

Linux Shell Scripting Cookbook
Second Edition

Shantanu Tushar
Sarath Lakshman

Chapter No. 8
"Put on the Monitor's Cap"

In this package, you will find:
A Biography of the authors of the book

A preview chapter from the book, Chapter NO.8 "Put on the Monitor's Cap"

A synopsis of the book’s content

Information on where to buy this book

About the Authors
Shantanu Tushar is an advanced GNU/Linux user since his college days. He works
as an application developer and contributes to the software in the KDE projects.

Shantanu has been fascinated by computers since he was a child, and spent most of
his high school time writing C code to perform daily activities. Since he started using
GNU/Linux, he has been using shell scripts to make the computer do all the hard work
for him. He also takes time to visit students at various colleges to introduce them to the
power of Free Software, including its various tools. Shantanu is a well-known contributor
in the KDE community and works on Calligra, Gluon and the Plasma subprojects. He
looks after maintaining Calligra Active – KDE's office document viewer for tablets,
Plasma Media Center, and the Gluon Player. One day, he believes, programming will
be so easy that everybody will love to write programs for their computers.

Shantanu can be reached by e-mail on shantanu@kde.org, shantanutushar on
identi.ca/twitter, or his website http://www.shantanutushar.com.

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

I would like to thank my friends and family for the support and
encouragement they've given me, especially to my sweet sister for her
patience when I couldn't get time to talk to her. I am particularly thankful
to Sinny Kumari for patiently testing the scripts to make sure they function
properly and Sudhendu Kumar for helping me with the recipe on
GNU Screen.

I must also thank Krishna, Madhusudan, and Santosh who introduced me to
the wonderful world of GNU/Linux and Free Software. Also, a big thanks to
all the reviewers of the book for taking the time to painfully go through every
minute detail in the book and help me in improving it. I am also thankful to
the whole team at Packt Publishing, without whose efforts and experience,
this second edition wouldn't have happened.

Sarath Lakshman is a 23 year old who was bitten by the Linux bug during his teenage
years. He is a software engineer working in ZCloud engineering group at Zynga,
India. He is a life hacker who loves to explore innovations. He is a GNU/Linux
enthusiast and hactivist of free and open source software. He spends most of his time
hacking with computers and having fun with his great friends. Sarath is well known as
the developer of SLYNUX (2005)—a user friendly GNU/Linux distribution for Linux
newbies. The free and open source software projects he has contributed to are PiTiVi
Video editor, SLYNUX GNU/Linux distro, Swathantra Malayalam Computing,
School-Admin, Istanbul, and the Pardus Project. He has authored many articles for the
Linux For You magazine on various domains of FOSS technologies. He had made a
contribution to several different open source projects during his multiple Google Summer
of Code projects. Currently, he is exploring his passion about scalable distributed systems
in his spare time. Sarath can be reached via his website
http://www.sarathlakshman.com.

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Linux Shell Scripting Cookbook
Second Edition
GNU/Linux is one of the most powerful and flexible operating systems in the world.
In modern computing, there is absolutely no space where it is not used—from servers,
portable computers, mobile phones, tablets to supercomputers, everything runs Linux.
While there are beautiful and modern graphical interfaces available for it, the shell still
remains the most flexible way of interacting with the system.

In addition to executing individual commands, a shell can follow commands from a
script, which makes it very easy to automate tasks. Examples of such tasks are preparing
reports, sending e-mails, performing maintenance, and so on. This book is a collection
of chapters which contain recipes to demonstrate real-life usages of commands and shell
scripts. You can use these as a reference, or an inspiration for writing your own scripts.
The tasks will range from text manipulation to performing network operations to
administrative tasks.

As with everything, the shell is only as awesome as you make it. When you become
an expert at shell scripting, you can use the shell to the fullest and harness its true
power. Linux Shell Scripting Cookbook shows you how to do exactly that!

What This Book Covers
Chapter 1, Shell Something Out, is an introductory chapter for understanding the
basic concepts and features in Bash. We discuss printing text in the terminal, doing
mathematical calculations, and other simple functionalities provided by Bash.

Chapter 2, Have a Good Command, shows commonly used commands that are available
with GNU/Linux. This chapter travels through different practical usage examples
that users may come across and that they could make use of. In addition to essential
commands, this second edition talks about cryptographic hashing commands and a
recipe to run commands in parallel, wherever possible.

Chapter 3, File In, File Out, contains a collection of recipes related to files and
filesystems. This chapter explains how to generate large-size files, installing a filesystem
on files, mounting files, and creating ISO images. We also deal with operations such as
finding and removing duplicate files, counting lines in a file collecting details about files,
and so on.

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Chapter 4, Texting and Driving, has a collection of recipes that explains most of the
commandline text processing tools well under GNU/Linux with a number of task
examples. It also has supplementary recipes for giving a detailed overview of regular
expressions and commands such as sed and awk. This chapter goes through solutions
to most of the frequently used text processing tasks in a variety of recipes. It is an
essential read for any serious task.

Chapter 5, Tangled Web? Not At All!, has a collection of shell-scripting recipes that talk
to services on the Internet. This chapter is intended to help readers understand how to
interact with the Web using shell scripts to automate tasks such as collecting and parsing
data from web pages. This is discussed using POST and GET to web pages, writing
clients to web services. The second edition uses new authorization mechanisms such
as OAuth for services such as Twitter.

Chapter 6, The Backup Plan, shows several commands used for performing data back
up, archiving, compression, and so on. In addition to faster compression techniques, this
second edition also talks about creating entire disk images.

Chapter 7, The Old-boy Network, has a collection of recipes that talks about networking
on Linux and several commands useful for writing network-based scripts. The chapter
starts with an introductory basic networking primer and goes on to cover usages of ssh –
one of the most powerful commands on any modern GNU/Linux system. We discuss
advanced port forwarding, setting up raw communication channels, configuring the
firewall, and much more.

Chapter 8, Put on the Monitor's Cap, walks through several recipes related to monitoring
activities on the Linux system and tasks used for logging and reporting. The chapter
explains tasks such as calculating disk usage, monitoring user access, and CPU usage.
In this second edition, we also learn how to optimize power consumption, monitor disks,
and check their filesystems for errors.

Chapter 9, Administration Calls, has a collection of recipes for system administration.
This chapter explains different commands to collect details about the system and user
management using scripting. We also discuss bulk image resizing and accessing MySQL
databases from the shell. New in this edition is that we learn how to use the GNU Screen
to manage multiple terminals without needing a window manager.

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

8
Put on the Monitor's Cap

In this chapter, we will cover:

  Monitoring disk usage

  Calculating the execution time for a command

  Collecting information about logged in users, boot logs, and boot failures

  Listing the top 10 CPU consuming processes in an hour

  Monitoring command outputs with watch

  Logging access to fi les and directories

  Logfi le management with logrotate

  Logging with syslog

  Monitoring user logins to fi nd intruders

  Remote disk usage health monitor

  Finding out active user hours on a system

  Measuring and optimizing power usage

  Monitoring disk activity

  Checking disks and fi lesystems for errors

Introduction
An operating system consists of a collection of system software that is designed for different
purposes. It is a good idea to monitor each of these programs in order to know whether they
are working properly or not. We will also use a technique called logging by which we can get
important information in a fi le while the program is running. The content of this fi le can be
used to understand the timeline of operations that are taking place in a running program or
daemon. For instance, if an application or a service crashes, this information helps to debug
the issue and enables us to fi x any issues.

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Put on the Monitor's Cap

280

This chapter deals with different commands that can be used to monitor different activities.
It also goes through logging techniques and their usages.

Monitoring disk usage
Disk space is a limited resource. We frequently perform disk usage calculation on storage
media (such as hard disks) to fi nd out the free space available on them. When free space
becomes scarce, we fi nd out large fi les to be deleted or moved in order to create free space. In
addition to this, disk usage manipulations are also used in shell scripting contexts. This recipe
will illustrate various commands used for disk manipulations with a variety of options.

Getting ready
df and du are the two signifi cant commands that are used for calculating disk usage in Linux.
The command df stands for disk free and du stands for disk usage. Let's see how we can use
them to perform various tasks that involve disk usage calculation.

How to do it...
To fi nd the disk space used by a fi le (or fi les), use:

$ du FILENAME1 FILENAME2 ..

For example:

$ du file.txt

4

The result is, by default, shown as size in bytes.

To obtain the disk usage for all fi les inside a directory along with the individual disk usage for
each fi le showed in each line, use:

$ du -a DIRECTORY

-a outputs results for all fi les in the specifi ed directory or directories recursively.

Running du DIRECTORY will output a similar result, but it will show only the
size consumed by subdirectories. However, this does not show the disk usage
for each of the fi les. For printing the disk usage by fi les, -a is mandatory.

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Chapter 8

281

For example:

$ du -a test

4 test/output.txt

4 test/process_log.sh

4 test/pcpu.sh

16 test

An example of using du DIRECTORY is as follows:

$ du test

16 test

There's more...
Let's go through additional usage practices for the du command.

Displaying disk usage in KB, MB, or Blocks
By default, the disk usage command displays the total bytes used by a fi le. A more
human-readable format is expressed in units such as KB, MB, or GB. In order to print
the disk usage in a display-friendly format, use -h as follows:

du -h FILENAME

For example:

$ du -h test/pcpu.sh

4.0K test/pcpu.sh

Multiple file arguments are accepted

Or

du -h DIRECTORY

$ du -h hack/

16K hack/

Displaying the grand total sum of disk usage
If we need to calculate the total size taken by all the fi les or directories, displaying individual
fi le sizes won't help. du has an option -c such that it will output the total disk usage of all fi les
and directories given as an argument. It appends a line SIZE total with the result. The syntax
is as follows:

$ du -c FILENAME1 FILENAME2..

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Put on the Monitor's Cap

282

For example:

du -c process_log.shpcpu.sh

4 process_log.sh

4 pcpu.sh

8 total

Or

$ du -c DIRECTORY

For example:

$ du -c test/

16 test/

16 total

Or

$ du -c *.txt

Wildcards

-c can be used along with other options like -a and -h, in which case they will produce their
usual output with an extra line containing the total size.

There is another option -s (summarize), which will print only the grand total as the output. It
will print the total sum, and the fl ag -h can be used along with it to print in human-readable
format. This combination has frequent use in practice:

$ du -s FILES(s)

$ du -sh DIRECTORY

For example:

$ du -sh slynux

680K slynux

Printing fi les in specifi ed units
We can force du to print the disk usage in specifi ed units. For example:

  Print the size in bytes (by default) by using:

$ du -b FILE(s)

  Print the size in kilobytes by using:

$ du -k FILE(s)

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Chapter 8

283

  Print the size in megabytes by using:

$ du -m FILE(s)

  Print the size in the given BLOCK size specifi ed by using:

$ du -B BLOCK_SIZE FILE(s)

Here, BLOCK_SIZE is specifi ed in bytes.

An example consisting of all the commands is as follows:

$ du pcpu.sh

4 pcpu.sh

$ du -b pcpu.sh

439 pcpu.sh

$ du -k pcpu.sh

4 pcpu.sh

$ du -m pcpu.sh

1 pcpu.sh

$ du -B 4 pcpu.sh

1024 pcpu.sh

Excluding fi les from the disk usage calculation
There are circumstances when we need to exclude certain fi les from the disk usage
calculation. Such excluded fi les can be specifi ed in two ways:

  Wildcards: We can specify a wildcard as follows:

$ du --exclude "WILDCARD" DIRECTORY

For example:

$ du --exclude "*.txt" FILES(s)

Excludes all .txt files from calculation

  Exclude list: We can specify a list of fi les to be excluded from a fi le as follows:

$ du --exclude-from EXCLUDE.txt DIRECTORY

EXCLUDE.txt is the file containing list

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Put on the Monitor's Cap

284

There are also some other handy options available with du to restrict the disk usage
calculation. With the --max-depth parameter , we can specify the maximum depth of the
hierarchy du should traverse while calculating disk usage. Specifying a depth of 1 calculates
the size of fi les in the current directory, a depth of 2, specifi es to calculate fi les in the current
directory and the next subdirectory, and so on. For example:

$ du --max-depth 2 DIRECTORY

du can be restricted to traverse only one fi lesystem by using the -x
argument. Suppose du DIRECTORY is run, it will traverse through
every possible subdirectory of DIRECTORY recursively. A subdirectory
in the directory hierarchy may be a mount point (for example,
/mnt/sda1 is a subdirectory of /mnt and it is a mount point for the
device /dev/sda1). du will traverse that mount point and calculate
the sum of disk usage for that device fi lesystem also. -x is used to
prevent du from doing this. For example, du -x / will exclude all
mount points in /mnt/ for the disk usage calculation.

While using du make sure that the directories or fi les it traverses have the proper
read permissions.

Finding the 10 largest size fi les from a given directory
Finding large fi les is a task we come across regularly so that we can delete or move them.
We can easily fi nd out such fi les using du and sort commands like this:

$ du -ak SOURCE_DIR | sort -nrk 1 | head

Here, -a makes du traverse the SOURCE_DIR and calculates the size of all fi les and
directories. The fi rst column of the output contains the size in kilobytes since -k is
specifi ed, and the second column contains the fi le or folder name.

sort is used to perform a numerical sort with column 1 and reverse it. head is used to parse
the fi rst 10 lines from the output. For example:

$ du -ak /home/slynux | sort -nrk 1 | head -n 4

50220 /home/slynux

43296 /home/slynux/.mozilla

43284 /home/slynux/.mozilla/firefox

43276 /home/slynux/.mozilla/firefox/8c22khxc.default

One of the drawbacks of the preceding one-liner is that it includes directories in the result.
However, when we need to fi nd only the largest fi les and not directories, we can improve the
one-liner to output only the large fi les as follows:

$ find . -type f -exec du -k {} \; | sort -nrk 1 | head

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Chapter 8

285

We used find to fi lter only fi les to du rather than allow du to traverse recursively by itself.

Disk free information
The du command provides information about the usage, whereas df provides information
about free disk space. Use -h with df to print the disk space in human-readable format.
For example:

$ df -h

Filesystem Size Used Avail Use% Mounted on

/dev/sda1 9.2G 2.2G 6.6G 25% /

none 497M 240K 497M 1% /dev

none 502M 168K 501M 1% /dev/shm

none 502M 88K 501M 1% /var/run

none 502M 0 502M 0% /var/lock

none 502M 0 502M 0% /lib/init/rw

none 9.2G 2.2G 6.6G 25% /var/lib/ureadahead/debugfs

Calculating the execution time for a
command

While testing an application's effi ciency or comparing different algorithms to solve a given
problem, the execution time taken is very critical. A good algorithm should execute in a
minimum amount of time. Let's see how to calculate the execution time.

How to do it...
1. To measure the execution time, just prefi x time to the command you want to run.

For example:

$ time COMMAND

The command will execute and its output will be shown. Along with the output, the
time command appends the time taken in stderr. An example is as follows:

$ time ls

test.txt

next.txt

real 0m0.008s

user 0m0.001s

sys 0m0.003s

It will show real, user, and system times for execution.

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Put on the Monitor's Cap

286

An executable binary of the time command is available at
/usr/bin/time, as well as a shell built-in named time
exists. When we run time, it calls the shell built-in by default.
The shell built-in time has limited options. Hence, we should
use an absolute path for the executable (/usr/bin/time) for
performing additional functionalities.

2. We can write these time statistics to a fi le using the -o fi lename option as follows:

$ /usr/bin/time -o output.txt COMMAND

The fi lename should always appear after the -o fl ag.

In order to append the time statistics to a fi le without overwriting, use the -a fl ag
along with the -o option as follows:

$ /usr/bin/time -a -o output.txt COMMAND

3. We can also format the time outputs using format strings with -f option. A format
string consists of parameters corresponding to specifi c options prefi xed with %.
Format strings for real time, user time, and sys time are as follows:

  Real time: %e

  User: %U

  sys: %S

By combining parameter strings, we can create a formatted output as follows:

$ /usr/bin/time -f "FORMAT STRING" COMMAND

For example:

$ /usr/bin/time -f "Time: %U" -a -o timing.log uname

Linux

Here %U is the parameter for user time.

When a formatted output is produced, the formatted output of the command is
written to the standard output and the output of the COMMAND, which is timed, is
written to standard error. We can redirect the formatted output using a redirection
operator (>) and redirect the time information output using the (2>) error
redirection operator.

For example:

$ /usr/bin/time -f "Time: %U" uname> command_output.txt 2>time.log

$ cat time.log

Time: 0.00

$ cat command_output.txt

Linux

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Chapter 8

287

4. To show the page size, use the %Z parameters as follows:

$ /usr/bin/time -f "Page size: %Z bytes" ls> /dev/null

Page size: 4096 bytes

Here the output of the timed command is not required and hence, the standard
output is directed to the /dev/null device in order to prevent it from writing to
the terminal.

More format string parameters are available. Try man time for more details.

How it works...
The three different times can be defi ned as follows:

  Real is wall clock time—the time from start to fi nish of the call. This is all elapsed time
including time slices used by other processes and the time that the process spends
when blocked (for example, if it is waiting for I/O to complete).

  User is the amount of CPU time spent in user-mode code (outside the kernel) within
the process. This is only the actual CPU time used in executing the process. Other
processes, and the time that the process spends when blocked do not count towards
this fi gure.

  Sys is the amount of CPU time spent in the kernel within the process. This means
executing the CPU time spent in system calls within the kernel, as opposed to the
library code, which is still running in the user space. Like user time, this is only the
CPU time used by the process. Refer to the following table for a brief description of
kernel mode (also known as supervisor mode) and the system call mechanism.

Many details regarding a process can be collected using the time command. The important
details include, exit status, number of signals received, number of context switches made,
and so on. Each parameter can be displayed by using a suitable format string.

The following table shows some of the interesting parameters that can be used:

Parameter Description
%C Name and command-line arguments of the command being timed.

%D Average size of the process's unshared data area, in kilobytes.

%E Elapsed real (wall clock) time used by the process in [hours:]minutes:seconds.

%x Exit status of the command.

%k Number of signals delivered to the process.

%W Number of times the process was swapped out of the main memory.

%Z System's page size in bytes. This is a per-system constant, but varies between
systems.

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Put on the Monitor's Cap

288

Parameter Description
%P Percentage of the CPU that this job got. This is just user + system times divided

by the total running time. It also prints a percentage sign.

%K Average total (data + stack + text) memory usage of the process, in Kilobytes.

%w Number of times that the program was context-switched voluntarily, for instance
while waiting for an I/O operation to complete.

%c Number of times the process was context-switched involuntarily (because the
time slice expired).

Collecting information about logged in
users, boot logs, and boot failures

Collecting information about the operating environment, logged in users, the time for which
the computer has been powered on, and boot failures are very helpful. This recipe will go
through a few commands used to gather information about a live machine.

Getting ready
This recipe will introduce commands who, w, users, uptime, last, and lastb.

How to do it...
1. To obtain information about users currently logged into the machine use:

$ who

slynux pts/0 2010-09-29 05:24 (slynuxs-macbook-pro.local)

slynux tty7 2010-09-29 07:08 (:0)

This output lists the login name, the TTY used by the users, login time, and remote
hostname (or X display information) about logged in users.

TTY (the term comes from TeleTYpewriter) is the device file
associated with a text terminal which is created in /dev when
a terminal is newly spawned by the user (for example, /dev/
pts/3). The device path for the current terminal can be found
out by typing and executing the command tty.

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Chapter 8

289

2. To obtain more detailed information about the logged in users, use:

$ w
 07:09:05 up 1:45, 2 users, load average: 0.12, 0.06, 0.02
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
slynux pts/0 slynuxs 05:24 0.00s 0.65s 0.11s sshd: slynux
slynux tty7 :0 07:08 1:45m 3.28s 0.26s gnome-session

This fi rst line lists the current time, system uptime, number of users currently logged
on, and the system load averages for the past 1, 5, and 15 minutes. Following this,
the details about each login are displayed with each line containing the login name,
the TTY name, the remote host, login time, idle time, total CPU time used by the user
since login, CPU time of the currently running process, and the command line of
their current process.

Load average in the uptime command's output is a
parameter that indicates system load. This is explained
in more detail in Chapter 9, Administration Calls.

3. In order to list only the usernames of the users currently logged into the
machine, use:

$ users

slynux slynux slynux hacker

If a user has opened multiple terminals, it will show that many entries for the same
user. In the preceding output, the user slynux has opened three pseudo terminals.
The easiest way to print unique users is to use sort and uniq to fi lter as follows:

$ users | tr ' ' '\n' | sort | uniq
slynux
hacker

We have used tr to replace ' ' with '\n'. Then a combination of sort and uniq
will produce unique entries for each user.

4. In order to see how long the system has been powered on, use:

$ uptime
 21:44:33 up 3:17, 8 users, load average: 0.09, 0.14, 0.09

The time that follows the word up indicates the time for which the system has been
powered on. We can write a simple one-liner to extract the uptime only:

$ uptime | grep -Po '\d{2}\:\d{2}\:\d{2}'

This uses grep with a perl-style regex to extract only three two-digit numbers
separated by colons.

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Put on the Monitor's Cap

290

5. In order to get information about previous boot and user logged sessions, use:

$ last

slynux tty7 :0 Tue Sep 28 18:27 still
logged in

reboot system boot 2.6.32-21-generic Tue Sep 28 18:10 - 21:46
(03:35)

slynux pts/0 :0.0 Tue Sep 28 05:31 - crash
(12:39)

The last command will provide information about logged in sessions. It is actually
a log of system logins that consists of information, such as tty from which it has
logged in, login time, status, and so on.

The last command uses the log fi le /var/log/wtmp for the input log data. It is
also possible to explicitly specify the log fi le for the last command using the -f
option. For example:

$ last -f /var/log/wtmp

6. In order to obtain information about login sessions for a single user, use:

$ last USER

7. Get information about reboot sessions as follows:

$ last reboot

reboot system boot 2.6.32-21-generi Tue Sep 28 18:10 - 21:48
(03:37)

reboot system boot 2.6.32-21-generi Tue Sep 28 05:14 - 21:48
(16:33)

8. In order to get information about failed user login sessions, use:

lastb

test tty8 :0 Wed Dec 15 03:56 - 03:56
(00:00)

slynux tty8 :0 Wed Dec 15 03:55 - 03:55
(00:00)

You should run lastb as the root user.

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Chapter 8

291

Listing the top 10 CPU consuming processes
in an hour

CPU is a major resource and it is good to keep a track of the processes that consume most of
the CPU in a period of time. By monitoring the CPU usage for a certain period, we can identify
the processes that keep the CPU busy all the time and troubleshoot them to effi ciently use the
CPU. In this recipe, we will discuss process monitoring and logging.

Getting ready
ps command is used for collecting details about the processes running on the system. It can
be used to gather details, such as CPU usage, commands under execution, memory usage,
status of processes, and so on. Processes that consume the CPU for one hour can be logged,
and the top 10 can be determined by proper usage of ps and text processing. For more
details on the ps command, refer to Chapter 9, Administration Calls.

How to do it...
Let's go through the following shell script for monitoring and calculating CPU usages in
one hour:

#!/bin/bash

#Name: pcpu_usage.sh

#Description: Script to calculate cpu usage by processes for 1 hour

SECS=3600

UNIT_TIME=60

#Change the SECS to total seconds for which monitoring is to be
performed.

#UNIT_TIME is the interval in seconds between each sampling

STEPS=$(($SECS / $UNIT_TIME))

echo Watching CPU usage... ;

for((i=0;i<STEPS;i++))

do

 ps -eocomm,pcpu | tail -n +2 >> /tmp/cpu_usage.$$

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Put on the Monitor's Cap

292

 sleep $UNIT_TIME

done

echo

echo CPU eaters :

cat /tmp/cpu_usage.$$ | \

awk '

{ process[$1]+=$2; }

END{

 for(i in process)

 {

 printf("%-20s %s\n",i, process[i]) ;

 }

 }' | sort -nrk 2 | head

rm /tmp/cpu_usage.$$

#Remove the temporary log file

A sample output is as follows:

$./pcpu_usage.sh

Watching CPU usage...

CPU eaters :

Xorg 20

firefox-bin 15

bash 3

evince 2

pulseaudio 1.0

pcpu.sh 0.3

wpa_supplicant 0

wnck-applet 0

watchdog/0 0

usb-storage 0

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Chapter 8

293

How it works...
In the preceding script, the major input source is ps -eocomm,pcpu. comm stands for
command name and pcpu stands for the CPU usage in percent. It will output all the process
names and the CPU usage in percent. For each process there exists a line in the output. Since
we need to monitor the CPU usage for one hour, we repeatedly take usage statistics using ps
-eocomm,pcpu | tail -n +2 and append to a fi le /tmp/cpu_usage.$$ running inside
a for loop with 60 seconds wait in each iteration. This wait is provided by sleep 60. It will
execute ps once in each minute. tail -n +2 is used to strip off the header and COMMAND
%CPU in the ps output.

$$ in cpu_usage.$$ signifi es that it is the process ID of the current script. Suppose PID
is 1345; during execution it will be replaced as /tmp/cpu_usage.1345. We place this fi le in
/tmp since it is a temporary fi le.

The statistics fi le will be ready after one hour and will contain 60 sets of entries, each set
containing entries corresponding to the process status for each minute. Then awk is used
to sum the total CPU usage for each process. An associative array process is used for the
summation of CPU usages. It uses the process name as array index. Finally, it sorts the result
with a numeric reverse sort according to the total CPU usage and pass through head to obtain
the top 10 usage entries.

See also
  The Using awk for advanced text processing recipe of Chapter 4, Texting and Driving,

explains the awk command

  The Using head and tail for printing the last or fi rst 10 lines recipe of Chapter 3,
File In, File Out, explains the tail command

Monitoring command outputs with watch
We might need to continuously watch the output of a command for a period of time in equal
intervals. For example, while copying a large fi le, we might need to watch the growth of the fi le
size. In order to do that, we can use the watch command to execute the du command and
output repeatedly. This recipe explains how to do that.

How to do it...
The watch command can be used to monitor the output of a command on the terminal at
regular intervals. The syntax of the watch command is as follows:

$ watch COMMAND

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Put on the Monitor's Cap

294

For example:

$ watch ls

Or

$ watch 'COMMANDS'

For example:

$ watch 'ls -l | grep "^d"'

list only directories

This command will update the output at a default interval of two seconds.

We can also specify the time interval at which the output needs to be updated, by using
-n SECONDS. For example:

$ watch -n 5 'ls -l'

#Monitor the output of ls -l at regular intervals of 5 seconds

There's more
Let's explore an additional feature of the watch command.

Highlighting the differences in the watch output
In watch, there is an option for updating the differences that occur during the execution of
the command at an update interval to be highlighted using colors. Difference highlighting can
be enabled by using the -d option as follows:

$ watch -d 'COMMANDS'

Logging access to fi les and directories
Logging of fi le and directory access is very helpful to keep a track of changes that are
happening to fi les and folders. This recipe will describe how to log such accesses.

Getting ready
The inotifywait command can be used to gather information about fi le accesses. It
doesn't come by default with every Linux distro. You have to install the inotify-tools
package by using a package manager. It also requires the Linux kernel to be compiled with
inotify support. Most of the new GNU/Linux distributions come with inotify enabled in
the kernel.

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Chapter 8

295

How to do it...
Let's walk through the shell script to monitor the directory access:

#/bin/bash

#Filename: watchdir.sh

#Description: Watch directory access

path=$1

#Provide path of directory or file as a rgument to script

inotifywait -m -r -e create,move,delete $path -q

A sample output is as follows:

$./watchdir.sh .

./ CREATE new

./ MOVED_FROM new

./ MOVED_TO news

./ DELETE news

How it works...
The previous script will log events, create, move, and delete fi les and folders from the given
path. The -m option is given for monitoring the changes continuously, rather than going to
exit after an event happens, and -r enables a recursive watch of the directories (symbolic
links are ignored). Finally, -e specifi es the list of events to be watched and -q is to reduce the
verbose messages and print only the required ones. This output can be redirected to a log fi le.

We can add or remove the event list. Important events available are as follows:

Event Description
access When a read happens to a file.

modify When file contents are modified.

attrib When metadata is changed.

move When a file undergoes a move operation.

create When a new file is created.

open When a file undergoes an open operation.

close When a file undergoes a close operation.

delete When a file is removed.

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Put on the Monitor's Cap

296

Logfi le management with logrotate
Logfi les are essential components of a Linux system to keep track of events happening on
different services on the system. This helps to debug issues as well as provide statistics on
the live machine. Management of logfi les is required because as time passes, the size of a
logfi le gets bigger and bigger. Therefore, we use techniques called rotation such that we limit
the size of the logfi le and if the logfi le reaches a size beyond the limit, it will strip the logfi le
with that size and store the older entries in the logfi le archived in log directories. Hence, older
logs can be stored and kept for future references. Let's see how to rotate logs and store them.

Getting ready
logrotate is a command every Linux system admin should know. It helps to restrict the
size of the logfi le to the given SIZE. In a logfi le, the logger appends information to the log
fi le. Hence, the recent information appears at the bottom of the log fi le. logrotate will
scan specifi c logfi les according to the confi guration fi le. It will keep the last 100 kilobytes
(for example, specifi ed SIZE = 100 k) from the logfi le and move rest of the data (older log
data) to a new fi le logfile_name.1 with older entries. When more entries occur in the
logfi le (logfile_name.1) and it exceeds the SIZE, it updates the logfi le with recent entries
and creates logfile_name.2 with older logs. This process can easily be confi gured with
logrotate. logrotate can also compress the older logs as logfile_name.1.gz,
logfile_name2.gz, and so on. The option of whether older log fi les are to be compressed
or not is available with the logrotate confi guration.

How to do it...
logrotate has the confi guration directory at /etc/logrotate.d. If you look at this
directory by listing its contents, many other logfi le confi gurations can be found.

We can write our custom confi guration for our logfi le (say /var/log/program.log)
as follows:

$ cat /etc/logrotate.d/program
/var/log/program.log {
missingok
notifempty
size 30k
 compress
weekly
 rotate 5
create 0600 root root
}

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Chapter 8

297

Now the confi guration is complete. /var/log/program.log in the confi guration specifi es
the logfi le path. It will archive old logs in the same directory path.

How it works...
 Let's see what each of the parameters in the confi guration mean:

Parameter Description
missingok Ignore if the logfile is missing and return without rotating

the log.

notifempty Only rotate the log if the source logfile is not empty.

size 30k Limit the size of the logfile for which the rotation is to be
made. It can be 1 M for 1 MB.

compress Enable compression with gzip for older logs.

weekly Specify the interval at which the rotation is to be performed.
It can be weekly, yearly, or daily.

rotate 5 It is the number of older copies of logfile archives to
be kept. Since 5 is specified, there will be program.
log.1.gz, program.log.2.gz, and so on up to
program.log.5.gz.

create 0600 root root Specify the mode, user, and the group of the logfile archive
to be created.

The options specifi ed in the table are optional; we can specify the required options only in
the logrotate confi guration fi le. There are numerous options available with logrotate,
please refer to the man pages (http://linux.die.net/man/8/logrotate) for more
information on logrotate.

Logging with syslog
Usually, logfi les related to different daemons and applications are located in the /var/log
directory, as it is the common directory for storing log fi les. If you read through a few lines
of the logfi les, you can see that lines in the log are in a common format. In Linux, creating
and writing log information to logfi les at /var/log are handled by a protocol called syslog ,
handled by the syslogd daemon. Every standard application makes use of syslog for
logging information. In this recipe, we will discuss how to make use of syslogd for logging
information from a shell script.

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Put on the Monitor's Cap

298

Getting ready
Logfi les are very good for helping you deduce what is going wrong with a system. Hence, while
writing critical applications, it is always a good practice to log the progress of an application
with messages into a logfi le. We will learn the command logger to log into log fi les with
syslogd. Before getting to know how to write into logfi les, let's go through a list of important
logfi les used in Linux:

Logfile Description
/var/log/boot.log Boot log information.

/var/log/httpd Apache web server log.

/var/log/messages Post boot kernel information.

/var/log/auth.log User authentication log.

/var/log/dmesg System boot up messages.

/var/log/mail.log Mail server log.

/var/log/Xorg.0.log X Server log.

How to do it...
Let's see how to use logger to create and manage log messages:

1. In order to log to the syslog fi le /var/log/messages, use:

$ logger LOG_MESSAGE

For example:

$ logger This is a test log line

$ tail -n 1 /var/log/messages

Sep 29 07:47:44 slynux-laptop slynux: This is a test log line

The logfi le /var/log/messages is a general purpose logfi le. When the logger
command is used, it logs to /var/log/messages by default.

2. In order to log to the syslog with a specifi ed tag, use:

$ logger -t TAG This is a message

$ tail -n 1 /var/log/messages

Sep 29 07:48:42 slynux-laptop TAG: This is a message

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Chapter 8

299

syslog handles a number of logfi les in /var/log. However, while logger sends
a message, it uses the tag string to determine in which logfi le it needs to be
logged. syslogd decides to which fi le the log should be made by using the TAG
associated with the log. You can see the tag strings and associated logfi les from
the confi guration fi les located in the /etc/rsyslog.d/ directory.

3. In order to log in to the system log with the last line from another logfi le, use:

$ logger -f /var/log/source.log

See also
  The Using head and tail for printing the last or fi rst 10 lines recipe of Chapter 3,

File In, File Out, explains the head and tail commands

Monitoring user logins to fi nd intruders
Logfi les can be used to gather details about the state of the system. Here is an interesting
scripting problem statement:

We have a system connected to the Internet with SSH enabled. Many attackers are trying to
log in to the system, and we need to design an intrusion detection system by writing a shell
script. Intruders are defi ned as users who are trying to log in with multiple attempts for more
than two minutes and whose attempts are all failing. Such users are to be detected, and a
report should be generated with the following details:

  User account to which a login is attempted

  Number of attempts

  IP address of the attacker

  Host mapping for the IP address

  Time for which login attempts were performed

Getting ready
We can write a shell script that scans through the logfi les and gather the required information
from them. For dealing with SSH login failures, it is useful to know that the user authentication
session log is written to the logfi le /var/log/auth.log. The script should scan the logfi le to
detect the failure login attempts and perform different checks on the log to infer the data. We
can use the host command to fi nd out the host mapping from the IP address.

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Put on the Monitor's Cap

300

How to do it…
Let's write the intruder detection script that can generate a report to intruders by using a
authentication logfi le as follows:

#!/bin/bash
#Filename: intruder_detect.sh
#Description: Intruder reporting tool with auth.log input
AUTHLOG=/var/log/auth.log

if [[-n $1]];
then
 AUTHLOG=$1
 echo Using Log file : $AUTHLOG
fi

LOG=/tmp/valid.$$.log
grep -v "invalid" $AUTHLOG > $LOG
users=$(grep "Failed password" $LOG | awk '{ print $(NF-5) }' | sort |
uniq)

printf "%-5s|%-10s|%-10s|%-13s|%-33s|%s\n" "Sr#" "User" "Attempts" "IP
address" "Host_Mapping" "Time range"

ucount=0;

ip_list="$(egrep -o "[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+" $LOG | sort |
uniq)"

for ip in $ip_list;
do
 grep $ip $LOG > /tmp/temp.$$.log

 for user in $users;
 do
 grep $user /tmp/temp.$$.log> /tmp/$$.log
 cut -c-16 /tmp/$$.log > $$.time
 tstart=$(head -1 $$.time);
 start=$(date -d "$tstart" "+%s");

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Chapter 8

301

 tend=$(tail -1 $$.time);
 end=$(date -d "$tend" "+%s")

 limit=$(($end - $start))

 if [$limit -gt 120];
 then
 let ucount++;

 IP=$(egrep -o "[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+" /tmp/$$.log |
head -1);

 TIME_RANGE="$tstart-->$tend"

 ATTEMPTS=$(cat /tmp/$$.log|wc -l);

 HOST=$(host $IP | awk '{ print $NF }')

 printf "%-5s|%-10s|%-10s|%-10s|%-33s|%-s\n" "$ucount" "$user"
"$ATTEMPTS" "$IP" "$HOST" "$TIME_RANGE";
 fi
 done
done

rm /tmp/valid.$$.log /tmp/$$.log $$.time /tmp/temp.$$.log 2> /dev/null

A sample output is as follows:

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Put on the Monitor's Cap

302

How it wor ks…
In the intruder_detect.sh script, we use the auth.log fi le as input. We can either
provide a logfi le as input to the script by using a command-line argument to the script or, by
default, it reads the /var/log/auth.log fi le. We need to log details about login attempts
for valid usernames only. When a login attempt for an invalid user occurs, a log similar to
Failed password for invalid user bob from 203.83.248.32 port 7016
ssh2 is logged to auth.log. Hence, we need to exclude all lines in the logfi le having the
word invalid. The grep command with the invert option (-v) is used to remove all logs
corresponding to invalid users. The next step is to fi nd out the list of users for which login
attempts occurred and failed. The SSH will log lines similar to sshd[21197]: Failed
password for bob1 from 203.83.248.32 port 50035 ssh2 for a failed password.
Hence, we should fi nd all the lines with words Failed password.

Next, all the unique IP addresses are to be found out for extracting all the log lines
corresponding to each IP address. The list of IP addresses is extracted by using a regular
expression for the IP address and the egrep command. A for loop is used to iterate through
the IP address, and the corresponding log lines are found using grep and are written to a
temporary fi le. The sixth word from the last word in the log line is the username (for example,
bob1). The awk command is used to extract the sixth word from the last word. NF returns
the column number of the last word. Therefore, NF-5 gives the column number of the sixth
word from the last word. We use sort and uniq commands to produce a list of users
without duplication.

Now, we should collect the failed login log lines containing the name of each user. A for
loop is used for reading the lines corresponding to each user and the lines are written to
a temporary fi le. The fi rst 16 characters in each of the log lines is the timestamp. The cut
command is used to extract the timestamp. Once we have all the timestamps for failed
login attempts for a user, we should check the difference in time between the fi rst attempt
and the last attempt. The fi rst log line corresponds to the fi rst attempt and the last log line
corresponds to the last attempt. We have used head -1 to extract the fi rst line and tail -1
to extract the last line. Now, we have a timestamp for fi rst (tstart) and last attempt (tends)
in string format. Using the date command, we can convert the date in string representation
to total seconds in Unix Epoch time (the Getting, setting dates, and delays recipe of Chapter 1,
Shell Something Out, explains Epoch time).

The variable's start and end has the time in seconds corresponding to the start and end
timestamps in the date string. Now, take the difference between them and check whether
it exceeds two minutes (120 seconds). Thus, the particular user is termed as an intruder
and the corresponding entry with details are to be produced as a log. IP addresses can
be extracted from the log by using a regular expression for the IP address and the egrep
command. The number of attempts is the number of log lines for the user. The number of
lines can be found out by using the wc command. The hostname mapping can be extracted
from the output of the host command by running with the IP address as the argument. The
time range can be printed using the timestamp we extracted. Finally, the temporary fi les used
in the script are removed.

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Chapter 8

303

The previous script is aimed only at illustrating a model for scanning the log and producing a
report from it. It has tried to make the script smaller and simpler to leave out the complexity.
Hence, it has few bugs. You can improve the script by using a better logic.

Remote disk usage health monitor
A network consists of several machines with different users and requires centralized
monitoring of disk usage of remote machines. The system administrator of the network
needs to log the disk usage of all the machines in the network every day. Each log line
should contain details like the date, IP address of the machine, device, capacity of device,
used space, free space, percentage usage, and health status. If the disk usage of any of the
partitions in any remote machine exceeds 80 percent, the health status should be set as
ALERT, else it should be set as SAFE. This recipe will illustrate how to write a monitoring script
that can collect details from remote machines in a network.

Getting ready
We need to collect the disk usage statistics from each machine on the network, individually,
and write a logfi le in the central machine. A script that collects the details and writes the log
can be scheduled to run every day at a particular time. SSH can be used to log in to remote
systems to collect disk usage data.

How to do it…
First, we have to set up a common user account on all the remote machines in the network.
It is for the disklog program to log in to the system. We should confi gure auto-login with SSH
for that particular user (the Password less auto-login with SSH recipe of Chapter 7, The Old-
boy Network, explains confi guration of auto-login). We assume that there is a user test in all
remote machines confi gured with auto-login. Let's go through the shell script:

#!/bin/bash
#Filename: disklog.sh
#Description: Monitor disk usage health for remote systems

logfile="diskusage.log"

if [[-n $1]]
then
 logfile=$1
fi

if [! -e $logfile]

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Put on the Monitor's Cap

304

then

 printf "%-8s %-14s %-9s %-8s %-6s %-6s %-6s %s\n" "Date" "IP
address" "Device" "Capacity" "Used" "Free" "Percent" "Status" >
$logfile
fi

IP_LIST="127.0.0.1 0.0.0.0"
#provide the list of remote machine IP addresses

(
for ip in $IP_LIST;
do
 #slynux is the username, change as necessary
 ssh slynux@$ip 'df -H' | grep ^/dev/ > /tmp/$$.df

 while read line;
 do
 cur_date=$(date +%D)
 printf "%-8s %-14s " $cur_date $ip
 echo $line | awk '{ printf("%-9s %-8s %-6s %-6s
%-8s",$1,$2,$3,$4,$5); }'

 pusg=$(echo $line | egrep -o "[0-9]+%")
 pusg=${pusg/\%/};
 if [$pusg -lt 80];
 then
 echo SAFE
 else
 echo ALERT
 fi

 done< /tmp/$$.df
done

) >> $logfile

We can use the cron utility to run the script at regular intervals. For example, to run the script
every day at 10 a.m., write the following entry in the crontab:

00 10 * * * /home/path/disklog.sh /home/user/diskusg.log

Run the command crontab -e and add the preceding line. You can run the script manually
as follows:

$./disklog.sh

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Chapter 8

305

A sample output log for the previous script is as follows:

How it works…
In the disklog.sh script, we can provide the logfi le path as a command-line argument or
else it will use the default logfi le. If the logfi le does not exist, it will write the logfi le header text
into the new fi le. -e $logfile is used to check whether the fi le exists or not. The list of IP
addresses of remote machines are stored in the variable IP_LIST delimited with spaces. It
should be made sure that all the remote systems listed in the IP_LIST have a common user
test with auto-login with SSH confi gured. A for loop is used to iterate through each of the
IP addresses. A remote command df -H is executed to get the disk free usage data using
the ssh command. It is stored in a temporary fi le. A while loop is used to read the fi le line
by line. Data is extracted using awk and is printed. The date is also printed. The percentage
usage is extracted using the egrep command and % is replaced with nothing to get the
numeric value of percent. It is checked whether the percentage value exceeds 80. If it is less
than 80, the status is set as SAFE and if greater than, or equal to 80, the status is set as
ALERT. The entire printed data should be redirected to the logfi le. Hence, the portion of
code is enclosed in a subshell () and the standard output is redirected to the logfi le.

See also
  The Scheduling with cron recipe in Chapter 9, Administration Calls, explains the

crontab command

Finding out active user hours on a system
Consider a web server with shared hosting. Many users log in and log out to the server every
day and the user activity gets logged in the server's system log. This recipe is a practice task
to make use of the system logs and to fi nd out how many hours each of the users have spent
on the server and rank them according to the total usage hours. A report should be generated
with the details, such as rank, user, fi rst logged in date, last logged in date, number of times
logged in, and total usage hours. Let's see how we can approach this problem.

Getting ready
The last command is used to list the details about the login sessions of the users in a
system. The log data is stored in the /var/log/wtmp fi le. By individually adding the
session hours for each user, we can fi nd out the total usage hours.

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Put on the Monitor's Cap

306

How to do it…
Let's go through the script to fi nd out active users and generate the report:

#!/bin/bash
#Filename: active_users.sh
#Description: Reporting tool to find out active users

log=/var/log/wtmp

if [[-n $1]];
then
 log=$1
fi

printf "%-4s %-10s %-10s %-6s %-8s\n" "Rank" "User" "Start" "Logins"
"Usage hours"

last -f $log | head -n -2 > /tmp/ulog.$$

cat /tmp/ulog.$$ | cut -d' ' -f1 | sort | uniq> /tmp/users.$$

(
while read user;
do
 grep ^$user /tmp/ulog.$$ > /tmp/user.$$
 minutes=0

 while read t
 do
 s=$(echo $t | awk -F: '{ print ($1 * 60) + $2 }')
 let minutes=minutes+s
 done< <(cat /tmp/user.$$ | awk '{ print $NF }' | tr -d ')(')

 firstlog=$(tail -n 1 /tmp/user.$$ | awk '{ print $5,$6 }')
 nlogins=$(cat /tmp/user.$$ | wc -l)
 hours=$(echo "$minutes / 60.0" | bc)

 printf "%-10s %-10s %-6s %-8s\n" $user "$firstlog" $nlogins $hours
done< /tmp/users.$$

) | sort -nrk 4 | awk '{ printf("%-4s %s\n", NR, $0) }'
rm /tmp/users.$$ /tmp/user.$$ /tmp/ulog.$$

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Chapter 8

307

A sample output is as follows:

$./active_users.sh

Rank User Start Logins Usage hours

1 easyibaa Dec 11 531 349

2 demoproj Dec 10 350 230

3 kjayaram Dec 9 213 55

4 cinenews Dec 11 85 139

5 thebenga Dec 10 54 35

6 gateway2 Dec 11 52 34

7 soft132 Dec 12 49 25

8 sarathla Nov 1 45 29

9 gtsminis Dec 11 41 26

10 agentcde Dec 13 39 32

How it works…
In the active_users.sh script , we can either provide the wtmp logfi le as a command-line
argument or it will use the default wtmp log fi le. The last -f command is used to print the
logfi le contents. The fi rst column in the logfi le is the username. By using cut, we extract the
fi rst column from the logfi le. Then, the unique users are found out by using the sort and
uniq commands. Now for each user, the log lines corresponding to their login sessions are
found out using grep and are written to a temporary fi le. The last column in the last log is the
duration for which the user logged in to the session. Hence, in order to fi nd out the total usage
hours for a user, the session duration is to be added. The usage duration is in (HOUR:SEC)
format and it is converted into minutes using a simple awk script.

In order to extract the session hours for the users, we have used the awk command. For
removing the parenthesis, tr -d is used. The list of the usage hour string is passed to the
standard input for the while loop using the <(COMMANDS) operator, which acts as a fi le
input. Each hour string is converted into seconds by using the date command and added to
the variable seconds. The fi rst login time for a user is in the last line and it is extracted. The
number of login attempts is the number of log lines. In order to calculate the rank of each
user according to the total usage hours, the data record is to be sorted in the descending
order with usage hours as the key. For specifying the number reverse sort, the -nr option is
used along with sort command. -k4 is used to specify the key column (usage hour). Finally,
the output of the sort is passed to awk. The awk command prefi xes a line number to each of
the lines, which becomes the rank for each user.

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Put on the Monitor's Cap

308

Measuring and optimizing power usage
Power consumption is one of the factors that one must keep on monitoring, especially on
mobile devices, such as notebook computers, tablets, and so on. There are few tools available
for Linux systems to measure power consumption, one such command is powertop which we
are going to use for this recipe.

Getting ready
powertop doesn't come preinstalled with most Linux distributions, you will have to install it
using your package manager.

How to do it...
Let's see how to use powertop to measure and optimize power consumption:

1. Using powertop is pretty easy, just run:

powertop

powertop will start taking some measurements and once it's done, it will show a
screen which will have detailed information about power usage, the processes using
the most power, and so on:

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Chapter 8

309

2. For generating HTML reports, use:

powertop --html

powertop will take measurements over a period of time and generate an HTML
report with the default fi lename PowerTOP.html, which you can open using any
web browser.

3. For optimizing power usage, use:

When powertop is running, use the arrow keys to switch to the Tunables tab; this
will show you a list of things that powertop can tune so that they consume less
power. Just choose whichever ones you want, press Enter to toggle from Bad
to Good:

If you want to monitor the power consumption from a portable device's
battery, it is required to remove the charger and use the battery for
powertop to make measurements.

Monitoring disk activity
Going by the popular naming convention of monitoring tools ending in the word 'top'
(the command used to monitor processes), the tool to monitor disk I/O is called iotop.

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Put on the Monitor's Cap

310

Getting ready
iotop doesn't come preinstalled with most Linux distributions, you will have to install it using
your package manager.

How to do it...
There are multiple ways of using iotop to perform I/O monitoring, some of which we will see
in this recipe:

1. For interactive monitoring, use:

iotop -o

The -o option to iotop tells it to show only those processes which are doing active
I/O while it is running. It is a useful option to reduce the noise in the output.

2. For non-interactive use from shell scripts, use:

iotop -b -n 2

This will tell iotop to print the statistics two times and then exit, which is useful if we
want this output in a shell script and do some manipulation on it.

3. Monitor a specifi c process using the following:

iotop -p PID

Put PID of the process that you wish to monitor, and iotop will restrict the output to
it and show statistics.

In most modern distros, instead of fi nding the PID and supplying
it to iotop, you can use the pidof command and write the
preceding command as:
iotop -p `pidof cp`

Checking disks and fi lesystems for errors
Data is the most important thing in any computer system. Naturally, it is important to monitor
the consistency of data stored on physical media.

Getting ready
We will use the standard tool, fsck to check for errors in the fi lesystems. This command
should be preinstalled on all modern distros. If not, use your package manager to install it.

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Chapter 8

311

How to do it...
Let us see how to use fsck with its various options to check fi lesystems for errors, and
optionally fi x them.

1. To check for errors on a partition or fi lesystem, just pass its path to fsck:

fsck /dev/sdb3

fsck from util-linux 2.20.1

e2fsck 1.42.5 (29-Jul-2012)

HDD2 has been mounted 26 times without being checked, check
forced.

Pass 1: Checking inodes, blocks, and sizes

Pass 2: Checking directory structure

Pass 3: Checking directory connectivity

Pass 4: Checking reference counts

Pass 5: Checking group summary information

HDD2: 75540/16138240 files (0.7% non-contiguous),
48756390/64529088 blocks

2. To check all the fi lesystems confi gured in /etc/fstab, we can use the
following syntax:

fsck -A

This will go through the /etc/fstab fi le sequentially, checking each of the
fi lesystems one-by-one. The fstab fi le basically confi gures a mapping between
disks and mount points which makes it easy to mount fi lesystems. This also makes it
possible to mount certain fi lesystems during boot.

3. Instruct fsck to automatically attempt fi xing errors, instead of interactively asking us
whether or not to repair, we can use this form of fsck:

fsck -a /dev/sda2

4. To simulate the actions, fsck is going to perform:

fsck -AN

fsck from util-linux 2.20.1

[/sbin/fsck.ext4 (1) -- /] fsck.ext4 /dev/sda8

[/sbin/fsck.ext4 (1) -- /home] fsck.ext4 /dev/sda7

[/sbin/fsck.ext3 (1) -- /media/Data] fsck.ext3 /dev/sda6

This will print information on what actions will be performed, which is checking all
the fi lesystems.

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Put on the Monitor's Cap

312

How it works...
fsck is just a frontend for fi lesystem specifi c fsck programs written for those
fi lesystems. When we run fsck, it automatically detects the type of the fi lesystem
and runs the appropriate fsck.fstype command where fstype is the type of the
fi lesystem. For example, if we run fsck on an ext4 fi lesystem, it will end up calling
the fsck.ext4 command.

Because of this, you will fi nd that fsck itself supports only the common options across all
such fi lesystem-specifi c tools. To fi nd more detailed options, look at the man pages of specifi c
commands such as fsck.ext4.

Further, simulating the actions fsck performs is useful when there is a suspicion of a
fi lesystem being corrupt and we run fsck to fi x it, it is sometimes important to make sure that
fsck doesn't perform an operation which we don't want. An example maybe that fsck might
want to mark some sectors as bad, but we might want to try recovering data from it. In this
case, we ask fsck to just do a dry run and print the actions instead of actually performing
the actions.

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

Where to buy this book
You can buy Linux Shell Scripting Cookbook Second Edition from the Packt Publishing
website: http://www.packtpub.com/linux-shell-scripting-cookbook-
second-edition/book.
Free shipping to the US, UK, Europe and selected Asian countries. For more information, please
read our shipping policy.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and
most internet book retailers.

www.PacktPub.com

For More Information:
www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

http://www.packtpub.com/Shippingpolicy
http://www.packtpub.com/
http://www.packtpub.com/linux-shell-scripting-cookbook-second-edition/book

