

**Dr. Nick Feamster** Associate Professor

# Software Defined Networking

In this course, you will learn about software defined networking and how it is changing the way communications networks are managed, maintained, and secured.



#### **Module 2: Control and Data Separation**

- Learning Objectives
  - Be able to explain the difference between control and data plane.
  - What is the function of each?
    - Provide examples of functions performed by each.
    - Describe the infrastructure that supports the control plane and the data plane.
  - What are the challenges of separation?



#### **Three Lessons**

- Overview
  - What is control/data separation?
  - Why is it a good idea?
  - What are the opportunities and challenges?
- Opportunities in various domains
  - Routing, data centers, etc.
- Challenges and approaches
  - Scaling, reliability



### What are the control and data planes?

- Control Plane: Logic for controlling forwarding behavior.
  - **Examples:** routing protocols, network middlebox configuration.

- Data Plane: Forward traffic according to control plane logic
  - Examples: IP forwarding, Layer 2 switching



#### Why Separate the Control and Data Planes?

- Independent evolution and development
  - The software control of the network can evolve independently of the hardware.

- Control from high-level software program
  - Control behavior using higher-order programs
  - Debug/check behavior more easily

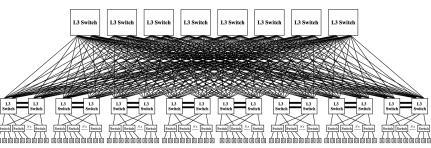


#### **Opportunities: Where Separation Helps**

Data centers: VM migration, Layer 2 routing

Routing: More control over decision logic

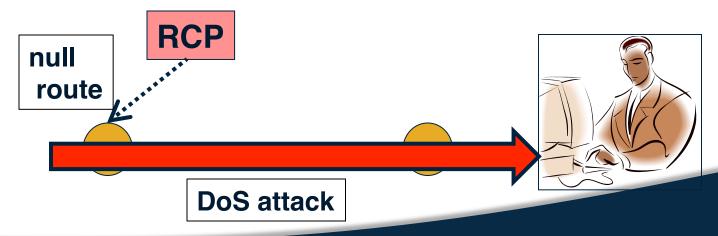
Enterprise networks: Security applications


Research networks: Coexistence with production



# **Example: Data Centers (Yahoo!)**

- 20,000 servers/cluster = 400,000 VMs
  - Any-to-any, 1024 distinct inter-host links
  - Sub-second migration, guaranteed consistency
- Problem: Keeping 20k devices in sync with 400k+ entities?
- Solution: Program switch from a central database.








# Example: AT&T IRSCP (Commercial RCP)

- Filtering attack traffic
  - Measurement system detects an attack
  - Identify entry point and victim of attack
  - Drop offending traffic at the entry point



8



## **Two Continual Challenges**

 Scalability: Control elements responsible for many forwarding elements (often, thousands)

• Reliability/Security: What happens when a controller fails or is compromised?