

What you need to know
about R

Kick-start your journey with R

Raghav Bali
Dipanjan Sarkar

BIRMINGHAM - MUMBAI

What you need to know about R

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First Published: June 2016

Production reference: 1060616

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

www.packtpub.com

About the Authors

Raghav Bali has a master's degree (gold medalist) in Information Technology from
International Institute of Information Technology, Bangalore. He is an IT engineer
at Intel, the world's largest silicon company, where he works on analytics, business
intelligence, and application development to develop scalable machine learning-based
solutions. He has worked as an analyst and developer on domains, such as ERP,
Finance, and BI with some of the top companies of the world.

Raghav is a technology enthusiast who loves reading and playing around with new
gadgets and technologies. He recently co-authored a book on Machine Learning
titled R Machine Learning by Example, Packt Publishing. He is a shutterbug, capturing
moments when he isn't busy solving problems.

I would like to express my gratitude to my family, teachers, and
friends, who have encouraged, supported and taught me over
the years. Special thanks to my classmate, friend and colleague,
Dipanjan Sarkar, who co-authored this book and made this journey
wonderful through his inputs and eye for detail.

I would like to thank Tushar Gupta, Merint Mathew, and Packt
Publishing for the opportunity and their support throughout this
journey. Last but not the least, thanks to the R community for the
amazing stuff that they do!

Dipanjan Sarkar is an IT engineer at Intel, the world's largest silicon company,
which is on a mission to make the world more connected and productive. He
primarily works on analytics, business intelligence, application development, and
building large scale machine learning systems. He received his master's degree in
Information Technology from the International Institute of Information Technology,
Bangalore. His area of specialization includes software engineering, data science,
machine learning, and text analytics.

Dipanjan's interests include learning about new technology, disruptive start-ups,
data science, and more recently deep learning. In his spare time, he loves reading,
writing, gaming, and watching popular sitcoms. He co-authored a book on Machine
Learning titled R Machine Learning by Example, Packt Publishing, and he also acted as
a technical reviewer for several books on Machine Learning and Data Science from
Packt Publishing.

I am indebted to my family, friends, teachers, and colleagues for
always standing by my side and supporting me in all my endeavors.
Your support keeps me going day in and day out to take on new
challenges! I would also like to thank my good friend and fellow
colleague, Raghav Bali, who co-authored this book and made this
experience more enjoyable. Last, but never the least, I would like
to thank Tushar Gupta, Merint Mathew, and Packt Publishing for
giving me this wonderful opportunity to share my knowledge with
the machine learning, and R enthusiasts out there who are doing
truly amazing things every day.

www.PacktPub.com

Support files, eBooks, discount offers, and more
At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books, eBooks, and videos.

TM

https://www.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

[i]

Table of Contents
R Ecosystem 1

Setting up the R ecosystem 1
Installation 1
Configuration	 2
Startup	modes	 2
Workspace 3

Exploring	the	basic	constructs	of	R	 3
Operators 3
Data types 4
Data structures 5

Installing	packages	 5
Getting	help	 6
Integrated	Development	Environments	 6
RStudio	 6
Other IDEs 7

RPubs	–	Publishing	through	R	 8
Shiny	–	Web	apps	using	R	 10

Data Analysis 11
Data	analysis	workflow	 11
Understanding	our	current	objective	 14
Acquiring	and	understanding	data	 14
Preparing	the	data	 17
Exploratory	data	analysis	 18
Statistical inference 31
Statistical	modeling	with	regression	 34

Table of Contents

[ii]

R Cheat Sheets 40
Data	processing	and	transformation	 40
Data	handling	 40
Basic data types 41
Data structures 41
General utilities 43

Math	and	modeling	 44
Math	and	modeling	utilities	 44
Math	and	modeling	packages	 45

Plotting	 46
Plotting	packages	 47

Summary 47
What to do next? 48

Broaden your horizons with Packt 48

What you need to
know about R

This eGuide is designed to act as a brief, practical introduction to R. It is full of
practical examples which will get you up a running quickly with the core tasks
of R.

We assume that you know a bit about what R is, what it does, and why you want to
use it, so this eGuide won't give you a history lesson in the background of R. What
this eGuide will give you, however, is a greater understanding of the key basics of R
so that you have a good idea of how to advance after you've read the guide. We can
then point you in the right direction of what to learn next after giving you the basic
knowledge to do so.

What you need to know about R will:

•	 Cover the fundamentals and the things you really need to know, rather than
niche or specialized areas.

•	 Assume that you come from a fairly technical background and so understand
what the technology is and what it broadly does.

•	 Focus on what things are and how they work.
•	 Include practical examples to get you up, running, and productive quickly.

Preface

[iv]

Overview
R is a scripting language that is aimed at performing statistical analysis. It draws
inspiration from S, a statistical programming language that was developed by
AT&T. It also provides a multitude of options, tools, and libraries to make statistical
analysis easy and effective. R has grown over the years as a result of its open source
nature. It is a community-driven language that provides powerful tools for data
processing, manipulation, visualization, and publishing. It continues to evolve with
an ever-increasing list of packages and libraries, along with constant improvements
to the overall language.

Statistical analysis was the reason for R's inception and it has grown both in
importance and functionality over the years to become a go-to language. Data
scientists and statisticians alike use it to quickly prototype as well as to build
complex	models	and	analysis.	R	finds	applications	for	financial	analysis	and	
modeling, food and drug data analysis, clinical trial analysis, and so on.

R is maintained by the Comprehensive R Archival Network (which is better known
as CRAN). CRAN maintains the latest and past version binaries and the source code
for R for most OS platforms, such as Windows, Mac, and Linux. As mentioned earlier,
R is a free and open source platform. Due to its increased popularity and capabilities,
commercial versions of R are also available with enterprise support. R is also being
enhanced and tweaked to make it work with Big Data technologies, such as Hadoop
with offerings available from Oracle, IBM, and so on. Platforms such as Mathematica,
MATLAB, SPSS, and others offer connection capabilities to R as well.

Preface

[v]

In this guide, we will go through the following topics:

•	 A quick introduction to the R ecosystem
•	 Understanding its capabilities and working on a hands-on example using R

as a data analysis tool
•	 A cheat sheet for neat tricks and to provide a quick reference guide to enhance

the powers of R

[1]

R Ecosystem
This is an introductory section, and it will get you started with the basics of R along
with its ecosystem. It will also prepare you for some exciting features and examples
in the coming section. In this section, we will cover the following topics:

•	 R: Getting started and basic constructs
•	 RStudio: The de facto development environment for R
•	 RPubs: Publish straight from R and share your work with ease
•	 R Shiny: Develop web applications using the power of R

In this book, we will consider Windows as the default working environment.
Setting up and using R on other platforms is also quite easy and similar to the
Windows platform. You need to follow the standard guidelines or documentation
for	platform-specific	issues.

Setting up the R ecosystem
In this section, we will set up R on our systems. We will also touch upon different
modes and settings to tweak this powerful tool. Let's begin with the installation of
R itself.

Installation
R is an open source and free software environment (and an interpreted language)
that is available for all major operating systems, such as UNIX and LINUX,
Windows, and OS X. As of writing, the current version is 3.2.5 (code named Very
Very Secure Dishes), and it is available at https://www.r-project.org/.

https://www.r-project.org/

What you need to know about R

[2]

The chronology and evolution of R:
The following link presents the history and evolution of R along with
important features and versions clearly marked out:
http://timelyportfolio.github.io/rCharts_timeline_r/

R's setup is straightforward and nicely outlined at the preceding link. For
the	Windows	environment,	the	setup	requires	downloading	the	setup	file	
and following the instructions from the executable. For Unix and Unix-like
environments, R can be installed from the prompt directly (wherever Unix-like
binaries are available). Enthusiasts can also build R from source as outlined in
the steps mentioned in the FAQ section of the r-project.

Configuration
R	can	be	configured	in	a	simple	way	to	personalize	startup.	A	file	named	Rprofile.
site	exists	in	the	installation	directory.	This	simple	R	script	file	is	checked	each	
time R is loaded into memory; hence, it executes any instructions (for instance,
functions,	default	directories,	and	so	on)	that	are	mentioned	in	this	file.	Another	level	
of customization can be achieved, where each user of the system can personalize R's
startup	by	adding	a	file,	named	Rprofile, to their home directory.

Startup modes
R supports the two following execution modes:

•	 Interactive Mode: R is a scripting language, and it is interpreted line by line.
Similarly to other scripting languages, R has an interactive mode, which
provides a > prompt, which we can use to execute commands directly.

•	 Batch Mode: For scenarios where interactive output isn't required and/or R
works in an automated manner to produce certain results, the batch mode
comes into play. In this mode, R scripts are invoked from the command
prompt (or the OS shell prompt).

http://timelyportfolio.github.io/rCharts_timeline_r/

What you need to know about R

[3]

Workspace
R has robust memory management, where it allocates and keeps track of all the
objects in the environment. R's workspace is nothing but the current working
environment,	which	holds	user-defined	objects,	such	as	variables,	data,	functions,	
and so on. R provides various utility functions to manipulate the workspace.
Some of the standard utilities are as follows:

•	 ls(): This lists all objects in the workspace
•	 rm(): This removes mentioned objects from the workspace
•	 getwd(): This prints the current working directory
•	 setwd(): This sets a directory as the current working directory
•	 history(): This prints all commands that have executed since the start of the

session
•	 save.image(): This saves the current workspace in a .RData file for

future use

There are many other utility functions that are available. Readers are urged to
explore them using the help() command and R's documentation.

Exploring the basic constructs of R
Every programming or scripting language has certain syntax and other constructs
that make it unique yet powerful. The following are the major building blocks of the
R programming language.

Operators
Programming languages require operators to perform actions, such as calculations,
transformations, and so on. Similar to other programming languages, R supports
operators for Logical, Mathematical, and Conditional operations, and so on. As R was
designed keeping statistical analysis in mind, the operators are robust enough to
handle not just basic data types, such as integers, floats, and characters, but they can
also handle matrices, vectors, strings, and arrays.

What you need to know about R

[4]

The only difference, as compared to other languages, is the assignment operator.
R provides the following different assignment operators:

•	 =: This is used interchangeably with the <- operator for assignment; R's
standards reserve the usage of the = operator for parameter passing only.
This operator assigns a value to parameters of a function without creating
a variable in the user's workspace. The following is an example of this:
> foo(x=1)

> foo_1(y<-2)

>ls()

In this example, y would be present in the list of variables but x will not be!

•	 <- or ->: This is the default assignment operator that is used in R. This is
part of R's lineage from the days of S. This operator works both sides as the
following example states:
> x <- 3

> 15 -> y

In this snippet, x is assigned a value of 3, while y gets a value of 15 assigned
to it.

There's even an <<- operator to access objects in the parent scope. Readers are
encouraged to go through R's documentation for more details.

Data types
To enable statistical analysis, R supports all basic data types, such as numeric
(integer, double), character, boolean, and so on. Apart from these basic data types,
R also provides a data type called factor for categorical data and complex for the
storage of complex numbers. This also handles missing values and nonexisting
objects differently, using the NA and NULL keywords, respectively. You should
not confuse NA with NaN, where NA denotes missing values, while NaN (NaN
stands for not a number	and	is	a	keyword	in	R)	is	used	to	represent	undefined	or	
unrepresentable	values.	This	also	handles	infinity	using	the	Inf keyword (-Inf for
negative	infinity).	Each	of	these	data	types	has	a	number	of	utility	functions	to	check	
missing values, length, and so on. A common set of functions for each data type are
as and is, which help in typecasting and checking the data type, respectively. For
instance, as.character() typecasts the input as a character, while is.character()
is used to check whether the input is of the character type or not.

What you need to know about R

[5]

Data structures
Data structures are at the core of R, and they provide a very powerful foundation
to the language. Any object or variable is vector (as in the mathematical vector) by
default	unless	specified	otherwise.	Lists,	arrays	(n-dimensional),	matrices,	and	so	
on are available out of the box. Lists are recursive in nature, that is, they can contain
other lists as elements, while vectors, arrays, and matrices are atomic in nature. R also
provides a unique tabular data structure called data frames. Data frames represent a
two-dimensional structure just like a matrix. However, unlike matrices, a data frame
can have different columns containing different data types. All the components of a
data frame must be of equal length. Consider the following example:

>book.sections<- c("section 1", "section 2", "section 3")

>section.pages<- c(6,26,10)

>dataFrame<- data.frame(book.sections, section.pages,
stringsAsFactors=FALSE)

>dataFrame #print the data frame

We will observe the following output:

More on each of these data structures are covered in the upcoming sections.

Installing packages
As mentioned earlier, R is a community-driven language, and it owes its immense
power to an ever-increasing list of packages that add on to the capabilities of the
platform. In the R community, the term library is used instead of the term package.
R provides the following utilities to handle packages (and many more):

•	 install.packages(<package_name>,[<library_path>]): This installs a
package from Comprehrensive R Archive Network (CRAN). CRAN helps
maintain and distribute R's various versions and documentation.

•	 libPaths(<library_path>): This adds this library path to R.
•	 installed.packages(lib.loc = <library_path>): This lists installed

packages.

What you need to know about R

[6]

•	 update.packages(lib.loc = <library_path>): This updates a package.
•	 remove.packages (<package_name>): This removes a package.
•	 path.package(): This is the package loaded for the session.
•	 library(<package_name>): This loads a package in a script to use its

functions or utilities.
•	 library(help=<package_name>): This lists the functions in a package.

Getting help
It is very quick and simple to check documentation or get help related to R,
its packages, or utilities. The following utilities are available to get help:

•	 help(<any_R_object>) or ?<any_R_object>: This provides help on
any R object, such as functions, packages, data types, and so on

•	 example(<function_name>): This provides a quick example for the
mentioned function

•	 apropos(<any_string>): This lists all functions containing the
any_string term

Integrated Development Environments
For ease of development and code maintenance, IDEs are available for all
programming languages. R comes bundled with a standard interface called
the RGui. R works seamlessly with multiple IDEs though the most popular
and widely-used is the RStudio.

RStudio
RStudio provides various features; some of them are as follows:

•	 Code highlighting and completion
•	 Multiple windows to write, execute, view objects, graphs, and so on in

one place
•	 A help browser and package handler

What you need to know about R

[7]

The following screenshot displays RStudio's standard interface with different
windows,	menus,	and	icons	flagged:

The RStudio standard interface

Other IDEs
Apart from RStudio, various other IDEs are also available:

•	 RCommander: http://www.rcommander.com/
•	 Eclipse R StatET: http://www.walware.de/goto/statet
•	 ESS or Emacs Speaks Stats: http://ess.r-project.org/

There are many more specialized and fully-loaded R IDEs. Similar to Eclipse, Visual
Studio also provides R and R-related plugins for .NET developers. Use the one that
suits you the best. For the purpose of this book, we will stick with RStudio.

http://www.rcommander.com/
http://www.walware.de/goto/statet
http://ess.r-project.org/

What you need to know about R

[8]

RPubs – Publishing through R
RPubs is a free publishing service from RStudio. Using RPubs, users can share their
research, code, and analysis written in R Markdown straight from RStudio itself.
Once published, the research work is publicly available for anybody to go through,
comment on, and share. This is a step towards reproducible research and sharing
knowledge.

RMarkdown is a derivation or the markdown tool for text to HTML
conversion. RMarkdown uses the syntax of markdown and adds on
additional features to easily integrate and regenerate R code to publish
it. More details can be found at http://rmarkdown.rstudio.com/.

The following is a quick introduction to RPubs:

From RStudio, go to the File Menu, select New File as RMarkdown. Then, choose
the output format from the dialog box and provide a title and author name:

RMarkdown format selection

Add content in standard Markdown syntax in the script pane or window, and click
on the Knit HTML icon:

http://rmarkdown.rstudio.com/

What you need to know about R

[9]

RMarkdown sample script

The markdown script is processed, and a preview window pops up. You can publish
to the Web directly from this pop-up by clicking on the Publish button:

RMarkdown sample preview

RPubs works without RStudio as well. This requires the installation of packages
such as knitr, rmarkdown, and so on.

What you need to know about R

[10]

Shiny – Web apps using R
In a world that is leaning more and more towards the Internet, R is no exception.
R Shiny is a web application framework from RStudio that enables developers to
create web applications using just R without detailed knowledge of HTML, CSS,
or other web technologies. A simple Shiny app requires just two components:

•	 ui.R: This script contains instructions to render the web application in a
browser-like environment

•	 server.R: This is where the actual processing or analysis happens

R Shiny requires the shiny package to be added to the list of packages. The
documentation for R Shiny is fairly detailed and easy to understand. Refer to the
tutorial	and	examples	mentioned	at	the	official	website	at	http://shiny.rstudio.
com/tutorial/.

The following screenshot displays a sample Shiny app with its rendered output and
code side by side:

A sample R Shiny web application (http://shiny.rstudio.com/gallery/kmeans-example.html)

http://shiny.rstudio.com/tutorial/
http://shiny.rstudio.com/tutorial/
http://shiny.rstudio.com/gallery/kmeans-example.html

What you need to know about R

[11]

Data Analysis
In the previous section, you got a quick glance into the entire ecosystem of tools and
frameworks	that	R	offers	to	analyze	data	and	present	your	findings	in	various	ways,	
including reproducible Markdown documents as well as web applications. R is a
programming language at heart; it is also a software environment, was primarily
built for the statistical analysis of data leveraging a wide variety of statistical
techniques and graphical methods to visualize results. In this section, we will look
at	what	a	typical	data	analysis	workflow	looks	like,	and	then	we	will	analyze	a	real	
dataset using exploratory and statistical analysis techniques.

R has an annual international conference, named useR.
This is an international event to discuss and present the
advancements, applications, and issues that are related
to R and general statistical topics.

Data analysis workflow
Analyzing	data	is	not	only	an	art,	but	it	is	also	a	science.	It	has	a	defined	set	of	steps,	
which are usually executed in sequence, and several steps are often repeated if they
are necessary. There is an industry standard that is widely followed for data analysis,
known as CRISP-DM, which expands to Cross Industry Standard Process for Data
Mining.	This	is	a	standard	data	analysis	and	mining	process	workflow	that	describes	
how to break up any particular data analysis problem into six major stages.

What you need to know about R

[12]

The main stages in the CRISP-DM model are as follows:

•	 Business Understanding: This is the initial stage that focuses on the business
context of the problem that has to be solved at hand and uses domain and
business knowledge to plan out the main objectives and results that are
intended from the data analysis workflow.

•	 Data Acquisition and Understanding: This stage's main focus is to
acquire data of interest and understand the meaning and semantics of the
various data points and attributes that are present in the data. Some initial
exploration of the data may also be done at this stage.

•	 Data Preparation: This stage usually involves data munging, cleaning,
and transformation. Data quality issues are also dealt with in this stage.
The final dataset is usually used for analysis and modeling.

•	 Modeling and Analysis: This stage mainly focuses on analyzing the data and
building models using specific techniques. Often, we need to apply further
data transformations that are based on different modeling algorithms.

•	 Evaluation: This is perhaps one of the most crucial stages. Building models
and analyzing the data for patterns and insights are not the end of the
analysis. In this stage, we evaluate the results that are obtained from different
techniques and iterations, and then we select the best possible method or
analysis, which gives us the insights that we need based on our business
requirements. Often, this stage involves reiterating through the previous two
steps to reach a final agreement based on the results.

•	 Deployment: This is the final model where decision systems that are based
on analysis are deployed so that end users can start consuming the results
and utilizing them. This deployed system can be as complex as a real-time
prediction system or as simple as an ad-hoc report.

What you need to know about R

[13]

The	following	figure	shows	the	relationship	between	the	various	stages	in	the	
CRISP-DM model:

The relationship between the different stages in CRISP-DM. Source: www.wikipedia.org

In principle, the CRISP-DM model is very clear and concise, and this makes it easy
for data science practitioners and analysts to follow in their daily processes. We will
look at a real dataset in the next section, and apply some of these principles in our
data analysis process to get valuable insights from analyzing data.

www.wikipedia.org

What you need to know about R

[14]

Understanding our current objective
Before we start using R and dive into the implementations of analyzing our data, we
will	first	talk	about	what	data	we	are	going	to	analyze	and	what	our	main	objectives	
are in this analysis. The reason that we do this is so that we do not lose focus when
applying data analysis techniques to gather insights from our dataset.

Our main objective is to explore and analyze the mtcars dataset, which is readily
available	in	R.	This	dataset	contains	data	about	several	automobiles,	specifically	
cars and various attributes that are related to each car. Some of our main objectives
are listed, as follows:

•	 Understanding various features in the dataset
•	 Exploring the relationships between different features
•	 Visualizing insights using different charts and graphs
•	 Performing statistical tests to gain specific insights on features that are

related to the vehicles
•	 Building regression models to view the relationship between different

features and the mileage of cars
•	 Understanding and exploring specific concepts in regression modeling,

evaluation, and predictions

Next, we will focus on getting our dataset and understanding the semantics of each
attribute in the dataset and what they indicate.

Acquiring and understanding data
We will start with getting the necessary dataset that we want to analyze. The dataset
that we will look at is called mtcars, and is available directly in R without the need
to	access	any	specific	website	or	database.	Fire	up	your	R	console,	and	type	the	
following command to load the dataset into memory:

load the dataset

data(mtcars)

What you need to know about R

[15]

Next, we will inspect some details about the dataset, which can be done using the
str command, as follows:

see details about the dataset

str(mtcars)

This gives us the following output, which tells us the various attributes in the dataset
and gives us a quick peek at their values.

We observe that the dataset is stored in a data structure of the data.frame type,
which is basically a two-dimensional tabular structure that is similar to a spreadsheet,
where each row is a particular data point that consists of different attributes that are
represented by different columns. In our dataset, we have 32 observations or data
points that form the rows and 11 attributes that form the columns. Each data point
or	row	is	for	a	particular	car,	and	each	column	is	a	specific	attribute	that	is	related	to	
the car, such as mpg, which indicates the Miles per Gallon of this car. We will now
understand the data in more detail by accessing the dataset metadata information
using the help command, as follows:

detailed information about the dataset

help(mtcars)

What you need to know about R

[16]

This command displays detailed information regarding the data, which was originally
extracted from the 1974 issue of Motor Trend US magazine. This data has information
for a total of 32 cars. Each car is described by a total of 11 attributes, which are
described in detail in the following snapshot. They are pretty self-explanatory except
perhaps the vs attribute, which actually indicates whether the car has a V-engine or a
Straight engine:

We will now look at what the actual data looks like in the dataset using the
following command:

view the raw data

head(mtcars, 5)

This	command	shows	us	the	top	five	rows	in	the	dataset,	which	are	shown	in	the	
following snapshot:

Now that we have a good understanding of the data and what it looks like, we will
proceed to the next step of data preparation before analyzing it.

What you need to know about R

[17]

Preparing the data
Preparing	the	data	usually	involves	imputation	or	filling	in	missing	values	(often	
denoted by NA in R) and then performing data transformation, scaling, or data type
conversions as needed. Luckily for us, our data is quite clean and does not have any
missing values.

We will focus on datatype conversions.

If you closely observe the attribute data types from str(mtcars), which we executed
earlier, you will see that each attribute has been declared as num, which is a numeric
type, by R. However, in reality several variables are not of the numeric type, and we
have to change this based on the variable semantics and values. If you have taken
a basic course on statistics, you might know that usually we deal with two types of
variable or attribute most of the time:

•	 Numeric variables: The values of these variables carry some mathematical
meaning. This enables you to carry out mathematical operations on them,
such as addition, subtraction, and so on. Some examples from our dataset
are mpg, disp, wt, and so on.

•	 Categorical variables: The values of these variables do not have any
mathematical significance, and performing mathematical operations on them
does not make sense. Each value in this variable belongs to a specific class or
category. Some examples from our dataset are cyl, vs, am, and so on.

As all the variables or attributes in our dataset were converted to numeric by default,
we will only need to convert the categorical variables from numeric data types to
factors, which is how R represents categorical attributes.

We	will	first	implement	our	own	utility	function	to	carry	out	this	data	type	conversion	
using the following code snippet. A function is basically a block of code that usually
takes some input, performs some operations, and may or may not return an output:

The ## data type conversion to factors is as follows:

to.factors<- function(df, variables){

for (variable in variables) {

 df[[variable]] <- as.factor(df[[variable]])

 }

 return(df)

}

What you need to know about R

[18]

We will use this function on our existing mtcars data frame to transform the cyl,
vs, am, gear, and carb attributes into categorical attributes using the following
code snippet:

perform data type transformation

categorical.vars<- c("cyl", "vs", "am", "gear", "carb")

mtcars<- to.factors(mtcars, categorical.vars)

Now, we will observe whether this data type transformation was successful using
the following snippet:

verify transformation

str(mtcars)

We can then see the attribute details in the data frame with the transformed
data types in the following snapshot, which indicates that our transformations
were successful:

This brings us to the end of our data preparation stage, and we will now perform
some analysis on our dataset in the next section.

Exploratory data analysis
There are various data analysis techniques that can be applied to a dataset, depending
on the problem that has to be solved and the insights we want to gather. However, in
all cases, exploratory data analysis is somewhat of a prerequisite before jumping into
further advanced analyses. Exploratory data analysis is a good way to gain a deeper
understanding of our data, relationships, patterns between different attributes, and to
detect anomalies. Besides descriptive analysis, which includes generating summary
statistics, we also use visualization techniques to depict various patterns and statistics
about the data, which help us in understanding our data better. We will use some
graphical methods here to visualize various statistics that are related to our dataset.

What you need to know about R

[19]

One basic visualization includes scatter plots where we usually have an attribute on
the x and y axes, and we plot the various data points in the two-dimensional space to
see the relationship between the attributes. We will plot a
pairs scatterplot between all possible attributes in our mtcars dataset with the
following code snippet:

pairs plot observing relationships between variables

pairs(mtcars, panel = panel.smooth,

main = "Pairs plot for mtcars data set")

This gives us the following scatterplot, which shows the relationship between each
pair of attributes in the dataset:

A pairs scatterplot between different attributes of the mtcars dataset

What you need to know about R

[20]

Next, we will leverage the use of a dot chart to plot the Miles per Gallon (mpg) value
for all the cars in our dataset using the following code snippet:

mpg of cars

dotchart(mtcars$mpg, labels=row.names(mtcars),

cex=0.7, pch=16,

main="Miles per Gallon (mpg) of Cars",

xlab = "Miles per Gallon (mpg)")

This gives us a dot plot of the mpg	values	of	each	car,	as	shown	in	the	following	figure:

What you need to know about R

[21]

Some interesting insights that we see from the previous chart is that the top two cars
with the least mpg are Lincoln Continental and Cadillac Fleetwood. Similarly, the top
two cars with the highest mpg are Toyota Corolla and Fiat 128. We can also compute
this using R to prove our observations using the following code snippets, where we
use the order function to sort the mpg	values	before	filtering	out	the	necessary	data:

head(mtcars[order(mtcars$mpg),], 2)

This gives us the top two cars with the least Miles per Gallon, as seen in the
following snapshot:

To get the top two cars with the maximum Miles per Gallon, we use the following
code snippet:

tail(mtcars[order(mtcars$mpg),], 2)

This gives us the following output:

Thus, we see that our observations from the visualization were correct, and we got
the same results from our R code snippets.

We will now plot some simple bar charts for car frequencies that are related to
several attributes in the dataset. The next plot shows us the car counts grouped by
cylinders (cyl) using the following code. You can look at further details, such as
graph positioning and alignment, which we perform using the cex parameters by
checking the documentation using the ?barplot command:

cylinder counts

barplot(table(mtcars$cyl),

col="lightblue",

main="Car Cylinder Counts Distribution",

xlab="Number of Cylinders", ylab="Total Cars",

cex.main = 0.8, cex.axis=0.6,

cex.names=0.6, cex.lab=0.8)

What you need to know about R

[22]

This gives us the following bar chart:

We observe that cars with eight cylinders are the most numerous followed by cars
with four cylinders. Next, we plot a similar bar plot of car counts that are grouped
by gear using the following code:

gear counts

barplot(table(mtcars$gear),

col="lightblue",

main="Car Gear Counts Distribution",

xlab="Number of Gears", ylab="Total Cars",

cex.main = 0.8, cex.axis=0.6,

cex.names=0.6, cex.lab=0.8)

This gives us the following bar plot, where we observe cars with three gears are most
numerous:

What you need to know about R

[23]

The last simple bar chart will depict car counts that are grouped by the type
of transmission. For this, we relabel the factor variable levels from 0 and 1
to Automatic and Manual	first,	and	then	we	plot	the	chart,	as	shown	in	the	
following code:

transmission counts

mtcars$am<- factor(mtcars$am,labels=c('Automatic','Manual'))

barplot(table(mtcars$am),

col="lightblue",

main="Car Transmission Type",

xlab="Number of Gears", ylab="Total Cars",

cex.main = 0.8, cex.axis=0.6,

cex.names=0.6, cex.lab=0.8)

This gives us the following plot, which clearly depicts that there are more cars with
automatic transmission in our dataset:

We will now visualize the data using some more complex visualizations in this
segment. To start off, let's visualize the car distribution by cylinders as well as
transmission using the following code snippet:

visualizing cars distribution by cylinders and transmission

counts<- table(mtcars$am, mtcars$cyl)

barplot(counts, main="Car Distribution by Cylinders and Transmission",

xlab="Number of Cylinders", ylab="Total Cars",

col=c("steelblue","lightblue"),

legend=rownames(counts), beside=TRUE,

What you need to know about R

[24]

args.legend=list(x="top", title="Transmission Type",

cex=0.8),

cex.main = 0.8, cex.axis=0.6,

cex.names=0.6, cex.lab=0.8)

This gives us the following plot, where we see that most cars with automatic
transmission have eight cylinders and most cars with manual transmission
have four cylinders:

In the next visualization, we observe car distributions by cylinders as well as gears.
The following code snippet enables us to visualize this:

counts<- table(mtcars$gear, mtcars$cyl)

barplot(counts, main="Car Distribution by Cylinders and Gears",

xlab="Number of Cylinders", ylab="Total Cars",

col=c("darkblue", "steelblue","lightblue"),

legend=rownames(counts), beside=TRUE,

args.legend=list(x="top", title="Gears", cex=0.8),

cex.main = 0.8, cex.axis=0.6,

cex.names=0.6, cex.lab=0.8)

What you need to know about R

[25]

This gives us the following plot where we observe most cars with three gears have
eight cylinders:

Now, we will create a grouped dot plot showing the miles per gallon of various cars
that are grouped by number of cylinders using the following code snippet:

visualizing car mpg distribution by cylinder

add a color column within the data frame for plotting

mtcars<- within(mtcars, {

 color<- ifelse(cyl == 4, "coral", ifelse(cyl == 6,

 "cadetblue", "darkolivegreen"))

})

dotchart(mtcars$mpg, labels=row.names(mtcars),

groups=mtcars$cyl,

color=mtcars$color,

cex=0.7, pch=16,

main="Miles per Gallon (mpg) of Cars\nby Cylinders",

xlab = "Miles per Gallon (mpg)")

remove the color column within the data frame after plotting

mtcars<- within(mtcars, rm("color"))

What you need to know about R

[26]

This gives us the following dot plot where we observe cars with four cylinders tend
to have the maximum miles per gallon compared to other cars!

We will now leverage a visualization library, called ggplot2, to plot some boxplots
that display the relationship of mpg with some other car attributes. Here, mpg is our
variable of interest. We will try to perform some statistical inference and regression
modeling later taking mpg as the response variable, which we will try to predict
based on the other attributes of the various cars. The ggplot2 visualization library is
an excellent library and is a plotting system used in R. It is based on the grammar of
graphics, which helps in building extremely complex plots with minimal efforts. It is
often used to produce publication-quality plots.

What you need to know about R

[27]

We will start by observing car mpg distributions over the number of cylinders using
the following code snippets:

load visualization dependencies

library(ggplot2)

theme<- theme_set(theme_minimal())

Car MPGs by number of cylinders visualization

ggplot(mtcars,

mapping=aes_string(y = "mpg", x = "cyl")) +

xlab("Number of Cylinders") +

ylab("Miles per Gallon (mpg)") +

ggtitle("Distribution of Miles per Gallon (mpg)\nby number of cylinders")
+

geom_boxplot(outlier.colour = NULL,

aes_string(colour="cyl", fill="cyl"), alpha=0.8) +

stat_summary(geom = "crossbar",

width=0.70,

fatten=0.5,

color="white",

fun.data = function(x) {

 return(c(y=median(x),

 ymin=median(x),

 ymax=median(x)))

}

) +

stat_summary(fun.data = function(x) {

 return(c(y = median(x)*1.03,

 label = round(median(x),2)))

},

geom = "text",

fun.y = mean,

colour = "white")

What you need to know about R

[28]

This gives us the following visualization, where we see that the median mpg of
cars with four cylinders is the maximum, followed by cars with six and eight
cylinders, respectively.

We can also prove that our observations are programmatically correct using the
aggregate function in the following code snippet:

insights into average\median mpg of cars by cylinder

aggregate(list(mpg=mtcars$mpg),

list(cylinders=mtcars$cyl),

FUN=function(mpg) {

 c(avg=mean(mpg),

 median=median(mpg)

)

}

)

What you need to know about R

[29]

This gives us the following table where we observe that the median values are the
same as the ones that we observed in the plot, and the mean values are also quite
similar to the median:

We will now observe car mpg distributions over transmission type, using the
following code snippet:

Car MPGs by Transmission type visualization

ggplot(mtcars,

mapping=aes_string(y = "mpg", x = "am")) +

xlab("Transmission Type") +

ylab("Miles per Gallon (mpg)") +

ggtitle("Distribution of Miles per Gallon (mpg)\nby

transmission type") +

geom_boxplot(outlier.colour = NULL,

aes_string(colour="am",

fill="am"), alpha=0.8) +

stat_summary(geom = "crossbar",

width=0.70,

fatten=0.5,

color="white",

fun.data = function(x) {

 return(c(y=median(x),

 ymin=median(x),

 ymax=median(x)))

}

) +

stat_summary(fun.data = function(x) {

 return(c(y = median(x)*1.03,

 label = round(median(x),2)))

},

geom = "text",

fun.y = mean,

colour = "white")

What you need to know about R

[30]

This gives us the following chart where we see the median mpg for cars with manual
transmission is 22.8, which is much higher than 17.3, the median mpg for cars with
automatic transmission:

We can verify these statistics using the aggregate function, as we did earlier using
the following code:

insights into average\median mpg of cars by transmission

aggregate(list(mpg=mtcars$mpg),

list(transmission=mtcars$am),

FUN=function(mpg) {

 c(avg=mean(mpg),

 median=median(mpg)

)

}

)

What you need to know about R

[31]

This gives us the following table, where we clearly observe that the mean and median
mpg for cars with manual transmission is higher than for automatic transmission cars:

We will now try to prove a hypothesis, which is based on the preceding data, that
the mpg statistic (mean) is different for cars with manual and automatic transmission
using the principles of statistical inference in the next section.

Statistical inference
Statistical inference is the process of inferring or deducing patterns, insights, and
properties of a dataset using methods such as hypothesis testing. In the previous
segment, we used visualizations and aggregations to see that the average miles per
gallon	were	significantly	different	for	cars	with	automatic	and	manual	transmission.	
We will now use a statistical test to prove this.

We will start off with a hypothesis (H0) that the difference in mpg means for
automatic and manual transmission cars is zero. Our alternate hypothesis will be that
the difference in means is not zero. As our sample size is quite small, using a t-test
would be appropriate here.

A t-test, often called a Student's t-test, is a statistical hypothesis test that can be used
to	determine	whether	two	sets	of	data	are	significantly	different	from	each	other	
using a test statistic, which is the average mpg in our case. An underlying assumption
also is that this test statistic follows a normal distribution. We will start by viewing
the data distribution for car miles per gallon using the following code snippet:

view data distribution

ggplot(mtcars, aes(x=mpg)) +

geom_density(colour="steelblue",

fill="lightblue", alpha=0.8) +

expand_limits(x = 0, y = 0)

What you need to know about R

[32]

This gives us the following distribution of car mpg values in the form of a density
plot, and we see that the distribution is almost a perfect bell-shaped distribution,
which is the characteristic of a normal distribution.

We will now perform the t-test using the following code snippet:

t-test

t.test(mpg ~ am, data = mtcars)

This gives us the following output, which clearly shows us that the mean mpg in the
automatic transmission group of cars is much lower as compared to the mean mpg in
the manual transmission group of cars:

What you need to know about R

[33]

We can also visualize the t-test results using some density plots using the
following code:

visualzing t-test results

aggr<- aggregate(list(mpg=mtcars$mpg),

list(transmission=mtcars$am),

 FUN=function(mpg){c(avg=mean(mpg))})

ggplot(mtcars, aes(x=mpg)) +

geom_density(aes(group=am, colour=am, fill=am),

alpha=0.6) +

geom_vline(data=aggr, aes(xintercept=mpg, color=transmission),

linetype="dashed", size=1)

This gives us the following density plot where the dotted lines indicate the mean
mpg	for	manual	and	automatic	transmission	cars;	these	are	the	exact	figures	that	
we obtained earlier from our t-test and aggregations:

This	finalizes	our	segment	about	statistical	inference.	Next,	we	will	focus	on	the	final	
section of our analysis, which is related to statistical modeling.

What you need to know about R

[34]

Statistical modeling with regression
In this segment, we will focus on building some regression models to try and predict
car miles per gallon (mpg) values that are based on the other attributes of the car. We
will use multivariate linear regression here to build our models. The linear regression
modeling approach usually consists of a response variable, which we want to predict
(which is also known as the outcome variable—mpg in our case) and several input
variables. It also assumes that there is a linear relationship between the input variables
and our response variable. Mathematically, this can be denoted as follows.

The different variables in the equation are explained, as follows:

•	 Y: This is the dependent or response variable (mpg in our case)
•	 xi: This denotes the input variables, for example, i=1, 2, 3,…,n-1 (am, cyl,

and so on, in our case)
•	 C0: This constant is the value of y when xi is 0 and is called

the intercept
•	 Ci: This denotes the coefficients for the input variables, (i=1, 2, 3,…,n-1)
•	 : This denotes the error term or noise that captures all other factors influence

the responsing variable besides the input variables

As we have a far smaller number of samples in our dataset, we will train our model
on almost all the samples and try to predict the mpg value for one sample. First, we
will prepare our datasets using the following code:

prepare datasets

car.to.predict<- mtcars[15,]

training.data<- mtcars[-15,]

Next,	we	will	build	our	first	regression	model	on	only	the	training	data	using	the	
following code:

build initial model

initial_model<- lm(mpg ~ ., data = training.data)

Now, we can view the details of the model we just built using the
summary(initial_model) command, which gives us detailed information regarding
the	model,	the	coefficients	of	the	various	variables,	and	different	metrics.	You	will	
observe that the adjusted R-squared value is 0.7832, which indicates that 78.32%
of variation in our response variable (mpg) is explained by our input variables.
The higher this value is, then the better our model will be because it will be able to
explain most of the variability that is observed in the response variable, which we
want to predict.

What you need to know about R

[35]

Now, we will try to build a series of regression models and select the best model
from them on the basis of an evaluation metric called Akaike Information Criterion
(AIC), which we will inspect in detail. The following code snippet
steps	through	multiple	regression	models	and	finally	selects	the	best	one:

best model selection

best_model<- step(initial_model, direction = "both")

This	generates	an	output	for	a	series	of	steps,	and	we	depict	the	output	of	the	final	
step by selecting the best model in the following snapshot:

We see that wt, qsec, and am were the most important attributes, used as input
variables to build the best regression model, and the AIC value of the model is 60.51,
which is the least of all the models that were generated. It is used as a measurement
to evaluate the quality of various regression models against each other and then
select the best model, which minimizes the loss of information and has a minimum
number of parameters. We can view the details of the best model using the following
code:

view model details

summary(best_model)

What you need to know about R

[36]

This gives us the following information, where we observe that the three input
variables	that	were	used	to	create	the	final	model	were	wt, qsec, and am. We also notice
that the adjusted R-squared value is 0.8179, which is better than the value that we
obtained in our initial model. We can observe this in the following output snapshot:

We will now look at the car whose mpg value we want to predict using the
following code:

MPG of car to predict

print(data.frame(car.to.predict=data.matrix(

list(rownames(car.to.predict),

car.to.predict[,"mpg"])

)), row.names = FALSE)

This gives us the following output, showing the actual mpg of the car:

We now predict the value of mpg for this car using our initial model, as follows:

initial model prediction

predict(initial_model, car.to.predict)

This gives us the following mpg value as the predicted output:

What you need to know about R

[37]

Next, we make another prediction using our best model using the following code:

best model prediction

predict(best_model, car.to.predict)

This gives us the predicted mpg value, as follows:

We observe that our best model predicts much more effectively than our initial
model and the predicted value of mpg for Cadillac Fleetwood (11.3) is much closer
to its true mpg value (10.4), as compared to the predicted mpg value (16.1) that was
obtained from the initial model.

Finally, we will look at some regression model diagnostics and residual plots using
the following code snippet:

best model diagnostics

par(mfrow = c(2, 2))

plot(best_model)

This gives us the following set of plots:

What you need to know about R

[38]

We can make the following observations from the plots:

•	 The points in the Residuals vs. Fitted plot seem to be randomly scattered on
the plot, and they verify homoscedasticity, which indicates the variance of
error is uniform across all x values

•	 The Normal Q-Q plot consists of the points that mostly fall on the line,
indicating that the residuals are almost normally distributed

•	 The Scale-Location plot consists of points that are scattered in a constant
band pattern, indicating constant variance

•	 There are also some distinct points of interest (outliers or leverage points) in
the plots, which we shall discuss next

You	may	have	noticed	some	specific	data	points	with	the	names	of	cars	mentioned	
in the preceding plots. These points are often known as outliers, and they can be
separated	into	two	types	of	points:	influence	and	leverage	points.

Influential	points	are	data	points	that,	if	removed	from	the	dataset,	they	change	the	
parameter	estimates	of	the	regression	model	by	a	significant	amount	and	cause	a	
notable change in the computation results, based on changing the position of the
regression	line.	We	can	compute	the	influential	data	points	in	our	dataset	using	the	
following code snippet:

influence points

influential<- dfbetas(best_model)

tail(sort(influential[,4]),4)

The dfbetas	function	is	usually	used	to	find	out	the	extent	to	which	one	of	these	
influential	points	has	affected	the	estimate	of	the	regression	line	and	corresponding	
coefficients.	This	gives	us	the	top	four	influential	points,	as	shown	in	the	following	
snapshot:

Leverage points are data points that always have high or extreme values of the
independent variables such that they might have a greater ability to move the
regression line, based on its position as compared to the other data points. These
points	can	also	be	influential	if	they	fall	outside	the	general	pattern	of	the	other	data	
points, thus, greatly affecting the position of the regression line. We will compute the
high leverage data points in our dataset using the following code snippet:

leverage points
leverage<- hatvalues(best_model)
tail(sort(leverage),4)

What you need to know about R

[39]

We use the hatvalues function to get the following top-four high-leverage points,
that are depicted in the following snapshot:

You will notice that several of these cars are depicted in the diagnostic plots of our
model, which we saw earlier.

This brings us to the end of our data analysis process. By now, you have seen the
benefits	of	exploratory	analysis,	visualizations,	and	modeling	to	get	interesting	
insights from data.

What you need to know about R

[40]

R Cheat Sheets
We just learned about the CRISP-DM model while utilizing and understanding
various R constructs and libraries to solve a real-world problem. This concluding
section presents various utilities, tricks, and techniques in the form of cheat sheets
to facilitate a quick look-up.

In this section, we will present cheat sheets that are organized in the following manner:

•	 Data processing and transformation
•	 Math and modeling
•	 Plotting
•	 Important links

Data processing and transformation
For any kind of analysis, input/output and transformation of data are core tasks. R is
a robust platform with many features that we will cover in the following sections.

Data handling
To extract and load data for any kind of analysis, R provides pretty powerful and
easy-to-use utility functions. Some of these are listed, as follows:

•	 read.csv(<file_name>): This imports a standard .csv file
•	 write.csv(<object_name>,<file_name>): This exports to a .csv file
•	 data(<dataset_name>): This loads R's built-in dataset
•	 head(<object>): This prints the first few entries of the data imported
•	 names(<object>): This lists variables in an object
•	 read.table(<file_name>): This reads contents from an ASCII file

What you need to know about R

[41]

Basic data types
Data types form the basic constructs for R—or any other language as a matter of fact.
What makes R special is an extended list of basic data types to handle varied data
types. These are as follows:

•	 numeric (integer and double) and character: These are data types that
are available in R

•	 factor: This allows you to store categorical data while a complex data type
is used for complex numbers

•	 is.<data_type> and as.<data_type>: These are used to check data types
and type conversion, respectively

•	 length(<variable>): This gives you a count of characters in a variable

Data structures
R provides many data structures out of the box, which we discuss in the
following subsections.

Vectors
This is the most basic data structure in R. It is similar to a mathematical vector. The
following are ways to interact with a vector in R:

•	 r[1]: This allows you to access elements using square braces. The element
count begins from 1.

•	 r[x > 100]: These vectors support logical expressions as indices.
•	 r[5:10]: These vectors support subselection. The given example returns

vector values between the index 5 to 10.
•	 r[-1]: This returns all indices except 1.
•	 factor(x): This converts a vector x to factor.
•	 which.max(x) and which.min(x): These return the maximum and

minimum values of x, respectively.
•	 rev(x): This reverses the elements of x.
•	 table(x): This gives you the frequency table for elements of the x vector.
•	 match(a,b): This returns values from a which exist in b; otherwise, this is

not applicable.

What you need to know about R

[42]

Arrays and matrices
R supports multidimensional arrays. A matrix is a two-dimensional array. The
following are access patterns for these data structures:

•	 array (<vector>,<vector_dimensions>): This generates an array from
an input vector

•	 %o%: This gives you the outer or cross product of two arrays
•	 x[a,b,c]: This is when the dimensions of an array are comma-separated

and accessed from within square braces
•	 matrix(<vector>,nrow=r,ncol=c): This generates an r X c matrix with

values from <vector>
•	 t(<matrix>): This is the transpose of a matrix
•	 diag(<matrix>): This gives the diagonal of a matrix
•	 colsum(<matrix>) and rowsum(<matrix>): This calculates the sum of

columns and rows of a matrix, respectively
•	 colmeans(<matrix>) and rowmeans(<matrix>): This calculates the sum of

columns and rows of a matrix, respectively
•	 %*%: This is a matrix multiplication operator
•	 lower.tri(<matrix>): This returns a vector with values from the lower

triangle of a matrix

Lists
A list is an ordered collection of named or unnamed objects, which may or may not
be homogenous. These are recursive data structures; that is, a list's element can itself
be a list. A list can be manipulated using the following:

•	 list(<object_1>,<object_2>,...): This generates a list of objects that are
separated by a comma

•	 L[[i]]: This is when double-square brackets are used to access elements at
the ith index of the list

•	 length(<list>): This returns the count of the topmost elements of a list
•	 L$<name>: This is when the $ operator allows access to the <named> element

of list L; this is the same as L[[i]]

What you need to know about R

[43]

Data frames
Data frames are tabular structures that can have columns of different data types and
attributes. A data frame may contain components of the numeric, character, factor,
or list types, or it may contain other data frames. The following utilities help in
manipulating data frames:

•	 data.frame(col1=<object1>,col2=<object2>,...): This generates
a data frame with n columns or components, which have values from
corresponding objects

•	 attach(<data.frame>): This exposes components of a data frame in
a search path for easy access

•	 merge(x,y): This combines two data frames that are based on common
columns or row names

General utilities
Apart from the utilities and the other constructs that we just discussed, R provides a
rich set of general utilities to make data analysis even easier. Check out the following
utilities:

•	 c(1:5): This is a generic function that concatenates values. The given example
would generate a vector with values 1 to 5.

•	 rep(<value>,<count>): This generates a vector with repeating <value>
elements of the <count> size.

•	 seq(to,from): This generates a sequence vector starting with to and ending
with from. You can also specify increments; the default is 1.

•	 sort(c(10,9,8,7): This returns a sorted vector 7,8,9,10.
•	 order(10,9,1,2): This returns indices in ascending order as 3,4,2,1.
•	 rank(10,5,6,9): This returns the rank order of elements as 4,1,2,3.
•	 summary(<object>): This has summary details, such as min, max, mean,

median, and so on, for the object.
•	 choose(n,k): This returns the combination of k in n repetitions.
•	 na.omit(x): This suppresses all the missing values (nas) from x.
•	 na.fail(x): This errors out if x contains even a single missing value.
•	 unique(x): This returns only distinct or unique values of x. This works with

vectors and data frames.
•	 paste(...): This converts objects to strings and concatenates them.

What you need to know about R

[44]

•	 substr(cv,start,stop): This substrings from the cv character vector from
the start to the stop position.

•	 grep(ptrn,cv): This searches for the ptrn patterns in the cv vector.
•	 gsub(ptrn,rep,cv): This replaces match for the ptrn pattern with the rep

replacement in the cv vector.
•	 tolower and toupper: This converts character vector elements to lowercase

and uppercase, respectively.

Math and modeling
R has a rich set of inbuilt functions and packages to perform mathematical and
modeling operations.

Math and modeling utilities
As R is a statistical language, it provides a rich set of mathematical functions that
are available right out of the box (while more can be added using additional libraries
or packages):

•	 sum(x): This is the sum of the elements of x.
•	 cumsum(x): This calculates the cumulative sum of the elements of x.
•	 diff(x): This is the pair-wise difference between the elements of vector x.
•	 prod(x): This is the product of the elements of x.
•	 mean(x)and median(x): This is the mean and median of x, respectively.
•	 var(x,y): This is the variance between the elements of x and y. It works

with matrices and data frames as well. This is the same as cov(x, y).
•	 quantile(x,probs): This returns the quantile breakup of x for

given probabilities.
•	 sd(x): This is the standard deviation for x.
•	 weighted.mean(x,w): This returns the weighted mean of x using the

w weight vector.
•	 cor(x,y): This is the linear correlation between x and y.
•	 round(x,n): This rounds the elements of x to n digits.
•	 log(a,b): This calculates the log of a for base b.
•	 sin, cos, tan, asin, acos, atan, and so on: These are Trigonometric functions.
•	 exp(x): This exponentiates each element of the x vector.
•	 scale(m): This centers or scales the elements of an m numeric matrix.

What you need to know about R

[45]

•	 union(x,y), intersect(x,y), and is.element(e,x): These are Set
functions that are also available.

•	 Conj(c): This returns the conjugate of the c complex number.
•	 rnorm, rpois, rgamma, rexp, rcauchy, rt, and so on: These can be used to

generate Gaussian, Poisson, Gamma, Exponential, Cauchy, and Student
distributions.

•	 fft(x): This calculates Fast Fourier Transform of the elements of x.
•	 apply(m,INDEX,FUNC): This applies the FUNC function on the INDEX index

of the m matrix.
•	 lapply(l,FUNC): This applies the FUNC function on the l list.
•	 optim(params, func, mtds): This is the general-purpose method to

optimize a func function for the params parameters using the mtds methods.
•	 lm(frml): This fits a linear model on the frml formula. This is used for

regression and covariance analysis. Also, check glm for generalized
linear models.

•	 nls(fml): This fits nonlinear least squares estimates for nonlinear models.
•	 spline(s): This calculates the cubic spline.
•	 predict(fit,[...]): This is a generic function to test model fitting on

input data.
•	 df.residual(fit): This calculates the degrees of residual freedom from fit.
•	 coef, residuals, and deviance: These return coefficients, residuals, and

deviance of models fitted.
•	 logLik(fit): This calculates the log likelihood of the model fitted.
•	 aov(frml): This performs analysis of variance model calculations on frml.
•	 Anova(fit,[…]): This performs analysis of variance of models fitted.

Math and modeling packages
The following is a list of popular and mature sets of packages, which enhance the
power of R:

•	 arules: This is association rule mining
•	 cluster, fpc, mclust: This is clustering and classification
•	 DmwR, dprep,rlof: This is outlier detection
•	 multicore, snow: This is a multiprocessing library
•	 nlme: This is regression, linear, and nonlinear modeling

What you need to know about R

[46]

•	 TraMiner: This is sequential pattern mining
•	 party and rpart: These are recursive partitioning, decision trees, and

survival analysis
•	 nnet: This is neural networks
•	 kernlab and e1071: These support Vector Machines, PCA, Naive Bayes,

fuzzy clustering, and so on.
•	 stats, ast, forecast: This is for time series analysis
•	 RgoogleMaps, ggmap, plotKML, and spdep: These are for spatial analysis
•	 sna, network, and igraph: These are for social network analysis
•	 tm, lda, topicmodels, RTextTools, and tau: These are for text mining

Plotting
Statistical	analysis	and	data	science	are	way	too	difficult	without	graphs	and	
visualization. R has a rich set of utilities and libraries for plotting. Let's have a look
at a few of these:

•	 plot(y): This plots the values of y on the y axis ordered by indices on the
x axis.

•	 plot(x,y): This plots values on the x and y axis, respectively.
•	 barplot(x): This is a bar plot of the values of x.
•	 hist(x): This is a histogram of frequencies of the elements of x.
•	 pie(x): This is a pie chart for the elements of x.
•	 boxplot(x): This is a boxplot for the elements of x.
•	 plot.ts(x): This is a plot with respect to time.
•	 mosaicplot(x): This is a mosaic graph of residuals of a log-linear regression.
•	 contour(x,y,z): This is a contour plot of x and y, where x and y must be

vectors and z should be a matrix of the x X y dimension.
•	 qqplot(x,y): This is a quantile plot of y with respect to x.
•	 abline(m,c): This draws a line with the m slope and the c intercept. This can

also be used to draw horizontal, vertical, and regression lines.
•	 rect(x1,y1,x2,y2): This draws a rectangle, based on the top-left (x1,y1)

and bottom-right (x2,y2) coordinates.
•	 polygon(x,y): This draws a polygon, connecting the elements of x and y.
•	 xlim,ylim: These are the x and y limits of a graph.

What you need to know about R

[47]

•	 col(): This is the line or symbol color.
•	 text(), title(), and legend(): These are for text, title, and legends on

a graph.

Plotting packages
Let's now take a look at some plotting packages.

•	 ggplot2: This is the de facto graphics grammar for R
•	 ggvis: This is a rich and powerful plotting library
•	 googleVis: This brings the power of Google Visualization APIs to R
•	 lattice: This is specialized for multivariate data
•	 iplots: These are interactive plots

Summary
Using this guide, we went on a journey from the origins of R to using it to analyze
the mtcars dataset available in R. Throughout the guide, we learned about the R
ecosystem, its tools, and services, and we understood the basic constructs of R along
with the CRISP-DM data analysis model or life cycle to perform different analyses.
We performed exploratory analysis, and we went on to draw relationships and
insights using various packages for regression modeling and visualization.
We also looked at the model evaluation methods for such models. We concluded
the guide by listing neat tips and tricks, along with popular and standard sets of
packages and utilities, for quick reference.

As R is a community-driven language and software platform, it thrives and improves
on user contributions. Hence, we urge our readers to learn and then contribute back
to	the	community	by	way	of	blogs,	tutorials,	libraries,	bug	fixes,	and	so	on.

What you need to know about R

[48]

What to do next?

Broaden your horizons with Packt
If you’re interested in R, then you’ve come to the right place. We’ve got a diverse
range	of	products	that	should	appeal	to	budding	as	well	as	proficient	specialists	in	
the	field	of	R.

https://www.packtpub.com/big-data-and-business-intelligence/machine-learning-r-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/r-data-science
https://www.packtpub.com/big-data-and-business-intelligence/data-analysis-r
https://www.packtpub.com/big-data-and-business-intelligence/r-data-visualization-cookbook

What you need to know about R

[49]

To	learn	more	about	R	and	find	out	what	you	want	to	learn	next,	visit	the	R	technology	
page at https://www.packtpub.com/tech/r

If you have any feedback on this eBook, or are struggling with something we haven’t
covered, let us know at customercare@packtpub.com.

Get a 50% discount on your next eBook or video from www.packtpub.com using
the code:

https://www.packtpub.com/tech/r
www.packtpub.com

	_GoBack
	R Ecosystem
	Setting up the R ecosystem
	Installation
	Configuration
	Startup modes
	Workspace

	Exploring the basic constructs of R
	Operators
	Data types
	Data structures

	Installing packages
	Getting help
	Integrated Development Environments
	RStudio
	Other IDEs

	RPubs – Publishing through R
	Shiny – Web apps using R

	Data Analysis
	Data analysis workflow
	Understanding our current objective
	Acquiring and understanding data
	Preparing the data
	Exploratory data analysis
	Statistical inference
	Statistical modeling with regression

	R Cheat Sheets
	Data processing and transformation
	Data handling
	Basic data types
	Data structures
	General utilities

	Math and modeling
	Math and modeling utilities
	Math and modeling packages

	Plotting
	Plotting packages

	Summary

	What to do next?
	Broaden your horizons with Packt

