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� Four Lessons 
� Motivation for Programming SDNs 
�  Programming Languages for SDNs 
� Composing SDN Control 
�  Event-Driven SDN 

� Programming Assignment 
� Quiz 

Module 6.2: Programming SDNs 
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Programming SDNs 
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Controller	  Pla7orm	  

Controller	  Applica:on	  
Network-‐wide	  
visibility	  and	  
control	  

Direct	  control	  via	  
open	  interface	  

Southbound	  APIs	  such	  as	  OpenFlow	  	  
are	  :ed	  to	  the	  underlying	  hardware	  	  



SDN Programming: Three Steps 

Read/
Monitor!
state and 
events!

OpenFlow!
Switches!

Write!
policy!

Compute Policy!



Reading State: Multiple Rules 
�  Traffic counters 

�  Each rule counts bytes and packets 
�  Controller can poll the counters 

�  Multiple rules 
�  E.g., Web server traffic except for source 1.2.3.4 

�  Solution: predicates 
�  E.g., (srcip != 1.2.3.4) && (srcport == 80) 
�  Run-time system  

translates into switch patterns  

 

1. srcip = 1.2.3.4, srcport = 80!
2. srcport = 80!



Reading State: Unfolding Rules 
�  Limited number of rules 

�  Switches have limited space for rules 
�  Cannot install all possible patterns 

�  Must add new rules as traffic arrives 
�  E.g., histogram of traffic by IP address 
�  … packet arrives from source 5.6.7.8 
 

�  Solution: dynamic unfolding 
�  Programmer specifies GroupBy(srcip) 
�  Run-time system dynamically adds rules 

1. srcip = 1.2.3.4! 1. srcip = 1.2.3.4!
2. srcip = 5.6.7.8!



Reading State: Extra Unexpected Events 

� Common programming idiom 
� First packet goes to the controller 
� Controller application installs rules 

 

7 

packets!



Reading State: Extra Unexpected Events 

� More packets arrive before rules installed? 
� Multiple packets reach the controller 
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packets!



Reading State: Extra Unexpected Events 

� Solution: suppress extra events 
� Programmer specifies “Limit(1)” 
� Run-time system hides the extra events 
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packets!

not seen by!
application!



Frenetic: SQL-Like Query Language 
�  Get what you ask for 

�  Nothing more, nothing less 
�  SQL-like query language 

�  Familiar abstraction 
�  Returns a stream 
�  Intuitive cost model 

�  Minimize controller overhead 
�  Filter using high-level patterns 
�  Limit the # of values returned  
�  Aggregate by #/size of packets 

10 

Select(bytes)	  *	  
Where(in:2	  &	  srcport:80)	  *	  
GroupBy([dstmac])	  *	  
Every(60)	  	  	  	  	  

Select(packets) *"
GroupBy([srcmac]) *"
SplitWhen([inport]) *"
Limit(1)"

Learning Host Location!

Traffic Monitoring!

Foster,	  Nate,	  et	  al.	  "Frene:c:	  A	  network	  programming	  
language."	  ACM	  SIGPLAN	  No,ces	  46.9	  (2011):	  279-‐291.	  



SDN Programming: Three Steps 

Read/
Monitor!
state and 
events!

OpenFlow!
Switches!

Write!
policy!

Compute Policy!



But, Modules Affect the Same Traffic 
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Controller	  Pla7orm	  

LB	  Route	  Monitor	   FW	  

Next	  Lesson:	  	  
How	  to	  combine	  modules	  	  
into	  a	  complete	  applica:on?	  

Each	  module	  
par,ally	  specifies	  
the	  handling	  of	  the	  
traffic	  



Summary 
� SDN control programs: common abstractions 

� Reading and monitoring state and events 
� Computing policy 
� Writing state 

� Frenetic: SQL-Like query language to control 
the traffic seen at the controller 

� Other challenges: Composing policy, 
responding to events, compilation 
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