
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/365489474

Network Powered by Computing

Conference Paper · November 2022

DOI: 10.1109/MoNeTec55448.2022.9960771

CITATIONS

2
READS

35

2 authors, including:

Ruslan. L. Smeliansky

Lomonosov Moscow State University

122 PUBLICATIONS 847 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ruslan. L. Smeliansky on 18 November 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/365489474_Network_Powered_by_Computing?enrichId=rgreq-a6e4063bdd046b8ae5c55539a216484b-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ4OTQ3NDtBUzoxMTQzMTI4MTA5ODA0MjkwOUAxNjY4NzY0MDE1Njg5&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/365489474_Network_Powered_by_Computing?enrichId=rgreq-a6e4063bdd046b8ae5c55539a216484b-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ4OTQ3NDtBUzoxMTQzMTI4MTA5ODA0MjkwOUAxNjY4NzY0MDE1Njg5&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a6e4063bdd046b8ae5c55539a216484b-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ4OTQ3NDtBUzoxMTQzMTI4MTA5ODA0MjkwOUAxNjY4NzY0MDE1Njg5&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruslan-Smeliansky?enrichId=rgreq-a6e4063bdd046b8ae5c55539a216484b-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ4OTQ3NDtBUzoxMTQzMTI4MTA5ODA0MjkwOUAxNjY4NzY0MDE1Njg5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruslan-Smeliansky?enrichId=rgreq-a6e4063bdd046b8ae5c55539a216484b-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ4OTQ3NDtBUzoxMTQzMTI4MTA5ODA0MjkwOUAxNjY4NzY0MDE1Njg5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Lomonosov_Moscow_State_University?enrichId=rgreq-a6e4063bdd046b8ae5c55539a216484b-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ4OTQ3NDtBUzoxMTQzMTI4MTA5ODA0MjkwOUAxNjY4NzY0MDE1Njg5&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruslan-Smeliansky?enrichId=rgreq-a6e4063bdd046b8ae5c55539a216484b-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ4OTQ3NDtBUzoxMTQzMTI4MTA5ODA0MjkwOUAxNjY4NzY0MDE1Njg5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ruslan-Smeliansky?enrichId=rgreq-a6e4063bdd046b8ae5c55539a216484b-XXX&enrichSource=Y292ZXJQYWdlOzM2NTQ4OTQ3NDtBUzoxMTQzMTI4MTA5ODA0MjkwOUAxNjY4NzY0MDE1Njg5&el=1_x_10&_esc=publicationCoverPdf

Network Powered by Computing

Ruslan Smeliansky
Dept. of Computational Mathematics and Cybernetics

Moscow State University
Moscow, Russia
smel@cs.msu.su

Abstract—The paper presents the concept of Network

Powered by Computing (NPC)—Computing infrastructure,

which is the convergence of data networks with computing

installations like DC, Edge, HPC. This concept is based on an

analysis of the properties of modern applications and the

requirements for the computational infrastructure for them.

The functional architecture of NPC and the main problems on

the way of its feasibility are described.

Keywords—computational infrastructure, serverless

computing, computer resources planning

I. INTRODUCTION

Organization of infrastructure for computation is one of
the key point of modern civilization. Therefore it is important
to understand the main trends and prospects of its
development, to understand what problems will need to be
solved.

II. MODERN APPLICATION PROPERTIES

The main driving force of the development of
infrastructure for computing, its operating environment,
programming tools have always been the needs of
applications, which today suite can be summarized as follows:

 Distributed—it’s a modern application—this is a set
of interacting functions/services that run in parallel on
several computers connected by NPCs data
transmission network (hereinafter as DTN);

 Self–sufficiency—application is no longer represented
by code and source data only, it is accompanied by a
description of the structure of the interconnection of
the components that make up the application
(hereinafter application services), determination of the
required level of their productivity explicitly
formulated requirements for computing and network
resources, data storage and access to data resources,
intended timeframes for computing and data
transmission in the form of a service level agreement
(Service Level Agreement—SLA), application start
procedures. This description is written in a special
language, an example of which one can be the TOSCA
language [1] (hereinafter such a description will be
called Application Operation Specification—AOS).

 Real–time mode—applications are sensitive to delays
and have the limitation for response time;

 Elasticity—the performance of the application
changes automatically without interruption of its
operation in accordance with the requirements of the
SLA and the current load on it [2];

 Cross–platform—application is independent of the
software and hardware environment;

 Interaction and Synchronization—Combining the
results of different application components is not

dependent on their location, but is determined only by
AOS;

 Update–friendly—updating application components
should not affect its operation.

III. COMPUTATIONAL INFRASTRUCTURE REQUIREMENTS

The computational infrastructure for such applications
must meet the following requirements:

 Behavior predictability—predictability of delays
associated with computations, data transfer and access
to data during the application operation, in order to
manage application's execution accordingly to the
requirements of the SLA;

 Security—it does not pose unacceptable risks to the
application and its data like Confidentiality, Integrity,
Availability;

 Availability, Reliability and Fault Tolerance—the
infrastructure should be robust enough to ensure a high
level of availability and operability of its services,
application components, recovery of lost data in case
of failures and attacks, to react in real time by changes
in topology, traffic flows and shape routing to ensure
the fulfillment of SLA requirements;

 Efficiency and Fairness—the infrastructure must
ensure that the application runs, delivers and processes
its data by infrastructure resources, reliably, without
impairing other applications and their traffic;

 Virtualization—virtualization of all types of
infrastructure resources (computing, network,
storage);

 Scalability—scalability of application performance
regardless of its data location, services and intensity of
data flow, without stopping application operation;

 Serverless—the infrastructure should automatically
place application components in a way that allows
them to interact according to the application stricture,
and in a way that ensures that the SLA requirements of
the application are met, while minimizing
infrastructure resources utilization [3].

In order for the NPC to meet the requirement of efficiency
and predictability and serve as the computational
infrastructure for applications, in the above sense (everywhere
below the App.), its behavior, functioning must meet the
requirements, namely:

 predictability of time of execution of application
components and their interaction time (data transfer)
according to AOS;

 availability of a variety of virtualized network
functions (VNF hereinafter) аnd based on machine

learning algorithms for distribution, balancing,
shaping, filtering and other traffic engineering (TE)
methods on DTN channels;

 reliable isolation of control plane and data plane in
DTN from errors in network equipment, as well as
isolation of different data flows in these planes.

For predictability of the characteristics of data transfer
between application components, it is necessary to:

 set and guarantee fluctuation ranges of end–to–end
delay and jitter in DTN;

 guarantee the probability of packet loss in the DTN at
the level corresponding to the SLA application;

 make the usability of the available bandwidth of DTN
channels be maximal (mass overuse of resources is
prohibited, such as flooding);

 exclude the unpredictable transmission delays caused
by DTN, such as packet delays due to failure of order,
retransmission, overload feedback, etc.

Techniques and methods for predicting the execution time
of services and applications are discussed in detail in [4] and
we will not consider them here.

IV. NPC FUNCTIONAL ARCHITECTURE

The computational infrastructure with properties above,
we will call Network Powered Computing (NPC)—it is a
software–driven infrastructure, which is a tight software–
driven integration of various computers with a high–speed
DCN. Such an NPC is a fully manageable, programmable,
virtualized infrastructure. In other words, the NPC becomes
the computer!

The NPC organization should be based on the federative
principle. Each federate has its own administration and
possess an independent authority in whose jurisdiction there
is a certain amount of computing, telecommunication, storage
resources. The federate transfers part of these resources to the
Federation, which forms and monitors a unified policy for
their use.

Here is a summary of what a functional NPC architecture
would look like. Its main layers are the layer of applications,
application services and network functions (ASNF layer),
layer of NPC infrastructure control (NPCIC): computing,
networking, storing, resources layer (NPCR) and E2E
orchestration, administration and management layer (OAM)
responsible for orchestration, administration and management
of NPC infrastructure.

The functionality of the ASNF layer is application
representation development: it’s code and it’s data, it’s
Application Operation Specification (AOS) representing
application services (AS) and virtualized network functions
(VNF) necessary for the operation of the application,
specification of the data transmission network between
application components, formation SLAs for AS based on
SLA for the application as a whole.

The NPCIC functionality provides planning and
assignment of the application components to NPC resources,
in accordance with the AOS and the prediction of the
computation time, data transfer, define QoS resource
requirements according to the application SLA, collection and
aggregation data on the current state of resources; create an

overlay network according to AOS (topology, QoS channels,
security management).

The NPCR functionality provides a unified representation
of the state of heterogeneous resources (computing — cloud,
HPC; storage, network), monitoring their current states and
predicting their states for the nearest future.

The task of the OAM is to provide orchestration of the
interaction of the application components in accordance with
the AOS, collection of data on the resources consumption by
the application components, security functions in terms of
managing the NPC, support for the operation and
administration of the NPC.

The basis for building NPCs is formed by the technologies
of software–defined networks (SDN) and network functions
virtualization (NFV). Taking into account that the scaling
range of network functions is huge and works in real time, the
NPC will require low time complexity algorithms to optimize
resources planning and resource allocation. And given the
working speed, as for data transmission networks as for
computer installations, it becomes clear that only sub–optimal
solutions to the emerging optimization problems will be
available based on ML methods.

The functional architecture of the NPC described above is
shown in the Fig.1 below.

The functionality of its main layers has already been
briefly reviewed above: ASNF, NPCIC, NPCR and OAM.
Here we will dwell on the description of their interaction. AOS
can have two types of components: network functions for
managing data flows (traffic) and application services for data
processing and computing services. The first type of
components (network functions) is placed either in the DTN
control plane (applications of SDN controller) or directly in
network devices. Examples are NAT, Firewall, BRASS,
balancers, shapers, etc. Components of the second type—
application services—are placed in a virtualized form (on
virtual machines or containers) or directly on computing
resources (servers, Edges data centers of various levels, HPC
installations) of federates (in the figure below they are shown
in the form of racks).

Please keep in mind that the application programmers is
not required to foresee and explicitly insert the necessary
network functions or their chains into their application. VNFs
can be automatically integrated into AOS applications by
means of ASNF, just as compilers or application libraries do,
“plug in” the necessary functionality into the application code.

When AOS application services interact through the DTN,
the SDN controller of the overlay network “catches” the
request for data transfer, accesses the distributed ledger (DL)
of the overlay network tunnels to find the proper tunnel. If
there is no one in DL, then the SDN controllers apply to the
control center for application services in the NPCIC layer.
There, with the help of E2E OAM orchestrator (end–to–end
orchestrator) and NPCIC data transmission, the wanted tunnel
is constructed.

Fig. 1. Functional architecture of Network Powered by Computing

Such NPC can run applications in three modes—pro-
active, active, and mixed. In pro–active mode, application
services are loaded in advance on the federate’s resources in
passive state (in the form of code and data on external or
internal memory). In this case, when running the application,
it is only necessary to activate the required application
services according to AOS on those computing resources that
will ensure SLA compliance with the specific call to a specific
application. It should be clear from the above that different
references to the same application may have different SLAs.
Same application but with different SLA is treated as different
one.

The active mode involves loading the code of the
necessary application/computing services in accordance with
the AOS on the computing resources of the federates on
demand in such a way as to ensure compliance with the SLA
of the application. Mixed mode involves a combination of
proactive and active modes, i.e. some of the application
services and network functions are already pre-installed and
are only being activated, the rest ones are loaded and activated
upon request.

V. THE MAJOR PROBLEMS STATEMENTS

To meet the above requirements, the NPC must be able to
solve a wide range of tasks. For example, in NPCIC and OAM
blocks, that essentially form the NPC1 control circuit, it is
necessary to define: method of distribution (distributed vs
centralized) of computing resources between threads of
computing / application services and requests to them in a
given NPC mode of operation (proactive, active or mixed);
method for optimal control of data flows in the interaction of
computing/application services, method for managing
resource monitoring, prediction of the state of overlay network

1 The space of the paper does not allow to describe in details

NPCIC and OAM interaction.

channels, selection of the optimal virtual channel of the
overlay network with best QoS to meet the requirements of
the SLA of the application, congestion control management,
minimization of end–to–end delay, bandwidth monitoring,
scheduling flows in queues, etc., scaling the NPC control
plane and the data plane when changing the NPC scale,
optimal channel routing of the overlay DTN, fair distribution
of channel bandwidth, balancing data flow between
computing/application services, allocation of channel
bandwidth on demand [5]. In the NPCR layer: resource state
scan frequency, data presentation format.

Within the framework of the article, it is impossible to
cover the entire range of problems that need to be solved in
order to implement the formulated concept of the NPC. Here
we only present statements for the most important problems:

1. Optimal distribution of the chain of application
services on the NPC resources;

2. Distribution of a given set of services for projective
mode of operation of the NPC.

Let’s denote

Г = (V, А), where

V = CN ᴗ SN ᴗ P, where

CN – set of NPC computational nodes,

SN – set of NPC VPN gateways,

Р – set of Г poles.

A = {(vi,vj) | vi,vj ϵ V}—multiple channels of overlay
network.

Q (lvi,vj,Δt) | = (B, D, L, J) is the function defined on A,
where

 Δt—interval of time;

…

…

…

NPC Functional Architecture

NPC infrastructure Control Layer
(estimation, scheduling and allocation of resources, VPN connection request in accordance with AOS)

FCR G-VPN

…

Layer of applications, applied services and network functions
(representation of AOS, SLA, assessment of necessary resources

, SDN Data
Plane

…

…

…

…

…
…

…

…

…

…

Federate DTN

VPN Overlay

network

SDN Data

Plane
SDN Data

Plane

SDN Data

Plane

Federate DTN

FCR

Resource Layer
(monitoring, data collection and representation)

Federate DTN Control Layer

 Federate DTN Control Layer
Federate DTN Control Layer

G-VPN

Federate DTN Control Layer

E
2
E

 O
rc

h
es

tr
at

io
n
 a

n
d
 A

d
m

in
is

tr
at

io
n
 L

ay
er

 (
A

O
M

 L
ay

er
)

(a
ll

o
ca

ti
o
n
,

sc
h
ed

u
li

n
g
,

o
rc

h
es

tr
at

io
n
,

m
an

ag
em

en
t)

 B = (��, �)���—bandwidth of lvi,vj in terms: �� —average

and �� —maximum on Δt;

 D = (�, �	, �̅) – delay on Δt in terms: � − minimum,

� �—average, �̅- maximum RTT;

 L —percentage of lost packets;

 J = ̂, ̅ —jitter Δt in terms: ̂ —average, � —

maximum.

CN = {cni = <cr, m, h>}, where cr, m, h ϵ N – set of integers

 cr – number of cores (possible with characteristics);

m – amount of RAM;

 h – storage size.

P= {pᵢ}, where pi - source of request/application stream,
which is characterized by the function of distributing the
probability of requests/applications each with its SLA.
Consider that the same request/application but with different
SLAs are different requests/applications. The same pi can be
a source of requests for different services. Each request is
characterized by an application ID and a specific SLA—
execution time plus result delivery time.

AS—set of application services, each characterized by the
required computing resources, memory resources, storage
resources (сr, m, h).

VNF—set of virtual network functions, each characterized
by required computing resources, memory resources, storage
resources (cr, m, h) and which can be found in AOS.

Application service or network function is always
allocated to one cn.

W = {wi = (si
1, ….., si

k)}, where si
j ϵ AS ᴗ VNF, si

j = <cr,
m, h>—chain of application services (SFC);

Let’s introduce the function ET: (AS ᴗ VNF) x СN → R –

set of rational numbers, understood as estimation of element
execution time from AS ᴗ VNF on the certain cni ϵ CN. This
function can be represented as a matrix, where columns
correspond to elements from AS ᴗ VNF, and rows correspond
to elements from CN.

In these terms, the problem of the optimal distribution of
SFC on NPC can be formulated as follows:

It is required to construct a mapping F: W → Γ for a given

set P in such a way, that

1. Meet the SLA requirements for all wi from W with given pi

∈P

2. Under the condition of minimizing the objective function,
for example, in the following form:

where:

�, �, �—constant values;

c�, s�—cn
i
resources are used

�� , ��— cn
i
resources and queue length averaged over usage

time;

�, �—used resources of the entire NPC, averaged over time;
(���)� is a path in NPC correspond to SLA(w).

It is required to find the distribution of the AOS
component in such a way as to minimize the objective
function, i.e. in the table representing the ET function, you
need to add the application service ID in those positions that
correspond to the appropriate resources.

The problem of distribution of application services over
the resources of the NPC for the proactive mode of operation
can be formulated as follows. Let’s have given Γ, AS, W and
P. It’s required to build a matrix Х with dimension |Х| = |AS| x
|CN| where �� = 1, if si can be located on cnj, subject to the
following conditions:

1. The constraints of none cnj and none of (vi,vj) ϵA ,
incident to cnj, from Γ are violated;

2. Ɐ wi ϵW, SLA applications always be met for any
pj ϵ P.

It is clear that for both problems we must first of all prove
for the existence of the solutions and define the conditions for
solutions existence.

Given the intensity of request flows in modern networks,
the speed of data transfer and computation, it is clear that
classical optimization methods will not work to solve the
problems listed above. The most appropriate mathematical
technique seems to be the multi–agent optimization (MA)
technique. The application of this technique is considered in
two variants, which are compared with the centralized
approach. Centralized approach assumes the presence of a
control center and that each agent forms its own local state–
status. The Control Center collects the status of each agent,
makes a decision based on the optimization policy and sends
each agent a management impact. Another possible option—
is the NPC of the interconnected agents. In this case, each
agent knows its local state. Information exchange is limited by
neighboring agents only. Based on local and neighbor–based
information, each agent decides on the optimal strategy. The
second option – this is NPC independent agents. In this way
each agent knows its local state. Each agent judges the
management strategy and actions of other agents based on
their experience. Agent implements management solutions
according to its local optimization strategy and based on its
observations.

The size of the control domain, which is understood as a
subgraph of the NPC topology, plays a great importance when
using MA–approach in control. Experiments with the use of
MA–optimization for the router have shown that by adjusting
the domain size it is possible to achieve the optimal
combination of convergence and quality optimum solution of
the routing problem.

VI. ORGANIZATION OF NPC COMPUTING RESOURCES

From the point of view of the organization the computing
node (CN) could be as Edges [5] as standalone supercomputer
or HPC installation. Existing Data Center construction
approaches: high demands to quality of communication
channels service, to ensure availability of service; very high
capital construction costs of a centralized Data Center.
Significant problems of traditional DС are scaling and low
level of resource utilization due to the lack of a centralized
management system and orchestration system.

� = �� ∑ "α $%
$%

+ β (%
(%

+ γ *+$%
$%

− Θ-. + +(%
(%

− Δ-.01 |34|
5 (1)

The advantages of building a NPC based on Edges over
the traditional approach have been discussed in detail in [6]
and characterized by: reduction of transport requirements by
proximity of the service copy to the final consumer; reducing
the cost of organizing a Data Center due to the absence of the
need to build a centralized Data Center; efficient scaling
through the use of a centralized cloud platform; increasing the
efficiency of the network due to a centralized management and
orchestration system and the proximity of the service to the
client. The problems of organizing the control plane and the
data plane in Edges are in many ways similar to those that
were already listed above for the NPC Federate DTN Control
Layer (see Fig.1). The main difference—the decision–making
speed should be much higher.

As is well known, for maximum efficiency of program
execution, a specific set of hardware and their configuration is
required. Several attempts have already been made to
implement the approach of dynamically adjusting the
architecture for the application, i.e. see [7]. Currently, to meet
this need, it is proposed to use the resource disaggregation
approach [8]. Its essence is as follows. Data center use a
monolithic server model for more than 20 years, where each
server has a motherboard that hosts all types of hardware
resources, generally including processor, memory chips,
storage devices and network cards. Resource disaggregation
involves splitting the server's hardware resources into stand–
alone devices connected to the network, to which applications
can access remotely. Applications must be provided with
virtualized and secure access to hardware resources, and data
centers should support these applications with tools that
ensure their good performance.

Server in Data Center rack is no longer considered an
indivisible resource. The rack consists of a collection of
heterogeneous processing hardware: СРU general-purpose,
GPU, FPGA co-processors, solid state drivers, disk, tape
subsystems, tensor processing, neuromorphic and other types
of processors. All this equipment is connected by high-speed
NPC, for example, photonic. Today, the switch with a
capacity of 26.5 Тbps—is a reality.

Resource disaggregation improves resource efficiency and
application performance through more flexible workload
distribution and choice of means of data processing tools, that
best suits the processing algorithm. The optimal allocation of
resources in a disaggregated data center depends on its
topology and the placement of workloads.

In a disaggregated Data Center, rack hardware changes must
be transparent to virtual machines. In such a disintegrated
Data Center hardware infrastructure, the hypervisor's job is to
hide all the nuances of working with such heterogeneous
hardware and provide a consistent abstraction of resources for
virtual machines used by Data Center users. The key enabling
factor for disaggregation will be the NPC—to maintain good

performance at the application layer, it becomes critically
important that the NPC provide low latency communications
even as the traffic load increases due to disaggregation.

The article introduced the concept of service-oriented network
of data processing and transmission Network Powered by
Computing (NPC)—computing technology based on the
convergence of data networks with computing tools (DC,
Edge, HPC centers). This concept implements the approach of
modern computational infrastructure - a network in which the
means of data processing and transmission are in close
convergence. This network implements a well-known
slogan—“The network is a computer” and is based on the
analysis of the properties of modern applications and the
resulting requirements for computational infrastructure for
them. The functional architecture of NPC and the main
problems on the way of its implementation are described. It is
shown that the modern computational infrastructure is an NPC
that integrates heterogeneous disintegrated computing tools
connected by a data transmission network with software
control. The issue of organizing the ASNF, which, together
with the OAM and the NPCIC, is essentially an analogue of
the operating environment—an analogue of the traditional
operating system. But this is an independent large topic that
requires a separate publication.

ACKNOWLEDGMENT

This work is performed within the scientific program of
National Center of Physics and Mathematics (the project
“National center for supercomputer architecture research”),
under the Contract No 96–2022/174 dated Jun 01, 2022 with
RFNC–VNIIEF.

REFERENCES

[1] Topology and Orchestration Specification for Cloud Applications.

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-

os.html

[2] Elasticity. https://wa.aws.amazon.com/wellarchitected/2020-07-

02T19-33-23/wat.concept.elasticity.en.html

[3] "What Is Serverless Computing?". ITPro Today. 2021–12–13.

Retrieved 2022–03–23.

[4] R. Smeliansky, “MC2E: The environment for interdisciplinary

research,” Engineering Letters, vol. 6, pp. 40–54, 2021.

[5] https://www.youtube.com/watch?v=TuzDDZT4NL4

[6] R. Smeliansky, "Hierarchical edge computing," 2018 International

Scientific and Technical Conference Modern Computer Network
Technologies (MoNeTeC), 2018, pp. 1–11, doi:

10.1109/MoNeTeC.2018.8572272.

[7] A. V. Kalyaev, Mnogoprocessornye sistemy s programmiruemoj
arhitekturoj [Multiprocessor systems with programmable architecture].

Moscow, Russia: Radio i svyaz', 1984.

[8] Yuxin Cheng, Rui Lin, Marilet De Andrade, Lena Wosinska, and Jiajia
Chen. Disaggregated Data Centers: Challenges and Tradeoffs, School

of Electrical Engineering and Computer Science, KTH Royal Institute
of Technology, Sweden, http://kth.diva-

portal.org/smash/get/diva2:1292615/FULLTEXT01

View publication stats

https://www.researchgate.net/publication/365489474

