

Í

Software Defined Networking

In this course, you will learn about software defined networking and how it is changing the way communications networks are

managed, maintained, and secured.

Dr. Nick Feamster Associate Professor

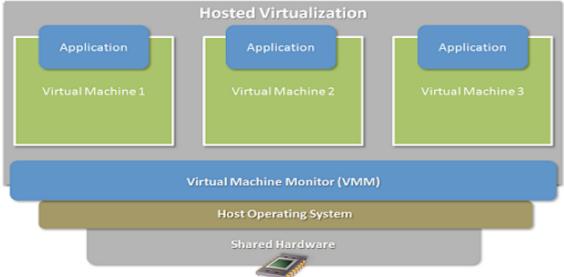
School of Computer Science

Module 7.1: SDN In the Wild

- Three Lessons
 - Data Centers
 - Wide-Area Backbone Networks
 - SDX: A Software-Defined Internet Exchange
 - B4: Google's Wide-Area Backbone Network
 - Home Networks
- Programming Assignment

Cloud Computing

- Elastic resources
 - Pay-per-use
 - Infrastructure on demand
- Multi-tenancy
 - Multiple independent users
 - Amortize the cost of the (shared) infrastructure



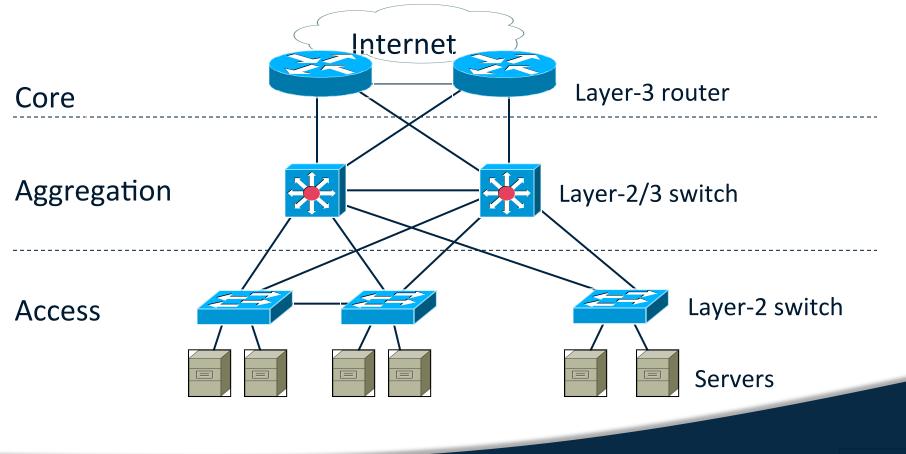
Cloud Service Models

- Software as a Service
 - Provider licenses applications to users as a service
 - Avoid costs of installation, maintenance, patches, ...
- Platform as a Service
 - Provider offers software platform for building applications
 - Avoid worrying about scalability of platform
- Infrastructure as a Service
 - Provider offers raw computing, storage, and network
 - Avoid buying servers and estimating resource needs

- Multiple virtual machines on one physical machine \bigcirc
- Applications run unmodified as on real machine \bigcirc
- VM can migrate from one computer to another

Georgia

orgia | Computer Tech | Science



Design Requirements for Data Centers

- Easy migration of virtual machines
- Minimal switch configuration
- Efficient communication along forwarding paths
- No forwarding loops
- Fast, effective failure detection

Common Data Center Topology

Problems with Common Topologies

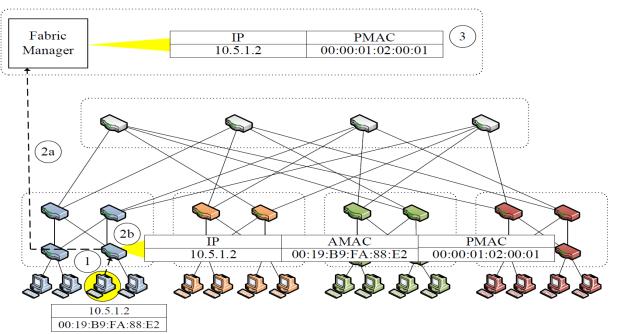
- Single point of failure
- Over subscription of links higher up in the topology

Tradeoff between cost and provisioning

Fat-Tree (Clos) Topology

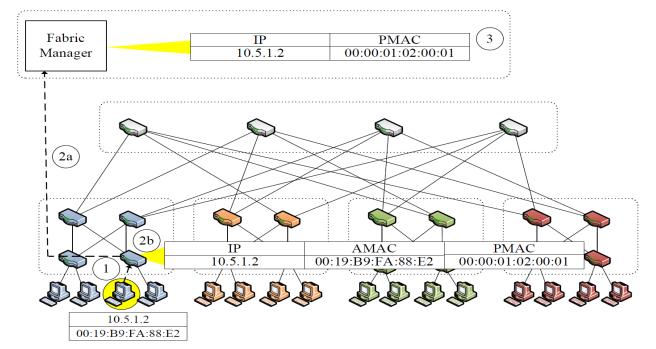
Multi-rooted tree 10.4.1.1 10.4.1.210.4.2.1 10.4.2.2Core topology Capacity increases 10.2.2.1 Aggregation towards the 10.2.0.1 10.0.1.1 Edge root(s) of the tree Inherent fault 10.2.0.2 10.2.0.3 Pod 0 Pod 2 tolerance Pod 1 Pod 3

Satisfying the Design Requirements

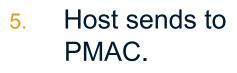

- Need for a large, layer two topology
 - Plug-and-play, minimal configuration

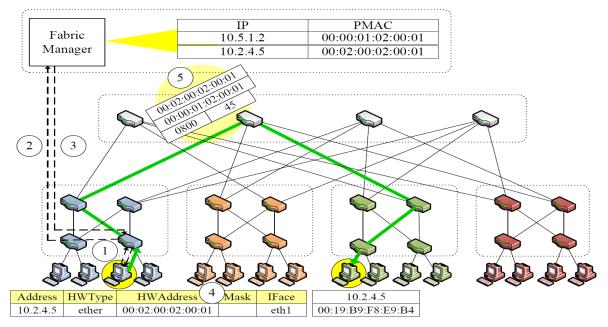
- Many scaling problems to solve
 - State required for layer-2 forwarding
 - Avoiding flooding (e.g., ARP requests)
 - Fast updates to addressing upon VM migration

PortLand: SDN for Data Center Networks


- Logically centralized fabric manager
- Positional pseudo
 MAC addresses
 - Address resolution: Proxy ARP
 - Forwarding based on pseudo MAC
 - Efficient forwarding

Fabric Manager: MAC Learning


- 1. New source MAC
- 2. Frame vectored to fabric manager.
- 3. FM constructs mapping to PMAC.



Fabric Manager: Proxy ARP

- 1. Edge switch intercepts ARP query.
- 2. Forwards to FM.
- 3. Return PMAC to edge switch.
- Edge switch creates ARP reply.

Summary

- Data center networks have unique requirements for scaling and flexibility
 - Tens of thousands of hosts
 - Need for minimal configuration and state
 - Ability to quickly migrate virtual machines
- PortLand Fabric Manager: An early SDN controller for data centers
 - PMACs, Proxy ARP