

Í

Software Defined Networking

In this course, you will learn about software defined networking and how it is changing the way communications networks are

managed, maintained, and secured.

Dr. Nick Feamster Associate Professor

School of Computer Science

This Module: Control and Data Separation

- Challenges from control and data separation
- Overview of challenges
 - Scalability: Routing decisions for many routers
 - Reliability: Correct operation under failure
 - Consistency: Ensuring consistency across multiple control replicas
- Approaches to solving these challenges in RCP, ONIX

Scalability: RCP

- Problem: Must store routes and compute routing decisions for every router
- Output: Potentially thousands of routers

Scalability: Principles from RCP Design

• Eliminate redundancy

- Store a single copy of each route
- Avoid redundant computation
- Accelerate lookups
 - Maintain indexes to identify affected routers
- Only perform BGP routing

Scalability: ONIX

- Partitioning: Only keep a subset of the overall network information base (NIB) in memory.
 - Two different consistency models
- Aggregation: Use of hierarchy (e.g., Onix controllers per department or building).
 - combine statistics, topology information

Koponen, Teemu *et al.* "Onix: a distributed control platform for large-scale production networks." Proceedings of the 9th USENIX conference on Operating systems design and implementation. USENIX Association, 2010.

Reliability: RCP

- Replicate RCPs ("Hot Spare")
 - Run multiple identical servers
- Run independent replicas
 - Each replica has its own feed of routes
 - Each replica receives the same inputs and runs the same routing algorithm
 - No need for a consistency protocol *if* both replicas always see the same information

Potential Consistency Problem

"Use egress D (hence use B as your next-hop)"

"Use egress C (hence use A as your next-hop)"

- Route assignments must be consistent
 - Even in presence of failures and partitions
- Fortunately
 - Flooding-based IGP means each replica knows which partitions it
 - 7 connects to

Single RCP Under Partition

- Solution: Only use state from routers partition in assigning its routes
 - Ensures next hop is reachable

Multiple RCPs Under Partition

- Solution: RCPs receive same state from each partition they can reach
 - IGP provides complete visibility, connectivity
 - Only acts on partition if it has complete state

No consistency protocol needed to guarantee consistency in steady state

Reliability: ONIX

Network failures: application's responsibility

 Reachability to ONIX: reliable protocol, multipath, etc.

 ONIX failure: distributed coordination amongst replicas

Replication: ONIX

- Network Information Base (NIB)
 - Represented as a graph of objects
 - Applications can read and write the NIB
 - Automatically updates switches and controllers
- State distribution tools
 - Replicated transactional (SQL) storage
 - Strong consistency for critical, stable state
 - One-hop memory-based DHT
 - Eventual consistency for less-critical, dynamic state

Summary

- Control and data plane separation pose three significant challenges
 - Scalability: Routing decisions for many routers
 - Reliability: Correct operation under failure
 - Consistency: Ensuring consistency across multiple control replicas
- Hierarchy, aggregation, clever state mangement and distribution