&Georgiaﬂm@ﬁﬁﬁ@ﬁ@

ot Technelogy

- Software Defined

=
ze

=2 Networking

\\\\\ CoLuY Dr. Nick Feamster
1 Associate Professor

il 2l N

N33 250,27)
N\ 22252

Y
TN

.~ In this course, you will learn about software defined networking
' and how it is changing the way communications networks are
{ managed, maintained, and secured.

I

School of Computer Science

Georgia I& Conputer
Tech | Science

=

This Module: Verification

Motivation: How do you know the network is
doing the right thing”?
Verification techniques

Configuration Verification: rcc (pre-SDN)

Control Plane Verification: Kinetic

Data Plane Verification
Header Space Analysis

Veriflow ‘

Georgia I& Conputer
Tech | Science

=

Simple Questions are Hard

What are all the packet headers from A that can
reach B?

What will happen if | remove an entry from a
firewall?

Is Group X provably isolated from Group Y?
Are there any loops in the network?
Why is my network slow?

_4

Configuration Defines Behavior

How traffic enters and leaves the network
Load balance
Traffic engineering
Primary/backup paths

Which neighboring networks can send traffic
Defines business relationships and contracts

How routers within the network learn routes
Scaling and performance

Flexibility —— Complexity

Tech) Science

=

Georgia I& Conputer

Most Important Goal: Correctness

Unfortunately...
Mistakes happen!
Why?
Configuration is . Operators make mistakes.

Complex policies

Configuration is distributed across routers
Each network

Unintended policy interactions ‘

Problem

Guarantee correctness of the
global routing system.

Examine only local configurations.

_4

Georgia I& Conputer
Tech | Science

=

Checking Configuration

Correctness specification and constraints for global
Internet routing

rcc (“router configuration checker”™)
Static configuration analysis tool for fault detection
Used by network operators (including large backbone networks)

Analysis of real-world network configurations from 17
autonomous systems

rcc Design

Correctness Intermediate

Specification I EIE Representation

l

Faults

\ 4

Georgia I& Conputer
Tech | Science

=

Challenges

Defining a correctness specification
Deriving verifiable constraints from
specification

Analyzing complex, distributed configuration

Verifying correctness with local (per-AS)
information

_4

Correctness Specification
Path Visibility

For each usable path, a corresponding route advertisement
must be available

Route Validity

For each available route, there must exist a corresponding
usable path

Safety

For any given set of configurations distributed across routers
in different ASes, a stable path must exist, and the protocol
must converge to it

Georgia & Conputer
Tech | Science

=

Factoring Routing Configuration

Filtering: route advertisement Ranking: route selection

o o ﬁ-/
K acku

Dissemination: internal route advertisement

Georgia I& Conputer
Tech | Science

=

Path Visibility
If every router learns a route for every usable path,
then path visibility is satisfied.

A usable path:

- Reaches the destination

- Corresponds to the path that packets take when using that route
- Conforms to the policies of the routers on that path

Possible path visibility faults
Dissemination
- Partition in session-level graph that disseminates routes
Filtering
- Filtering routes for prefixes for usable paths

Georgia I& Conputer
Tech | Science

=

Path Visibility: Internal BGP (iBGP)

Default: dont re-advertise iBGP-learned routes.

Complete propagation requires “full mesh”
iBGP. Doesn’t scale.

“Route reflection” improves scaling.
re-advertise as usual.

reflect non-client routes to
all clients, client routes to non-clients and
other clients.

Route reflector

Georgia A Coenmputer
Tech | Science

Path Visibility: iBGP Signaling

No route to destination.
bugging nightmare!

Route reflectors

N
A @

Clients

Georgia I& Conputer
Tech | Science

=e

Path Visibility: iBGP Signaling

1l @
/8]
"

Route reflectors
W X Y

Clients

Theorem.

Suppose the iBGP reflector-client relationship graph contains no cycles. Then, path visibility

is safisfied if, and only if, the set of routers that are not route reflector clients forms a full
mesh.

Condition is easy to check with static analysis.

Route Validity

route validity
A usable path:
- Reaches the destination
- Corresponds to the path that packets take when using that route
- Conforms to the policies of the routers on that

Possible route validity faults
Filtering
- Unintentionally providing transit service
- Advertising routes that violate higher-level policy
- Originating routes for private (or unowned) address space

Dissemination
- Loops and “deflections

Georgia I& Conputer
Tech | Science

=

Route Validity: Consistent Export

Rules of settlement-free peering:
Advertise routes at all peering points
Advertised routes must have equal “AS path length”

g

q
S

E\
S

“equally good”
routes

Georgia I& Conputer
Tech | Science

=

This Module: Verification

Motivation: How do you know the network is
doing the right thing”?
Verification techniques

Configuration Verification: rcc (pre-SDN)

Control Plane Verification: Kinetic

Data Plane Verification
Header Space Analysis

Veriflow ‘

Tech || Sciehca

=

Georgia & Conputer

Kinetic: Verifiable Event-Based
Network Control

Infection removed or manually fixed

Unsnilbemseeia Failed Authentication Quarantined
e
Successful Q&)’b&
Authentication 3(\\)
et
6’&
o
e
.\\\0&
5’0
|
Clean after update Clean

Authenticated
Vulnerability detected

Network policies represented as FSMs

FSMs are verifiable! -

Kinetic System Architecture

Kinetic | LPEC projection map Event Hookup
Program .
! 3 \
K.|net|c LPEC1>> |+ LPEC2>> % 4+ eee 4 LPECH>>:+\/’,
Library - (2 —

External Event Drivers s Event Handler ‘ l
£
Pyretic Runtime

external | port_events packet_ins packet_outs
stat_requests flow_mods

events : switch_events stat_replies

LPEC projection map divides located packets into
equivalence classes
Event hookup for external events

Georgia & Conputer
Tech | Science

=

Kinetic Language Architecture

P | FSMPolicy(L,M) | K+ K|K>> K
f : packet -> F

FSMDef ([var_name=V])

VarDef (type, init_val,T)
[case(S,D)]
D==D|S&S|(S|S)|!S
C(value) | V(var_name) | event

Dynamic() |[IN|P+P|P>>P

B | F | modify(h=v) | N+N | N>>N
A| F&F | (F|F) |~F

identity | drop | match(h=v) |
FwdBucket () | CountBucket()

Kinetic

Pyretic

Static
Pyretic

W>»TNMZ T On-HAH<Z2r X

Extensions to Pyretic
Special dynamic policy class FSMPolicy
FSM descriptions and basic values

Example: Intrusion Detection System

1

2

(infected, True) 3

infected:False) /' infected:True 4

policy:identity | policy:identity g
N Vv

_— 7

8

. : (infected,False) 9

infected:False infected:True 10

. . “<Illllllllllllllll‘ N . 11

policy:drop g policy:drop 12

\A i A» \M_//// 13

14

exogenous transition *=») endogenous transition q 15

16

@transition
def infected(self):
self.case(occured(self.event),self.event)

@transition

def policy(self):
self.case(is_true (V(’infected’)) ,C(drop))
self.default(C(identity))

self.fsm_def = FSMDef(
infected=FSMVar(type=BoolType () ,
init=False ,
trans=infected),
policy=FSMVar(type=PolType ({drop, identity }),
init=identity ,
trans=policy))

LPEC Policy Description

Step (1)
match(srcip=IPAddr(’10.0.0.1"))

Step (2)

def ids_lpec_pm (pkt):
return match(srcip=IPAddr(’10.0.0.1"))

Step (3)
17 def ids_-lpec_pm(pkt):
18 return match(srcip=pkt[’srcip’])

@ Specify LPEC
@ Define proejction MAP

® Parameterizes using input packet -

Conversion to NuSMV

1 |[MODULE main

2 VAR

3 policy : {identity ,drop};
4 infected : boolean;

5 ASSIGN

6 init (policy) := identity;
7 init (infected) := FALSE;

8 next(policy) :=

9 case

10 infected : drop;

11 TRUE : identity;

12 esac;

13 next(infected) :=

14 case

15 TRUE : {FALSE,TRUE};
16 TRUE : infected;

17 esac;

® FSMs translate directly to NuSMV model checker
® Can check properties in CTL

Tech) Science

=

Georgia I& Conputer

CTL Examples for Kinetic IDS

NuSMV Description

AG infected — If infection event arrives, the
(policy=drop) system should drop the packet.

AG !infected — If infection is cleared, the sys-
(policy=identity) tem should allow the packet.

AG EF policy=identity From any state, it is possible to

go to allowed state again.
A [policy=identity For all paths, policy allows
U infected] packet until an infection occurs.

Rules expressed using CTL

Georgia I& Conputer
Tech | Science

=

Summary

Event-based control is a common idiom

Need to verify dynamic properties of network
control, not only data-plane properties

Kinetic: Verifiable dynamic network control
Policies expressed as FSMs
FSMs map naturally to model checking
Properties can be checked in CTL

Georgia I& Conputer
Tech | Science

=

This Module: Verification

Motivation: How do you know the network is
doing the right thing”?
Verification techniques

Configuration Verification: rcc (pre-SDN)

Data Plane Verification

Header Space Analysis
Veriflow

Control Plane Verification: Kinetic ‘

Georgia I& Compuier
Tech || Science

=

Network Verification Vision

Input IP Output
VLAN Spanning MAC npu utpu

Table Tree Table Aflw diables mmACls Filtering
ARP MAC Spanning _RUles;v
Table Table Tree l-i:l
|| . .
ﬁ Input IP Output
P MPLS MAC ACL table ACL
Table Mappings Table el S

e Table Table Tree

Juniper

Georgia & Coenmputer
Tech | Science

=e

Network Verification Vision

e SGEGRNERE BUAG Input 1P Output

Tabl Table ACL table ACL Filtering
Tswitch ARP MAC Spanning
Table,——— ree Tfirewa,ll
Trouter
Input P Output
IP MPLS MAC ACL table ACL
Tabl inos Table ARP MAC Spanning
Tabl Jree
TvipLs

Trouter

Georgia I& Conputer
Tech | Science

=e

Insight: Treat Network as a Program

Model header as point in high dimensional space and
all networking boxes as transformers of hgader space

P —

s HACKER’S VIEW
/ 1 Packet

Forwarding
. 2
Match Action
11xx..0x + Send to port 2

VERIFIER’S VIEW

Rewrite with 1x01xx..x1

ROUTER ABSTRACTED AS SET OF GUARDED COMMANDS . .
NETWORK BECOMES A PROGRAM —>CAN USE PL TOOLS

Header Space Framework

Step 1 - Model a packet, based on its header bits, as
a point in {0,1}- space — The Header Space

Header Data
Oxxxx0101xxx

Georgia & Conputer
Tech | Science

=

Header Space Framework

Step 2 — Model all networking boxes as transformers of
header space
p—

______________________ 5
________________________ S

Transfer Function:

1110..C 1 (h,p) — {(h17p1)7 c e ooy (hnapn)}

11xx..0x + Sendtoport2 vt | s
Rewrite with 1x01xx..x1 P —

_4

4

Transfer Function Example

® IPv4 Router — Forwarding Behavior

] 2
o 172.24.74.x Port1 — e
o 172.24.128.x Port2 / 3
o 171.67.x.X Port3
(h,1) if dst_ip(h) = 172.24.74.x
T(h, p) = (h,2) if dst_ip(h) = 172.24.128.x
(h,3) if dst_ip(h) = 171.67.x.x

__4

Transfer Function Example

- |IPv4 Router — forwarding + TTL + MAC rewrite

o 172.24.74.X Port1 1 2
o 172.24.128.x Port2 3
o 171.67.x.x Port3 /
(rw_mac(dec_ttl(h),next_mac), 1) if dst_ip(h) = 172.24.74.x
T(h, p) = (rw_mac(dec_ttl(h),next_mac), 2) if dst_ip(h) = 172.24.128.x
(rw_mac(dec_ttl(h),next_mac), 3) if dst_ip(h) =171.67.x.x

_4

Example Actions

Rewrite: rewrite bits 0-2 with value 101

- (h & 000111...) | 101000...

Encapsulation: encap packet in a 1010 header.

- (h>>4)]1010....

Decapsulation: decap 1010xxx... packets

o (h<<4)|000...xxxx

TTL Decrement:

o ifttl(h) == 0: Drop

- iftti(h) > O: h = 0...000000010...0
Load Balancing:

o LB(h,p) = {(h,P,),...(h,P)}

Georgia I& Conputer
Tech | Science

=e

Composing Transfer Functions

We can determine end to end behavior by
composing transfer functions,

: - Ts s (k)
~ _ L~ . 3(12(T1 (R, p)))

T3(12(1T1(h,p))) ‘

Inverting Transfer Functions

® Tell us all possible input packets that can
generate an output packet.

Georgia I& Conputer
Tech | Science

=

Header Space Framework
Step 3: Header Space Set Algebra

Intersection

Complementation

Difference

Check subset and equality condition.
Every region of Header Space, can be
described by union of Wildcard Expressions.
(example: 10xx U 011x)

Goal: do set operation on wildcard expressions.

_4

HS Set Algebra: Intersection

Bit by bit intersect using intersection table:
Example: 10xx N 1xx0 = 10x0
If result has any ‘'z, then intersection is empty:

Example: 10z2 M 0xx0 = 2020 = ¢

Header Space Framework

® Simple abstraction that gives us:
» Common model for all packets
Header Space.

e Common model for forwarding functionality of all
networking boxes.

Transfer Function.

» Mathematical foundation to check end-to-end properties
about networks.

T(h,p) and T-'(h,p).
Set operations on Header Space.

Tech || Sciehca

=e

Georgia I& Conputer

Finding Reachability

C Box 2
111, o T T,(T1(X,A))

/

" .

: : T,(T1(X,A))
All Packets that A can | / - o
possibly send to box 4 >

through box 1

15

T3(To(T1(X,A)) U T5(T,(T4(X,A))

Georgia I& Conputer
Tech || Science

=

Predicates on Paths: Policies

Can generalize to check path predicates:

Blackhole freedom (A - B and notice unexpected
drop)

Communication via middle box. (A->B packets
must pass through C)

Maximum hop count (length of path from A 2> B
never exceeds L)

Isolation of paths (http and https traffic from A=>B
don’t share the same path)

Finding Loops

- Is there a loop in the network?
o Inject an all-x test packet from every switch-port
o Follow the packet until it comes back to injection port

=

T,(X,P)
P 2t

1

>

Box 1

T

L4 &5

Returned HS AN

Original HS

| TUTS(T,(T,(X,P))

Box 2

T,

I

Box 4

T,

A

T TZ(Tl(XIP))
— s

L

T5(T,(T4(X,P)))

Box 5

Finding Loops

@ |Is the loop infinite?

2 |& [

Finite Loop Infinite Loop ?

_4

Network Slices

By slicing network we can share network
resources. (e.g. Bank of America and Citi
share the same infrastructure in a financial
center).

Like VM, we need to ensure no interaction
between slices. (security, independence of
slices).

- We need to check isolation of slices.

__4

Definition of Slice in HSA

Network slice is a piece of network resources
defined by

o Atopology consisting of switches and ports.
o A set of predicates on packet headers.

VLAN = A

|t -

Checking Isolation of Slices

® How to check if two slices are isolated?
» Slice definitions don’t intersect.
» Packets don’tA leak after forwarding.

Georgia I& Conmputer
Sclence

Tech

=

Limitations of Configuration Verification

Configuration

v

Control plane

v

Data-plane
state

v

Network
behavior

- Input e Prediction is difficult

— Various configuration
languages

— Dynamic distributed
protocols

[~ Predicted o Prediction misses
implementation bugs
in control plane

Georgia & Conputer
Tech | Science

=

Veriflow: Data-Plane Verification

Configuration e Less prediction
J, * Closer to actual
network behavior
Control plane . .
e Unified analysis for
‘1:) multiple control-plane
Data-plane protocols
state - Input
‘1' i e Can catch control-
- plane implementation
Network
: - Predicted bugs
behavior

Challenges with Real-Time Verification

e Challenge 1: Obtaining real-time view of
network

— Solution: Utilize the centralized data-plane view
available in an SDN (Software-Defined Network)

e Challenge 2: Verification speed
— Solution: Off-the-shelf techniques?

Veriflow: Check Data-Plane State in Real-time

 VeriFlow checks network-wide invariants in
real time using data-plane state

— Absence of routing loops and black holes, access
control violations, etc.

e VeriFlow functions by
— Monitoring dynamic changes in the network
— Constructing a model of the network behavior

— Using custom algorithms to automatically derive
whether the network contains errors

Georgia I& Conputer
Tech | Science

=

VeriFlow Operation

Network Controller

New ruIesi

VeriFlow

Generate Generate
equivalence forwarding Run queries
classes graphs
Good rules Rules violating
network invariant(s)

L = Diagnosis report

* Type of invariant
violation

» Affected set of

packets

Georgia I& Conputer
Tech | Science

=

Three Steps

Limit search space

Packets experiencing same forwarding actions
throughout the network are an equivalence class

Represent forwarding behavior
Reresented as forwarding graphs

Run query to check invariants
Produce types of invariant actions

_4

