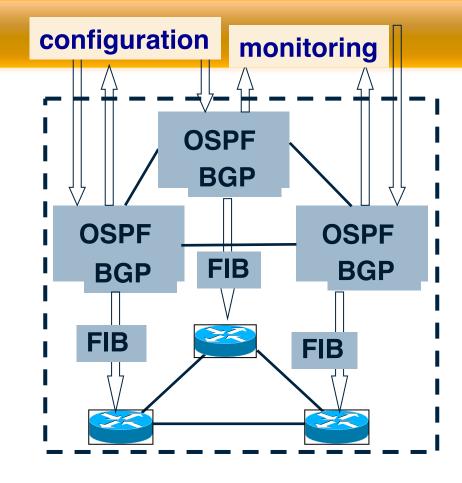


Dr. Nick Feamster Associate Professor

Software Defined Networking

In this course, you will learn about software defined networking and how it is changing the way communications networks are managed, maintained, and secured.

This Module: 4D Network Architecture


- The "4D" Network Architecture
 - Motivation
 - Defining the 4Ds

 How 4D Terminology Relates to SDN Today

Conventional IP Routers

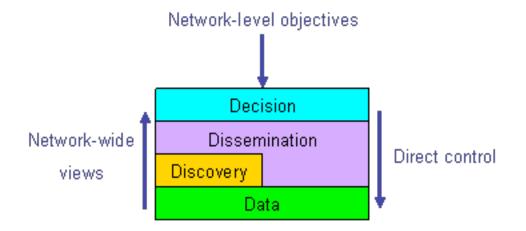
- Management plane
 - Construct network-wide view
 - Configure the routers
- Control plane
 - Track topology changes
 - Compute routes and install forwarding tables
- Data plane
 - Forward, filter, buffer, mark, and rate-limitpackets
 - Collect traffic statistics

Goal: Remove (Conventional) Control Plane

- Faster innovation
 - Remove dependence on vendors and the IETF
- Simpler management systems
 - No need to "invert" control-plane operations
- Easier interoperability between vendors
 - Compatibility necessary only in "wire" protocols
- Simpler, cheaper routers
 - Little or no software on the routers

Removing the Control Plane From Routers

- Control software can run elsewhere
- State and computation is reasonable
- System overhead can be amortized
- Easier access to other information
- Some control can move to end hosts

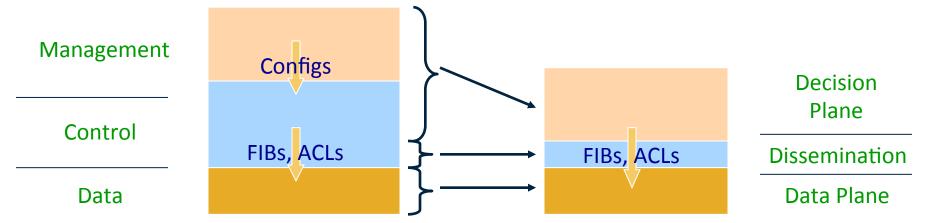


Three Goals of 4D Architecture

- Network-level objectives
 - Configure the network, not the routers
 - Minimize the maximum link utilization
 - Connectivity under all layer-two failures
- Network-wide views
 - Complete visibility to drive decision-making
 - Traffic matrix, network topology, equipment
- Direct control
 - Direct, sole control over data-plane configuration
 - Packet forwarding, filtering, marking, buffering...

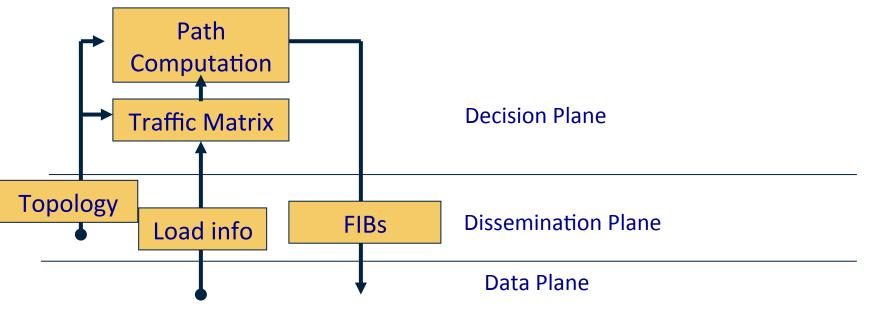
The "4D" Planes

- Decision: all management and control
- Dissemination: communication to/from routers
- Discovery: topology and traffic monitoring
- Data: traffic handling

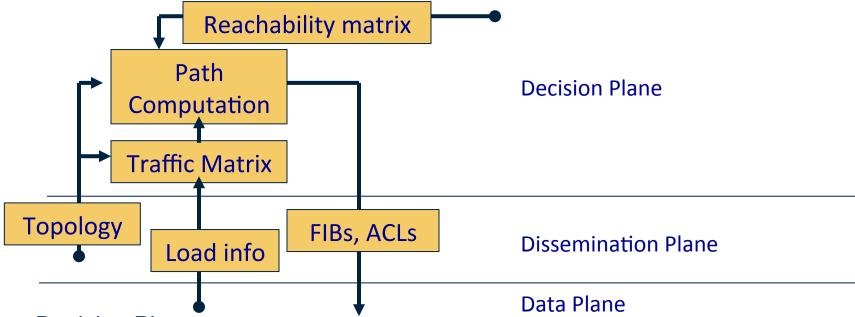


Dissemination and Decision Planes

- Decision Plane: Functions that operate on view of entire network and network objectives
 - Path selection and traffic engineering
 - Reachability control and VPNs
- Dissemination Plane: Functions that support creation of a network-wide view
 - Topology discovery
 - Report measurements, status, resources
 - Install state (e.g., FIBs, ACLs) into data-plane


Good Abstractions Reduce Complexity

- Dissemination plane is a control channel between the decision plane and the data plane
- Routing protocols become a control channel. Complex logic in decision plane.


Traffic Engineering in 4D

- Dissemination Plane: Consistent network-wide view
- Decision Plane: Decision Logic that directly expresses desired solution

Traffic Isolation in 4D

- Decision Plane
 - Reachability matrix directly expresses goal
 - Path computation can jointly optimize traffic load and obey reachability constraints
- Packet filters installed only where needed

SDN Still Have a "Control Plane", but It's Not What 4D Called a Control Plane

- What the 4D calls the "control plane" is actually distributed routing protocols
- What we refer to as the "control plane" today is the "decision plane" in 4D
- The "dissemination plane" lives on, but we call it a "control channel"
 - In RCP, dissemination plane is BGP
 - In OpenFlow, it's "secchan"

Summary

- Four layers
 - Data: for processing packets
 - Discovery: for collecting topology and traffic
 - Dissemination: installing packet-processing rules
 - Decision: logically centralized controllers convert objectives into packet-handling state
- 4D is a generalization of RCP
 - Others followed up with more general implementations