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Abstract: Software-Defined Networking (SDN) is a network implementation paradigm of great
importance, as it has a profound impact on the pace of technological progress. While SDN doesn’t
directly address the technical complexities of routing, congestion control, traffic engineering, security,
mobility, reliability, or real-time communication, it paves the way for innovative solutions to emerge
for these and similar challenges. Security is of utmost importance in SDN with Distributed Denial of
Service (DDoS) being an attack which creates large scale problems. DDoS creates malicious traffic that
resembles normal traffic in order to create service problems. As such, mechanisms that distinguish
between benign and malicious traffic is essential, since this is the first step to mitigate the problem
of DDoS. In this paper, we take a dataset onboard which exhibits benign and malicious traffic in
SDN. There are 23 features that are used for classification purposes. Here we utilise classification
procedure based on three methods based Grammatical Evolution applied on the aforementioned
data. We provide results that show the efficiency of our approach and show that all three methods
exhibits satisfactory results.

Keywords: SDN; DDoS; genetic algorithm; Grammatical Evolution; packet classification

1. Introduction

Recent advancements in the Information and Communication Technology (ICT) domain, including
mobile technologies, multimedia, cloud computing, and big data, have given rise to an increasing
demand for more convenient internet access, expanded user bandwidth, and more agile service
management. Software-Defined Networking (SDN) is heralded as a promising solution to meet these
evolving needs. A survey on SDN is given in [1], whereby all the important aspects of SDN are
identified and presented.

SDN stands as an evolving architectural approach distinguished by its dynamic, easily
manageable, cost-effective, and adaptable characteristics. These qualities position SDN as exceptionally
well-matched for the requirements of contemporary applications, which often demand high bandwidth
and exhibit dynamic behavior. In this architectural paradigm, network control and forwarding
functions are separated, enabling the direct programmability of network control and the abstraction of
the underlying infrastructure to serve applications and network services.

In recent years, the scientific community has shown a growing interest in delving into the domain
of SDN security in order to bridge the gap towards widespread SDN adoption. This research domain
encompasses a dual focus: one side seeks to leverage SDN features to bolster security, while the
other strives to establish a secure architecture for SDN systems. As we read in [2], an overview of
security threats that pose risks to SDN and enumerates various attacks that exploit vulnerabilities
and misconfigurations in the constituent elements of SDN are provided. Moreover, a discussion is
also provided highlighting the duality between using SDN for security enhancement and securing
SDN itself.

Distributed denial-of-service (DDoS) attacks pose a significant and growing threat to the
Internet. Attackers consistently adapt their tactics to evade security systems, prompting researchers
to continually refine their approaches to counter new attack vectors. Consequently, the DDoS
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landscape has become increasingly intricate, reaching a point where it’s challenging to achieve a
holistic understanding of the situation. On one hand, this complexity hinders a clear comprehension
of the DDoS phenomenon, as the multitude of known attack types creates the impression of a vast
and intricate problem space. On the other hand, the diverse strategies employed by existing defense
systems further complicate matters, making it difficult to identify their commonalities, differences,
and evaluate their effectiveness [3]. DDoS and SDN are discussed in previous works in the literature
ans we can see in [4,5].

In the course of our research, we delve into the intricate domain of Software-Defined Networking
(SDN) and work with a dataset that encompasses a diverse range of network traffic, encompassing
both benign and malicious patterns. This dataset stands as a source of information, boasting a total of
23 distinct features that serve as the foundation for our classification attempts.

As we work on this SDN dataset, we leverage classification methodologies rooted in Grammatical
Evolution. This innovative approach offers a unique perspective on the task of classifying network
traffic, harnessing the power of evolutionary algorithms to make sense of the complex patterns and
interactions within the data.

Our research endeavors culminate in the presentation of outcomes that offer valuable insights
into the efficacy of our chosen approach. These results not only shed light on the performance of our
Grammatical Evolution-based classification methods but also provide valuable contributions to the
broader understanding of SDN security and the classification of network traffic in this dynamic and
ever-evolving field.

2. Software Defined Networking Background

The Open Networking Foundation (ONF) [6] stands as a non-profit consortium with a
clear commitment to driving forward, establishing standards, and fostering the advancement
of Software-Defined Networking (SDN) for commercial purposes. This organization has been
instrumental in presenting a widely embraced and easily understandable definition of SDN. In essence,
SDN embodies a burgeoning network architecture that effectively separates network control from data
forwarding, allowing for direct programmability [7].

According to this definition, SDN is defined by two core attributes: the segregation of control and
data planes, and the ability to program the control plane. However, it’s crucial to acknowledge that
these features are not entirely novel in the realm of network architecture, as elaborated upon in the
subsequent discussion.

Initially, numerous efforts have been made to render networks programmable. Active networking,
for instance, endeavors to manage networks using software methods [8]. Additionally, routers have
been manipulated via software to enhance the programmability of network devices [9,10]. These
network devices’ functionalities can be adjusted by either installing new routing software or modifying
existing software configurations.

The notion of separating control and data planes has gained significant traction over the last
decade. In their work, [11], authors introduced the Routing Control Platform (RCP) as a replacement
for the Border Gateway Protocol (BGP) in inter-domain routing. This centralized routing control aimed
to streamline the complex process of fully distributed path computation. Additionally, the Internet
Engineering Task Force (IETF) introduced the Forwarding and Control Element Separation (ForCES)
framework, which effectively segregates control and packet forwarding elements within a ForCES
Network [12,13].

Moreover, [14,15] presented a 4D approach, offering a comprehensive redesign of the entire
network architecture through four distinct planes: "decision," "dissemination," "discovery," and "data,"
organized from top to bottom. This conceptual framework aimed to address various functionalities
and responsibilities within the network structure.

Furthermore, the Path Computation Element (PCE) architecture was introduced to autonomously
compute label-switched paths independently of the actual packet forwarding process in MPLS and
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Generalized GMPLS networks [16]. These advancements collectively represent substantial progress in
delineating and refining the separation of control and data planes within network architectures.

The works highlighted in [17,18] introduced a paradigm shift by enhancing fundamental
flow-based Ethernet switches with a centralized controller responsible for managing the admission
and routing of data flows. This innovative approach placed significant emphasis on separating the
data and control planes. Notably, this method has gained notable traction within the commercial
networking equipment domain. For example, Cisco’s ASR 1000 series routers and Nexus 7000 series
switches stand as prime illustrations. These systems have intelligently decoupled and modularized
the control plane from the data plane. This architectural decision enables the simultaneous operation
of an active control plane instance alongside a standby counterpart, ensuring robust fault tolerance
and seamless transitions during software upgrades. This approach marks a considerable advancement
in ensuring network stability, reliability, and adaptability within the industry.

In the context of SDN, its distinctiveness lies in its ability to offer programmability by distinctly
separating the control and data planes. SDN fundamentally revolutionizes how we program network
devices, providing a user-friendly alternative to the intricate nature of active networking. Moreover,
SDN champions the segregation of control and data planes within the network’s architectural
framework. This separation allows for the independent management of network control on the
control plane without disrupting the data flow. Consequently, it enables the extraction of network
intelligence from switching devices, relocating it to controllers. Simultaneously, this setup allows
external software to manage switching devices without requiring embedded intelligence.

The decoupling of the control plane from the data plane not only fosters a more simplified,
programmable environment but also delivers enhanced flexibility for external software to shape the
network’s behavior. This transformation marks a pivotal shift in how networks are managed and
controlled, streamlining the process and opening avenues for a more adaptable and responsive network
infrastructure.

3. DDoS Overview

A distributed denial-of-service (DDoS) attack constitutes a malicious attempt to disrupt the
regular flow of data to a specific server, service, or network by inundating the target or its surrounding
infrastructure with an overwhelming surge of internet traffic [3]. These attacks achieve their objectives
by harnessing multiple compromised computer systems, encompassing both traditional computers
and networked resources such as Internet of Things (IoT) devices, to generate attack traffic. In a broader
context, visualizing a DDoS attack is akin to an unexpected traffic bottleneck on a network, obstructing
the regular flow of traffic to its intended destination. The impact is analogous to an overwhelming
surge of vehicles congesting a road, preventing smooth passage to the intended locations.

DDoS attacks are orchestrated through interconnected networks of internet-enabled devices,
encompassing both traditional computers and a diverse array of devices, such as Internet of Things
(IoT) devices. These devices are compromised by malware, effectively placing them under the remote
control of an attacker. Together, these compromised devices are commonly referred to as ’bots’ or
’zombies,’ forming what is known as a ’botnet.’

Once a botnet is established, the attacker gains the ability to coordinate an attack by issuing
remote instructions to each bot within the network. When a victim’s server or network becomes the
target of the botnet, each bot begins sending numerous requests to the victim’s IP address. This influx
of traffic has the potential to overwhelm the server or network, leading to a disruption of regular
services, ultimately causing a denial of service.

The establishment of a botnet enables the attacker to wield substantial power over the coordinated
assault, leveraging the sheer volume of traffic generated by the network of compromised devices to
overwhelm the target, thereby impeding its regular operations.
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Mitigating Distributed Denial-of-Service (DDoS) attacks presents an inherent challenge due to the
fact that each bot involved mimics a legitimate internet device, making it arduous to distinguish the
malicious attack traffic from regular, legitimate data.

The primary indication of a DDoS attack typically manifests as a sudden decrease in website
or service speed, and in extreme cases, complete unavailability. However, because various factors,
including legitimate traffic surges, can cause similar performance issues, a comprehensive investigation
is usually necessary. To discern specific indicators of a DDoS attack, the use of traffic analysis tools
becomes imperative.

It’s important to note that there exist additional, more specialized telltale signs of a DDoS
attack, which can vary based on the specific type of attack being executed. These attacks encompass
application-layer, protocol-based, and volumetric assaults that infiltrate and disrupt the functioning of
a network. Recognizing these varied attack types is crucial in implementing effective defense strategies
against the distinct modes of DDoS attacks.

4. Related Work

In the paper referenced in [19], a comprehensive analysis of approximately 70 established
techniques designed for detecting and mitigating Distributed Denial of Service (DDoS) attacks within
Software-Defined Networking (SDN) environments is conducted. These techniques are systematically
categorized into four primary groups, incorporating methods based on information theory, machine
learning, Artificial Neural Networks (ANN), and various miscellaneous approaches. Additionally, the
paper extensively explores and addresses persistent research challenges, gaps, and issues associated
with establishing a secure DDoS defense solution in the realm of SDN. This detailed review is poised
to serve as a valuable resource for the research community, aiding the development of more robust
and reliable DDoS mitigation solutions tailored for SDN networks.

In [20], the paper proposes leveraging the central control features of SDN for attack detection,
introducing an efficient and resource-aware solution. Specifically, the paper delves into how DDoS
attacks can strain controller resources and presents a method for identifying these attacks by analyzing
the entropy variation of the destination IP address. Notably, this approach demonstrates the ability
to detect DDoS attacks within the first five hundred packets of the attack traffic. This early detection
capability is a significant advancement in proactively identifying and mitigating DDoS threats,
enhancing the overall security posture of SDN environments.

In [21], the authors highlight the limitations of traditional methods reliant on fixed thresholds and
historical data, inhibiting their adaptability to new and evolving DDoS attack scenarios. They propose
an innovative approach for detecting DDoS attacks within Software-Defined Networking (SDN)
environments. This novel method incorporates three vital components: a collector, an entropy-based
module, and a classification stage. Extensive experiments utilizing UNB-ISCX, CTU-13, and ISOT
datasets demonstrate that this approach surpasses existing methods in terms of accuracy for DDoS
attack detection in SDN environments.

Moving to [22], the authors conducted a comprehensive evaluation of the latest advancements
in machine learning (ML) and deep learning (DL) methodologies for detecting Distributed Denial of
Service (DDoS) attacks within SDN contexts. Their work involved an extensive systematic review
focusing on publications utilizing ML/DL techniques to uncover DDoS attacks in SDN networks
spanning from 2018 through early November 2022. This evaluation provides a valuable and updated
insight into the evolution and effectiveness of ML and DL techniques in combating DDoS threats
within SDN environments.

In [23], the authors introduce a DDoS attack detection and defense system that leverages
cognitive-inspired computing along with dual address entropy. This system involves extracting
attributes from the switch’s flow table, creating a DDoS attack model using the support vector machine
classification algorithm, and enabling real-time detection and defense in the initial stages of a DDoS
attack, ensuring swift restoration of regular communication. Their findings emphasize the system’s
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rapid attack detection, high accuracy in detection, and a low rate of false positives. Moreover, it is
capable of initiating appropriate defense and recovery measures upon identifying an attack.

In another study, the authors [24] utilize the Neighbourhood Component Analysis (NCA)
algorithm for feature selection and an effective classification phase. After preprocessing and feature
selection, they employ the k-Nearest Neighbor (kNN), Decision Tree (DT), Artificial Neural Network
(ANN), and Support Vector Machine (SVM) algorithms on a similar dataset. Their experimental results
reveal the DT algorithm’s superior performance, achieving an impressive 100% classification accuracy
rate when compared to other algorithms.

5. Dataset Description

The dataset that has been employed [25], was specifically curated for application within the
realm of Software-Defined Networking (SDN) and is generated using the Mininet emulator. Its
primary purpose is to facilitate the classification of network traffic through machine learning and deep
learning algorithms.

The project commences by configuring ten distinctive network topologies within the Mininet
environment, interconnecting switches with a single Ryu controller. The network simulation
encompasses benign TCP, UDP, and ICMP traffic, as well as various types of malicious traffic, including
TCP Syn attacks, UDP Flood attacks, and ICMP attacks.

This dataset is characterized by 23 features, comprising a mix of extracted attributes from
the switches and calculated parameters. Extracted attributes include details such as Switch-id,
Packet_count, byte_count, duration_sec, and duration_nsec (expressed in nanoseconds). It also
encompasses information like Source IP, Destination IP, Port numbers, tx_bytes (representing the bytes
transmitted from the switch port), and rx_bytes (indicating the bytes received on the switch port).
Additionally, the dt field captures date and time, converted into numerical values, with monitoring
intervals set at 30 seconds.

Calculated features include Packet per flow, Byte per flow (representing the byte count within a
single flow), Packet Rate (denoting the number of packets sent per second, calculated by dividing the
packet count by the monitoring interval), as well as metrics like the number of Packet_ins messages,
total flow entries in the switch, tx_kbps, rx_kbps, indicating data transfer and receiving rates, and Port
Bandwidth, sum of tx_kbps and rx_kbps.

The dataset’s final column serves as the class label, distinguishing between benign (labeled as 0)
and malicious (labeled as 1) network traffic. The network simulation spans 250 minutes, resulting in
the collection of a dataset comprising 104,345 rows of data.

6. Proposed Methodologies

Here we provide the reader with three proposed methods using Grammatical Evolution (GE) to
perform the necessary tasks that are required.

6.1. GenClass

The GenClass method [26] as presented in various related publications [27–29], has demonstrated
remarkable performance in tackling classification problems. Furthermore, the method’s source code is
openly available for use in any classification task. Detailed information about the associated software
can be found in Anastasopoulos et al.’s pertinent publication [30]. Grammatical evolution in this
context relies on the following key components:

Primarily, the grammar of the target language, expressed in Backus-Naur Form (BNF) format.
This grammar is defined as a context-free grammar (CFG), represented as G = (N, T, S, P), where
N signifies the set of nonterminal symbols, T signifies the set of terminal symbols, S represents the
starting symbol of the grammar, and P is a set that contains production rules. Each production rule
takes the form A → a or A → aB, where A, B belong to N, and a belongs to T. Secondarily, the
corresponding fitness function.
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In grammatical evolution, chromosomes are represented as vectors of integers, where each
element within the chromosome corresponds to a production rule from the provided BNF grammar.
Each production rule is assigned a unique serial number. The algorithm initiates by commencing with
the starting symbol of the grammar and progressively generates program strings by substituting non
terminal symbols with the right-hand side of the selected production rule. The rule selection process
involves two steps:

Take the next element from the chromosome and label it as V. Choose the next production rule
based on the scheme Rule = V mod R, where R represents the number of production rules applicable
to the current non terminal symbol. The proposed method is given in the Algorithm 1. Before that we
introduce the reader with the nomenclature of the parameters used.

Algorithm 1 GenClass Algorithm

Require: Read Train Data (xi, ti)
Ensure: NG
Ensure: NC
Ensure: PS
Ensure: PM Initialize the chromosomes of the population. Every element of each chromosome is

initialised randomly in rm.
Ensure: iter = 1

while i ≤ Ng do do (1)
Create Ci for gi

Calculate fi =
M

∑
i=1

(C(xi)− ti)
2

Utilize the selection process. In this phase, the chromosomes are categorized based on their
fitness. The top-performing (1 − PS)× NC chromosomes remain unaltered and are passed on to the
subsequent generation in the population. The remaining chromosomes will be substituted by new
chromosomes generated during the crossover.

Implement the crossover method. In this procedure, PS × NC chromosomes are generated.
Initially, for each pair of newly produced offspring, two unique chromosomes (parents) are chosen
from the existing population using tournament selection: A subset of more than one (K > 1)
randomly selected chromosomes is formed, and the chromosome with the most superior fitness
value is chosen as the parent. For every parent pair (z, w), two new offspring, z̃, w̃, are created using
the one-point crossover method.

Execute the mutation process. For every component of every chromosome, pick a random
number, r, from the range between [0, 1], and modify the respective chromosome if r ≤ PM.
end while
iter = iter + 1
if iter ≤ NG then

goto (1)
end if
Obtain g∗ and create C∗

Apply C∗ to test set

6.2. Neural Network Construction (NNC)

Tsoulos et al. [31] proposed a method that employs Grammatical Evolution (GE) for both
structuring the network’s topology and refining its weights. Their approach involves encoding
the network’s architecture and weights using a Context-Free Grammar (CFG) in Backus–Naur form
(BNF). The paper highlights that using GE for evolving Artificial Neural Networks (ANNs) offers the
advantage of easily shaping the search outcomes and results in a concise encoding. However, while GE
facilitates effective shaping of the search process, it appears less suitable for actual vector optimization,
specifically in optimizing connection weights. This limitation may lead to issues such as highly
destructive variation operators, potentially erasing information acquired during the evolutionary
search. The algorithm is given in Algorithm 2.
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Algorithm 2 NNC Algorithm

Ensure: NG
Ensure: NC
Ensure: PS
Ensure: PM
Ensure: LI
Ensure: Lc
Ensure: Initialize the chromosomes as random vectors of integers.
Ensure: iter = 0

(1)
while i ≤ Ng do

Create Ci with GE
Calculate fi
Apply the genetic operations of crossover and mutation.

end while
if iter%Li = 0 then

Create random LC
create LS
while Xi ∈ LS do

select randomly Y from population
Create an offspring Z of Xi and Y using one point crossover.
if f (z) < fi then

Xi = Z,
fi = f (Z)
iter = iter + 1.
if iter > itermax then

terminate
else

goto (1)
end if

end if
end while

end if
Create a neural network for the best chromosome
Evaluate the neural network.

6.3. FC2GEN

The section summarizes the work in [32,33], which constitutes the third method that we utilised
with the dataset using GE. The FSC method, rooted in grammatical evolution, aims to enhance the
classification accuracy of a given classifier by generating new features from existing ones. The process
involves several key steps:

Data Preparation: The dataset is divided into independent train and test sets. The train set is
utilized for constructing features, while the test set is used to evaluate these features in the chosen
classification method.

Genetic Algorithm Parameter Definition: Parameters such as N f (determining the number of
constructed or selected features from the original set), Ng (total number of chromosomes in the genetic
population), Lg (chromosome size), Rs (fraction of unchanged chromosomes in the next generation),
and Rm (mutation rate) are defined. The algorithm uses fixed-length chromosomes to restrict the
creation of excessively large expressions and decrease the search space.

Grammar Definition: A context-free grammar, outlining the possible algebraic expressions of the
original feature set, is created. This grammar includes valid arithmetic operations using the original
features, limiting the total number of original features (denoted as N) and defining the start symbol
(denoted as S).

Chromosome Initialization: Each part of every chromosome in the genetic pool is randomly
initialized within the range [0, 255].

Fitness Evaluation: Evaluation of each chromosome involves assessing its performance based on
some fitness criteria.
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Feature Construction from Chromosome Parts: The chromosome is divided into N f equal parts,
each part (gi, i = 1, ..., N f ) is used to construct a feature. Features ( fi, i = 1, ..., N f ) are created from
each part gi through a mapping process. This construction process can be executed in parallel.

Data Transformation based on Constructed Features: The original train and test datasets are
transformed using the constructed features to create new feature datasets. The new train set trains the
classification system, and the fitness of the chromosome gi is determined by the classification accuracy.
For regression problems, fitness is estimated by the negative mean square error between actual and
predicted values.

Chromosome Transformation using Genetic Operators: Genetic operators, crossover, and
mutation are applied to form the subsequent generation of chromosomes. In the crossover process, a
certain number (n = (1−Rs) ∗ Ng) of new chromosomes are generated, replacing those with the lowest
fitness in the current generation. This process involves cutting and exchanging sub-chromosomes
between pairs of randomly selected parents using tournament selection. For mutation, each element in
a chromosome has a chance to be changed randomly based on the mutation rate Rm.

Termination Check:The process either terminates if the maximum number of generations is
reached or if the best chromosome reaches a predetermined threshold of fitness (classification accuracy).
Otherwise, the feature construction process restarts from step Chromosome Transformation using
Genetic Operators.

The algorithm of this approach is given in Algorithm 3.

Algorithm 3 FC2GEN Algorithm

Ensure: split X to N f parts
while i ≤ N f do (1)

xi
For each xi construct FTi grammar

end while
Ensure: (xi , ti), i ∈ 1, ..., M pairs of patterns
Ensure: NG
Ensure: NC
Ensure: PS
Ensure: PM
Ensure: N f
Ensure: Initialize the chromosomes in the range [0,255].
Ensure: iter = 1

while i ≤ Ng do
Create a set of N f fopr the corresponding gi using (1)
Transform original to new train data (xgi,j , tj), j = 1, ..., M
Apply Learning C and calculate fitness fi

fi = ∑
j

= 1M(C(xgi,j )− tj)
2

The selection process involves categorizing chromosomes based on their fitness. The best-performing (1 − PS)× NC

chromosomes, determined by their high fitness levels, are directly carried over to the next generation unchanged. Meanwhile,
the lower-ranked portion of chromosomes will be replaced by new ones generated through the crossover procedure.

Apply the crossover procedure. During this process, PS × NC chromosomes will be created. Two distinct chromosomes
(parents) are chosen from the existing population using tournament selection for each pair of produced offsprings. Initially, a
subset of K > 1 chromosomes is randomly selected, from which the one with the best fitness value is designated as a parent.
Then, for each pair of parents (z, w), two new offsprings, ∼z and ∼w, are generated via one-point crossover.

For every element of each chromosome, select a random number r ∈ [0, 1] and alter the corresponding chromosome if
r≤PM
end while
iter = iter + 1
T = (xi , yi), i = 1, ..., K the original test set
Get best chromosome g∗ of the feature construction step
Construct NF features for g∗ using (1)
Transform T into T′ = (xg∗,i

, ti), i = 1, ..., K) using the previously constructed features.
Apply a learning model such as RBF or a neural network to and obtain the test error.
=0

7. Results

Here, we use the aforementioned dataset in order to show the efficiency of our approach. We
performed experiments, initially, using 4 methods, namely Bayes, K-Nearest Neighbours (KNN) and
Random Forest. Our results show that GenClass is superior to the other methods since it exhibits 6.58
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% error as opposed to Bayes 32.59, KNN with 18.45 %, and Random Forest with 30.70 %. The results
can be seen in Figure 1.
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Figure 1. Error of Methods in %.

Thereafter we performed experiments using two other method with Grammatical Evolution,
namely the Neural Network Constructor (NNC) [31,34] and the FC2GEN [32]. The results can be seen
in Figure 2. As we can see the GenClass method is better, exhibiting less class error comparing to the
two competitors. In particular, GenClass exhibits 6.58 % while NNC and FC2GEN exhibit average class
error of 12.51 % and 15.86 % respectively. However, the results that the NNC and FC2GEN exhibited
are satisfactory in terms of performance. In summary we see that Grammatical Evolution provides
good results.
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Figure 2. Error of Grammatical Evolution Methods in %.

8. Conclusions

The paper delves into Software-Defined Networking (SDN) research, exploring a dataset
encompassing a spectrum of network traffic patterns, inclusive of both benign and malicious data.
This dataset encompasses 23 unique features tailored for classification purposes. The study employs
Grammatical Evolution as its classification methodology, utilizing evolutionary algorithms to decipher
intricate data patterns.

The research concludes by presenting findings that assess the efficacy of the Grammatical
Evolution-based classification approach. These results yield valuable insights into the method’s
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performance, contributing significantly to comprehending SDN security and the evolving landscape of
network traffic classification within this dynamic field.

We show that the proposed algorithm surpasses both other classification methods as well as
competitors from the Grammatical Evolution background. For future work, we leave the utilisation of
parallel and federated approach to edge DDoS attacks.
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