

Information Storage and Management Second Edition

Storing, Managing, and Protecting Digital Information in Classic, Virtualized, and Cloud Environments

Section

Storage System

In This Section

Chapter 1: Introduction to Information Storage Chapter 2: Data Center Environment Chapter 3: Data Protection: RAID Chapter 4: Intelligent Storage Systems

Chapter 1 Introduction to Information Storage

Information is increasingly important in our daily lives. We have become informationdependent in the 21st century, living in an on-command, on-demand world, which means, we need information when and where it is required. We access the Internet every day to perform searches, participate in social networking, send and receive e-mails, share pictures and videos, and use scores of other applications. Equipped with a growing number of content-generating devices, more information is created by individuals than by organizations (including business, governments, non-profits and so on). Information created by individuals gains

KEY CONCEPTS
Data and Information
Structured and Unstructured Data
Evolution of Storage Architecture
Core Elements of a Data Center
Virtualization and Cloud

value when shared with others. When created, information resides locally on devices, such as cell phones, smartphones, tablets, cameras, and laptops. To be shared, this information needs to be uploaded to central data repositories (data centers) via networks. Although the majority of information is created by individuals, it is stored and managed by a relatively small number of organizations.

The importance, dependency, and volume of information for the business world also continue to grow at astounding rates. Businesses depend on fast and reliable access to information critical to their success. Examples of business processes or systems that rely on digital information include airline reservations, telecommunications billing, Internet commerce, electronic banking, credit card transaction processing, capital/stock trading, health care claims processing, life science research, and so on. The increasing dependence of businesses on information has amplified the challenges in storing, protecting, and managing data. Legal, regulatory, and contractual obligations regarding the availability and protection of data further add to these challenges.

Organizations usually maintain one or more data centers to store and manage information. A *data center* is a facility that contains information storage and other physical information technology (IT) resources for computing, networking, and storing information. In traditional data centers, the storage resources are typically dedicated for each of the business units or applications. The proliferation of new applications and increasing data growth have resulted in islands of discrete information storage infrastructures in these data centers. This leads to complex information management and underutilization of storage resources. Virtualization optimizes resource utilization and eases resource management. Organizations incorporate virtualization in their data centers to transform them into *virtualized* data centers (VDCs). Cloud computing, which represents a fundamental shift in how IT is built, managed, and provided, further reduces information storage and management complexity and IT resource provisioning time. Cloud computing brings in a fully automated request-fulfillment process that enables users to rapidly obtain storage and other IT resources on demand. Through cloud computing, an organization can rapidly deploy applications where the underlying storage capability can scale-up and scale-down, based on the business requirements.

This chapter describes the evolution of information storage architecture from a server-centric model to an information-centric model. It also provides an overview of virtualization and cloud computing.

1.1 Information Storage

Organizations process data to derive the information required for their day-today operations. Storage is a repository that enables users to persistently store and retrieve this digital data.

1.1.1 Data

Data is a collection of raw facts from which conclusions might be drawn. Handwritten letters, a printed book, a family photograph, printed and duly signed copies of mortgage papers, a bank's ledgers, and an airline ticket are all examples that contain data.

Before the advent of computers, the methods adopted for data creation and sharing were limited to fewer forms, such as paper and film. Today, the same data can be converted into more convenient forms, such as an e-mail message, an e-book, a digital image, or a digital movie. This data can be generated using a computer and stored as strings of binary numbers (0s and 1s), as shown in Figure 1-1. Data in this form is called *digital data* and is accessible by the user only after a computer processes it.

Figure 1-1: Digital data

With the advancement of computer and communication technologies, the rate of data generation and sharing has increased exponentially. The following is a list of some of the factors that have contributed to the growth of digital data:

- Increase in data-processing capabilities: Modern computers provide a significant increase in processing and storage capabilities. This enables the conversion of various types of content and media from conventional forms to digital formats.
- Lower cost of digital storage: Technological advances and the decrease in the cost of storage devices have provided low-cost storage solutions. This cost benefit has increased the rate at which digital data is generated and stored.
- Affordable and faster communication technology: The rate of sharing digital data is now much faster than traditional approaches. A handwritten letter might take a week to reach its destination, whereas it typically takes only a few seconds for an e-mail message to reach its recipient.
- Proliferation of applications and smart devices: Smartphones, tablets, and newer digital devices, along with smart applications, have significantly contributed to the generation of digital content.

Inexpensive and easier ways to create, collect, and store all types of data, coupled with increasing individual and business needs, have led to accelerated data growth, popularly termed *data explosion*. Both individuals and businesses have contributed in varied proportions to this data explosion.

The importance and value of data vary with time. Most of the data created holds significance for a short term but becomes less valuable over time. This governs the type of data storage solutions used. Typically, recent data which has higher usage is stored on faster and more expensive storage. As it ages, it may be moved to slower, less expensive but reliable storage.

EXAMPLES OF RESEARCH AND BUSINESS DATA

Following are some examples of research and business data:

Customer data: Data related to a company's customers, such as order details, shipping addresses, and purchase history.

■ **Product data:** Includes data related to various aspects of a product, such as inventory, description, pricing, availability, and sales.

- Medical data: Data related to the healthcare industry, such as patient history, radiological images, details of medication and other treatment, and insurance information.
- Seismic data: Seismology is a scientific study of earthquakes. It involves collecting data and processes to derive information that helps determine the location and magnitude of earthquakes.

Businesses generate vast amounts of data and then extract meaningful information from this data to derive economic benefits. Therefore, businesses need to maintain data and ensure its availability over a longer period. Furthermore, the data can vary in criticality and might require special handling. For example, legal and regulatory requirements mandate that banks maintain account information for their customers accurately and securely. Some businesses handle data for millions of customers and ensure the security and integrity of data over a long period of time. This requires high-performance and high-capacity storage devices with enhanced security and compliance that can retain data for a long period.

1.1.2 Types of Data

Data can be classified as structured or unstructured (see Figure 1-2) based on how it is stored and managed. Structured data is organized in rows and columns in a rigidly defined format so that applications can retrieve and process it efficiently. Structured data is typically stored using a database management system (DBMS).

Data is unstructured if its elements cannot be stored in rows and columns, which makes it difficult to query and retrieve by applications. For example, customer contacts that are stored in various forms such as sticky notes, e-mail messages, business cards, or even digital format files, such as .doc, .txt, and .pdf. Due to its unstructured nature, it is difficult to retrieve this data using a traditional customer relationship management application. A vast majority of new data being created

today is unstructured. The industry is challenged with with new architectures, technologies, techniques, and skills to store, manage, analyze, and derive value from unstructured data from numerous sources.

1.1.3 Big Data

Big data is a new and evolving concept, which refers to data sets whose sizes are beyond the capability of commonly used software tools to capture, store, manage, and process within acceptable time limits. It includes both structured and unstructured data generated by a variety of sources, including business application transactions, web pages, videos, images, e-mails, social media, and so on. These data sets typically require real-time capture or updates for analysis, predictive modeling, and decision making.

Significant opportunities exist to extract value from big data. The big data ecosystem (see Figure 1-3) consists of the following:

- 1. Devices that collect data from multiple locations and also generate new data about this data (metadata).
- 2. Data collectors who gather data from devices and users.
- 3. Data aggregators that compile the collected data to extract meaningful information.
- 4. Data users and buyers who benefit from the information collected and aggregated by others in the data value chain.

Traditional IT infrastructure and data processing tools and methodologies are inadequate to handle the volume, variety, dynamism, and complexity of big data. Analyzing big data in real time requires new techniques, architectures, and tools that provide high performance, massively parallel processing (MPP) data platforms, and advanced analytics on the data sets.

Data science is an emerging discipline, which enables organizations to derive business value from big data. Data science represents the synthesis of several existing disciplines, such as statistics, math, data visualization, and computer science to enable data scientists to develop advanced algorithms for the purpose of analyzing vast amounts of information to drive new value and make more data-driven decisions.

Several industries and markets currently looking to employ data science techniques include medical and scientific research, health care, public administration, fraud detection, social media, banks, insurance companies, and other digital information-based entities that benefit from the analytics of big data.

1.1.4 Information

Data, whether structured or unstructured, does not fulfill any purpose for individuals or businesses unless it is presented in a meaningful form. *Information* is the intelligence and knowledge derived from data.

Businesses analyze raw data to identify meaningful trends. On the basis of these trends, a company can plan or modify its strategy. For example, a retailer identifies customers' preferred products and brand names by analyzing their purchase patterns and maintaining an inventory of those products. Effective data analysis not only extends its benefits to existing businesses, but also creates the potential for new business opportunities by using the information in creative ways.

1.1.5 Storage

Data created by individuals or businesses must be stored so that it is easily accessible for further processing. In a computing environment, devices designed for storing data are termed *storage devices* or simply *storage*. The type of storage used varies based on the type of data and the rate at which it is created and used. Devices, such as a media card in a cell phone or digital camera, DVDs, CD-ROMs, and disk drives in personal computers are examples of storage devices.

Businesses have several options available for storing data, including internal hard disks, external disk arrays, and tapes.

1.2 Evolution of Storage Architecture

Historically, organizations had centralized computers (mainframes) and information storage devices (tape reels and disk packs) in their data center. The evolution of open systems, their affordability, and ease of deployment made it possible for business units/departments to have their own servers and storage. In earlier implementations of open systems, the storage was typically internal to the server. These storage devices could not be shared with any other servers. This approach is referred to as *server-centric storage architecture* (see Figure 1-4 [a]). In this architecture, each server has a limited number of storage devices, and any administrative tasks, such as maintenance of the server or increasing storage capacity, might result in unavailability of information. The proliferation of departmental servers in an enterprise resulted in unprotected, unmanaged, fragmented islands of information and increased capital and operating expenses.

Figure 1-4: Evolution of storage architecture

To overcome these challenges, storage evolved from server-centric to *information-centric architecture* (see Figure 1-4 [b]). In this architecture, storage devices are managed centrally and independent of servers. These centrally-managed storage devices are shared with multiple servers. When a new server is deployed in the environment, storage is assigned from the same shared storage devices to that server. The capacity of shared storage can be increased dynamically by adding more storage devices without impacting information availability. In this architecture, information management is easier and cost-effective.

Storage technology and architecture continue to evolve, which enables organizations to consolidate, protect, optimize, and leverage their data to achieve the highest return on information assets.

1.3 Data Center Infrastructure

Organizations maintain data centers to provide centralized data-processing capabilities across the enterprise. Data centers house and manage large amounts of data. The data center infrastructure includes hardware components, such as computers, storage systems, network devices, and power backups; and software components, such as applications, operating systems, and management software. It also includes environmental controls, such as air conditioning, fire suppression, and ventilation.

Large organizations often maintain more than one data center to distribute data processing workloads and provide backup if a disaster occurs.

1.3.1 Core Elements of a Data Center

Five core elements are essential for the functionality of a data center:

- Application: A computer program that provides the logic for computing operations
- Database management system (DBMS): Provides a structured way to store data in logically organized tables that are interrelated
- Host or compute: A computing platform (hardware, firmware, and software) that runs applications and databases
- Network: A data path that facilitates communication among various networked devices
- **Storage:** A device that stores data persistently for subsequent use

These core elements are typically viewed and managed as separate entities, but all the elements must work together to address data-processing requirements.

In this book, host, compute, and server are used interchangeably to represent the element that runs applications.

Figure 1-5 shows an example of an online order transaction system that involves the five core elements of a data center and illustrates their functionality in a business process.

Figure 1-5: Example of an online order transaction system

A customer places an order through a client machine connected over a LAN/ WAN to a host running an order-processing application. The client accesses the DBMS on the host through the application to provide order-related information, such as the customer name, address, payment method, products ordered, and quantity ordered.

The DBMS uses the host operating system to write this data to the physical disks in the storage array. The storage networks provide the communication link between the host and the storage array and transports the request to read or write data between them. The storage array, after receiving the read or write request from the host, performs the necessary operations to store the data on physical disks.

1.3.2 Key Characteristics of a Data Center

Uninterrupted operation of data centers is critical to the survival and success of a business. Organizations must have a reliable infrastructure that ensures that data is accessible at all times. Although the characteristics shown in Figure 1-6 are applicable to all elements of the data center infrastructure, the focus here is on storage systems. This book covers the various technologies and solutions to meet these requirements.

- Availability: A data center should ensure the availability of information when required. Unavailability of information could cost millions of dollars per hour to businesses, such as financial services, telecommunications, and e-commerce.
- Security: Data centers must establish policies, procedures, and core element integration to prevent unauthorized access to information.

- Scalability: Business growth often requires deploying more servers, new applications, and additional databases. Data center resources should scale based on requirements, without interrupting business operations.
- Performance: All the elements of the data center should provide optimal performance based on the required service levels.
- Data integrity: Data integrity refers to mechanisms, such as error correction codes or parity bits, which ensure that data is stored and retrieved exactly as it was received.
- Capacity: Data center operations require adequate resources to store and process large amounts of data, efficiently. When capacity requirements increase, the data center must provide additional capacity without interrupting availability or with minimal disruption. Capacity may be managed by reallocating the existing resources or by adding new resources.
- Manageability: A data center should provide easy and integrated management of all its elements. Manageability can be achieved through automation and reduction of human (manual) intervention in common tasks.

Figure 1-6: Key characteristics of a data center

1.3.3 Managing a Data Center

Managing a data center involves many tasks. The key management activities include the following:

Monitoring: It is a continuous process of gathering information on various elements and services running in a data center. The aspects of a data

center that are monitored include security, performance, availability, and capacity.

- Reporting: It is done periodically on resource performance, capacity, and utilization. Reporting tasks help to establish business justifications and chargeback of costs associated with data center operations.
- Provisioning: It is a process of providing the hardware, software, and other resources required to run a data center. Provisioning activities primarily include resources management to meet capacity, availability, performance, and security requirements.

Virtualization and cloud computing have dramatically changed the way data center infrastructure resources are provisioned and managed. Organizations are rapidly deploying virtualization on various elements of data centers to optimize their utilization. Further, continuous cost pressure on IT and ondemand data processing requirements have resulted in the adoption of cloud computing.

1.4 Virtualization and Cloud Computing

Virtualization is a technique of abstracting physical resources, such as compute, storage, and network, and making them appear as logical resources. Virtualization has existed in the IT industry for several years and in different forms. Common examples of virtualization are virtual memory used on compute systems and partitioning of raw disks.

Virtualization enables pooling of physical resources and providing an aggregated view of the physical resource capabilities. For example, storage virtualization enables multiple pooled storage devices to appear as a single large storage entity. Similarly, by using compute virtualization, the CPU capacity of the pooled physical servers can be viewed as the aggregation of the power of all CPUs (in megahertz). Virtualization also enables centralized management of pooled resources.

Virtual resources can be created and provisioned from the pooled physical resources. For example, a virtual disk of a given capacity can be created from a storage pool or a virtual server with specific CPU power and memory can be configured from a compute pool. These virtual resources share pooled physical resources, which improves the utilization of physical IT resources. Based on business requirements, capacity can be added to or removed from the virtual resources without any disruption to applications or users. With improved utilization of IT assets, organizations save the costs associated with procurement and

management of new physical resources. Moreover, fewer physical resources means less space and energy, which leads to better economics and green computing.

In today's fast-paced and competitive environment, organizations must be agile and flexible to meet changing market requirements. This leads to rapid expansion and upgrade of resources while meeting shrinking or stagnant IT budgets. *Cloud computing*, addresses these challenges efficiently. Cloud computing enables individuals or businesses to use IT resources as a service over the network. It provides highly scalable and flexible computing that enables provisioning of resources on demand. Users can scale up or scale down the demand of computing resources, including storage capacity, with minimal management effort or service provider interaction. Cloud computing empowers self-service requesting through a fully automated request-fulfillment process. Cloud computing enables consumption-based metering; therefore, consumers pay only for the resources they use, such as CPU hours used, amount of data transferred, and gigabytes of data stored.

Cloud infrastructure is usually built upon virtualized data centers, which provide resource pooling and rapid provisioning of resources. Information storage in virtualized and cloud environments is detailed later in the book.

Summary

This chapter described the importance of data, information, and storage infrastructure. Meeting today's storage needs begins with understanding the type of data, its value, and key attributes of a data center.

The evolution of storage architecture and the core elements of a data center covered in this chapter provided the foundation for information storage and management. The emergence of virtualization has provided the opportunity to transform classic data centers into virtualized data centers. Cloud computing is further changing the way IT resources are provisioned and consumed.

The subsequent chapters in the book provide comprehensive details on various aspects of information storage and management in both classic and virtualized environments. It begins with describing the core elements of a data center with a focus on storage systems and RAID (covered in Chapters 2, 3, and 4). Chapters 5 through 8 of this book detail various storage networking technologies, such as storage area network (SAN), network attached storage (NAS), and object-based and unified storage. Chapters 9 through 12 cover various business continuity solutions, such as backup and replication, along with archival technologies. Chapter 13 introduces cloud infrastructure and services. Chapters 14 and 15 describe securing and managing storage in traditional and virtualized environments.

EXERCISES

- 1. What is structured and unstructured data? Research the challenges of storing and managing unstructured data.
- 2. Discuss the benefits of information-centric storage architecture over server-centric storage architecture.
- 3. What are the attributes of big data? Research and prepare a presentation on big data analytics.
- 4. Research how businesses use their information assets to derive competitive advantage and new business opportunities.
- 5. Research and prepare a presentation on personal data management.

Contents

Foreword		xxvii
Introductio	n	xxix
Section I	Storage System	1
Chapter 1	Introduction to Information Storage	3
	1.1 Information Storage	4
	1.1.1 Data	4
	1.1.2 Types of Data	6
	1.1.3 Big Data	7
	1.1.4 Information	9
	1.1.5 Storage	9
	1.2 Evolution of Storage Architecture	9
	1.3 Data Center Infrastructure	11
	1.3.1 Core Elements of a Data Center	11
	1.3.2 Key Characteristics of a Data Center	12
	1.3.3 Managing a Data Center	13
	1.4 Virtualization and Cloud Computing	14
	Summary	15
Chapter 2	Data Center Environment	17
	2.1 Application	18
	2.2 Database Management System (DBMS)	18
	2.3 Host (Compute)	19
	2.3.1 Operating System	19
	Memory Virtualization	20
	2.3.2 Device Driver	20
	2.3.3 Volume Manager	20
	2.3.4 File System	22
	2.3.5 Compute Virtualization	25

	2.4 Connectivity	27
	2.4.1 Physical Components of Connectivity	27
	2.4.2 Interface Protocols	28
	IDE/ATA and Serial ATA	28
	SCSI and Serial SCSI	29
	Fibre Channel	29
	Internet Protocol (IP)	29
	2.5 Storage	29
	2.6 Disk Drive Components	31
	2.6.1 Platter	32
	2.6.2 Spindle	32
	2.6.3 Read/Write Head	32
	2.6.4 Actuator Arm Assembly	33
	2.6.5 Drive Controller Board	33
	2.6.6 Physical Disk Structure	34
	2.6.7 Zoned Bit Recording	35
	2.6.8 Logical Block Addressing	36
	2.7 Disk Drive Performance	36
	2.7.1 Disk Service Time	37
	Seek Time	37
	Rotational Latency	37
	Data Transfer Rate	38
	2.7.2 Disk I/O Controller Utilization	39
	2.8 Host Access to Data	40
	2.9 Direct-Attached Storage	41
	2.9.1 DAS Benefits and Limitations	42
	2.10 Storage Design Based on Application	
	Requirements and Disk Performance	43
	2.11 Disk Native Command Queuing	45
	2.12 Introduction to Flash Drives	46
	2.12.1 Components and Architecture of Flash Drives	47
	2.12.2 Features of Enterprise Flash Drives	48
	2.13 Concept in Practice: VMware ESXi	48
	Summary	49
Chapter 3	Data Protection: RAID	51
Chapter 5	3.1 RAID Implementation Methods	52
	3.1.1 Software RAID	52 52
	3.1.2 Hardware RAID	52 52
	3.2 RAID Array Components	53
	3.3 RAID Techniques	53
	3.3.1 Striping	53
	3.3.2 Mirroring	55
	Ū	
	3.3.3 Parity 3.4 RAID Levels	55 57
		57
	3.4.1 RAID 0	57
	3.4.2 RAID 1	58

	3.4.3 Nested RAID	59
	3.4.4 RAID 3	62
	3.4.5 RAID 4	63
	3.4.6 RAID 5	63
	3.4.7 RAID 6	64
	3.5 RAID Impact on Disk Performance	64
	3.5.1 Application IOPS and RAID Configurations	66
	3.6 RAID Comparison	66
	3.7 Hot Spares	68
	Summary	68
Chapter 4	Intelligent Storage Systems	71
chapter 4	4.1 Components of an Intelligent Storage System	72
	4.1.1 Front End	72
	4.1.2 Cache	72
	Structure of Cache	72
	Read Operation with Cache	73
	Write Operation with Cache	75
	Cache Implementation	75
	1	73
	Cache Management	
	Cache Data Protection	77
	4.1.3 Back End	78
	4.1.4 Physical Disk	78
	4.2 Storage Provisioning	79
	4.2.1 Traditional Storage Provisioning	79
	LUN Expansion: MetaLUN	80
	4.2.2 Virtual Storage Provisioning	82
	Comparison between Virtual and Traditional	
	Storage Provisioning	82
	Use Cases for Thin and Traditional LUNs	84
	4.2.3 LUN Masking	84
	4.3 Types of Intelligent Storage Systems	85
	4.3.1 High-End Storage Systems	85
	4.3.2 Midrange Storage Systems	86
	4.4 Concepts in Practice: EMC Symmetrix and VNX	87
	4.4.1 EMC Symmetrix Storage Array	87
	4.4.2 EMC Symmetrix VMAX Component	88
	4.4.3 Symmetrix VMAX Architecture	89
	Summary	91
Section II	Storage Networking Technologies	93
Chapter 5	Fibre Channel Storage Area Networks	95
-	5.1 Fibre Channel: Overview	96
	5.2 The SAN and Its Evolution	97
	5.3 Components of FC SAN	98
	5.3.1 Node Ports	99
	5.3.2 Cables and Connectors	99

	5.3.3 Interconnect Devices	100
	5.3.4 SAN Management Software	101
	5.4 FC Connectivity	102
	5.4.1 Point-to-Point	102
	5.4.2 Fibre Channel Arbitrated Loop	102
	5.4.3 Fibre Channel Switched Fabric	103
	FC-SW Transmission	105
	5.5 Switched Fabric Ports	106
	5.6 Fibre Channel Architecture	106
	5.6.1 Fibre Channel Protocol Stack	107
	FC-4 Layer	108
	FC-2 Layer	108
	FC-1 Layer	108
	FC-0 Layer	108
	5.6.2 Fibre Channel Addressing	109
	5.6.3 World Wide Names	109
	5.6.4 FC Frame	110
	5.6.5. Structure and Organization of FC Data	112
	5.6.6 Flow Control	112
	BB_Credit	112
	EE_Credit	112
	5.6.7 Classes of Service	113
	5.7 Fabric Services	113
	5.8 Switched Fabric Login Types	114
	5.9 Zoning	115
	5.9.1 Types of Zoning	116
	5.10 FC SAN Topologies	118
	5.10.1 Mesh Topology	118
	5.10.2 Core-Edge Fabric	119
	Benefits and Limitations of Core-Edge Fabric	119
	5.11 Virtualization in SAN	122
	5.11.1 Block-level Storage Virtualization	122
	5.11.2 Virtual SAN (VSAN)	124
	5.12 Concepts in Practice: EMC Connectrix and EMC VPLEX	125
	5.12.1 EMC Connectrix	125
	Connectrix Switches	126
	Connectrix Directors	126
	Connectrix Multi-purpose Switches	126
	Connectrix Management Tools	127
	5.12.2 EMC VPLEX	127
	VPLEX Family of Products	128
	Summary	128
Chapter 6	IP SAN and FCoE	131
	6.1 iSCSI	132
	6.1.1 Components of iSCSI	132
	6.1.2 iSCSI Host Connectivity	133

Native iSCSI Connectivity	
	133
Bridged iSCSI Connectivity	135
Combining FC and Native iSCSI Connec	ctivity 135
6.1.4 iSCSI Protocol Stack	135
6.1.5 iSCSI PDU	136
6.1.6 iSCSI Discovery	138
6.1.7 iSCSI Names	138
6.1.8 iSCSI Session	140
6.1.9 iSCSI Command Sequencing	141
6.2 FCIP	142
6.2.1 FCIP Protocol Stack	142
6.2.2 FCIP Topology	144
6.2.3 FCIP Performance and Security	144
6.3 FCoE	145
6.3.1 I/O Consolidation Using FCoE	145
6.3.2 Components of an FCoE Network	147
Converged Network Adapter	148
Cables	148
FCoE Switches	149
6.3.3 FCoE Frame Structure	150
FCoE Frame Mapping	151
6.3.4 FCoE Enabling Technologies	152
Priority-Based Flow Control (PFC)	153
Enhanced Transmission Selection (ETS)	154
Congestion Notification (CN)	154
0	
Data Center Bridging Exchange Protocol	
	l (DCBX) 154 155
Data Center Bridging Exchange Protocol Summary	155
Data Center Bridging Exchange Protocol Summary Chapter 7 Network-Attached Storage	155 157
Data Center Bridging Exchange Protocol Summary Chapter 7 Network-Attached Storage 7.1 General-Purpose Servers versus NAS De	155 157 vvices 158
Data Center Bridging Exchange Protocol Summary Chapter 7 Network-Attached Storage 7.1 General-Purpose Servers versus NAS De 7.2 Benefits of NAS	155 157
Data Center Bridging Exchange Protocol Summary Chapter 7 Network-Attached Storage 7.1 General-Purpose Servers versus NAS De 7.2 Benefits of NAS 7.3 File Systems and Network File Sharing	155 157 vvices 158 159
Data Center Bridging Exchange Protocol Summary Chapter 7 Network-Attached Storage 7.1 General-Purpose Servers versus NAS De 7.2 Benefits of NAS 7.3 File Systems and Network File Sharing 7.3.1 Accessing a File System	155 157 vvices 158 159 160
Data Center Bridging Exchange Protocol Summary Chapter 7 Network-Attached Storage 7.1 General-Purpose Servers versus NAS De 7.2 Benefits of NAS 7.3 File Systems and Network File Sharing 7.3.1 Accessing a File System 7.3.2 Network File Sharing	155 157 vices 158 159 160 160 160 160
Data Center Bridging Exchange Protocol Summary Chapter 7 Network-Attached Storage 7.1 General-Purpose Servers versus NAS De 7.2 Benefits of NAS 7.3 File Systems and Network File Sharing 7.3.1 Accessing a File System 7.3.2 Network File Sharing 7.4 Components of NAS	155 157 vices 158 159 160 160 160 160 162
Data Center Bridging Exchange Protocol Summary Chapter 7 Network-Attached Storage 7.1 General-Purpose Servers versus NAS De 7.2 Benefits of NAS 7.3 File Systems and Network File Sharing 7.3.1 Accessing a File System 7.3.2 Network File Sharing 7.4 Components of NAS 7.5 NAS I/O Operation	155 157 vices 158 159 160 160 160 160
Data Center Bridging Exchange Protocol Summary Chapter 7 Network-Attached Storage 7.1 General-Purpose Servers versus NAS De 7.2 Benefits of NAS 7.3 File Systems and Network File Sharing 7.3.1 Accessing a File System 7.3.2 Network File Sharing 7.4 Components of NAS	155 vvices 158 159 160 160 160 162 163 163
Data Center Bridging Exchange Protocol Summary Chapter 7 Network-Attached Storage 7.1 General-Purpose Servers versus NAS De 7.2 Benefits of NAS 7.3 File Systems and Network File Sharing 7.3.1 Accessing a File System 7.3.2 Network File Sharing 7.4 Components of NAS 7.5 NAS I/O Operation 7.6 NAS Implementations 7.6.1 Unified NAS	155 157 vvices 158 159 160 160 160 160 162 163
Data Center Bridging Exchange Protocol Summary Chapter 7 Network-Attached Storage 7.1 General-Purpose Servers versus NAS De 7.2 Benefits of NAS 7.3 File Systems and Network File Sharing 7.3.1 Accessing a File System 7.3.2 Network File Sharing 7.4 Components of NAS 7.5 NAS I/O Operation 7.6 NAS Implementations	155 vvices 158 159 160 160 160 160 162 163 163 163
Data Center Bridging Exchange Protocol Summary Chapter 7 Network-Attached Storage 7.1 General-Purpose Servers versus NAS De 7.2 Benefits of NAS 7.3 File Systems and Network File Sharing 7.3.1 Accessing a File System 7.3.2 Network File Sharing 7.4 Components of NAS 7.5 NAS I/O Operation 7.6 NAS Implementations 7.6.1 Unified NAS 7.6.2 Unified NAS Connectivity 7.6.3 Gateway NAS	155 vvices 158 159 160 160 160 160 162 163 163 163 164 164
Data Center Bridging Exchange Protocol Summary Chapter 7 Network-Attached Storage 7.1 General-Purpose Servers versus NAS De 7.2 Benefits of NAS 7.3 File Systems and Network File Sharing 7.3.1 Accessing a File System 7.3.2 Network File Sharing 7.4 Components of NAS 7.5 NAS I/O Operation 7.6 NAS Implementations 7.6.1 Unified NAS 7.6.2 Unified NAS Connectivity	155 vvices 158 159 160 160 160 160 162 163 163 163 164 164 164
Data Center Bridging Exchange Protocol Summary Chapter 7 Network-Attached Storage 7.1 General-Purpose Servers versus NAS De 7.2 Benefits of NAS 7.3 File Systems and Network File Sharing 7.3.1 Accessing a File System 7.3.2 Network File Sharing 7.4 Components of NAS 7.5 NAS I/O Operation 7.6 NAS Implementations 7.6.1 Unified NAS 7.6.2 Unified NAS Connectivity 7.6.3 Gateway NAS 7.6.4 Gateway NAS Connectivity	155 157 158 159 160 160 160 160 162 163 163 163 164 164 164 164 164
Data Center Bridging Exchange Protocol Summary Chapter 7 Network-Attached Storage 7.1 General-Purpose Servers versus NAS De 7.2 Benefits of NAS 7.3 File Systems and Network File Sharing 7.3.1 Accessing a File System 7.3.2 Network File Sharing 7.4 Components of NAS 7.5 NAS I/O Operation 7.6 NAS Implementations 7.6.1 Unified NAS 7.6.2 Unified NAS 7.6.2 Unified NAS 7.6.4 Gateway NAS 7.6.4 Gateway NAS 7.6.5 Scale-Out NAS 7.6.6 Scale-Out NAS Connectivity	155 157 158 159 160 160 160 160 162 163 163 163 164 164 164 164 165 166
Data Center Bridging Exchange Protocol Summary Chapter 7 Network-Attached Storage 7.1 General-Purpose Servers versus NAS De 7.2 Benefits of NAS 7.3 File Systems and Network File Sharing 7.3.1 Accessing a File System 7.3.2 Network File Sharing 7.4 Components of NAS 7.5 NAS I/O Operation 7.6 NAS Implementations 7.6.1 Unified NAS 7.6.2 Unified NAS Connectivity 7.6.3 Gateway NAS 7.6.4 Gateway NAS Connectivity 7.6.5 Scale-Out NAS	155 157 158 159 160 160 160 160 162 163 163 163 164 164 164 164 165 166 167

	7.8 Factors Affecting NAS Performance	171
	7.9 File-Level Virtualization	174
	7.10 Concepts in Practice: EMC Isilon	
	and EMC VNX Gateway	175
	7.10.1 EMC Isilon	175
	7.10.2 EMC VNX Gateway	176
	Summary	177
Chapter 8	Object-Based and Unified Storage	179
	8.1 Object-Based Storage Devices	180
	8.1.1 Object-Based Storage Architecture	181
	8.1.2 Components of OSD	182
	8.1.3 Object Storage and Retrieval in OSD	183
	8.1.4 Benefits of Object-Based Storage	184
	8.1.5 Common Use Cases for Object-Based Storage	185
	8.2 Content-Addressed Storage	187
	8.3 CAS Use Cases	188
	8.3.1 Healthcare Solution: Storing Patient Studies	188
	8.3.2 Finance Solution: Storing Financial Records	189
	8.4 Unified Storage	190
	8.4.1 Components of Unified Storage	190
	Data Access from Unified Storage	192
	8.5 Concepts in Practice: EMC Atmos, EMC VNX,	
	and EMC Centera	192
	8.5.1 EMC Atmos	193
	8.5.2 EMC VNX	194
	8.5.3 EMC Centera	195
	EMC Centera Architecture	196
	Summary	197
Section III	Backup, Archive, and Replication	199
Chapter 9	Introduction to Business Continuity	201
	9.1 Information Availability	202
	9.1.1 Causes of Information Unavailability	202
	9.1.2 Consequences of Downtime	203
	9.1.3 Measuring Information Availability	204
	9.2 BC Terminology	205
	9.3 BC Planning Life Cycle	207
	9.4 Failure Analysis	210
	9.4.1 Single Point of Failure	210
	9.4.2 Resolving Single Points of Failure	211
	9.4.3 Multipathing Software	212
	9.5 Business Impact Analysis	213
	9.6 BC Technology Solutions	213
	9.7 Concept in Practice: EMC PowerPath	214
	9.7.1 PowerPath Features	214
	9.7.2 Dynamic Load Balancing	215

	I/O Operation without PowerPath	215
	I/O Operation with PowerPath	216
	9.7.3 Automatic Path Failover	217
	Path Failure without PowerPath	218
	Path Failover with PowerPath: Active-Active Array	218
	Path Failover with PowerPath: Active-Passive Array	219
	Summary	221
Chapter 10	Backup and Archive	225
•	10.1 Backup Purpose	226
	10.1.1 Disaster Recovery	226
	10.1.2 Operational Recovery	226
	10.1.3 Archival	226
	10.2 Backup Considerations	227
	10.3 Backup Granularity	228
	10.4 Recovery Considerations	231
	10.5 Backup Methods	231
	10.6 Backup Architecture	233
	10.7 Backup and Restore Operations	234
	10.8 Backup Topologies	236
	10.9 Backup in NAS Environments	239
	10.9.1 Server-Based and Serverless Backup	239
	10.9.2 NDMP-Based Backup	240
	10.10 Backup Targets	242
	10.10.1 Backup to Tape	243
	Physical Tape Library	243
	Limitations of Tape	245
	10.10.2 Backup to Disk	245
	10.10.3 Backup to Virtual Tape	246
	Virtual Tape Library	246
	10.11 Data Deduplication for Backup	249
	10.11.1 Data Deduplication Methods	249
	10.11.2 Data Deduplication Implementation	250
	Source-Based Data Deduplication	250
	Target-Based Data Deduplication	250
	10.12 Backup in Virtualized Environments	252
	10.13 Data Archive	254
	10.14 Archiving Solution Architecture	255
	10.14.1 Use Case: E-mail Archiving	256
	10.14.2 Use Case: File Archiving	257
	10.15 Concepts in Practice: EMC NetWorker,	
	EMC Avamar, and EMC Data Domain	257
	10.15.1 EMC NetWorker	258
	10.15.2 EMC Avamar	258
	10.15.3 EMC Data Domain	259
	Summary	260

Chapter 11	Local Replication	263
-	11.1 Replication Terminology	264
	11.2 Uses of Local Replicas	264
	11.3 Replica Consistency	265
	11.3.1 Consistency of a Replicated File System	265
	11.3.2 Consistency of a Replicated Database	266
	11.4 Local Replication Technologies	269
	11.4.1 Host-Based Local Replication	269
	LVM-Based Replication	269
	Advantages of LVM-Based Replication	269
	Limitations of LVM-Based Replication	270
	File System Snapshot	271
	11.4.2 Storage Array-Based Local Replication	272
	Full-Volume Mirroring	273
	Pointer-Based, Full-Volume Replication	274
	Pointer-Based Virtual Replication	277
	11.4.3 Network-Based Local Replication	278
	Continuous Data Protection	279
	CDP Local Replication Operation	280
	11.5 Tracking Changes to Source and Replica	281
	11.6 Restore and Restart Considerations	282
	11.7 Creating Multiple Replicas	283
	11.8 Local Replication in a Virtualized Environment	284
	11.9 Concepts in Practice: EMC TimeFinder,	
	EMC SnapView, and EMC RecoverPoint	285
	11.9.1 EMC TimeFinder	285
	TimeFinder/Clone	286
	TimeFinder/Snap	286
	11.9.2 EMC SnapView	286
	SnapView Snapshot	286
	SnapView Clone	287
	11.9.3 EMC RecoverPoint	287
	Summary	287
Chapter 12	Remote Replication	289
	12.1 Modes of Remote Replication	289
	12.2 Remote Replication Technologies	292
	12.2.1. Host-Based Remote Replication	292
	LVM-Based Remote Replication	293
	Host-Based Log Shipping	294
	12.2.2 Storage Array-Based Remote Replication	295
	Synchronous Replication Mode	295
	Asynchronous Replication Mode	296
	Disk-Buffered Replication Mode	297
	12.2.3 Network-Based Remote Replication	298
	CDP Remote Replication	298
	12.3 Three-Site Replication	300

	12.3.1 Three-Site Replication — Cascade/Multihop	300
	Synchronous + Asynchronous	300
	Synchronous + Disk Buffered	302
	12.3.2 Three-Site Replication — Triangle/Multitarget	302
	12.4 Data Migration Solutions	304
	12.5 Remote Replication and Migration in a	
	Virtualized Environment	306
	12.6 Concepts in Practice: EMC SRDF,	
	EMC MirrorView, and EMC RecoverPoint	307
	12.6.1 EMC SRDF	308
	12.6.2 EMC MirrorView	308
	12.6.3 EMC RecoverPoint	308
	Summary	309
Section IV	Cloud Computing	311
Chapter 13	Cloud Computing	313
•	13.1 Cloud Enabling Technologies	314
	13.2 Characteristics of Cloud Computing	314
	13.3 Benefits of Cloud Computing	316
	13.4 Cloud Service Models	316
	13.4.1 Infrastructure-as-a-Service	316
	13.4.2 Platform-as-a-Service	317
	13.4.3 Software-as-a-Service	318
	13.5 Cloud Deployment Models	318
	13.5.1 Public Cloud	318
	13.5.2 Private Cloud	319
	13.5.3 Community Cloud	320
	13.5.4 Hybrid Cloud	321
	13.6 Cloud Computing Infrastructure	322
	13.6.1 Physical Infrastructure	322
	13.6.2 Virtual Infrastructure	323
	13.6.3 Applications and Platform Software	324
	13.6.4 Cloud Management and Service Creation Tools	324
	13.7 Cloud Challenges	326
	13.7.1 Challenges for Consumers	326
	13.7.2 Challenges for Providers	327
	13.8 Cloud Adoption Considerations	327
	13.9 Concepts in Practice: Vblock	329
	Summary	330
Section V	Securing and Managing Storage Infrastructure	331
Chapter 14	Securing the Storage Infrastructure	333
	14.1 Information Security Framework	334
	14.2 Risk Triad	334
	14.2.1 Assets	335
	14.2.2 Threats	336

	14.2.3 Vulnerability	337
	14.3 Storage Security Domains	338
	14.3.1 Securing the Application Access Domain	339
	Controlling User Access to Data	340
	Protecting the Storage Infrastructure	341
	Data Encryption	342
	14.3.2 Securing the Management Access Domain	342
	Controlling Administrative Access	344
	Protecting the Management Infrastructure	344
	14.3.3 Securing Backup, Replication, and Archive	345
	14.4 Security Implementations in Storage Networking	346
	14.4.1 FC SAN	346
	FC SAN Security Architecture	347
	Basic SAN Security Mechanisms	347
	LUN Masking and Zoning	349
	Securing Switch Ports	349
	Switch-Wide and Fabric-Wide Access Control	350
	Logical Partitioning of a Fabric: Virtual SAN	350
	14.4.2 NAS	350
	NAS File Sharing: Windows ACLs	351
	NAS File Sharing: UNIX Permissions	352
	NAS File Sharing: Authentication and Authorization	353
	Kerberos	354
	Network-Layer Firewalls	355
	14.4.3 IP SAN	357
	14.5 Securing Storage Infrastructure in	250
	Virtualized and Cloud Environments	358
	14.5.1 Security Concerns	359
	14.5.2 Security Measures	359
	Security at the Compute Level	359
	Security at the Network Level	360
	Security at the Storage Level	361
	14.6 Concepts in Practice: RSA and	361
	VMware Security Products 14.6.1 RSA SecureID	362
	14.6.2 RSA Identity and Access Management	362
	14.6.3 RSA Data Protection Manager	362
	14.6.4 VMware vShield	363
		363
	Summary	505
Chapter 15	Managing the Storage Infrastructure	365
-	15.1 Monitoring the Storage Infrastructure	366
	15.1.1 Monitoring Parameters	366
	15.1.2 Components Monitored	367
	Hosts	367
	Storage Network	368
	Storage	369

	15.1.3 Monitoring Examples	369
	Accessibility Monitoring	369
	Capacity Monitoring	370
	Performance Monitoring	372
	Security Monitoring	374
	15.1.4 Alerts	375
	15.2 Storage Infrastructure Management Activities	376
	15.2.1 Availability Management	376
	15.2.2 Capacity Management	376
	15.2.3 Performance Management	377
	15.2.4 Security Management	377
	15.2.5 Reporting	378
	15.2.6 Storage Infrastructure Management in a	
	Virtualized Environment	378
	15.2.7 Storage Management Examples	380
	Example 1: Storage Allocation to a New Server/Host	380
	Example 2: File System Space Management	381
	Example 3: Chargeback Report	382
	15.3 Storage Infrastructure Management Challenges	384
	15.4 Developing an Ideal Solution	384
	15.4.1 Storage Management Initiative	385
	15.4.2 Enterprise Management Platform	386
	15.5 Information Lifecycle Management	386
	15.6 Storage Tiering	388
	15.6.1 Intra-Array Storage Tiering	388
	15.6.2 Inter-Array Storage Tiering	390
	15.7 Concepts in Practice: EMC Infrastructure	001
	Management Tools	391 201
	15.7.1 EMC ControlCenter and Prosphere	391
	15.7.2 EMC Unisphere	392
	15.7.3 EMC Unified Infrastructure Manager (UIM)	393 393
	Summary	595
Appendix A	Application I/O Characteristics	395
	Random and Sequential	395
	Reads and Writes	395
	I/O Request Size	396
Appendix B	Parallel SCSI	399
	SCSI Standards Family	400
	SCSI Client-Server Model	401
	Parallel SCSI Addressing	402
Appendix C	SAN Design Exercises	405
	Exercise 1	405
	Solution	405
	Exercise 2	406
	Solution	406

Appendix D	Information Availability Exercises	409
	Exercise 1	409
	Solution	409
	Exercise 2	410
	Solution	410
Appendix E	Network Technologies for Remote Replication	411
	DWDM	411
	CWDM	412
	SONET	412
Appendix F	Acronyms and Abbreviations	413
Glossary		427
Index		465

Information Storage and Management Second Edition

Storing, Managing, and Protecting Digital Information in Classic, Virtualized, and Cloud Environments

More than ever, the IT industry is challenged with employing and developing highly skilled technical professionals with storage technology expertise across classic, virtualized, and cloud environments. This book covers concepts, principles, and deployment considerations across technologies that are used for storing and managing information.

Key Technology Strategies for Classic, Virtualized, and Cloud Environments:

- Challenges and Solutions for Data Storage and Management
- Intelligent Storage, Object-Based Storage, and Unified Storage
- Storage Networking, Federation, and Protocols
- Backup, Recovery, Deduplication, and Archive
- Business Continuity and Disaster Recovery
- Cloud Computing and Converged Infrastructure
- Storage Security and Managing Storage Infrastructure

EMC Proven™ Professional is a leading education and certification program in the IT industry, providing comprehensive coverage of information storage technologies, virtualization, cloud computing, data science/big data analytics, and more.

Being Proven means investing in yourself and formally validating your expertise!

This book prepares you for the Information Storage and Management exam E10-001 leading to EMC Proven Professional Information Storage Associate v2 certification.

Visit http://education.EMC.com for details.

EMC is a global leader in enabling businesses and service providers to transform their operations and deliver IT as a service. Fundamental to this transformation is cloud computing. Through innovative products and services, EMC accelerates the journey to cloud computing, helping IT departments to store, manage, protect and analyze their most valuable asset — information — in a more agile, trusted and cost-efficient way. Additional information about EMC can be found at www.EMC.com

COMPUTERS/ Networking/General

