
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/378013253

On Domain based Task Allocation in Network Powered by Computing

Preprint · January 2024

DOI: 10.13140/RG.2.2.16273.40805

CITATIONS

0
READS

4

4 authors, including:

Evgeniy Stepanov

Lomonosov Moscow State University

7 PUBLICATIONS 11 CITATIONS

SEE PROFILE

Smelyasnskiy Ruslan

Lomonosov Moscow State University

3 PUBLICATIONS 0 CITATIONS

SEE PROFILE

Ruslan. L. Smeliansky

Lomonosov Moscow State University

122 PUBLICATIONS 847 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ruslan. L. Smeliansky on 07 February 2024.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/378013253_On_Domain_based_Task_Allocation_in_Network_Powered_by_Computing?enrichId=rgreq-7239b619613e1b72ddfb55ad6768d4fc-XXX&enrichSource=Y292ZXJQYWdlOzM3ODAxMzI1MztBUzoxMTQzMTI4MTIyMjU3NDg1M0AxNzA3MzA2OTQzODc1&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/378013253_On_Domain_based_Task_Allocation_in_Network_Powered_by_Computing?enrichId=rgreq-7239b619613e1b72ddfb55ad6768d4fc-XXX&enrichSource=Y292ZXJQYWdlOzM3ODAxMzI1MztBUzoxMTQzMTI4MTIyMjU3NDg1M0AxNzA3MzA2OTQzODc1&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7239b619613e1b72ddfb55ad6768d4fc-XXX&enrichSource=Y292ZXJQYWdlOzM3ODAxMzI1MztBUzoxMTQzMTI4MTIyMjU3NDg1M0AxNzA3MzA2OTQzODc1&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Evgeniy-Stepanov-2?enrichId=rgreq-7239b619613e1b72ddfb55ad6768d4fc-XXX&enrichSource=Y292ZXJQYWdlOzM3ODAxMzI1MztBUzoxMTQzMTI4MTIyMjU3NDg1M0AxNzA3MzA2OTQzODc1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Evgeniy-Stepanov-2?enrichId=rgreq-7239b619613e1b72ddfb55ad6768d4fc-XXX&enrichSource=Y292ZXJQYWdlOzM3ODAxMzI1MztBUzoxMTQzMTI4MTIyMjU3NDg1M0AxNzA3MzA2OTQzODc1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Lomonosov_Moscow_State_University?enrichId=rgreq-7239b619613e1b72ddfb55ad6768d4fc-XXX&enrichSource=Y292ZXJQYWdlOzM3ODAxMzI1MztBUzoxMTQzMTI4MTIyMjU3NDg1M0AxNzA3MzA2OTQzODc1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Evgeniy-Stepanov-2?enrichId=rgreq-7239b619613e1b72ddfb55ad6768d4fc-XXX&enrichSource=Y292ZXJQYWdlOzM3ODAxMzI1MztBUzoxMTQzMTI4MTIyMjU3NDg1M0AxNzA3MzA2OTQzODc1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Smelyasnskiy-Ruslan?enrichId=rgreq-7239b619613e1b72ddfb55ad6768d4fc-XXX&enrichSource=Y292ZXJQYWdlOzM3ODAxMzI1MztBUzoxMTQzMTI4MTIyMjU3NDg1M0AxNzA3MzA2OTQzODc1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Smelyasnskiy-Ruslan?enrichId=rgreq-7239b619613e1b72ddfb55ad6768d4fc-XXX&enrichSource=Y292ZXJQYWdlOzM3ODAxMzI1MztBUzoxMTQzMTI4MTIyMjU3NDg1M0AxNzA3MzA2OTQzODc1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Lomonosov_Moscow_State_University?enrichId=rgreq-7239b619613e1b72ddfb55ad6768d4fc-XXX&enrichSource=Y292ZXJQYWdlOzM3ODAxMzI1MztBUzoxMTQzMTI4MTIyMjU3NDg1M0AxNzA3MzA2OTQzODc1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Smelyasnskiy-Ruslan?enrichId=rgreq-7239b619613e1b72ddfb55ad6768d4fc-XXX&enrichSource=Y292ZXJQYWdlOzM3ODAxMzI1MztBUzoxMTQzMTI4MTIyMjU3NDg1M0AxNzA3MzA2OTQzODc1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruslan-Smeliansky?enrichId=rgreq-7239b619613e1b72ddfb55ad6768d4fc-XXX&enrichSource=Y292ZXJQYWdlOzM3ODAxMzI1MztBUzoxMTQzMTI4MTIyMjU3NDg1M0AxNzA3MzA2OTQzODc1&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruslan-Smeliansky?enrichId=rgreq-7239b619613e1b72ddfb55ad6768d4fc-XXX&enrichSource=Y292ZXJQYWdlOzM3ODAxMzI1MztBUzoxMTQzMTI4MTIyMjU3NDg1M0AxNzA3MzA2OTQzODc1&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Lomonosov_Moscow_State_University?enrichId=rgreq-7239b619613e1b72ddfb55ad6768d4fc-XXX&enrichSource=Y292ZXJQYWdlOzM3ODAxMzI1MztBUzoxMTQzMTI4MTIyMjU3NDg1M0AxNzA3MzA2OTQzODc1&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruslan-Smeliansky?enrichId=rgreq-7239b619613e1b72ddfb55ad6768d4fc-XXX&enrichSource=Y292ZXJQYWdlOzM3ODAxMzI1MztBUzoxMTQzMTI4MTIyMjU3NDg1M0AxNzA3MzA2OTQzODc1&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruslan-Smeliansky?enrichId=rgreq-7239b619613e1b72ddfb55ad6768d4fc-XXX&enrichSource=Y292ZXJQYWdlOzM3ODAxMzI1MztBUzoxMTQzMTI4MTIyMjU3NDg1M0AxNzA3MzA2OTQzODc1&el=1_x_10&_esc=publicationCoverPdf

On Domain based Task Allocation in Network Powered by Computing

Stepanov E.P.a,∗, Smeliansky R.L.a, Balashov V.V.a, Plakunov A.V.b, Xia Zhuc, Jianing Peic, Zhen Yaoc

aLomonosov Moscow State University Russia
bApplied Research Center for Computer Networks Russia

cHuawei Technologies Co. Ltd. China

Abstract

The problem of task allocation in Network Powered by Computing (NPC) infrastructure is considered. NPC is a new
generation of computational infrastructure, where the space of computational resources is considered as unbounded, i.e.
not localized in any specific DC, HPC or Edges. The key contribution of this paper is Domain based Task Allocation
(DoTA) method for NPC infrastructure that distributes the tasks between different domains. Each domain is a local space
of computational resources that can include several locations like DC, HPC or Edges and has a centralized designated
node that is responsible for selecting the best candidates in the domain for the task execution. Then designaeted
nodes cooperatively select the single candidate that meets the task requirements and provides the most even resource
distribution. This paper presents DoTA detailed description and experimental comparison with heuristic algorithm.

Keywords: MARL, task allocation, NPC

1. Introduction

Recently, the landscape of computational infrastruc-
ture is in dramatic changes under the pressure of appli-
cation requirements [1, 2]. The suit of the properties of
modern applications can be summarized as follows: dis-
tributed, self-sufficient, work in real time, elastic, cross-
platform, actively interact and synchronize, and are easy
to update. The definitions of these terms are in [1].

For further understanding, it is important to recognize
that an application is made up of interrelated components,
which we will refer to as application functions (ApF). The
analysis of requirements of modern application to the com-
putational infrastructure presented in [2, 3, 4] shows the
trend of ubiquitous application deployment. We are mov-
ing to the era when data processing resources and data
transmission resources form an unbounded space for com-
puting - computational infrastructure. Further we will
call such computational infrastructure Network Powered
by Computing (NPC).

This paper is focused on application function distribu-
tion in NPC environment. Briefly NPC functional archi-
tecture can be described as following. It consists of several
planes:

• data processing (DP);

• data transmission (DT);

• data processing control (DPC);

• data transmission control (DTC);

∗Corresponding author

• administration, orchestration and management
(AOM).

Application functions will require computing resources,
that are represented by DP plane. To deliver ApF input
data to allocated computing resources and result to the
user (that may be represented by other ApF), the overlay
network is required, presented by DT plane. The con-
trol for ApF placement and data transmission is provided
by DPC and DTC planes respectively. Also DPC plane
deduces the service-level agreement (SLA) requirements
for the connection between ApFs and pass it to DTC
plane. Finally, AOM plane orchestrates interactions be-
tween ApFs in accordance with application topology, col-
lects NPC resource consumption statistics by every AF,
secures management and administration of NPC.

The focus of this paper is DPC plane operation, es-
pecially the problem of AF placement. The interaction
between DPC and DTC planes is quite important, how-
ever the more simplified problem is considered - DPC plane
will request the channel with the highest bandwidth. More
details about DTC plane operation can be found in [5].

According to NPC architecture, DPC operates on the
special facility that is responsible for the integration of ev-
ery data processing resource (computational node - CN)
with the data transmission network (DTN) and the exter-
nal sources of computational service requests. Call this
facility NPC router (NPCR). NPCR replaces several de-
vices at once - a task manager, a traffic and task router,
VPN-gateway, CPE, and supplies the following function-
ality:

• distribution of application functions (ApF)/ virtual

Preprint submitted to Elsevier December 21, 2023

network functions (VNF) across computational nodes
(CN) of DP plane;

• decision making: is it worth to execute the certain
ApF/VNF on the CN connected to this current NPCR
or not;

• forwarding ApF/VNF that was not accepted by the
current facility under some reason to other facilities
where their computational resources are much more
promising from the point of Application execution
efficiency as a whole;

• optimal data traffic routing as between ApF as be-
tween corresponding VNF;

• provision of the transport connection that meets the
required Service Level Agreement (SLA).

In those cases when the NPCR provides the input for
external sources of data, applications, computational ser-
vice requests to the NPC resources, we will call such NPCR
as pole.

This paper has been dedicated only to one problem
from the list above – ApF/VNF distribution. ApF/VNF
will be called further as task, that need be allocated to
computing node, satisfying memory, computing and time
requirements. In other words, this paper considers the
task allocation problem in NPC environment. The pro-
posed solution can be applied mot only in NPC, but also
in environments like CFN [3], CPN [2] etc.

Recent works [7, 8, 9, 10, 11, 12, 13] on load balancing
methods showed focus on Machine Learning (ML) meth-
ods, especially multi-agent reinforcement learning (MARL).
The scale and rate of task allocation requests in NPC do
not let us get the proper solution for speed and accuracy
of task allocation by traditional centralized methods. Our
previous work [5] also showed benefits in applying Multi-
agent Reinforcement Learning approach to traffic distri-
bution problem in NPC. That is why the research keeps
focus on ML.

Based on examining of the works related to ML meth-
ods for task allocation a new method is proposed called
Domain-based Task Allocation (DoTA). The idea is a divi-
sion of NPCR network into domains; task allocation prob-
lem is solved in each domain. Then designated nodes of
the domains collectively make a decision to which domain
the task should be sent. This method combines multi-
agent reinforcement learning and domain-based approach
to achieve fast task allocation solution maximizing the
fraction of satisfied requests.

The paper is organized as follows. In the section 2 we
describe the task allocation optimization problem in NPC
environment. The related works that deal with close prob-
lem by ML algorithms are discussed in the section 3. The
proposed new method DoTA is presented in the section 4.
The results of the simulation research are presented in the
section 5.

2. Task Allocation Problem Statement

Let us formulate the load balancing problems in terms
of NPC. The task allocation problem considered in this
paper is stated as follows.

2.1. Input

• NPC network G : (V,E,W) of computational nodes,
where

– V - set of nodes.

Each node is a system with an uniform comput-
ing environment and its own scheduler. Each
node has a corresponding NPCR, that can re-
ceive the task allocation request.

– E - set of edges (network links) between nodes

– W = {ω(i, j)} - the weight matrix, ω(i, j) de-
notes the bandwidth between nodes i and j

Each node i is described by a pair {ci, si}, where

– ci - the total computing resources (CPU cycles
per second) of node i;

– si - the total storage resources (memory) of
node i;

• Set J of dynamically arriving computational tasks,
where each task j ∈ J has the following specification:

– tj - arrival time of the task j;

– nj - arrival node of the task j;

– mj - size of input data for the task j;

– ĉj - amount of computing resources (CPU cy-
cles) required by the task j, which defines the
execution time eji - execution time estimation
of the task j on node i;

– ŝj - amount of storage resources (memory) re-
quired by the task j;

– pj - maximum allowed response time (transmis-
sion + processing) of the task j; we assume the
size of task execution results to be small, so
their transmission time can be ignored.

The task allocation problem is considered in streaming
form, so that the NPC router operates in the timeline of
tasks arrival and has no information on the future tasks.
Meanwhile the history of previous task arrivals and allo-
cations is available to the NPCR.

The NPC router must choose the execution (destina-
tion) node for every task and find a route for the task data
transmission from the initial node to the destination node.
Same bandwidth is allocated for the task transmission in
each route link, and this allocation is not changed during
the task transmission.

There are no task queues on the nodes. On every node,
preemptive earliest deadline first (EDF) scheduling scheme

2

is used; therefore tasks execution schedule for a node is de-
termined by task start times (when task arrives to the des-
tination node) and task deadlines (calculated from maxi-
mum response times). The reason for choosing preemptive
EDF is that it is an optimal scheme if task postponing is
not allowed [6], which is our case.

2.2. Output

Tasks execution schedule W , including :

• assignment of tasks to the nodes;

• tasks execution schedule for each node;

• schedule of links bandwidth allocation;

• set U of unscheduled tasks.

A task becomes unscheduled if the NPCR is unable
to assign it to a node without violating the correctness
constraints on the schedule.

2.3. Correctness constraints

Schedule must be correct, that is:

• every task in it (except tasks from U) finishes within
its maximum response time;

• memory capacity of the nodes is never overloaded;

• network links are never overloaded.

2.4. Objective function

The objective function is formulated for the time in-
terval (t1, t2) and incorporates the following components:

1. computing resources utilization averaged among nodes:

Γ(t1, t2) =
1

|V |

(|V |)∑
i=1

ciused(t1, t2)

Ci(t1, t2)
(1)

where ciused(t1, t2) is the amount of node’s computing
resources (cycles) used in the interval (t1, t2), and
Ci(t1, t2) is the total computing resources of the node
in this interval.

2. time-averaged storage resources utilization, averaged
among nodes:

∆(t1, t2) =
1

|V |

(|V |)∑
i=1

siavg(t1, t2)

si
(2)

where

siavg(t1, t2) =
1

t2 − t1

k−1∑
j=0

(lj+1 − lj)hj (3)

where lj are time instances, that belong to (t1, t2),
in which memory utilization is changed due to task
start or finish; additionally, l0 = t1 and lk = t2; hj

is the new memory utilization in tj .

The objective function for an interval (t1, t2) is:

Φ(t1, t2,W) =

|V |∑
i=1

(γ[(
ciused(t1, t2)

Ci(t1, t2)
− Γ(t1, t2))

2+

+ (
siavg(t1, t2)

si
−∆(t1, t2))

2]) + δ|U | (4)

where γ, δ are positive constant factors.

2.5. Optimization problem

min
{W}

Φ(0, T,W) (5)

where {W} is the set of correct schedules, T is the final
time of system operation (when the last task is finished).

Minimization of function Φ is aimed at:

1. balancing the utilization of CPU and memory among
the nodes (the component with γ factor);

2. limiting the number of unscheduled tasks (the com-
ponent with δ factor).

Relative importance of the sub-goals 1) – 2) is specified
by the values of corresponding factors.

3. Related Work

This section contains the survey of machine learning
(ML) based solutions for the related dynamic task allo-
cation problems. The solutions are compared by the fol-
lowing criteria: state, action spaces, rewards, kind of ar-
chitecture (centralized, decentralized or decentralized with
centralized critic) , class of neural network, constraints and
how to deal with them within machine learning methods.

The paper [7] proposes TapFinger, a distributed sched-
uler of ML tasks for edge clusters. It minimizes the total
completion time by solving the task placement problem
and fine-grained multi-resource allocation problem sepa-
rately. TapFinger is based on multi-agent reinforcement
learning (MARL) and includes several techniques to make
it efficient, like a heterogeneous graph attention network
(HAN) as the MARL backbone, a tailored task selection
phase in the actor network, and the integration of Bayes’
theorem and masking schemes. The authors propose two
schedulers: a single-task scheduler and a multi-task sched-
uler. The first one can process one task at a time. This
scheme is generalized for the multi-task scheduling case,
in which a sequence of tasks is scheduled simultaneously.
TapFinger’s design can mitigate the expanded decision
space and yield fast convergence to the optimal scheduling
solutions .

Key features: Deep Reinforcement Learning (DRL),
Actor-Critic, Multi-Agent (MA), HAN.

Working with constraints: constraints are enforced
by the invalid action masking module. Its purpose is to

3

identify and mask all the invalid actions in the combinato-
rial action space to prevent actors from predicting invalid
resource allocation. Then zero probability is set to all the
actions that either exceed the resource capacity or pro-
vide less than the minimum required amount of resources.
Additionally, the conflict resolution module is used when
several edge clusters choose the same task. This mod-
ule transforms the attention scores in the output of the
task selection phase into task-conditioned probabilities us-
ing Bayes’ theorem and restricts the maximum number of
tasks that can be allocated to each edge cluster.

The paper [8] implements the concept of cloud automa-
tion to reduce the manual intervention and improve the re-
source management for large-scale cloud computing work-
loads. The authors propose four deep and reinforcement
learning-based scheduling approaches to automate the pro-
cess of scheduling large-scale workloads to cloud comput-
ing resources, while reducing both the resource consump-
tion and task waiting time. These approaches are: re-
inforcement learning (RL), deep Q networks (DQN), re-
current neural network long short-term memory (RNN-
LSTM) and deep reinforcement learning combined with
LSTM (DRL-LSTM).

Key features: DRL, Q-learning, Recurrent neural
network (RNN), Long short-term memory (LSTM)

Working with constraints: It is assumed that the
resource demands of each task are known upon arrival and
for a task to be assigned to a specific VM the necessary
amount of resources must be available on this VM. The
paper does not provide details on how this constraint is
checked.

The paper [9] proposes a MARL scheduling framework
to cooperatively learn fine-grained task placement poli-
cies, towards the objective of minimizing task completion
time. To achieve topology-aware placements, the proposed
framework uses hierarchical graph neural networks to en-
code the data center topology and server architecture. In
view of a common lack of precise reward samples corre-
sponding to different placements, a task interference model
is further devised to predict interference levels in face of
various co-locations, for training of the MARL schedulers.

Key features: DRL, Actor-Critic, Multi-Agent, Hi-
erarchical GNNs with convolutional layers

Working with constraints: Hierarchical GNN: there
are two GNNs on each scheduler, one for encoding the in-
ner graph with the constraints of its nodes and one for
inter-scheduler graph. Constraints are checked before task
allocation. If resources in the partition managed by a
scheduler are not sufficient for hosting a task that the
scheduler receives, the scheduler will forward the task to
another scheduler. Schedulers can exchange their obser-
vations of server load status , link bandwidth usage and
concurrent task placements. Once a task is placed, it will
run to completion without preemption.

The paper [10] introduces KaiS, a learning based schedul-
ing framework for edge-cloud systems to improve the long-
term throughput rate of request processing. There are sev-

eral features of KaiS worth to mention. The first one is
a coordinated multi-agent actor-critic algorithm to cater
to decentralized request dispatch and dynamic dispatch
spaces within the edge cluster. The second one is the
use of graph neural networks to embed system state infor-
mation and combine the embedding results with multiple
policy networks to reduce the orchestration dimensionality
by stepwise scheduling. Finally, there is a two-time-scale
scheduling mechanism to harmonize request dispatch and
service orchestration. The paper describes the implemen-
tation design of the above algorithms to deploy them in
Kubernetes environment.

Key features: DRL, Actor-Critic, Multi-Agent, Cen-
tralized Critic, GNN

Working with constraints: To avoid, as much as
possible, the situation that an agent dispatches a request
to an edge node with insufficient resources, a resource con-
text for each agent is calculated before dispatch. The re-
source context is a binary vector that is used to filter out
invalid dispatch actions.

In edge-based distributed deep learning (DL), the head
of a cluster of edge nodes usually schedules all the DL
training jobs from the cluster nodes. The cluster head
knows and takes in account all the loads of cluster nodes,
but the use of centralized scheduling scheme may lead to
overload of the cluster head itself. To handle this problem,
the paper[11] proposes a MARL system that enables each
edge node to schedule its own jobs using RL. To avoid ac-
tion collision, in which multiple nodes may schedule tasks
to the same node and make it overloaded, an approach
called Shielded Reinforcement learning based DL training
on Edges is proposed. In this approach, each edge node
schedules its own jobs using multi-agent RL. The “shield”
deployed in a node checks action collisions and provides
alternative actions to avoid the collisions. As the central
shield node for the entire cluster may become a bottleneck,
a decentralized shielding method is proposed, in which dif-
ferent shields are responsible for different regions in the
cluster, and they coordinate to avoid action collisions on
the region boundaries.

Key features: DRL, Multi-Agent, DNN
Working with constraints: Each cluster has a shield

deployed in the cluster head that has high resource capac-
ity. After an edge node makes a scheduling decision for its
job, it reports its decision to the shield in its cluster. The
shield collects the decisions of all edge nodes in its cluster
and checks action collisions, i.e. the actions that make an
edge node overloaded by hosting the tasks from multiple
edge nodes. The shield then provides alternative actions
to avoid the action collisions.

The paper [12] focuses on task offloading to edge servers
in the domain of vehicular fog computing. It is noted that
an edge server may have high load when a large number
of mobile vehicles offload their tasks to it, causing many
tasks either to experience long processing times or to be
dropped, the latter particularly for latency-sensitive tasks.
The authors state that most existing methods are largely

4

limited to training a model from scratch for new environ-
ments. This is because these methods focus more on model
structures with fixed input and output sizes, impeding the
transfer of trained models across different environments.
To solve these problems, the paper [12] proposes a decen-
tralized task offloading method based on transformer and
policy decoupling-based multi-agent actor-critic scheme.
The paper first introduces a transformer-based long se-
quence forecasting network for predicting the current and
future queuing delay of edge servers to resolve load un-
certainty. Second, the actor network is redesigned us-
ing transformer-based temporal feature extraction network
and policy decoupling network. The feature extraction
network can adapt to various input sizes through a trans-
former that accepts different tokens built from the raw
input. The policy decoupling network provides a map-
ping between the transformer-based embedding features
and offloading policies utilizing self-attention mechanism
to address various output dimensions.

Key features: DRL, Actor-Critic, Multi-Agent, pol-
icy decoupling network, transformer-based temporal fea-
ture extraction network

Working with constraints: There is a penalty for
every task that misses its deadline, as well as for every
violated resource constraint. All penalties sum up to the
system cost. Without knowing the offloading decisions of
other vehicles and the resource allocation of edge servers,
each vehicle minimizes the system cost through locally op-
timal offloading policies. The sum of all vehicle decisions’
costs (i.e. penalties) is defined as the system cost. The op-
timization goal is to minimize the system cost, thus mini-
mizing the constraints violation.

The paper [13] proposes a new DRL-based task allo-
cation process that allows cooperating agents to act auto-
matically and learn how to communicate with other neigh-
boring agents to allocate tasks and share resources. Through
learning capabilities, agents will be able to reason conve-
niently, generate an appropriate policy and make a good
decision. Experiments show that it is possible to allocate
tasks using deep Q-learning as a part of distributed task
allocation approach.

Key features: DRL, Q-learning, Multi-Agent, DQN
Working with constraints: If the agent to which

the task initially arrives cannot fulfill the task resource
requirements, it tries to discover neighboring agents with
sufficient resources. If there is no success in it, the agent
passes the task to another agent, increasing the counter of
hops. This next-hop agent tries to do the same (discover
/ pass) until an agent with enough resources is found, or
maximum number of hops is reached (meaning an alloca-
tion failure). Partial execution of the task along this path
is allowed, so that only the remaining part is passed along.

Conclusion
In most of the considered papers, the solutions relied

on graph neural networks. Moreover, in some papers hier-
archical GNNs are used, or a two-level approach is imple-
mented (first, agents choose a cluster, and then resources

inside cluster). We follow by the same approach in the
proposed method and divide the network into several do-
mains. This partitioning scheme is described in the next
section.

The survey has shown that there are two approaches
to impose constraints on the neural network output values
in MARL:

1. Reward penalty if constraints are violated.

2. Setting the probability of invalid action to 0.

We follow the second approach, as it guarantees that all
constraints are met.

4. Proposed algorithm for domain-based task allo-
cation

4.1. Overview of the algorithm

In the preliminary step, performed offline, the proposed
algorithm partitions the network into domains and selects
a designated node for every domain. This is done to find a
balance between a fully centralized task allocation scheme
(prone to overloads of the decision maker) and a fully dis-
tributed scheme in which any node can make allocation
decisions (based on very limited information). Agents are
located on these designated nodes. Every agent is respon-
sible for its own domain and keeps track of workload allo-
cated to nodes of this domain.

The main algorithm operates online, in the timeline of
tasks arrival. The tasks are processed in order of their
arrival; if several tasks enter simultaneously, they are pro-
cessed in some arbitrary order.

For every task j entering the NPC network, following
steps are performed:

1. Every agent chooses the candidate node for the task
j within this agent’s domain. Only nodes that can
execute the task without violation of memory and
timing constraints (deadlines) can be chosen.

2. Final choice of the node for task j is performed among
the nodes proposed in step 1.

3. Transmission and execution of task j is performed:

• bandwidth for the task j is allocated along the
transmission route, which is pre-calculated in
step 1;

• task j is transferred from its original node to the
destination node, then the allocated bandwidth
is freed;

• task j is executed on the destination node ac-
cording to preemptive EDF scheme.

A task becomes unscheduled (added to the set U) in
case no suitable nodes are found for it in step 1.

Steps 1 and 2 use neural networks for making the choices.
Training of these networks is performed in advance.

5

4.2. NPC partitioning into domains

The NPC partitioning subproblem is stated as follows:

1. Domains must contain almost equal numbers of NPC
nodes (balanced partitioning). This allows even dis-
tribution of decision making burden between the agents,
and presumably leads to balanced convergence times
during the training of neural networks on the domain
designated nodes.

2. Interdomain channels number is minimized (cut-edge
minimization). This condition simplifies construc-
tion of task transfer routes between domains.

Partitioning is performed by METIS algorithm [14],
with the number of domains as input, and ufactor param-
eter controlling the allowed imbalance of the numbers of
nodes in the obtained partitions.

The designated node within the domain is selected among
the border nodes of this domain. A node of a domain is
a border node if it has at least one link to the nodes of
some other domains. The number of its neighboring nodes
from other domains is called border-degree. The node with
the highest border-degree is selected as domain designated
node.

Figure 1 shows a network with two domains, with des-
ignated nodes marked red.

Figure 1: A network with two domains

To estimate the task transmission time and simplify
transmission route construction, a transit graph GT is ob-
tained from the network G:

1. GT retains the edges, connecting the different do-
mains, and their incident nodes (i.e. border nodes).
Edge weights are same as in G.

2. New edges, connecting the border nodes from the
same domain, are added to GT . The weight of such
edge is the minimum bandwidth on the maximum
capacity path between its nodes inside the domain,
constructed in G.

We assume such graph is available on every designated
node. Weights of its edges are updated to reflect residual
(i.e. free) bandwidth in the network links.

4.3. Candidate node selection in every domain

We propose to select the candidate node for execu-
tion of a new task j in a domain using a MARL-based
algorithm with proximal policy optimization (PPO). Ev-
ery agent makes its choice regarding its domain, and acts
independently of other agents. In the experimental study,
this approach is compared to a greedy heuristic based al-
gorithm.

Our previous research on ML-based traffic engineering
[5], as well as the survey of related works on task alloca-
tion techniques, shows the advantages of GNN and PPO
approaches.

The selection of candidate nodes for a task in every
domain is performed by MARL as follows:

1. Task j enters on the NPC node nj . The task spec-
ification (mj , ĉj , ŝj , pj , qj) is sent to the designated
node of the domain the node nj belongs to. From
there it is broadcast to all other domain designated
nodes. The time it takes for the specification to reach
all domain designated nodes is assumed insignificant.

2. Each domain designated node has the state of all
nodes and links within its domain: a) for a link:
available and total bandwidth; b) for a node: task
schedule, available and total amount of memory and
computing resources. Each domain designated node
updates the transit graph GT to reflect the current
link bandwidth occupation.

3. Each domain designated node independently chooses
one node within its domain that is the most appro-
priate to process the task j. The node can only be
chosen if all the following constraints are met: a)
there is a path with non-zero available bandwidth
from nj to the chosen node; b) allocating the task
j to the chosen node will not violate the memory
and timing constraints of other tasks allocated to
this node; c) the task j will be completed within its
maximum response time.

4. The output of each domain designated node is one
node inside of its domain. If there were no valid
nodes, then the output is empty. This output and
the chosen node’s state (task schedule, available and
total amount of memory and computing resources) is
sent through the network to the designated node of
the domain the node nj belongs to. The time it takes
for this information to reach the domain designated
node is considered insignificant.

The neural network is used to choose a node in step 3.
Input to the network is:

• Task specification (mj , ĉj , ŝj , pj , qj).

• State of every domain node: CPU and memory load
calculated based on the current node’s schedule on
the interval [tj , T], where T is the maximum finish
time of the current task j among all the nodes of the
domain.

6

The neural network calculates the relative probabilities
of domain nodes to be chosen as candidates, then a random
choice is made according to these probabilities. Before
performing this choice, probabilities for nodes that do not
meet the constraints are set to zero.

The route of task transmission to a given node is the
maximum capacity path (MCP) from the entrance node.
The MCP is constructed by a Dijkstra-based algorithm [15].
The algorithm is applied to the transit graph GT , with
added nodes and links of the original and destination nodes’
domains. Same bandwidth is reserved for all links of the
selected route, equal to the minimum available bandwidth
on the links of this route.

4.4. Checking the constraints

When a node is checked for being able to execute the
newly entered task, both memory and timing constraints
are taken in account.

Memory constraints are checked directly by comparing
the sum of required storage resources ŝj and input data
size mj with the available storage resources si on the node.

To check the timing constraints for task j on a node:

1. Time of task j arrival to the considered node is cal-
culated, based on task input data size mj and band-
width of the MCP.

2. Preemptive EDF schedule is rebuilt for the node,
taking in account the added task j, with its deadline
set to tj + pj .

3. If all tasks in the schedule meet the deadlines, the
timing constraints are met, otherwise they are vio-
lated and the task j cannot be allocated to this node.

In step 2, the schedule is rebuilt starting from the task j
arrival to the considered node, and taking in account only
the remaining parts of the other tasks on the node. Note
that execution of task j affects the execution of the tasks
previously allocated to the node and not yet completed, in
case the deadline of j is earlier than deadlines of some of
these tasks.

4.5. Final selection of the node

The best node among the node candidates provided by
the domain designated nodes is chosen by the same PPO
approach, as in algorithm to choose a node candidate in
a domain. Since the constraints were already checked by
the domain designated nodes, all candidates are valid.

The neural network takes as input the same transit
graph and the state of each candidate node (task sched-
ule, available and total amount of memory and computing
resources), and evaluates the relative probabilities of the
candidate nodes to be finally chosen. Then the final choice
is made according to these probabilities.

4.6. Neural network training scheme

The proposed method is based on the actor-critic ap-
proach characterized by agent separation into two decision
making entities: the actor and the critic. The reason be-
hind this separation is to allow a policy (the probability to
take a certain action for an observed state) improvement
through an estimation of the state-value function, combin-
ing both value-based and policy-improvement algorithms.
The critic approximates the state-value function V̂s, while
the actor updates and improves a model of the stochastic
policy π̂ by taking into account the critic estimation while
maximizing the total expected reward.

The reward for a single applied action is evaluated as
the difference in the objective function before and after
the current task was placed:

Φ(t, t′|task was not placed)− Φ(t, t′|task was placed),

where Φ(t1, t2|X) is the value of Φ(t1, t2) calculated for
scenario X of tasks placement; t is current time; t’ is time
when all tasks entered before t would be completed.

This reward is given to all agents present in NPC: ones
that select the best node within the domain and the one
that selects the final node from domain node candidates.

Training takes place after a large enough history of
actions and rewards is accumulated. The interval of accu-
mulation of this data is called an episode. In the proposed
algorithm the episode is defined as a complete schedule for
a given set of tasks, i.e. the episode starts when the first
task enters and ends when the last task is processed.

5. Experimental results

The goal of the experimental research was to evaluate
the algorithm according to the following criteria:

1. objective function mean value and mean deviation;

2. number of unscheduled tasks;

3. task placement decision time.

The efficiency of the proposed algorithm is evaluated
by criteria 1 and 2 and compared with a heuristic algo-
rithm result and reference value, obtained in a special way
described below. The overhead of the proposed algorithm
is evaluated by criterion 3 taking into account the neural
network operation time and the message exchange time.

5.1. Simulation methodology

This research considers two topologies:

• Topology with 16 nodes (Figure 2). This topol-
ogy has a good structure with clear domains and its
designated nodes. Each color represents individual
domain and the nodes with larger size are designated
nodes;

7

• Relaxed-caveman graph with 56 nodes and 392 edges
(Figure 3). This type of graph is noteworthy because
they represent variations of the graph with “perfect”
communities, i. e. disconnected cliques that can be
represented by distributed datacenters belonging to
different owners.

Domains were constructed by described method in sec-
tion 4.2 using METIS algorithm.

Figure 2: Symmetric topology with 16 nodes

Figure 3: Random topology with 56 nodes

The workload J for experiments is generated by con-
structing EDF schedule for each NPC node, evenly filling
the resources of the NPC network. Then the task specifica-
tion is assembled from the obtained EDF schedule. This
allows us to know the sub-optimal solution beforehand,
where all tasks will be distributed across CNs. The value
of objective function Φ for this sub-optimal solution will
be called the reference value. Also the fraction of available
resources to total NPC resources is the parameter of the
generator. The simulation was carried out for the value
of this parameter being 0.9. Two task sets generated for
16-node topology contained 503 and 1548 tasks. The task
set for 56-node topology contained 1248 tasks.

To run the simulation experiments, the algorithm was
implemented in Python using tensorflow library (version
2.11).

Every simulation experiment consists of the following
steps:

1. Initialize initial EDF as an empty schedule.

2. Get the next task from the workload J .

3. Update NPC resources load based on the new task
entering time.

4. Run DoTA algorithm to select CN for execution.

5. Calculate objective function value Φ.

6. If current task is not the last one, go to step 2.

The proposed DoTA method is evaluated by the num-
ber of episodes to converge to a sub-optimal solution, the
number of allocated tasks, the value of objective function
Φ. These values, except for number of episodes for train-
ing, are compared to the reference value and the value
obtained by the heuristic algorithm.

The heuristic algorithm is a distributed algorithm that
runs on each domain designated node. Before the start
of the heuristic algorithm, the ring path consisting of all
domain designated nodes is determined by solving travel-
ling salesman problem. Upon arrival of a new task, avail-
able resources information is transmitted along the ring
path, and each designated node appends the part related
to its domain. Then the domain with the most amount
of available resources is selected according to the greedy
algorithm.

In the experiments γ = 1, σ = 0.1, however the fig-
ures below omit the penalty part of the objective function
to show how evenly workload is distributed among NPC
nodes. The unscheduled tasks are shown on a separate
figure.

5.2. Efficiency estimation results

Figures 4-5 show 1000 and 400 episodes of training for
task set sizes of, respectively, 503 and 1541 tasks on 16-
node topology. The figures show two components of the
objective function - memory deviation from average, com-
puting resource deviation from average - and their sum.
The horizontal lines stand for objective function value ob-
tained from the heuristic algorithm and from reference
schedule.

The figures show that the proposed algorithm requires
100-200 episodes to reach objective function values around
0.07 which do not improve further. Memory and comput-
ing resource deviation from average differ insignificantly
from each other, so the algorithm optimizes both of these
values equally. For both sets of tasks the proposed algo-
rithm shows better values than the heuristic algorithm.
Also, figures 6 and 7 show that the proposed algorithm
placed more tasks in both cases.

Figure 8 shows the results of training case of 400 episodes
and for the task set size of 1248 on 56-node topology.
In this case objective function values stabilize around 0.4
which is nearly the same as the heuristic algorithm.

8

0 25 50 75 100 125 150 175 200
Episode batch (average ver 5 epis des)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Ф, D TA alg rithm
Mem ry deviati n, D TA alg rithm
Cpu deviati n, D TA alg rithm
Ф, Heuristic alg rithm
Ф, Reference value

Figure 4: Training performance on 16-node topology and 503 tasks

0 10 20 30 40 50 60 70 80
Episode batch (average over 5 episodes)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Ф,ФDoTAФa gorithm
MemoryФde)iation,ФDoTAФa gorithm
CpuФde)iation,ФDoTAФa gorithm
Ф,ФHeuristicФa gorithm
Ф,ФReferenceФ)a ue

Figure 5: Training performance on 16-node topology and 1541 tasks

Figures 9 and 10 show aggregated results from 5 runs
on the same input data to demonstrate the stability and
spread of the values obtained by the algorithm. The fig-
ures show that on the 16-node topology after the algorithm
reaches a stable objective function value around 0.07 at
100th episode. The objective function value oscillates be-
tween 0.04 and 0.12 which is almost in the middle of ref-
erence value and heuristic algorithm’s value. On the 56-
node topology the algorithm improves objective function
value until the 300th episode. It has a significantly larger
spread, oscillating from 0.2 to 0.6. However its values are
still better compared to the heuristic algorithm.

The proposed algorithm shows stable results on small
topology which are better than heuristic algorithm’s re-
sults. However on large topology the advantage over the
heuristic algorithm is smaller and the spread is larger.
This difference in results can be attributed to a greatly
increased size of the valid schedule space with a larger
topology, since it scales with both the task set size and
the amount of nodes.

0 25 50 75 100 125 150 175 200
Episode batch (average over 5 episodes)

494

496

498

500

502

Number of placed tasks

DoTA algorithm
Heuristic algorithm

Figure 6: Number of placed tasks on 16-node topology and 503 tasks

0 10 20 30 40 50 60 70 80
Episode batch (average over 5 episodes)

1510

1515

1520

1525

1530

1535

1540
Number of placed tasks

DoTA algorithm
Heuristic algorithm

Figure 7: Number of placed tasks on 16-node topology and 1541
tasks

5.3. Overhead estimation results

Overhead is estimated by training time and decision
making time. The training consists of the gradient calcu-
lation and the neural network weight update. Experiments
showed that the training time has a linear dependence of
a number of tasks therefore the results are averaged for 1
task.

Table 1 presents training time and decision making
time of 1 task for different topology and domain sizes.
The most important points to note from this table are:
training time does not depend on the topology size and
is insignificant compared to decision making time because
a single task set for large topology can have hundreds of
tasks and training happens at the end of the task set. De-
cision making time of 1 task strongly depends on the size of
the domain, but not the whole topology, since the largest
jump in execution time happens between large and extra
large topology, which goes from about 12 nodes per do-
main to about 60 nodes per domain.

9

0 10 20 30 40 50 60 70 80
Episode batch (average over 5 episodes)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Ф,ФDoTAФa gorithm
MemoryФde)iation,ФDoTAФa gorithm
CpuФde)iation,ФDoTAФa gorithm
Ф,ФHeuristicФa gorithm
Ф,ФReferenceФ)a ue

Figure 8: Training performance on 56-node topology and 1248 tasks

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195
Episode batch (average over 5 episodes)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Objective function value

Heuristic algorithm

Reference value

DoTA algorithm

Figure 9: Aggregated results from 5 runs on 16-node topology and
503 tasks

6. Conclusion

The proposed DoTA method is based on the domain
approach, where NPC network is divided to the domains
with its designated nodes. This approach is designed with
preparation for the large-scale networks, where it is hard
to maintain and operate the whole network from the sin-
gle node. It was shown that the proposed multi-agent
reinforcement learning method outperforms the heuristic
algorithm and gives the results close to the reference value
for 16-node and 56-node topologies.

The future research of the proposed algorithm will in-
clude the modeling on large-scale topology. It is still open
challenge how to model large-scale network of multiple
agents, supporting reinforcement learning algorithms.

Also the perspective research direction is to consider
the interaction between DPC and DTC planes, that will
allow to fine tune not only the load of computing nodes,
but also the load of the network.

7. Acknowledgements

Authors would like to thank Garkavy Ivan, Savitskiy
Ilia, Tsvetkova Vera and Morozova Veronika, students of
Lomonosov Moscow State University for their contribution
to the experimental part of this research.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130
Episode batch (average over 3 episodes)

0.0

0.2

0.4

0.6

0.8

1.0

Objective function value

Heuristic algorithm

Reference value

DoTA algorithm

Figure 10: Number of placed tasks on 16-node topology and 1541
tasks

Topology NN
training
time

Decision
making time
(without
training)

Smallest
(4 nodes, 1 domain)

1.04 ms 1.1 ms

Small
(16 nodes, 4 domains)

1.04 ms 1.5 ms

Medium
(56 nodes, 7 domains)

1.1 ms 2.5 ms

Large
(123 nodes, 10 domains)

1.05 ms 2.7 ms

Extra large
(625 nodes, 10 domains)

1.07 ms 6.9 ms

Table 1: Training time and decision making time of 1 task for DoTA
algorithm

References

[1] R. Smeliansky, ”Network Powered by Computing,” 2022
International Conference on Modern Network Technolo-
gies (MoNeTec), 2022, pp. 1-5, DOI: 10.1109/MoN-
eTec55448.2022.9960771

[2] Yukun Sun, Bo Lei, Junlin Liu, Haonan Huang, Xing Zhang,
Jing Peng, Wenbo Wang Computing Power Network: A Survey.
arXiv:2210.06080

[3] L. Geng and P.Willis, “Compute First Networking (CFN) sce-
narios and requirements,” in IETF RTGWG Working Group,
2019.

[4] R. Smelyanskiy Network Powered by Computing: Next Gen-
eration of Computational Infrastructure. In Edge Computing -
Technology, Management and Integration (ISBN 978-1-83768-
862-3)

[5] E. Stepanov et al. ”On Fair Traffic allocation and
Efficient Utilization of Network Resources based on
MARL.” Preliminary on ResearchGate, Available from:
https://www.researchgate.net/publication/371166584_On_

Fair_Traffic_allocation_and_Efficient_Utilization_of_

Network_Resources_based_on_MARL

[6] W. A. Horn. ”Some simple scheduling algorithms.” Naval Re-
search Logistics Quarterly. 1974. P. 177-185.

[7] Li, Yihong, et al. ”Task Placement and Resource Allocation for
Edge Machine Learning: A GNN-based Multi-Agent Reinforce-
ment Learning Paradigm.” arXiv preprint arXiv:2302.00571
(2023).

[8] Rjoub, Gaith, et al. ”Deep and reinforcement learning for auto-
mated task scheduling in large-scale cloud computing systems.”
Concurrency and Computation: Practice and Experience 33.23
(2021): e5919.

10

https://www.researchgate.net/publication/371166584_On_Fair_Traffic_allocation_and_Efficient_Utilization_of_Network_Resources_based_on_MARL
https://www.researchgate.net/publication/371166584_On_Fair_Traffic_allocation_and_Efficient_Utilization_of_Network_Resources_based_on_MARL
https://www.researchgate.net/publication/371166584_On_Fair_Traffic_allocation_and_Efficient_Utilization_of_Network_Resources_based_on_MARL
Ruslan Smelianskiy
Комментарий текста
Здесь лучше сослаться на Hierarchical Edge Computing на MoNeTec 2018

[9] Zhao, Xiaoyang, and Chuan Wu. ”Large-scale Machine Learn-
ing Cluster Scheduling via Multi-agent Graph Reinforcement
Learning.” IEEE Transactions on Network and Service Man-
agement (2021).

[10] Han, Yiwen, et al. ”Tailored learning-based scheduling for
kubernetes-oriented edge-cloud system.” IEEE INFOCOM
2021-IEEE Conference on Computer Communications. IEEE,
2021.

[11] Sen, Tanmoy, and Haiying Shen. ”Distributed Training for
Deep Learning Models On An Edge Computing Network Using
Shielded Reinforcement Learning.” 2022 IEEE 42nd Interna-
tional Conference on Distributed Computing Systems (ICDCS).
IEEE, 2022.

[12] Gao, Zhen, Lei Yang, and Yu Dai. ”Fast Adaptive Task Of-
floading and Resource Allocation via Multi-agent Reinforce-
ment Learning in Heterogeneous Vehicular Fog Computing.”
IEEE Internet of Things Journal (2022).

[13] Noureddine, Dhouha Ben, Atef Gharbi, and Samir Ben Ahmed.
”Multi-agent Deep Reinforcement Learning for Task Allocation
in Dynamic Environment.” ICSOFT. 2017.

[14] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme
for irregular graphs. Journal of Parallel and Distributed Com-
puting, 48(1): 96–129, 1998.

[15] Punnen A.P. “A linear time algorithm for the maximum capac-
ity path problem.” European Journal of Operational Research.
Vol. 53, No. 3. 1991. P. 402-404.

11

View publication stats

https://www.researchgate.net/publication/378013253

	Introduction
	Task Allocation Problem Statement
	Input
	Output
	Correctness constraints
	Objective function
	Optimization problem

	Related Work
	Proposed algorithm for domain-based task allocation
	Overview of the algorithm
	NPC partitioning into domains
	Candidate node selection in every domain
	Checking the constraints
	Final selection of the node
	Neural network training scheme

	Experimental results
	Simulation methodology
	Efficiency estimation results
	Overhead estimation results

	Conclusion
	Acknowledgements

