
In this course, you will learn about software defined networking
and how it is changing the way communications networks are
managed, maintained, and secured.

School of Computer Science

Software Defined
Networking

Dr. Nick Feamster
Associate Professor

� Four Lessons
� Motivation for Programming SDNs
�  Programming Languages for SDNs
� Composing SDN Control
�  Event-Driven SDN

� Programming Assignment
� Quiz

Module 6.2: Programming SDNs

2 Some	 slide	 material	 courtesy	 of	 Jennifer	 Rexford	

Programming SDNs

3

Controller	 Pla7orm	

Controller	 Applica:on	
Network-‐wide	
visibility	 and	
control	

Direct	 control	 via	
open	 interface	

Southbound	 APIs	 such	 as	 OpenFlow	 	
are	 :ed	 to	 the	 underlying	 hardware	 	

SDN Programming: Three Steps

Read/
Monitor!
state and
events!

OpenFlow!
Switches!

Write!
policy!

Compute Policy!

Reading State: Multiple Rules
�  Traffic counters

�  Each rule counts bytes and packets
�  Controller can poll the counters

�  Multiple rules
�  E.g., Web server traffic except for source 1.2.3.4

�  Solution: predicates
�  E.g., (srcip != 1.2.3.4) && (srcport == 80)
�  Run-time system

translates into switch patterns

1. srcip = 1.2.3.4, srcport = 80!
2. srcport = 80!

Reading State: Unfolding Rules
�  Limited number of rules

�  Switches have limited space for rules
�  Cannot install all possible patterns

�  Must add new rules as traffic arrives
�  E.g., histogram of traffic by IP address
�  … packet arrives from source 5.6.7.8

�  Solution: dynamic unfolding
�  Programmer specifies GroupBy(srcip)
�  Run-time system dynamically adds rules

1. srcip = 1.2.3.4! 1. srcip = 1.2.3.4!
2. srcip = 5.6.7.8!

Reading State: Extra Unexpected Events

� Common programming idiom
� First packet goes to the controller
� Controller application installs rules

7

packets!

Reading State: Extra Unexpected Events

� More packets arrive before rules installed?
� Multiple packets reach the controller

8

packets!

Reading State: Extra Unexpected Events

� Solution: suppress extra events
� Programmer specifies “Limit(1)”
� Run-time system hides the extra events

9

packets!

not seen by!
application!

Frenetic: SQL-Like Query Language
�  Get what you ask for

�  Nothing more, nothing less
�  SQL-like query language

�  Familiar abstraction
�  Returns a stream
�  Intuitive cost model

�  Minimize controller overhead
�  Filter using high-level patterns
�  Limit the # of values returned
�  Aggregate by #/size of packets

10

Select(bytes)	 *	
Where(in:2	 &	 srcport:80)	 *	
GroupBy([dstmac])	 *	
Every(60)	 	 	 	 	

Select(packets) *"
GroupBy([srcmac]) *"
SplitWhen([inport]) *"
Limit(1)"

Learning Host Location!

Traffic Monitoring!

Foster,	 Nate,	 et	 al.	 "Frene:c:	 A	 network	 programming	
language."	 ACM	 SIGPLAN	 No,ces	 46.9	 (2011):	 279-‐291.	

SDN Programming: Three Steps

Read/
Monitor!
state and
events!

OpenFlow!
Switches!

Write!
policy!

Compute Policy!

But, Modules Affect the Same Traffic

12

Controller	 Pla7orm	

LB	 Route	 Monitor	 FW	

Next	 Lesson:	 	
How	 to	 combine	 modules	 	
into	 a	 complete	 applica:on?	

Each	 module	
par,ally	 specifies	
the	 handling	 of	 the	
traffic	

Summary
� SDN control programs: common abstractions

� Reading and monitoring state and events
� Computing policy
� Writing state

� Frenetic: SQL-Like query language to control
the traffic seen at the controller

� Other challenges: Composing policy,
responding to events, compilation

13

