

Í

Software Defined Networking

In this course, you will learn about software defined networking and how it is changing the way communications networks are

managed, maintained, and secured.

Dr. Nick Feamster Associate Professor

School of Computer Science

This Module: Network Virtualization

Three Lessons

- What is network virtualization and how is it implemented?
- Examples of network virtualization and applications
- Virtual networking in Mininet
 - Mininet: Why and How?
 - Examples of Using Mininet

What is Mininet?

- A virtual network environment that can run on a single PC
- Runs real kernel, switch, and application code on a single machine
 - Command-line, UI, Python interfaces
- Many OpenFlow features are built-in
 - Useful: developing, deploying, and sharing

Why Use Mininet?

- Fast
- Possible to create custom topologies
- Can run real programs (anything that can run on Linux can run on a Mininet host)
- Programmable OpenFlow switches
- Easy to use
- Open source

Alternatives

• Real system: Pain to configure

• Networked VMs: Scalability

• Simulator: No path to hardware deployment

Georgia

Computer

Tech () Science

- Launch mininet process
- er host
 - Bash process
 - Network namespace
- Create veth pairs and assign to namespaces
- Create OpenFlow switch to connect hosts
- Oreate OpenFlow controller

Summary

- Mininet is a network emulator that runs in a Virtual Machine
 - Lightweight OS virtualization to achieve scale
 - Fast, easy, sharable
- Next Part of Lesson: Topology examples
 - mn wrapper, Python
 - Topologies and controllers