet-In events very slowly and deliver
Packet-Out messages gradually.

SDN controllers frequently use Linux-based operating sys-
tems. If the SDN controller uses a general operating system,
the controller will also be vulnerable to such flaws. The
default passwords and no security settings are frequently
used when deploying controllers into production. The SDN
engineers managed to "just barely" get it to function but were
afraid of ruining it, so they didn’t want to touch it. As a
result, the system was left in production with a vulnerable
configuration.

It would be problematic if an attacker could build their own
controller and convince network components that data was
coming from the "saboteur" controller. The attacker could
then add items to the network devices’ flow tables, preventing
the SDN experts from seeing those flows from the standpoint
of the commercial controller. In this scenario, the attacker
would be in total control of the network [49], [50].

6) Application Shutdown

The northbound interface (NBI) is specifically targeted by
these attacks caused by the compromised northbound proto-
col. Through NBI, the SDN controller also gets affected.

The SDN controllers employ a large number of northbound
APIs. In addition to alternatives, northbound APIs could use
Python, Java, C, REST, XML, and JSON. The controller
would provide the attacker access over the SDN network
if they could take advantage of the weak northbound API.
A hacker might be able to develop their own SDN policies
and take over the SDN ecosystem if the controller for the
northbound API lacks any kind of protection.

A REST API [51] frequently has a predefined password
that can be easily found. If an SDN implementation didn’t al-
ter this predefined password and a hacker could send packets
to the controller’s admin console, they might query the SDN

10 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

ecosystem’s configuration and alter it to suit their needs [49],
[52].

7) Dynamic Flow Rule Tunneling
These particular attacks, which are brought about by mali-
cious SDN applications, impact the SDN controller itself.
Researchers have illustrated the kind of attacks that rogue
SDN applications are capable of carrying out.

A novel method is given in (Po12 [13], Po15 [53]) that
enables attackers to go around flow controls that are present
in an OpenFlow switch. The researchers showed that even
when a current drop rule expressly forbids such a connection,
an attacker can access a network host by introducing spe-
cially constructed malicious flow rules. Dynamic flow rule
tunnelling is a method that uses the set and goto commands
that are common in OpenFlow [48], [54].

8) Poisoned Network View
These particular attacks target the controller, the northbound,
and the southbound interface because they use the link dis-
covery service at the SDN control plane.

The control plane’s provision of the link discovery service
is essential to the efficient operation of network apps and
services. The SDN controller’s topology view can be tainted
by an adversary by generating links across one or more
infected devices.

Every Link Layer Discovery Protocol (LLDP) [55] packet
that the controller receives is accepted, and its link data is
used to update the controller’s link information. This presents
a security issue for the Link Discovery Service (LDS) [56].
More significantly, researchers discovered that the SDN con-
troller’s built-in approach does not safeguard the integrity or
source of LLDP packets. Consequently, a hacker can simply
alter the link data of the controller by injecting fake LLDP
packets into the network or replaying real LLDP packets
from one target switch to another [57], [58].

9) NOS Misuse
These particular attacks, which are brought about by ma-
licious SDN applications, impact the southbound interface
(SBI), the northbound interface (NBI), and the SDN con-
troller itself. Researchers have illustrated the kind of attacks
that rogue SDN applications are capable of carrying out.

For OpenDaylight [59], an SDN rootkit has been released
(RH15b [60]) that provides the foundation for numerous en-
terprise solutions (SDC [61]). This SDN rootkit substantially
modifies internal data structures to take over the components
in charge of both programming the network and analyzing
its state. Researchers have therefore shown that an attacker
is capable of adding and hiding hostile flow rules, as well as
removing valid flow rules, all without alerting the adminis-
trator. Additionally, a technique built on OpenFlow is given
that permits remote communication between an attacker and
the rootkit [62] component running inside the NOS. This is

intriguing because the SDN design does not provide host
communication between hosts running on the data plane and
the control plane [48].

10) Eavesdropping
Due to the unencrypted control channel, these unique attacks
target the southbound interface and the controller itself.

In SDN, eavesdropping assaults can occur within the data
plane or through the communication lines connecting the
controllers in the control plane and the forwarding devices in
the data plane. Switches (also known as forwarding devices)
and forwarding links are two places in the data plane where
eavesdropping attacks occur. The malevolent eavesdroppers
might monitor the data used for further attacks once they
have corrupted and captured them. TCP networks frequently
experience eavesdropping attacks [63].

11) Man in the Middle
These particular attacks target the southbound interface, the
controller, and the connection between two controllers since
they arise from unencrypted control channels, compromised
SBI, and insecure data links.

FIGURE 11. MITM attack scenario

Figure 11 depicts a MITM attack model wherein the ongo-
ing OpenFlow messages on the control channel are actively
manipulated by aggressively interfering with the interaction
between the control plane and the data plane. When a flow
rule tells the switch to convey a group of flows from host A to
host C, (1) the controller delivers the rule, and (2) the attacker
actively changes the action variable of the rule to "drop," In
the end, the flow from host A to host C is dropped at the
switch as a result of (3) the altered flow rule being installed
on the switch [63] [64].

B. NORTH BOUND INTERFACE BASED ATTACKS
North Bound Interface Based Attacks are described below:

VOLUME 4, 2016 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2. Comparison Table for Attacks

Attacks Controller NBI SBI
Link
Between
Controllers

Countermeasurers

Packet In Flooding ✓ × ✓ ✓ Specialized programming in network devices

Saturation of Controller ✓ × × ×
Rate Limiting, Load Balancing, Access Control, Firmware
and Software Updates, Network Monitoring, Network
Segmentation, Redundancy and Failover, etc.

Flow Table Flooding/Overflow ✓ × ✓ × FlowVisor

Abuse of Privileges & Author-
ity ✓ ✓ × × Sandboxing

Service Disruption ✓ × × ×
OS Hardening, Access Control, Role-Based Access Con-
trol (RBAC) regulations, High-Availability (HA) con-
troller structure

Application Shutdown ✓ ✓ × × Out-of-Band (OOB) system, TLS, SSH, Authentication,
Encryption, Flow Comparison Testing

Dynamic Flow Rule Tunneling ✓ × × × Sandboxing

Poisoned Network View ✓ ✓ ✓ × LLDP Packet Authentication, Switch Port Property Vali-
dation

NOS Misuse ✓ ✓ ✓ × Sandboxing

Eavesdropping ✓ × ✓ × Multipath Method, Flow Table Integrity Verification, For-
warding Device-level Encryption

Man in the Middle ✓ × ✓ ✓ SSL/TLS

Congestion of Southbound API × × ✓ ×
Rate Limiting, Load Balancing, Access Control, Firmware
and Software Updates, Network Monitoring, Network
Segmentation, etc.

Authentication, Authorization,
Privacy × × × ✓

DISCO, Load Balancing Technologies, HyperFlow, Mc-
Nettle, etc.

Misconfiguration × × × ✓
Training of the Workforce, Data-at-rest encryption, Sep-
aration of Admin Privileged Accounts, Regular Patching,
Checklist for Security Precautions, etc.

1) Abuse of Privileges & Authority
This attack has been discussed above in the subsection ‘Con-
troller Based Attacks’ under the ‘Attack Taxonomy’ section
[See A.4 Section IV].

2) Application Shutdown
This attack has been discussed above in the subsection ‘Con-
troller Based Attacks’ under the ‘Attack Taxonomy’ section
[See A.6 Section IV].

3) Poisoned Network View
This attack has been discussed above in the subsection ‘Con-
troller Based Attacks’ under the ‘Attack Taxonomy’ section
[See A.8 Section IV].

4) NOS Misuse
This attack has been discussed above in the subsection ‘Con-
troller Based Attacks’ under the ‘Attack Taxonomy’ section
[See A.9 Section IV].

C. SOUTH BOUND INTERFACE BASED ATTACKS
South Bound Interface Based Attacks are described below:

1) Packet In Flooding
This attack has been discussed above in the subsection ‘Con-
troller Based Attacks’ under the ‘Attack Taxonomy’ section
[See A.1 Section IV].

2) Congestion of Southbound API
The Congestion of a Southbound API attack is a denial-of-
service (DoS) attack [65] targeting the southbound interface
of an SDN architecture. The attack’s goal is to overwhelm the
southbound API with a large volume of traffic, causing net-
work traffic to become congested and preventing legitimate
traffic from being processed.

The Southbound API communicates with the physical net-
work switches and controls their behaviour. The Congestion
of a Southbound API attack involves an attacker flooding
the Southbound API with a large number of requests, which
the controller cannot handle, causing the Southbound API
to become congested. This results in delays and an inability
to process legitimate traffic, leading to degraded network
performance or even network failure.

This type of attack can be executed using various methods,

12 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

such as network flooding or SYN flooding [66], where the
attacker sends a high volume of traffic to the Southbound API
or utilizes many fake requests to overwhelm the interface.
The goal is to create congestion that ultimately affects the
ability of the controller to manage network traffic, which
can result in serious security concerns and compromise the
integrity of the network.

To mitigate the Congestion of the Southbound API attacks,
network administrators can employ measures such as limiting
the number of requests per second to the Southbound API,
monitoring network traffic patterns, and implementing rate-
limiting mechanisms that can help identify and prevent the
attack. Additionally, the use of firewalls, intrusion detection
and prevention systems, and other security technologies can
help protect the SDN infrastructure against this type of attack
[67]–[69].

3) Flow Table Flooding/Overflow
This attack has been discussed above in the subsection ‘Con-
troller Based Attacks’ under the ‘Attack Taxonomy’ section
[See A.3 Section IV].

4) Poisoned Network View
This attack has been discussed above in the subsection ‘Con-
troller Based Attacks’ under the ‘Attack Taxonomy’ section
[See A.8 Section IV].

5) NOS Misuse
This attack has been discussed above in the subsection ‘Con-
troller Based Attacks’ under the ‘Attack Taxonomy’ section
[See A.9 Section IV].

6) Eavesdropping
This attack has been discussed above in the subsection ‘Con-
troller Based Attacks’ under the ‘Attack Taxonomy’ section
[See A.10 Section IV].

7) Man in the Middle
This attack has been discussed above in the subsection ‘Con-
troller Based Attacks’ under the ‘Attack Taxonomy’ section
[See A.11 Section IV].

D. ATTACKS ON THE LINK BETWEEN TWO
CONTROLLERS
Attacks on the link between two controllers are described
below:

1) Authentication, Authorization, Privacy
The control plane is specifically impacted by these assaults,
particularly the connections between controllers in a multi-
controller system. The absence of authorization, improper
authentication, and unencrypted communication channels
contribute to such attacks.

SDN was first developed as a single controller architecture,
which lacks scalability and dependability, to reduce the possi-

bility of a single source of failure in the controller. As a result,
the distributed control (controller clusters [70]) approach has
been suggested, in which each controller instance serves
as the master of a few switches, and various controllers
can interact with one another to govern the entire network
cooperatively. To the data forwarding layer, meanwhile, the
presence of many hardware controllers operating the network
rather than a single one should be invisible, which calls for
the controllers to be seen as a unified controller for the overall
network.

In this case, a networking application that covers numerous
control areas will have to contend with several security is-
sues, including those relating to network information transfer
privacy, authentication, and authorization. The continuous
switchover of the master controller and the coexistence of
numerous controllers in a single network domain can also
result in setting conflicts when several controllers work
together in a dispersed manner. Inside the multi-controller
architecture, an incorrect configuration is consequently also
a covert security risk [71]–[73].

2) Misconfiguration

These attacks specifically impact the control plane, par-
ticularly the connections between controllers in a multi-
controller system. These attacks are brought on by a system’s
improper design.

When a design setting or misconfiguration leaves an ap-
plication module open to attack, this is known as a security
misconfiguration vulnerability. Application subsystems or
component misconfiguration exploits are configuration flaws
that could exist. For example, the various attack vectors could
make use of misconfiguration flaws:

1) Buffer Overflow: In an SDN environment, a buffer
overflow attack due to misconfiguration can occur
when the controller or network device is misconfigured
to allow an attacker to send a large amount of data
to a buffer that is not large enough to handle it. This
can cause the buffer to overflow, leading to system
instability or even crashes. Attackers can exploit this
vulnerability by sending malicious packets with spe-
cially crafted payloads designed to trigger the buffer
overflow. A buffer overflow attack can be hazardous,
enabling an attacker to execute arbitrary code on the
system, potentially taking control of the network or
stealing sensitive data. This attack can be difficult
to detect, especially if the attacker avoids triggering
system crashes.
To mitigate this attack, SDN administrators should
ensure that all network devices and controllers are
properly configured with sufficient buffer sizes. It is
also essential to keep all software up-to-date with the
latest security patches and to use intrusion detection
and prevention systems to detect and prevent mali-
cious traffic. Regular security audits and vulnerability

VOLUME 4, 2016 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

assessments can also help identify and mitigate buffer
overflow vulnerabilities before they can be exploited
[74], [75].

2) Code Injection: Code injection attacks due to mis-
configurations can occur when the controller software
is not configured securely, which allows attackers to
insert malicious code into the SDN controller. This can
occur due to weak passwords, unsecured interfaces,
or unpatched software. Once the attacker has injected
malicious code, they can potentially take control of the
controller and launch other attacks, such as Denial of
Service or stealing sensitive data. The attacker could
also modify the controller’s programming to disrupt
network traffic, leak confidential data, or cause perma-
nent damage to the network. For instance, the attacker
could inject a code that bypasses access control to
allow unauthenticated users access to sensitive network
resources or modify the controller’s decision-making
process, which can lead to the network’s failure or
unauthorized access to the system. To perform the code
injection attack, the attacker may take advantage of
software vulnerabilities, including SQL injection [76]
or Cross-Site Scripting (XSS) [77], to inject malicious
code into the controller’s software.
To mitigate this type of attack, the controller software
and all its dependencies must be updated with the latest
patches and updates to prevent vulnerabilities. The
controller should be configured to prevent unautho-
rized access and use strong authentication mechanisms
to reduce the risk of weak passwords. Additionally, the
controller should be isolated from the rest of the net-
work using access control lists or firewalls to prevent
unauthorized access to the controller interfaces. The
controller should also have a secure boot process and
be validated before deployment to ensure no malicious
code has been injected. Lastly, the controller’s software
should be reviewed periodically to detect vulnerabili-
ties or security weaknesses [78]–[80].

3) Credential stuffing/Brute Force: A credential stuff-
ing/brute force attack is an attack in which an attacker
attempts to gain unauthorized access to a network
by repeatedly trying different username and password
combinations until they find the correct one. This at-
tack can be performed due to misconfiguration of the
SDN network, such as weak or default passwords on
network devices or software components used in the
SDN environment. The attacker can use automated
tools to test large lists of possible username and pass-
word combinations in a short period of time. If success-
ful, the attacker can access the SDN network, allowing
them to control the network and launch further attacks.
This can lead to network downtime, data breaches, and
other security risks.
To mitigate this attack, SDN networks should use

strong, complex passwords for all network devices
and software components. Multi-factor authentication
should also be used wherever possible to increase the
security of the SDN network. Additionally, systems
should be monitored for unusual login attempts, and
login attempts should be rate-limited to prevent brute-
force attacks [81]–[83].

4) Command Injection: In an SDN environment, a com-
mand injection attack due to misconfiguration can
occur when an attacker injects malicious commands
into the network device. This attack takes advantage
of vulnerabilities in the input validation process and
allows attackers to execute unauthorized commands on
the device. To launch this attack, the attacker typically
exploits the network device’s web interface, which
may have weak authentication mechanisms, default
passwords, or other misconfigurations that make it
vulnerable. The attacker can use these weaknesses to
bypass authentication or use brute force to guess the
login credentials. Once authenticated, the attacker can
enter malicious commands that the device will execute,
giving the attacker complete control over the network.
This attack can have severe consequences, such as the
ability to take down the entire network or compromise
sensitive information. To prevent command injection
attacks, following security best practices such as using
strong passwords, disabling unnecessary services, and
keeping the network device firmware up to date is
crucial. Additionally, input validation should be imple-
mented to ensure all user input is properly sanitized
to prevent malicious commands from being executed.
Network devices should also be monitored for any
suspicious activity, and traffic analysis tools can be
used to detect and block any unauthorized traffic [84]–
[87].

5) Cross-site Scripting (XSS): Cross-site scripting
(XSS) is an attack where an attacker injects malicious
code into a vulnerable web application executed by the
victim’s browser. This can occur in web-based inter-
faces, such as the controller GUI, used to manage the
SDN network in an SDN environment. In this attack,
the attacker injects JavaScript code into a web page or
form field, which then executes in the context of the
victim’s browser when the page is loaded, or the form
is submitted. The injected code can steal cookies or
session tokens, redirect the victim to a malicious site,
or modify the page’s content. This attack can occur
due to misconfiguration of the web server, application
server, or SDN controller software. An attacker can
upload and execute malicious code if the web server
or application server is misconfigured. An attacker can
inject code into the web-based management interface if
the SDN controller software is not adequately secured.
Mitigation techniques for this attack include input val-

14 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

idation and output encoding, which can prevent mali-
cious code injection. Using secure coding practices and
frameworks can also help prevent XSS attacks. Addi-
tionally, enforcing proper access control policies and
limiting the use of privileged accounts can reduce the
impact of an XSS attack. Regular security audits and
penetration testing can also help identify and remediate
vulnerabilities [77], [88], [89].

6) Forceful Browsing: Forceful browsing, also known as
a directory traversal or path traversal, is an attack in
which an attacker tries to access files and directories
outside the intended directory or file system. Miscon-
figurations can cause this attack in the SDN application
or web server, which allows the attacker to manipu-
late the URL to access restricted files and directories.
In SDN, forceful browsing attacks can compromise
the network’s security by allowing attackers to access
sensitive information or configurations stored in the
network devices. An attacker can use this information
to gain unauthorized access to the network, modify
network configurations, or cause a denial of service.
To prevent forceful browsing attacks in SDN, several
countermeasures can be taken. One of the most critical
countermeasures is to sanitize and validate all user
input to prevent the manipulation of URLs. The SDN
application or web server should check for invalid
characters, including "../" or "%2e%2e%2f", which
can be used to escape from the intended directory.
Another countermeasure is configuring access controls
and permissions on the directories and files to prevent
unauthorized access. The SDN application should en-
force strict access controls on sensitive directories and
files, allowing only authorized users to access them.
Access controls should be reviewed periodically to
ensure they are still effective. Additionally, web appli-
cation firewalls can prevent forceful browsing attacks
by filtering out malicious traffic before it reaches the
SDN application or web server. These firewalls can
detect and block attempts to escape from the intended
directory or manipulate the URL. Regular security
audits and penetration testing can also help to identify
vulnerabilities that forceful browsing attacks could ex-
ploit. These tests can identify misconfigurations in the
SDN application or web server and provide guidance
on improving security and preventing future attacks
[90], [91].

3) Man in the Middle

This attack has been discussed above in the subsection ‘Con-
troller Based Attacks’ under the ‘Attack Taxonomy’ section
[A.11 Section IV].

V. COUNTERMEASURES

A. FOR CONTROLLER-BASED ATTACKS

A taxonomy is shown in Figure 12, where the countermea-
sures are mentioned according to the SDN controller-based
attacks.

1) Countermeasure for Packet In Flooding

Modern network devices feature specialized programming
to address the recognized weaknesses of the protocols they
support. For instance, the majority of modern enterprise Eth-
ernet switches contain code that prevents DHCP snooping,
broadcast/multicast rate limiting, and port-level MAC ad-
dress restrictions. The controller in OpenFlow networks must
offer all of these fundamental safeguards. Consequently, the
developers of the OpenFlow apps, who might not be aware of
the existence of these assaults, are left with the responsibility
of putting in place complicated security safeguards [38].

2) Countermeasure for Saturation of Controller

Network administrators can employ various techniques to
mitigate the Saturation of Controller attacks to ensure that the
SDN controller can handle large traffic volumes and prevent
an attacker from overwhelming the controller’s resources.
Some of the mitigation techniques include:

1) Rate Limiting: Implementing rate limiting mecha-
nisms to restrict the number of requests per second sent
to the SDN controller can help control the traffic flow
and reduce the controller’s load. By limiting the rate of
incoming traffic, the controller can process incoming
requests more efficiently and prevent a single traffic
source from overwhelming the controller [92]–[94].

2) Load Balancing: Load balancing can help to distribute
traffic across multiple controllers and prevent a single
controller from becoming overwhelmed. This can help
ensure the network remains available and responsive,
even under heavy traffic conditions [95].

3) Access Control: Network administrators can ensure
that only authorized users and devices can access the
SDN controller by implementing access control poli-
cies. This can help to prevent attackers from sending
traffic to the controller, which could cause congestion
and disrupt network traffic [96], [97].

4) Firmware and Software Updates: Regularly updat-
ing the firmware and software used in the SDN infras-
tructure can help to ensure that known vulnerabilities
and exploits are addressed. This can help to prevent
attackers from exploiting weaknesses in the infrastruc-
ture to launch the Saturation of Controller attack [98].

5) Network Monitoring: Implementing network moni-
toring tools that provide visibility into network traffic
patterns and detect anomalies that may indicate an
attack is in progress. This can include real-time traffic
analysis, alerting, and reporting tools [99].

VOLUME 4, 2016 15

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 12. A taxonomy for the countermeasures related to the controller-based attacks

6) Network Segmentation: Segmenting the network into
smaller subnetworks can help to reduce the impact
of the Saturation of Controller attack. This can be
achieved by deploying firewalls or other security tech-
nologies that monitor network traffic and detect and
block malicious traffic that attempts to overload the
SDN controller [100], [101].

7) Redundancy and Failover: Implementing redun-
dancy and failover mechanisms can help ensure the
network remains available and responsive, even if one
or more network components fail. This can involve
deploying multiple controllers, backup systems, or
other components to provide redundancy and failover
capabilities [100], [102].

By implementing these best practices, network adminis-
trators can help to mitigate the risk of the Saturation of
Controller attacks and ensure that the SDN infrastructure
remains secure and available.

3) Countermeasure for Flow Table Overflow
Network administrators can distinguish between distinct net-
work packets using FlowVisor by looking at the header
sections of the packets. Between switches and controllers,
FlowVisor serves as an intermediary. It receives rules from
controllers and revises them such that the resultant rules only
apply to the areas of the network that a particular controller

is permitted to operate. For instance, a controller might be
given access to the network segment that carries all traffic
to and from a company’s web servers. In response to a DoS
assault, this controller might establish a rule to stop all UDP
communication. All UDP traffic to and from the web servers
will be dropped when FlowVisor gets this rule, leaving the
rest of the network untouched [71].

4) Countermeasure for Abuse of Privileges and Authority
(Sandboxing)

There are now two suitable sandbox systems for SDN con-
trollers. The first manages access to system calls while run-
ning SDN applications in different processes [Sh14]. The
other system [RH15a, RH, SDa] uses Java security capabili-
ties to lock SDN applications inside Java sandboxes. Figure
13 depicts the fundamental protection mechanism, which is
the same for both approaches.

The access to essential operations (such as system calls
or delicate Java operations) is managed by a NOS, and each
SDN application operates in its own isolated sandbox. The
sandbox architecture, or which SDN application is permitted
to carry out which crucial tasks, must be supplied by a
network administrator. If he or she gives access to a vital
operation, the associated SDN application can carry it out or
refuse access [48].

16 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 13. Sandboxing

This approach can also help mitigate the following attacks:
• Dynamic Flow Rule Tunneling (See A.7 Section IV)
• NOS Misuse (See A.9 Section IV)

5) Countermeasure for Service Disruption
Since the controller is a prime attack target, it must be
strengthened. The host OS needs to be hardened to improve
the defense capabilities of the controller and the networking
devices. The same best practices apply to hardening Linux
systems with a public-facing are applicable here. However,
businesses should keep a tight eye on their controls for any
unusual behaviour.

The SDN control system should not be open to unwanted
access, according to organizations. SDN solutions ought to
provide setting up secure, verified admin privileges to the
controller. Controller admins might need to use Role-Based
Access Control (RBAC) [103] regulations. Checking for
illegal changes made by admins or attackers alike may be
made possible through logging and audit trails.

A High-Availability (HA) controller structure is advanta-
geous in the event of a DoS assault on the controller. SDNs
that employ redundant controllers may lose one controller
while still operating. The difficulty level for an attacker
attempting to DoS every controller in the system would rise.
Furthering the attacker’s desire to avoid detection, that attack
would also not be especially discreet [49].

6) Countermeasures for Application Shutdown
Another defense mechanism is utilizing an Out-of-Band
(OOB) system [104] to regulate traffic. An OOB network
can be built more easily and affordably in a data center than
across a corporate WAN. An OOB system for northbound
and southbound communications might be safer while man-
aging controllers.

It would be recommended as the best approach to encrypt-
ing controller operations and northbound connections using
TLS [105], SSH [106], or another technique. Authentication
and encryption techniques should be used to protect commu-
nications from software programs and services that ask the
controller for data or services.

All northbound applications that ask for SDN resources
should follow secure coding standards. Secure programming
techniques are helpful for the security of Internet web apps
that are accessible to the public and apply to northbound SDN
interfaces.

A few SDN systems can compare flows in network device
tables to controller rules. This form of testing (similar to
FlowChecker) of the network devices’ flows versus the policy
inside the policy could aid in locating differences that are the
consequence of an attack [49].

7) Countermeasures for Dynamic Flow Rule Tunneling
Please see ‘Sandboxing’ under the subsection ‘For
Controller-based Attacks’ [See A.4 Section V].

8) Countermeasures for Poisoned Network View
The authenticity of an LLDP packet can be breached dur-
ing the link discovery process in OpenFlow networks, and
infected hosts can get involved in the LLDP propagation
path, according to a summary of the root causes of the Link
Fabrication exploits. Researchers provided two methods to
protect the Link Discovery process without needing manual
labour to address those security lapses.

1) LLDP packet authentication: An attacker’s initial
security flaw is that the OpenFlow controller doesn’t
check the validity of LLDP packets. As long as the
attacker can obtain LLDP packets from the linked
switch, he or she can also undermine the authenti-
cation of the origin in contemporary OpenFlow con-
trollers. Increasing the number of identifier TLVs
(Type-Length-Values) in the LLDP packet is one way
to address this issue. In particular, while receiving
LLDP packets, we can concatenate a controller-signed
TLV and verify the identity. The contents of the LLDP
packet—specifically, the DPID (Datapath ID) and Port
number—are used to calculate the signature TLV. The
attacker has less ability to alter the LLDP packets in
this situation. The drawback of this strategy is that it
cannot counter an LLDP relay/tunnelling attack called
Link Fabrication [58].

2) Switch port property validation: The fact that no
hosts can take part in the LLDP propagation is another
security fundamental of the OpenFlow link discovery
process. Checking whether any hosts are present within
the LLDP propagation is one method to reduce the
relay-based Link Fabrication. For example, we might
add some additional logic to track the traffic from
each switch port to determine which device has been
connected to the port. When host-generated traffic (like
DNS) is detected by OpenFlow controllers coming
from a particular switch port, we set that port’s Device
Type to HOST. If not, when LLDP packets are obtained
from such switch ports, we designate those switch ports
as SWITCH [58].

VOLUME 4, 2016 17

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 14. A taxonomy for the countermeasures related to the NBI-based attacks

3) LLDP can only broadcast on switch internal link
ports and ports attached to the OpenFlow controller.
Hence those two groups are essentially exclusive in
OpenFlow networks. This approach makes the premise
that the compromised computer is not a switch and will
therefore continue to produce host-generated traffic
(e.g., ARP, DNS). This presumption is sensible, and
it holds in the majority of situations in reality. While a
strong attack could theoretically stop all host-generated
traffic in infected devices or virtual machines, it could
also render the machine partially inoperable, at least
for some standard networking tasks, and such a non-
functional irregularity could be immediately noticeable
by the regular machine user, thereby exposing the
attacker’s presence [58].

9) Countermeasures for NOS Misuse
Please see ‘Sandboxing’ under the subsection ‘For
Controller-based Attacks’ [See A.4 Section V].

10) Countermeasures for Eavesdropping
Although eavesdropping attempts can be prevented by en-
cryption, eavesdropping detection techniques are not yet
widely available. Anti-eavesdropping measures in SDN
cover the same fundamental steps as in traditional networks,
from prevention to detection and to lessen the severity. The
phases include a multipath method, flow table integrity veri-
fication, and forwarding device-level encryption [71].

11) Countermeasures for Man in the Middle
Due to OpenFlow’s lack of implementation of the control
message integrity verification technique, active flow manipu-
lation throughout the man-in-the-middle attack was permit-

ted. If SSL/TLS security is enabled, this approach is not
required. However, the SSL/TLS technology that is now
available is insufficient to secure big SDN networks [63].

B. FOR NBI-BASED ATTACKS
A taxonomy is shown in Figure 14, where the counter-
measures are mentioned according to the SDN Northbound
Interface (NBI) based attacks.

1) Countermeasure for Abuse of Privilages Authority
Please see ‘Sandboxing’ under the subsection ‘For
Controller-based Attacks’ [A.4 Section V].

2) Countermeasure for Application Shutdown
Please see ‘Countermeasures for Application Shutdown’ un-
der the subsection ‘For Controller-based Attacks’ [A.6 Sec-
tion V].

3) Countermeasure for Poisoned Network View
Please see ‘Countermeasures for Poisoned Network View’
under the subsection ‘For Controller-based Attacks’ [A.8
Section V].

4) Countermeasures for NOS Misuse
Please see ‘Sandboxing’ under the subsection ‘For
Controller-based Attacks’ [A.4 Section V].

C. FOR SBI-BASED ATTACKS
A taxonomy is shown in Figure 15, where the counter-
measures are mentioned according to the SDN Southbound
Interface (SBI) based attacks.

18 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 15. A taxonomy for the countermeasures related to the SBI-based attacks

1) Countermeasure for Packet In Flooding

Please see ‘Countermeasures for Packet In Flooding’ under
the subsection ‘For Controller-based Attacks’ [A.1 Section
V].

2) Countermeasure for Congestion of Southbound API

The Congestion of a Southbound API attack is a denial-of-
service (DoS) attack targeting the Southbound API of an
SDN architecture. To mitigate this type of attack, network
administrators can implement various techniques and best
practices, including:

1) Rate Limiting: To limit the amount of traffic allowed
to the Southbound API, network administrators can
deploy rate-limiting mechanisms that restrict the num-
ber of requests per second. This can help identify and
prevent the Congestion of the Southbound API attack
by controlling the traffic flow and reducing the overall
load on the controller [92], 60, 61].

2) Access Control: Network administrators can ensure
that only authorized users and devices can access the
Southbound API by implementing access control poli-
cies. This helps to prevent attackers from flooding the
interface with requests that could cause congestion and
disrupt network traffic [96], [97].

3) Segmentation: Segmenting the network into smaller
subnetworks can help to reduce the impact of the
Congestion of Southbound API attacks. This can be
achieved by deploying firewalls or other security tech-
nologies that monitor network traffic and detect and
block malicious traffic that attempts to overload the
Southbound API [100], [101].

4) Network Monitoring: To detect and respond to the
Congestion of Southbound API attacks, network ad-
ministrators can implement network monitoring tools
that provide visibility into network traffic patterns and
detect anomalies that may indicate an attack is in
progress. This can include real-time traffic analysis,

VOLUME 4, 2016 19

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

alerting, and reporting tools [99].

5) Load Balancing: Load balancing can be used to dis-
tribute traffic across multiple controllers to prevent
any one controller from becoming overloaded. This
can help ensure the network remains available and
responsive, even under heavy traffic conditions.

6) Firmware and Software Updates: Regularly updat-
ing the firmware and software used in the SDN in-
frastructure can help to ensure that known vulnera-
bilities and exploits are addressed. This can help to
prevent attackers from exploiting weaknesses in the
infrastructure to launch the Congestion of Southbound
API attacks [98].

By implementing these best practices, network administra-
tors can help to mitigate the risk of the Congestion of South-
bound API attacks and ensure that the SDN infrastructure
remains secure and available.

3) Countermeasures for Flow Table Flooding/Overflow
Please see ‘Countermeasures for Flow Table Overflow’ under
the subsection ‘For Controller-based Attacks’ [A.3 Section
V].

4) Countermeasure for Poisoned Network View
Please see ‘Countermeasures for Poisoned Network View’
under the subsection ‘For Controller-based Attacks’ [A.8
Section V].

5) Countermeasures for NOS Misuse
Please see ‘Sandboxing’ under the subsection ‘For
Controller-based Attacks’ [A.4 Section V].

6) Countermeasure for Eavesdropping
Please see ‘Countermeasures for Eavesdropping’ under the
subsection ‘For Controller-based Attacks’ [A.10 Section V].

7) Countermeasures for Man in the Middle
Please see ‘Countermeasures for Man in the Middle’ under
the subsection ‘For Controller-based Attacks’ [A.11 Section
V].

D. FOR ATTACKS BETWEEN TWO CONTROLLERS
A taxonomy is shown in Figure 16, where the counter-
measures are mentioned according to the SDN attacks that
happen between two controllers.

1) Countermeasures for Authentication, Authorization,
Privacy Attacks
A specific protocol known as the Advanced Messaging Queu-
ing Protocol [107] is used in DISCO’s [108] implementation,
which is built on Floodlight [109] and delivers control plane
services for dispersed heterogeneous networks. An intra-
domain control module and an inter-domain control module
make up DISCO. The inter-domain control module keeps

track of and controls the importance of data transferred across
the domains so that flow pathways with various priorities
can be determined and transmitted. The inter-domain control
module can dynamically reroute or block traffic flow to
combat attacks. The intra-domain control module, which
consists of a message transceiver and several agents, is in
charge of controlling communication between controllers.
The message transceiver aims to detect nearby controllers
and offer a control channel that limits controller interaction.
The message transceiver module’s communication channel
allows agents to interchange data for the network. As we can
see, the DICSO can adequately address the security risks that
distributed controllers confront [71].

Other countermeasures (Controller/Controller Plat-
form/Method) besides the one mentioned above are Load
Balancing Technologies [110], HyperFlow [111], McNettle
[112], and others.

2) Countermeasures for Misconfiguration

Several steps can be taken to prevent misconfiguration [113]:

1) Training as well as educating the workforce on current
security developments, is one of the best ways to
prevent security misconfiguration.

2) The data exfiltration files’ security may be aided by
using data-at-rest encryption techniques. For folders
and files, we can also implement the proper access
controls. These safeguards mitigate the susceptibility
of the files and folders.

3) Systems can identify vulnerabilities automatically by
running security scans. After making architectural im-
provements, conducting such scans regularly is an im-
portant step in reducing the net vulnerability.

4) Make sure admins have separate accounts for when
they use their admin privileges compared to when they
use the system normally.

5) To lessen the attack vectors, a regular patching sched-
ule must be established, and updated software must be
maintained.

6) Creating a checklist that includes the various security
precautions you wish to take to be sure we’ve covered
all the bases.

3) Countermeasures for Man in the Middle

Please see ‘Countermeasures for Man in the Middle’ under
the subsection ‘For Controller-based Attacks’ [A.11 Section
V].

VI. DISTRIBUTED DENIAL OF SERVICE ATTACKS IN
SDN ENVIRONMENT:
We have introduced this separate part to talk about the attack
scenario as well as some typical DoS/DDoS attacks on SDN

20 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 16. A taxonomy for the countermeasures related to the attacks between two controllers

in general because DoS/DDoS attacks are the biggest concern
for SDN [27].

One of the most common malicious strategies is DDoS,
which involves sending a lot of traffic in their direction to
impair computer networks or resources. The primary con-
cept behind a DoS attack is the employment of zombies
dispersed over several networks or places and directed at a
victim. A DoS attack’s main objective is to use bandwidth
and overload resources. An attack could also be carried
out for other motives, such as political or financial gain or
simply to disrupt services [27]. SDN offers certain unique
capabilities to recognize and stop DoS threats. These include
separating the control and data planes, centralizing control,
programmable networking, traffic analysis capabilities, etc.
Machine learning algorithms, entropy-based detection meth-
ods, and correction rate-based methods are a few available
detection methods [82].

1) Based on Entropy: It evaluates the unpredictability
of a particular attribute across a given time frame.
Higher values of entropy indicate a better probability
of spreading. Concentration in the distribution is repre-
sented by entropy with lower values.

2) Based on Correction Rate: The number of connec-
tions made and connection success rates are divided
into two categories.

3) Based on Machine Learning Algorithm: This is
widely utilized in traditional IDSs. It has been utilized
for DoS detection in SDN with notable success and
has been deemed successful in wired and wireless

networks.

Adversary Model: An adversary model could leverage
the reactive flow installation methodology of OpenFlow net-
works. The attacker randomly falsifies some of all sections of
every packet, making it difficult to match with any prevailing
flow rules in a switch. After it, SDN–aimed DDoS attack sent
by the attacker with massive table–miss traffic mixed with
regular traffic to its OpenFlow Switch. To process the request
of the table–miss packet, the victimized switch must buffer
it, and the packet will be sent with a message header, which
is depicted in Figure 17. Another worst-case scenario is the
OpenFlow Specifications v1.4. When the switch’s memory is
full, the packet in the message must contain the full packet. It
could be vulnerable and exploited when attacked by flooding
the network with fewer network resources.

Some common DDoS flooding attacks have been dis-
cussed below:

A. HTTP FLOOD ATTACK

The HTTP flood attack is a type of Denial-of-Service (DoS)
attack that exploits the HTTP protocol to send a large number
of HTTP GET requests to a server. This can result in the
server becoming overwhelmed with traffic and unable to
respond to legitimate requests [114].

Attack in SDN Scenario: In the context of an SDN
architecture, an attacker can execute the HTTP flood attack
by sending a high volume of HTTP GET requests to a specific
network device, such as an SDN controller or a switch. This
can cause the device to become overloaded with traffic and

VOLUME 4, 2016 21

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 17. SDN aimed DoS attacks in OpenFlow networks

FIGURE 18. HTTP flood attack (by exploiting HTTP GET Request)

unable to process incoming requests, leading to a slowdown
or even a complete shutdown of the device [115].

As shown in Figure 18, the HTTP flood attack works by
sending a large number of HTTP GET requests to the target
network device. These requests are typically generated using
automated tools or scripts, which can quickly generate a
massive volume of traffic. The attack’s goal is to consume
the resources of the target device, such as CPU, memory, or
network bandwidth, to cause it to become unresponsive.

Possible Mitigation Strategies: To mitigate the HTTP
flood attack in an SDN architecture, network administrators
can employ various techniques to control the traffic flow and
prevent the attacker from overwhelming the resources of the
target device. Some of the mitigation techniques include:

• Rate Limiting: Implementing rate limiting mechanisms
can help restrict the number of HTTP GET requests
per second sent to the target device. By limiting the
rate of incoming traffic, the target device can process
incoming requests more efficiently and prevent a single
traffic source from overwhelming the device.

• Access Control: Network administrators can ensure that
only authorized users and devices can access the target
device by implementing access control policies. This
can help to prevent attackers from sending traffic to the
device that could cause congestion and disrupt network
traffic.

• Firewalling: Deploying firewalls or other security tech-
nologies that can monitor network traffic and detect and
block malicious traffic that attempts to exploit the HTTP
protocol.

• Intrusion Detection and Prevention: Deploying intrusion
detection and prevention systems (IDS/IPS) that can
detect and prevent attacks targeting the HTTP protocol
can help to identify and block HTTP flood attacks in
real-time.

• Load Balancing: Load balancing can help to distribute
traffic across multiple devices and prevent a single de-
vice from becoming overwhelmed. This can help ensure
the network remains available and responsive, even un-
der heavy traffic conditions.

• Firmware and Software Updates: Regularly updating
the firmware and software used in the SDN infrastruc-
ture can help to ensure that known vulnerabilities and
exploits are addressed. This can help to prevent attack-
ers from exploiting weaknesses in the infrastructure to
launch the HTTP flood attack.

By implementing these best practices, network administra-
tors can help mitigate the HTTP flood attack risk and ensure
that the SDN infrastructure remains secure and available.

B. ICMP FLOOD ATTACK

An ICMP flood attack is a Denial-of-Service (DoS) attack
that targets the Internet Control Message Protocol (ICMP),
used for diagnostic and error reporting purposes in IP net-
works. In an ICMP flood attack, the attacker sends a large
volume of ICMP echo request packets to a target network
device, overwhelming the device with traffic and causing it
to become unresponsive [116].

Attack in SDN Scenario: In an SDN architecture, an
attacker could launch an ICMP flood attack against an SDN
switch or an SDN controller. The attacker could use a tool
to generate a high volume of ICMP echo request packets
and send them to the target device, causing it to become
overwhelmed with traffic and unable to process incoming
requests [117].

FIGURE 19. ICMP flood attack

22 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

As shown in Figure 19, the ICMP flood attack works by
sending a large volume of ICMP echo request packets to the
target device. These packets are sent to a specific IP address
or a range of IP addresses, and they may use spoofed or
legitimate source IP addresses to make it harder for network
administrators to identify the source of the attack. The at-
tack’s goal is to consume the resources of the target device,
such as CPU, memory, or network bandwidth, to cause it to
become unresponsive.

Possible Mitigation Strategies: To mitigate the ICMP
flood attack in an SDN architecture, network administrators
can use several techniques to control the traffic flow and
prevent the attacker from overwhelming the resources of the
target device. Some of the mitigation techniques include:

• Rate Limiting: Implementing rate limiting mechanisms
can help restrict the number of ICMP echo request
packets per second sent to the target device. By limiting
the rate of incoming traffic, the target device can process
incoming requests more efficiently and prevent a single
traffic source from overwhelming the device.

• Access Control: Network administrators can ensure that
only authorized users and devices can access the target
device by implementing access control policies. This
can help to prevent attackers from sending traffic to the
device that could cause congestion and disrupt network
traffic.

• Firewalling: Deploying firewalls or other security tech-
nologies that can monitor network traffic and detect and
block malicious traffic that attempts to exploit the ICMP
protocol.

• Intrusion Detection and Prevention: Deploying intrusion
detection and prevention systems (IDS/IPS) that can
detect and prevent attacks targeting the ICMP protocol
can help to identify and block ICMP flood attacks in
real-time.

• Load Balancing: Load balancing can help to distribute
traffic across multiple devices and prevent a single de-
vice from becoming overwhelmed. This can help ensure
the network remains available and responsive, even un-
der heavy traffic conditions.

• Firmware and Software Updates: Regularly updating
the firmware and software used in the SDN infrastruc-
ture can help to ensure that known vulnerabilities and
exploits are addressed. This can help to prevent attack-
ers from exploiting weaknesses in the infrastructure to
launch the ICMP flood attack.

By implementing these best practices, network adminis-
trators can help to mitigate the risk of the ICMP flood attack
and ensure that the SDN infrastructure remains secure and
available.

C. TCP SYN FLOOD ATTACK
A TCP SYN flood attack is a type of Denial-of-Service
(DoS) attack that targets the TCP protocol, which is used
for establishing and terminating network connections. In a
TCP SYN flood attack, the attacker sends a large volume of
TCP SYN requests to a target network device, overwhelming
the device with traffic and causing it to become unresponsive
[66].

Attack in SDN Scenario: In an SDN architecture, an
attacker could launch a TCP SYN flood attack against an
SDN switch or an SDN controller. The attacker could use a
tool to generate a high volume of TCP SYN requests and send
them to the target device, causing it to become overwhelmed
with traffic and unable to process incoming requests [75].

FIGURE 20. TCP SYN flood attack

As shown in Figure 20, the TCP SYN flood attack works
by sending a large volume of TCP SYN requests to the
target device. These requests are sent to a specific port on the
target device, and they may use spoofed or legitimate source
IP addresses to make it harder for network administrators
to identify the source of the attack. The attack’s goal is to
consume the resources of the target device, such as CPU,
memory, or network bandwidth, to cause it to become un-
responsive.

Possible Mitigation Strategies: To mitigate the TCP SYN
flood attack in an SDN architecture, network administrators
can use several techniques to control the traffic flow and
prevent the attacker from overwhelming the resources of the
target device. Some of the mitigation techniques include:

• Rate Limiting: Implementing rate limiting mechanisms
can help restrict the number of TCP SYN requests per
second sent to the target device. By limiting the rate of
incoming traffic, the target device can process incoming
requests more efficiently and prevent a single traffic
source from overwhelming the device.

• Access Control: Network administrators can ensure that
only authorized users and devices can access the target
device by implementing access control policies. This

VOLUME 4, 2016 23

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

can help to prevent attackers from sending traffic to the
device that could cause congestion and disrupt network
traffic.

• Firewalling: Deploying firewalls or other security tech-
nologies that can monitor network traffic and detect and
block malicious traffic that attempts to exploit the TCP
protocol.

• Intrusion Detection and Prevention: Deploying intrusion
detection and prevention systems (IDS/IPS) that can
detect and prevent attacks targeting the TCP protocol
can help to identify and block TCP SYN flood attacks
in real-time.

• Load Balancing: Load balancing can help to distribute
traffic across multiple devices and prevent a single de-
vice from becoming overwhelmed. This can help ensure
the network remains available and responsive, even un-
der heavy traffic conditions.

• TCP SYN Cookies: TCP SYN cookies can help to pre-
vent TCP SYN flood attacks by using a cryptographic
algorithm to generate a unique sequence number for
each TCP SYN request. This can help to ensure that
only legitimate connection requests are accepted and
prevent attackers from flooding the target device with
bogus connection requests [118].

By implementing these best practices, network adminis-
trators can help to mitigate the risk of the TCP SYN flood
attack and ensure that the SDN infrastructure remains secure
and available.

D. UDP FLOOD ATTACK

A UDP flood attack is a type of Denial-of-Service (DoS)
attack that targets the User Datagram Protocol (UDP), used
for communication between applications on the Internet. In a
UDP flood attack, the attacker sends a large volume of UDP
packets to a target network device, overwhelming the device
with traffic and causing it to become unresponsive [119].

Attack in SDN Scenario: In an SDN architecture, an
attacker could launch a UDP flood attack against an SDN
switch or an SDN controller. The attacker could use a tool to
generate a high volume of UDP packets and send them to the
target device, causing it to become overwhelmed with traffic
and unable to process incoming requests [120], [121].

As shown in Figure 21, the UDP flood attack works by
sending a large volume of UDP packets to the target device.
These packets may use spoofed or legitimate source IP ad-
dresses to make it harder for network administrators to iden-
tify the source of the attack. The attack’s goal is to consume
the resources of the target device, such as CPU, memory, or
network bandwidth, to cause it to become unresponsive.

Possible Mitigation Strategies: To mitigate the UDP
flood attack in an SDN architecture, network administrators
can use several techniques to control the traffic flow and

FIGURE 21. UDP flood attack

prevent the attacker from overwhelming the resources of the
target device. Some of the mitigation techniques include:

• Rate Limiting: Implementing rate limiting mechanisms
can help to restrict the number of UDP packets per
second that are sent to the target device. By limiting the
rate of incoming traffic, the target device can process
incoming requests more efficiently and prevent a single
traffic source from overwhelming the device.

• Access Control: Network administrators can ensure that
only authorized users and devices can access the target
device by implementing access control policies. This
can help to prevent attackers from sending traffic to the
device that could cause congestion and disrupt network
traffic.

• Firewalling: Deploying firewalls or other security tech-
nologies that can monitor network traffic and detect and
block malicious traffic that attempts to exploit the UDP
protocol.

• Intrusion Detection and Prevention: Deploying intrusion
detection and prevention systems (IDS/IPS) that can
detect and prevent attacks targeting the UDP protocol
can help to identify and block UDP flood attacks in real-
time.

• Load Balancing: Load balancing can help to distribute
traffic across multiple devices and prevent a single de-
vice from becoming overwhelmed. This can help ensure
the network remains available and responsive, even un-
der heavy traffic conditions.

• Packet Filtering: Packet filtering can filter out specific
types of traffic associated with UDP flood attacks, such
as packets with specific source IP addresses or destina-
tion ports.

By implementing these best practices, network adminis-
trators can help to mitigate the risk of the UDP flood attack
and ensure that the SDN infrastructure remains secure and
available.

24 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

E. VOIP FLOOD ATTACK

A VoIP (Voice over Internet Protocol) flood attack is a
type of Denial-of-Service (DoS) attack that targets the VoIP
network infrastructure. In a VoIP flood attack, the attacker
sends a high volume of VoIP traffic to the target network
device, overwhelming it with traffic and causing it to become
unresponsive [122].

Attack in SDN Scenario: In an SDN architecture, an
attacker could launch a VoIP flood attack against an SDN
switch or an SDN controller. The attacker could use a tool
to generate a large volume of VoIP traffic and send it to the
target device, causing it to become overwhelmed and unable
to process incoming requests [26].

FIGURE 22. VOIP flood attack

As shown in Figure 22, a VoIP flood attack works by
generating a high volume of VoIP packets and sending them
to the target device. The attacker can use different types
of VoIP protocols, such as Session Initiation Protocol (SIP)
[123], Real-time Transport Protocol (RTP) [124], and Real-
time Control Protocol (RTCP) [125] to flood the network.
The attack’s goal is to consume the resources of the target
device, such as CPU, memory, or network bandwidth, to
cause it to become unresponsive.

Possible Mitigation Strategies: To mitigate the VoIP
flood attack in an SDN architecture, network administrators
can use several techniques to control the flow of traffic and
prevent the attacker from overwhelming the resources of the
target device. Some of the mitigation techniques include:

• Rate Limiting: Implementing rate limiting mechanisms
can help to restrict the number of VoIP packets per
second that are sent to the target device. By limiting the
rate of incoming traffic, the target device can process
incoming requests more efficiently and prevent a single
traffic source from overwhelming the device.

• Access Control: Network administrators can ensure that
only authorized users and devices can access the target
device by implementing access control policies. This
can help to prevent attackers from sending traffic to the
device that could cause congestion and disrupt network
traffic.

• Firewalling: Deploying firewalls or other security tech-
nologies that can monitor network traffic and detect and
block malicious traffic that attempts to exploit the VoIP
protocol.

• Intrusion Detection and Prevention: Deploying intrusion
detection and prevention systems (IDS/IPS) that can
detect and prevent attacks targeting the VoIP protocol
can help to identify and block VoIP flood attacks in real-
time.

• Quality of Service (QoS): Implementing QoS can help
to prioritize VoIP traffic over other types of network
traffic. This can help to ensure that VoIP traffic receives
the necessary network resources to operate efficiently.

By implementing these best practices, network adminis-
trators can help to mitigate the risk of the VoIP flood attack
and ensure that the SDN infrastructure remains secure and
available.

The effects of a DoS attack on modified SDN layers or
mechanisms are briefly described below -

1) Application Layer: Installing a new application in an
SDN system is fairly simple due to the fundamentals
of centralized design. It is more vulnerable to security
concerns because of its centralized form, including
access control, policy violations, a conflict with flow
rules, etc. The application may transgress security-
related rules while retrieving network and packet-
related information from the controller. A malicious
application might install Unauthorized flow rules to
interfere with normal operation.

2) Data forwarding / Infrastructure Layer: The Open-
Flow switch is the first component a DoS/DDoS attack
affects. The header of an arriving packet is compared
to the flow rules kept in flow tables. The switch will
respond by the matched rule if a match is discovered.
The switch will then pass the packet to the controller
(as per the established policy) through the control
channel by the OpenFlow agent installed in the switch
if there is no match with the flow tables. The remaining
data portion of the packet stays kept in the OpenFlow
switch’s packet buffer region if the switch just forwards
the packet header. The OpenFlow switch has a finite
amount of processor and memory resources. If a host
connected to the switch repeatedly sends packets with
different source and destination addresses, the switch
will look up each packet it gets in the associated flow
table and, if it finds it there, forward it to the controller.
In this scenario, the controller will add a flow rule for
each packet to the flow table of the relevant switch,
which may result in flow table overflow. In addition,
resource limitations may cause the OpenFlow agent
to become overwhelmed. If the packet buffer fills up,
the entire packet will be forwarded to the controller;
however, if the OpenFlow agent is overloaded, it won’t

VOLUME 4, 2016 25

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

be able to send additional packets, and hence the packet
will be lost.

3) Flow Table: Any rule change from the controller is
dropped if the flow table to the switch is full since
there is no room for it. The switch won’t forward any
additional packets until free space in the flow table
becomes available. Any host connected to the impacted
switch cannot deliver the necessary level of service.
There may be packet loss from sources, and latency
will be considerable.

4) Control Layer (Controller): It includes the controller,
a crucial part of the SDN system. The controller is in
charge of giving the OpenFlow switches the relevant
data when they ask for it. The controller might be a
potential target for an attacker because it is the center
point of failure. One crucial feature offered by the SDN
controller is the installation of switches’ flow rules.
Sending many packet-in messages and requesting a
lot of flow rules can make a controller’s resources
dysfunctional. As a result, responding to inquiries takes
longer. A switch attack will only have a local impact,
whereas a successful DoS assault on the controller will
impact the entire infrastructure.

5) Control Channel: The control channel is the com-
munication channel between the controller and the
OpenFlow switch. There are two ways to do it: out-of-
band, where the link is made using a special physical
link with the controller, and in-band, where the link
is created utilizing the current data plane connections.
Due to a DoS attack, these links’ limited capacity could
be negatively impacted. Links in the in-band category
will be more impacted because the physical link is used
by regular traffic.

VII. RESEARCH GAPS
While finding the countermeasures for the attacks against the
control plane, we also got some of the following research
gaps or future research prospects.

A. ENTROPY METHOD
While entropy-based methods have shown promise in detect-
ing and defending against multiple attacks in SDN, several
research gaps and limitations must be addressed to enhance
their effectiveness. These gaps hinder the accuracy, scala-
bility, and reliability of current approaches. The following
issues have been identified:

1) False-positive rate increase: Existing entropy-based
methods experience an increase in the false-positive
rate when different attack traffic rates are considered
[126]. This indicates a pressing need to improve the
precision of detection mechanisms to avoid unneces-
sary alarms and enable efficient threat identification.

2) Low attack detection rate for low-rate attacks: De-
spite their effectiveness in detecting high-rate attacks,

entropy-based methods often exhibit a low detection
rate for low-rate attack traffic targeting multiple vic-
tims [126]. This limitation compromises the network’s
ability to identify and mitigate subtle and sophisticated
attacks, posing a significant security risk.

3) Delay in packet processing: The processing delay in
entropy-based methods can be detrimental to timely at-
tack detection and mitigation [126]. The time required
to analyze and respond to incoming packets introduces
a vulnerability window during which attacks can po-
tentially cause damage.

4) Fixed threshold reliance: Many entropy-based ap-
proaches rely on fixed thresholds to detect different
DDoS attack traffic rates targeting single or multi-
ple hosts [127]. This rigid threshold reliance makes
it challenging to effectively identify low-rate DDoS
attacks with a high detection rate and low false-positive
rate, demanding more flexible and adaptive detection
mechanisms.

5) Single point of controller failure: The centralized
controller in SDN architectures presents a single fail-
ure point, impacting entropy-based methods’ resilience
and reliability [128]. A successful attack on the con-
troller can paralyze the entire network, emphasizing
the importance of distributed and fault-tolerant archi-
tectures.

6) High controller performance overhead: Deploying
entropy-based methods can impose a substantial per-
formance overhead on the SDN controller [128]. This
overhead may hinder the controller’s ability to handle
network traffic, compromising its responsiveness and
scalability efficiently.

7) Threshold selection impact: Selecting an appropriate
threshold is critical for the effectiveness of entropy-
based methods [128]. An incorrect threshold choice
can lead to compromised detection accuracy, either
missing attacks or generating a high number of false
positives.

Limitations in adaptive timeout mechanisms for entropy-
based methods:

1) Impact of probing accuracy: The accuracy of prob-
ing, involving Round-Trip Time (RTT) measurement
for testing packets, directly influences the effectiveness
of attack detection [129] [130]. Inaccurate probing can
hinder precisely identifying and responding to attacks,
necessitating improved probing techniques.

2) Consideration of general timeout assignments: Ex-
isting adaptive timeout mechanisms for flow rule state
transitions primarily rely on general timeout assign-
ments [129] [130]. This assumption overlooks the in-
fluence of packet inter-arrival times, a crucial feature
that impacts the accuracy and efficiency of adaptive
timeout mechanisms.

These identified research gaps and limitations highlight

26 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

the necessity for further investigation and advancements in
entropy-based methods in SDN. Addressing these challenges
makes enhancing attack detection mechanisms’ accuracy,
reliability, and efficiency possible, thereby fortifying SDN
networks against various threats.

B. STATISTICAL ANALYSIS-BASED ANOMALY
DETECTION METHOD
While the statistical analysis-based anomaly detection
method has gained popularity for detecting DDoS attacks
in SDN, several research gaps and limitations must be ad-
dressed to enhance its effectiveness in real-world scenarios.
The following issues have been identified:

1) Limited by a fixed threshold: The statistical analysis
method relies on a single fixed threshold for distin-
guishing regular and attack traffic [131]. However, this
fixed threshold approach can result in misjudgments
and false positives, as it may not account for variations
in attack patterns and network conditions.

2) Difficulty in threshold adjustment: Setting an opti-
mal threshold value for statistical analysis detection
methods poses challenges, as the appropriate thresh-
old may vary across different network environments
[131]. This adjustment process requires specialized
knowledge and expertise, limiting its applicability to
practitioners without extensive experience.

3) Lack of reliability in real-world networks: Relying
solely on statistical analysis for identifying abnormal
traffic may not provide reliable results in realistic net-
work environments [131]. The method’s reliance on
statistical patterns and fixed thresholds can lead to false
detection, particularly when faced with evolving attack
techniques and dynamic network conditions.

4) Need for robust and adaptable detection mecha-
nisms: Addressing the limitations of fixed thresholds
requires the development of more robust and adaptable
detection mechanisms within the statistical analysis-
based approach [131]. These mechanisms should dy-
namically adjust thresholds based on the specific net-
work environment, evolving attack techniques, and
patterns of abnormal traffic.

5) Consideration of multiple statistical properties:
While statistical analysis methods commonly focus
on a single or a few statistical properties, exploring
the effectiveness of considering multiple statistical
properties simultaneously is crucial [131]. Such an
approach could capture a broader range of deviations
from normal traffic behavior, enhancing the accuracy
and reliability of anomaly detection.

These identified research gaps highlight the necessity for
further investigation and advancements in statistical analysis-
based anomaly detection methods for DDoS attacks in SDN.
Addressing these challenges makes enhancing the reliability,
adaptability, and accuracy of attack detection mechanisms

possible, thereby fortifying SDN networks against various
threats.

C. RELAY LINK FORGED ATTACK

Relay link forged attacks pose challenges in real-world data
collection and model training environments. Simulated envi-
ronments also have limitations, such as overfitting risks and
the inability to capture real-world complexity and diversity
[132]. To address these gaps, the following strategies and
research areas should be explored:

1) Real-world data collection challenges: Incompletely
controlled real environments introduce the risk of ma-
licious samples in the collected data, which can impact
the effectiveness of attack detection model training
[132]. Research is needed to develop robust techniques
to mitigate the presence of malicious samples and
ensure the reliability of training datasets.

2) Overfitting risks in simulated environments: Simu-
lated environments used for dataset collection may not
fully generalize results in real-world scenarios, leading
to overfitting risks [132]. There is a need to explore
techniques to minimize overfitting, such as employing
diverse datasets from various simulated environments
and cross-validating the results.

3) Performance degradation in real-world deploy-
ments: Simulated datasets may not accurately capture
the complexity and diversity of real-world situations,
potentially resulting in performance degradation when
deploying detection models in practical SDN envi-
ronments [132]. Further research is needed to bridge
the gap between simulated and real-world datasets,
ensuring the models perform effectively and reliably
in real-world scenarios.

4) Generalizability of detection models: To enhance
the generalizability of attack detection models, using
multiple datasets collected from various simulation en-
vironments is recommended [132]. This approach en-
ables cross-validation and improves the model’s ability
to detect relay link forged attacks across different sce-
narios and settings.

5) Validation in actual SDN engineering environ-
ments: While experiments are conducted in simulated
environments, there is a need to verify and deploy
the developed approaches in real SDN engineering
environments [132]. This step is crucial to assess the
model’s performance, reliability, and suitability for
practical deployment against relay link forged attacks.

These research gaps highlight the importance of effec-
tively addressing challenges in data collection, model train-
ing, overfitting, performance degradation, generalizability,
and real-world deployment to detect and mitigate relay link
forged attacks in SDN.

VOLUME 4, 2016 27

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

D. TOPOLOGY FORGERY ATTACKS IN SDN
Topology forgery attacks in SDN encompass protocol-based
attacks that exploit vulnerabilities without direct access to the
control plane or knowledge of controller weaknesses. These
attacks pose security threats through link forgery attacks
(LFA) and host location hijacking attacks (HLHA). The
specific RLFA (Relay Link Forgery Attack) studied by Alhaj
et al. [31] falls under LFA.

1) Ineffectiveness of existing defense mechanisms: Ex-
isting defense mechanisms, such as Topo Guard pro-
posed in the article, aim to protect against LFA by
implementing port label policies [31]. However, a re-
search gap exists in these mechanisms’ effectiveness,
as adversaries can disrupt host labels and impersonate
switches using relay LLDP packets, rendering the de-
fense mechanisms inadequate to defend against RLFA
[31].

2) Mitigation of RLFA attacks: Research is needed to
develop effective mitigation techniques specifically tar-
geting RLFA attacks within the LFA category [31].
The goal is to enhance the ability to detect and prevent
the introduction of false links between switches in the
controller’s topology view, ensuring the integrity and
accuracy of the network’s perceived structure.

3) Detection and prevention of HLHA: HLHA, which
involves manipulating the position of hosts to mislead
network traffic, poses significant security risks. Further
research is required to develop robust detection and
prevention mechanisms to accurately identify and mit-
igate HLHA attacks within SDN environments.

4) Improving security in the control plane: Since topol-
ogy forgery attacks exploit vulnerabilities without ac-
cessing the control plane, it is necessary to enhance its
security. Research should focus on identifying and ad-
dressing vulnerabilities in the control plane to prevent
unauthorized manipulation of the network’s topology
and protect against topology forgery attacks.

These research gaps highlight the need for further in-
vestigation and advancements in detecting, preventing, and
mitigating topology forgery attacks, with a particular focus
on RLFA and HLHA. Addressing these gaps will contribute
to developing more secure and resilient SDN architectures.

E. SDN CONTROLLER PLACEMENT
SDN controller placement plays a crucial role in optimiz-
ing network performance and minimizing latency. However,
several research gaps and limitations can be identified in the
existing literature, as outlined below:

1) Lack of consideration for DDoS attacks: Previous
studies, such as Haque et al. [133], have focused on
optimizing controller placement based on latency and
response time but have not specifically addressed the
placement strategy under DDoS attacks. This research
gap highlights the need for investigations into the
impact of DDoS attacks on controller placement and

the development of robust placement strategies that
account for attack scenarios.

2) Limited exploration of DDoS attack defense mech-
anisms: While Haque et al. [133] proposed a DDoS
blocking system using the OpenFlow interface, a re-
search gap exists in exploring comprehensive defense
mechanisms against DDoS attacks in SDN. Future
research should aim to develop more sophisticated and
adaptive defense techniques that consider factors such
as attack detection, mitigation, and response to ensure
the resilience of SDN networks against DDoS attacks.

3) Evaluation of reliability and scalability: Haque et al.
[133] emphasized the need to enhance the reliability of
SDN controllers using heuristic algorithms. However,
there is a research gap in evaluating the scalability and
effectiveness of these algorithms in large-scale SDN
deployments. Further research is required to assess
the performance and efficiency of controller placement
strategies under various network sizes and traffic loads.

4) Bridging the gap between theory and practice: Al-
though Haque et al. [133] proposed an enhanced model
for SDN controller placement, validating and deploy-
ing these approaches in real-world SDN environments
is necessary. Practical deployment considerations, such
as compatibility with existing network infrastructures
and integration challenges, must be addressed to bridge
the gap between theoretical advancements and their
implementation in production networks.

5) Comprehensive understanding of DDoS attack
characteristics: While Haque et al. [133] discussed
DDoS attack trends and characteristics in cloud com-
puting environments, there is a research gap in under-
standing evolving DDoS attack techniques and their
implications for SDN. Future research should focus
on identifying emerging attack vectors, their impact
on SDN networks, and developing countermeasures to
mitigate their effects.

These research gaps highlight the necessity for further
investigation and advancements in SDN controller place-
ment, specifically addressing the challenges posed by DDoS
attacks, evaluating reliability and scalability, bridging the
theory-practice gap, and gaining a comprehensive under-
standing of DDoS attack characteristics.

F. OPTIMAL SDN DEPLOYMENT
Optimal SDN deployment involves selecting suitable con-
troller platforms and assessing the performance of SDN
OpenFlow controllers. However, several research gaps and
limitations can be identified in the existing literature, as
outlined below:

1) Lack of comprehensive assessment criteria: Existing
research, including the work by Badotra et al. [134],
has surveyed and examined performance assessment
criteria for OpenFlow controllers in SDNs. However,
there is a research gap in developing comprehensive

28 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

and standardized assessment criteria that consider di-
verse network conditions, parameters, metrics, and
scaling of network load resources. Future research
should focus on defining a comprehensive set of cri-
teria to evaluate SDN controllers’ performance effec-
tively.

2) Limited analysis of multiple controller scenarios:
While Badotra et al. [134] explored performance anal-
ysis of OpenFlow-based SDN controllers conducted by
different scholars and in groups of two or more con-
trollers, there is a research gap in analyzing larger-scale
scenarios with multiple controllers. Further research
is needed to assess the performance and scalability
of SDN deployments that involve multiple controllers
under various network conditions and load scenarios.

3) Understanding the impact of network topology de-
sign: The varying network topology design is an es-
sential aspect of SDN deployment. However, there
is a research gap in understanding the influence of
different network topologies on the performance of
SDN controllers. Future research should investigate
the relationship between network topology design and
controller performance to optimize SDN deployments
for various network configurations.

4) Standardization of performance evaluation: SDN
controllers need standardization in performance eval-
uation methodologies to enable meaningful compar-
isons across different studies. Currently, there is a
lack of consensus on evaluation techniques, metrics,
and experimental setups. Addressing this research gap
would facilitate more reliable and consistent perfor-
mance evaluations of SDN controllers.

These research gaps highlight the need for further in-
vestigation and advancements in optimal SDN deployment,
including developing comprehensive assessment criteria, an-
alyzing multiple controller scenarios, understanding the im-
pact of network topology design, and standardization of
performance evaluation methodologies.

G. SDN-ESRC
Software-Defined Networking Endogenously Secure Re-
silient Control (SDN-ESRC) is proposed by Ren et al. [135]
as a resilient and endogenously secure control plane for SDN.
While the concept shows promise, there are research gaps and
limitations in its implementation, as outlined below:

1) Handling multiple heterogeneous controllers: SDN-
ESRC utilizes a variety of heterogeneous controllers,
such as RYU, Open Daylight, and ONOS, to build
the control plane. However, a research gap exists in
effectively managing and coordinating the interactions
between these controllers. Further research is needed
to explore efficient strategies for handling multiple
controllers and ensuring seamless communication and
cooperation among them.

2) Impact on network update time: Using multiple con-
trollers in SDN-ESRC may increase the time required
to bring the network up to date. This can potentially
impact network responsiveness and agility, particularly
in dynamic environments where rapid network updates
are necessary. Future research should focus on min-
imizing the update time and optimizing the synchro-
nization process when employing multiple controllers.

3) Achieving a high degree of controlled security:
SDN-ESRC aims to provide endogenous security for
the SDN control plane. However, a research gap exists
in guaranteeing a very high level of controlled security
when employing a range of heterogeneous controllers.
Further research is needed to develop comprehensive
security mechanisms and coordination strategies to
ensure robust security across all controller instances.

4) Coordination challenges and complexity: Managing
multiple heterogeneous controllers introduces coordi-
nation challenges and complexity in the control plane.
Research is required to explore efficient mechanisms
for dynamically and adaptively selecting controller
instances, identifying and repairing control message
errors, and maintaining overall control plane integrity.
Addressing these challenges will enhance the reliabil-
ity and effectiveness of SDN-ESRC.

These research gaps highlight the need for further in-
vestigation and advancements in implementing SDN-ESRC,
particularly in managing multiple heterogeneous controllers,
minimizing network update time, achieving a high level of
controlled security, and addressing coordination challenges
and complexity.

H. FLOW-TABLE FLOODING
Flow-table flooding attacks pose significant challenges to
SDN networks [31]. Understanding and mitigating these
attacks require further research, as outlined below:

1) Impact on controller performance: Flow-table flood-
ing attacks overwhelm the flow table with a large
volume of packets, which can significantly impact the
performance of the SDN controller. Research is needed
to understand the specific performance bottlenecks
caused by flow-table flooding and develop efficient
mitigation techniques to alleviate the strain on the
controller’s processing capabilities.

2) Flow table management and scalability: Flow tables
in SDN networks have limited capacity, making them
susceptible to overflow during flow-table flooding at-
tacks. Addressing this research gap involves exploring
approaches to improve flow table management and
scalability, allowing the network to handle a larger
volume of flows while maintaining efficient packet
processing.

3) Detection and mitigation strategies: Detecting flow-
table flooding attacks in real-time is crucial for timely

VOLUME 4, 2016 29

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

mitigation. Research is needed to develop effective de-
tection algorithms that can identify flow-table flooding
attacks accurately and promptly. Additionally, mitiga-
tion strategies should be explored to dynamically adapt
the flow table and prioritize critical flows during an
attack, ensuring the controller’s performance is not
severely impacted.

4) Optimal flow table size determination: Determining
the optimal size of the flow table is essential to bal-
ance the network’s performance and security. Research
should focus on identifying the factors that influence
the appropriate size of the flow table, such as network
size, traffic patterns, and application requirements.
This will help design SDN architectures with appro-
priately sized flow tables that can withstand flow-table
flooding attacks without compromising performance.

These research gaps highlight the need for further in-
vestigation and advancements in understanding flow-table
flooding attacks, improving flow-table management and scal-
ability, developing efficient detection and mitigation strate-
gies, and determining optimal flow-table sizes to enhance the
resilience and performance of SDN networks.

VIII. FUTURE WORK
In order to address the evolving landscape of SDN security,
our research aims to continually advance the field by identi-
fying emerging threats and proposing effective countermea-
sures. The following outlines our planned future work, which
focuses on enhancing threat detection, developing dynamic
defense strategies, and leveraging advanced techniques to
strengthen SDN security.

Some points describing the key areas of focus have been
described below:

1) Comprehensive threat identification: We will ex-
pand our research to encompass a broader range of
threats and vulnerabilities specific to SDN environ-
ments. This includes analyzing emerging attack vectors
and understanding their potential impact on network
security.

2) Development of countermeasures and algorithms:
Our future work will involve the development of in-
novative countermeasures and algorithms to mitigate
identified threats. We will explore novel approaches
that enhance the resilience and security of SDN con-
trollers and networks.

3) Integration of deep learning and machine learning:
We plan to integrate deep learning and machine learn-
ing techniques into our security framework to improve
threat detection and response. This includes exploring
simulation-based or dataset-based training to enhance
real-time attack detection and automate adaptive net-
work rule adjustments.

4) Dynamic network rule updates: We recognize the
importance of adapting network rules in response to

detected threats. Our future work will focus on devel-
oping strategies to dynamically update network rules
based on real-time threat intelligence, ensuring effec-
tive mitigation and minimizing the impact of attacks.

5) Research validation and refinement: Thorough re-
search and validation will be conducted before imple-
menting our proposed approaches. We will carefully
select appropriate algorithms and datasets to emulate
various attack scenarios and validate the effectiveness
of our defense strategies.

6) Continuous research updates: As we progress, we
will continuously update our research findings to re-
flect the latest findings and advancements in SDN
security. This ensures that our work remains relevant
and provides valuable insights for the broader research
community.

These future research directions underline our commit-
ment to advancing SDN security by addressing emerging
threats, developing effective countermeasures, leveraging ad-
vanced techniques, and continuously updating our research to
reflect the latest developments in the field.

IX. CONCLUSION
This research paper has delved into the realm of Software-
Defined Networking (SDN) security, with a specific focus
on the control plane. Throughout our investigation, we have
made some contributions that enhance the understanding of
SDN security and provide practical guidance for researchers
and practitioners in the field.

Firstly, we have established a comprehensive attack clas-
sification and taxonomy, which organizes the various attacks
targeting the SDN control plane based on their specific attack
surfaces. This structured classification offers a deeper under-
standing of SDN environments’ attack vectors, facilitating
more effective security measures.

Moreover, we have presented a unique taxonomical rep-
resentation of the identified attacks, offering a systematic
framework for analyzing and comprehending their char-
acteristics. This taxonomical approach enables researchers
and practitioners to gain a clear and organized view of
the attacks, allowing for a better understanding of the re-
lationships between different attack types. Additionally, we
have proposed countermeasure taxonomies aligned with the
attack taxonomy. These countermeasures provide practical
guidance for implementing effective security measures in
SDN environments. By aligning the countermeasures with
the corresponding attack categories, we offer a targeted and
proactive approach to mitigating or preventing these attacks.

Lastly, our research paper conducts a thorough research
gap analysis, identifying limitations and research needs in
SDN security. By highlighting these gaps, we provide valu-
able insights for future researchers, guiding them toward
potential research directions and enabling them to address the
current shortcomings in the field.

30 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Overall, the contributions made in this research paper sig-
nificantly enhance the understanding of attacks against SDN
control planes. The classification and taxonomy of attacks,
taxonomical representation, countermeasure taxonomies, and
research gap analysis collectively contribute to the body
of knowledge on SDN security. This research serves as a
foundation for future research and development in the field,
enabling the implementation of robust security measures and
the advancement of SDN technology.

As the field of SDN continues to evolve, researchers
and practitioners must remain vigilant and proactive in ad-
dressing security challenges. By leveraging the insights and
recommendations provided in this paper, stakeholders can
fortify their SDN deployments, ensuring their network infras-
tructure’s integrity, availability, and confidentiality.

REFERENCES
[1] Lily Yang, Ram Dantu, Terry Anderson, and Ram Gopal. Forwarding and

control element separation (forces) framework (no. rfc3746). Technical
report, 2004.

[2] TV Lakshman, T Nandagopal, Ramachandran Ramjee, K Sabnani, and
T Woo. The softrouter architecture. In Proc. ACM SIGCOMM Workshop
on Hot Topics in Networking, volume 2004, 2004.

[3] J Salim, H Khosravi, Andi Kleen, and Alexey Kuznetsov. Linux netlink
as an ip services protocol (no. rfc3549). Technical report, 2003.

[4] Martin Casado, Michael J Freedman, Justin Pettit, Jianying Luo, Nick
McKeown, and Scott Shenker. Ethane: Taking control of the enterprise.
ACM SIGCOMM computer communication review, 37(4):1–12, 2007.

[5] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: enabling innovation in campus networks. ACM SIGCOMM
computer communication review, 38(2):69–74, 2008.

[6] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martín Casado,
Nick McKeown, and Scott Shenker. Nox: towards an operating sys-
tem for networks. ACM SIGCOMM computer communication review,
38(3):105–110, 2008.

[7] ONF. Software-Defined Networking (SDN) Definition.
[8] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to sdn:

an intellectual history of programmable networks. ACM SIGCOMM
Computer Communication Review, 44(2):87–98, 2014.

[9] Danda B Rawat and Swetha R Reddy. Software defined networking archi-
tecture, security and energy efficiency: A survey. IEEE Communications
Surveys & Tutorials, 19(1):325–346, 2016.

[10] Andreas Voellmy, Hyojoon Kim, and Nick Feamster. Procera: A lan-
guage for high-level reactive network control. In Proceedings of the first
workshop on Hot topics in software defined networks, pages 43–48, 2012.

[11] Rob Enns, Martin Bjorklund, Juergen Schoenwaelder, and Andy Bier-
man. Network configuration protocol (netconf) (rfc6241). Technical
report, 2011.

[12] AbdelRahman Abdou, Paul C Van Oorschot, and Tao Wan. Comparative
analysis of control plane security of sdn and conventional networks. IEEE
Communications Surveys & Tutorials, 20(4):3542–3559, 2018.

[13] Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong, Mabry
Tyson, and Guofei Gu. A security enforcement kernel for openflow
networks. In Proceedings of the first workshop on Hot topics in software
defined networks, pages 121–126, 2012.

[14] Kapil Dhamecha and Bhushan Trivedi. Sdn issues-a survey. International
Journal of Computer Applications, 73(18), 2013.

[15] Ben Pfaff, Justin Pettit, Keith Amidon, Martin Casado, Teemu Koponen,
and Scott Shenker. Extending networking into the virtualization layer. In
Hotnets, 2009.

[16] Directory. Indigo Virtual Switch (IVS), sdxcentral, 2023.
[17] Pica8. PicOS: Delivering networking freedom, Pica8, 2023.
[18] Andreas Voellmy and Paul Hudak. Nettle: Taking the sting out of

programming network routers. In International Symposium on Practical
Aspects of Declarative Languages, pages 235–249. Springer, 2011.

[19] Yiannis Yiakoumis, Julius Schulz-Zander, and Jiang Zhu. Pantou :
OpenFlow 1.0 for OpenWRT, 2011.

[20] Lin-du Aaronshang, chunyiliao. Pica8 Xorplus, 2016.
[21] Fei Hu, Qi Hao, and Ke Bao. A survey on software-defined network

and openflow: From concept to implementation. IEEE Communications
Surveys & Tutorials, 16(4):2181–2206, 2014.

[22] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Chris-
tian Esteve Rothenberg, Siamak Azodolmolky, and Steve Uhlig.
Software-defined networking: A comprehensive survey. Proceedings of
the IEEE, 103(1):14–76, 2014.

[23] William Stallings. Software-defined networks and openflow. The internet
protocol Journal, 16(1):2–14, 2013.

[24] Adrian Lara, Anisha Kolasani, and Byrav Ramamurthy. Network in-
novation using openflow: A survey. IEEE communications surveys &
tutorials, 16(1):493–512, 2013.

[25] Bruno Astuto A Nunes, Marc Mendonca, Xuan-Nam Nguyen, Katia
Obraczka, and Thierry Turletti. A survey of software-defined networking:
Past, present, and future of programmable networks. IEEE Communica-
tions surveys & tutorials, 16(3):1617–1634, 2014.

[26] Shi Dong, Khushnood Abbas, and Raj Jain. A survey on distributed de-
nial of service (ddos) attacks in sdn and cloud computing environments.
IEEE Access, 7:80813–80828, 2019.

[27] Jagdeep Singh and Sunny Behal. Detection and mitigation of ddos
attacks in sdn: A comprehensive review, research challenges and future
directions. Computer Science Review, 37:100279, 2020.

[28] Muhammad Arif, Guojun Wang, Oana Geman, Valentina Emilia Balas,
Peng Tao, Adrian Brezulianu, and Jianer Chen. Sdn-based vanets, secu-
rity attacks, applications, and challenges. Applied Sciences, 10(9):3217,
2020.

[29] Juan Camilo Correa Chica, Jenny Cuatindioy Imbachi, and Juan Fe-
lipe Botero Vega. Security in sdn: A comprehensive survey. Journal
of Network and Computer Applications, 159:102595, 2020.

[30] Felipe S Dantas Silva, Esau Silva, Emidio P Neto, Marcilio Lemos,
Augusto J Venancio Neto, and Flavio Esposito. A taxonomy of ddos at-
tack mitigation approaches featured by sdn technologies in iot scenarios.
Sensors, 20(11):3078, 2020.

[31] Ali Nadim Alhaj and Nitul Dutta. Analysis of security attacks in
sdn network: A comprehensive survey. In Hiren Kumar Deva Sarma,
Valentina Emilia Balas, Bhaskar Bhuyan, and Nitul Dutta, editors, Con-
temporary Issues in Communication, Cloud and Big Data Analytics,
pages 27–37, Singapore, 2022. Springer Singapore.

[32] V Thirupathi, CH Sandeep, Naresh Kumar, and P Pramod Kumar. A com-
prehensive review on sdn architecture, applications and major benifits
of sdn. International Journal of Advanced Science and Technology,
28(20):607–614, 2019.

[33] Ying-Dar Lin, Po-Ching Lin, Chih-Hung Yeh, Yao-Chun Wang, and
Yuan-Cheng Lai. An extended sdn architecture for network function
virtualization with a case study on intrusion prevention. IEEE Network,
29(3):48–53, 2015.

[34] Christopher Janz, Lyndon Ong, Karthik Sethuraman, and Vishnu Shukla.
Emerging transport sdn architecture and use cases. IEEE Communica-
tions Magazine, 54(10):116–121, 2016.

[35] Karthik Raghunath and Prabhakar Krishnan. Towards a secure sdn
architecture. In 2018 9th International Conference on Computing,
Communication and Networking Technologies (ICCCNT), pages 1–7.
IEEE, 2018.

[36] Krzysztof Cabaj, Jacek Wytrebowicz, Slawomir Kuklinski, Pawel
Radziszewski, and Khoa Truong Dinh. Sdn architecture impact on
network security. In FedCSIS (Position Papers), pages 143–148, 2014.

[37] Seyed Mohammad Mousavi and Marc St-Hilaire. Early detection of
ddos attacks against sdn controllers. In 2015 international conference
on computing, networking and communications (ICNC), pages 77–81.
IEEE, 2015.

[38] Kevin Benton, L Jean Camp, and Chris Small. Openflow vulnerability
assessment. In Proceedings of the second ACM SIGCOMM workshop
on Hot topics in software defined networking, pages 151–152, 2013.

[39] Deyun Gao, Zehui Liu, Ying Liu, Chuan Heng Foh, Ting Zhi, and Han-
Chieh Chao. Defending against packet-in messages flooding attack under
sdn context. Soft Computing, 22:6797–6809, 2018.

[40] Longyan Ran, Yunhe Cui, Chun Guo, Qing Qian, Guowei Shen, and
Huanlai Xing. Defending saturation attacks on sdn controller: A
confusable instance analysis-based algorithm. Computer Networks,
213:109098, 2022.

[41] Samer Khamaiseh, Edoardo Serra, Zhiyuan Li, and Dianxiang Xu. De-
tecting saturation attacks in sdn via machine learning. In 2019 4th

VOLUME 4, 2016 31

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

International Conference on Computing, Communications and Security
(ICCCS), pages 1–8. IEEE, 2019.

[42] Xuanbo Huang, Kaiping Xue, Yitao Xing, Dingwen Hu, Ruidong Li, and
Qibin Sun. Fsdm: Fast recovery saturation attack detection and mitigation
framework in sdn. In 2020 IEEE 17th International Conference on
Mobile Ad Hoc and Sensor Systems (MASS), pages 329–337. IEEE,
2020.

[43] Qi Li, Jiahao Cao, Mingwei Xu, and Kun Sun. Flow Table Overflow
Attacks, pages 1–3. Springer International Publishing, Cham, 2019.

[44] Aditya Patwardhan, Deepthi Jayarama, Nitish Limaye, Shivaji Vidhale,
Zarna Parekh, and Khaled Harfoush. Sdn security: Information disclosure
and flow table overflow attacks. In 2019 IEEE Global Communications
Conference (GLOBECOM), pages 1–6. IEEE, 2019.

[45] Seungwon Shin, Yongjoo Song, Taekyung Lee, Sangho Lee, Jae-
woong Chung, Phillip Porras, Vinod Yegneswaran, Jiseong Noh, and
Brent Byunghoon Kang. Rosemary: A robust, secure, and high-
performance network operating system. In Proceedings of the 2014 ACM
SIGSAC conference on computer and communications security, pages
78–89, 2014.

[46] Christian Röpke and Thorsten Holz. Retaining control over sdn network
services. In 2015 International Conference and Workshops on Networked
Systems (NetSys), pages 1–5. IEEE, 2015.

[47] Christian Röpke and Thorsten Holz. On network operating system
security [rh]. International Journal of Network Management, 26(1):6–
24, 2016.

[48] Christian Röpke. Sdn malware: problems of current protection systems
and potential countermeasures. Sicherheit 2016-Sicherheit, Schutz und
Zuverlässigkeit, 2016.

[49] Scott Hogg. SDN Security Attack Vectors and SDN Hardening, 2014.
[50] Yash Sinha, K Haribabu, et al. A survey: Hybrid sdn. Journal of Network

and Computer Applications, 100:35–55, 2017.
[51] Leonard Richardson and Sam Ruby. RESTful web services. " O’Reilly

Media, Inc.", 2008.
[52] Balakrishnan Chandrasekaran and Theophilus Benson. Tolerating sdn

application failures with legosdn. In Proceedings of the 13th ACM
workshop on hot topics in networks, pages 1–7, 2014.

[53] Vinod Yegneswaran Phillip Porras, Steven Cheung, Martin Fong, Keith
Skinner. Securing the Software-Defined Network Control Layer. In
NDSS Symposium 2015, San Diego, California, 2015. NDSS Sympo-
sium.

[54] Dennis Tatang, Florian Quinkert, Joel Frank, Christian Röpke, and
Thorsten Holz. Sdn-guard: Protecting sdn controllers against sdn rootk-
its. In 2017 IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN), pages 297–302. IEEE, 2017.

[55] Paul Congdon. Link layer discovery protocol and mib. V1. 0 May,
20(2002):1–20, 2002.

[56] Sonali Sen Baidya and Rattikorn Hewett. Link discovery attacks in
software-defined networks: Topology poisoning and impact analysis. J.
Commun., 15(8):596–606, 2020.

[57] Tri-Hai Nguyen and Myungsik Yoo. Analysis of link discovery service
attacks in sdn controller. In 2017 International Conference on Informa-
tion Networking (ICOIN), pages 259–261. IEEE, 2017.

[58] Sungmin Hong, Lei Xu, Haopei Wang, and Guofei Gu. Poisoning
network visibility in software-defined networks: New attacks and coun-
termeasures. In Ndss, volume 15, pages 8–11, 2015.

[59] A OpenDaylight. Opendaylight, a linux foundation collaborative project.
2013.

[60] Christian Röpke and Thorsten Holz. Sdn rootkits: Subverting network
operating systems of software-defined networks. In Herbert Bos, Fabian
Monrose, and Gregory Blanc, editors, Research in Attacks, Intrusions,
and Defenses, pages 339–356, Cham, 2015. Springer International Pub-
lishing.

[61] Jeffrey C Mogul and Paul Congdon. Hey, you darned counters! get off
my asic! In Proceedings of the first workshop on Hot topics in software
defined networks, pages 25–30, 2012.

[62] Christian Röpke. Sdn ro2tkits: A case study of subverting a closed source
sdn controller. SICHERHEIT 2018, 2018.

[63] Ahmad Aseeri, Nuttapong Netjinda, and Rattikorn Hewett. Alleviating
eavesdropping attacks in software-defined networking data plane. In
Proceedings of the 12th Annual Conference on Cyber and Information
Security Research, pages 1–8, 2017.

[64] Changhoon Yoon, Seungsoo Lee, Heedo Kang, Taejune Park, Seung-
won Shin, Vinod Yegneswaran, Phillip Porras, and Guofei Gu. Flow
wars: Systemizing the attack surface and defenses in software-defined

networks. IEEE/ACM Transactions on Networking, 25(6):3514–3530,
2017.

[65] Neil Long and Rob Thomas. Trends in denial of service attack technol-
ogy. CERT Coordination Center, 648(651):569, 2001.

[66] Wesley Eddy. Tcp syn flooding attacks and common mitigations. Tech-
nical report, 2007.

[67] Ahmed M Abdelmoniem and Brahim Bensaou. The switch from conven-
tional to sdn: The case for transport-agnostic congestion control. arXiv
preprint arXiv:2209.04729, 2022.

[68] Seonhyeok Kim, Jaehyeok Son, Ashis Talukder, and Choong Seon Hong.
Congestion prevention mechanism based on q-leaning for efficient rout-
ing in sdn. In 2016 International Conference on Information Networking
(ICOIN), pages 124–128. IEEE, 2016.

[69] M Saravanan, Arud Selvan Sundaramurthy, Divya Sundar, and
K Hiba Sadia. Extending sdn framework for communication networks. In
Internet of Things. IoT Infrastructures: Second International Summit, IoT
360° 2015, Rome, Italy, October 27-29, 2015, Revised Selected Papers,
Part II, pages 539–550. Springer, 2016.

[70] Ricardo Macedo, Rafael de Castro, Aldri Santos, Yacine Ghamri-
Doudane, and Michele Nogueira. Self-organized sdn controller cluster
conformations against ddos attacks effects. In 2016 ieee global commu-
nications conference (globecom), pages 1–6. IEEE, 2016.

[71] Zhaogang Shu, Jiafu Wan, Di Li, Jiaxiang Lin, Athanasios V Vasilakos,
and Muhammad Imran. Security in software-defined networking: Threats
and countermeasures. Mobile Networks and Applications, 21:764–776,
2016.

[72] R Shashidhara, Nisha Ahuja, M Lajuvanthi, S Akhila, Ashok Kumar
Das, and Joel JPC Rodrigues. Sdn-chain: Privacy-preserving protocol
for software defined networks using blockchain. Security and Privacy,
4(6):e178, 2021.

[73] Asad Irfan, Nayab Taj, and Sahibzada Ali Mahmud. A novel secure
sdn/lte based architecture for smart grid security. In 2015 IEEE Inter-
national Conference on Computer and Information Technology; Ubiq-
uitous Computing and Communications; Dependable, Autonomic and
Secure Computing; Pervasive Intelligence and Computing, pages 762–
769. IEEE, 2015.

[74] Neelam Dayal and Shashank Srivastava. Analyzing behavior of ddos at-
tacks to identify ddos detection features in sdn. In 2017 9th International
Conference on Communication Systems and Networks (COMSNETS),
pages 274–281. IEEE, 2017.

[75] Prashant Kumar, Meenakshi Tripathi, Ajay Nehra, Mauro Conti, and
Chhagan Lal. Safety: Early detection and mitigation of tcp syn flood
utilizing entropy in sdn. IEEE Transactions on Network and Service
Management, 15(4):1545–1559, 2018.

[76] Justin Clarke-Salt. SQL injection attacks and defense. Elsevier, 2009.
[77] Germán E Rodríguez, Jenny G Torres, Pamela Flores, and Diego E

Benavides. Cross-site scripting (xss) attacks and mitigation: A survey.
Computer Networks, 166:106960, 2020.

[78] Shakila Zaman, M Shamim Kaiser, Risala Tasin Khan, and Mufti Mah-
mud. Towards sdn and blockchain based iot countermeasures: a survey.
In 2020 2nd International Conference on Sustainable Technologies for
Industry 4.0 (STI), pages 1–6. IEEE, 2020.

[79] Danai Chasaki and Christopher Mansour. Sdn security through system
call learning. In 2021 11th IFIP International Conference on New
Technologies, Mobility and Security (NTMS), pages 1–6, 2021.

[80] Takayuki Sasaki, Adrian Perrig, and Daniele E Asoni. Control-plane
isolation and recovery for a secure sdn architecture. In 2016 IEEE
NetSoft Conference and Workshops (NetSoft), pages 459–464. IEEE,
2016.

[81] Minh Hieu Nguyen Ba, Jacob Bennett, Michael Gallagher, and Suman
Bhunia. A case study of credential stuffing attack: Canva data breach. In
2021 International Conference on Computational Science and Computa-
tional Intelligence (CSCI), pages 735–740. IEEE, 2021.

[82] Qiao Yan, F Richard Yu, Qingxiang Gong, and Jianqiang Li. Software-
defined networking (sdn) and distributed denial of service (ddos) attacks
in cloud computing environments: A survey, some research issues, and
challenges. IEEE communications surveys & tutorials, 18(1):602–622,
2015.

[83] Bijeeta Pal, Tal Daniel, Rahul Chatterjee, and Thomas Ristenpart. Be-
yond credential stuffing: Password similarity models using neural net-
works. In 2019 IEEE Symposium on Security and Privacy (SP), pages
417–434. IEEE, 2019.

[84] Zhendong Su and Gary Wassermann. The essence of command injection
attacks in web applications. Acm Sigplan Notices, 41(1):372–382, 2006.

32 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[85] Anastasios Stasinopoulos, Christoforos Ntantogian, and Christos Xe-
nakis. Commix: Detecting and exploiting command injection flaws.
Dept. Digit. Syst., Univ. Piraeus, Piraeus, Greece, White Paper, 2015.

[86] Shuhua Deng, Xing Gao, Zebin Lu, and Xieping Gao. Packet injection
attack and its defense in software-defined networks. IEEE Transactions
on Information Forensics and Security, 13(3):695–705, 2017.

[87] Fahad M Alotaibi and Vassilios G Vassilakis. Toward an sdn-based
web application firewall: Defending against sql injection attacks. Future
Internet, 15(5):170, 2023.

[88] Neminath Hubballi, Yogendra Singh, and Dipin Garg. Xssmitigate: Deep
packet inspection based xss attack quarantine in software defined net-
works. In 2023 IEEE International Conference on Consumer Electronics
(ICCE), pages 1–6. IEEE, 2023.

[89] Hsing-Chung Chen, Aristophane Nshimiyimana, Cahya Damarjati, and
Pi-Hsien Chang. Detection and prevention of cross-site scripting at-
tack with combined approaches. In 2021 International Conference on
Electronics, Information, and Communication (ICEIC), pages 1–4. IEEE,
2021.

[90] Dharmendra Choukse, Dimitris N Kanellopoulos, and Umesh Kumar
Singh. Developing secure web applications. International Journal of
Internet Technology and Secured Transactions, 4(2-3):221–236, 2012.

[91] Raghu Yeluri, Enrique Castro-Leon, Raghu Yeluri, and Enrique Castro-
Leon. Network security in the cloud. Building the Infrastructure for
Cloud Security: A Solutions view, pages 123–140, 2014.

[92] Jamie Twycross and Matthew M Williamson. Implementing and testing a
virus throttle. In 12th USENIX Security Symposium (USENIX Security
03), 2003.

[93] Jianfeng Xu, Liming Wang, and Zhen Xu. An enhanced saturation attack
and its mitigation mechanism in software-defined networking. Computer
Networks, 169:107092, 2020.

[94] Haopei Wang, Lei Xu, and Guofei Gu. Floodguard: A dos attack
prevention extension in software-defined networks. In 2015 45th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works, pages 239–250. IEEE, 2015.

[95] Mikhail Belyaev and Svetlana Gaivoronski. Towards load balancing in
sdn-networks during ddos-attacks. In 2014 international science and
technology conference (modern networking technologies)(MoNeTeC),
pages 1–6. IEEE, 2014.

[96] Felix Klaedtke, Ghassan O Karame, Roberto Bifulco, and Heng Cui.
Access control for sdn controllers. In Proceedings of the third workshop
on Hot topics in software defined networking, pages 219–220, 2014.

[97] Yuchia Tseng, Montida Pattaranantakul, Ruan He, Zonghua Zhang, and
Farid Naït-Abdesselam. Controller dac: Securing sdn controller with
dynamic access control. In 2017 IEEE International Conference on
Communications (ICC), pages 1–6. IEEE, 2017.

[98] Sorin Buzura, Vlad Lazar, Bogdan Iancu, Adrian Peculea, and Vasile
Dadarlat. Using software-defined networking technology for delivering
software updates to wireless sensor networks. In 2021 20th RoEduNet
Conference: Networking in Education and Research (RoEduNet), pages
1–6. IEEE, 2021.

[99] Pang-Wei Tsai, Chun-Wei Tsai, Chia-Wei Hsu, and Chu-Sing Yang.
Network monitoring in software-defined networking: A review. IEEE
Systems Journal, 12(4):3958–3969, 2018.

[100] Vasily Pashkov, Alexander Shalimov, and Ruslan Smeliansky. Controller
failover for sdn enterprise networks. In 2014 international science
and technology conference (modern networking technologies)(monetec),
pages 1–6. IEEE, 2014.

[101] Neerja Mhaskar, Mohammed Alabbad, and Ridha Khedri. A formal
approach to network segmentation. Computers & Security, 103:102162,
2021.

[102] Nathan Kong. Design concept for a failover mechanism in distributed
sdn controllers. 2017.

[103] D Richard Kuhn, Edward J Coyne, Timothy R Weil, et al. Adding
attributes to role-based access control. Computer, 43(6):79–81, 2010.

[104] Harry Wolfson. Out-of-band flow control for reliable multicast. MIT
Lincoln Laboratory, 2000.

[105] Eric Rescorla. The transport layer security (tls) protocol version 1.3.
Technical report, 2018.

[106] Tatu Ylonen and Chris Lonvick. The secure shell (ssh) protocol architec-
ture. Technical report, 2006.

[107] Steve Vinoski. Advanced message queuing protocol. IEEE Internet
Computing, 10(6):87–89, 2006.

[108] Kevin Phemius, Mathieu Bouet, and Jérémie Leguay. Disco: Distributed
multi-domain sdn controllers. In 2014 IEEE network operations and
management symposium (NOMS), pages 1–4. IEEE, 2014.

[109] Syed Abdullah Shah, Jannet Faiz, Maham Farooq, Aamir Shafi, and
Syed Akbar Mehdi. An architectural evaluation of sdn controllers. In
2013 IEEE international conference on communications (ICC), pages
3504–3508. IEEE, 2013.

[110] Jiaqiang Liu, Yong Li, Huandong Wang, Depeng Jin, Li Su, Lieguang
Zeng, and Thanos Vasilakos. Leveraging software-defined networking
for security policy enforcement. Information Sciences, 327:288–299,
2016.

[111] Amin Tootoonchian and Yashar Ganjali. Hyperflow: A distributed control
plane for openflow. In Proceedings of the 2010 internet network manage-
ment conference on Research on enterprise networking, volume 3, pages
10–5555, 2010.

[112] Andreas Voellmy and Junchang Wang. Scalable software defined net-
work controllers. In Proceedings of the ACM SIGCOMM 2012 con-
ference on Applications, technologies, architectures, and protocols for
computer communication, pages 289–290, 2012.

[113] Heng Pan, Zhenyu Li, Penghao Zhang, Kave Salamatian, and Gaogang
Xie. Misconfiguration checking for sdn: Data structure, theory and
algorithms. In 2020 IEEE 28th International Conference on Network
Protocols (ICNP), pages 1–11. IEEE, 2020.

[114] Debasish Das, Utpal Sharma, and DK Bhattacharyya. Detection of
http flooding attacks in multiple scenarios. In Proceedings of the 2011
international conference on communication, computing & security, pages
517–522, 2011.

[115] Mauro Conti Reza Mohammadi, Chhagan Lal. Httpscout: A machine
learning based countermeasure for http flood attacks in sdn. International
Journal of Information Security, 22(2):367–379, 2023.

[116] Varun Chauhan and Pranav Saini. Icmp flood attacks: A vulnerability
analysis. In Cyber Security: Proceedings of CSI 2015, pages 261–268.
Springer, 2018.

[117] Misenga Mumpela Joëlle and Young-Hoon Park. Strategies for detecting
and mitigating ddos attacks in sdn: A survey. Journal of Intelligent &
Fuzzy Systems, 35(6):5913–5925, 2018.

[118] Bo Hang, Ruimin Hu, and Wei Shi. An enhanced syn cookie defence
method for tcp ddos attack. Journal of Networks, 6(8):1206, 2011.

[119] Anchit Bijalwan, Mohammad Wazid, Emmanuel S Pilli, and
Ramesh Chandra Joshi. Forensics of random-udp flooding attacks.
Journal of Networks, 10(5):287, 2015.

[120] Hung-Chuan Wei, Yung-Hao Tung, and Chia-Mu Yu. Counteracting
udp flooding attacks in sdn. In 2016 IEEE NetSoft Conference and
Workshops (NetSoft), pages 367–371. IEEE, 2016.

[121] Yung-Hao Tung, Hung-Chuan Wei, Yen-Wu Ti, Yao-Tung Tsou, Neetesh
Saxena, and Chia-Mu Yu. Counteracting udp flooding attacks in sdn.
Electronics, 9(8):1239, 2020.

[122] Jin Tang, Yu Cheng, and Yong Hao. Detection and prevention of sip
flooding attacks in voice over ip networks. In 2012 Proceedings IEEE
INFOCOM, pages 1161–1169. IEEE, 2012.

[123] Jonathan Rosenberg and Henning Schulzrinne. Session initiation proto-
col (sip): locating sip servers. Technical report, 2002.

[124] Henning Schulzrinne, Steven Casner, R Frederick, and Van Jacobson.
Rfc3550: Rtp: A transport protocol for real-time applications, 2003.

[125] John Lazzaro. Framing real-time transport protocol (rtp) and rtp control
protocol (rtcp) packets over connection-oriented transport. Technical
report, 2006.

[126] Mohammad Adnan Aladaileh, Mohammed Anbar, Ahmed J. Hintaw, Iz-
nan H. Hasbullah, Abdullah Ahmed Bahashwan, Taief Alaa Al-Amiedy,
and Dyala R. Ibrahim. Effectiveness of an entropy-based approach for
detecting low- and high-rate ddos attacks against the sdn controller:
Experimental analysis. Applied Sciences, 13(2), 2023.

[127] Mohammad Adnan Aladaileh, Mohammed Anbar, Ahmed J. Hintaw,
Iznan H. Hasbullah, Abdullah Ahmed Bahashwan, and Shadi Al-Sarawi.
Renyi joint entropy-based dynamic threshold approach to detect ddos
attacks against sdn controller with various traffic rates. Applied Sciences,
12(12), 2022.

[128] Tewelde Gebremedhin Gebremeskel, Ketema Adere Gemeda, Gopi Kr-
ishna T, and Janaki Ramulu Perumalla. Ddos attack detection and
classification using hybrid model for multi-controller sdn, 2022.

[129] Yi Shen, Chunming Wu, Dezhang Kong, and Qiumei Cheng. Flow table
saturation attack against dynamic timeout mechanisms in sdn. Applied
Sciences, 13(12), 2023.

VOLUME 4, 2016 33

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Zaheed et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[130] Ranyelson Neres Carvalho, Jacir Luiz Bordim, and Eduardo Adilio
Pelinson Alchieri. Entropy-based dos attack identification in sdn. In
2019 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pages 627–634, 2019.

[131] Jin Wang and Liping Wang. Sdn-defend: A lightweight online attack
detection and mitigation system for ddos attacks in sdn. Sensors, 22(21),
2022.

[132] Tianyi Zhang and Yong Wang. Rlfat: A transformer-based relay link
forged attack detection mechanism in sdn. Electronics, 12(10), 2023.

[133] Muhammad Reazul Haque, Saw Chin Tan, Zulfadzli Yusoff, Kashif
Nisar, Rizaludin Kaspin, Iram Haider, Sana Nisar, JPC Rodrigues,
Bhawani Shankar Chowdhry, Muhammad Aslam Uqaili, et al. Unprece-
dented smart algorithm for uninterrupted sdn services during ddos attack.
Computers, Materials & Continua, 70(1), 2022.

[134] Sumit Badotra, Sarvesh Tanwar, Salil Bharany, Ateeq Ur Rehman, El-
sayed Tag Eldin, Nivin A. Ghamry, and Muhammad Shafiq. A ddos
vulnerability analysis system against distributed sdn controllers in a cloud
computing environment. Electronics, 11(19), 2022.

[135] Quan Ren, Zehua Guo, Jiangxing Wu, Tao Hu, Lu Jie, Yuxiang Hu, and
Lei He. Sdn-esrc: A secure and resilient control plane for software-
defined networks. IEEE Transactions on Network and Service Manage-
ment, 19(3):2366–2381, 2022.

ZAHEED AHMED BHUIYAN has earned his
Master’s Degree in Computer Science and Engi-
neering (CSE) from United International Univer-
sity Bangladesh (UIU). Currently, he is working
as a Research Assistant under Prof. Dr Md. Mota-
harul Islam. His major is cybersecurity, and he is
interested in the Internet of Things (IoT), Cloud
Computing, Cloud Security, Networking, Soft-
ware Defined Networking, Healthcare Technolo-
gies, Green Computing, Artificial Intelligence,

Satellite Internet Communication, and Grid-level Energy Storage Systems.
He is particularly interested in the Fourth Industrial Revolution (4IR)
because of its fusion of AI, robotics, the IoT, and quantum computing
advances.

SALEKUL ISLAM (Senior Member, IEEE) re-
ceived his Ph.D. degree from the Computer Sci-
ence and Software Engineering Department, Con-
cordia University, in 2008. He is currently a Pro-
fessor and the Director of the Institutional Quality
Assurance Cell (IQAC) of United International
University, Bangladesh. Previously, he worked as
an FQRNT Postdoctoral Fellow at the Énergie,
Matériaux et Télécommunications (EMT) Cen-
tre, Institut National de la Recherche Scientifique

(INRS), Montréal, Canada. His research interests include future internet
architecture, blockchain, edge cloud, software-defined networks, multicast
security, security protocol validation, machine learning, and AI. He is
serving as an Associate Editor for the IEEE Access and Frontiers in High-
Performance Computing journals.

MD. MOTAHARUL ISLAM has been working
as a Professor and the director of the Master’s
Program, Dept. of Computer Science and Engi-
neering at United International University (UIU),
Dhaka, Bangladesh. Before joining UIU, Dr. Is-
lam served many other universities at home and
abroad, such as the Islamic University of Madinah,
KSA, the Islamic University of Technology, Brac
University and the University Grants Commission
of Bangladesh. He was awarded a Ph.D. in Com-

puter Engineering from Kyung Hee University, South Korea 2013. His
research interest includes the Smart Internet of Things, IP-based Wireless
Sensor Network (IP-WSN), WSN Virtualization, Cloud Computing, Green
Computing, etc. He has published around one hundred articles in the last ten
years.

A B M AHASAN ULLAH has earned his Mas-
ter’s Degree in Computer Science and Engi-
neering (CSE) from United International Univer-
sity Bangladesh (UIU). Currently, he is serving
as Senior Assistant Vice President, Infrastruc-
ture & Network, ICT Security & Risk Dept.,
ICT Division at LankaBangla Finance Limited,
Bangladesh. His major is cybersecurity, and he is
interested in the Internet of Things (IoT), Cloud
Computing, Cloud Security, Networking, Soft-

ware Defined Networking. He has a huge interest in the Fourth Industrial
Revolution (4IR) because of its fusion of AI, robotics, the IoT, and quantum
computing advances.

FARHA NAZ received her bachelor’s degree in
computer science and engineering (BSCSE) and
master’s degree in computer science and engineer-
ing (MSCSE) from United International Univer-
sity (UIU). She is currently working as a full-
time teacher at “Eminent School of Dhaka”. Her
research includes cloud computing, cloud security,
networking, software-defined networking, health-
care hypothesis, application development, tenta-
tive application structure, and module design. Her

utmost interest is in Software design and management.

MOHAMMAD SHAHRIAR RAHMAN received
his B.Sc. degree in computer science and engineer-
ing from the University of Dhaka, Bangladesh, in
2006, and the M.S. and Ph.D. degrees in infor-
mation science from the Japan Advanced Insti-
tute of Science and Technology (JAIST), in 2009
and 2012, respectively. He worked as a Research
Engineer with the Information Security Group of
KDDI Research, Japan. He is currently working
as a Professor and also serving as the director of

CITS at the United International University, Bangladesh. He has co-authored
over 50 research articles and submitted 8 co-authored Japanese patent
applications. His research interests include secure protocol construction,
privacy-preserving computation, and security modelling. He is a member
of the International Association for Cryptologic Research (IACR).

34 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3307467

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


