

Í

Software Defined Networking

In this course, you will learn about software defined networking and how it is changing the way communications networks are

managed, maintained, and secured.

Dr. Nick Feamster Associate Professor

School of Computer Science

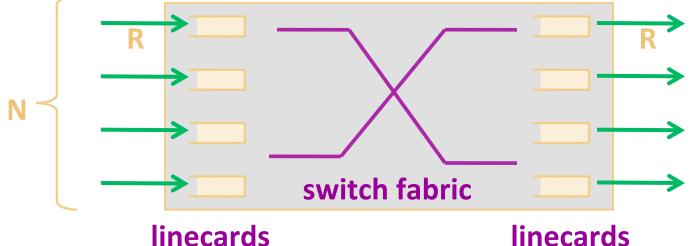
Module 5.2: Programmable Data Plane

• Two Lessons

- Programming the data plane: Click
- Scaling programmable data planes
 - Making software faster
 - Making hardware more programmable
- **Optional** programming assignment (in Click)
- Quiz on Concepts

Motivation

- Many new protocols require data-plane changes.
 - Examples: OpenFlow, Path Splicing, AIP, ...
- Protocols must forward packets at acceptable speeds.
- May need to run in parallel with existing protocols
- Need: Platform for developing new network protocols that
 - Forwards packets at high speed
 - Runs multiple data-plane protocols in parallel



Existing Approaches

- Oevelop custom software
 - Advantage: Flexible, easy to program
 - **Disadvantage:** Slow forwarding speeds
- Over the second seco
 - Advantage: Excellent performance
 - **Disadvantage:** Long development cycles, rigid
- Develop in programmable hardware
 - Advantage: Flexible and fast
 - **Disadvantage:** Programming is difficult

Hardware Router

Processing at rate ~*R* per line card Switching at rate *N* x *R* by switch fabric

Dobrescu, Mihai, et al. "RouteBricks: exploiting parallelism to scale software routers." *Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles*. ACM, 2009.

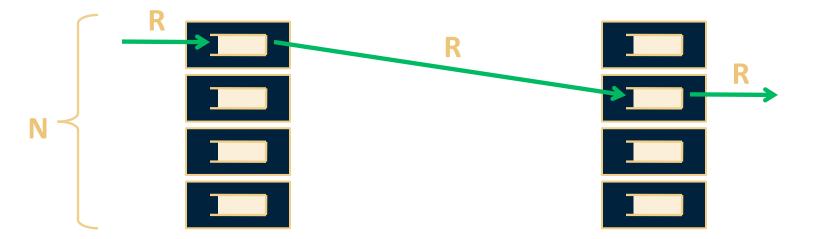
RouteBricks: Linecards on Servers

Processing at rate ~R per server
Switching at rate ~R per server

Requirements

- Internal link rates < R</p>
- Per-server processing rate: $c \times R$
- Per-server fanout: constant

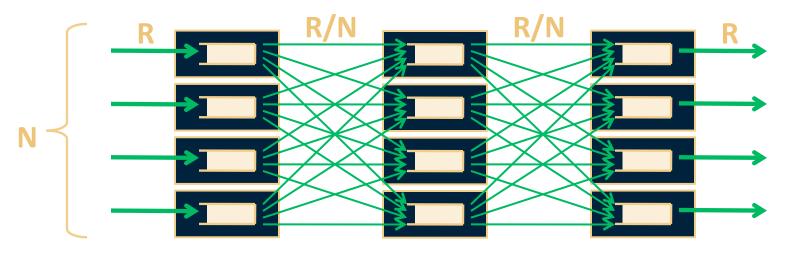
Challenges


Limited internal link rates: Internal links can't exceed external link rates

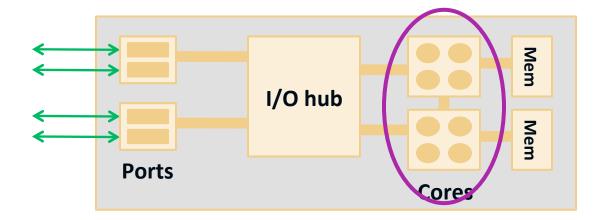
Limited per-node processing rate: Desire to use commodity hardware

 Limited per-node fanout: Due to limited NIC slots/ports


Strawman Approach


Strawman Approach

N external links of capacity *R N*² internal links of capacity *R*


Valiant Load Balancing

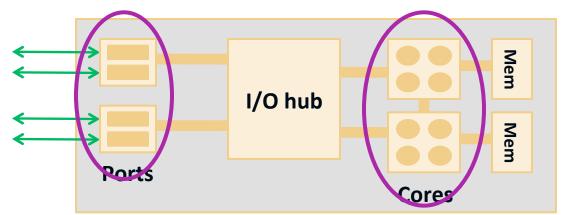
Per-server processing rate: 3R
 With uniform traffic (avoiding first phase): 2R

Each Server Must Also Be Fast

• First try: 1.3 Gbps

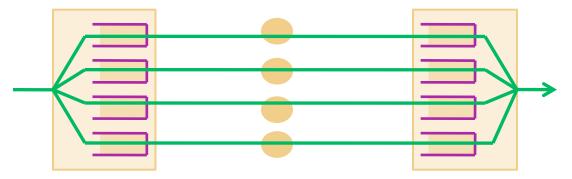
Problem #1: Bookkeeping

Managing packet descriptors

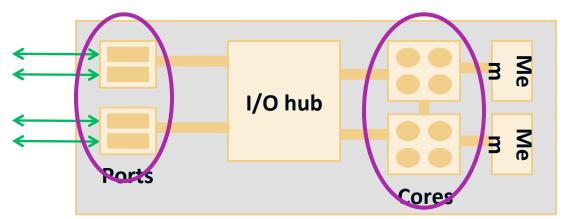

- moving between NIC and memory
- updating descriptor rings

Solution: batch packet operations

- NIC batches multiple packet descriptors
- CPU polls for multiple packets
- Cost: increased latency


Single-Server Performance

First try: 1.3 Gbps With batching: 3 Gbps


Problem #2: Queue Access

Rule #1: 1 core per queue (avoids locking)
Rule #2: 1 core per packet (faster)

Single-Server Performance

- First try: 1.3 Gbps
- With batching: 3 Gbps
- With multiple queues: 9.7 Gbps

Fast Software Forwarding: Other Tricks

- Large packet buffers to hold multiple packets
- Batch processing
- Ethernet GRE (to avoid complicated lookup)
- Avoiding lookups on bridge between virtual interfaces and physical interfaces

Han, Sangjin, et al. "PacketShader: a GPU-accelerated software router." *ACM SIGCOMM Computer Communication Review* 40.4 (2010): 195-206. Bhatia, Sapan, et al. "Trellis: A platform for building flexible, fast virtual networks on commodity hardware." *Proceedings of the*

2008 ACM CoNEXT Conference. ACM, 2008.

Summary

• Scalability: Make the software faster

- Software routers can be fast!
- General purpose infrastructure is capable of fast forwarding performance
 - The low-level details, optimizations matter
- Other efforts underway
 - Intel DPDK