

Í

Software Defined Networking

In this course, you will learn about software defined networking and how it is changing the way communications networks are

managed, maintained, and secured.

Dr. Nick Feamster Associate Professor

School of Computer Science

Module 8.1: The (Near) Future of SDN

• Two Lessons

- A Broader Vision of SDN
- Open Problems and Challenges

Current SDN Paradigm: Match/Action

Match	Action
10.2.3.4:10.2.3.3	Fwd Port 1
A2:e3:f1:ba:ea:23:*	Drop

- Limited actions and matching
 - Match: Ethernet, IP, TCP/UDP port numbers
 - Action: forward, drop, rewrite header, etc.

Expanding SDN Beyond Match/Action

- Expand the OpenFlow standards
 - Requires consensus, vendor support
- Implement richer data plane in controller
 - Incurs performance penalties
- Send traffic through custom devices (e.g., middleboxes, custom hardware)
 - Requires orchestration

Two Future Directions

Middlebox Orchestration

SDN control plane for network middleboxes

• Custom Data Plane Orchestration

 SDN control plane for directing packets through custom hardware

Slick: Middlebox Orchestration

Anwer, Bilal, et al. "A Slick Control Plane for Network Middleboxes." *HotSDN Workshop*, August 2013.

Slick Elements

- Arbitrary code
 - Functions implement Slick API
 - Raises triggers at controller
- Self-describing manifest
 - Hardware requirements
 - List of exposed triggers
 - Network requirements:
 - flow affinity: needs to see both sides of traffic, or all traffic from a host

Slick Application

Implements network policies

- What element to run on which traffic
- How to react to changes in network conditions
- Obes not specify
 - Where to place the element
 - How traffic should be routed

Shim: Virtual Switch

Programmable device: NetFPGA, x86 server

Slick Controller

Manages and configures network of middleboxes

- Implements resource discovery
- Deploys/removes elements on machines
- Ensures element availability in the face of failures
- Implements policy in an application
 - Automates element placement and traffic steering
 - Uses online resource allocation algorithm

Application: Dynamic Redirection

- Inspect all DNS traffic with a DPI device
- If suspicious lookup takes place, send to traffic scrubber

Custom Data Plane Orchestration

- Augment OpenFlow switches with custom packet processors
- **Device abstraction layer** to allow programmability of this substrate
 - Single device
 - Network wide

Applications

- Big data applications
- On-the fly encryption, transcoding, classification
- Selective deep packet inspection

Summary

- New frontiers for SDN: Orchestration beyond match/action on switches
 - Middlebox orchestration
 - Programmable substrate orchestration

• Next lesson: Open problems