
Implementing SSL/TLS Using
Cryptography and PKI

ffirs.indd i 12/10/2010 7:48:17 PM

ffirs.indd ii 12/10/2010 7:48:17 PM

Implementing SSL/TLS
Using Cryptography

and PKI

Joshua Davies

ffirs.indd iii 12/10/2010 7:48:18 PM

Implementing SSL/TLS Using Cryptography and PKI

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2011 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-92041-1

ISBN: 978-1-118-03875-8 (ebk)

ISBN: 978-1-118-03876-5 (ebk)

ISBN: 978-1-118-03877-2 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or
108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or autho-
rization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed
to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought.
Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or
Web site is referred to in this work as a citation and/or a potential source of further information does not mean that
the author or the publisher endorses the information the organization or website may provide or recommendations
it may make. Further, readers should be aware that Internet websites listed in this work may have changed or disap-
peared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be avail-
able in electronic books.

Library of Congress Control Number: 2010942196

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or
its affi liates, in the United States and other countries, and may not be used without written permission. All other
trademarks are the property of their respective owners. Wiley Publishing, Inc. is not associated with any product or
vendor mentioned in this book.

Statements of Copyright: This book refers to and incorporates portions of the Internet Engineering Task Force (IETF’s)
Request For Comments (RFCs). All RFC are protected by the following copyright. Copyright (C) The Internet Society
(1999). All Rights Reserved.

ffirs.indd iv 12/10/2010 7:48:20 PM

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and
distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this paragraph are included on all such copies and derivative works. However, this document itself may
not be modifi ed in any way, such as by removing the copyright notice or references to the Internet Society
or other Internet organizations, except as needed for the purpose of developing Internet standards in which
case the procedures for copyrights defi ned in the Internet Standards process must be followed, or as required
to translate it into languages other than English. The limited permissions granted above are perpetual and
will not be revoked by the Internet Society or its successors or assigns. This document and the information
contained herein is provided on an “AS IS” basis and THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT
INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE.

This book incorporates several examples making use of the OpenSSL software suite. OpenSSL is trademarked
and copyrighted. OpenSSL is based on the excellent SSLeay library developed by Eric A. Young and Tim J.
Hudson. The OpenSSL toolkit is licensed under an Apache-style licence which basically means that you are
free to get and use it for commercial and non-commercial purposes.

This book describes in some detail several open standards maintained and owned by FIPS, the ITU, PKCS,
and SECG. The maintainers and authors of these standards documents are attributed throughout the text.

Verisign is used as an example of a Certifi cate Authority in Chapters 3 and 4. VeriSign and other trademarks
are the registered or unregistered trademarks of VeriSign, Inc. and its subsidiaries.

ffirs.indd v 12/10/2010 7:48:20 PM

ffirs.indd vi 12/10/2010 7:48:20 PM

For my wife, Lupita, who may not always understand but always
accepts, supports, and encourages.

ffirs.indd vii 12/10/2010 7:48:20 PM

ffirs.indd viii 12/10/2010 7:48:20 PM

ix

About the Author

Joshua Davies has been hacking on computers since his
father brought home the family’s fi rst computer, a TI-99/4A,
in 1982. He holds a Bachelor’s degree in computer science
from Valdosta State University and a Masters degree in
computer science from the University of Texas at Arlington.
He has been programming professionally since 1990 and
as a result has never had to do any real work. He is cur-
rently responsible for security architecture at Travelocity

.com and previously worked internationally as a consultant for One, Inc. whose
client list included AT&T, Nieman Marcus, Intermedia, and the Mexican tele-
communications giant Pegaso. He prefers to work in C or assembler, but often
codes in Java since it pays the bills. He currently resides in Dallas, Texas with
his wife and two children.

ffirs.indd ix 12/10/2010 7:48:20 PM

ffirs.indd x 12/10/2010 7:48:21 PM

xi

About the Technical Editor

David Chapa is a Senior Analyst with the Enterprise Strategy Group cover-
ing the Data Protection segment with a focus on Disaster Recovery, Backup/
Recovery as a Service, and Availability Solutions. David has invested over 25
years in the computer industry, focusing specifi cally on data protection, data
disaster recovery, and business resumption practices. He has held several
senior level technical positions with companies such as Cheyenne Software,
OpenVision, ADIC, Quantum, and NetApp. Prior to joining ESG, as Director
of Data Protection Strategy and Global Alliances for NetApp, David contin-
ued to evangelize “Recovery and Backup,” his mantra for over a decade now,
and the benefi ts of integrating software solutions with disk-based backup.
In his role with ESG, David will bring all of this expertise, knowledge, and
passion to raise a greater holistic awareness around data protection. David
is an energetic and dynamic speaker who brings a great deal of experiential
knowledge, humor, and keen insight to his audience. He has been a featured
speaker at VERITAS Vision, CA World, SNW, Chicago Software Association,
and CAMP/IT Conferences, and has served as panelist on various discussions
related to disaster recovery, compliance, and the use of disk, tape, and cloud
for recovery and backup strategies.

David has written several articles and blogs over the years. In addition, he is
the co-author of Implementing Backup and Recovery, the Technical Editor of Cloud
Security, Security 2020, and Web Commerce Security Design and Development with
Wiley and Sons, and is recognized worldwide as an authority on the subject
of backup and recovery. David is also a member of SNIA’s Data Protection
and Capacity Optimization (DPCO) Committee, whose mission is to foster the
growth and success of the storage market in the areas of data protection and
capacity optimization technologies.

ffirs.indd xi 12/10/2010 7:48:21 PM

ffirs.indd xii 12/10/2010 7:48:21 PM

xiii

Credits

Executive Editor
Carol Long

Project Editor
Maureen Spears

Technical Editor
David A. Chapa

Production Editor
Kathleen Wisor

Copy Editor
Charlotte Kughen

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefi eld

Freelancer Editorial Manager
Rosemarie Graham

Marketing Manager
Ashley Zurcher

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive
Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Katie Crocker

Proofreader
Nancy Bell

Indexer
Robert Swanson

Cover Designer
Ryan Sneed

ffirs.indd xiii 12/10/2010 7:48:21 PM

ffirs.indd xiv 12/10/2010 7:48:21 PM

xv

My name is the name on the cover of this book, but I can’t possibly take all
of the credit for the fi nished product. I can’t thank the staff at John Wiley
and Sons enough for their hard work and dedication in bringing this book to
print — Charlotte Kughen for tirelessly correcting my overly casual use of the
English language, David Chapa for his encouragement and gentle feedback,
Maureen Spears for her infi nite patience with me every time I asked to make
last-minute changes long after the time for last-minute changes had passed (I’m
sure some day you’ll look back on this and laugh) and fi nally to Carol Long for
understanding what I was trying to accomplish and expending so much effort
to get the green light for this project in the fi rst place.

Thanks to the OpenSSL development team for their excellent software, which
I made such heavy use of while developing and testing the code in this book,
and to Thomas Hruska of Shining Light Productions for his feedback as well.
Many thanks to the IETF TLS working group who volunteer their time to gen-
erate free, openly accessibly specifi cations for no compensation beyond the
satisfaction that they are making the world a better, safer place. I’ve enjoyed
debating and discussing the fi ner points of TLS with all of you while I was lurk-
ing on the mailing list over the past three years. This book is in no small part
the culmination of the understanding I’ve achieved from listening to all of you.

I must, of course, acknowledge the support and encouragement I received
from my university professors long after graduation — especially to Dr. Roger
Lamprey, Dr. Gergely Zaruba, and Dr. Farhad Kamangar. I have no idea what
they’re paying you, but I’m sure it’s far less than you deserve.

A special thank you goes to Troy Magennis of Travelocity, who encouraged
me to take the leap from thinking about writing a book to fi nally sitting down
and making it happen. Your example and inspiration were invaluable.

Acknowledgments

ffirs.indd xv 12/10/2010 7:48:21 PM

xvi Acknowledgments

Thank you to my parents and my brother and sisters who are fi ve of the
most different, unique, and interesting people on the planet. It’s amazing that
we’re all related, but somehow we pull it off. Finally, thank you to my family
for their support as I wrote this book. This took far longer and much more
effort than I ever anticipated. For putting up with my long absences and lost
evenings and weekends as I wrote, re-wrote, and re-re-wrote: Lupita, Dylan,
and Isabelle — you are my purpose on this earth and my reason for being — I
hope I can always make you proud.

And, of course, thanks to Tornado the cat for keeping my lap warm night
after night as I wrote after everybody else had gone to bed.

ffirs.indd xvi 12/10/2010 7:48:21 PM

xvii

Introduction xxvii

Chapter 1 Understanding Internet Security 1

Chapter 2 Protecting Against Eavesdroppers with
Symmetric Cryptography 29

Chapter 3 Secure Key Exchange over an Insecure Medium
with Public Key Cryptography 91

Chapter 4 Authenticating Communications Using Digital Signatures 157

Chapter 5 Creating a Network of Trust Using X.509 Certifi cates 221

Chapter 6 A Usable, Secure Communications Protocol:
Client-Side TLS 297

Chapter 7 Adding Server-Side TLS 1.0 Support 381

Chapter 8 Advanced SSL Topics 415

Chapter 9 Adding TLS 1.2 Support to Your TLS Library 479

Chapter 10 Other Applications of SSL 543

Appendix A Binary Representation of Integers: A Primer 567

Appendix B Installing TCPDump and OpenSSL 573

Appendix C Understanding the Pitfalls of SSLv2 579

Index 629

Contents at a Glance

ffirs.indd xvii 12/10/2010 7:48:21 PM

ffirs.indd xviii 12/10/2010 7:48:21 PM

xix

Introduction xxvii

Chapter 1 Understanding Internet Security 1
What Are Secure Sockets? 2
“Insecure” Communications: Understanding the HTTP Protocol 4

Implementing an HTTP Client 5
Adding Support for HTTP Proxies 12
Reliable Transmission of Binary Data with Base64 Encoding 17
Implementing an HTTP Server 21

Roadmap for the Rest of This Book 27

Chapter 2 Protecting Against Eavesdroppers with
Symmetric Cryptography 29
Understanding Block Cipher Cryptography Algorithms 30

Implementing the Data Encryption Standard (DES) Algorithm 31
DES Initial Permutation 34
DES Key Schedule 38
DES Expansion Function 40
DES Decryption 45
Padding and Chaining in Block Cipher Algorithms 46
Using the Triple-DES Encryption Algorithm to

Increase Key Length 55
Faster Encryption with the Advanced Encryption

Standard (AES) Algorithm 60
AES Key Schedule Computation 60
AES Encryption 67

Other Block Cipher Algorithms 83
Understanding Stream Cipher Algorithms 83

Understanding and Implementing the RC4 Algorithm 84

Contents

ftoc.indd xixftoc.indd xix 12/10/2010 9:48:10 AM12/10/2010 9:48:10 AM

xx Contents

Converting a Block Cipher to a Stream Cipher: The OFB and
COUNTER Block-Chaining Modes 90

Chapter 3 Secure Key Exchange over an Insecure Medium
with Public Key Cryptography 91
Understanding the Theory Behind the RSA Algorithm 92
Performing Arbitrary Precision Binary Math to

Implement Public-Key Cryptography 93
Implementing Large-Number Addition 93
Implementing Large-Number Subtraction 98
Implementing Large-Number Multiplication 101
Implementing Large-Number Division 106
Comparing Large Numbers 109
Optimizing for Modulo Arithmetic 112
Using Modulus Operations to Effi ciently Compute

Discrete Logarithms in a Finite Field 113
Encryption and Decryption with RSA 114

Encrypting with RSA 115
Decrypting with RSA 119
Encrypting a Plaintext Message 120
Decrypting an RSA-Encrypted Message 124
Testing RSA Encryption and Decryption 126

Achieving Perfect Forward Secrecy with
Diffi e-Hellman Key Exchange 130

Getting More Security per Key Bit: Elliptic
Curve Cryptography 132

How Elliptic Curve Cryptography Relies on
Modular Inversions 135

Using the Euclidean Algorithm to compute
Greatest Common Denominators 135

Computing Modular Inversions with the Extended
Euclidean Algorithm 137

Adding Negative Number Support to the Huge
Number Library 138

Supporting Negative Remainders 147
Making ECC Work with Whole Integers: Elliptic-Curve

Cryptography over Fp 150
Reimplementing Diffi e-Hellman to Use ECC Primitives 150
Why Elliptic-Curve Cryptography? 154

Chapter 4 Authenticating Communications Using Digital Signatures 157
Using Message Digests to Create Secure Document Surrogates 158

Implementing the MD5 Digest Algorithm 159
Understanding MD5 160
A Secure Hashing Example 161
Securely Hashing a Single Block of Data 166

MD5 Vulnerabilities 169

ftoc.indd xxftoc.indd xx 12/10/2010 9:48:10 AM12/10/2010 9:48:10 AM

 Contents xxi

Increasing Collision Resistance with the SHA-1
Digest Algorithm 171

Understanding SHA-1 Block Computation 171
Understanding the SHA-1 Input Processing Function 174
Understanding SHA-1 Finalization 176

Even More Collision Resistance with the SHA-256
Digest Algorithm 180

Preventing Replay Attacks with the HMAC
Keyed-Hash Algorithm 184

Implementing a Secure HMAC Algorithm 186
Completing the HMAC Operation 190

Creating Updateable Hash Functions 190
Defining a Digest Structure 191
Appending the Length to the Last Block 194
Computing the MD5 Hash of an Entire File 196
Where Does All of This Fit into SSL? 200

Understanding Digital Signature Algorithm
(DSA) Signatures 201

Implementing Sender-Side DSA Signature Generation 202
Implementing Receiver-Side DSA Signature Verification 205
How to Make DSA Efficient 209

Getting More Security per Bit: Elliptic Curve DSA 210
Rewriting the Elliptic-Curve Math Functions to

Support Large Numbers 211
Implementing ECDSA 215
Generating ECC Keypairs 218

Chapter 5 Creating a Network of Trust Using X.509 Certifi cates 221
Putting It Together: The Secure Channel Protocol 222
Encoding with ASN.1 225

Understanding Signed Certifi cate Structure 225
Version 226
serialNumber 227
signature 227
issuer 229
validity 232
subject 233
subjectPublicKeyInfo 235
extensions 237
Signed Certificates 238
Summary of X.509 Certificates 241

Transmitting Certifi cates with ASN.1 Distinguished
Encoding Rules (DER) 241

Encoded Values 241
Strings and Dates 242
Bit Strings 243
Sequences and Sets: Grouping and Nesting ASN.1 Values 243

ftoc.indd xxiftoc.indd xxi 12/10/2010 9:48:10 AM12/10/2010 9:48:10 AM

xxii Contents

ASN.1 Explicit Tags 244
A Real-World Certificate Example 244
Using OpenSSL to Generate an RSA KeyPair and Certificate 244
Using OpenSSL to Generate a DSA KeyPair and Certificate 251

Developing an ASN.1 Parser 252
Converting a Byte Stream into an ASN.1 Structure 252
The asn1parse Code in Action 259
Turning a Parsed ASN.1 Structure into X.509 Certifi cate

Components 264
Joining the X.509 Components into a Completed X.509

Certifi cate Structure 268
Parsing Object Identifi ers (OIDs) 270
Parsing Distinguished Names 271
Parsing Certifi cate Extensions 275
Signature Verifi cation 279

Validating PKCS #7-Formatted RSA Signatures 280
Verifying a Self-Signed Certificate 281
Adding DSA Support to the Certificate Parser 286

Managing Certifi cates 292
How Authorities Handle Certifi cate Signing Requests (CSRs) 292
Correlating Public and Private Keys Using PKCS #12

Formatting 293
Blacklisting Compromised Certifi cates Using Certifi cate

Revocation Lists (CRLs) 294
Keeping Certifi cate Blacklists Up-to-Date with the Online

Certifi cate Status Protocol (OCSP) 295
Other Problems with Certifi cates 296

Chapter 6 A Usable, Secure Communications Protocol:
Client-Side TLS 297
Implementing the TLS 1.0 Handshake

(Client Perspective) 299
Adding TLS Support to the HTTP Client 300
Understanding the TLS Handshake Procedure 303
TLS Client Hello 304

Tracking the Handshake State in the TLSParameters
Structure 304

Describing Cipher Suites 308
Flattening and Sending the Client Hello Structure 309

TLS Server Hello 316
Adding a Receive Loop 317
Sending Alerts 318
Parsing the Server Hello Structure 319
Reporting Server Alerts 323

TLS Certifi cate 324
TLS Server Hello Done 328

ftoc.indd xxiiftoc.indd xxii 12/10/2010 9:48:10 AM12/10/2010 9:48:10 AM

 Contents xxiii

TLS Client Key Exchange 329
Sharing Secrets Using TLS PRF

(Pseudo-Random Function) 329
Creating Reproducible, Unpredictable Symmetric Keys

with Master Secret Computation 336
RSA Key Exchange 337
Diffie-Hellman Key Exchange 343

TLS Change Cipher Spec 344
TLS Finished 346

Computing the Verify Message 347
Correctly Receiving the Finished Message 352

Secure Data Transfer with TLS 353
Assigning Sequence Numbers 353
Supporting Outgoing Encryption 355
Adding Support for Stream Ciphers 358
Updating Each Invocation of send_message 359
Decrypting and Authenticating 361
TLS Send 364
TLS Receive 365

Implementing TLS Shutdown 368
Examining HTTPS End-to-end Examples (TLS 1.0) 369

Dissecting the Client Hello Request 370
Dissecting the Server Response Messages 372
Dissecting the Key Exchange Message 373
Decrypting the Encrypted Exchange 374
Exchanging Application Data 377

Differences Between SSL 3.0 and TLS 1.0 378
Differences Between TLS 1.0 and TLS 1.1 379

Chapter 7 Adding Server-Side TLS 1.0 Support 381
Implementing the TLS 1.0 Handshake from the

Server’s Perspective 381
TLS Client Hello 387
TLS Server Hello 390
TLS Certifi cate 391
TLS Server Hello Done 393
TLS Client Key Exchange 394

RSA Key Exchange and Private Key Location 395
Supporting Encrypted Private Key Files 399
Checking That Decryption was Successful 406
Completing the Key Exchange 407

TLS Change Cipher Spec 409
TLS Finished 409

Avoiding Common Pitfalls When Adding HTTPS
Support to a Server 411

When a Browser Displays Errors: Browser Trust Issues 412

ftoc.indd xxiiiftoc.indd xxiii 12/10/2010 9:48:10 AM12/10/2010 9:48:10 AM

xxiv Contents

Chapter 8 Advanced SSL Topics 415
Passing Additional Information with Client Hello Extensions 415
Safely Reusing Key Material with Session Resumption 420

Adding Session Resumption on the Client Side 421
Requesting Session Resumption 422
Adding Session Resumption Logic to the Client 422
Restoring the Previous Session’s Master Secret 424
Testing Session Resumption 425
Viewing a Resumed Session 427

Adding Session Resumption on the Server Side 428
Assigning a Unique Session ID to Each Session 429
Adding Session ID Storage 429
Modifying parse_client_hello to Recognize Session

Resumption Requests 433
Drawbacks of This Implementation 435

Avoiding Fixed Parameters with Ephemeral Key Exchange 436
Supporting the TLS Server Key Exchange Message 437

Authenticating the Server Key Exchange Message 439
Examining an Ephemeral Key Exchange Handshake 442

Verifying Identity with Client Authentication 448
Supporting the Certifi cateRequest Message 449

Adding Certificate Request Parsing Capability
for the Client 450

Handling the Certificate Request 452
Supporting the Certifi cate Verify Message 453

Refactoring rsa_encrypt to Support Signing 453
Testing Client Authentication 458
Viewing a Mutually-Authenticated TLS Handshake 460

Dealing with Legacy Implementations: Exportable Ciphers 463
Export-Grade Key Calculation 463
Step-up Cryptography 465

Discarding Key Material Through Session Renegotiation 465
Supporting the Hello Request 466
Renegotiation Pitfalls and the Client Hello

Extension 0xFF01 468
Defending Against the Renegotiation Attack 469
Implementing Secure Renegotiation 471

Chapter 9 Adding TLS 1.2 Support to Your TLS Library 479
Supporting TLS 1.2 When You Use RSA for the Key Exchange 479

TLS 1.2 Modifi cations to the PRF 481
TLS 1.2 Modifi cations to the Finished Messages

Verify Data 483
Impact to Diffi e-Hellman Key Exchange 485

Parsing Signature Types 485
Adding Support for AEAD Mode Ciphers 490

Maximizing Throughput with Counter Mode 490

ftoc.indd xxivftoc.indd xxiv 12/10/2010 9:48:10 AM12/10/2010 9:48:10 AM

 Contents xxv

Reusing Existing Functionality for Secure Hashes
with CBC-MAC 494

Combining CTR and CBC-MAC into AES-CCM 496
Maximizing MAC Throughput with Galois-Field

Authentication 502
Combining CTR and Galois-Field Authentication

with AES-GCM 505
Authentication with Associated Data 510
Incorporating AEAD Ciphers into TLS 1.2 517

Working ECC Extensions into the TLS Library 523
ECDSA Certifi cate Parsing 527
ECDHE Support in TLS 533
ECC Client Hello Extensions 540

The Current State of TLS 1.2 540

Chapter 10 Other Applications of SSL 543
Adding the NTTPS Extension to the NTTP Algorithm 543
Implementing “Multi-hop” SMTP over TLS and

Protecting Email Content with S/MIME 545
Understanding the Email Model 545
The SSL/TLS Design and Email 546
Multipurpose Internet Mail Extensions (MIME) 547
Protecting Email from Eavesdroppers with S/MIME 549
Securing Email When There Are Multiple Recipients 550
S/MIME Certifi cate Management 552

Securing Datagram Traffi c 552
Securing the Domain Name System 553

Using the DNS Protocol to Query the Database 555
Disadvantages of the DNS Query 555
Preventing DNS Cache Poisoning with DNSSEC 556

TLS Without TCP — Datagram TLS 559
Supporting SSL When Proxies Are Involved 560

Possible Solutions to the Proxy Problem 560
Adding Proxy Support Using Tunneling 561

SSL with OpenSSL 564
Final Thoughts 566

Appendix A Binary Representation of Integers: A Primer 567
The Decimal and Binary Numbering Systems 567
Understanding Binary Logical Operations 568

The AND Operation 568
The OR Operation 569
The NOT Operation 569
The XOR Operation 569
Position Shifting of Binary Numbers 570

Two’s-Complement Representation of Negative Numbers 570
Big-Endian versus Little-Endian Number Formats 571

ftoc.indd xxvftoc.indd xxv 12/10/2010 9:48:11 AM12/10/2010 9:48:11 AM

xxvi Contents

Appendix B Installing TCPDump and OpenSSL 573
Installing TCPDump 573

Installing TCPDump on a Windows System 574
Installing TCPDump on a Linux System 575

Installing OpenSSL 575
Installing OpenSSL on a Windows System 575
Installing OpenSSL on a Linux system 577

Appendix C Understanding the Pitfalls of SSLv2 579
Implementing the SSL Handshake 582

SSL Client Hello 588
SSL Server Hello 592
SSL Client Master Key 600
SSL Client Finished 607
SSL Server Verify 612
SSL Server Finished 616
SSL send 617
SSL recv 617
Examining an HTTPS End-to-End Example 619
Viewing the TCPDump Output 619
Problems with SSLv2 626

Man-in-the-Middle Attacks 626
Truncation Attacks 626
Same Key Used for Encryption and Authentication 626
No Extensions 627

Index 629

ftoc.indd xxviftoc.indd xxvi 12/10/2010 9:48:11 AM12/10/2010 9:48:11 AM

xxvii

Introduction

This book examines the Secure Sockets Layer (SSL) and Transport Layer Security
(TLS) protocols in detail, taking a bottom-up approach. SSL/TLS is a standard-
ized, widely implemented, peer-reviewed protocol for applying cryptographic
primitives to arbitrary networked communications. It provides privacy, integ-
rity, and some measure of authenticity to otherwise inherently untrustworthy
network connections. Rather than just present the details of the protocol itself,
this book develops, incrementally, a relatively complete SSL/TLS library. First,
all of the relevant cryptographic protocols are examined and developed, and
then the library itself is built piece by piece.

All of the code developed in this book is C (not C++) code. It’s been tested on both
Windows and Linux systems and should run as advertised on either. Although
this is a code-heavy book, non-C programmers — or even non-programmers
in general — will still be able to get quite a bit from it. All of the protocols and
examples are presented in general form as well as in source code form so that
if you’re interested in a higher-level overview, you can skip the code examples
and the book should still make sense.

I chose C instead of C++ (or Java or Python or Perl, and so on) as a good “least-
common-denominator” language. If you can program in any other procedural
language, you can program in C; and if you can understand an implementation
in C, you can understand an implementation in any other language. This book
takes full advantage of the C programming language, though. I use pointer
syntax in particular throughout the book. If you plan on following along with
the code samples, make sure you’re comfortable with C and pointers. I do my
best to avoid the sort of excessive macro-ization and gratuitous typedef-ing that
make professional C code easy to maintain but hard to read.

flast.indd xxviiflast.indd xxvii 12/10/2010 9:47:51 AM12/10/2010 9:47:51 AM

xxviii Introduction

You might be wondering, though, why I present the source code of yet
another (partially incomplete) implementation when there are so many
good, tried-and-tested open-source implementations of SSL available. Effectively,
production-grade libraries have (at least) fi ve primary concerns regarding
their source code:

 1. It must work.

 2. It must be secure.

 3. It should be as fast as reasonably possible.

 4. It must be modular/extensible.

 5. It must be easy to read/understand.

When a higher-numbered concern confl icts with a lower-numbered concern,
the lower-numbered concern wins. This must be the case for code that’s actu-
ally used by real people to perform real tasks. The upshot is that the code is not
always pretty, nor is it particularly readable, when security/speed/modularity
take precedence. The priorities for the code in this book are

 1. It must work.

 2. It should be as readable as possible.

Note that security, speed, and modularity aren’t concerns. In fact, the code
presented in this book (somewhat ironically) is not particularly secure. For
example, when the algorithms call for random bytes, the code in this book just
returns sequentially numbered bytes, which is the exact opposite of the random
bytes that the algorithm calls for. This is done to simplify the code as well as
to make sure that what you see if you try it out yourself matches what you see
in the book.

There isn’t any bounds-checking on buffers or verifi cation that the input
matches what’s expected, which are things that a proper library ought to be
doing. I’ve omitted these things to keep this book’s (already long) page count
under control, as well as to avoid obscuring the purpose of the example code
with hundreds of lines of error checking. At various times throughout the book,
you’ll see code comments such as // TODO make this random or // TODO check
the length before using. I’ve placed these comments in the code to draw your
attention to the functionality that was intentionally omitted.

Of course, if you’re coding in a hostile environment — that is, if you’re work-
ing with any production quality code — you should prefer a well-established
library such as OpenSSL, GnuTLS, or NSS over home-grown code any day.
This book, however, should help you understand the internals of these librar-
ies so that, when it comes time to use one, you know exactly what’s going on
at all stages.

flast.indd xxviiiflast.indd xxviii 12/10/2010 9:47:51 AM12/10/2010 9:47:51 AM

 Introduction xxix

Supplemental Web Sites
Every aspect of the Internet itself — including SSL/TLS — is described by a
series of documents written and maintained by the Internet Engineering Task Force
(IETF). These documents are referred to (somewhat confusingly) as Requests for
Comments or, more commonly, just RFCs. Each such RFC describes, authoritatively,
some aspect of some protocol related to the Internet. And at the time of this
writing, there are over 5000 such documents. Although I doubt that anybody,
anywhere, has actually read all of them, you’ll need to be familiar with quite
a few in order to do any serious Internet programming. As such, I’ll refer to
these RFCs by number throughout the book. Rather than provide a link to each
inline, I’ll just refer to them as, e.g., RFC 2246. If you want to see RFC 2246 (the
authoritative document that describes TLS 1.0 itself), you can visit the IETF’s
website at www.ietf.org. Each RFC is stored in a document under http://www
.ietf.org/rfc/rfcnnnn.txt, where nnnn is the RFC number itself.

In addition, SSL/TLS borrows heavily from a couple of related standards
bodies — the International Telecommuncation Union (ITU) “X series” of docu-
ments and RSA laboratories’ Public Key Cryptography Standards (PKCS). The ITU
standards can be found at http://www.itu.int/rec/T-REC-X/en and the PKCS
standards can be found at http://www.rsa.com/rsalabs/node.asp?id=2124.
I’ll refer to RFC’s, X-series documents, and PKCS standards throughout the
book. You may want to bookmark these locations in a browser for quick refer-
ence, if you’d like to compare the text to the offi cial standards documents. All
of the standards documents referenced in this book are freely available and
downloadable, so I don’t make any great effort to repeat them. Instead, I try
to explain the background information that the standards documents always
seem to take for granted. I’m assuming that, if you’re interested in the low-level
details, you can always refer to the standards document itself.

Roadmap and Companion Source Code
I’ve been around and reading technical documentation since before there was
an Internet, or even CD-ROM drives. Back in my day, readers of code-heavy
books such as this one couldn’t just download the samples from a compan-
ion website or an included CD-ROM. If you wanted to see the code samples
in action, you had to type them in by hand. Although typing code can be
tedious at times, I’ve found that it’s also the best way to completely absorb
the material. So, Luddite that I am, I tend to eschew code downloads when I
read technical material.

This book has been designed so that somebody who wants to follow along
can do so. However, I also recognize that not every reader is a dinosaur like
myself — er, I mean not everyone is quite so meticulous. Changes to code

flast.indd xxixflast.indd xxix 12/10/2010 9:47:51 AM12/10/2010 9:47:51 AM

xxx Introduction

presented previously are listed in boldface, so it’s easy to see what’s been modi-
fi ed and what’s been left unchanged.

The companion website at http://www.wiley.com/go/implementingssl
has two download fi les — one for GCC for those following along on a Linux
platform and one for Visual Studio for those following along on Windows. Each
download is split into two sections: one that includes the fi nished code for each
chapter and another for somebody who might want to follow along. I urge you
to download at least the code for following along because it includes Makefi les
and headers that aren’t specifi cally reproduced in this book. This book’s code
is heavily self-referential — especially in the second half — so you want to
be sure to build correctly. The downloadable Makefi les ensure that you can.

Because this book is about SSL, I try my best not to get too hung up on unre-
lated implementation details. However, the code presented here does work
and is somewhat nontrivial, so some “implementation asides” are unavoidable.

Outline of the Book
Chapter 1, “Understanding Internet Security,” examines the basics of Internet
communication and what is and is not vulnerable to attackers. To motivate the
remainder of the book, a basic working HTTP example is developed here. Later
chapters incrementally add security features to this beginning HTTP example.

Chapter 2, “Protecting Against Eavesdroppers with Symmetric Cryptography,”
examines the aspect of communications security that most people think of
fi rst, which is scrambling data in fl ight so that it can’t be intercepted or read
by unauthorized parties. There are many internationally recognized standard
algorithms in this space, which SSL/TLS rely heavily on. Chapter 2 examines
three of these standards in detail: DES, AES and RC4. The code developed here
will be reused in Chapter 6 when the actual TLS library is built.

Chapter 3, “Secure Key Exchange over an Insecure Medium with Public Key
Cryptography,” looks at the problem of exchanging keys when the underlying
communications channel can’t be trusted. The thorny problem of how to take an
unencrypted link and turn it into an encrypted one is examined here. There are
also several standards in this area — RSA, Diffi e-Hellman, and Elliptic-Curve
Cryptography are examined in detail in this chapter.

Chapter 4, “Authenticating Communications Using Digital Signatures,” exam-
ines a less prominent, but equally as important, aspect of secure communications.
While cryptography protects data from eavesdroppers, authentication protects
data against forgers. The standards MD-5, SHA-1, SHA-256, HMAC, DSA, and
ECDSA are all examined in detail in this chapter. Each of these plays a key role
in TLS as discussed further in Chapter 6.

Chapter 5, “Creating a Network of Trust Using X.509 Certifi cates,” discusses
the fi nal piece of the PKI puzzle that the previous two chapters began, digital
certifi cates. Digital certifi cates and the Public-Key Infrastructure that support

flast.indd xxxflast.indd xxx 12/10/2010 9:47:52 AM12/10/2010 9:47:52 AM

 Introduction xxxi

them are required to guard against active attacks. TLS depends greatly on
certifi cates, so this chapter develops an ASN.1 parser and an X.509 certifi cate
reader, which is used in the next chapter to authenticate web sites securely.

Chapter 6, “A Usable, Secure Communications Protocol: Client-Side TLS,” ties
together all of the concepts from the previous four chapters into a working TLS
implementation. This chapter looks at TLS from the perspective of the client
and ends with a working HTTPS implementation.

Chapter 7, “Adding Server-Side TLS 1.0 Support,” takes the foundation of
TLS from Chapter 6 and expands it to the web server example from Chapter
1, developing an SSL-enabled mini–web server. Since the server needs to store
private keys, which are, by their nature, especially sensitive, Chapter 7 also
examines the topic of using password to securely encrypt data at rest.

Chapter 8, “Advanced SSL Topics,” covers the rest of TLS 1.0 — there are
several optional elements that a compliant implementation ought to sup-
port, but which are not as widespread as the most common case covered in
Chapters 6 and 7. Client authentication, server name identifi cation, export
grade cryptography, session resumption, and session renegotiation are all
explored in depth here.

Chapter 9, “Adding TLS 1.2 Support to Your TLS Library,” implements the
latest version of the TLS protocol, 1.2, on top of the TLS 1.0 implementation that
Chapters 6–8 developed. Here you see elliptic curve cryptography put to use.
Additionally, AEAD-mode ciphers are examined, since TLS 1.2 is the fi rst ver-
sion of TLS to permit this mode.

Chapter 10, “Other Applications of SSL,” takes a look at the non-HTTP uses
that SSL/TLS has been put to. The STARTTLS extension and DTLS are examined
here. Also, S/MIME and DNSSEC — not strictly TLS, but related — are covered
in this chapter. Finally, Chapter 10 ends by looking at how HTTPS supports
HTTP proxies, which is, overall, an interesting compromise.

How to Read This Book
This book was written to be read cover to cover. Additionally, if you have
some background in C programming, you will want to read through, and
probably compile and run, the code samples. If you’re not a programmer, or
not particularly comfortable with the C programming language, you can skip
over the code samples and just read the text descriptions of the relevant pro-
tocols — the book was written to make sense when read this way. The benefi t
of the code samples is that it’s impossible to omit any detail — accidentally or
intentionally — when writing code, so if you can understand the code, it will
cement your understanding of the text preceding it. I’ve made every effort to
ensure that the text and diagrams describe the protocols exactly. If, however,
in spite of my best efforts, my descriptions are for any reason unclear, you
can always step through the code to see exactly what’s going on.

flast.indd xxxiflast.indd xxxi 12/10/2010 9:47:52 AM12/10/2010 9:47:52 AM

xxxii Introduction

Although this is a book about SSL/TLS, the fi rst half of the book just sets the
stage for SSL/TLS by presenting all of the protocols and standards they rely
on. If you’re just looking for a description of TLS, and have a reasonable under-
standing of cryptography and PKI in general, you should be able to safely skip
ahead to Chapter 6 and start there with the overview of TLS itself. However,
at some point, you should jump back and read Chapters 2–5, since there are a
lot of implementation details that can bite you in surprising ways when using
cryptographic libraries. My primary motivation in writing this book was to
present, in detail, the interplay between the SSL and TLS protocols and the
cryptographic routines that they rely on.

flast.indd xxxiiflast.indd xxxii 12/10/2010 9:47:52 AM12/10/2010 9:47:52 AM

1

C H A P T E R

1

Understanding Internet Security

How secure is the data that you transmit on the Internet? How vulnerable is
your personal data to hackers? Even computer-literate, experienced program-
mers fi nd it’s hard to answer these questions with certainty. You probably know
that standard encryption algorithms are used to protect data — you’ve likely
heard of public-key algorithms such as RSA and DSA — and you may know
that the U.S. government’s Data Encryption Standard has been replaced by an
Advanced Encryption Standard. Everybody knows about the lock icon in their
browsers that indicates that the session is protected by HTTPS. You’ve most
likely heard of PGP for e-mail security (even if you gave up on it after failing
to convince your friends to use it).

In all likelihood, though, you’ve also heard of man in the middle attacks, timing
attacks, side-channel attacks, and various other attacks that aim to compromise
privacy and security. Anybody with a web browser has been presented with the
ominous warning message that “This site’s security cannot be trusted — either
the certifi cate has expired, or it was issued by a certifi cate authority you have
chosen not to trust.” Every week, you can read about some new zero-day exploit
uncovered by security researchers that requires a round of frantic patching. As
a professional programmer, you may feel you ought to know exactly what that
means — yet trying to decipher these messages and determine whether you
should really be worried or not takes you down the rabbit hole of IETF, PKCS,
FIPS, NIST, ITU, and ASN. You may have tried to go straight to the source and
read RFC 2246, which describes TLS, but you may have discovered, to your

c01.indd 1c01.indd 1 12/10/2010 9:43:23 AM12/10/2010 9:43:23 AM

2 Chapter 1 n Understanding Internet Security

chagrin, that RFC 2246 presumes a background in symmetric cryptography,
public-key cryptography, digital signature algorithms, and X.509 certifi cates.
It’s unclear where to even begin. Although there are a handful of books that
describe SSL and “Internet Security,” none are targeted at the technically inclined
reader who wants, or needs, to know the details.

A mantra among security professionals is that the average programmer
doesn’t understand security and should not be trusted with it until he verses
himself in it. This is good, but ultimately unhelpful, advice. Where does one
begin? What the security professionals are really trying to tell you is that, as a
practitioner rather than a casual user, it’s not enough to treat security as a black
box or a binary property; you need to know what the security is doing and how
it’s doing it so that you know what you are and aren’t protected against. This
book was written for you — the professional programmer who understands the
basics of security but wants to uncover the details without reading thousands
of pages of dry technical specifi cations (only some of which are relevant).

This book begins by examining sockets and socket programming in brief.
Afterward, it moves on to a detailed examination of cryptographic concepts
and fi nally applies them to SSL/TLS, the current standard for Internet security.
You examine what SSL/TLS does, what it doesn’t do, and how it does it. After
completing this book, you’ll know exactly how and where SSL fi ts into an over-
all security strategy and you’ll know what steps yet need to be taken, if any, to
achieve additional security.

What Are Secure Sockets?

The Internet is a packet-switching network. This means that, for two hosts to com-
municate, they must packetize their data and submit it to a router with the destina-
tion address prepended to each packet. The router then analyzes the destination
address and routes the packet either to the target host, or to a router that it
believes is closer to the target host. The Internet Protocol (IP), outlined in RFC
971, describes the standard for how this packetization is performed and how
addresses are attached to packets in headers.

A packet can and probably will pass through many routers between the sender
and the receiver. If the contents of the data in that packet are sensitive — a pass-
word, a credit card, a tax identifi cation number — the sender would probably
like to ensure that only the receiver can read the packet, rather than the packet
being readable by any router along the way. Even if the sender trusts the rout-
ers and their operators, routers can be compromised by malicious individuals,
called attackers in security terminology, and tricked into forwarding traffi c that’s
meant for one destination to another, as shown in http://www.securesphere
.net/download/papers/dnsspoof.htm. If you’d like to get an idea just how many
different hosts a packet passes through between you and a server, you can use

c01.indd 2c01.indd 2 12/10/2010 9:43:23 AM12/10/2010 9:43:23 AM

 Chapter 1 n Understanding Internet Security 3

the traceroute facility that comes with every Internet-capable computer to print
a list of the hops between you and any server on the Internet.

An example of a traceroute output is shown below:

 [jdavies@localhost]:~$ traceroute www.travelocity.com

traceroute to www.travelocity.com (151.193.224.81), 30 hops max, 40 byte packets

 1 192.168.0.1 (192.168.0.1) 0.174 ms 0.159 ms 0.123 ms

 2 * * *

 3 172.216.125.53 (172.216.125.53) 8.052 ms 7.978 ms 9.699 ms

 4 10.208.164.65 (10.208.164.65) 10.731 ms 9.895 ms 9.489 ms

 5 gig8-2.dllatxarl-t-rtr1.tx.rr.com (70.125.217.92) 12.593 ms 10.952 ms

13.003 ms

 6 gig0-1-0.dllatxl3-rtr1.texas.rr.com (72.179.205.72) 69.604 ms 37.540 ms

14.015 ms

 7 ae-4-0.cr0.dfw10.tbone.rr.com (66.109.6.88) 13.434 ms 13.696 ms 15.259 ms

 8 ae-1-0.pr0.dfw10.tbone.rr.com (66.109.6.179) 15.498 ms 15.948 ms 15.555 ms

 9 xe-7-0-0.edge4.Dallas3.Level3.net (4.59.32.17) 18.653 ms 22.451 ms 16.034

ms

10 ae-11-60.car1.Dallas1.Level3.net (4.69.145.3) 19.759 ms

ae-21-70.car1.Dallas1.Level3.net (4.69.145.67) 17.455 ms

ae-41-90.car1.Dallas1.Level3.net (4.69.145.195) 16.469 ms

11 EDS.car1.Dallas1.Level3.net (4.59.113.86) 28.853 ms 25.672 ms 26.337 ms

12 151.193.129.61 (151.193.129.61) 24.763 ms 26.032 ms 25.481 ms

13 151.193.129.99 (151.193.129.99) 28.727 ms 25.441 ms 26.507 ms

14 151.193.129.173 (151.193.129.173) 26.642 ms 23.995 ms 28.462 ms

15 * * *

Here, I’ve submitted a traceroute to www.travelocity.com. Each router along
the way is supposed to respond with a special packet called an ICMP timeout
packet, as described in RFC 793, with its own address. The routers that cannot
or will not do so are represented with * * * in the preceding code. Typically
the routers don’t respond because they’re behind a fi rewall that’s confi gured
not to forward ICMP diagnostic packets. As you can see, there are quite a few
hops between my home router and Travelocity’s main web server.

In network programming parlance, the tenuous connection between a sender
and a receiver is referred to as a socket. When one host — the client — is ready
to establish a connection with another — the server — it sends a synchronize
(SYN) packet to the server. If the server is willing to accept the connection,
it responds with a SYN and acknowledge packet. Finally, the client acknowl-
edges the acknowledgment and both sides have agreed on a connection. This
three-packet exchange is referred to as the TCP handshake and is illustrated in
Figure 1-1. The connection is associated with a pair of numbers: the source port
and the destination port, which are attached to each subsequent packet in the
communication. Because the server is sitting around, always listening for con-
nections, it must advertise its destination port ahead of time. How this is done
is protocol-specifi c; some protocols are lucky enough to have “magic numbers”
associated with them that are well-known (in other words, you, the programmer
are supposed to know them). This is the Transport Control Protocol (TCP); RFC

c01.indd 3c01.indd 3 12/10/2010 9:43:23 AM12/10/2010 9:43:23 AM

4 Chapter 1 n Understanding Internet Security

793 describes exactly how this works and how both sides agree on a source and
destination port and how they sequence these and subsequent packets.

Figure 1-1: TCP three-way handshake

ACK

SYN/ACK

SYN

serverclient

TCP and IP are usually implemented together and called TCP/IP. A socket refers
to an established TCP connection; both sides, client and server, have a socket
after the three-way handshake described above has been completed. If either side
transmits data over this socket, TCP guarantees, to the best of its ability, that the
other side sees this data in the order it was sent. As is required by IP, however,
any intermediate router along the way also sees this data.

SSL stands for Secure Sockets Layer and was originally developed by Netscape
as a way to allow the then-new browser technology to be used for e-commerce.
The original specifi cation proposal can be found in http://www.mozilla.org/
projects/security/pki/nss/ssl/draft02.html. Although it has since been
standardized and renamed Transport Layer Security (TLS), the name SSL is much
more recognizable and in some ways describes better what it does and what
it’s for. After a socket has been established between the client and the server,
SSL defi nes a second handshake that can be performed to establish a secure
channel over the inherently insecure TCP layer.

“Insecure” Communications: Understanding the
HTTP Protocol

HTTP, or Hypertext Transport Protocol, which is offi cially described in RFC 2616,
is the standard protocol for web communication. Web clients, typically referred
to as browsers, establish sockets with web servers. HTTP has a well-known
destination port of 80. After the socket has been established, the web browser
begins following the rules set forth by the HTTP protocol to request documents.
HTTP started out as a fairly simple protocol in which the client issued a GET
command and a description of what it would like to get, to which the server

c01.indd 4c01.indd 4 12/10/2010 9:43:24 AM12/10/2010 9:43:24 AM

 Chapter 1 n Understanding Internet Security 5

responded with either what the client requested in document form or an error
indicating why it could not or did not give the client that document. Either
way, the socket would be closed after this. If the client wanted another docu-
ment, it would create another socket and request another document. Over the
years, HTTP has been refi ned quite a bit and optimized for bandwidth, speed,
and security features.

 HTTP was also the primary motivator for SSL. Originally, SSL didn’t stand
on its own; it was designed as an add-on to HTTP, called HTTPS. Although SSL
was subsequently decoupled from HTTP, some of its features were optimized
for HTTP, leaving it to be a bit of a square peg in a round hole in some other
contexts. Because HTTP and SSL go so well together, in this book I motivate SSL
by developing an HTTP client and adding security features to it incrementally,
fi nally arriving at a working HTTP/SSL implementation.

Implementing an HTTP Client
Web browsers are complex because they need to parse and render HTML — and,
in most cases, render images, run Javascript, Flash, Java Applets and leave room
for new, as-yet-uninvented add-ons. However, a web client that only retrieves
a document from a server, such as the wget utility that comes standard with
most Unix distributions, is actually pretty simple. Most of the complexity is in
the socket handling itself — establishing the socket and sending and receiving
data over it.

Start with all of the includes that go along with socket communication — as
you can see, there are quite a few, shown in Listing 1-1.

Listing 1-1: “http.c” header includes

/**

 * This test utility does simple (non-encrypted) HTTP.

 */

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <string.h>

#include <sys/types.h>

#ifdef WIN32

#include <winsock2.h>

#include <windows.h>

#else

#include <netdb.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <unistd.h>

#endif

c01.indd 5c01.indd 5 12/10/2010 9:43:24 AM12/10/2010 9:43:24 AM

6 Chapter 1 n Understanding Internet Security

The main routine is invoked with a URL of the form http://www.server
.com/path/to/document.html. You need to separate the host and the path using
a utility routine parse_url, shown in Listing 1-2.

Listing 1-2: “http.c” parse_url

/**

 * Accept a well-formed URL (e.g. http://www.company.com/index.html) and return

 * pointers to the host part and the path part. Note that this function

 * modifies the uri itself as well. It returns 0 on success, -1 if the URL is

 * found to be malformed in any way.

 */

int parse_url(char *uri, char **host, char **path)

{

 char *pos;

 pos = strstr(uri, “//”);

 if (!pos)

 {

 return -1;

 }

 *host = pos + 2;

 pos = strchr(*host, ‘/’);

 if (!pos)

 {

 *path = NULL;

 }

 else

 {

 *pos = ‘\0’;

 *path = pos + 1;

 }

 return 0;

}

You scan through the URL, looking for the delimiters // and / and replace
them with null-terminators so that the caller can treat them as C strings. Notice
that the calling function passes in two pointers to pointers; these should be
null when the function starts and will be modifi ed to point into the uri string,
which came from argv.

The main routine that coordinates all of this is shown in Listing 1-3.

Listing 1-3: “http.c” main

#define HTTP_PORT 80

/**

 * Simple command-line HTTP client.

c01.indd 6c01.indd 6 12/10/2010 9:43:24 AM12/10/2010 9:43:24 AM

 Chapter 1 n Understanding Internet Security 7

 */

int main(int argc, char *argv[])

{

 int client_connection;

 char *host, *path;

 struct hostent *host_name;

 struct sockaddr_in host_address;

#ifdef WIN32

 WSADATA wsaData;

#endif

 if (argc < 2)

 {

 fprintf(stderr, “Usage: %s: <URL>\n”, argv[0]);

 return 1;

 }

 if (parse_url(argv[1], &host, &path) == -1)

 {

 fprintf(stderr, “Error - malformed URL ‘%s’.\n”, argv[1]);

 return 1;

 }

 printf(“Connecting to host ‘%s’\n”, host);

After the URL has been parsed and the host is known, you must establish
a socket to it. In order to do this, convert it from a human-readable host name,
such as www.server.com, to a dotted-decimal IP address, such as 100.218.64.2.
You call the standard gethostbyname library function to do this, and connect
to the server. This is shown in Listing 1-4.

Listing 1-4: “http.c” main (continued)

 // Step 1: open a socket connection on http port with the destination host.

#ifdef WIN32

 if (WSAStartup(MAKEWORD(2, 2), &wsaData) != NO_ERROR)

 {

 fprintf(stderr, “Error, unable to initialize winsock.\n”);

 return 2;

 }

#endif

 client_connection = socket(PF_INET, SOCK_STREAM, 0);

 if (!client_connection)

 {

 perror(“Unable to create local socket”);

 return 2;

 }

 host_name = gethostbyname(host);

 if (!host_name)

(Continued)

c01.indd 7c01.indd 7 12/10/2010 9:43:24 AM12/10/2010 9:43:24 AM

8 Chapter 1 n Understanding Internet Security

 {

 perror(“Error in name resolution”);

 return 3;

 }

 host_address.sin_family = AF_INET;

 host_address.sin_port = htons(HTTP_PORT);

 memcpy(&host_address.sin_addr, host_name->h_addr_list[0],

 sizeof(struct in_addr));

 if (connect(client_connection, (struct sockaddr *) &host_address,

 sizeof(host_address)) == -1)

 {

 perror(“Unable to connect to host”);

 return 4;

 }

 printf(“Retrieving document: ‘%s’\n”, path);

Assuming nothing went wrong — the socket structure could be created, the
hostname could be resolved to an IP address, the IP address was reachable, and
the server accepted your connection on the well-known port 80 — you now have
a usable (cleartext) socket with which to exchange data with the web server. Issue
a GET command, display the result, and close the socket, as shown in Listing 1-5.

Listing 1-5: “http.c” main (continued)

 http_get(client_connection, path, host);

 display_result(client_connection);

 printf(“Shutting down.\n”);

#ifdef WIN32

 if (closesocket(client_connection) == -1)

#else

 if (close(client_connection) == -1)

#endif

 {

 perror(“Error closing client connection”);

 return 5;

 }

#ifdef WIN32

 WSACleanup();

#endif

 return 0;

}

An HTTP GET command is a simple, plaintext command. It starts with the
three ASCII-encoded letters GET, all in uppercase (HTTP is case sensitive), a
space, the path to the document to be retrieved, another space, and the token

c01.indd 8c01.indd 8 12/10/2010 9:43:24 AM12/10/2010 9:43:24 AM

 Chapter 1 n Understanding Internet Security 9

HTTP/1.0 or HTTP/1.1 depending on which version of the HTTP protocol the
client understands.

NOTE At the time of this writing, there are only two versions of HTTP; the
differences are immaterial to this book.

The GET command itself is followed by a carriage-return/line-feed pair (0x0A
0x0D) and a colon-separated, CRLF-delimited list of headers that describe how
the client wants the response to be returned. Only one header is required — the
Host header, which is required to support virtual hosting, the situation where
several hosts share one IP address or vice-versa. The Connection header is not
required, but in general you should send it to indicate to the client whether you
want it to Keep-Alive the connection — if you plan on requesting more docu-
ments on this same socket — or Close it. If you omit the Connection: Close
header line, the server keeps the socket open until the client closes it. If you’re
just sending a single request and getting back a single response, it’s easier to
let the server just close the connection when it’s done sending. The header list
is terminated by an empty CRLF pair.

A minimal HTTP GET command looks like this:

GET /index.html HTTP/1.1

Host: www.server.com

Connection: close

The code to format and submit a GET command over an established socket is
shown in Listing 1-6. Note that the input is the socket itself — the connection
argument — the path of the document being requested, and the host (to build
the host header).

Listing 1-6: “http.c” http_get

#define MAX_GET_COMMAND 255

/**

 * Format and send an HTTP get command. The return value will be 0

 * on success, -1 on failure, with errno set appropriately. The caller

 * must then retrieve the response.

 */

int http_get(int connection, const char *path, const char *host)

{

 static char get_command[MAX_GET_COMMAND];

 sprintf(get_command, “GET /%s HTTP/1.1\r\n”, path);

 if (send(connection, get_command, strlen(get_command), 0) == -1)

 {

 return -1;

 }

 sprintf(get_command, “Host: %s\r\n”, host);

 if (send(connection, get_command, strlen(get_command), 0) == -1)

 {

(Continued)

c01.indd 9c01.indd 9 12/10/2010 9:43:24 AM12/10/2010 9:43:24 AM

10 Chapter 1 n Understanding Internet Security

 return -1;

 }

 sprintf(get_command, “Connection: close\r\n\r\n”);

 if (send(connection, get_command, strlen(get_command), 0) == -1)

 {

 return -1;

 }

 return 0;

}

Finally, output the response from the server. To keep things simple, just dump
the contents of the response on stdout. An HTTP response has a standard for-
mat, just like an HTTP request. The response is the token HTTP/1.0 or HTTP/1.1
depending on which version the server understands (which does not necessarily
have to match the client’s version), followed by a space, followed by a numeric
code indicating the status of the request — errored, rejected, processed, and so
on — followed by a space, followed by a textual, human-readable, description
of the meaning of the status code.

Some of the more common status codes are shown in Table 1-1.

Table 1-1: Common status codes

STATUS MEANING

200 Everything was OK, requested document follows.

302 Requested document exists, but has been moved — new location
follows.

403 Forbidden: Requested document exists, but you are not authorized to
view it.

404 Requested document not found.

500 Internal Server Error.

There are quite a few more status codes, as described in RFC 2616. The response
status line is followed, again, by a CRLF, and a series of colon-separated, CRLF-
delimited headers, a standalone CRLF/blank line end-of-headers marker, and
the document itself. Here’s an example HTTP response:

HTTP/1.1 200 OK

Date: Tue, 13 Oct 2009 19:34:51 GMT

Server: Apache

Last-Modified: Fri, 27 Oct 2006 01:53:57 GMT

ETag: “1876a-ff-316f5740”

Accept-Ranges: bytes

c01.indd 10c01.indd 10 12/10/2010 9:43:24 AM12/10/2010 9:43:24 AM

 Chapter 1 n Understanding Internet Security 11

Content-Length: 255

Vary: Accept-Encoding

Connection: close

Content-Type: text/html; charset=ISO-8859-1

<html>

<head>

<TITLE>Welcome to the server</TITLE>

</head>

<BODY BGCOLOR=ffffff>

This is the server’s homepage

</BODY>

</html>

Here’s an example of a 404 “not found” error:

HTTP/1.1 404 Not Found

Date: Tue, 13 Oct 2009 19:40:53 GMT

Server: Apache

Last-Modified: Fri, 27 Oct 2006 01:53:58 GMT

ETag: “1875d-c5-317e9980”

Accept-Ranges: bytes

Content-Length: 197

Vary: Accept-Encoding

Connection: close

Content-Type: text/html; charset=ISO-8859-1

<!DOCTYPE HTML PUBLIC “-//IETF//DTD HTML 2.0//EN”>

<html><head>

<title>404 Not Found</title>

</head><body>

<h1>Not Found</h1>

<p>The requested URL was not found on this server.</p>

</body></html>

Even though the document requested was not found, a document was returned,
which can be displayed in a browser to remind the user that something has
gone wrong.

For testing purposes, you don’t care about the response itself, as long as you
get one. Therefore, don’t make any efforts to parse these responses — just dump
their contents, verbatim, on stdout as shown in Listing 1-7.

Listing 1-7: “http.c” display_result

#define BUFFER_SIZE 255

/**

 * Receive all data available on a connection and dump it to stdout

 */

void display_result(int connection)

{

 int received = 0;

(Continued)

c01.indd 11c01.indd 11 12/10/2010 9:43:24 AM12/10/2010 9:43:24 AM

12 Chapter 1 n Understanding Internet Security

 static char recv_buf[BUFFER_SIZE + 1];

 while ((received = recv(connection, recv_buf, BUFFER_SIZE, 0)) > 0)

 {

 recv_buf[received] = ‘\0’;

 printf(“%s”, recv_buf);

 }

 printf(“\n”);

}

This is all that’s required to implement a bare-bones web client. Note, how-
ever, that because the socket created was a cleartext socket, everything that’s
transmitted between the client and the server is observable, in plaintext, to
every host in between. In general, if you want to protect the transmission from
eavesdroppers, you establish an SSL context — that is, secure the line — prior to
sending the GET command.

Adding Support for HTTP Proxies
One important topic related to HTTP is the HTTP proxy. Proxies are a bit tricky
for SSL. Notice in Listing 1-4 that a socket had to be created from the client to the
server before a document could be requested. This means that the client had to
be able to construct a SYN packet, hand that off to a router, which hands it off to
another router, and so on until it’s received by the server. The server then con-
structs its own SYN/ACK packet, hands it off, and so on until it’s received by the
client. However, in corporate intranet environments, packets from outside
the corporate domain are not allowed in and vice versa. In effect, there is no
route from the client to the server with which it wants to connect.

In this scenario, it’s typical to set up a proxy server that can connect to the
outside world, and have the client funnel its requests through the proxy. This
changes the dynamics a bit; the client establishes a socket connection with the
proxy server fi rst, and issues a GET request to it as shown in Figure 1-2. After
the proxy receives the GET request, the proxy examines the request to determine the
host name, resolves the IP address, connects to that IP address on behalf of
the client, re-issues the GET request, and forwards the response back to the
client. This subtly changes the dynamics of HTTP. What’s important to notice is
that the client establishes a socket with the proxy server, and the GET request
now includes the full URL.

Because you may well be reading this behind such a fi rewalled environment,
and because proxies present some unique challenges for SSL, go ahead and add
proxy support to the minimal HTTP client developed in the preceding section.

First of all, you need to modify the main routine to accept an optional proxy
specifi cation parameter. A proxy specifi cation includes, of course, the hostname
of the proxy server itself, but it also typically allows a username and password

c01.indd 12c01.indd 12 12/10/2010 9:43:24 AM12/10/2010 9:43:24 AM

 Chapter 1 n Understanding Internet Security 13

to be passed in, as most HTTP proxies are, or at least can be, authenticating.
The standard format for a proxy specifi cation is

http://[username:password@]hostname[:port]/

where hostname is the only part that’s required. Modify your main routine
as shown in Listing 1-8 to accept an optional proxy parameter, preceded by -p.

Figure 1-2: HTTP Proxies

client proxy server

Connect (e.g., on port 8080)
GET http://www.server.com/somedocument.html HTTP/1.1
resolve www.server.com, connect to it (on port 80)
GET /somedocument.html HTTP/1.1
HTTP/1.1 200 OK
HTTP/1.1 200 OK

Listing 1-8: “http.c” main (with proxy support)

int main(int argc, char *argv[])

{

 int client_connection;

 char *proxy_host, *proxy_user, *proxy_password;

 int proxy_port;

 char *host, *path;

 struct hostent *host_name;

 struct sockaddr_in host_address;

 int ind;

#ifdef WIN32

 WSADATA wsaData;

#endif

 if (argc < 2)

 {

 fprintf(stderr,

 “Usage: %s: [-p http://[username:password@]proxy-host:proxy-port]\

<URL>\n”,

 argv[0]);

 return 1;

 }

 proxy_host = proxy_user = proxy_password = host = path = NULL;

 ind = 1;

 if (!strcmp(“-p”, argv[ind]))

 {

 if (!parse_proxy_param(argv[++ind], &proxy_host, &proxy_port,

(Continued)

c01.indd 13c01.indd 13 12/10/2010 9:43:24 AM12/10/2010 9:43:24 AM

14 Chapter 1 n Understanding Internet Security

 &proxy_user, &proxy_password))

 {

 fprintf(stderr, “Error - malformed proxy parameter ‘%s’.\n”,

 argv[2]);

 return 2;

 }

 ind++;

 }

 if (parse_url(argv[ind], &host, &path) == -1)

If the fi rst argument is -p, take the second argument to be a proxy specifi cation
in the canonical form and parse it. Either way, the last argument is still a URL.

If parse_proxy_param succeeds, proxy_host is a non-null pointer to the host-
name of the proxy server. You need to make a few changes to your connection
logic to support this correctly, as shown in Listing 1-9. First you need to establish
a socket connection to the proxy host rather than the actual target HTTP host.

Listing 1-9: “http.c” main (with proxy support) (continued)

 if (proxy_host)

 {

 printf(“Connecting to host ‘%s’\n”, proxy_host);

 host_name = gethostbyname(proxy_host);

 }

 else

 {

 printf(“Connecting to host ‘%s’\n”, host);

 host_name = gethostbyname(host);

 }

 host_address.sin_family = AF_INET;

 host_address.sin_port = htons(proxy_host ? proxy_port : HTTP_PORT);

 memcpy(&host_address.sin_addr, host_name->h_addr_list[0],

 sizeof(struct in_addr));

…

 http_get(client_connection, path, host, proxy_host,

 proxy_user, proxy_password);

Finally, pass the proxy host, user, and password to http_get. The new parse_
proxy_param function works similarly to the parse_url function in Listing
1-2: pass in a pointer to the argv string, insert nulls at strategic places, and set
char * pointers to the appropriate places within the argv string to represent
the individual pieces, as shown in Listing 1-10.

Listing 1-10: “http.c” parse_proxy_param

int parse_proxy_param(char *proxy_spec,

 char **proxy_host,

 int *proxy_port,

 char **proxy_user,

 char **proxy_password)

{

c01.indd 14c01.indd 14 12/10/2010 9:43:24 AM12/10/2010 9:43:24 AM

 Chapter 1 n Understanding Internet Security 15

 char *login_sep, *colon_sep, *trailer_sep;

 // Technically, the user should start the proxy spec with

 // “http://”. But, be forgiving if he didn’t.

 if (!strncmp(“http://”, proxy_spec, 7))

 {

 proxy_spec += 7;

 }

In Listing 1-11, check to see if an authentication string has been supplied. If the @
symbol appears in the proxy_spec, it must be preceded by a “username:password”
pair. If it is, parse those out; if it isn’t, there’s no error because the username and
password are not strictly required.

Listing 1-11: “http.c” parse_proxy_param (continued)

 login_sep = strchr(proxy_spec, ‘@’);

 if (login_sep)

 {

 colon_sep = strchr(proxy_spec, ‘:’);

 if (!colon_sep || (colon_sep > login_sep))

 {

 // Error - if username supplied, password must be supplied.

 fprintf(stderr, “Expected password in ‘%s’\n”, proxy_spec);

 return 0;

 }

 *colon_sep = ‘\0’;

 *proxy_user = proxy_spec;

 *login_sep = ‘\0’;

 *proxy_password = colon_sep + 1;

 proxy_spec = login_sep + 1;

 }

Notice that, if a username and password are supplied, you modify the proxy_
spec parameter to point to the character after the @. This way, proxy_spec now
points to the proxy host whether an authentication string was supplied or not.

Listing 1-12 shows the rest of the proxy parameter parsing — the user can
supply a port number if the proxy is listening on a non-standard port.

Listing 1-12: “http.c” parse_proxy_param (continued)

 // If the user added a “/” on the end (as they sometimes do),

 // just ignore it.

 trailer_sep = strchr(proxy_spec, ‘/’);

 if (trailer_sep)

 {

 *trailer_sep = ‘\0’;

 }

 colon_sep = strchr(proxy_spec, ‘:’);

 if (colon_sep)

(Continued)

c01.indd 15c01.indd 15 12/10/2010 9:43:24 AM12/10/2010 9:43:24 AM

16 Chapter 1 n Understanding Internet Security

 {

 // non-standard proxy port

 *colon_sep = ‘\0’;

 *proxy_host = proxy_spec;

 *proxy_port = atoi(colon_sep + 1);

 if (*proxy_port == 0)

 {

 // 0 is not a valid port; this is an error, whether

 // it was mistyped or specified as 0.

 return 0;

 }

 }

 else

 {

 *proxy_port = HTTP_PORT;

 *proxy_host = proxy_spec;

 }

 return 1;

}

The port number is also optional. If there’s a : character before the end of
the proxy specifi cation, it denotes a port; otherwise, assume the standard HTTP
port 80.

At this point, you have all the pieces you need for HTTP proxy support except
for the changes to the actual http_get routine. Remember that, in ordinary,
“proxy-less” HTTP, you start by establishing a connection to the target HTTP
host and then send in a GET /path HTTP/1.0 request line. However, when
connecting to a proxy, you need to send a whole hostname because the socket
itself has just been established between the client and the proxy. The request
line becomes GET http://host/path HTTP/1.0. Change http_get as shown
in Listing 1-13 to recognize this case and send a proxy-friendly GET command
if a proxy host parameter was supplied.

Listing 1-13: http_get (modifi ed for proxy support)

int http_get(int connection,

 const char *path,

 const char *host,

 const char *proxy_host,

 const char *proxy_user,

 const char *proxy_password)

{

 static char get_command[MAX_GET_COMMAND];

 if (proxy_host)

 {

 sprintf(get_command, “GET http://%s/%s HTTP/1.1\r\n”, host, path);

 }

 else

 {

c01.indd 16c01.indd 16 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

 Chapter 1 n Understanding Internet Security 17

 sprintf(get_command, “GET /%s HTTP/1.1\r\n”, path);

 }

If the proxy is non-authenticating, this is all you need to do. If the proxy is
an authenticating proxy, as most are, you need to supply an additional HTTP
header line including the proxy authorization string.
Proxy-Authorization: [METHOD] [connection string]

[METHOD], according to RFC 2617, is one of BASIC or DIGEST. It’s also com-
mon to see the non-standard NTLM in Microsoft environments. BASIC is, clearly,
the simplest of the three, and the only one you’ll support — hopefully, if you’re
behind a proxy, your proxy does, too. The format of connection string varies
depending on the METHOD. For BASIC, it’s base64_encode(‘username:password’).

Reliable Transmission of Binary Data with Base64
Encoding
You may be somewhat familiar with Base 64 encoding, or at least be familiar
with the term. In early modem-based communication systems, such as e-mail
relay or UUCP systems, an unexpected byte value outside of the printable ASCII
range 32–126 could cause all sorts of problems. Early modems interpreted byte
code 6 as an acknowledgment, for example, wherever it occurred in the stream.
This created problems when trying to transmit binary data such as compressed
images or executable fi les. Various (incompatible) encoding methods were
developed to map binary data into the range of printable ASCII characters; one
of the most popular was Base64.

Base64 divides the input into 6-bit chunks — hence the name Base64 because
26=64 — and maps each 6-bit input into one of the printable ASCII characters.
The fi rst 52 combinations map to the upper- and lowercase alphabetic characters
A–Z and a–z; the next 10 map to the numerals 0–9. That leaves two combinations
left over to map. There’s been some historical contention on exactly what these
characters should be, but compatible implementations map them, arbitrarily, to
the characters + and /. An example of a Base64 encoding is shown in Figure 1-3.

Because the input stream is, obviously, a multiple of 8 bits, dividing it into 6-bit
chunks creates a minor problem. Because 24 is the least-common-multiple of 6
and 8, the input must be padded to a multiple of 24 bits (three bytes). Although
Base64 could just mandate that the encoding routine add padding bytes to
ensure alignment, that would complicate the decoding process. Instead the
encoder adds two = characters if the last chunk is one byte long, one = character
if the last chunk is two bytes long, and no = characters if the input is an even
multiple of three bytes. This 6:8 ratio also means that the output is one third
bigger than the input.

c01.indd 17c01.indd 17 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

18 Chapter 1 n Understanding Internet Security

F igure 1-3: Base64 Encoding

6

0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1

0

A B C ...

1 1 0 1 0

15 7

0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1

9 C 3 D 7

G H I ... O P Q ... 6 ...3 4 5

2826

As you see in Listing 1-14, Base64 encoding is pretty simple to implement
after you understand it; most of the complexity deals with non-aligned input:

Listing 1-14: “base64.c” base64_encode

static char *base64 =

 “ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/”;

void base64_encode(const unsigned char *input, int len, unsigned char *output)

{

 do

 {

 *output++ = base64[(input[0] & 0xFC) >> 2];

 if (len == 1)

 {

 *output++ = base64[((input[0] & 0x03) << 4)];

 *output++ = ‘=’;

 *output++ = ‘=’;

 break;

 }

 *output++ = base64[

 ((input[0] & 0x03) << 4) | ((input[1] & 0xF0) >> 4)];

 if (len == 2)

 {

 *output++ = base64[((input[1] & 0x0F) << 2)];

 *output++ = ‘=’;

 break;

 }

 *output++ = base64[

c01.indd 18c01.indd 18 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

 Chapter 1 n Understanding Internet Security 19

 ((input[1] & 0x0F) << 2) | ((input[2] & 0xC0) >> 6)];

 *output++ = base64[(input[2] & 0x3F)];

 input += 3;

 }

 while (len -= 3);

 *output = ‘\0’;

}

Here, the output array is already assumed to have been allocated as 4/3 *
len. The input masks select 6 bits of the input at a time and process the input
in 3-byte chunks.

Base64 decoding is just as easy. Almost. Each input byte corresponds back
to six possible output bits. This mapping is the exact inverse of the encoding
mapping. However, when decoding, you have to be aware of the possibility that
you can receive invalid data. Remember that the input is given in 8-bit bytes, but
not every possible 8-bit combination is a legitimate Base64 character — this is,
in fact, the point of Base64. You must also reject non-aligned input here; if the
input is not a multiple of four, it didn’t come from a conformant Base64 encod-
ing routine. For these reasons, there’s a bit more error-checking that you need
to build into a Base64 decoding routine; when encoding, you can safely accept
anything, but when decoding, you must ensure that the input actually came
from a real Base64 encoder. Such a Base64 decoder is shown in Listing 1-15.

Listing 1-15: “base64.c” base64_decode

static int unbase64[] =

{

 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, -1, -1, 63, 52,

 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, 0, -1, -1, -1,

 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, -1, -1,

 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,

 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1, -1

};

int base64_decode(const unsigned char *input, int len, unsigned char *output)

{

 int out_len = 0, i;

 assert(!(len & 0x03)); // Is an even multiple of 4

 do

 {

 for (i = 0; i <= 3; i++)

 {

 // Check for illegal base64 characters

 if (input[i] > 128 || unbase64[input[i]] == -1)

(Continued)

c01.indd 19c01.indd 19 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

20 Chapter 1 n Understanding Internet Security

 {

 fprintf(stderr, “invalid character for base64 encoding: %c\n”,

 input[i]);

 return -1;

 }

 }

 *output++ = unbase64[input[0]] << 2 |

 (unbase64[input[1]] & 0x30) >> 4;

 out_len++;

 if (input[2] != ‘=’)

 {

 *output++ = (unbase64[input[1]] & 0x0F) << 4 |

 (unbase64[input[2]] & 0x3C) >> 2;

 out_len++;

 }

 if (input[3] != ‘=’)

 {

 *output++ = (unbase64[input[2]] & 0x03) << 6 |

 unbase64[input[3]];

 out_len++;

 }

 input += 4;

 }

 while (len -= 4);

 return out_len;

}

Notice that unbase64 was declared as a static array. Technically you could have
computed this from base64, but because this never changes, it makes sense to
compute this once and hardcode it into the source. The –1 entries are non-base64
characters. If you encounter one in the decoding input, halt.

What does all of this Base64 stuff have to do with proxy authorization? Well,
BASIC authorization has the client pass a username and a password to the proxy
to identify itself. In a minor nod to security, HTTP requires that this username
and password be Base64 encoded before being transmitted. This provides some
safeguard (but not much) against accidental password leakage. Of course, even a
lazy attacker with access to a packet sniffer could easily Base64 decode the proxy
authorization line. In fact, the open-source Wireshark packet sniffer decodes it
for you! Still, it’s required by the specifi cation, so you have to support it.

To support proxy authorization, add the following to http_get as shown in
Listing 1-16.

Listing 1-16: “http.c” http_get (with proxy support) (continued)

 sprintf(get_command, “Host: %s\r\n”, host);

 if (send(connection, get_command, strlen(get_command), 0) == -1)

 {

c01.indd 20c01.indd 20 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

 Chapter 1 n Understanding Internet Security 21

 return -1;

 }

 if (proxy_user)

 {

 int credentials_len = strlen(proxy_user) + strlen(proxy_password) + 1;

 char *proxy_credentials = malloc(credentials_len);

 char *auth_string = malloc(((credentials_len * 4) / 3) + 1);

 sprintf(proxy_credentials, “%s:%s”, proxy_user, proxy_password);

 base64_encode(proxy_credentials, credentials_len, auth_string);

 sprintf(get_command, “Proxy-Authorization: BASIC %s\r\n”, auth_string);

 if (send(connection, get_command, strlen(get_command), 0) == -1)

 {

 free(proxy_credentials);

 free(auth_string);

 return -1;

 }

 free(proxy_credentials);

 free(auth_string);

 }

 sprintf(get_command, “Connection: close\r\n\r\n”);

Now, if you invoke your http main routine with just a URL, it tries to connect
directly to the target host; if you invoke it with parameters:

./http -p http://user:password@proxy-host:80/ http://some.server.com/path

You connect through an authenticating proxy and request the same page.

Implementing an HTTP Server
Because you probably also want to examine server-side SSL, develop a server-
side HTTP application — what is usually referred to as a web server — and add
SSL support to it, as well. The operation of a web server is pretty straightfor-
ward. It starts by establishing a socket on which to listen for new requests.
By default, it listens on port 80, the standard HTTP port. When a new request
is received, it reads an HTTP request, as described earlier, from the client,
forms an HTTP response that either satisfi es the request or describes an error
condition, and either closes the connection (in the case of HTTP 1.0) or looks
for another request (in the case of HTTP 1.1+).

The main routine in Listing 1-17 illustrates the outer shell of an HTTP
server — or any other internet protocol server, for that matter.

Listing 1-17: “webserver.c” main routine

#define HTTP_PORT 80

int main(int argc, char *argv[])

{

(Continued)

c01.indd 21c01.indd 21 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

22 Chapter 1 n Understanding Internet Security

 int listen_sock;

 int connect_sock;

 int on = 1;

 struct sockaddr_in local_addr;

 struct sockaddr_in client_addr;

 int client_addr_len = sizeof(client_addr);

#ifdef WIN32

 WSADATA wsaData;

 if (WSAStartup(MAKEWORD(2, 2), &wsaData) != NO_ERROR)

 {

 perror(“Unable to initialize winsock”);

 exit(0);

 }

#endif

 if ((listen_sock = socket(PF_INET, SOCK_STREAM, 0)) == -1)

 {

 perror(“Unable to create listening socket”);

 exit(0);

 }

 if (setsockopt(listen_sock,

 SOL_SOCKET,

 SO_REUSEADDR,

 &on, sizeof(on)) == -1)

 {

 perror(“Setting socket option”);

 exit(0);

 }

 local_addr.sin_family = AF_INET;

 local_addr.sin_port = htons(HTTP_PORT);

 local_addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);

 //local_addr.sin_addr.s_addr = htonl(INADDR_ANY);

 if (bind(listen_sock,

 (struct sockaddr *) &local_addr,

 sizeof(local_addr)) == -1)

 {

 perror(“Unable to bind to local address”);

 exit(0);

 }

 if (listen(listen_sock, 5) == -1)

 {

 perror(“Unable to set socket backlog”);

 exit(0);

 }

 while ((connect_sock = accept(listen_sock,

c01.indd 22c01.indd 22 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

 Chapter 1 n Understanding Internet Security 23

 (struct sockaddr *) &client_addr,

 &client_addr_len)) != -1)

 {

 // TODO: ideally, this would spawn a new thread.

 process_http_request(connect_sock);

 }

 if (connect_sock == -1)

 {

 perror(“Unable to accept socket”);

 }

 return 0;

}

This code is standard sockets fare. It issues the four required system calls
that are required for a process to act as a TCP protocol server: socket, bind,
listen, and accept. The accept call will block — that is, not return — until a
client somewhere on the Internet calls connect with its IP and port number.
The inside of this while loop handles the request. Note that there’s nothing
HTTP specifi c about this loop yet; this could just as easily be an e-mail server,
an ftp server, an IRC server, and so on. If anything goes wrong, these calls
return –1, perror prints out a description of what happened, and the process
terminates.

There are two points to note about this routine:

 n The call to setsockopt(listen_socket, SOL_SOCKET, SO_REUSEADDR,
&on, sizeof(on)). This enables the same process to be restarted if
it terminates abnormally. Ordinarily, when a server process terminates
abnormally, the socket is left open for a period of time referred to as the
TIME_WAIT period. The socket is in TIME_WAIT state if you run netstat.
This enables any pending client FIN packets to be received and processed
correctly. Until this TIME_WAIT period has ended, no process can listen on
the same port. SO_REUSEADDR enables a process to take up ownership of a
socket that is in the TIME_WAIT state, so that on abnormal termination, the
process can be immediately restarted. This is probably what you always
want, but you have to ask for it explicitly.

 n Notice the arguments to bind. The bind system call tells the OS which port
you want to listen on and is, of course, required. However, bind accepts a
port as well as an interface name/IP address. By supplying an IP address
here, you can specify that you’re only interested in connections coming
into a certain interface. You can take advantage of that and bind this socket
with the loopback address (127.0.0.1) to ensure that only connections from
this machine are accepted (see Listing 1-18).

c01.indd 23c01.indd 23 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

24 Chapter 1 n Understanding Internet Security

Listing 1-18: “webserver.c” remote connection exclusion code

 local_addr.sin_family = AF_INET;

 local_addr.sin_port = htons(HTTP_PORT);

 local_addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);

 //local_addr.sin_addr.s_addr = htonl(INADDR_ANY);

 if (bind(listen_sock, (struct sockaddr *) &local_addr,

 sizeof(local_addr)) == -1)

If you uncomment the line below (INADDR_ANY), or just omit the setting of
local_addr.sin_addr.s_addr entirely, you accept connections from any avail-
able interface, including the one connected to the public Internet. In this case,
as a minor security precaution, disable this and only listen on the loopback
interface. If you have local fi rewall software running, this is unnecessary, but
just in case you don’t, you should be aware of the security implications.

Now for the HTTP-specifi c parts of this server. Call process_http_request for
each received connection. Technically, you ought to spawn a new thread here so
that the main thread can cycle back around and accept new connections; however,
for the current purpose, this bare-bones single-threaded server is good enough.

Processing an HTTP request involves fi rst reading the request line that should
be of the format

GET <path> HTTP/1.x

Of course, HTTP supports additional commands such as POST, HEAD, PUT,
DELETE, and OPTIONS, but you won’t bother with any of those — GET is good
enough. If a client asks for any other functionality, return an error code 501:
Not Implemented. Otherwise, ignore the path requested and return a canned
HTML response as shown in Listing 1-19.

Listing 1-19: “webserver.c” process_http_request

static void process_http_request(int connection)

{

 char *request_line;

 request_line = read_line(connection);

 if (strncmp(request_line, “GET”, 3))

 {

 // Only supports “GET” requests

 build_error_response(connection, 501);

 }

 else

 {

 // Skip over all header lines, don’t care

 while (strcmp(read_line(connection), “”));

 build_success_response(connection);

 }

#ifdef WIN32

c01.indd 24c01.indd 24 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

 Chapter 1 n Understanding Internet Security 25

 if (closesocket(connection) == -1)

#else

 if (close(connection) == -1)

#endif

 {

 perror(“Unable to close connection”);

 }

}

Because HTTP is line-oriented — that is, clients are expected to pass in
multiple CRLF-delimited lines that describe a request — you need a way to read
a line from the connection. fgets is a standard way to read a line of text from a
fi le descriptor, including a socket, but it requires that you specify a maximum
line-length up front. Instead, develop a simple (and simplistic) routine that
autoincrements an internal buffer until it’s read the entire line and returns it
as shown in Listing 1-20.

Listing 1-20: “webserver.c” read_line

#define DEFAULT_LINE_LEN 255

char *read_line(int connection)

{

 static int line_len = DEFAULT_LINE_LEN;

 static char *line = NULL;

 int size;

 char c; // must be c, not int

 int pos = 0;

 if (!line)

 {

 line = malloc(line_len);

 }

 while ((size = recv(connection, &c, 1, 0)) > 0)

 {

 if ((c == ‘\n’) && (line[pos - 1] == ‘\r’))

 {

 line[pos - 1] = ‘\0’;

 break;

 }

 line[pos++] = c;

 if (pos > line_len)

 {

 line_len *= 2;

 line = realloc(line, line_len);

 }

 }

 return line;

}

c01.indd 25c01.indd 25 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

26 Chapter 1 n Understanding Internet Security

There are three problems with this function:

 n It keeps reallocating its internal buffer essentially forever. A rogue client
could take advantage of this, send a malformed request with no CRLF’s
and crash the server.

 n It reads one byte at a time from the socket. Each call to recv actually
invokes a system call, which slows things down quite a bit. For optimal
effi ciency, you should read a buffer of text, extract a line from it, and store
the remainder for the next invocation.

 n Its use of static variables makes it non-thread-safe.

You can ignore these shortcomings, though. This implementation is good
enough for your requirements, which is to have a server to which you can add
SSL support.

To wrap up the web server, implement the functions build_success_response
and build_error_response shown in Listing 1-21.

Listing 1-21: “webserver.c” build responses

static void build_success_response(int connection)

{

 char buf[255];

 sprintf(buf, “HTTP/1.1 200 Success\r\nConnection: Close\r\n\

Content-Type:text/html\r\n\

\r\n<html><head><title>Test Page</title></head><body>Nothing here</body></html>\

\r\n”);

 // Technically, this should account for short writes.

 if (send(connection, buf, strlen(buf), 0) < strlen(buf))

 {

 perror(“Trying to respond”);

 }

}

static void build_error_response(int connection, int error_code)

{

 char buf[255];

 sprintf(buf, “HTTP/1.1 %d Error Occurred\r\n\r\n”, error_code);

 // Technically, this should account for short writes.

 if (send(connection, buf, strlen(buf), 0) < strlen(buf))

 {

 perror(“Trying to respond”);

 }

}

c01.indd 26c01.indd 26 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

 Chapter 1 n Understanding Internet Security 27

Again, these don’t add up to a fantastic customer experience, but work well
enough to demonstrate server-side SSL.

You can run this and either connect to it with the sample HTTP client developed
in the section “Implementing an HTTP client” or connect with any standard
web browser. This implements RFC-standard HTTP, albeit a microscopically
small subset of it.

Roadmap for the Rest of This Book

SSL was originally specifi ed by Netscape, when it became clear that e-commerce
required secure communication capability. The fi rst release of SSL was SSLv2
(v1 was never released). After its release, SSLv2 was found to have signifi cant
fl aws, which will be examined in greater detail in Chapter 6. Netscape later
released and then turned over SSLv3 to the IETF, which promptly renamed it
TLS 1.0 and published the fi rst offi cial specifi cation in RFC 2246. In 2006, TLS
1.1 was specifi ed in RFC 4346 and in 2008, TLS 1.2 was released and is specifi ed
in RFC 5246.

The rest of this book is dedicated to describing every aspect of what SSL does
and how it does it. In short, SSL encrypts the traffi c that the higher-level protocol
generates so that it can’t be intercepted by an eavesdropper. It also authenticates
the connection so that, in theory, both sides can be assured that they are indeed
communicating with who they think they’re communicating with.

SSL support is now standard in every web browser and web server, open-
or closed-source. Although SSL was originally invented for secure HTTP, it’s
been retrofi tted, to varying degrees of success, to work with other protocols. In
theory, SSL is completely specifi ed at the network layer, and any protocol can
just layer invisibly on top of it. However, things aren’t always so nice and neat,
and there are some drawbacks to using SSL with protocols other than HTTP.
Indeed, there are drawbacks even to using it with HTTP. I guess you can say that
nothing is perfect. You come back to the details of HTTPS, and how it differs
from HTTP, in Chapter 6 after you’ve examined the underlying SSL protocol.

Additionally, there are several open-source implementations of the SSL protocol
itself. By far the most popular is Eric A. Young’s openssl. The ubiquitous Apache
server, for example, relies on the openssl library to provide SSL support. A more
recent implementation is GnuTLS. Whereas openssl 0.9.8e (the most recent version
as of this writing) implements SSLv2, SSLv3 and TLS 1.0, GnuTLS implements
TLS 1.0, 1.1 and 1.2. Therefore it’s called TLS rather than SSL because it doesn’t
technically implement SSL at all. Also, Sun’s Java environment has SSL support

c01.indd 27c01.indd 27 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

28 Chapter 1 n Understanding Internet Security

built in. Because Sun’s JDK has been open-sourced, you can also see the details
of how Sun built in SSL. This is interesting, as OpenSSL and GnuTLS are writ-
ten in C but most of Sun’s SSL implementation is written in Java. Throughout
the book, you examine how these three different implementations work. Of
course, because this book walks through yet another C-based implementation,
you are able to compare and contrast these popular implementations with the
approach given here.

c01.indd 28c01.indd 28 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

29

C H A P T E R

2
Protecting Against

Eavesdroppers with Symmetric
Cryptography

Encryption refers to the practice of scrambling a message such that it can only
be read (descrambled) by the intended recipient. To make this possible, you must
scramble the message in a reversible way, but in such a way that only somebody
with a special piece of knowledge can descramble it correctly. This special piece
of knowledge is referred to as the key, evoking an image of unlocking a locked
drawer with its one and only key to remove the contents. Anybody who has the
key can descramble — decrypt, in crypto-speak — the scrambled message. In
theory, at least, no one without the key can decrypt the message.

When computers are used for cryptography, messages and keys are actually
numbers. The message is converted to (or at least treated as) a number, which is
numerically combined with the key (also a number) in a specifi ed way accord-
ing to a cryptographic algorithm. As such, an attacker without the key can try
all keys, starting at “1” and incrementing over and over again, until the correct
key is found. To determine when he’s hit the right combination, the attacker
has to know something about the message that was encrypted in the fi rst place,
obviously. However, this is usually the case. Consider the case of an HTTP
exchange. The fi rst four characters of the fi rst request are likely to be “G E T .”
The hypothetical attacker can just do a decryption using a proposed key, check
the fi rst four letters, and if they don’t match, move on to the next.

This sort of attack is called a brute force attack. To be useful and resistant to
brute-force attacks, keys should be fairly large numbers, and algorithms should

c02.indd 29c02.indd 29 12/20/2012 12:45:29 PM12/20/2012 12:45:29 PM

30 Chapter 2 n Protecting Against Eavesdroppers

accept a huge range of potential keys so that an attacker has to try for a very, very
long time before hitting on the right combination. There’s no defense against a
brute-force attack; the best you can hope for is to ensure that an attacker spends
so much time performing one that the data loses its value before a brute force
attack might be successful.

The application of encryption to SSL is obvious — encrypting data is effectively
the point. When transmitting one’s credit card number over the public Internet,
it’s reassuring to know that only the intended recipient can read it. When you
transmit using an SSL-enabled algorithm, such as HTTPS, all traffi c is encrypted
prior to transmission, and must subsequently be decrypted before processing.

There are two very broad categories of cryptographic algorithms — symmetric
and public. The difference between the two is in key management:

 n Symmetric algorithms are the simpler of the two, at least conceptually
(although the implementations are the other way around), and are exam-
ined in this chapter.

 n Public algorithms, properly public key algorithms, are the topic of the next
chapter.

 With symmetric cryptography algorithms, the same key is used both for
encryption and decryption. In some cases, the algorithm is different, with
decryption “undoing” what encryption did. In other cases, the algorithm is
designed so that the same set of operations, applied twice successively, cycle
back to produce the same result; encryption and decryption are actually the
same algorithms. In all cases, though, both the sender and the receiver must
both agree what the key is before they can perform any encrypted communica-
tion. This key management turns out to be the most diffi cult part of encryption
operations and is where public-key cryptography enters in Chapter 3. For now,
just assume that this has been worked out and look at what to do with a key
after you have one.

NOTE This chapter is the most technically dense chapter in this book; this
is the nature of symmetric cryptography. If you’re not entirely familiar with
terminology such as left shift and big endian, you might want to take a quick
look at Appendix A for a refresher.

Understanding Block Cipher Cryptography
Algorithms

Julius Caesar is credited with perhaps the oldest known symmetric cipher algo-
rithm. The so-called Caesar cipher — a variant of which you can probably fi nd
as a diversion in your local newspaper — assigns each letter, at random, to a

c02.indd 30c02.indd 30 12/20/2012 12:45:30 PM12/20/2012 12:45:30 PM

 Chapter 2 n Protecting Against Eavesdroppers 31

number. This mapping of letters to numbers is the key in this simple algorithm.
Modern cipher algorithms must be much more sophisticated than Caesar’s in
order to withstand automated attacks by computers. Although the basic premise
remains — substituting one letter or symbol for another, and keeping track of
that substitution for later — further elements of confusion and diffusion were
added over the centuries to create modern cryptography algorithms. One such
hardening technique is to operate on several characters at a time, rather than
just one. By far the most common category of symmetric encryption algorithm
is the block cipher algorithm, which operates on a fi xed range of bytes rather than
on a single character at a time.

In this section you examine three of the most popular block cipher algo-
rithms — the ones that you’ll most likely encounter in modern cryptographic
implementations. These algorithms will likely remain relevant for several
decades — changes in cryptographic standards come very slowly, and only
after much analysis by cryptographers and cryptanalysts.

Implementing the Data Encryption Standard (DES)
Algorithm
The Data Encryption Standard (DES) algorithm, implemented and specifi ed by IBM
at the behest of the NSA in 1974, was the fi rst publicly available computer-ready
encryption algorithm. Although for reasons you see later, DES is not considered
particularly secure any more, it’s still in widespread use (!) and serves as a good
starting point for the study of symmetric cryptography algorithms in general.
Most of the concepts that made DES work when it was fi rst introduced appear
in other cryptographic algorithms. DES is specifi ed at the following web site:
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf.

DES breaks its input up into eight-byte blocks and scrambles them using
an eight-byte key. This scrambling process involves a series of fi xed permuta-
tions — swapping bit 34 with bit 28, bit 28 with bit 17, and so on — rotations,
and XORs. The core of DES, though, and where it gets its security, is from what
the standard calls S boxes where six bits of input become four bits of output in
a fi xed, but non-reversible (except with the key) way.

Like any modern symmetric cryptographic algorithm, DES relies heavily on
the XOR operation. The logic table for XOR is shown in Table 2-1:

Table 2-1: XOR Operation

INPUT OUTPUT

A B A XOR B

0 0 0

(Continued)

c02.indd 31c02.indd 31 12/20/2012 12:45:30 PM12/20/2012 12:45:30 PM

32 Chapter 2 n Protecting Against Eavesdroppers

INPUT OUTPUT

0 1 1

1 0 1

1 1 0

If any of the input bits are 1, the output is 1, unless both of the inputs bits
are one. This is equivalent to addition modulo 2 and is referred to that way in
the offi cial specifi cation. One interesting and important property of XOR for
cryptography is that it’s reversible. Consider:

0011
0101

0110

�

However:

0110
0101

0011

�

This is the same operation as the previous one, but reversed; the output is
the input, but it’s XORed against the same set of data. As you can see, you’ve
recovered the original input this way. You may want to take a moment to look at
the logic of the XOR operation and convince yourself that this is always the case.

To make your implementation match the specifi cation and most public descrip-
tions of the algorithm, you operate on byte arrays rather than taking advantage
(where you can) of the wide integer types of the target hardware. DES is described
using big endian conventions — that is, the most signifi cant bit is bit 1 — whereas
the Intel x86 conventions are little endian — bit 1 is the least-signifi cant bit. To
take full advantage of the hardware, you’d have to reverse quite a few parts of
the specifi cation, which you won’t do here.

Instead, you operate on byte (unsigned char) arrays. Because you work at
the bit level — that is, bit 39 of a 64-bit block, for example — you need a few
support macros for fi nding and manipulating bits within such an array. The bit
manipulation support macros are outlined in Listing 2-1.

Listing 2-1: “des.c” bit macros

// This does not return a 1 for a 1 bit; it just returns non-zero

#define GET_BIT(array, bit) \

 (array[(int) (bit / 8)] & (0x80 >> (bit % 8)))

#define SET_BIT(array, bit) \

Table 2-1 (continued)

c02.indd 32c02.indd 32 12/20/2012 12:45:30 PM12/20/2012 12:45:30 PM

 Chapter 2 n Protecting Against Eavesdroppers 33

 (array[(int) (bit / 8)] |= (0x80 >> (bit % 8)))

#define CLEAR_BIT(array, bit) \

 (array[(int) (bit / 8)] &= ~(0x80 >> (bit % 8)))

Although this is a bit dense, you should see that GET_BIT returns 0 if an array
contains a 0 at a specifi c bit position and non-zero if an array contains a 1. The
divide operator selects the byte in the array, and the shift and mod operator
selects the bit within that byte. SET_BIT and CLEAR_BIT work similarly, but actu-
ally update the position. Notice that the only difference between these three
macros is the operator between the array reference and the mask: & for get, |=
for set, and &= ~ for clear.

Because this example XORs entire arrays of bytes, you need a support routine
for that as shown in Listing 2-2.

Listing 2-2: “des.c” xor array

static void xor(unsigned char *target, const unsigned char *src, int len)

{

 while (len--)

 {

 *target++ ^= *src++;

 }

}

This overwrites the target array with the XOR of it and the src array.
Finally, you need a permute routine. The permute routine is responsible

for putting, for instance, the 57th bit of the input into the 14th bit of the output,
depending on the entries in a permute_table array. As you’ll see in the code
listings that follow, this function is the workhorse of the DES algorithm; it is
called dozens of times, with different permute_tables each time.

Listing 2-3: “des.c” permutation

/**

 * Implement the initial and final permutation functions. permute_table

 * and target must have exactly len and len * 8 number of entries,

 * respectively, but src can be shorter (expansion function depends on this).

 * NOTE: this assumes that the permutation tables are defined as one-based

 * rather than 0-based arrays, since they’re given that way in the

 * specification.

 */

static void permute(unsigned char target[],

 const unsigned char src[],

 const int permute_table[],

 int len)

{

 int i;

 for (i = 0; i < len * 8; i++)

(Continued)

c02.indd 33c02.indd 33 12/20/2012 12:45:30 PM12/20/2012 12:45:30 PM

34 Chapter 2 n Protecting Against Eavesdroppers

 {

 if (GET_BIT(src, (permute_table[i] - 1)))

 {

 SET_BIT(target, i);

 }

 else

 {

 CLEAR_BIT(target, i);

 }

 }

}

Now, on to the steps involved in encrypting a block of data using DES.

DES Initial Permutation
DES specifi es that the input should undergo an initial permutation. The purpose
of this permutation is unclear, as it serves no cryptographic purpose (the output
would be just as secure without this). It may have been added for optimization
for certain hardware types. Nevertheless, if you don’t include it, your output
will be wrong, and you won’t be able to interoperate with other implementa-
tions. The specifi cation describes this permutation in terms of the input bits
and the output bits, but it works out to copying the second bit of the last byte
into the fi rst bit of the fi rst byte of the output, followed by the second bit of the
next-to-last byte into the second bit of the fi rst byte of the output, and so on, so
that the fi rst byte of output consists of the second bits of all of the input bytes,
“backward.” (Remember that the input is exactly eight-bytes long, so given an
8-bit byte, taking the second bit of each input byte yields one byte of output.)
The second byte of the output is the fourth bit of each of the input bytes, again
backward. The third is built from the sixth bits, the fourth from the eighth bits,
and the fi fth comes from the fi rst bits, and so on. So, given an 8-byte input as
shown in Figure 2-1:

Figure 2-1: Unpermuted 8-byte input

The fi rst byte of output comes from the second bits of each input byte, back-
ward as shown in Figure 2-2.

The second byte of output comes from the fourth bits of each input byte,
backward as shown in Figure 2-3.

c02.indd 34c02.indd 34 12/20/2012 12:45:31 PM12/20/2012 12:45:31 PM

 Chapter 2 n Protecting Against Eavesdroppers 35

Figure 2-2: First byte of output

2 3 4 5 6 7 81

2345678 1

Figure 2-3: Second byte of output

2 3 4 5 6 7 81

2345678 1

and so on for bytes 3 and 4; the fi fth byte of output comes from the fi rst bit of
input as shown in Figure 2-4:

Figure 2-4: Five permuted bytes

2 3 4 5 6 7 81

2345678 1

and so on until all of the input bits were exhausted.
You can code this all in a very terse loop without using a lookup table on that

basis, something like what’s shown in Listing 2-4.

Listing 2-4: Terse initial permutation

 for (i = 1; i != 8; i = (i + 2) % 9)

 {

 for (j = 7; j >= 0; j--)

(Continued)

c02.indd 35c02.indd 35 12/20/2012 12:45:31 PM12/20/2012 12:45:31 PM

36 Chapter 2 n Protecting Against Eavesdroppers

 {

 output[(i % 2) ? ((i - 1) >> 1) : ((4 + (i >> 1)))] |=

 (((input[j] & (0x80 >> i)) >> (7 - i)) << j);

 }

 }

However, the specifi cation is given in terms of permutations, so you do the
same, using the permute routine. The permute_table for the initial permutation
is shown in Listing 2-5.

Listing 2-5: “des.c” initial permutation table

static const int ip_table[] = {

 58, 50, 42, 34, 26, 18, 10, 2,

 60, 52, 44, 36, 28, 20, 12, 4,

 62, 54, 46, 38, 30, 22, 14, 6,

 64, 56, 48, 40, 32, 24, 16, 8,

 57, 49, 41, 33, 25, 17, 9, 1,

 59, 51, 43, 35, 27, 19, 11, 3,

 61, 53, 45, 37, 29, 21, 13, 5,

 63, 55, 47, 39, 31, 23, 15, 7 };

This specifi es that the 58th bit of the input is the fi rst bit of the output; the
50th bit of the input is the second bit of the output; and so on. You may want to
convince yourself that this is the same as described above.

NOTE When examining the permutation table above, remember the struc-
ture of the GET_BIT and SET_BIT macros. The fi rst bit, bit 58, works out to
be byte #58/8 = 7, bit #58%8 = 2. Remember that DES considers bytes to be
ordered according to big endian conventions, which means that bit 2 is the
next-to-the-most signifi cant bit.

After the input has been so permuted, it is combined with the key in a series
of 16 rounds, each of which consists of the following:

 1. Expand bits 32–64 of the input to 48 bits (described in the expansion func-
tion in Listing 2-10).

 2. XOR the expanded right half of the input with the key.

 3. Use the output of this XOR to look up eight entries in the s-box table and
overwrite the input with these contents.

 4. Permute this output according to a specifi c p-table.

 5. XOR this output with the left half of the input (bits 1–32) and swap sides so
that the XORed left half becomes the right half, and the (as of yet untouched)
right-half becomes the left half. On the next round, the same series of opera-
tions are applied again, but this time on what used to be the right half.

c02.indd 36c02.indd 36 12/20/2012 12:45:31 PM12/20/2012 12:45:31 PM

 Chapter 2 n Protecting Against Eavesdroppers 37

This fi ve step procedure is referred to as the Feistel function after its originator.
Graphically, the rounds look like Figure 2-5.

Figure 2-5: DES overview

L0

L1=R0 R1=L0 xor f(R0, K1)

R0

K1

K2

Feistel Function

Feistel Function

L2=R1 R2=L1 xor f(R1, K2)

L15=R14 R15=L14 xor f(R14, K15)

L3=R2 R3=L2 xor f(R2, K3)

K16

Feistel Function

...

L16=R15 R16=L15 xor f(R15, K16)

K3

Feistel Function

c02.indd 37c02.indd 37 12/20/2012 12:45:32 PM12/20/2012 12:45:32 PM

38 Chapter 2 n Protecting Against Eavesdroppers

Finally, the halves are swapped one last time, and the output is subject to the
inverse of the initial permutation — this just undoes what the initial permuta-
tion did.

NOTE The specifi cation suggests that you should implement this last step by
just not swapping in the last round; the approach presented here is a bit simpler
to implement and the result is the same.

The fi nal permutation table is show in Listing 2-6.

Listing 2-6: “des.c” fi nal permutation table

/**

 * This just inverts ip_table.

 */

static const int fp_table[] = { 40, 8, 48, 16, 56, 24, 64, 32,

 39, 7, 47, 15, 55, 23, 63, 31,

 38, 6, 46, 14, 54, 22, 62, 30,

 37, 5, 45, 13, 53, 21, 61, 29,

 36, 4, 44, 12, 52, 20, 60, 28,

 35, 3, 43, 11, 51, 19, 59, 27,

 34, 2, 42, 10, 50, 18, 58, 26,

 33, 1, 41, 9, 49, 17, 57, 25 };

There are several details missing from the description of the rounds. The
most important of these details is what’s termed the key schedule.

DES Key Schedule
In the description of step 2 of the rounds, it states “XOR the expanded right
half of the input with the key.” If you look at the diagram, you see that the
input to this XOR is shown as K1, K2, K3, ... K15, K16. As it turns out, there are
16 different 48-bit keys, which are generated deterministically from the initial
64-bit key input.

The key undergoes an initial permutation similar to the one that the input
goes through, with slight differences — this time, the fi rst byte of the out-
put is equal to the fi rst bits of each input byte (again, backward); the second
byte is equal to the second bit of each input byte; and so on. However, the
key itself is specifi ed as two 28-bit halves — the second half works backward
through the input bytes so that the fi rst byte of the second half is the seventh
bit of each input byte; the second byte is the sixth bit; and so on. Also, because
the key halves are 28 bits each, there are only three and a half bytes; the last
half byte follows the pattern but stops after four bits. Finally, although the
key input is 8 bytes (64 bits), the output of two 28-bit halves is only 56 bits.

c02.indd 38c02.indd 38 12/20/2012 12:45:32 PM12/20/2012 12:45:32 PM

 Chapter 2 n Protecting Against Eavesdroppers 39

Eight of the key bits (the least-signifi cant-bit of each input byte) are discarded
and not used by DES.

Again, the DES specifi cation presents this as a bit-for-bit permutation, so you
will, too. This permutation table is shown in Listing 2-7.

Listing 2-7: “des.c” key permutation table 1

static const int pc1_table[] = { 57, 49, 41, 33, 25, 17, 9, 1,

 58, 50, 42, 34, 26, 18, 10, 2,

 59, 51, 43, 35, 27, 19, 11, 3,

 60, 52, 44, 36,

 63, 55, 47, 39, 31, 23, 15, 7,

 62, 54, 46, 38, 30, 22, 14, 6,

 61, 53, 45, 37, 29, 21, 13, 5,

 28, 20, 12, 4 };

If you look carefully at this table, you see that bits 8, 16, 24, 32, 40, 48, 56, and
64 — the LSBs of each input byte — never appear. Early DES implementations
used more fault-prone hardware than you are probably used to — the LSBs of
the keys were used as parity bits to ensure that the key was transmitted cor-
rectly. Strictly speaking, you should ensure that the LSB of each byte is the sum
(modulo 2) of the other seven bits. Most implementers don’t bother, as you can
probably trust your hardware to hang on to the key you loaded into it correctly.

At each round, each of the two 28-bit halves of this 56-bit key are rotated left
once or twice — once in rounds 1, 2, 9, and 16, twice otherwise. These rotated
halves are then permuted (surprise) according to the second permutation table
in Listing 2-8.

Listing 2-8: “des.c” key permutation table 2

static const int pc2_table[] = { 14, 17, 11, 24, 1, 5,

 3, 28, 15, 6, 21, 10,

 23, 19, 12, 4, 26, 8,

 16, 7, 27, 20, 13, 2,

 41, 52, 31, 37, 47, 55,

 30, 40, 51, 45, 33, 48,

 44, 49, 39, 56, 34, 53,

 46, 42, 50, 36, 29, 32 };

This produces a 48-bit subkey from the 56-bit (rotated) key. Due to the rota-
tion, this means that each round has a unique key K1, K2, K3, ..., K15, K16. These
subkeys are referred to as the key schedule.

Notice that the key schedule is independent of the encryption operations and
can be precomputed and stored before encryption or decryption even begins.
Most DES implementations do this as a performance optimization, although
this one doesn’t bother.

c02.indd 39c02.indd 39 12/20/2012 12:45:32 PM12/20/2012 12:45:32 PM

40 Chapter 2 n Protecting Against Eavesdroppers

The independent rotations of the two key-halves are shown in Listing 2-9:

Listing 2-9: “des.c” rotate left

/**

 * Perform the left rotation operation on the key. This is made fairly

 * complex by the fact that the key is split into two 28-bit halves, each

 * of which has to be rotated independently (so the second rotation operation

 * starts in the middle of byte 3).

 */

static void rol(unsigned char *target)

{

 int carry_left, carry_right;

 carry_left = (target[0] & 0x80) >> 3;

 target[0] = (target[0] << 1) | ((target[1] & 0x80) >> 7);

 target[1] = (target[1] << 1) | ((target[2] & 0x80) >> 7);

 target[2] = (target[2] << 1) | ((target[3] & 0x80) >> 7);

 // special handling for byte 3

 carry_right = (target[3] & 0x08) >> 3;

 target[3] = (((target[3] << 1) |

((target[4] & 0x80) >> 7)) & ~0x10) | carry_left;

 target[4] = (target[4] << 1) | ((target[5] & 0x80) >> 7);

 target[5] = (target[5] << 1) | ((target[6] & 0x80) >> 7);

 target[6] = (target[6] << 1) | carry_right;

}

Here you see that each byte of the key, which is in a 7-byte array, is left-shifted
by one place, and the MSB of the next byte is used as the LSB. The only com-
plicating factor here is that the key is in a 7-byte array, but the dividing point
between the two halves is in the middle of the third byte.

DES Expansion Function
Notice in the previous section that the subkeys are 48-bits long, but the input
halves that are to be XORed are 32 bits long. Now, you can’t properly XOR
a 32-bit input with a 48-bit key, so the input is expanded — some bits are
duplicated — before being XORed. The output of the expansion function is
illustrated in Figure 2-6.

The output is split into eight six-bit blocks (which works out to six eight-bit
bytes), with the fi rst and last bits of each block overlapping the preceding and
following blocks. Note that the fi rst and last block wrap around and use the
last bit of the input as the fi rst bit of output and the fi rst bit of input as the last

c02.indd 40c02.indd 40 12/20/2012 12:45:32 PM12/20/2012 12:45:32 PM

 Chapter 2 n Protecting Against Eavesdroppers 41

bit of output. Again, rather than specifying this in code, you use a permutation
table as shown in Listing 2-10:

Figure 2-6: DES expansion function

2 4 6 8

1 3 5 7

Listing 2-10: “des.c” expansion table

static const int expansion_table[] = {

 32, 1, 2, 3, 4, 5,

 4, 5, 6, 7, 8, 9,

 8, 9, 10, 11, 12, 13,

 12, 13, 14, 15, 16, 17,

 16, 17, 18, 19, 20, 21,

 20, 21, 22, 23, 24, 25,

 24, 25, 26, 27, 28, 29,

 28, 29, 30, 31, 32, 1 };

After this has been XORed with the correct subkey for this round, it is fed
into the s-box lookup. The s-boxes are what makes DES secure. It’s important
that the output not be a linear function of the input; if it was, a simple statistical
analysis would reveal the key. An attacker knows, for example, that the letter
“E” is the most common letter in the English language — if he knew that the
plaintext was ASCII-encoded English, he could look for the most frequently
occurring byte of output, assume that was an “E”, and work backward from
there (actually, in ASCII-encoded English text, the space character 32 is more
common than the “E”). If he was wrong, he could fi nd the second-most occur-
ring character, and try again. This sort of cryptanalysis has been perfected to
the point where it can be performed by a computer in seconds. Therefore, the
s-boxes are not permutations, rotations or XORs but are lookups into a set of
completely random tables.

Each six-bits of the input — the expanded right-half XORed with the sub-
key — correspond to four bits of table output. In other words, each six bits of input
is used as an index into a table of four-bit outputs. In this way, the expanded,
XORed right half is reduced from 48-bits to 32. The s-boxes are described in a
particularly confusing way by the DES specifi cation. Instead, I present them

c02.indd 41c02.indd 41 12/20/2012 12:45:32 PM12/20/2012 12:45:32 PM

42 Chapter 2 n Protecting Against Eavesdroppers

here as simple lookup tables in Listing 2-11. Note that each six-bit block has its
own unique s-box.

Listing 2-11: “des.c” s-boxes

static const int sbox[8][64] = {

 { 14, 0, 4, 15, 13, 7, 1, 4, 2, 14, 15, 2, 11, 13, 8, 1,

 3, 10, 10, 6, 6, 12, 12, 11, 5, 9, 9, 5, 0, 3, 7, 8,

 4, 15, 1, 12, 14, 8, 8, 2, 13, 4, 6, 9, 2, 1, 11, 7,

 15, 5, 12, 11, 9, 3, 7, 14, 3, 10, 10, 0, 5, 6, 0, 13 },

 { 15, 3, 1, 13, 8, 4, 14, 7, 6, 15, 11, 2, 3, 8, 4, 14,

 9, 12, 7, 0, 2, 1, 13, 10, 12, 6, 0, 9, 5, 11, 10, 5,

 0, 13, 14, 8, 7, 10, 11, 1, 10, 3, 4, 15, 13, 4, 1, 2,

 5, 11, 8, 6, 12, 7, 6, 12, 9, 0, 3, 5, 2, 14, 15, 9 },

 { 10, 13, 0, 7, 9, 0, 14, 9, 6, 3, 3, 4, 15, 6, 5, 10,

 1, 2, 13, 8, 12, 5, 7, 14, 11, 12, 4, 11, 2, 15, 8, 1,

 13, 1, 6, 10, 4, 13, 9, 0, 8, 6, 15, 9, 3, 8, 0, 7,

 11, 4, 1, 15, 2, 14, 12, 3, 5, 11, 10, 5, 14, 2, 7, 12 },

 { 7, 13, 13, 8, 14, 11, 3, 5, 0, 6, 6, 15, 9, 0, 10, 3,

 1, 4, 2, 7, 8, 2, 5, 12, 11, 1, 12, 10, 4, 14, 15, 9,

 10, 3, 6, 15, 9, 0, 0, 6, 12, 10, 11, 1, 7, 13, 13, 8,

 15, 9, 1, 4, 3, 5, 14, 11, 5, 12, 2, 7, 8, 2, 4, 14 },

 { 2, 14, 12, 11, 4, 2, 1, 12, 7, 4, 10, 7, 11, 13, 6, 1,

 8, 5, 5, 0, 3, 15, 15, 10, 13, 3, 0, 9, 14, 8, 9, 6,

 4, 11, 2, 8, 1, 12, 11, 7, 10, 1, 13, 14, 7, 2, 8, 13,

 15, 6, 9, 15, 12, 0, 5, 9, 6, 10, 3, 4, 0, 5, 14, 3 },

 { 12, 10, 1, 15, 10, 4, 15, 2, 9, 7, 2, 12, 6, 9, 8, 5,

 0, 6, 13, 1, 3, 13, 4, 14, 14, 0, 7, 11, 5, 3, 11, 8,

 9, 4, 14, 3, 15, 2, 5, 12, 2, 9, 8, 5, 12, 15, 3, 10,

 7, 11, 0, 14, 4, 1, 10, 7, 1, 6, 13, 0, 11, 8, 6, 13 },

 { 4, 13, 11, 0, 2, 11, 14, 7, 15, 4, 0, 9, 8, 1, 13, 10,

 3, 14, 12, 3, 9, 5, 7, 12, 5, 2, 10, 15, 6, 8, 1, 6,

 1, 6, 4, 11, 11, 13, 13, 8, 12, 1, 3, 4, 7, 10, 14, 7,

 10, 9, 15, 5, 6, 0, 8, 15, 0, 14, 5, 2, 9, 3, 2, 12 },

 { 13, 1, 2, 15, 8, 13, 4, 8, 6, 10, 15, 3, 11, 7, 1, 4,

 10, 12, 9, 5, 3, 6, 14, 11, 5, 0, 0, 14, 12, 9, 7, 2,

 7, 2, 11, 1, 4, 14, 1, 7, 9, 4, 12, 10, 14, 8, 2, 13,

 0, 15, 6, 12, 10, 9, 13, 0, 15, 3, 3, 5, 5, 6, 8, 11 }

};

Also note that I have taken the liberty to reorder these, as they’re given
out-of-order in the specifi cation.

After substitution, the input block undergoes a fi nal permutation, shown in
Listing 2-12.

Listing 2-12: “des.c” fi nal input block permutation

static const int p_table[] = { 16, 7, 20, 21,

 29, 12, 28, 17,

 1, 15, 23, 26,

 5, 18, 31, 10,

c02.indd 42c02.indd 42 12/20/2012 12:45:32 PM12/20/2012 12:45:32 PM

 Chapter 2 n Protecting Against Eavesdroppers 43

 2, 8, 24, 14,

 32, 27, 3, 9,

 19, 13, 30, 6,

 22, 11, 4, 25 };

All of this is performed on the right-half of the input, which is then XORed
with the left half, becoming the new right-half, and the old right-half, before
any transformation, becomes the new left half.

Finally, the code to implement this is shown in Listing 2-13. This code accepts
a single eight-byte block of input and an eight-byte key and returns an encrypted
eight-byte output block. The input block is not modifi ed. This is the DES algo-
rithm itself.

Listing 2-13: “des.c” des_block_operate

#define DES_BLOCK_SIZE 8 // 64 bits, defined in the standard

#define DES_KEY_SIZE 8 // 56 bits used, but must supply 64 (8 are ignored)

#define EXPANSION_BLOCK_SIZE 6

#define PC1_KEY_SIZE 7

#define SUBKEY_SIZE 6

static void des_block_operate(const unsigned char plaintext[DES_BLOCK_SIZE],

 unsigned char ciphertext[DES_BLOCK_SIZE],

 const unsigned char key[DES_KEY_SIZE])

{

 // Holding areas; result flows from plaintext, down through these,

 // finally into ciphertext. This could be made more memory efficient

 // by reusing these.

 unsigned char ip_block[DES_BLOCK_SIZE];

 unsigned char expansion_block[EXPANSION_BLOCK_SIZE];

 unsigned char substitution_block[DES_BLOCK_SIZE / 2];

 unsigned char pbox_target[DES_BLOCK_SIZE / 2];

 unsigned char recomb_box[DES_BLOCK_SIZE / 2];

 unsigned char pc1key[PC1_KEY_SIZE];

 unsigned char subkey[SUBKEY_SIZE];

 int round;

 // Initial permutation

 permute(ip_block, plaintext, ip_table, DES_BLOCK_SIZE);

 // Key schedule computation

 permute(pc1key, key, pc1_table, PC1_KEY_SIZE);

 for (round = 0; round < 16; round++)

 {

 // “Feistel function” on the first half of the block in ‘ip_block’

 // “Expansion”. This permutation only looks at the first

 // four bytes (32 bits of ip_block); 16 of these are repeated

 // in “expansion_table”.

 permute(expansion_block, ip_block + 4, expansion_table, 6);

(Continued)

c02.indd 43c02.indd 43 12/20/2012 12:45:33 PM12/20/2012 12:45:33 PM

44 Chapter 2 n Protecting Against Eavesdroppers

 // “Key mixing”

 // rotate both halves of the initial key

 rol(pc1key);

 if (!(round <= 1 || round == 8 || round == 15))

 {

 // Rotate twice except in rounds 1, 2, 9 & 16

 rol(pc1key);

 }

 permute(subkey, pc1key, pc2_table, SUBKEY_SIZE);

 xor(expansion_block, subkey, 6);

 // Substitution; “copy” from updated expansion block to ciphertext block

 memset((void *) substitution_block, 0, DES_BLOCK_SIZE / 2);

 substitution_block[0] =

 sbox[0][(expansion_block[0] & 0xFC) >> 2] << 4;

 substitution_block[0] |=

 sbox[1][(expansion_block[0] & 0x03) << 4 |

 (expansion_block[1] & 0xF0) >> 4];

 substitution_block[1] =

 sbox[2][(expansion_block[1] & 0x0F) << 2 |

 (expansion_block[2] & 0xC0) >> 6] << 4;

 substitution_block[1] |=

 sbox[3][(expansion_block[2] & 0x3F)];

 substitution_block[2] =

 sbox[4][(expansion_block[3] & 0xFC) >> 2] << 4;

 substitution_block[2] |=

 sbox[5][(expansion_block[3] & 0x03) << 4 |

 (expansion_block[4] & 0xF0) >> 4];

 substitution_block[3] =

 sbox[6][(expansion_block[4] & 0x0F) << 2 |

 (expansion_block[5] & 0xC0) >> 6] << 4;

 substitution_block[3] |=

 sbox[7][(expansion_block[5] & 0x3F)];

 // Permutation

 permute(pbox_target, substitution_block, p_table, DES_BLOCK_SIZE / 2);

 // Recombination. XOR the pbox with left half and then switch sides.

 memcpy((void *) recomb_box, (void *) ip_block, DES_BLOCK_SIZE / 2);

 memcpy((void *) ip_block, (void *) (ip_block + 4),

 DES_BLOCK_SIZE / 2);

 xor(recomb_box, pbox_target, DES_BLOCK_SIZE / 2);

 memcpy((void *) (ip_block + 4), (void *) recomb_box,

 DES_BLOCK_SIZE / 2);

 }

 // Swap one last time

c02.indd 44c02.indd 44 12/20/2012 12:45:33 PM12/20/2012 12:45:33 PM

 Chapter 2 n Protecting Against Eavesdroppers 45

 memcpy((void *) recomb_box, (void *) ip_block, DES_BLOCK_SIZE / 2);

 memcpy((void *) ip_block, (void *) (ip_block + 4), DES_BLOCK_SIZE / 2);

 memcpy((void *) (ip_block + 4), (void *) recomb_box,

 DES_BLOCK_SIZE / 2);

 // Final permutation (undo initial permutation)

 permute(ciphertext, ip_block, fp_table, DES_BLOCK_SIZE);

}

This code is a bit long, but if you followed the descriptions of the permutations
and the Feistel function, you should be able to make sense of it.

DES Decryption
One of the nice things about the way DES was specifi ed is that decryption
is the exact same as encryption, except that the key schedule is inverted.
Instead of the original key being rotated left at each round, it’s rotated right.
Otherwise, the routines are identical. You can easily add decryption support
to des_block_operate, as illustrated in Listing 2-14.

Listing 2-14: “des.c” des_block_operate with decryption support

typedef enum { OP_ENCRYPT, OP_DECRYPT } op_type;

static void des_block_operate(const unsigned char plaintext[DES_BLOCK_SIZE],

 unsigned char ciphertext[DES_BLOCK_SIZE],

 const unsigned char key[DES_KEY_SIZE],

 op_type operation)

{

…

 for (round = 0; round < 16; round++)

 {

 permute(expansion_block, ip_block + 4, expansion_table, 6);

 // “Key mixing”

 // rotate both halves of the initial key

 if (operation == OP_ENCRYPT)

 {

 rol(pc1key);

 if (!(round <= 1 || round == 8 || round == 15))

 {

 // Rotate twice except in rounds 1, 2, 9 & 16

 rol(pc1key);

 }

 }

 permute(subkey, pc1key, pc2_table, SUBKEY_SIZE);

 if (operation == OP_DECRYPT)

 {
(Continued)

c02.indd 45c02.indd 45 12/20/2012 12:45:33 PM12/20/2012 12:45:33 PM

46 Chapter 2 n Protecting Against Eavesdroppers

 ror(pc1key);

 if (!(round >= 14 || round == 7 || round == 0))

 {

 // Rotate twice except in rounds 1, 2, 9 & 16

 ror(pc1key);

 }

 }

 xor(expansion_block, subkey, 6);

...

}

That’s it. The substitution boxes and all the permutations are identical; the
only difference is the rotation of the key. The ror function, in Listing 2-15, is
the inverse of the rol function.

Listing 2-15: “des.c” rotate right

static void ror(unsigned char *target)

{

 int carry_left, carry_right;

 carry_right = (target[6] & 0x01) << 3;

 target[6] = (target[6] >> 1) | ((target[5] & 0x01) << 7);

 target[5] = (target[5] >> 1) | ((target[4] & 0x01) << 7);

 target[4] = (target[4] >> 1) | ((target[3] & 0x01) << 7);

 carry_left = (target[3] & 0x10) << 3;

 target[3] = (((target[3] >> 1) |

 ((target[2] & 0x01) << 7)) & ~0x08) | carry_right;

 target[2] = (target[2] >> 1) | ((target[1] & 0x01) << 7);

 target[1] = (target[1] >> 1) | ((target[0] & 0x01) << 7);

 target[0] = (target[0] >> 1) | carry_left;

}

Padding and Chaining in Block Cipher Algorithms
As shown earlier, DES operates on eight-byte input blocks. If the input is longer
than eight bytes, the des_block_operate function must be called repeatedly. If the
input isn’t aligned on an eight-byte boundary, it has to be padded. Of course,
the padding must follow a specifi c scheme so that the decryption routine knows
what to discard after decryption. If you adopt a convention of padding with 0
bytes, the decryptor needs to have some way of determining whether the input
actually ended with 0 bytes or whether these were padding bytes. National
Institute for Standards and Technology (NIST) publication 800-38A (http://csrc
.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf) recommends that
a “1” bit be added to the input followed by enough zero-bits to make up eight

c02.indd 46c02.indd 46 12/20/2012 12:45:33 PM12/20/2012 12:45:33 PM

 Chapter 2 n Protecting Against Eavesdroppers 47

bytes. Because you’re working with byte arrays that must end on an 8-bit (one-
byte) boundary, this means that, if the input block is less than eight bytes, you
add the byte 0x80 (128), followed by zero bytes to pad. The decryption routine
just starts at the end of the decrypted output, removing zero bytes until 0x80 is
encountered, removes that, and returns the result to the caller.

Under this padding scheme, an input of, for example, “abcdef” (six characters)
needs to have two bytes added to it. Therefore, “abcdef” would become

61 62 63 64 65 66 80 00

a b c d e f

This would be encrypted under DES (using, say, a key of the ASCII string
password) to the hex string: 25 ac 8f c5 c4 2f 89 5d. The decryption routine would
then decrypt it to a, b, c, d, e, f, 0x80, 0x00, search backward from the end for
the fi rst occurrence of 0x80, and remove everything after it. If the input string
happened to actually end with hex byte 0x80, the decryptor would see 0x80
0x80 0x0 ... and still correctly remove only the padding.

There’s one wrinkle here; if the input did end on an eight-byte boundary that
happened to contain 0 bytes following a 0x80, the decryption routine would
remove legitimate input. Therefore, if the input ends on an eight-byte boundary,
you have to add a whole block of padding (0x80 0x0 0x0 0x0 0x0 0x0 0x0 0x0) so
that the decryptor doesn’t accidentally remove something it wasn’t supposed to.

You can now implement a des_encrypt routine, as shown in Listing 2-16,
that uses des_block_operate after padding its input to encrypt an arbitrarily
sized block of text.

Listing 2-16: “des.c” des_operate with padding support

static void des_operate(const unsigned char *input,

 int input_len,

 unsigned char *output,

 const unsigned char *key,

 op_type operation)

{

 unsigned char input_block[DES_BLOCK_SIZE];

 assert(!(input_len % DES_BLOCK_SIZE));

 while (input_len)

 {

 memcpy((void *) input_block, (void *) input, DES_BLOCK_SIZE);

 des_block_operate(input_block, output, key, operation);

 input += DES_BLOCK_SIZE;

 output += DES_BLOCK_SIZE;

 input_len -= DES_BLOCK_SIZE;

 }

}

c02.indd 47c02.indd 47 12/20/2012 12:45:33 PM12/20/2012 12:45:33 PM

48 Chapter 2 n Protecting Against Eavesdroppers

des_operate iterates over the input, calling des_block_operate on each eight-
byte block. The caller of des_operate is responsible for padding to ensure that
the input is eight-byte aligned, as shown in Listing 2-17.

Listing 2-17: “des.c” des_encrypt with NIST 800-3A padding

void des_encrypt(const unsigned char *plaintext,

 const int plaintext_len,

 unsigned char *ciphertext,

 const unsigned char *key)

{

 unsigned char *padded_plaintext;

 int padding_len;

 // First, pad the input to a multiple of DES_BLOCK_SIZE

 padding_len = DES_BLOCK_SIZE - (plaintext_len % DES_BLOCK_SIZE);

 padded_plaintext = malloc(plaintext_len + padding_len);

 // This implements NIST 800-3A padding

 memset(padded_plaintext, 0x0, plaintext_len + padding_len);

 padded_plaintext[plaintext_len] = 0x80;

 memcpy(padded_plaintext, plaintext, plaintext_len);

 des_operate(padded_plaintext, plaintext_len + padding_len, ciphertext,

 key, OP_ENCRYPT);

 free(padded_plaintext);

}

The des_encrypt variant shown in Listing 2-17 fi rst fi gures out how much
padding is needed — it will be between one and eight bytes. Remember, if the
input is already eight-byte aligned, you must add a dummy block of eight bytes
on the end so that the decryption routine doesn’t remove valid data. des_encrypt
then allocates enough memory to hold the padded input, copies the original
input into this space, sets the fi rst byte of padding to 0x80 and the rest to 0x0
as described earlier.

Another approach to padding, called PKCS #5 padding, is to append the
number of padding bytes as the padding byte. This way, the decryptor can just
look at the last byte of the output and then strip off that number of bytes from
the result (with 8 being a legitimate number of bytes to strip off). Using the
“abcdef” example again, the padded input now becomes

61 62 63 64 65 66 02 02

 a b c d e f

Because two bytes of padding are added, the number 2 is added twice. If the
input was “abcde,” the padded result is instead.

c02.indd 48c02.indd 48 12/20/2012 12:45:33 PM12/20/2012 12:45:33 PM

 Chapter 2 n Protecting Against Eavesdroppers 49

61 62 63 64 65 03 03 03

 a b c d e

des_encrypt can be changed simply to implement this padding scheme as
shown in Listing 2-18.

Listing 2-18: “des.c” des_encrypt with PKCS #5 padding

 // First, pad the input to a multiple of DES_BLOCK_SIZE

 padding_len = DES_BLOCK_SIZE - (plaintext_len % DES_BLOCK_SIZE);

 padded_plaintext = malloc(plaintext_len + padding_len);

 // This implements PKCS #5 padding.

 memset(padded_plaintext, padding_len, plaintext_len + padding_len);

 memcpy(padded_plaintext, plaintext, plaintext_len);

 des_operate(padded_plaintext, plaintext_len + padding_len, ciphertext,

 key, OP_ENCRYPT);

So, of these two options, which does SSL take? Actually, neither. SSL takes a
somewhat simpler approach to padding — the number of padding bytes is output
explicitly. If fi ve bytes of padding are required, the very last byte of the decrypted
output is 5. If no padding was necessary, an extra 0 byte is appended on the end.

Implementing Cipher Block Chaining

A subtler issue with this implementation of DES is that two identical blocks of text,
encrypted with the same key, produce the same output. This can be useful informa-
tion for an attacker who can look for repeated blocks of ciphertext to determine the
characteristics of the input. Even worse, it lends itself to replay attacks. If the attacker
knows, for example, that an encrypted block represents a password, or a credit
card number, he doesn’t need to decrypt it to use it. He can just present the same
ciphertext to the authenticating server, which then dutifully decrypts it and accepts
it as though it were encrypted using the original key — which, of course, it was.

The simplest way to deal with this is called cipher block chaining (CBC). After
encrypting a block of data, XOR it with the results of the previous block. The fi rst
block, of course, doesn’t have a previous block, so there’s nothing to XOR it with.
Instead, the encryption routine should create a random eight-byte initialization
vector (sometimes also referred to as salt) and XOR the fi rst block with that. This
initialization vector doesn’t necessarily have to be strongly protected or strongly
randomly generated. It just has to be different every time so that encrypting a
certain string with a certain password produces different output every time.

Incidentally, you may come across the term ECB or Electronic Code Book chain-
ing, which actually refers to encryption with no chaining (that is, the encryption
routine developed in the previous section) and mostly serves to distinguish

c02.indd 49c02.indd 49 12/20/2012 12:45:33 PM12/20/2012 12:45:33 PM

50 Chapter 2 n Protecting Against Eavesdroppers

non-CBC from CBC. There are other chaining methods as well, such as OFB
(output feedback), which I discuss later.

You can add support for initialization vectors into des_operate easily as
shown in Listing 2-19.

Listing 2-19: “des.c” des_operate with CBC support and padding removed from des_encrypt

static void des_operate(const unsigned char *input,

 int input_len,

 unsigned char *output,

 const unsigned char *iv,

 const unsigned char *key,

 op_type operation)

{

 unsigned char input_block[DES_BLOCK_SIZE];

 assert(!(input_len % DES_BLOCK_SIZE));

 while (input_len)

 {

 memcpy((void *) input_block, (void *) input, DES_BLOCK_SIZE);

 xor(input_block, iv, DES_BLOCK_SIZE); // implement CBC

 des_block_operate(input_block, output, key, operation);

 memcpy((void *) iv, (void *) output, DES_BLOCK_SIZE); // CBC

 input += DES_BLOCK_SIZE;

 output += DES_BLOCK_SIZE;

 input_len -= DES_BLOCK_SIZE;

 }

}

…

void des_encrypt(const unsigned char *plaintext,

 const int plaintext_len,

 unsigned char *ciphertext,

 const unsigned char *iv,

 const unsigned char *key)

{

 des_operate(plaintext, plaintext_len, ciphertext,

 iv, key, OP_ENCRYPT);

}

As you can see, this isn’t particularly complex. You just pass in a DES_BLOCK_
SIZE byte array, XOR it with the fi rst block — before encrypting it — and then keep
track of the output on each iteration so that it can be XORed, before encryption,
with each subsequent block.

Notice also that, with each operation, you overwrite the contents of the iv
array. This means that the caller can invoke des_operate again, pointing to the
same iv memory location, and encrypt streamed data.

c02.indd 50c02.indd 50 12/20/2012 12:45:34 PM12/20/2012 12:45:34 PM

 Chapter 2 n Protecting Against Eavesdroppers 51

At decryption time, then, you fi rst decrypt a block, and then XOR that with
the encrypted previous block.

But what about the fi rst block? The initialization vector must be remembered
and transmitted (or agreed upon) before decryption can continue. To support
CBC in decryption, you have to change the order of things just a bit as shown
in Listing 2-20.

Listing 2-20: “des.c” des_operate with CBC for encrypt or decrypt

 while (input_len)

 {

 memcpy((void *) input_block, (void *) input, DES_BLOCK_SIZE);

 if (operation == OP_ENCRYPT)

 {

 xor(input_block, iv, DES_BLOCK_SIZE); // implement CBC

 des_block_operate(input_block, output, key, operation);

 memcpy((void *) iv, (void *) output, DES_BLOCK_SIZE); // CBC

 }

 if (operation == OP_DECRYPT)

 {

 des_block_operate(input_block, output, key, operation);

 xor(output, iv, DES_BLOCK_SIZE);

 memcpy((void *) iv, (void *) input, DES_BLOCK_SIZE); // CBC

 }

 input += DES_BLOCK_SIZE;

 output += DES_BLOCK_SIZE;

 input_len -= DES_BLOCK_SIZE;

 }

And fi nally, the decrypt routine that passes in the initialization vector and
removes the padding that was inserted, using the PKCS #5 padding scheme, is
shown in Listing 2-21.

Listing 2-21: “des.c” des_decrypt

void des_decrypt(const unsigned char *ciphertext,

 const int ciphertext_len,

 unsigned char *plaintext,

 const unsigned char *iv,

 const unsigned char *key)

{

 des_operate(ciphertext, ciphertext_len, plaintext, iv, key, OP_DECRYPT);

 // Remove any padding on the end of the input

 //plaintext[ciphertext_len - plaintext[ciphertext_len - 1]] = 0x0;

}

The commented-out line at the end of listing 2-21 illustrates how you might
remove padding. As you can see, removing the padding is simple; just read the

c02.indd 51c02.indd 51 12/20/2012 12:45:34 PM12/20/2012 12:45:34 PM

52 Chapter 2 n Protecting Against Eavesdroppers

contents of the last byte of the decrypted output, which contains the number of
padding bytes that were appended. Then replace the byte at that position, from
the end with a null terminator, effectively discarding the padding. You don’t
want this in a general-purpose decryption routine, though, because it doesn’t
deal properly with binary input and because, in SSL, the caller is responsible
for ensuring that the input is block-aligned.

To see this in action, you can add a main routine to your des.c fi le so that you
can do DES encryption and decryption operations from the command line. To
enable compilation of this as a test app as well as an included object in another
app — which you do when you add this to your SSL library — wrap up the
main routine in an #ifdef as shown in Listing 2-22.

Listing 2-22: “des.c” command-line test routine

#ifdef TEST_DES

int main(int argc, char *argv[])

{

 unsigned char *key;

 unsigned char *iv;

 unsigned char *input;

 unsigned char *output;

 int out_len, input_len;

 if (argc < 4)

 {

 fprintf(stderr, “Usage: %s <key> <iv> <input>\n”, argv[0]);

 exit(0);

 }

 key = argv[1];

 iv = argv[2];

 input = argv[3];

 out_len = input_len = strlen(input);

 output = (unsigned char *) malloc(out_len + 1);

 des_encrypt(input, input_len, output, iv, key);

 while (out_len--)

 {

 printf(“%.02x”, *output++);

 }

 printf(“\n”);

 return 0;

}

#endif

Notice that the input must be an even multiple of eight. If you give it bad data,
the program just crashes unpredictably. The output is displayed in hexadecimal

c02.indd 52c02.indd 52 12/20/2012 12:45:34 PM12/20/2012 12:45:34 PM

 Chapter 2 n Protecting Against Eavesdroppers 53

because it’s almost defi nitely not going to be printable ASCII. Alternatively, you
could have Base64-encoded this, but using hex output leaves it looking the same
as the network traces presented later. You have to provide a -DTEST_DES fl ag to
the compiler when building this:
gcc -DTEST_DES -g -o des des.c

After this has been compiled, you can invoke it via

[jdavies@localhost ssl]$./des password initialz abcdefgh

71828547387b18e5

Just make sure that the input is block-aligned. The key and the initialization
vector must be eight bytes, and the input must be a multiple of eight bytes.

What about decryption? You likely want to see this decrypted, but the output
isn’t in printable-ASCII form and you have no way to pass this in as a command-
line parameter. Expand the input to allow the caller to pass in hex-coded values
instead of just printable-ASCII values. You can implement this just like C does;
if the user starts an argument with “0x,” the remainder is assumed to be a hex-
coded byte array. Because this hex-parsing routine is useful again later, put it
into its own utility fi le, shown in Listing 2-23.

Listing 2-23: “hex.c” hex_decode

/**

 * Check to see if the input starts with “0x”; if it does, return the decoded

 * bytes of the following data (presumed to be hex coded). If not, just return

 * the contents. This routine allocates memory, so has to be free’d.

 */

int hex_decode(const unsigned char *input, unsigned char **decoded)

{

 int i;

 int len;

 if (strncmp(“0x”, input, 2))

 {

 len = strlen(input) + 1;

 *decoded = malloc(len);

 strcpy(*decoded, input);

 len--;

 }

 else

 {

 len = (strlen(input) >> 1) - 1;

 *decoded = malloc(len);

 for (i = 2; i < strlen(input); i += 2)

 {

 (*decoded)[((i / 2) - 1)] =

 (((input[i] <= ‘9’) ? input[i] - ‘0’ :

((tolower(input[i])) - ‘a’ + 10)) << 4) |

 ((input[i + 1] <= ‘9’) ? input[i + 1] - ‘0’ :
(Continued)

c02.indd 53c02.indd 53 12/20/2012 12:45:34 PM12/20/2012 12:45:34 PM

54 Chapter 2 n Protecting Against Eavesdroppers

((tolower(input[i + 1])) - ‘a’ + 10));

 }

 }

 return len;

}

Whether the input starts with “0x” or not, the decoded pointer is initialized
and fi lled with either the unchanged input or the byte value of the hex-decoded
input — minus, of course, the “0x” leader. While you’re at it, go ahead and move
the simple hex_display routine that was at the end of des.c’s main routine into
a reusable utility function as shown in Listing 2-24.

Listing 2-24: “hex.c” show_hex

void show_hex(const unsigned char *array, int length)

{

 while (length--)

 {

 printf(“%.02x”, *array++);

 }

 printf(“\n”);

}

Now, des.c’s main function becomes what’s shown in Listing 2-25.

Listing 2-25: “des.c” main routine with decryption support

int main(int argc, char *argv[])

{

 unsigned char *key;

 unsigned char *iv;

 unsigned char *input;

 int key_len;

 int input_len;

 int out_len;

 int iv_len;

 unsigned char *output;

 if (argc < 4)

 {

 fprintf(stderr, “Usage: %s [-e|-d] <key> <iv> <input>\n”, argv[0]);

 exit(0);

 }

 key_len = hex_decode(argv[2], &key);

 iv_len = hex_decode(argv[3], &iv);

 input_len = hex_decode(argv[4], &input);

 out_len = input_len;

c02.indd 54c02.indd 54 12/20/2012 12:45:34 PM12/20/2012 12:45:34 PM

 Chapter 2 n Protecting Against Eavesdroppers 55

 output = (unsigned char *) malloc(out_len + 1);

 if (!(strcmp(argv[1], “-e”)))

 {

 des_encrypt(input, input_len, output, iv, key);

 show_hex(output, out_len);

 }

 else if (!(strcmp(argv[1], “-d”)))

 {

 des_decrypt(input, input_len, output, iv, key);

 show_hex(output, out_len);

 }

 else

 {

 fprintf(stderr, “Usage: %s [-e|-d] <key> <iv> <input>\n”, argv[0]);

 }

 free(input);

 free(iv);

 free(key);

 free(output);

 return 0;

}

Now you can decrypt the example:

[jdavies@localhost ssl]$./des -d password initialz \

 0x71828547387b18e5

6162636465666768

Notice that the output here is hex-coded; 6162636465666768 is the ASCII rep-
resentation of abcdefgh. The key and initialization vector were also changed to
allow hex-coded inputs. In general, real DES keys and initialization vectors are
not printable-ASCII characters, but they draw from a larger pool of potential
input bytes.

Using the Triple-DES Encryption Algorithm to Increase
Key Length
DES is secure. After forty years of cryptanalysis, no feasible attack has been
demonstrated; if anybody has cracked it, they’ve kept it a secret. Unfortunately,
the 56-bit key length is built into the algorithm. Increasing the key length requires
redesigning the algorithm completely because the s-boxes and the permutations
are specifi c to a 64-bit input. 56 bits is not very many, these days. 256 possible
keys means that the most naïve brute-force attack would need to try, on the
average, 255 (256 / 2), or 36,028,797,018,963,968 (about 36,000 trillion operations)

c02.indd 55c02.indd 55 12/20/2012 12:45:34 PM12/20/2012 12:45:34 PM

56 Chapter 2 n Protecting Against Eavesdroppers

before it hit the right combination. This is not infeasible; my modern laptop can
repeat the non-optimized decrypt routine shown roughly 7,500 times per second.
This means it would take me about 5 trillion seconds, or about 150,000 years
for me to search the entire keyspace. This is a long time, but the brute-forcing
process is infi nitely parallelizable. If I had two computers to dedicate to the
task, I could have the fi rst search keys from 0–255 and the second search keys
from 255–256. They would crack the key in about 79,000 years. If, with signifi cant
optimizations, I could increase the decryption time to 75,000 operations per
second (which is feasible), I’d only need about 7,500 years with two computers.
With about 7,500 computers, I’d only need a little less than two years to search
through half the keyspace.

In fact, optimized, parallelized hardware has been shown to be capable of
cracking a DES key by brute force in just a few days. The hardware is not cheap,
but if the value of the data is greater than the cost of the specialized hardware,
alternative encryption should be considered.

The proposed solution to increase the keyspace beyond what can feasibly be
brute-forced is called triple DES or 3DES. 3DES has a 168-bit (56 * 3) key. It’s called
triple-DES because it splits the key into three 56-bit keys and repeats the DES
rounds described earlier three times, once with each key. The clearest and most
secure way to generate the three keys that 3DES requires is to just generate 168
bits, split them cleanly into three 56-bit chunks, and use each independently. The
3DES specifi cation actually allows the same 56-bit key to be used three times, or
to use a 112-bit key, split it into two, and reuse one of the two keys for one of the
three rounds. Presumably this is allowed for backward-compatibility reasons
(for example, if you have an existing DES key that you would like to or need to
reuse as is), but you can just assume the simplest case where you have 168 bits
to play with — this is what SSL expects when it uses 3DES as well.

One important wrinkle in the 3DES implementation is that you don’t encrypt
three times with the three keys. Instead you encrypt with one key, decrypt that
with a different key — remember that decrypting with a mismatched key pro-
duces garbage, but reversible garbage, which is exactly what you want when
doing cryptographic work — and fi nally encrypt that with yet a third key.
Decryption, of course, is the opposite — decrypt with the third key, encrypt
that with the second, and fi nally decrypt that with the fi rst. Notice that you
reverse the order of the keys when decrypting; this is important! The Encrypt/
Decrypt/Encrypt procedure makes cryptanalysis more diffi cult. Note that the
“use the same key three times” option mentioned earlier is essentially useless.
You encrypt with a key, decrypt with the same key, and re-encrypt again with
the same key to produce the exact same results as encrypting one time.

Padding and cipher-block-chaining do not change at all. 3DES works with
eight-byte blocks, and you need to take care with initialization vectors to ensure
that the same eight-byte block encrypted twice with the same key appears dif-
ferent in the output.

c02.indd 56c02.indd 56 12/20/2012 12:45:34 PM12/20/2012 12:45:34 PM

 Chapter 2 n Protecting Against Eavesdroppers 57

Adding support for 3DES to des_operate is straightforward. You add a new
triplicate fl ag that tells the function that the key is three times longer than
before and call des_block_operate three times instead of once, as shown in
Listing 2-26.

Listing 2-26: “des.c” des_block_operate with 3DES support

static void des_operate(const unsigned char *input,

 int input_len,

 unsigned char *output,

 const unsigned char *iv,

 const unsigned char *key,

 op_type operation,

 int triplicate)

{

 unsigned char input_block[DES_BLOCK_SIZE];

 assert(!(input_len % DES_BLOCK_SIZE));

 while (input_len)

 {

 memcpy((void *) input_block, (void *) input, DES_BLOCK_SIZE);

 if (operation == OP_ENCRYPT)

 {

 xor(input_block, iv, DES_BLOCK_SIZE); // implement CBC

 des_block_operate(input_block, output, key, operation);

 if (triplicate)

 {

 memcpy(input_block, output, DES_BLOCK_SIZE);

 des_block_operate(input_block, output, key + DES_KEY_SIZE,

 OP_DECRYPT);

 memcpy(input_block, output, DES_BLOCK_SIZE);

 des_block_operate(input_block, output, key + (DES_KEY_SIZE * 2),

 operation);

 }

 memcpy((void *) iv, (void *) output, DES_BLOCK_SIZE); // CBC

 }

 if (operation == OP_DECRYPT)

 {

 if (triplicate)

 {

 des_block_operate(input_block, output, key + (DES_KEY_SIZE * 2),

 operation);

 memcpy(input_block, output, DES_BLOCK_SIZE);

 des_block_operate(input_block, output, key + DES_KEY_SIZE,

 OP_ENCRYPT);

 memcpy(input_block, output, DES_BLOCK_SIZE);

 des_block_operate(input_block, output, key, operation);

 }

(Continued)

c02.indd 57c02.indd 57 12/20/2012 12:45:35 PM12/20/2012 12:45:35 PM

58 Chapter 2 n Protecting Against Eavesdroppers

 else

 {

 des_block_operate(input_block, output, key, operation);

 }

 xor(output, iv, DES_BLOCK_SIZE);

 memcpy((void *) iv, (void *) input, DES_BLOCK_SIZE); // CBC

 }

 input += DES_BLOCK_SIZE;

 output += DES_BLOCK_SIZE;

 input_len -= DES_BLOCK_SIZE;

 }

}

If you were paying close attention in the previous section, you may have
noticed that des_block_operate accepts a key as an array of a fi xed size, whereas
des_operate accepts a pointer of indeterminate size. Now you can see why it
was designed this way.

Two new functions, des3_encrypt and des3_decrypt, are clones of des_encrypt
and des_decrypt, other than the passing of a new fl ag into des_operate, shown
in Listing 2-27.

Listing 2-27: “des.c” des3_encrypt

void des_encrypt(const unsigned char *plaintext,

 …

{

 des_operate(plaintext, plaintext_len, ciphertext,

 iv, key, OP_ENCRYPT, 0);

}

void des3_encrypt(const unsigned char *plaintext,...

{

 des_operate(padded_plaintext, plaintext_len + padding_len, ciphertext,

 iv, key, OP_ENCRYPT, 1);

}

void des_decrypt(const unsigned char *ciphertext,

 ...

{

 des_operate(ciphertext, ciphertext_len, plaintext, iv, key, OP_DECRYPT, 0);

}

void des3_decrypt(const unsigned char *ciphertext,

 ...

{

 des_operate(ciphertext, ciphertext_len, plaintext, iv, key, OP_DECRYPT, 1);

}

You may be wondering why you created two new functions that are
essentially clones of the others instead of just adding a triplicate fl ag to

c02.indd 58c02.indd 58 12/20/2012 12:45:35 PM12/20/2012 12:45:35 PM

 Chapter 2 n Protecting Against Eavesdroppers 59

des_encrypt and des_decrypt as you did to des_operate. The benefi t of
this approach is that des_encrypt and des3_encrypt have identical function
signatures. Later on, when you actually start developing the SSL framework,
you take advantage of this and use function pointers to refer to your bulk
encryption routines. You see this at work in the next section on AES, which
is the last block cipher bulk encryption routine you examine. Notice also
that I’ve removed the padding; for SSL purposes, you want to leave the pad-
ding up to the caller.

You can easily extend the test main routine in des.c to perform 3DES as shown
in Listing 2-28; just check the length of the input key. If the input key is eight
bytes, perform “single DES”; if it’s 24 bytes, perform 3DES. Note that the block
size, and therefore the initialization vector, is still eight bytes for 3DES; it’s just
the key that’s longer.

Listing 2-28: “des.c” main routine with 3DES support

...

 if (!(strcmp(argv[1], “-e”)))

 {

 if (key_len == 24)

 {

 des3_encrypt(input, input_len, output, iv, key);

 }

 else

 {

 des_encrypt(input, input_len, output, iv, key);

 }

 show_hex(output, out_len);

 }

 else if (!(strcmp(argv[1], “-d”)))

 {

 if (key_len == 24)

 {

 des3_decrypt(input, input_len, output, iv, key);

 }

 else

 {

 des_decrypt(input, input_len, output, iv, key);

 }

For example,

[jdavies@localhost ssl]$./des -e twentyfourcharacterinput initialz abcdefgh

c0c48bc47e87ce17

[jdavies@localhost ssl]$./des -d twentyfourcharacterinput initialz \

 0xc0c48bc47e87ce17

6162636465666768

c02.indd 59c02.indd 59 12/20/2012 12:45:35 PM12/20/2012 12:45:35 PM

60 Chapter 2 n Protecting Against Eavesdroppers

Faster Encryption with the Advanced Encryption
Standard (AES) Algorithm
3DES works and is secure — that is, brute-force attacks against it are compu-
tationally infeasible, and it has withstood decades of cryptanalysis. However,
it’s clearly slower than it needs to be. To triple the key length, you also have to
triple the operation time. If DES itself were redesigned from the ground up to
accommodate a longer key, processing time could be drastically reduced.

In 2001, the NIST announced that the Rijndael algorithm (http://csrc.nist
.gov/publications/fips/fips197/fips-197.pdf) would become the offi cial
replacement for DES and renamed it the Advanced Encryption Standard. NIST
evaluated several competing block-cipher algorithms, looking not just at secu-
rity but also at ease of implementation, relative effi ciency, and existing market
penetration.

If you understand the overall workings of DES, AES is easy to follow as well.
Like DES, it does a non-linear s-box translation of its input, followed by several
permutation- and shift-like operations over a series of rounds, applying a key-
schedule to its input at each stage. Just like DES, AES relies heavily on the XOR
operation — particularly the reversibility of it. However, it operates on much
longer keys; AES is defi ned for 128-, 192-, and 256-bit keys. Note that, assuming
that a brute-force attack is the most effi cient means of attacking a cipher, 128-bit
keys are less secure than 3DES, and 192-bit keys are about the same (although
3DES does throw away 24 bits of key security due to the parity check built into
DES). 256-bit keys are much more secure. Remember that every extra bit doubles
the time that an attacker would have to spend brute-forcing a key.

AES Key Schedule Computation

AES operates on 16-byte blocks, regardless of key length. The number of rounds
varies depending on key length. If the key is 128 bits (16 bytes) long, the number
of rounds is 10; if the key size is 192 bits (24 bytes) long, the number of rounds is
12; and if the key size is 256 bits (32 bytes), the number of rounds is 14. In general,
rounds = (key-size in 4-byte words) + 6. Each round needs 16 bytes of keying
material to work with, so the key schedule works out to 160 bytes (10 rounds
* 16 bytes per round) for a 128-bit key; 192 bytes (12 * 16) for a 192-bit key; and
224 bytes (14 * 16) for a 256-bit key. (Actually there’s one extra key permutation at
the very end, so AES requires 176, 208, and 240 bytes of keying material). Besides
the number of rounds, the key permutation is the only difference between the
three algorithms.

So, given a 16-byte input, the AES key schedule computation needs to produce
176 bytes of output. The fi rst 16 bytes are the input itself; the remaining 160 bytes
are computed four at a time. Each four bytes are a permutation of the previous
four bytes. Therefore, key schedule bytes 17–20 are a permutation of key bytes

c02.indd 60c02.indd 60 12/20/2012 12:45:35 PM12/20/2012 12:45:35 PM

 Chapter 2 n Protecting Against Eavesdroppers 61

13–16; 21–24 are a permutation of key bytes 17–20; and so on. Three-fourths of the
time, this permutation is a simple XOR operation on the previous “key length”
four bytes — bytes 21–24 are the XOR of bytes 17–20 and bytes 5–8. Bytes 25–28
are the XOR of bytes 21–24 and bytes 9–12. Graphically, in the case of a 128-bit
key, this can be depicted as shown in Figure 2-7.

Figure 2-7: AES 128-bit key schedule computation

Initial Key Input Key Schedule

bytes 1-4

bytes 5-8

bytes 9-12

bytes 13-16

bytes 17-20 =
bytes 1-4 xor
bytes 13-16

bytes 21-24 =
bytes 5-8 xor
bytes 17-20

bytes 25-28 =
bytes 9-12 xor
bytes 21-24

...

For a 192-bit key, the schedule computation is shown in Figure 2-8. It’s just
like the 128-bit key, but copies all 24 input bytes before it starts combining them.

And the 256-bit key is the same, but copies all 32 input bytes.
This is repeated 44, 52 or 60 times (rounds * 4 + 1) to produce as much key-

ing material as needed — 16 bytes per round, plus one extra chunk of 16 bytes.
This isn’t the whole story, though — every four iterations, there’s a complex

transformation function applied to the previous four bytes before it is XORed
with the previous key-length four bytes. This function consists of fi rst rotating
the four-byte word, then applying it to a substitution table (AES’s s-box), and
XORing it with a round constant.

c02.indd 61c02.indd 61 12/20/2012 12:45:35 PM12/20/2012 12:45:35 PM

62 Chapter 2 n Protecting Against Eavesdroppers

Figure 2-8: AES 192-bit key schedule computation

Initial Key Input Key Schedule

bytes 1-4

bytes 5-8

bytes 9-12

bytes 13-16

bytes 17-20

bytes 21-24

bytes 25-28 =
bytes 1-4 xor
bytes 21-24

bytes 29-32 =
bytes 5-8 xor
bytes 25-28

bytes 33-36 =
bytes 9-12 xor
bytes 29-32

Rotation is straightforward and easy to understand. The fi rst byte is overwrit-
ten with the second, the second with the third, the third with the fourth, and
the fourth with the fi rst, as shown in Figure 2-9 and Listing 2-29.

Figure 2-9: AES rotation

c02.indd 62c02.indd 62 12/20/2012 12:45:35 PM12/20/2012 12:45:35 PM

 Chapter 2 n Protecting Against Eavesdroppers 63

Listing 2-29: “aes.c” rot_word

static void rot_word(unsigned char *w)

{

 unsigned char tmp;

 tmp = w[0];

 w[0] = w[1];

 w[1] = w[2];

 w[2] = w[3];

 w[3] = tmp;

}

The substitution involves looking up each byte in a translation table and then
replacing it with the value found there. The translation table is 16 � 16 bytes;
the row is the high-order nibble of the source byte and the column is the low-
order nibble. So, for example, the input byte 0x1A corresponds to row 1, column
10 of the lookup table, and input byte 0xC5 corresponds to row 12, column 5.

Actually, the lookup table values can be computed dynamically. According to
the specifi cation, this computation is “the affi ne transformation (over GF(28)) of
bi + b(i+4)%8 + b(i+5)%8 + b(i+6)%8 + b(i+7)%8 + ci after taking the multiplicative inverse

in the fi nite fi eld GF(28)”. If that means anything to you, have at it.
This isn’t something you’d want to do dynamically anyway, though, because

the values never change. Instead, hardcode the table as shown in Listing 2-30,
just as you did for DES:

Listing 2-30: “aes.c” sbox

static unsigned char sbox[16][16] = {

{ 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,

 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76 },

{ 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,

 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0 },

{ 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,

 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15 },

{ 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,

 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75 },

{ 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,

 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84 },

{ 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,

 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf },

{ 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,

 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8 },

{ 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,

 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2 },

{ 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,

(Continued)

c02.indd 63c02.indd 63 12/20/2012 12:45:36 PM12/20/2012 12:45:36 PM

64 Chapter 2 n Protecting Against Eavesdroppers

 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73 },

{ 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,

 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb },

{ 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,

 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79 },

{ 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,

 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08 },

{ 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,

 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a },

{ 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,

 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e },

{ 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,

 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf },

{ 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,

 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 },

};

Performing the substitution is a matter of indexing this table with the high-
order four bits of each byte of input as the row and the low-order four bits as
the column, which is illustrated in Listing 2-31.

Listing 2-31: “aes.c” sub_word

static void sub_word(unsigned char *w)

{

 int i = 0;

 for (i = 0; i < 4; i++)

 {

 w[i] = sbox[(w[i] & 0xF0) >> 4][w[i] & 0x0F];

 }

}

Finally, the rotated, substituted value is XORed with the round constant. The
low-order three bytes of the round constant are always 0, and the high-order
byte starts at 0x01 and shifts left every four iterations, so that it becomes 0x02
in the eighth iteration, 0x04 in the twelfth, and so on. Therefore, the fi rst round
constant, applied at iteration #4 if the key length is 128 bits, iteration #6 if the
key length is 192 bits, and iteration #8 if the key length is 256 bits, is 0x01000000.
The second round constant, applied at iteration #8, #12, or #16 depending on
key length, is 0x02000000. The third at iteration #12, #18, or #24 is 0x04000000,
and so on.

If you’ve been following closely, though, you may notice that for a 128-bit key,
the round constant is left-shifted 10 times because a 128-bit key requires 44 itera-
tions with a left-shift occurring every four iterations. However, if you left-shift a
single byte eight times, you end up with zeros from that point on. Instead, AES
mandates that, when the left-shift overfl ows, you XOR the result — which in this
case is zero — with 0x1B. Why 0x1B? Well, take a look at the fi rst 51 iterations
of this simple operation – left shift and XOR with 0x1B on overfl ow:

c02.indd 64c02.indd 64 12/20/2012 12:45:36 PM12/20/2012 12:45:36 PM

 Chapter 2 n Protecting Against Eavesdroppers 65

01, 02, 04, 08, 10, 20, 40, 80, 1b, 36, 6c, d8, ab, 4d, 9a, 2f, 5e, bc, 63, c6, 97, 35, 6a,
d4, b3, 7d, fa, ef, c5, 91, 39, 72, e4, d3, bd, 61, c2, 9f, 25, 4a, 94, 33, 66, cc, 83, 1d,

3a, 74, e8, cb, 8d

After the 51st iteration, it wraps back around to 0x01 and starts repeating.
This strange-looking formulation enables you to produce unique values sim-

ply and quickly for quite a while, although the key schedule computation only
requires 10 iterations (this comes up again in the column mixing in the actual
encryption/decryption process). Of course, you could have just added one each
time and produced 255 unique values, but the bit distribution wouldn’t have
been as diverse. Remember that you’re XORing each time; you want widely
differing bit values when you do this.

So, for a 128-bit key, the actual key schedule process looks more like what’s
shown in Figure 2-10.

Figure 2-10: AES 128-bit key schedule computation

Initial Key Input Key Schedule

bytes 1-4

bytes 5-8

bytes 9-12

bytes 13-16

bytes 17-20 =
sub (rot (bytes
1-4 xor bytes
13-16))

bytes 21-24 =
bytes 5-8 xor
bytes 17-20

bytes 25-28 =
bytes 9-12 xor
bytes 21-24

bytes 29-32 =
bytes 13-16 xor
bytes 25-28

bytes 33-36 =
sub (rot (bytes
17-20 xor
bytes 29-32))

Sub Sub Sub Sub

Sub Sub Sub Sub

c02.indd 65c02.indd 65 12/20/2012 12:45:36 PM12/20/2012 12:45:36 PM

66 Chapter 2 n Protecting Against Eavesdroppers

The 192-bit key schedule is the same, except that the rotation, substitution
and round-constant XOR is applied every sixth iteration instead of every fourth.
For a 256-bit key, rotation, substitution, and XORing happens every eighth itera-
tion. Because every eight iterations doesn’t work out to that many, a 256-bit key
schedule adds one small additional wrinkle — every fourth iteration, substitu-
tion takes place, but rotation and XOR — only take place every eighth iteration.

The net result of all of this is that the key schedule is a non-linear, but repeat-
able, permutation of the input key. The code to compute an AES key schedule
is shown in Listing 2-32.

Listing 2-32: “aes.c” compute_key_schedule

static void compute_key_schedule(const unsigned char *key,

 int key_length,

 unsigned char w[][4])

{

 int i;

 int key_words = key_length >> 2;

 unsigned char rcon = 0x01;

 // First, copy the key directly into the key schedule

 memcpy(w, key, key_length);

 for (i = key_words; i < 4 * (key_words + 7); i++)

 {

 memcpy(w[i], w[i - 1], 4);

 if (!(i % key_words))

 {

 rot_word(w[i]);

 sub_word(w[i]);

 if (!(i % 36))

 {

 rcon = 0x1b;

 }

 w[i][0] ^= rcon;

 rcon <<= 1;

 }

 else if ((key_words > 6) && ((i % key_words) == 4))

 {

 sub_word(w[i]);

 }

 w[i][0] ^= w[i - key_words][0];

 w[i][1] ^= w[i - key_words][1];

 w[i][2] ^= w[i - key_words][2];

 w[i][3] ^= w[i - key_words][3];

 }

}

Here, key_length is given in bytes, and w is the key schedule array to
fi ll out. First copy key_length bytes directly into w, and then perform

c02.indd 66c02.indd 66 12/20/2012 12:45:36 PM12/20/2012 12:45:36 PM

 Chapter 2 n Protecting Against Eavesdroppers 67

((key_length / 4) + 6) * 4 iterations of the key schedule computation
described above — if the iteration number is an even multiple of the key
size, a rotation, substitution and XOR by the round constant of the previous
four-byte word is performed. In any case, the result is XORed with the value
of the previous key_length word.

The following code:
 else if ((key_words > 6) && ((i % key_words) == 4))

 {

 sub_word(w[i]);

 }

covers the exceptional case of a 256-bit key. Remember, for a 256-bit key, you
have to perform a substitution every four iterations.

AES Encryption

With the key schedule computation defi ned, you can look at the actual encryp-
tion process. AES operates on 16-byte blocks of input, regardless of key size; the
input is treated as a 4 � 4 two-dimensional array of bytes. The input is mapped
vertically into this array as shown in Figure 2-11.

Figure 2-11: AES state mapping initialization

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

This 4 � 4 array of input is referred to as the state. It should come as no sur-
prise that the encryption process, then, consists of permuting, substituting, and
combining the keying material with this state to produce the output.

The fi rst thing to do is to XOR the state with the fi rst 16 bytes of keying mate-
rial, which comes directly from the key itself (see Figure 2-12). This is illustrated
in Listing 2-33.

c02.indd 67c02.indd 67 12/20/2012 12:45:36 PM12/20/2012 12:45:36 PM

68 Chapter 2 n Protecting Against Eavesdroppers

Figure 2-12: AES key combination

1st 16 bytes of key

Input Block (“State”) Round #1 Input

Listing 2-33: “aes.c” add_round_key

static void add_round_key(unsigned char state[][4],

 unsigned char w[][4])

{

 int c, r;

 for (c = 0; c < 4; c++)

 {

 for (r = 0; r < 4; r++)

 {

 state[r][c] = state[r][c] ^ w[c][r];

 }

 }

}

Note that this is done before the rounds begin.
Each round consists of four steps: a substitution step, a row-shifting step, a

column-mixing step, and fi nally a key combination step.
Substitution is performed on each byte individually and comes from the same

table that the key schedule substitution came from, as in Listing 2-34.

c02.indd 68c02.indd 68 12/20/2012 12:45:37 PM12/20/2012 12:45:37 PM

 Chapter 2 n Protecting Against Eavesdroppers 69

Listing 2-34: “aes.c” sub_bytes

static void sub_bytes(unsigned char state[][4])

{

 int r, c;

 for (r = 0; r < 4; r++)

 {

 for (c = 0; c < 4; c++)

 {

 state[r][c] = sbox[(state[r][c] & 0xF0) >> 4]

 [state[r][c] & 0x0F];

 }

 }

}

Row shifting is a rotation applied to each row. The fi rst row is rotated zero
places, the second one place, the third two, and the fourth three. Graphically,
this can be viewed as shown in Figure 2-13.

Figure 2-13: AES row shift

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

D

A

7

4

1

E

B

8

5

2

F

C

9

6

3

In code, this is shown in Listing 2-35.

Listing 2-35: “aes.c” shift_rows

static void shift_rows(unsigned char state[][4])

{

 int tmp;

 tmp = state[1][0];

 state[1][0] = state[1][1];

 state[1][1] = state[1][2];

 state[1][2] = state[1][3];

 state[1][3] = tmp;

 tmp = state[2][0];

 state[2][0] = state[2][2];

(Continued)

c02.indd 69c02.indd 69 12/20/2012 12:45:37 PM12/20/2012 12:45:37 PM

70 Chapter 2 n Protecting Against Eavesdroppers

 state[2][2] = tmp;

 tmp = state[2][1];

 state[2][1] = state[2][3];

 state[2][3] = tmp;

 tmp = state[3][3];

 state[3][3] = state[3][2];

 state[3][2] = state[3][1];

 state[3][1] = state[3][0];

 state[3][0] = tmp;

}

Note that for simplicity and clarity, the position shifts are just hardcoded at
each row. The relative positions never change, so there’s no particular reason
to compute them on each iteration.

Column mixing is where AES gets a bit confusing and where it differs consider-
ably from DES. The column mix step is actually defi ned as a matrix multiplica-
tion of each column in the source array with the matrix:

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

Multiplying Matrices

If you don’t remember what matrix multiplication is, or you never studied lin-
ear algebra, this works out to multiplying each element of each column with
each element of each row and then adding the results to come up with the
target column. (Don’t worry, I show you some code in just a second). If you do
remember linear algebra, don’t get too excited because AES redefi nes the terms
multiply and add to mean something completely different than what you prob-
ably consider multiply and add.

An ordinary, traditional 4�4 matrix multiplication can be implemented as in
Listing 2-36.

Listing 2-36: Example matrix multiplication

static void matrix_multiply(unsigned char m1[4][4],

 unsigned char m2[4][4],

 unsigned char target[4][4])

{

 int r, c;

 for (r = 0; r < 4; r++)

 {

 for (c = 0; c < 4; c++)

 {

 target[r][c] =

c02.indd 70c02.indd 70 12/20/2012 12:45:37 PM12/20/2012 12:45:37 PM

 Chapter 2 n Protecting Against Eavesdroppers 71

 m1[r][0] * m2[0][c] +

 m1[r][1] * m2[1][c] +

 m1[r][2] * m2[2][c] +

 m1[r][3] * m2[3][c];

 }

 }

}

As you can see, each element of the target matrix becomes the sum of the
rows of the fi rst matrix multiplied by the columns of the second. As long as
the fi rst matrix has as many rows as the second has columns, two matrices can
be multiplied this way. This code can be made even more general to deal with
arbitrarily sized matrices, but C’s multidimensional array syntax makes that
tricky, and you won’t need it for AES.

If you multiply something, there ought to be a way to unmultiply (that is,
divide) it. And certainly if you’re using this in an encryption operation you need
a well-defi ned way to undo it. Matrix division is not as clear-cut as matrix mul-
tiplication, however. To undo a matrix multiplication, you must fi nd a matrix’s
inverse. This is another matrix which, when multiplied, as defi ned above, will
yield the identity matrix:

01 00 00 00
00 01 00 00
00 00 01 00
00 00 00 01

If you look back at the way matrix multiplication was defi ned, you can see
why it’s called the identity matrix. If you multiply this with any other (four-row)
matrix, you get back the same matrix. This is analogous to the case of multiply-
ing a number by 1 — when you multiply any number by the number 1 you get
back the same number.

The problem with the standard matrix operations, as they pertain to encryp-
tion, is that the inversion of the matrix above is:

�0.1143 0.0857 �0.3143 0.4857
 0.4857 �0.1143 0.0857 �0.3143
�0.3143 0.4857 �0.1143 0.0857
 0.0857 �0.3143 0.4857 �0.1143

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

�

As you can imagine, multiplying by this inverted matrix to decrypt would
be terribly slow, and the inclusion of fl oating point operations would introduce
round-off errors as well. To speed things up, and still allow for invertible matrices,

c02.indd 71c02.indd 71 12/20/2012 12:45:37 PM12/20/2012 12:45:37 PM

72 Chapter 2 n Protecting Against Eavesdroppers

AES redefi nes the add and multiply operations for its matrix multiplication.
This means also that you don’t have to worry about the thorny topic of matrix
inversion, which is fortunate because it’s as complex as it looks (if not more so).

Adding in AES is actually redefi ned as XORing, which is nothing at all like
adding. Multiplying is repeated adding, just as in ordinary arithmetic, but it’s
done modulo 0x1B (remember this value from the key schedule?). The speci-
fi cation refers to this as a dot product — another linear algebra term, but again
redefi ned. If your head is spinning from this mathematicalese, perhaps some
code will help.

To multiply two bytes — that is, to compute their dot product in AES — you
XOR together the xtime values of the multiplicand with the multiplier. What are
xtime values? They’re the “left-shift and XOR with 0x1B on overfl ow” operation
that described the round constant in the key schedule computation. In code,
this works out to Listing 2-37.

Listing 2-37: “aes.c” dot product

unsigned char xtime(unsigned char x)

{

 return (x << 1) ^ ((x & 0x80) ? 0x1b : 0x00);

}

unsigned char dot(unsigned char x, unsigned char y)

{

 unsigned char mask;

 unsigned char product = 0;

 for (mask = 0x01; mask; mask <<= 1)

 {

 if (y & mask)

 {

 product ^= x;

 }

 x = xtime(x);

 }

 return product;

}

This probably doesn’t look much like multiplication to you — and, honestly,
it isn’t — but this is algorithmically how you’d go about performing binary
multiplication if you didn’t have a machine code implementation of it to do the
heavy lifting for you. In fact, this concept reappears in the next chapter when
the topic of arbitrary-precision binary math is examined.

Fortunately, from an implementation perspective, you can just accept that
this is “what you do” with the bytes in a column-mixing operation.

c02.indd 72c02.indd 72 12/20/2012 12:45:38 PM12/20/2012 12:45:38 PM

 Chapter 2 n Protecting Against Eavesdroppers 73

Mixing Columns in AES

Armed with this strange multiplication operation, you can implement the matrix
multiplication that performs the column-mixing step in Listing 2-38.

Listing 2-38: “aes.c” mix_columns

static void mix_columns(unsigned char s[][4])

{

 int c;

 unsigned char t[4];

 for (c = 0; c < 4; c++)

 {

 t[0] = dot(2, s[0][c]) ^ dot(3, s[1][c]) ^

 s[2][c] ^ s[3][c];

 t[1] = s[0][c] ^ dot(2, s[1][c]) ^

 dot(3, s[2][c]) ^ s[3][c];

 t[2] = s[0][c] ^ s[1][c] ^ dot(2, s[2][c]) ^

 dot(3, s[3] [c]);

 t[3] = dot(3, s[0][c]) ^ s[1][c] ^ s[2][c] ^

 dot(2, s[3][c]);

 s[0][c] = t[0];

 s[1][c] = t[1];

 s[2][c] = t[2];

 s[3][c] = t[3];

 }

}

Remembering that adding is XORing and mutiplying is dot-ing, this is a
straightforward matrix multiplication. Compare this to Listing 2-35.

And that’s it. Each round consists of substituting, shifting, column mixing,
and fi nally adding the round key. Encrypting a block of AES, then, can be done
as shown in Listing 2-39.

Listing 2-39: “aes.c” aes_block_encrypt

static void aes_block_encrypt(const unsigned char *input_block,

 unsigned char *output_block,

 const unsigned char *key,

 int key_size)

{

 int r, c;

 int round;

 int nr;

 unsigned char state[4][4];

 unsigned char w[60][4];

 for (r = 0; r < 4; r++)

 {
(Continued)

c02.indd 73c02.indd 73 12/20/2012 12:45:38 PM12/20/2012 12:45:38 PM

74 Chapter 2 n Protecting Against Eavesdroppers

 for (c = 0; c < 4; c++)

 {

 state[r][c] = input_block[r + (4 * c)];

 }

 }

 // rounds = key size in 4-byte words + 6

 nr = (key_size >> 2) + 6;

 compute_key_schedule(key, key_size, w);

 add_round_key(state, &w[0]);

 for (round = 0; round < nr; round++)

 {

 sub_bytes(state);

 shift_rows(state);

 if (round < (nr - 1))

 {

 mix_columns(state);

 }

 add_round_key(state, &w[(round + 1) * 4]);

 }

 for (r = 0; r < 4; r++)

 {

 for (c = 0; c < 4; c++)

 {

 output_block[r + (4 * c)] = state[r][c];

 }

 }

}

Notice this same routine handles 128-, 192-, or 256-bit key sizes; the only
difference between the three is the number of rounds, and the amount of key
material that therefore needs to be computed. Rather than computing the size
of w — the key schedule array — dynamically, it just statically allocates enough
space for a 256-bit key schedule (60 * 4). It then copies the input into the state
matrix, applies the fi rst round key, and starts iterating. Also, it skips column
mixing on the very last iteration. Finally, it copies from state array back into the
output, and the block is encrypted.

AES Decryption

Unlike DES, AES’s decryption operation isn’t the same as encryption. You have
to go back and undo everything that you did during the encryption step. This
starts, of course, with re-applying the round keys in reverse order, unmixing
the columns, unshifting the rows, and unsubstituting the bytes.

c02.indd 74c02.indd 74 12/20/2012 12:45:38 PM12/20/2012 12:45:38 PM

 Chapter 2 n Protecting Against Eavesdroppers 75

Do everything in exactly the inverse order that you did it when encrypting.
This means that the loops occur in different orders. Look at the expanded set
of operations for an encryption:

 1. AddRound Key

 2. SubBytes

 3. ShiftRows

 4. MixColumns

 5. AddRoundKey

 6. SubBytes

 7. ShiftRows

 8. MixColumns

 9. AddRoundKey

 …

 42. SubBytes

 43. ShiftRows

 44. AddRoundKey

This means that the decrypt loop won’t be the same as the encrypt loop. It
starts with an AddRoundKey and is then followed by invShiftRows, invSubBytes,
addRoundKey, and invMixColumns:

1. AddRound Key

2. SubBytes

3. ShiftRows

4. MixColumns

5. AddRoundKey

6. SubBytes

7. ShiftRows

8. MixColumns

9. AddRoundKey

…

42. SubBytes

43. ShiftRows

44. AddRoundKey

And then, a fi nal invShiftRows, invSubBytes and addRoundKey. Notice that
shiftRows, subBytes and mixColumns all need specifi c inversion routines whereas
addRoundKey is its own inverse, because it’s just applying the XOR operation.
This is shown in Listing 2-40.

c02.indd 75c02.indd 75 12/20/2012 12:45:38 PM12/20/2012 12:45:38 PM

76 Chapter 2 n Protecting Against Eavesdroppers

Listing 2-40: “aes.c” inversion routines

static void inv_shift_rows(unsigned char state[][4])

{

 int tmp;

 tmp = state[1][2];

 state[1][2] = state[1][1];

 state[1][1] = state[1][0];

 state[1][0] = state[1][3];

 state[1][3] = tmp;

 tmp = state[2][0];

 state[2][0] = state[2][2];

 state[2][2] = tmp;

 tmp = state[2][1];

 state[2][1] = state[2][3];

 state[2][3] = tmp;

 tmp = state[3][0];

 state[3][0] = state[3][1];

 state[3][1] = state[3][2];

 state[3][2] = state[3][3];

 state[3][3] = tmp;

}

static unsigned char inv_sbox[16][16] = {

{ 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38,

 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb },

{ 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87,

 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb },

{ 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d,

 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e },

{ 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2,

 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25 },

{ 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16,

 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92 },

{ 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,

 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84 },

{ 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a,

 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06 },

{ 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,

 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b },

{ 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea,

 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73 },

{ 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85,

 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e },

{ 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89,

 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b },

{ 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20,

 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4 },

{ 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31,

 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f },

c02.indd 76c02.indd 76 12/20/2012 12:45:38 PM12/20/2012 12:45:38 PM

 Chapter 2 n Protecting Against Eavesdroppers 77

{ 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d,

 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef },

{ 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0,

 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61 },

{ 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26,

 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d },

};

static void inv_sub_bytes(unsigned char state[][4])

{

 int r, c;

 for (r = 0; r < 4; r++)

 {

 for (c = 0; c < 4; c++)

 {

 state[r][c] = inv_sbox[(state[r][c] & 0xF0) >> 4]

 [state[r][c] & 0x0F];

 }

 }

}

inv_shift_rows and inv_sub_bytes are fairly straightforward; notice that
the s-boxes that AES uses are not invertible like DES’s were. You need two
sets of s-boxes to encrypt and decrypt. There’s no computation involved in the
inverted s-box. If you turn back to the “forward” s-box, you see that, for example,
substitution(0x75) = sbox[7][5] = 0x9d. Conversely, inv_substitution(0x9d)
= inv_sbox[9][d] = 0x75.

Inverting column mixing involves performing a matrix multiplication of each
column by the inversion of the matrix that the encryption operation multiplied
it by. Of course, this isn’t just any matrix multiplication, and it’s not just any
matrix inversion. It’s the matrix multiplication and inversion “considered as
polynomials over GF(28) and multiplied modulo x4 + 1 with a fi xed polynomial
a-1(x), given by a-1(x) = {0b}x3 + {0d}x2 + {09}x + {0e}”. This dense phrase means
performing another “matrix multiplication” against the matrix:

0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e

which is the inversion, after redefi ning addition and multiplication as described
earlier, of the forward matrix. In code, this is shown in Listing 2-41.

Listing 2-41: “aes.c” inv_mix_columns

static void inv_mix_columns(unsigned char s[][4])

{

 int c;

(Continued)

c02.indd 77c02.indd 77 12/20/2012 12:45:38 PM12/20/2012 12:45:38 PM

78 Chapter 2 n Protecting Against Eavesdroppers

 unsigned char t[4];

 for (c = 0; c < 4; c++)

 {

 t[0] = dot(0x0e, s[0][c]) ^ dot(0x0b, s[1][c]) ^

 dot(0x0d, s[2][c]) ^ dot(0x09, s[3][c]);

 t[1] = dot(0x09, s[0][c]) ^ dot(0x0e, s[1][c]) ^

 dot(0x0b, s[2][c]) ^ dot(0x0d, s[3][c]);

 t[2] = dot(0x0d, s[0][c]) ^ dot(0x09, s[1][c]) ^

 dot(0x0e, s[2][c]) ^ dot(0x0b, s[3][c]);

 t[3] = dot(0x0b, s[0][c]) ^ dot(0x0d, s[1][c]) ^

 dot(0x09, s[2][c]) ^ dot(0x0e, s[3][c]);

 s[0][c] = t[0];

 s[1][c] = t[1];

 s[2][c] = t[2];

 s[3][c] = t[3];

 }

}

And the AES block decryption operation is shown in Listing 2-42.

Listing 2-42: “aes.c” aes_block_decrypt

static void aes_block_decrypt(const unsigned char *input_block,

 unsigned char *output_block,

 const unsigned char *key,

 int key_size)

{

 int r, c;

 int round;

 int nr;

 unsigned char state[4][4];

 unsigned char w[60][4];

 for (r = 0; r < 4; r++)

 {

 for (c = 0; c < 4; c++)

 {

 state[r][c] = input_block[r + (4 * c)];

 }

 }

 // rounds = key size in 4-byte words + 6

 nr = (key_size >> 2) + 6;

 compute_key_schedule(key, key_size, w);

 add_round_key(state, &w[nr * 4]);

 for (round = nr; round > 0; round--)

 {

 inv_shift_rows(state);

 inv_sub_bytes(state);

c02.indd 78c02.indd 78 12/20/2012 12:45:39 PM12/20/2012 12:45:39 PM

 Chapter 2 n Protecting Against Eavesdroppers 79

 add_round_key(state, &w[(round - 1) * 4]);

 if (round > 1)

 {

 inv_mix_columns(state);

 }

 }

 for (r = 0; r < 4; r++)

 {

 for (c = 0; c < 4; c++)

 {

 output_block[r + (4 * c)] = state[r][c];

 }

 }

}

With the block operations defi ned, encryption and decryption are simple
enough, as shown in Listing 2-43.

Listing 2-43: “aes.c” aes_encrypt and aes_decrypt

#define AES_BLOCK_SIZE 16

static void aes_encrypt(const unsigned char *input,

 int input_len,

 unsigned char *output,

 const unsigned char *iv,

 const unsigned char *key,

 int key_length)

{

 unsigned char input_block[AES_BLOCK_SIZE];

 while (input_len >= AES_BLOCK_SIZE)

 {

 memcpy(input_block, input, AES_BLOCK_SIZE);

 xor(input_block, iv, AES_BLOCK_SIZE); // implement CBC

 aes_block_encrypt(input_block, output, key, key_length);

 memcpy((void *) iv, (void *) output, AES_BLOCK_SIZE); // CBC

 input += AES_BLOCK_SIZE;

 output += AES_BLOCK_SIZE;

 input_len -= AES_BLOCK_SIZE;

 }

}

static void aes_decrypt(const unsigned char *input,

 int input_len,

 unsigned char *output,

 const unsigned char *iv,

 const unsigned char *key,

 int key_length)

{

 while (input_len >= AES_BLOCK_SIZE)

(Continued)

c02.indd 79c02.indd 79 12/20/2012 12:45:39 PM12/20/2012 12:45:39 PM

80 Chapter 2 n Protecting Against Eavesdroppers

 {

 aes_block_decrypt(input, output, key, key_length);

 xor(output, iv, AES_BLOCK_SIZE);

 memcpy((void *) iv, (void *) input, AES_BLOCK_SIZE); // CBC

 input += AES_BLOCK_SIZE;

 output += AES_BLOCK_SIZE;

 input_len -= AES_BLOCK_SIZE;

 }

}

Notice the similarities between aes_encrypt/aes_decrypt and des_oper-
ate. CBC and block iteration are implemented the same in both cases. In fact,
CBC and block iteration are the same for all block ciphers. If you were going to
be implementing many more block ciphers, it would be worth the investment
to generalize these operations so you could just pass in a function pointer to
a generic block_operate function. Don’t bother here, though, because you’re
fi nished with block ciphers.

Finally — you do want the AES encryption/decryption routines to be inter-
changeable with the DES and 3DES encryption/decryption routines. For that to
be possible, the method signatures must be the same. Therefore, go ahead and
implement a couple of top-level functions as shown in Listing 2-44.

Listing 2-44: “aes.c” AES encryption and decryption routines

void aes_128_encrypt(const unsigned char *plaintext,

 const int plaintext_len,

 unsigned char ciphertext[],

 const unsigned char *iv,

 const unsigned char *key)

{

 aes_encrypt(plaintext, plaintext_len, ciphertext, iv, key, 16);

}

void aes_128_decrypt(const unsigned char *ciphertext,

 const int ciphertext_len,

 unsigned char plaintext[],

 const unsigned char *iv,

 const unsigned char *key)

{

 aes_decrypt(ciphertext, ciphertext_len, plaintext, iv, key, 16);

}

void aes_256_encrypt(const unsigned char *plaintext,

 const int plaintext_len,

 unsigned char ciphertext[],

 const unsigned char *iv,

 const unsigned char *key)

{

 aes_encrypt(plaintext, plaintext_len, ciphertext, iv, key, 32);

}

c02.indd 80c02.indd 80 12/20/2012 12:45:39 PM12/20/2012 12:45:39 PM

 Chapter 2 n Protecting Against Eavesdroppers 81

void aes_256_decrypt(const unsigned char *ciphertext,

 const int ciphertext_len,

 unsigned char plaintext[],

 const unsigned char *iv,

 const unsigned char *key)

{

 aes_decrypt(ciphertext, ciphertext_len, plaintext, iv, key, 32);

}

Here the function name dictates the key length. This isn’t a good approach for
general scalability, but because AES is only defi ned for a few specifi c key lengths,
you’re safe in this case. Notice that there’s no aes_192_encrypt/_decrypt pair
here. AES 192 actually isn’t used in SSL, so I don’t cover it here.

AES is widely supported. In fact, recent Intel chips include assembly-level
AES instructions!

Of course, you want to be able to test this out, so create a main routine in aes.c,
blocked off by an #ifdef so that this fi le can be included in other applications,
as shown in Listing 2-45:

Listing 2-45: “aes.c” main routine for testing

#ifdef TEST_AES

int main(int argc, char *argv[])

{

 unsigned char *key;

 unsigned char *input;

 unsigned char *iv;

 int key_len;

 int input_len;

 int iv_len;

 if (argc < 5)

 {

 fprintf(stderr, “Usage: %s [-e|-d] <key> <iv> <input>\n”, argv[0]);

 exit(0);

 }

 key_len = hex_decode(argv[2], &key);

 iv_len = hex_decode(argv[3], &iv);

 input_len = hex_decode(argv[4], &input);

 if (!strcmp(argv[1], “-e”))

 {

 unsigned char *ciphertext = (unsigned char *) malloc(input_len);

 if (key_len == 16)

 {

 aes_128_encrypt(input, input_len, ciphertext, iv, key);

 }

(Continued)

c02.indd 81c02.indd 81 12/20/2012 12:45:39 PM12/20/2012 12:45:39 PM

82 Chapter 2 n Protecting Against Eavesdroppers

 else if (key_len == 32)

 {

 aes_256_encrypt(input, input_len, ciphertext, iv, key);

 }

 else

 {

 fprintf(stderr, “Unsupported key length: %d\n”, key_len);

 exit(0);

 }

 show_hex(ciphertext, input_len);

 free(ciphertext);

 }

 else if (!strcmp(argv[1], “-d”))

 {

 unsigned char *plaintext = (unsigned char *) malloc(input_len);

 if (key_len == 16)

 {

 aes_128_decrypt(input, input_len, plaintext, iv, key);

 }

 else if (key_len == 32)

 {

 aes_256_decrypt(input, input_len, plaintext, iv, key);

 }

 else

 {

 fprintf(stderr, “Unsupported key length %d\n”, key_len);

 exit(0);

 }

 show_hex(plaintext, input_len);

 free(plaintext);

 }

 else

 {

 fprintf(stderr, “Usage: %s [-e|-d] <key> <iv> <input>\n”, argv[0]);

 }

 free(iv);

 free(key);

 free(input);

}

#endif

This checks the length of the key and invokes aes_128_decrypt or aes_256_
decrypt. Its operation is identical to the operation of the DES tester routine
described earlier.

c02.indd 82c02.indd 82 12/20/2012 12:45:39 PM12/20/2012 12:45:39 PM

 Chapter 2 n Protecting Against Eavesdroppers 83

Other Block Cipher Algorithms
There are actually dozens, if not hundreds, of other block cipher algorithms.
Two additional algorithms specifi cally named in the TLS standard are IDEA
and RC2, although support for them has been deprecated with TLS 1.2. They
weren’t widely implemented because both were patented. What’s worse is
that RC2 uses a 40-bit (!) key. AES isn’t mentioned in the specifi cation because
Rijndael hadn’t yet been named as the NIST’s new encryption standard when
RFC 2246 was drafted. RFC 3268, issued in 2002, defi ned the addition of AES
to SSL/TLS.

Other block ciphers known or believed to be secure are blowfi sh, twofi sh,
FEAL, LOKI, and Camelia. See Bruce Schneier’s book Applied Cryptography (Wiley,
1996) for a thorough (although now somewhat dated) discussion of many block
ciphers. By far the most common ciphers used in SSL, though, are 3DES and
AES. There’s one more encryption routine I’d like to discuss because it’s treated
a bit differently than the others, as it is a stream cipher.

Understanding Stream Cipher Algorithms

Stream cipher algorithms are technically the same as block cipher algorithms;
they just operate on a block size of one byte. Conceptually, the only difference
is that there’s no need for padding or for CBC. Design-wise, however, stream
ciphers tend to be quite a bit different. Whereas block ciphers are concerned
with shuffl ing bits around within the block, stream ciphers concentrate on
generating a secure stream of bytes whose length is the same as the plain-
text and then simply XORing those bytes with the plaintext to produce the
ciphertext. Stream ciphers derive all of their cryptographic security from
the keystream generation function.

With block ciphers, you take a key, generate a key schedule and then mix that
key schedule with the permuted, shifted, rotated, sliced, diced, and chopped-up
block one after another. Optionally, you apply CBC to each block to ensure that
identical blocks look different in the output stream.

Stream ciphers work somewhat similarly, but they generate a key schedule
that is as long as the entire block of data to be encrypted. After the key schedule
is generated, the input block is simply XORed with the input. To decrypt, the
key schedule is similarly generated and XORed with the encrypted ciphertext
to recover the original plaintext. Therefore, all of the security is in the key
schedule generation.

Stream ciphers are also interesting from a design perspective because they’re
treated somewhat differently than block ciphers; making the SSL layer treat
block and stream ciphers interchangeably is a bit tricky. Only one stream cipher

c02.indd 83c02.indd 83 12/20/2012 12:45:39 PM12/20/2012 12:45:39 PM

84 Chapter 2 n Protecting Against Eavesdroppers

has been widely implemented in SSL; this is the RC4 algorithm, examined in
the next section.

Understanding and Implementing the RC4 Algorithm
RC4 was invented by Ron Rivest (whose name comes up again in Chapter 3),
who also invented RC2 (and RC5 and RC6). RC4 is actually not an open standard
like AES and DES are. In fact, in spite of the fact that it’s specifi cally named as
one of the fi ve encryption algorithms available for use with SSL, the details of
how RC4 works have never been offi cially published. However, they’ve been
widely distributed, and an IETF draft specifi cation of the algorithm — referred
to as an RC4-compatible algorithm for trademark purposes — has been submit-
ted for review although it’s not yet offi cially published.

After the complexity of DES and AES, you may be pleasantly surprised at the
simplicity of RC4. First, a 256-byte key schedule is computed from the key, which
can be essentially any length. After that, each byte of the plaintext is XORed
with one byte of the key schedule after permuting the key schedule. This goes
on until the plaintext is completely encrypted. Decrypting is the exact same
process. Because there’s no concept of CBC, there’s no need for an initialization
vector either. An example of the RC4 operation is shown in Listing 2-46.

Listing 2-46: “rc4.c” rc4_operate

static void rc4_operate(const unsigned char *plaintext,

 int plaintext_len,

 unsigned char *ciphertext,

 const unsigned char *key,

 int key_len)

{

 int i, j;

 unsigned char S[256];

 unsigned char tmp;

 // KSA (key scheduling algorithm)

 for (i = 0; i < 256; i++)

 {

 S[i] = i;

 }

S is the key schedule. The fi rst step in computing the key schedule is to ini-
tialize each element with its index as shown in Figure 2-14:

Figure 2-14: Initial RC4 key schedule

0 1 2 3 4 5 6 7 8 ...

0 1 2 3 4 5 6 7 8 ...

c02.indd 84c02.indd 84 12/20/2012 12:45:39 PM12/20/2012 12:45:39 PM

 Chapter 2 n Protecting Against Eavesdroppers 85

Next, the key is combined with the key schedule:
 j = 0;

 for (i = 0; i < 256; i++)

 {

 j = (j + S[i] + key[i % key_len]) % 256;

 tmp = S[i];

 S[i] = S[j];

 S[j] = tmp;

 }

Given a key of “password” (0x70617373776f7264), for example, the fi rst few
computations are illustrated in Figure 2-15.

Figure 2-15: RC4 key scheduling algorithm

0

j = 0 + 0 + 112 = 112

j = 112 + 1 + 97 = 210

j = 210 + 2 + 115 = 325 % 256 = 71

1 2 3 4 5 6 7 8 ... 110 111 112

112

1 2 3 4 5 110 111 0 113 114 115 209 210 211...112

2 3 4 5210 110 111 0 113 114 115 209 1 211...112

71 3 4 5210 ...112

p a s s w o r d

97 115 115 119 111 114 100

112

p a s s w o r d

97 115 115 119 111 114 100

112

p a s s w o r d

97 115 115 119 111 114 100

113 114 115 ...

c02.indd 85c02.indd 85 12/20/2012 12:45:40 PM12/20/2012 12:45:40 PM

86 Chapter 2 n Protecting Against Eavesdroppers

After 256 such iterations, the S array is completely permuted, with each ordinal
from 0 to 255 appearing once and only once.

With the key schedule computed, encryption — or decryption, remembering
that they’re identical — can begin:
 i = 0;

 j = 0;

 while (plaintext_len--)

 {

 i = (i + 1) % 256;

 j = (j + S[i]) % 256;

 tmp = S[i];

 S[i] = S[j];

 S[j] = tmp;

 *(ciphertext++) = S[(S[i] + S[j]) % 256] ^ *(plaintext++);

 }

}

First, the key schedule is permuted, again. The permutation is a bit simpler
and doesn’t involve the key itself. Then the input is XORed with a byte of the
key schedule to produce the output (see Figure 2-16). That’s all there is to it.

 Figure 2-16: RC4 encryption and decryption

i n p u t

k e y x y

o u t a b

RC4 is simple — too simple, in fact. It’s been shown to be fairly straightforward
to crack, yet, like DES, it continues to be a popular encryption algorithm choice.
In fact, WEP, the Wired Equivalent Privacy encryption routine built into — and

c02.indd 86c02.indd 86 12/20/2012 12:45:40 PM12/20/2012 12:45:40 PM

 Chapter 2 n Protecting Against Eavesdroppers 87

often the only option for — most wireless devices mandates its use! You should
add support for it because it’s the only stream cipher defi ned for use in SSL, and
because its implementation is so simple; however, you should almost defi nitely
prefer 3DES or AES-256 for encryption of any valuable data.

As you can see, there are effectively no restrictions on the key length; the key
can be as long as 256 bytes (it could be longer, but the remaining bytes wouldn’t
factor into the key scheduling algorithm). There are two standard, common key
lengths though — 40 bits and 128 bits. 40 bits is just 5 bytes (!) and is trivially
crackable. 128 bits is a decent-sized key for most crypto purposes.

Put together a simple main routine to test this, as shown in Listing 2-47.

Listing 2-47: “rc4.c” main routine for testing

#ifdef TEST_RC4

int main(int argc, char *argv[])

{

 unsigned char *key;

 unsigned char *input;

 unsigned char *output;

 int key_len;

 int input_len;

 if (argc < 4)

 {

 fprintf(stderr, “Usage: %s [-e|-d] <key> <input>\n”, argv[0]);

 exit(0);

 }

 key_len = hex_decode(argv[2], &key);

 input_len = hex_decode(argv[3], &input);

 output = malloc(input_len);

 rc4_operate(input, input_len, output, key, key_len);

 printf(“Results: “);

 show_hex(output, input_len);

 free(key);

 free(input);

 return 0;

}

#endif

Again, you can use the hex_decode convenience function to allow you to pass
in arbitrary byte arrays and not just printable-ASCII input.

[jdavies@localhost ssl]$./rc4 -e abcdef abcdefghijklmnop

Results: daf70b86e76454eb975e3bfe2cce339c

c02.indd 87c02.indd 87 12/20/2012 12:45:40 PM12/20/2012 12:45:40 PM

88 Chapter 2 n Protecting Against Eavesdroppers

This works, but there’s a problem with this routine, if you plan to use it in
a larger program. Every call starts over at the beginning of the key space. You
want to treat each call as if it was the next part of a very long string, which
means you need to keep track of the state of the algorithm. You can’t just make
i, j, and S static variables. In addition to not being thread-safe, you need to keep
multiple RC4 contexts around. Instead, defi ne a structure to store the rc4 state
in, as shown in Listing 2-48.

Listing 2-48: “rc4.h” rc4_state structure

#define RC4_STATE_ARRAY_LEN 256

typedef struct

{

 int i;

 int j;

 unsigned char S[RC4_STATE_ARRAY_LEN];

}

rc4_state;

Now, instead of initializing this on each invocation, let the caller pass in a
pointer to this structure. It is updated as rc4_operate completes, and the caller
can pass it back in to the next invocation to pick up where it left off, so that the
output looks like one, long, continuous stream of encrypted data.

The only remaining issue is when to do the initial key scheduling algorithm;
the one illustrated in Figure 2-15. This should be done one time, but never
again afterward. You can sort of “cheat,” here, as shown in Listing 2-49. The
rc4_operate algorithm checks the state parameter; if the S array starts with two
zeros — an impossible state — assume that the caller is passing in an uninitial-
ized rc4_state structure. Otherwise, it is accepted as provided.

Listing 2-49: “rc4.c” rc4_operate with persistent state

static void rc4_operate(const unsigned char *plaintext,

 int plaintext_len,

 unsigned char *ciphertext,

 const unsigned char *key,

 int key_len,

 rc4_state *state)

{

 int i, j;

 unsigned char *S;

 unsigned char tmp;

 i = state->i;

 j = state->j;

 S = state->S;

 // KSA (key scheduling algorithm)

c02.indd 88c02.indd 88 12/20/2012 12:45:40 PM12/20/2012 12:45:40 PM

 Chapter 2 n Protecting Against Eavesdroppers 89

 if (S[0] == 0 && S[1] == 0)

 {

 // First invocation; initialize the state array

 for (i = 0; i < 256; i++)

 {

 S[i] = i;

 }

…

 i = 0;

 j = 0;

 }

…

 *(ciphertext++) = S[(S[i] + S[j]) % 256] ^ *(plaintext++);

 }

 state->i = i;

 state->j = j;

}

Now, it’s up to the caller to initialize a new rc4_state structure, fi ll it with
0’s (or zero out at least the fi rst two elements), and pass it into each rc4_operate
call. Technically, you probably ought to defi ne an rc4_initialize function that
does this to make it more explicit — while you’re at it, you could and should
defi ne similar functions for DES and AES that compute the key schedule and
store it somewhere so it doesn’t need to be recomputed on each iteration. I leave
this as an exercise for you.

One last tweak: Because there are “standard” rc4 key sizes, create a couple
of wrapper functions that identify the key lengths explicitly, as shown in
Listing 2-50.

Listing 2-50: “rc4.c” key-length wrapper functions

void rc4_40_encrypt(const unsigned char *plaintext,

 const int plaintext_len,

 unsigned char ciphertext[],

 void *state,

 const unsigned char *key)

{

 rc4_operate(plaintext, plaintext_len, ciphertext, key, 5,

 (rc4_state *) state);

}

void rc4_40_decrypt(const unsigned char *ciphertext,

 const int ciphertext_len,

 unsigned char plaintext[],

 void *state,

 const unsigned char *key)

{

 rc4_operate(ciphertext, ciphertext_len, plaintext, key, 5,

 (rc4_state *) state);

(Continued)

c02.indd 89c02.indd 89 12/20/2012 12:45:40 PM12/20/2012 12:45:40 PM

90 Chapter 2 n Protecting Against Eavesdroppers

}

void rc4_128_encrypt(const unsigned char *plaintext,

 const int plaintext_len,

 unsigned char ciphertext[],

 void *state,

 const unsigned char *key)

{

 rc4_operate(plaintext, plaintext_len, ciphertext, key, 16,

 (rc4_state *) state);

}

void rc4_128_decrypt(const unsigned char *ciphertext,

 const int ciphertext_len,

 unsigned char plaintext[],

 void *state,

 const unsigned char *key)

{

 rc4_operate(ciphertext, ciphertext_len, plaintext, key, 16,

 (rc4_state *) state);

}

If you compare these functions to des_encrypt, des3_encrypt and aes_encrypt,
notice that they’re almost identical except that the fourth parameter, the state,
is a void pointer rather than an unsigned char pointer to an initialization vec-
tor. In fact, go ahead and change all eight encrypt/decrypt functions to accept
void pointers and cast them to the proper type. This commonality enables you
to switch from one encryption function to another by just changing a function
pointer. You will take advantage of this fl exibility in Chapter 6, when TLS itself is
examined — all of the functions developed in this chapter will be reused there.

Converting a Block Cipher to a Stream Cipher: The OFB
and COUNTER Block-Chaining Modes
Actually, a block cipher can be converted into a stream cipher. If you look at the
way CBC works, notice that the initialization vector is XORed with the input
and then the result is encrypted. What if you reverse that? What if you encrypt
the CBC, and then XOR that with the input? As it turns out, you end up with a
cipher just as secure as one that had its initialization vector applied fi rst and then
encrypted. This method of chaining is called OFB or output-feedback mode. The
principal benefi t of OFB is that the input doesn’t have to be block-aligned. As
long as the initialization vector itself is of the correct block length — which it is
for every block except the very last — the fi nal block can just truncate its output.
The decryptor recognizes this short block and updates its output accordingly.

OFB isn’t used in SSL. CTR mode didn’t make it into TLS until version 1.2, so
this topic is revisited in Chapter 9 when AEAD encryption in TLS 1.2 is discussed.

c02.indd 90c02.indd 90 12/20/2012 12:45:41 PM12/20/2012 12:45:41 PM

91

C H A P T E R

3
Secure Key Exchange over an
Insecure Medium with Public

Key Cryptography

Chapter 2 examined symmetric or private/shared key algorithms. The funda-
mental challenge in applying private key algorithms is keeping the private key
private — or, to put it another way, exchanging keys without letting an interested
eavesdropper see them. This may seem like an insoluble problem; you can’t
establish keys over an insecure channel, and you can’t establish a secure channel
without keys. Perhaps surprisingly, there is a solution: public-key cryptography.
With public-key algorithms, there are actually two keys, which are mathemati-
cally related such that an encrypt operation performed with one can only be
decrypted using the other one. Furthermore, to be usable in a cryptography
setting, it must be impossible, or at least mathematically infeasible, to compute
one from the other after the fact. By far the most common public-key algorithm
is the RSA algorithm, named after its inventors Ron Rivest, Adi Shamir, and
Leonard Adleman. You may recall Rivest from Chapter 2 as the inventor of RC4.

You may notice a difference in the technical approach between this chapter
and the last. Whereas symmetric/shared key algorithms are based on shift-
ing and XORing bits, asymmetric/public key algorithms are based entirely on
properties of natural numbers. Whereas symmetric encryption algorithms aim
to be as complex as their designers can get away with while still operating rea-
sonably quickly, public-key cryptography algorithms are constrained by their
own mathematics. In general, public-key cryptography aims to take advantage
of problems that computers are inherently bad at and as a result don’t translate
nearly as easily to the domain of programming as symmetric cryptography does.

c03.indd 91c03.indd 91 12/20/2012 12:45:55 PM12/20/2012 12:45:55 PM

92 Chapter 3 n Secure Key Exchange over an Insecure Medium

In fact, the bulk of this chapter simply examines how to perform arithmetic on
arbitrarily large numbers. Once that’s out of the way, the actual process of public
key cryptography is surprisingly simple.

Understanding the Theory Behind the RSA
Algorithm

The theory behind RSA public-key cryptosystems is actually very simple. The
core is modulus arithmetic; that is, operations modulo a number. For example,
you’re most likely familiar with C’s mod operator %; (x % 2) returns 0 if x is even
and 1 if x is odd. RSA public-key cryptography relies on this property of a fi nite
number set. If you keep incrementing, eventually you end up back where you
started, just like the odometer of a car. Specifi cally, RSA relies on three numbers
e, d, and n such that (me)d % n=m — here m is the message to be encrypted and
converted to a number.

Not all numbers work this way; in fact, fi nding three numbers e, d, and n that
satisfy this property is complex, and forms the core of the RSA specifi cation. After
you’ve found them, though, using them to encrypt is fairly straightforward. The
number d is called the private key, and you should never share it with anybody.
e and n together make up the public key, and you can make them available to
anybody who cares to send you an encoded message. When the sender is ready
to send you something that should remain private, he fi rst converts the message
into a number m and then computes me % n and sends you the result c. When
you receive it, you then compute cd % n and, by the property stated above, you
get back the original message m.

Pay special attention to the nomenclature here. Most people, when fi rst intro-
duced to the RSA algorithm, fi nd it confusing and “backward” that encryption
is done with the public key and decryption with the private key. However, if
you think about it, it makes sense: The public key is the one that’s shared with
anybody, anywhere, and thus you can use it to encrypt messages. You don’t
care how many people can see your public key because it can only be used to
encrypt messages that you alone can read. It’s the decryption that must be done
privately, thus the term private key.

The security of the system relies on the fact that even if an attacker has access to
e and n — which he does because they’re public — it’s computationally infeasible
for him to compute d. For this to be true, d and n have to be enormous — at least
512 bit numbers (which is on the order of 10154) — but most public key crypto-
systems use even larger numbers. 1,024- or even 2,048-bit numbers are common.

As you can imagine, computing anything to the power of a 2,048-bit number
is bound to be more than a bit computationally expensive. Most common com-
puters these days are 32-bit architectures, meaning that they can only perform

c03.indd 92c03.indd 92 12/20/2012 12:45:56 PM12/20/2012 12:45:56 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 93

native computations on numbers with 32 or fewer bits. Even a 64-bit architecture
isn’t going to be able to deal with this natively. And even if you could fi nd a
2,048-bit architecture, the interim results are on the order of millions of bits! To
make this possible on any hardware, modern or futuristic, you need an arbitrary
precision math module, and you need to rely on several tricks to both speed up
things and minimize memory footprint.

Performing Arbitrary Precision Binary Math to
Implement Public-Key Cryptography

Developing an arbitrary precision binary math module — one that can effi -
ciently represent and process numbers on the order of 2,048 bits — is not
diffi cult, although it’s somewhat tedious at times. It’s important that the numeric
representation be constrained only by available memory and, in theory, virtual
memory — that is, disk space (to oversimplify a bit). The number must be able
to grow without bounds and represent, exactly, any size number. In theory,
this is straightforward; any integer can be represented by an array of C chars,
which are eight bits each. The least-signifi cant-bit (LSB) of the next-to-last char
represents 28, with the most-signifi cant-bit (MSB) of the last being 27. As the inte-
ger being represented overfl ows its available space, more space is automatically
allocated for it.

NOTE For a more detailed understanding of LSB and MSB, see Appendix A.

As such, defi ne a new type, called huge, shown in Listing 3-1.

Listing 3-1: “huge.h” huge structure

typedef struct

{

 unsigned int size;

 unsigned char *rep;

}

huge;

Each huge is simply an arbitrarily-sized array of chars. As it’s manipu-
lated — added to, subtracted from, multiplied or divided by — its size will be
dynamically adjusted to fi t its contents so that the size member always indicates
the current length of rep.

Implementing Large-Number Addition
Addition and subtraction are perhaps more complex than you might expect.
After all, adding and subtracting numbers is fundamentally what computers

c03.indd 93c03.indd 93 12/20/2012 12:45:56 PM12/20/2012 12:45:56 PM

94 Chapter 3 n Secure Key Exchange over an Insecure Medium

do; you’d expect that it would be trivial to extend this out to larger numbers.
However, when dealing with arbitrarily-sized numbers, you must deal with
inputs of differing sizes and the possibility of overfl ow. A large-number add
routine is shown in Listing 3-2.

Listing 3-2: “huge.c” add routine

/**

 * Add two huges - overwrite h1 with the result.

 */

void add(huge *h1, huge *h2)

{

 unsigned int i, j;

 unsigned int sum;

 unsigned int carry = 0;

 // Adding h2 to h1. If h2 is > h1 to begin with, resize h1.

 if (h2->size > h1->size)

 {

 unsigned char *tmp = h1->rep;

 h1->rep = (unsigned char *) calloc(h2->size,

 sizeof(unsigned char));

 memcpy(h1->rep + (h2->size - h1->size), tmp, h1->size);

 h1->size = h2->size;

 free(tmp);

 }

 i = h1->size;

 j = h2->size;

 do

 {

 i--;

 if (j)

 {

 j--;

 sum = h1->rep[i] + h2->rep[j] + carry;

 }

 else

 {

 sum = h1->rep[i] + carry;

 }

 carry = sum > 0xFF;

 h1->rep[i] = sum;

 }

 while (i);

 if (carry)

 {

c03.indd 94c03.indd 94 12/20/2012 12:45:56 PM12/20/2012 12:45:56 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 95

 // Still overflowed; allocate more space

 expand(h1);

 }

}

This routine adds the value of h2 to h1, storing the result in h1. It does so
in three stages. First, allocate enough space in h1 to hold the result (assuming
that the result will be about as big as h2). Second, the addition operation itself
is actually carried out. Finally, overfl ow is accounted for.

Listing 3-3: “huge.c” add routine (size computation)

 if (h2->size > h1->size)

 {

 unsigned char *tmp = h1->rep;

 h1->rep = (unsigned char *) calloc(h2->size,

 sizeof(unsigned char));

 memcpy(h1->rep + (h2->size - h1->size), tmp, h1->size);

 h1->size = h2->size;

 free(tmp);

 }

If h1 is already as long as or longer than h2, in listing 3-3, nothing needs to
be done. Otherwise, allocate enough space for the result in h1, and carefully
copy the contents of h1 into the right position. Remember that the chars are
read right-to-left, so if you allocate two new chars to hold the result, those
chars need to be allocated at the beginning of the array, so the old contents
need to be copied. Note the use of calloc here to ensure that the memory
is cleared.

If h1 is three chars and h2 is fi ve, you see something like Figure 3-1.

Figure 3-1: Large Integer alignment

0 0 x

xh1->rep

h1->rep

tmp

x x

x x

Note that if h2 is smaller than h1, h1 is not changed at all, which means
that h1 and h2 do not necessarily line up, that is, you can add a three-char
number to a fi ve-char number — so you have to be careful to account for this
when implementing. This is the next step in the addition operation, shown
in Listing 3-4.

c03.indd 95c03.indd 95 12/20/2012 12:45:56 PM12/20/2012 12:45:56 PM

96 Chapter 3 n Secure Key Exchange over an Insecure Medium

Listing 3-4: “huge.c” add routine (addition loop)

 i = h1->size;

 j = h2->size;

 do

 {

 i--;

 if (j)

 {

 j--;

 sum = h1->rep[i] + h2->rep[j] + carry;

 }

 else

 {

 sum = h1->rep[i] + carry;

 }

 carry = sum > 0xFF;

 h1->rep[i] = sum;

 }

 while (i);

Most signifi cantly, start at the end of each array, which, again, could be two
different sizes, although h2 is guaranteed to be equal to or smaller in length
than h1. Each char can be added independently, working right-to-left, keeping
track of overfl ow at each step, and propagating it backward to the subsequent
char, as shown in fi gure 3-2.

Figure 3-2: Large number addition

x x x

xh1->rep

h2->rep

carry carry

sum

i = 4
j = 4

i = 5
j = 5

sum

x x

x

x

x

xx

+ +

xx

x

x

x

Note that the overfl ow cannot be more than one bit. To convince yourself that
this is true, consider adding two four-bit numbers. The largest such (unsigned)
number is 15 (binary 1111). If you add 15 and 15, you get:

c03.indd 96c03.indd 96 12/20/2012 12:45:57 PM12/20/2012 12:45:57 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 97

1111(15)
1111(15)

11110(30)

�

As you can see, the result fi ts into fi ve bits. Also notice that although if you
add four bits to four bits and they overfl ow, they wrap. The wrapped result is
the lower four bits of the correct response. Therefore, you can just add the two
ints, keep track of whether they overfl owed, and carry this overfl ow (of one bit)
into the next addition.

Notice that sum — the temporary workspace for each addition operation — is
itself an int. You check for overfl ow by comparing it to MAXCHAR (0xFF). Although
the Intel instruction set does keep track of whether or not an operation — such
as an add — overfl owed and updates an overfl ow bit (also called a carry bit),
the C language has never standardized access to such a bit, in spite of the fact
that every microprocessor or microcontroller defi nes one. Because you don’t
have access to the overfl ow bit, you have to check for it on each add operation.

The only other point to notice is that you must continue until you’ve looped
through all of the bytes of h1. You can’t stop after you hit the last (actually, the
fi rst because you’re working backward) byte of h2 because there may be a carry
bit that needs to be propagated backward. In one extreme case, which actually
does occur in cryptographic applications, h1 may be 0x01FFFFFEFF and h2
may be 0x0100. In this case, each byte of h1 overfl ows all the way to the very
fi rst. Thus, the while loop continues until i is 0, even if there’s nothing left to
do with h2 (for example, j = 0).

Finally, there’s a possibility that you can get to the end of the add operation
and still have a carry bit left over. If this is the case, you need to expand h1 by
exactly one char and set its lower-order bit to 1 as shown in Listing 3-5.

Listing 3-5: “huge.c” add (overfl ow expansion)

 // Still overflowed; allocate more space

 if (carry)

 {

 expand(h1);

 }

Here you call the function expand, shown in listing 3-6, which is defi ned for
precisely this purpose.

Listing 3-6: “huge.c” expand

/**

 * Extend the space for h by 1 char and set the LSB of that int

 * to 1.

 */

void expand(huge *h)

(Continued)

c03.indd 97c03.indd 97 12/20/2012 12:45:57 PM12/20/2012 12:45:57 PM

98 Chapter 3 n Secure Key Exchange over an Insecure Medium

{

 unsigned char *tmp = h->rep;

 h->size++;

 h->rep = (unsigned char *)

 calloc(h->size, sizeof(unsigned char));

 memcpy(h->rep + 1, tmp,

 (h->size - 1) * sizeof(unsigned char));

 h->rep[0] = 0x01;

 free(tmp);

}

The code in Listing 3-6 should look familiar. It is a special case of the expan-
sion of h1 that was done when h2 was larger than h1. In this case, the expansion
is just a bit simpler because you know you’re expanding by exactly one char.

Implementing Large-Number Subtraction
Another thing to note about this add routine — and the huge datatype in
general — is that you use unsigned chars for your internal representation.
That means that there’s no concept of negative numbers or two’s-complement
arithmetic. As such, you need a specifi c subtract routine, shown in Listing 3-7.

Listing 3-7: “huge.c” subtract

static void subtract(huge *h1, huge *h2)

{

 int i = h1->size;

 int j = h2->size;

 int difference; // signed int - important!

 unsigned int borrow = 0;

 do

 {

 i--;

 if (j)

 {

 j--;

 difference = h1->rep[i] - h2->rep[j] - borrow;

 }

 else

 {

 difference = h1->rep[i] - borrow;

 }

 borrow = (difference < 0) ;

 h1->rep[i] = difference;

 }

 while (i);

c03.indd 98c03.indd 98 12/20/2012 12:45:57 PM12/20/2012 12:45:57 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 99

 if (borrow && i)

 {

 if (!(h1->rep[i - 1])) // Don’t borrow i

 {

 printf(“Error, subtraction result is negative\n”);

 exit(0);

 }

 h1->rep[i - 1]--;

 }

 contract(h1);

}

The subtract routine looks a lot like the add routine, but in reverse. Note that
there’s no allocation of space at the beginning. Because you’re subtracting, the
result always uses up less space than what you started with. Also, there’s no
provision in this library yet for negative numbers, so behavior in this case is
undefi ned if h2 is greater than h1.

Otherwise, subtracting is pretty much like adding: You work backward, keep-
ing track of the borrow from the previous char at each step. Again, although the
subtraction operation wraps if h2->rep[j] > h1->rep[i], the wrap ends
up in the right position. To see this, consider the subtraction 30 – 15 (binary
11110 – 1111). To keep things simple, imagine that a char is four bits. The integer
30 then takes up two four-bit chars and is represented as:
(0001 1110) : (1 14)

whereas 15 takes up one char and is represented as 1111 (15). When sub-
tracting, start by subtracting 15 from 14 and end up “wrapping” back to 15 as
illustrated in Table 3-1.

Table 3-1: Subtraction Wrapping Behavior

DECIMAL BINARY

0 0000 ¨ b. wrap back around to the bottom

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

(Continued)

c03.indd 99c03.indd 99 12/20/2012 12:45:57 PM12/20/2012 12:45:57 PM

100 Chapter 3 n Secure Key Exchange over an Insecure Medium

DECIMAL BINARY

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110 ¨ a. start here, go backward 15 steps

15 1111 ¨ c. end here

Because 15 is greater than 14, you set the borrow bit and subtract one extra
from the preceding char, ending up with the representation (0 15) (0000 1111),
which is the correct answer.

To be a bit more memory effi cient, you should also contract the response
before returning. That is, look for extraneous chars ints on the left side and
remove them, as shown in Listing 3-8.

Listing 3-8: “huge.c” contract

/**

 * Go through h and see how many of the left-most bytes are unused.

 * Remove them and resize h appropriately.

 */

void contract(huge *h)

{

 int i = 0;

 while (!(h->rep[i]) && (i < h->size)) { i++; }

 if (i && i < h->size)

 {

 unsigned char *tmp = &h->rep[i];

 h->rep = (unsigned char *) calloc(h->size - i,

 sizeof(unsigned char));

 memcpy(h->rep, tmp, h->size - i);

 h->size -= i;

 }

}

This happens in two steps. First, fi nd the leftmost non-zero char, whose posi-
tion is contained in i. Second, resize the array representation of h. This works,
obviously, just like expansion but in reverse.

As shown earlier, addition and subtraction are somewhat straightforward;
you can take advantage of the underlying machine architecture to a large extent;

Table 3-1 (continued)

c03.indd 100c03.indd 100 12/20/2012 12:45:57 PM12/20/2012 12:45:57 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 101

most of your work involves memory management and keeping track of carries
and borrows.

Implementing Large-Number Multiplication
Multiplication and division aren’t quite so easy, unfortunately. If you tried to
multiply “backward” one char at a time as you did with addition, you’d never
even come close to getting the right result. Of course, multiplication is just
successive adding — multiplying fi ve by three involves adding fi ve to itself
three times — 5 � 5 � 5 � 3 * 5 � 15. This suggests an easy implementation of
a multiplication algorithm. Remember, though, that you’re going to be dealing
with astronomical numbers. Adding fi ve to itself three times is not a terribly
big deal — it wouldn’t even be a big deal if you did it in the reverse and added
three to itself fi ve times. But adding a 512-bit number to itself 2512 times would
take ages, even on the fastest desktop computer. As a result, you have to look
for a way to speed this up.

When you were in elementary school, you were probably taught how to do
multi-digit multiplication like this:

123
456

738
6150

49200

56088

�

�

You may have never given much thought to what you were doing, or why
this works, but notice that you’ve shortened what might otherwise have been
123 addition operations down to 3. A more algebraic way to represent this same
multiplication is

(400 � 50 � 6) * 123

(4 * 10^2 � 5 * 10 1̂ � 6 * 10^0) * 123

(4 * 10^2) * 123 � (5 * 10 1̂) * 123 � (6 * 10^0) * 123
(distributivity of multiplication)

4 * 123 * 10^2 � 5 * 123 * 10 1̂ � 6 * 123 * 10^0

492 * 10^2 � 615 * 10 1̂ � 123 * 10^0

Because multiplying by 10n just involves concatenating n zeros onto the result,
this is simply

49200 � 6150 � 738 � 56088

What you actually did at each step was to first multiply 123 by one of
the digits of 456, and then shift it left — that is, concatenate a zero. Can you do the
same thing with binary multiplication? Yes, you can. In fact, it’s signifi cantly

c03.indd 101c03.indd 101 12/20/2012 12:45:58 PM12/20/2012 12:45:58 PM

102 Chapter 3 n Secure Key Exchange over an Insecure Medium

easier because the interim multiplications — the multiplication by the digits of
456 — are unnecessary. You either multiply by 1 or 0 at each step, so the answer
is either the fi rst number or just 0. Consider the multiplication of 12 (binary
1100) by 9 (1001):

1100
1001

1100
00000

000000
1100000

1101100

�

�

Here, the 12 is left-shifted 0 times and 3 times, because the bits at positions 0 and 3
of the multiplicand 1001 are set. The two resulting values — 1100 and 1100000 — are
added together to produce 26 � 25 � 23 � 22 � 108, the expected answer.

Now you’ve reduced what might have been an O(2n) operation to a simple
O(n) operation, where n is the number of bits of the smaller of the two operators.
In practice, it really doesn’t matter if you try to optimize and use the smaller
number to perform the multiplication, so this implementation just takes the
numbers as given.

In code, this algorithm is implemented as shown in Listing 3-9 and illustrated
in Figure 3-3.

Listing 3-9: “huge.c” multiply

/**

 * Multiply h1 by h2, overwriting the value of h1.

 */

void multiply(huge *h1, huge *h2)

{

 unsigned char mask;

 unsigned int i;

 huge temp;

 set_huge(&temp, 0);

 copy_huge(&temp, h1);

 set_huge(h1, 0);

 i = h2->size;

 do

 {

c03.indd 102c03.indd 102 12/20/2012 12:45:58 PM12/20/2012 12:45:58 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 103

 i--;

 for (mask = 0x01; mask; mask <<= 1)

 {

 if (mask & h2->rep[i])

 {

 add(h1, &temp);

 }

 left_shift(&temp);

 }

 }

 while (i);

}

First, notice that you need a couple of utility routines: copy_huge, free_huge,
and set_huge. The implementations of the fi rst two are straightforward in
Listing 3-10.

Listing 3-10: “huge.c” copy_huge and free_huge

void copy_huge(huge *tgt, huge *src)

{

 if (tgt->rep)

 {

 free(tgt->rep);

 }

 tgt->size = src->size;

 tgt->rep = (unsigned char *)

 calloc(src->size, sizeof(unsigned char));

 memcpy(tgt->rep, src->rep,

 (src->size * sizeof(unsigned char)));

}

void free_huge(huge *h)

{

 if (h->rep)

 {

 free(h->rep);

 }

}

To be more generally useful, set_huge is perhaps a bit more complex than
you would expect. After all, what you’re doing here is copying an int into a
byte array. However, you need to be as space-effi cient as possible, so you need
to look at the int in question and fi gure out the minimum number of bytes that
it can fi t into. Note that this space-effi ciency isn’t merely a performance concern;

c03.indd 103c03.indd 103 12/20/2012 12:45:58 PM12/20/2012 12:45:58 PM

104 Chapter 3 n Secure Key Exchange over an Insecure Medium

the algorithms illustrated here don’t work at all if the huge presented includes
extraneous leading zeros. And, of course, you have to deal with little-endian/
big-endian conversion. You can accomplish this as shown in Listing 3-11.

Figure 3-3: Large number multiplication

010 10 101

h2

h2 & 0×01

h2 & 0×02

h2 & 0×04

h2 & 0×08

h2 & 0×10

h2 & 0×20

h2 & 0×40

h2 & 0×80

110 01 110 110 01 110

010 10 101 010 101 011

010 10 101 001 11 0011 0 001 11 0011 0

010 10 101 001 01 1001 10 001 01 1001 10

010 10 101 000 00 1101 110

010 10 101 000 00 01101 110 000 00 0111 0101

010 10 101 000 01 0010 01 110

010 10 101 000 01 00010 01 110 000 01 00010 01 110

010 10 101 000 00 000110 01 110

tmp

h1

+

+

+

+

c03.indd 104c03.indd 104 12/20/2012 12:45:58 PM12/20/2012 12:45:58 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 105

Listing 3-11: “huge.c” set_huge

void set_huge(huge *h, unsigned int val)

{

 unsigned int mask, i, shift;

 h->size = 4;

 // Figure out the minimum amount of space this “val” will take

 // up in chars (leave at least one byte, though, if “val” is 0).

 for (mask = 0xFF000000; mask > 0x000000FF; mask >>=8)

 {

 if (val & mask)

 {

 break;

 }

 h->size--;

 }

 h->rep = (unsigned char *) malloc(h->size);

 // Now work backward through the int, masking off each 8-bit

 // byte (up to the first 0 byte) and copy it into the “huge”

 // array in big-endian format.

 mask = 0x000000FF;

 shift = 0;

 for (i = h->size; i; i--)

 {

 h->rep[i - 1] = (val & mask) >> shift;

 mask <<= 8;

 shift += 8;

 }

}

Notice that at the top of the multiply routine you see
set_huge(&temp, 0);

but then you overwrite it immediately with a call to copy_huge. This is necessary
because the huge temp is allocated on the stack and is initialized with garbage
values. Because copy_huge immediately tries to free any pointer allocated, you
need to ensure that it’s initialized to NULL. set_huge accomplishes this.

Start multiplying by setting aside a temporary space for the left-shifted fi rst
operand, copy that into the temporary space, and reset h1 to 0. Then, loop
through each char of h2 (backward, again), and check each bit of each char. If
the bit is a 1, add the contents of temp to h1. If the bit is a zero, do nothing. In
either case, left-shift temp by one position. Left-shifting a huge is, of course, a
separate operation that works on one char at a time, right-to-left.

c03.indd 105c03.indd 105 12/20/2012 12:45:58 PM12/20/2012 12:45:58 PM

106 Chapter 3 n Secure Key Exchange over an Insecure Medium

Listing 3-12: “huge.c” left_shift

void left_shift(huge *h1)

{

 int i;

 int old_carry, carry = 0;

 i = h1->size;

 do

 {

 i--;

 old_carry = carry;

 carry = (h1->rep[i] & 0x80) == 0x80;

 h1->rep[i] = (h1->rep[i] << 1) | old_carry;

 // Again, if C exposed the overflow bit...

 }

 while (i);

 if (carry)

 {

 expand(h1);

 }

}

Because each char can overfl ow into the next-leftmost char, it’s necessary to
manually keep track of the carry bit and expand the result if it overfl ows, just
as you did for addition.

This double-and-add approach to multiplication is important when dealing
with binary arithmetic. In fact, you’ve seen it once before, in Chapter 2, when
you implemented AES multiplication in terms of the dot and xtime opera-
tions. It comes up later when I redefi ne multiplication yet again in the context
of elliptic curves. However, this is not the most effi cient means of performing
binary multiplication. Karatsuba’s algorithm, originally published by Anatolii
Karatsuba in the “Proceedings of the USSR Academy of Sciences” in 1962, is
actually much faster, albeit much more complicated to implement — I won’t
cover it here, but you can consult a book on advanced algorithms if you’re
curious. However, this routine runs well enough on modern hardware, so
just leave it as is.

Implementing Large-Number Division
Finally, what about division? Division is, of course, the inverse of multiplica-
tion, so it makes sense that you ought to be able to reverse the multiplication
process and perform a division. Consider the multiplication of 13 by 5, in
binary:

c03.indd 106c03.indd 106 12/20/2012 12:45:58 PM12/20/2012 12:45:58 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 107

 1101
 101

1101 (1)
00000 (0)
110100 (1)

1000001

�

�

To reverse this, you have as input 100001 and 1101, and you want to recover
101. You can do this by subtracting and right-shifting:

1000001 (65)
110100

001101 (13 left shifted twice � 13 * 22 � 13 * 4 � 52)
011010 (52 right-shifted once — do nothing)
001101
001101 (52 right-shifted twice — back to the original value of 13)

000000

�

�

�

If you just keep track of which iterations involved a subtraction — that is, which
right-shifts yielded a value less than the current value of the dividend — you
get “subtract” “nothing” “subtract” or, in binary, 101, which is exactly the value
you were looking for.

Of course, there’s one immediate problem with implementing this: How do
you know to left-shift 13 twice before subtracting it? You could look at the bit-
length of the dividend — 65 in the example — and compare it to the bit-length
of the divisor (13), which tells you that you need to left-shift by two positions.
However, fi nding the bit-length of a value is somewhat non-trivial. An easier
(and faster) approach is just to keep left-shifting the divisor until it’s greater
than the dividend.

Finally, you’re doing integer division here — there’s no compensation for
uneven division. So what happens if you divide 14 by, say, 5?

1100
1010 (5 left-shifted once)

0100
101 (do nothing, 5 > 4)

0100

�

�

Now you get a quotient of 10 (2) and the dividend, at the end of the operation,
is 4, which happens to be the remainder of the division of 14 by 5. Remember

c03.indd 107c03.indd 107 12/20/2012 12:45:58 PM12/20/2012 12:45:58 PM

108 Chapter 3 n Secure Key Exchange over an Insecure Medium

the discussion of the importance of modular arithmetic to the RSA cryptosys-
tem? As it turns out, you almost never call divide for the quotient. Instead, you
are interested in the remainder (or modulus). The complete division routine is
implemented in Listing 3-13.

Listing 3-13: “huge.c” divide

/**

 * dividend = numerator, divisor = denominator

 *

 * Note that this process destroys divisor (and, of course,

 * overwrites quotient). The dividend is the remainder of the

 * division (if that’s important to the caller). The divisor will

 * be modified by this routine, but it will end up back where it

 * “started”.

 */

void divide(huge *dividend, huge *divisor, huge *quotient)

{

 int bit_size, bit_position;

 // “bit_position” keeps track of which bit, of the quotient,

 // is being set or cleared on the current operation.

 bit_size = bit_position = 0;

 // First, left-shift divisor until it’s >= than the dividend

 while (compare(divisor, dividend) < 0)

 {

 left_shift(divisor);

 bit_size++;

 }

 // overestimates a bit in some cases

 quotient->size = (bit_size / 8) + 1;

 quotient->rep = (unsigned char *)

 calloc(quotient->size, sizeof(unsigned char));

 memset(quotient->rep, 0, quotient->size);

 bit_position = 8 - (bit_size % 8) - 1;

 do

 {

 if (compare(divisor, dividend) <= 0)

 {

 subtract(dividend, divisor); // dividend -= divisor

 quotient->rep[(int) (bit_position / 8)] |=

 (0x80 >> (bit_position % 8));

 }

 if (bit_size)

 {

c03.indd 108c03.indd 108 12/20/2012 12:45:59 PM12/20/2012 12:45:59 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 109

 right_shift(divisor);

 }

 bit_position++;

 }

 while (bit_size--);

}

Start by left shifting the divisor until it’s greater than or equal to the dividend.
Most of the time, this means you “overshoot” a bit, but that’s not a problem
because you compare again when you start the actual division.
 while (compare(divisor, dividend) < 0)

 {

 left_shift(divisor);

 bit_size++;

 }

Comparing Large Numbers
Notice the call to the compare function. Remember the subtract function a while
ago — in theory, you could just call subtract here, and check to see if the result
is negative. Two problems with that approach are that a) subtract overwrites
its fi rst operator, and b) you don’t have any provision for negative numbers.
Of course, you could work around both of these, but a new compare function,
shown in Listing 3-14, serves better.

Listing 3-14: “huge.c” compare

/**

 * Compare h1 to h2. Return:

 * 0 if h1 == h2

 * a positive number if h1 > h2

 * a negative number if h1 < h2

 */

int compare(huge *h1, huge *h2)

{

 int i, j;

 if (h1->size > h2->size)

 {

 return 1;

 }

 if (h1->size < h2->size)

 {

 return -1;

 }

 // Otherwise, sizes are equal, have to actually compare.

(Continued)

c03.indd 109c03.indd 109 12/20/2012 12:45:59 PM12/20/2012 12:45:59 PM

110 Chapter 3 n Secure Key Exchange over an Insecure Medium

 // only have to compare “hi-int”, since the lower ints

 // can’t change the comparison.

 i = j = 0;

 // Otherwise, keep searching through the representational integers

 // until one is bigger than another - once we’ve found one, it’s

 // safe to stop, since the “lower order bytes” can’t affect the

 // comparison

 while (i < h1->size && j < h2->size)

 {

 if (h1->rep[i] < h2->rep[j])

 {

 return -1;

 }

 else if (h1->rep[i] > h2->rep[j])

 {

 return 1;

 }

 i++;

 j++;

 }

 // If we got all the way to the end without a comparison, the

 // two are equal

 return 0;

}

If the sizes of the huges to be compared are different, you don’t have to do
any real comparison. A fi ve-char huge always has a larger value than a three-
char huge, assuming you’ve been diligent in compressing representations to
remove leading 0’s:
 if (h1->size > h2->size)

 {

 return 1;

 }

 if (h1->size < h2->size)

 {

 return -1;

 }

Otherwise, you need to do a char-by-char comparison. You can safely stop
at the fi rst non-equal char, though. If the fi rst char of h1 is larger than the fi rst
char of h2, the lower-order integers can’t change the comparison.
 while (i < h1->size && j < h2->size)

 {

 if (h1->rep[i] < h2->rep[j])

 {

 return -1;

 }

c03.indd 110c03.indd 110 12/20/2012 12:45:59 PM12/20/2012 12:45:59 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 111

 else if (h1->rep[i] > h2->rep[j])

 {

 return 1;

 }

 i++;

 j++;

 }

Of course, if you go through both h1 and h2, and they’re both the same size,
and each char is equal, then they both represent equal numbers.

Referring to the original divide function, the second step is to allocate space
for the quotient by keeping track of how many times the dividend was left
shifted. The quotient can’t be any bigger than this, which overallocates just a
bit, but not so much that you need to worry about it.

 quotient->size = (bit_size / 8) + 1;

 quotient->rep = (unsigned char *)

 calloc(quotient->size, sizeof(unsigned char));

 memset(quotient->rep, 0, quotient->size);

Finally, start the “compare and subtract” loop. If the current dividend, after
being left-shifted, is less than the current divisor, then the quotient should have
that bit position set, and the current dividend should be subtracted from the
divisor. In all cases, the dividend should be right-shifted by one position for
the next loop iteration. Although the comparison, subtraction and right-shift
operators are easy to understand — they just call the compare and subtract
functions coded earlier — the setting of the “current” bit of the quotient is
somewhat complex:
 quotient->rep[(int) (bit_position / 8)] |=

 (0x80 >> (bit_position % 8));

Remember that bit_position is absolute. If quotient is a 128-bit number,
bit_position ranges from 0 to 127. So, in order to set the correct bit, you need
to determine which char this refers to in the array of chars inside quotient and
then determine which bit inside that char you need to set (that is, or). This may
look familiar; this is essentially the SET_BIT macro developed in Chapter 2.

Finally, right-shift the divisor at each step except the last:
 if (bit_size)

 {

 right_shift(divisor);

 }

Technically, you could get away with always right-shifting and not skipping
this on the last step, but by doing this, you guarantee that divisor is reset to
the value that was passed in to the function originally. This is useful behavior
because you are calling “divide” over and over again with the same argument,
which keeps you from having to make a temporary copy of the divisor.

right_shift, the reverse of left_shift, is shown in Listing 3-15.

c03.indd 111c03.indd 111 12/20/2012 12:45:59 PM12/20/2012 12:45:59 PM

112 Chapter 3 n Secure Key Exchange over an Insecure Medium

Listing 3-15: “huge.c” right_shift

static void right_shift(huge *h1)

{

 int i;

 unsigned int old_carry, carry = 0;

 i = 0;

 do

 {

 old_carry = carry;

 carry = (h1->rep[i] & 0x01) << 7;

 h1->rep[i] = (h1->rep[i] >> 1) | old_carry;

 }

 while (++i < h1->size);

 contract(h1);

}

Optimizing for Modulo Arithmetic
One optimization you might as well make is to allow the caller to indicate that
the quotient is unimportant. For public-key cryptography operations you never
actually care what the quotient is; you’re interested in the remainder, which the
dividend operator is turned into after a call to divide. Extend divide just a bit
to enable the caller to pass in a NULL pointer for quotient that indicates the
quotient itself should not be computed, as shown in Listing 3-16.

Listing 3-16: “huge.c” divide

void divide(huge *dividend, huge *divisor, huge *quotient)

{

 int i, bit_size, bit_position;

 bit_size = bit_position = 0;

 while (compare(divisor, dividend) < 0)

 {

 left_shift(divisor);

 bit_size++;

 }

 if (quotient)

 {

 quotient->size = (bit_size / 8) + 1;

 quotient->rep = (unsigned char *)

 calloc(quotient->size, sizeof(unsigned char));

 memset(quotient->rep, 0, quotient->size);

 }

c03.indd 112c03.indd 112 12/20/2012 12:45:59 PM12/20/2012 12:45:59 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 113

 bit_position = 8 - (bit_size % 8) - 1;

 do

 {

 if (compare(divisor, dividend) <= 0)

 {

 subtract(dividend, divisor);

 if (quotient)

 {

 quotient->rep[(int) (bit_position / 8)] |=

 (0x80 >> (bit_position % 8));

 }

 }

 if (bit_size)

 {

 right_shift(divisor);

 }

 bit_position++;

 }

 while (bit_size--);

}

One note about the choice to use chars–that is, bytes — instead of ints for the
huge arrays: You could reduce the number of add and subtract operations by a
factor of four if you represent huges as integer arrays rather than char arrays.
This is actually how OpenSSL, GMP, and Java implement their own arbitrary-
precision math libraries. However, this introduces all sorts of problems later
on when you try to convert from big endian to little endian. You also need to
keep close track of the exact non-padded size of the huge. A three-byte numeral
uses up one int; however, you’d need to remember that the leading byte of that
int is just padding. RSA implementations in particular are very fi nicky about
result length; if they expect a 128-byte response and you give them 129 bytes,
they error out without even telling you what you did wrong.

Using Modulus Operations to Effi ciently Compute
Discrete Logarithms in a Finite Field
The modulus operation — that is, the remainder left over after a division opera-
tion — is important to modern public-key cryptography and is likely going to
remain important for the foreseeable future. In general, and especially with
respect to the algorithms currently used in SSL/TLS, public-key operations
require that all mathematical operations — addition, subtraction, multiplica-
tion, division — be performed in such a fi nite fi eld. In simple terms, this just
means that each operation is followed by a modulus operation to truncate it
into a fi nite space.

c03.indd 113c03.indd 113 12/20/2012 12:45:59 PM12/20/2012 12:45:59 PM

114 Chapter 3 n Secure Key Exchange over an Insecure Medium

Given the importance of modulus arithmetic to public-key cryptography, it’s
been the subject of quite a bit of research. Every computational cycle that can
be squeezed out of a modulus operation is going to go a long way in speeding
up public-key cryptography operations. There are a couple of widely imple-
mented ways to speed up cryptography operations: the Barrett reduction and the
Montgomery reduction. They work somewhat similarly; they trade a relatively
time-consuming up-front computation for faster modulus operations. If you’re
going to be computing a lot of moduli against a single value — which public-key
cryptography does — you can save a signifi cant amount of computing time by
calculating and storing the common result.

I don’t cover these reductions in detail here. The divide operation shown
earlier computes moduli fast enough for demonstration purposes, although
you can actually observe a noticeable pause whenever a private-key operation
occurs. If you’re interested, the Barrett reduction is described in detail in the
journal “Advances in Cryptology ’86” (http://www.springerlink.com/content/
c4f3rqbt5dxxyad4/), and the Montgomery reduction in “Math Computation
vol. 44” (http://www.jstor.org/pss/2007970).

Encryption and Decryption with RSA

You now have enough supporting infrastructure to implement RSA encryption
and decryption. How the exponents d and e or the corresponding modulus n
are computed has not yet been discussed, but after you’ve correctly determined
them, you just need to pass them into the encrypt or decrypt routine. How
you specify the message m is important; for now, just take the internal binary
representation of the entire message to be encrypted as m. After you have done
this, you can implement encryption as shown in Listing 3-17.

Listing 3-17: “rsa.c” rsa_compute

/**

 * Compute c = m^e mod n.

 */

void rsa_compute(huge *m, huge *e, huge *n, huge *c)

{

 huge counter;

 huge one;

 copy_huge(c, m);

 set_huge(&counter, 1);

 set_huge(&one, 1);

 while (compare(&counter, e) < 0)

 {

 multiply(c, m);

 add(&counter, &one);

 }

c03.indd 114c03.indd 114 12/20/2012 12:46:00 PM12/20/2012 12:46:00 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 115

 divide(c, n, NULL);

 free_huge(&counter);

 free_huge(&one);

 // Remainder (result) is now in c

}

Remember that encryption and decryption are the exact same routines, just
with the exponents switched; you can use this same routine to encrypt by pass-
ing in e and decrypt by passing in d. Just keep multiplying m by itself (notice
that m was copied into c once at the beginning) and incrementing a counter by
1 each time until you’ve done it e times. Finally, divide the whole mess by n and
the result is in c. Here’s how you might call this:

 huge e, d, n, m, c;

 set_huge(&e, 79);

 set_huge(&d, 1019);

 set_huge(&n, 3337);

 set_huge(&m, 688);

 rsa_compute(&m, &e, &n, &c);

 printf(“Encrypted to: %d\n”, c.rep[0]);

 set_huge(&m, 0);

 rsa_compute(&c, &d, &n, &m);

 printf(“Decrypted to: %d\n”, m.rep[0]);

Encrypting with RSA
Because this example uses small numbers, you can verify the accuracy by just
printing out the single int representing c and m:
Encrypted to: 1570

Decrypted to: 688

The encrypted representation of the number 688 is 1,570. You can decrypt
and verify that you get back what you put in.

However, this public exponent 79 is a small number for RSA, and the modu-
lus 3,337 is microscopic — if you used numbers this small, an attacker could
decipher your message using pencil and paper. Even with these small numbers,
68879 takes up 1,356 bytes. And this is for a small e. For reasons you see later, a
more common e value is 65,537.

NOTE Note that everybody can, and generally does, use the same e value as
long as the n — and by extension, the d — are different.

A 32-bit integer raised to the power of 65,537 takes up an unrealistic amount
of memory. I tried this on my computer and, after 20 minutes, I had computed

c03.indd 115c03.indd 115 12/20/2012 12:46:00 PM12/20/2012 12:46:00 PM

116 Chapter 3 n Secure Key Exchange over an Insecure Medium

68849422, which took up 58,236 bytes to represent. At this point, my computer
fi nally gave up and stopped allocating memory to my process.

First, you need to get the number of multiplications under control. If you
remember when I fi rst discussed huge number multiplication, the naïve imple-
mentation that would have involved adding a number m to itself n times to
compute m � n was rejected. Instead, you developed a technique of doubling and
adding. Can you do something similar with exponentiation? In fact, you can.
Instead of doubling and adding, square and multiply. By doing so, you reduce
65,537 operations down to log2 65,537 � 17 operations.

Fundamentally, this works the same as double and add; cycle through the
bits in the exponent, starting with the least-signifi cant bit. If the bit position is
1, perform a multiplication. At each stage, square the running exponent, and
that’s what you multiply by at the 1 bits. Incidentally, if you look at the binary
representation of 65,537 � 10000000000000001, you can see why it’s so appeal-
ing for public-key operations; it’s big enough to be useful, but with just two 1
bits, it’s also quick to operate on. You square m 17 times, but only multiply the
fi rst and 17th results.

NOTE Why 65,537? Actually, it’s the smallest prime number (which e must
be) that can feasibly be used as a secure RSA public-key exponent. There are
only four other prime numbers smaller than 65,537 that can be represented
in just two 1 bits: 3, 5, 17, and 257, all of which are far too small for the RSA
algorithm. 65,537 is also the largest such number that can be represented in
32 bits. You could, if you were so inclined, take advantage of this and speed
up computations by using native arithmetic operations.

If it’s not clear that this should work for exponentiation as well as for multi-
plication, consider x10. This, expanded, is

xxxxxxxxxx
(xxxxx)(xxxxx)
(xxxxx)2

[(xx)(xx)x]2

[(xx)2x]2

[((x2)2)x]2

Notice how you can successively split the x’s in half, reducing them to squaring
operations each time. It should be clear that you can do this with any number;
you may have a spare x left over, if the exponent is an odd number, but that’s OK.

If you look at the binary representation of the decimal number 10 (1010 in
binary) and you work backward through its binary digits, squaring at each
step, you get:

c03.indd 116c03.indd 116 12/20/2012 12:46:00 PM12/20/2012 12:46:00 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 117

x 0

x2 1 ¨ multiply

(x2)2 0

((x2) 2) 2 1 ¨ multiply

multiplying the two “hits” together, you get x2((x2)2)2 or [((x 2)2)x]2 which is what
you got when you deconstructed decimal 10 in the fi rst place.

Listing 3-18 shows how you can implement this in code. Compare this to the
implementation of multiply in Listing 3-9.

Listing 3-18: “huge.c” exponentiate

/**

 * Raise h1 to the power of exp. Return the result in h1.

 */

void exponentiate(huge *h1, huge *exp)

{

 int i = exp->size, mask;

 huge tmp1, tmp2;

 set_huge(&tmp1, 0);

 set_huge(&tmp2, 0);

 copy_huge(&tmp1, h1);

 set_huge(h1, 1);

 do

 {

 i--;

 for (mask = 0x01; mask; mask <<= 1)

 {

 if (exp->rep[i] & mask)

 {

 multiply(h1, &tmp1);

 }

 // Square tmp1

 copy_huge(&tmp2, &tmp1);

 multiply(&tmp1, &tmp2);

 }

 }

 while (i);

 free_huge(&tmp1);

 free_huge(&tmp2);

}

c03.indd 117c03.indd 117 12/20/2012 12:46:00 PM12/20/2012 12:46:00 PM

118 Chapter 3 n Secure Key Exchange over an Insecure Medium

This works; you’ve drastically reduced the number of multiplications needed
to compute an exponentiation. However, you still haven’t addressed the primary
problem of memory consumption. Remember that you allocated 56 kilobytes of
memory to compute an interim result — just throw it away when you compute
the modulus at the end of the operation. Is this really necessary? As it turns out,
it’s not. Because the modulus operator is distributive — that is, (abc) % n � [a
% n * b % n * c % n] % n, you can actually compute the modulus at each step.
Although this results in more computations, the memory savings are drastic.
Remember that multiplications take as many addition operations as there are
bits in the representation as well, so reducing the size of the numbers being
multiplied actually speeds things up considerably.

Listing 3-19, then, is the fi nal RSA computation (me) % n, with appropriate
speed-ups.

Listing 3-19: “huge.c” mod_pow

/**

 * Compute c = m^e mod n.

 *

 * Note that this same routine is used for encryption and

 * decryption; the only difference is in the exponent passed in.

 * This is the “exponentiate” algorithm, with the addition of a

 * modulo computation at each stage.

 */

void mod_pow(huge *h1, huge *exp, huge *n, huge *h2)

{

 unsigned int i = exp->size;

 unsigned char mask;

 huge tmp1, tmp2;

 set_huge(&tmp1, 0);

 set_huge(&tmp2, 0);

 copy_huge(&tmp1, h1);

 set_huge(h2, 1);

 do

 {

 i--;

 for (mask = 0x01; mask; mask <<= 1)

 {

 if (exp->rep[i] & mask)

 {

 multiply(h2, &tmp1);

 divide(h2, n, NULL);

 }

 // square tmp1

 copy_huge(&tmp2, &tmp1);

c03.indd 118c03.indd 118 12/20/2012 12:46:00 PM12/20/2012 12:46:00 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 119

 multiply(&tmp1, &tmp2);

 divide(&tmp1, n, NULL);

 }

 }

 while (i);

 free_huge(&tmp1);

 free_huge(&tmp2);

 // Result is now in “h2”

}

Besides the introduction of a call to divide, for its side effect of computing a
modulus, and the substitution of m and c for h1, Listing 3-19 is identical to the
exponentiate routine in Listing 3-18. This works, and performs reasonably
quickly, using a reasonable amount of memory, even for huge values of m, e, and
n. Given a message m and a public key e and n, you encrypt like this:
 huge c;

 mod_pow(&m, &e, &n, &c);

Decrypting with RSA
Decryption is identical, except that you swap e with d and of course you switch
c and m:
 huge m;

 mod_pow(&c, &d, &n, &e);

There is one subtle, but fatal, security fl aw with this implementation of decrypt,
however. Notice that you multiply and divide log2 d times as you iterate through
the bits in d looking for 1 bits. This is not a problem. However, you do an addi-
tional multiply and divide at each 1 bit in the private exponent d. These multiply
and divide operations are reasonably effi cient, but not fast. In fact, they take long
enough that an attacker can measure the time spent decrypting and use this to
determine how many 1 bits were in the private exponent, which is called a timing
attack. This information drastically reduces the number of potential private keys
that an attacker has to try before fi nding yours. Remember, part of the security
of the RSA public key cryptosystem is the infeasibility of a brute-force attack.
The most straightforward way to correct this is to go ahead and perform the
multiply and divide even at the 0 bits of the exponent, but just throw away
the results. This way, the attacker sees a uniform duration for every private key
operation. Of course, you should only do this for the private-key operations.
You don’t care if an attacker can guess your public key (it’s public, after all).

It may occur to you that, if the modulus operation is distributive through-
out exponentiation, it must also be distributive throughout multiplication
and even addition. It is perfectly reasonable to defi ne “modulus-aware” addition

c03.indd 119c03.indd 119 12/20/2012 12:46:00 PM12/20/2012 12:46:00 PM

120 Chapter 3 n Secure Key Exchange over an Insecure Medium

and multiplication routines and call those from exponentiation routine. This
would actually negate the need for the division at each step of the exponentiation.
There are actually many additional speed-ups possible; real implementations,
of course, enable all of these. However, this code is performant enough.

Encrypting a Plaintext Message
So, now that you have a working RSA encrypt and decrypt algorithm, you’re still
missing two important pieces of the puzzle. The fi rst is how keys are generated
and distributed. The topic of key distribution actually takes up all of Chapter 5.
The second topic is how to convert a plaintext message into a number m to be
passed into rsa_compute. Each rsa_compute operation returns a result mod n.
This means that you can’t encrypt blocks larger than n without losing informa-
tion, so you need to chop the input up into blocks of length n or less. On the fl ip
side, if you want to encrypt a very small amount of data, or the non-aligned
end of a long block of data, you need to pad it to complicate brute-force attacks.

Just like the previous chapter’s symmetric algorithms, RSA works on blocks
of data. Each block includes a header and some padding (of at least 11 bytes), so
the resulting input blocks are modulus_length -11 bytes minimum. The header is
pretty simple: It’s a 0 byte, followed by a padding identifi er of 0, 1, or 2. I examine
the meaning of the different padding bytes later. For RSA encryption, always
use padding identifi er 2, which indicates that the following bytes, up to the fi rst
0 byte, are padding and should be discarded. Everything following the fi rst 0
byte, up to the length of the modulus n in bytes, is data.

NOTE Unlike the symmetric algorithms of the previous chapter, RSA pads at
the beginning of its block.

To implement this in code, follow these steps:

 1. Defi ne an rsa_key type that holds the modulus and exponent of a key, as
shown in Listing 3-20. Notice that it doesn’t matter whether it’s a public
or a private key. Each includes a modulus and an exponent; the only dif-
ference is which exponent.

Listing 3-20: “rsa.h” rsa_key structure

typedef struct

{

 huge *modulus;

 huge *exponent;

}

rsa_key;

 2. Defi ne an rsa_encrypt routine that takes in the data to be encrypted along
with the public key. Notice also that the output is a pointer to a pointer.

c03.indd 120c03.indd 120 12/20/2012 12:46:00 PM12/20/2012 12:46:00 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 121

Due to the way padding works, it’s diffi cult for the caller to fi gure out
how much space the decrypted data takes up (a one-byte payload could
encrypt to a 256-byte value!). As a result, listing 3-21 allocates space in
the target output array.

Listing 3-21: “rsa.c” rsa_encrypt

/**

 * The input should be broken up into n-bit blocks, where n is the

 * length in bits of the modulus. The output will always be n bits

 * or less. Per RFC 2313, there must be at least 8 bytes of padding

 * to prevent an attacker from trying all possible padding bytes.

 *

 * output will be allocated by this routine, must be freed by the

 * caller.

 *

 * returns the length of the data encrypted in output

 */

int rsa_encrypt(unsigned char *input,

 unsigned int len,

 unsigned char **output,

 rsa_key *public_key)

{

 int i;

 huge c, m;

 int modulus_length = public_key->modulus->size;

 int block_size;

 unsigned char *padded_block = (unsigned char *)

 malloc(modulus_length);

 int encrypted_size = 0;

 *output = NULL;

 while (len)

 {

 encrypted_size += modulus_length;

 block_size = (len < modulus_length - 11) ?

 len : (modulus_length - 11);

 memset(padded_block, 0, modulus_length);

 memcpy(padded_block + (modulus_length - block_size),

 input, block_size);

 // set block type

 padded_block[1] = 0x02;

 for (i = 2; i < (modulus_length - block_size - 1); i++)

 {

 // TODO make these random

 padded_block[i] = i;

 }

(Continued)

c03.indd 121c03.indd 121 12/20/2012 12:46:01 PM12/20/2012 12:46:01 PM

122 Chapter 3 n Secure Key Exchange over an Insecure Medium

 load_huge(&m, padded_block, modulus_length);

 mod_pow(&m, public_key->exponent, public_key->modulus, &c);

 *output = (unsigned char *) realloc(*output, encrypted_size);

 unload_huge(&c, *output + (encrypted_size - modulus_length),

 modulus_length);

 len -= block_size;

 input += block_size;

 free_huge(&m);

 free_huge(&c);

 }

 free(padded_block);

 return encrypted_size;

}

Figure 3-4: RSA Padding

R R R0

Block Type Random filler bytes Actual Payload

2 R R ...R D D DR 0 D DDR

 3. Figure out how long the block size is. It should be the same as the length
of the modulus, which is usually 512, 1024, or 2048 bits. There’s no fun-
damental reason why you couldn’t use any other modulus lengths if you
wanted, but these are the usual lengths. The encrypted result is the same
length as the modulus:
 int modulus_length = public_key->modulus->size;

 4. Allocate that much space and then fi ll up this block with the padding, as
described earlier, and encrypt it using rsa_compute.
 unsigned char *padded_block = (unsigned char *)

 malloc(modulus_length);

 5. Operate on the input data until there is no more. Figure out if you’re deal-
ing with a whole block (modulus-length – 11 bytes) or less than that,
copy the input to the end of the block (remember that in RSA, the padding
goes at the beginning), and set the padding type to 2.
 while (len)

 {

 encrypted_size += modulus_length;

 block_size = (len < modulus_length - 11) ?

 len : (modulus_length - 11);

c03.indd 122c03.indd 122 12/20/2012 12:46:01 PM12/20/2012 12:46:01 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 123

 memset(padded_block, 0, modulus_length);

 memcpy(padded_block + (modulus_length - block_size),

 input, block_size);

 // set block type

 padded_block[1] = 0x02;

 6. Technically speaking, you ought to follow this with random bytes of
padding, up to the beginning of the data. Throw security out the window
here, and just pad with sequential bytes:
 for (i = 2; i < (modulus_length - block_size - 1); i++)

 {

 // TODO make these random

 padded_block[i] = i;

 }

 7. RSA-encrypt the padded block:
 load_huge(&m, padded_block, modulus_length);

 rsa_compute(&m, public_key->exponent, public_key->modulus, &c);

Notice the new function load_huge. This function essentially just memcpy’s
a block into a huge, as shown in Listing 3-22:

Listing 3-22: “huge.c” load_huge

/**

 * Given a byte array, load it into a “huge”, aligning integers

 * appropriately

 */

void load_huge(huge *h, const unsigned char *bytes, int length)

{

 while (!(*bytes))

 {

 bytes++;

 length--;

 }

 h->size = length;

 h->rep = (unsigned char *) malloc(length);

 memcpy(h->rep, bytes, length);

}

NOTE One interesting point to note here is that you start by skipping over
the zero bytes. This is an important compatibility point. Most SSL implemen-
tations (including OpenSSL, GnuTLS, NSS and JSSE) zero-pad positive numbers
so that they aren’t interpreted as negative numbers by a two’s-complement-
aware large number implementation. This one isn’t, and zero-padding actually
confuses the comparison routine, so just skip them.

c03.indd 123c03.indd 123 12/20/2012 12:46:01 PM12/20/2012 12:46:01 PM

124 Chapter 3 n Secure Key Exchange over an Insecure Medium

 8. Returning to the rsa_encrypt function; now you’ve encrypted the input
block, and the result is in huge c. Convert this huge c into a byte array:

*output = (unsigned char *) realloc(*output, encrypted_size);

 unload_huge(&c, *output + (encrypted_size - modulus_length),

 modulus_length);

 9. Allocate space for the output at the end of the output array — if this is
the fi rst iteration, the end is the beginning — and unload_huge, shown in
Listing 3-23, into it.

Listing 3-23: “huge.c” unload_huge

void unload_huge(const huge *h, unsigned char *bytes, int length)

{

 memcpy(bytes + (length - h->size), h->rep, length);

}

 10. Adjust len and input and free the previously allocated huges for the next
iteration.
 len -= block_size;

 input += block_size;

 free_huge(&m);

 free_huge(&c);

 }

If the input is less than modulus_length – 11 bytes (which, for SSL/TLS, is
actually always the case), there will only be one iteration.

Decrypting an RSA-Encrypted Message
Decryption is, of course, the opposite.

You operate on blocks of modulus_length at a time, decrypt the block — again
using rsa_compute, but this time with the private key — and remove the pad-
ding, as shown in Listing 3-24.

Listing 3-24: “rsa.c” rsa_decrypt

/**

 * Convert the input into key-length blocks and decrypt, unpadding

 * each time.

 * Return -1 if the input is not an even multiple of the key modulus

 * length or if the padding type is not “2”, otherwise return the

 * length of the decrypted data.

 */

int rsa_decrypt(unsigned char *input,

 unsigned int len,

 unsigned char **output,

 rsa_key *private_key)

c03.indd 124c03.indd 124 12/20/2012 12:46:01 PM12/20/2012 12:46:01 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 125

{

 int i, out_len = 0;

 huge c, m;

 int modulus_length = private_key->modulus->size;

 unsigned char *padded_block = (unsigned char *) malloc(

 modulus_length);

 *output = NULL;

 while (len)

 {

 if (len < modulus_length)

 {

 fprintf(stderr, “Error - input must be an even multiple \

 of key modulus %d (got %d)\n”,

 private_key->modulus->size, len);

 free(padded_block);

 return -1;

 }

 load_huge(&c, input, modulus_length);

 mod_pow(&c, private_key->exponent,

 private_key->modulus, &m);

 unload_huge(&m, padded_block, modulus_length);

 if (padded_block[1] > 0x02)

 {

 fprintf(stderr, “Decryption error or unrecognized block \

 type %d.\n”, padded_block[1]);

 free_huge(&c);

 free_huge(&m);

 free(padded_block);

 return -1;

 }

 // Find next 0 byte after the padding type byte; this signifies

 // start-of-data

 i = 2;

 while (padded_block[i++]);

 out_len += modulus_length - i;

 *output = realloc(*output, out_len);

 memcpy(*output + (out_len - (modulus_length - i)),

 padded_block + i, modulus_length - i);

 len -= modulus_length;

 input += modulus_length;

(Continued)

c03.indd 125c03.indd 125 12/20/2012 12:46:01 PM12/20/2012 12:46:01 PM

126 Chapter 3 n Secure Key Exchange over an Insecure Medium

 free_huge(&c);

 free_huge(&m);

 }

 free(padded_block);

 return out_len;

}

This should be easy to follow, after the description of rsa_encrypt in
Listing 3-21 — the primary differences are that the input is always a multiple
of modulus_length; exit with an error if this is not the case. The block-length
computation is simpler. Check for padding type 2; most likely, if the decrypted
padding type is not 2, this represents a decryption error (for example, you
decrypted using the wrong private key). Remove the padding and copy the
resultant output, one block at a time, into the output array.

NOTE The previously described padding algorithm is called PKCS1.5 pad-
ding. There are other, even more secure padding algorithms such as OAEP.
For now, though, PKCS1.5 padding is just fi ne; the attacks that OAEP guards
against are all theoretical attacks, although interesting. Additionally, TLS v1.0
mandates this padding, so there’s not much point in implementing another
format unless it is used outside of SSL.
Note also that, technically speaking, you should also permit CBC chaining, as
well as other chaining algorithms such as OFB. However, SSL never uses RSA
for more than a single block, so this won’t be examined here. If you’re inter-
ested, the discussion on CBC in the previous chapter should make it simple to
add this feature.

Testing RSA Encryption and Decryption
Finally, develop a main routine, shown in Listing 3-25, that you can use to test
this out. How to compute e, d, and n has still not been covered, so hardcode
some default values that are used if nothing is passed in.

Listing 3-25: “rsa.c” test main routine

#ifdef TEST_RSA

const unsigned char TestModulus[] = {

0xC4, 0xF8, 0xE9, 0xE1, 0x5D, 0xCA, 0xDF, 0x2B,

0x96, 0xC7, 0x63, 0xD9, 0x81, 0x00, 0x6A, 0x64,

0x4F, 0xFB, 0x44, 0x15, 0x03, 0x0A, 0x16, 0xED,

0x12, 0x83, 0x88, 0x33, 0x40, 0xF2, 0xAA, 0x0E,

0x2B, 0xE2, 0xBE, 0x8F, 0xA6, 0x01, 0x50, 0xB9,

0x04, 0x69, 0x65, 0x83, 0x7C, 0x3E, 0x7D, 0x15,

c03.indd 126c03.indd 126 12/20/2012 12:46:01 PM12/20/2012 12:46:01 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 127

0x1B, 0x7D, 0xE2, 0x37, 0xEB, 0xB9, 0x57, 0xC2,

0x06, 0x63, 0x89, 0x82, 0x50, 0x70, 0x3B, 0x3F

};

const unsigned char TestPrivateKey[] = {

0x8a, 0x7e, 0x79, 0xf3, 0xfb, 0xfe, 0xa8, 0xeb,

0xfd, 0x18, 0x35, 0x1c, 0xb9, 0x97, 0x91, 0x36,

0xf7, 0x05, 0xb4, 0xd9, 0x11, 0x4a, 0x06, 0xd4,

0xaa, 0x2f, 0xd1, 0x94, 0x38, 0x16, 0x67, 0x7a,

0x53, 0x74, 0x66, 0x18, 0x46, 0xa3, 0x0c, 0x45,

0xb3, 0x0a, 0x02, 0x4b, 0x4d, 0x22, 0xb1, 0x5a,

0xb3, 0x23, 0x62, 0x2b, 0x2d, 0xe4, 0x7b, 0xa2,

0x91, 0x15, 0xf0, 0x6e, 0xe4, 0x2c, 0x41

};

const unsigned char TestPublicKey[] = { 0x01, 0x00, 0x01 };

int main(int argc, char *argv[])

{

 int exponent_len;

 int modulus_len;

 int data_len;

 unsigned char *exponent;

 unsigned char *modulus;

 unsigned char *data;

 rsa_key public_key;

 rsa_key private_key;

 if (argc < 3)

 {

 fprintf(stderr, “Usage: rsa [-e|-d] [<modulus> <exponent>] <data>\n”);

 exit(0);

 }

 if (argc == 5)

 {

 modulus_len = hex_decode(argv[2], &modulus);

 exponent_len = hex_decode(argv[3], &exponent);

 data_len = hex_decode(argv[4], &data);

 }

 else

 {

 data_len = hex_decode(argv[2], &data);

 modulus_len = sizeof(TestModulus);

 modulus = TestModulus;

 if (!strcmp(“-e”, argv[1]))

 {

 exponent_len = sizeof(TestPublicKey);

 exponent = TestPublicKey;

 }

(Continued)

c03.indd 127c03.indd 127 12/20/2012 12:46:01 PM12/20/2012 12:46:01 PM

128 Chapter 3 n Secure Key Exchange over an Insecure Medium

 else

 {

 exponent_len = sizeof(TestPrivateKey);

 exponent = TestPrivateKey;

 }

 }

 public_key.modulus = (huge *) malloc(sizeof(huge));

 public_key.exponent = (huge *) malloc(sizeof(huge));

 private_key.modulus = (huge *) malloc(sizeof(huge));

 private_key.exponent = (huge *) malloc(sizeof(huge));

 if (!strcmp(argv[1], “-e”))

 {

 unsigned char *encrypted;

 int encrypted_len;

 load_huge(public_key.modulus, modulus, modulus_len);

 load_huge(public_key.exponent, exponent, exponent_len);

 encrypted_len = rsa_encrypt(data, data_len, &encrypted, &public_key);

 show_hex(encrypted, encrypted_len);

 free(encrypted);

 }

 else if (!strcmp(argv[1], “-d”))

 {

 int decrypted_len;

 unsigned char *decrypted;

 load_huge(private_key.modulus, modulus, modulus_len);

 load_huge(private_key.exponent, exponent, exponent_len);

 decrypted_len = rsa_decrypt(data, data_len, &decrypted, &private_key);

 show_hex(decrypted, decrypted_len);

 free(decrypted);

 }

 else

 {

 fprintf(stderr, “unrecognized option flag ‘%s’\n”, argv[1]);

 }

 free(data);

 if (argc == 5)

 {

 free(modulus);

 free(exponent);

 }

}

#endif

c03.indd 128c03.indd 128 12/20/2012 12:46:02 PM12/20/2012 12:46:02 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 129

If called with only an input, this application defaults to the hardcoded keypair.
If you run this, you see
jdavies@localhost$ rsa -e abc

40f73315d3f74703904e51e1c72686801de06a55417110e56280f1f8471a3802406d2110011e1f38

7f7b4c43258b0a1eedc558a3aac5aa2d20cf5e0d65d80db3

The output is hex encoded as before. Notice that although you only encrypted
three bytes of input, you got back 64 bytes of output. The modulus is 512 bits,
so the output must also be 512 bits.

You can see this decoded:
jdavies@localhost$ rsa -d \ 0x40f73315d3f74703904e51e1c7\

2686801de06a55417110e56280f1f8471a3802406d2110011e1f387f\

7b4c43258b0a1eedc558a3aac5aa2d20cf5e0d65d80db3

616263

The decryption routine decrypts, removes the padding, and returns the origi-
nal input “616263” (the hex values of the ASCII characters a, b, and c). Note that
if you try to decrypt with the public key, you get gibberish; once encrypted, the
message can only be decrypted using the private key.

PROCEDURE FOR GENERATING RSA KEYPAIRS

Although code to generate RSA keypairs isn’t examined here, it’s not
prohibitively diffi cult to do so. The procedure is as follows:

 1. Select two random prime numbers p and q.

 2. Compute the modulus n = pq.

 3. Compute the totient function (p-1)(q-1)

 4. Select a random public exponent e < φ(n) (as previously mentioned,
65,537 is a popular choice).

 5. Perform a modular inversion (to be introduced shortly) to compute the
private exponent d: de % n = 1.

You also likely noticed that your computer slowed to a crawl while decrypt-
ing; encrypting isn’t too bad, because of the choice of public exponent (65,537).
Decrypting is slow — not unusably slow, but also not something you want to
try to do more than a few times a minute. It should come as no surprise to you
that reams of research have been done into methods of speeding up the RSA
decryption operation. None of them are examined here; they mostly involve
keeping track of the interim steps in the original computation of the private key
and taking advantage of some useful mathematical properties thereof.

So, because public-key cryptography can be used to exchange secrets, why
did Chapter 2 spend so much time (besides the fact that it’s interesting) looking
at private-key cryptography? Well, public-key cryptography is painfully slow.
There are actually ways to speed it up — the implementation presented here

c03.indd 129c03.indd 129 12/20/2012 12:46:02 PM12/20/2012 12:46:02 PM

130 Chapter 3 n Secure Key Exchange over an Insecure Medium

is slower than it could be, even with all the speed-ups employed — but it’s still
not realistic to apply RSA encryption to a data stream in real time. You would
severely limit the network utilization if you did so. As a result, SSL actually calls
on you to select a symmetric-key algorithm, generate a key, encrypt that key
using an RSA public key, and, after that key has been sent and acknowledged,
to begin using the symmetric algorithm for subsequent communications. The
details of how precisely to do this is examined in painstaking detail in Chapter 6.

Achieving Perfect Forward Secrecy with Diffi e-
Hellman Key Exchange

The security in RSA rests in the diffi culty of computing fi rst the private exponent
d from the public key e and the modulus n as well as the diffi culty in solving
the equation mx%n�c for m. This is referred to as the discrete logarithm prob-
lem. These problems are both strongly believed (but technically not proven) to
be impossible to solve other than by enumerating all possible combinations.
Note that although RSA can be used as a complete cryptography solution, its
slow runtime limits its practical uses to simple encryption of keys to be used
for symmetric cryptography. Another algorithm that relies similarly on the
diffi culty of factoring large prime numbers and the discrete logarithm prob-
lem is Diffi e-Hellman key exchange, named after its inventors, Whitfi eld Diffi e
and Martin Hellman and originally described by Diffi e and Hellman in the
“Journal IEEE Transactions on Information Theory 22” in 1976. One signifi cant
difference between RSA and Diffi e-Hellman is that although RSA can be used
to encrypt arbitrary bits of data, Diffi e-Hellman can only be used to perform a
key exchange because neither side can predict what value both sides will ulti-
mately agree upon, even though it’s guaranteed that they’ll both arrive at the
same value. This ability to encrypt arbitrary data using RSA, although desir-
able in some contexts, is something of a double-edged sword. One potential
drawback of the RSA algorithm is that, if the private key is ever compromised,
any communication that was secured using that private key is now exposed.
There’s no such vulnerability in the Diffi e-Hellman key exchange algorithm.
This property — communications remaining secure even if the private key is
uncovered — is referred to as perfect forward secrecy.

Diffi e-Hellman key agreement relies on the fact that

gab%p � gba%p � (ga%p)b%p � (gb%p)a%p

g and p are agreed on by both sides, either offl ine or as part of the key exchange.
They don’t need to be kept secret and SSL/TLS transmits them in the clear. The
server chooses a value a at random and the client chooses a value b at random.
Then the server computes

Ys � (ga%p)

c03.indd 130c03.indd 130 12/20/2012 12:46:02 PM12/20/2012 12:46:02 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 131

And the client computes

Yc � (gb%p)

The server transmits Ys to the client and the client transmits Yc to the server.
At this point, they each have enough to compute the fi nal value Z � gab%p:

 Client Server

(ga%p)b%p (gb%p)a%p

 (Ys)b%p (Yc)a%p

 Z Z

And Z is the key that both sides use as the symmetric key. The server knows
the value a (because it chose it), and the client knows the value b (because,
again, it chose it). Neither knows the other’s value, but they don’t need to. Nor
can an eavesdropper glean the value of Z without either a or b, neither of which
has been shared. You can think of each side as computing one-half of an expo-
nentiation and sharing that half with the other side, which then completes the
exponentiation. Because the exponentiation operation is done mod p, it can’t
be feasibly inverted by an attacker, unless the attacker has solved the discrete
logarithm problem.

Using the mod_pow function developed earlier for RSA, this is simple to imple-
ment in code as shown in Listing 3-26.

Listing 3-26: “dh.c” Diffe-Hellman key agreement

static void dh_agree(huge *p, huge *g, huge *e, huge *Y)

{

 mod_pow(g, &e, p, Y);

}

static void dh_finalize(huge *p, huge *Y, huge *e, huge *Z)

{

 mod_pow(Y, &e, p, &Z);

}

In fact, there’s not much point in defi ning new functions to implement this
because all they do is call mod_pow. Given p, g, and a, the server does something like
huge Ys, Yc, Z;

dh_agree(p, g, a, &Ys);

send_to_client(&Ys);

receive_from_client(&Yc);

dh_finalize(p, Yc, a, Z);

// ... use “Z” as shared key

At the same time, the client does:

huge Ys, Yc, Z;

dh_agree(p, g, b, &Yc);

c03.indd 131c03.indd 131 12/20/2012 12:46:02 PM12/20/2012 12:46:02 PM

132 Chapter 3 n Secure Key Exchange over an Insecure Medium

send_to_server(&Yc);

receive_from_server(&Ys);

dh_finalize(p, &Ys, b, &Z);

// ... use “Z” as shared key

Notice also that the client doesn’t need to wait for Ys before computing Yc,
assuming p and g are known to both sides. In SSL, the server picks p and g, and
transmits them along with Ys, but Diffi e-Hellman doesn’t actually require that
key exchange be done this way.

One particularly interesting difference between RSA and DH is that RSA is
very, very picky about what values you can use for e, d, and n. As you saw ear-
lier, not every triple of numbers works (in fact, relative to the size of all natural
numbers, very few do). However, DH key exchange works with essentially any
random combination of p, g, a, and b. What guidance is there for picking out
“good” values? Of course, you want to use large numbers, especially for p; other
than using a large number — 512-bit, 1024-bit, and so on — you at least want to
ensure that the bits are securely randomly distributed.

It also turns out that some choices of p leave the secret Z vulnerable to eaves-
droppers who can employ the Pohlig-Hellman attack. The attack itself, originally
published by Stephen Pollig and Martin Hellman in the journal “IEEE Transactions
on Information Theory” in 1978, is mathematically technical, but it relies on a
p � 1 that has no large prime factors. The math behind the attack itself is outside
of the scope of this book, but guarding against it is straightforward, as long as
you’re aware of the risk. Ensure that the choice p � 1 is not only itself large,
but that it includes at least one large prime factor. RFC 2631 recommends that
p � jq � 1 where q is a large prime number and j is greater than or equal to 2.
Neither q nor j needs to be kept secret; in fact, it’s recommended that they be
shared so that the receiver can verify that p is a good choice.

In most implementations, g is actually a very small number — 2 is a popular
choice. As long as p, a, and b are very large, you can get away with such a small
g and still be cryptographically secure.

Getting More Security per Key Bit: Elliptic Curve
Cryptography

Although the concept and theory of elliptic curves and their application in
cryptography have been around for quite a while (Miller and Koblitz described
the fi rst ECC cryptosystem in 1985), elliptic curves only managed to fi nd their

c03.indd 132c03.indd 132 12/20/2012 12:46:02 PM12/20/2012 12:46:02 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 133

way into TLS in the past few years. TLS 1.2 introduced support for Elliptic-Curve
Cryptography (ECC) in 2008. Although it hasn’t, at the time of this writing, found
its way into any commercial TLS implementations, it’s expected that ECC will
become an important element of public-key cryptography in the future. I explore
the basics of ECC here — enough for you to add support for it in the chapter
9, which covers TLS 1.2 — but overall, I barely scratch the surface of the fi eld.

ECC — elliptic-curves in general, in fact — are complex entities. An elliptic-
curve is defi ned by the equation y2 � x3 � ax � b. a and b are typically fi xed
and, for public-key cryptography purposes, small numbers. The mathematics
behind ECC is extraordinarily complex compared to anything you’ve seen so
far. I won’t get any deeper into it than is absolutely necessary.

Figure 3-5 shows the graph of y2 � x3 � ax � b, the elliptic curve defi ned by
a � �1, b � 0. Notice the discontinuity between 0 and 1; x3 � ax has no solu-
tions between 0 and 1 because x3 � x < 0.

Figure 3-5: Elliptic curve with a = �1, b = 0

−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3

Cryptographic operations are defi ned in terms of multiplicative operations
on this curve. It’s not readily apparent how one would go about “multiplying”
anything on a curve, though. Multiplication is defi ned in terms of addition,
and “addition,” in ECC, is the process of drawing a line through two points
and fi nding it’s intersection at a third point on the curve as illustrated in
Figure 3-6.

c03.indd 133c03.indd 133 12/20/2012 12:46:02 PM12/20/2012 12:46:02 PM

134 Chapter 3 n Secure Key Exchange over an Insecure Medium

Figure 3-6: Point multiplication on an elliptic curve

−3

−2

−1

0

1

2

3

−3 −2

P1

P2

P3

−1 0 1 2 3

So, given two points p1 � (x1, y1), p2 � (x2, y2), “addition” of points p3 � p1 � p2
is defi ned as:

x3 � l2 � x1 � x2

y3 � l(x1 � x3) � y1

where

l�
y2 � y1

 x2 � x1

(that is, the slope of the line through p1 and p2). You may be able to spot a problem

with this defi nition, though: How do you add a point to itself? A point all by

itself has no slope — l � 0
0

 in this case. So you need a special rule for “doubling”

a point. Given p1 � (x1, y1), 2p1 is defi ned as:

x3 � l2 � 2x1

y3 � l (x1 � x3) � y1

where

l�
3x2

1
 � a

 2y1

Remember that a was one of the constants in the defi nition of the curve.
So, armed with a point addition and a point-doubling routine, you can defi ne

multiplication of a point by a scalar in terms of double and add. Recall that, for
integer operations, double-and-add was a “nice” speed-up. In terms of elliptic

c03.indd 134c03.indd 134 12/20/2012 12:46:03 PM12/20/2012 12:46:03 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 135

curves, though, it’s a necessity because you can’t add a point to itself a given
number of times. Notice also that multiplication of points is meaningless; you
can add two points together, but you can only meaningfully multiply a point
by a scalar value.

Whew! I warned you elliptic curves were complex. However, that’s not all.
As a programmer, you can likely still spot a problem with this defi nition: the
division operation in the defi nition of l. Whenever you divide integers, you get
fractions, and fractions create all sorts of problems for cryptographic systems,
which need absolute precision. The solution to this problem, which is probably
not a surprise to you at this point, is to defi ne everything modulo a prime number.

But — how do you divide modulo a number?

How Elliptic Curve Cryptography Relies on Modular
Inversions
Recall that addition modulo a number n is pretty straightforward: Perform
the addition normally and then compute the remainder after dividing by n.
Multiplication and exponentiation are the same; just perform the operation
as you normally would and compute the remainder. The distributivity of the
modulus operator enables you to implement this as multiple operations each
followed by modulo, but the end result is the same.

What about division modulo n? Can you divide x by y and then compute
the remainder when divided by n? Consider an example. 5 � 6 � 30 and 30 %
13 � 4 (because 2 * 13 � 26 and 30 � 26 � 4). Division mod n ought to return 6
if you apply it to 5. In other words, you need an operation that, given 4, 5, and
13, returns 6. Clearly, normal division doesn’t work at all: (5 � 6) % 13 � 4, but
(4 / 5) % 13 � 0.8, not 6. In fact, division modulo n isn’t particularly well defi ned.

You can’t really call it division, but you do need an operation referred to as
the modular inverse to complete elliptic-curve operations. This is an operation
on x such that

x�1x%n � 1

So, going back to the example of (5 � 6) % 13 � 4, you want to discover an
operation to compute a number which, when multiplied by 4 and then computed
% 13 returns 6, inverting the multiplication.

Using the Euclidean Algorithm to compute Greatest
Common Denominators
Such an operation exists, but it’s not easily expressible; it’s not nearly as simple as
modulus addition or multiplication. Typically, x–1 is computed via the extended
Euclidean algorithm. The normal (that is, non-extended) Euclidean algorithm
is an effi cient way to discover the greatest common denominator (GCD) of two

c03.indd 135c03.indd 135 12/20/2012 12:46:03 PM12/20/2012 12:46:03 PM

136 Chapter 3 n Secure Key Exchange over an Insecure Medium

numbers; the largest number that divides both evenly. The idea of the algorithm
is to recursively subtract the smaller of the two numbers from the larger until
one is 0. The other one is the GCD. In code, this can be implemented recursively
as in Listing 3-27.

Listing 3-27: gcd (small numbers)

int gcd(int x, int y)

{

 if (x == 0) { return y; }

 if (y == 0) { return x; }

 if (x > y)

 {

 return gcd(x - y, y);

 }

 else

 {

 return gcd(y - x, x);

 }

}

So, for example, given x � 105, y � 252:

ITERATION X Y

0 105 252

1 147 105

2 42 105

3 63 42

4 21 42

5 21 21

6 0 21

This tells you that 21 is the largest number that evenly divides both 105 and
252 — 105/21 � 5, and 252/21 � 12. The actual values of the division operations
aren’t particularly important in this context. What’s important is that 21 is the
largest number that divides both without leaving a fractional part.

It may not be intuitively clear, but it can be proven that this will always complete.
If nothing else, any two numbers always share a GCD of 1. In fact, running the
GCD algorithm and verifying that the result is 1 is a way of checking that two
numbers are coprime or relatively prime, in other words they share no common factors.

c03.indd 136c03.indd 136 12/20/2012 12:46:03 PM12/20/2012 12:46:03 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 137

Computing Modular Inversions with the Extended
Euclidean Algorithm

Although certainly interesting, it’s not yet clear how you can use the Euclidean
algorithm to compute the modular inverse of a number as defi ned earlier. The
extended Euclidean algorithm actually runs this same process in reverse, starting
from 0 up to the GCD. It also computes, in the process, two numbers y1 and y2
such that ay1 + zy2 = gcd(a,z); if z is a prime number, y1 is also the solution
to a �1 a%z � 1, which is exactly what you’re looking for.

The extended Euclidean algorithm for computing modular inverses is described
algorithmically in FIPS-186-3, Appendix C.1. Listing 3-28 presents it in C code
form.

Listing 3-28: “ecc_int.c” extended Euclidean algorithm (small numbers)

int ext_euclid(int z, int a)

{

 int i, j, y2, y1, y, quotient, remainder;

 i = a;

 j = z;

 y2 = 0;

 y1 = 1;

 while (j > 0)

 {

 quotient = i / j;

 remainder = i % j;

 y = y2 - (y1 * quotient);

 i = j;

 j = remainder;

 y2 = y1;

 y1 = y;

 }

 return (y2 % a);

}

Returning again to the example above of 5 and 6 % 13, remember that
(5 � 6) % 13 � 4. ext_euclid tells you what number x satisfied the rela-
tionship (4x) % 13 � 6, thus inverting the multiplication by 5. In this case,
z � 5 and a � 13.

c03.indd 137c03.indd 137 12/20/2012 12:46:03 PM12/20/2012 12:46:03 PM

138 Chapter 3 n Secure Key Exchange over an Insecure Medium

QUOTIENT REMAINDER Y Y2 Y1

2 3 �2 0 1

1 2 3 1 �2

1 1 �5 �2 3

2 0 13 3 �5

Halt because remainder � 0.
The solution, ext_euclid(5,13) = y1 % a = -5 % 13 = -5. You can check

this result by verifying that (4 � �5) % 13 � �20 % 13 � 6 because 13 � �2 �
�26 and �20 � (�26) � 6.

Of course, it should come as no surprise that, to compute secure elliptic curve
parameters, you are dealing with numbers far too large to fi t within a single
32-bit integer, or even a 64-bit integer. Secure ECC involves inverting 1,024- or
2,048-bit numbers, which means you need to make use of the huge library again.

You may see a problem here, though. When you inverted the multiplication
of 5 modulo 13, you got a negative result, and the interim computation likewise
involved negative numbers, which the huge library was not equipped to handle.
Unfortunately, there’s just no way around it. You need negative number support
in order to compute modular inverses that are needed to support ECC.

Adding Negative Number Support to the Huge
Number Library
You may be familiar with two’s complement binary arithmetic. In two’s comple-
ment binary arithmetic, the lower half of the bit space represents positive
numbers and the upper half represents negative numbers. This enables you
to take advantage of the natural wrapping behavior of digital registers to effi -
ciently perform signed operations. Given, say, a 4-bit register (to keep things
small), you’d have the following:

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

c03.indd 138c03.indd 138 12/20/2012 12:46:03 PM12/20/2012 12:46:03 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 139

1000 �8

1001 �7

1010 �6

1011 �5

1100 �4

1101 �3

1110 �2

1111 �1

If you subtract 3 (0011) from 1 (0001), the counters naturally wrap and end up
back on 1110, which is chosen to represent �2. Multiplication preserves sign as
well – 2 � �3 � 0010 � 1101:

1101
0010

0000 (0)
11010 (1)

000000 (0)
0000000 (0)

0011010

�

�

Truncate the leading three digits and you get the correct result: 1010, or �6.
This truncation creates a problem when you’re trying to implement arbitrary

precision binary math, though. Consider 7 � 7, which overfl ows this four-bit
implementation:

0111
0111

0111 (1)
01110 (1)

011100 (1)
0000000 (0)

11001

�

�

You’ve computed the correct answer — 49 — but according to the rule stated
earlier, you should throw away the fi rst bit and end up with an incorrect answer
of �7. You could, of course, check the magnitude of each operand, check to see
if it would have overfl owed, and adjust accordingly, but this is an awful lot of

c03.indd 139c03.indd 139 12/20/2012 12:46:04 PM12/20/2012 12:46:04 PM

140 Chapter 3 n Secure Key Exchange over an Insecure Medium

trouble to go to. It also negates the benefi t of two’s complement arithmetic. In
general, two’s complement arithmetic only works correctly when bit length is
fi xed. Instead, just keep track of signs explicitly and convert the “huge” data
type to a sign/magnitude representation.

COMPUTING WITH A FIXED-PRECISION NUMERIC REPRESENTATION

As an aside, it would be possible to create, say, a fi xed-precision 2,048-bit
numeric representation and perform all calculations using this representation;
if you do, then you can, in fact, make use of two’s complement arithmetic to
handle negative numbers. You can get away with this in the context of public-
key cryptography because all operations are performed modulo a fi xed 512-,
1024-, or 2048-bit key. Of course, in the future, you might need to expand this
out to 4,096 bits and beyond. The downside of this approach is that every
number, including single-byte numbers, take up 256 bytes of memory, so you
trade memory for speed. I’m not aware of any arbitrary-precision math library
that works this way, however; OpenSSL, GnuTLS (via GMP, via gcrypt), NSS and
Java all take the “sign/magnitude” approach that’s examined here.

When negative numbers enter the mix, additions and subtractions essentially
become variants of the same operation; keep an explicit “add” and “subtract”
routine for clarity, but additions become subtractions when the signs of the
operators differ and vice versa.

Treat adding and subtracting as occurring in two separate stages — fi rst,
computing the magnitude of the result, and then computing the sign. The
magnitude of the result depends, of course, on the operation requested and
the operator’s values as well as the signs of each; the sign depends on the opera-
tion and the sign of each value, as well as whether the addend (or subtrahend)
is greater than the summand (or minuend). Table 3-2 summarizes, hopefully,
the preceding paragraph.

Table 3-2: Negative Number Operations

OPERATION
REQUESTED

X SIGN Y SIGN ABS(X) >
ABS(Y)?

MAGNITUDE SIGN

add + + N x + y +

add + � N x � y +

add � + N x � y �

add � � N x + y �

add + + Y y + x +

add + � Y y � x �

c03.indd 140c03.indd 140 12/20/2012 12:46:04 PM12/20/2012 12:46:04 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 141

OPERATION
REQUESTED

X SIGN Y SIGN ABS(X) >
ABS(Y)?

MAGNITUDE SIGN

add � + Y y � x +

add � � Y y + x �

subtract + + N x � y +

subtract + � N x + y +

subtract � + N x + y �

subtract � � N x � y �

subtract + + Y y � x �

subtract + � Y y + x +

subtract � + Y y + x �

subtract � � Y y � x +

To summarize, when adding or subtracting, if x is greater than y, invert the
operation if the signs of the operators are different. Perform the operation as
requested if the signs are the same. If x is less than y, swap the operators fi rst.
Of course, x � y is the same as y � x. This gives the magnitude. The sign of the
operation can be determined, essentially independently, as the following: If x is
greater than y, the result has the same sign as x, whether adding or subtracting.
Otherwise, if adding, and the operators have the same sign, the result has the
same sign as x; if they differ, the result has the same sign as y. When subtracting,
and x is less than y, the sum has the opposite sign as x if x and y have the same
sign, and the opposite sign as y if x and y have different signs. You may fi nd it
worthwhile to work through a few examples to convince yourself that we’ve
covered every case, except for the exceptional case where x � y, which is dealt
with specially because 0 is neither positive nor negative.

Follow these steps to support arbitrary-sized negative number addition and
subtraction.

 1. Add an element to the huge struct from Listing 3-1 to keep track of its sign,
as shown in Listing 3-29. Let 0 represent positive and 1 represent negative:

Listing 3-29: “huge.h” huge structure with negative number support

typedef struct

{

 int sign;

 unsigned int size;

 unsigned char *rep;

}

huge;

c03.indd 141c03.indd 141 12/20/2012 12:46:04 PM12/20/2012 12:46:04 PM

142 Chapter 3 n Secure Key Exchange over an Insecure Medium

 2. There are three initializer functions that create huges: set_huge, copy_huge,
and load_huge. Each needs to be updated to initialize the sign bit, as shown
in Listing 3-30.

Listing 3-30: “huge.c” initializer routines with negative number support included

void set_huge(huge *h, unsigned int val)

{

 unsigned int mask, i, shift;

 // Negative number support

 h->sign = 0; // sign of 0 means positive

 ...

void copy_huge(huge *tgt, huge *src)

{

 if (tgt->rep)

 {

 // TODO make this a little more efficient by reusing “rep”

 // if it’s big enough

 free(tgt->rep);

 }

 tgt->sign = src->sign;

 ...

void load_huge(huge *h, const unsigned char *bytes, int length)

{

 while (!(*bytes))

 {

 bytes++;

 length--;

 }

 h->sign = 0;

 ...

Notice that there’s no way to initialize a huge as a negative number; you
don’t need one and, in fact, negative numbers get in the way if, for example,
you treat a high 1 bit as a negative number indicator in load_huge. If a
computation results in a negative number, the routines keep track of it
internally.

 3. Because the current add and subtract routines do a good job of computing
magnitudes of arbitrarily sized numbers — provided, of course, that h1
is greater than h2 in the case of subtraction — those routines can be used
unchanged to compute magnitudes, and you can do sign computation
and swapping in a separate routine. As such, rename add and subtract and
make them static as shown in Listing 3-31.

c03.indd 142c03.indd 142 12/20/2012 12:46:04 PM12/20/2012 12:46:04 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 143

Listing 3-31: “huge.c” add_magnitude and subtract_magnitude

/**

 * Add two huges - overwrite h1 with the result.

 */

static void add_magnitude(huge *h1, huge *h2)

{

 unsigned int i, j;

 unsigned int sum;

 unsigned int carry = 0;

 ...

/**

 * Subtract h2 from h1, overwriting the value of h1.

 */

static void subtract_magnitude(huge *h1, huge *h2)

{

 int i = h1->size;

 int j = h2->size;

 int difference; // signed int - important!

 unsigned int borrow = 0;

 ...

 if (borrow && i)

 {

 if (h1->rep[i - 1]) // Don’t borrow i

 {

 // negative reults are now OK

 h1->rep[i - 1]--;

 }

 }

Nothing else changes in these routines.

 4. Now, create two new routines named add and subtract that invoke add_
magnitude and subtract_magnitude, after performing the rules described
by Table 3-2 as shown in Listing 3-32. These new routines have the same
method signatures as the old add and subtract. In fact, they end up tak-
ing their places, which means you need to relink anything linked using
the old object fi le. This won’t be a problem because your Make rules are
set up correctly.

Listing 3-32: “huge.c” add with negative number support

void add(huge *h1, huge *h2)

{

 int result_sign;

 // First compute sign of result, then compute magnitude

 if (compare(h1, h2) > 0)

(Continued)

c03.indd 143c03.indd 143 12/20/2012 12:46:04 PM12/20/2012 12:46:04 PM

144 Chapter 3 n Secure Key Exchange over an Insecure Medium

 {

 result_sign = h1->sign;

 if (h1->sign == h2->sign)

 {

 add_magnitude(h1, h2);

 }

 else

 {

 subtract_magnitude(h1, h2);

 }

 }

 else

 {

 huge tmp;

 // put h1 into tmp and h2 into h1 to swap the operands

 set_huge(&tmp, 0); // initialize

 copy_huge(&tmp, h1);

 copy_huge(h1, h2);

 if (h1->sign == tmp.sign)

 {

 result_sign = h1->sign;

 add_magnitude(h1, &tmp);

 }

 else

 {

 result_sign = h2->sign;

 subtract_magnitude(h1, &tmp);

 }

 free_huge(&tmp);

 }

 // Use the stored sign to set the result

 h1->sign = result_sign;

}

 5. This routine embodies the signing rules described by the fi rst half of
Table 3-2. If h1 is greater than h2 (see Figure 3-7), add or subtract, depend-
ing on whether the signs of the two operands are the same or different,
and preserve the sign of h1. h2 never changes regardless. If h1 is less
than h2, swap them; you want to preserve h2 as before, so copy h1 into
a temporary object and h2 into h1.

The net effect here is that you add or subtract h1 from h2, overwriting h1,
just as if the operation had been called with the operators reversed, but
not touching h2, which is what you want.

c03.indd 144c03.indd 144 12/20/2012 12:46:04 PM12/20/2012 12:46:04 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 145

Figure 3-7: Arithmetic routines with negative numbers

Add or Subtract

tmp h1 h2

 6. Subtracting is similar, in Listing 3-33.

Listing 3-33: “huge.c” subtract with negative number support

void subtract(huge *h1, huge *h2)

{

 int result_sign;

 // First compute sign of result, then compute magnitude

 if (compare(h1, h2) > 0)

 {

 result_sign = h1->sign;

 if (h1->sign == h2->sign)

 {

 subtract_magnitude(h1, h2);

 }

 else

 {

 add_magnitude(h1, h2);

 }

 }

 else

 {

 huge tmp;

 // put h1 into tmp and h2 into h1 to swap the operands

 set_huge(&tmp, 0); // initialize

 copy_huge(&tmp, h1);

 copy_huge(h1, h2);

 if (h1->sign == tmp.sign)

 {

 result_sign = !(h1->sign);

 subtract_magnitude(h1, &tmp);

 }

 else

 {

 result_sign = !(h2->sign);

 add_magnitude(h1, &tmp);

(Continued)

c03.indd 145c03.indd 145 12/20/2012 12:46:05 PM12/20/2012 12:46:05 PM

146 Chapter 3 n Secure Key Exchange over an Insecure Medium

 }

 free_huge(&tmp);

 }

 // Use the stored sign to set the result

 h1->sign = result_sign;

}

In fact, you can probably see how you could collapse these two functions
into one single function if you were so inclined.

 7. Multiplication and division are even easier. The magnitudes of the results
are the same as they were in the unsigned case, and the sign of the result
is positive if the signs are equal and negative if the signs are unequal. This
is illustrated in Listing 3-34.

Listing 3-34: “huge.c” multiply with negative number support

void multiply(huge *h1, huge *h2)

{

 unsigned char mask;

 unsigned int i;

 int result_sign;

 huge temp;

 set_huge(&temp, 0);

 copy_huge(&temp, h1);

 result_sign = !(h1->sign == h2->sign);

...

 }

 while (i);

 h1->sign = result_sign;

}

 8. To support signed numbers at division time, you don’t even need to
remember a temporary sign because quotients are always initialized
dynamically as shown in Listing 3-35.

Listing 3-35: “huge.c” divide with negative number support

void divide(huge *dividend, huge *divisor, huge *quotient)

{

 int i, bit_size, bit_position;

 ...

 if (quotient)

 {

 quotient->sign = !(dividend->sign == dividend->sign);

c03.indd 146c03.indd 146 12/20/2012 12:46:05 PM12/20/2012 12:46:05 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 147

 quotient->size = (bit_size / 8) + 1;

 quotient->rep = (unsigned char *) malloc(quotient->size);

 memset(quotient->rep, 0, quotient->size);

 }

 ...

 9. Because you’re keeping track of your own negative numbers, you don’t
want subtract doing it for you:

 if (compare(divisor, dividend) <= 0)

 {

 subtract_magnitude(dividend, divisor); // dividend -= divisor

 10. Finally, you need to account for negative modulus operations. As it turns
out, although negative number modulus operations come up in computa-
tions, they’re not that well defi ned. Consider, for example, 17 % 7. This
is equal to 3 because 7 � 2 � 14 and 17 � 14 � 3. Now, you might be
tempted to say that �17 % 7 � �3 because �17 / 7 � round(�2.42) �
�2, 7 � �2 � �14, and �17 � (�14) � �3.

Although that’s a perfectly valid defi nition of the modulus operation, it’s not
the one that’s been standardized on (at least not for cryptographic computa-
tions — it is the standard that the C programming language follows!). Instead,
�17 % 7 � 4. Why? 7 � �3 � �21, and �17 � (�21) � 4.

Supporting Negative Remainders
If you view this on a number line, this starts to make (some) sense, as shown
in Figure 3-8.

Figure 3-8: Positive remainder operations

−3 * 7
−21

−2 * 7
−14

−1 * 7
−7

0 * 7
0

1 * 7
7

2 * 7
14

3 * 7
21

4 * 7
28

17 % 7 = 3−17 % 7 = 4

To fi gure the remainder, fi nd the fi rst multiple, on the number line, to the left
of your target and then fi gure the distance between the two points. This means,
fi rst of all, that modulus operations always return positive values and second that

(�x % y) !� �(x % y)

(as convenient as that would have been when coding it). This also means that
you can’t rely on the dividend being updated to be the modulus when one of the
parameters is negative. However, there’s a simple solution: subtract divisor one

c03.indd 147c03.indd 147 12/20/2012 12:46:05 PM12/20/2012 12:46:05 PM

148 Chapter 3 n Secure Key Exchange over an Insecure Medium

more time before exiting, if dividend is negative. Consider the earlier example
above of �17 % 7. The division operation proceeds as follows:

 1. Left-shift (double) 7 until the result is greater than 17 (28)

 2. Right- shift divisor once (14)

 3. Subtract 14 from 17 (dividend � 3)

 4. Right-shift divisor again (7)

The division is complete because the divisor has shifted back to its initial posi-
tion. Now the dividend contains �3 — seven positions away from the desired
result of 4. Subtracting -divisor yields the correct answer, 4.

Unfortunately, in some contexts, specifi cally the extended Euclidean algorithm
developed here, the modulus of a negative and a positive must be negative. As a
result, you have to keep track of when and where you need the positive modulus
versus the negative modulus.

With signed-number support, you can now implement the extended Euclidean
algorithm for computing modular inverses for arbitrarily sized integers, as
shown in Listing 3-36.

Listing 3-36: “huge.c” inv routine

void inv(huge *z, huge *a)

{

 huge i, j, y2, y1, y, quotient, remainder, a_temp;

 set_huge(&i, 1); // initialize for copy

 set_huge(&j, 1); // initialize for copy

 set_huge(&remainder, 1); // initialize for copy

 set_huge(&y, 1);

 set_huge(&a_temp, 1);

 set_huge(&y2, 0);

 set_huge(&y1, 1);

 copy_huge(&i, a);

 copy_huge(&j, z);

 if (z->sign)

 {

 divide(&j, a, NULL);

 // force positive remainder always

 j.sign = 0;

 subtract(&j, a);

 }

 while (!((j.size == 1) && (!j.rep[0])))

 {

 copy_huge(&remainder, &i);

c03.indd 148c03.indd 148 12/20/2012 12:46:05 PM12/20/2012 12:46:05 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 149

 copy_huge(&i, &j);

 divide(&remainder, &j, "ient);

 multiply("ient, &y1); // quotient = y1 * quotient

 copy_huge(&y, &y2);

 subtract(&y, "ient); // y = y2 - (y1 * quotient)

 copy_huge(&j, &remainder);

 copy_huge(&y2, &y1);

 copy_huge(&y1, &y);

 }

 copy_huge(z, &y2);

 copy_huge(&a_temp, a);

 divide(z, &a_temp, NULL); // inv_z = y2 % a

 if (z->sign)

 {

 z->sign = 0;

 subtract(z, &a_temp);

 if (z->sign)

 {

 z->sign = 0;

 }

 }

}

Fundamentally, this works the same as the native int algorithm presented
in Listing 3-28; I’ve added the equivalent operations as comments so that you
can compare the two. The only difference is that I moved the assignment of
i to j up to the top because the subsequent divide overwrites j. This doesn’t
affect functionality because i isn’t used again in the body of the loop. The only
reason for coding it this way is to cut down on the number of temporary huges
that need to be allocated and freed.

Finally, notice the last section where inv z is computed:

 divide(inv_z, &a_temp, NULL); // inv_z = y2 % a

 if (inv_z->sign)

 {

 inv_z->sign = 0;

 subtract(inv_z, &a_temp);

 }

The default divide operation returns the negative modulus. You need the
positive one (if it’s negative), which you can recover by swapping the signs and
subtracting a one more time. The divide call inside the loop, however, must
preserve negative moduli or the routine doesn’t work correctly.

c03.indd 149c03.indd 149 12/20/2012 12:46:05 PM12/20/2012 12:46:05 PM

150 Chapter 3 n Secure Key Exchange over an Insecure Medium

Making ECC Work with Whole Integers: Elliptic-Curve
Cryptography over Fp

Now that modular inversions have been defi ned, you can return to the subject
of ECC. ECC over a prime fi nite fi eld (denoted Fp) is just like “regular” ECC, but
everything is performed modulo a prime number p. The point-addition and
point-doubling algorithms become:

x3 � (l � x1 � x2)%p

y3 � (l(x1� x3) � y1)%p

l � (y2 � y1) * (x2 � x1)
�1%p

and
x3 � (l2 � 2x1)%p

y3 � l(x1 � x3) � y1)%p

l � (3x1
2 � a) * (2y1)

�1%p

Point multiplication (by a scalar) is still defi ned in terms of “double-and-add.”
There’s just one more defi nitional issue must be addressed here. Recall that

the general form of double-and-add is the following:

sum = 0

double = multiplicand

while (bits in multilpier)

{

 if (bit set in multiplier)

 {

 sum += double;

 }

 double *= 2;

}

You have sum += double and double *= 2 defi ned for ECC points, but what
about sum = 0? You need a “point” which is zero. You can’t just use the point
(0, 0). Unless b � 0 it’s not on the curve, and if b � 0, (0, 0) is just another point.

ECC sort of sidesteps this by defi ning a non-existent point at infi nity, which
you just have to keep track of. A point is either the point at infi nity (for example,
0), or it’s something else, in which case it has a legitimate x and y coordinate.

Reimplementing Diffi e-Hellman to Use ECC Primitives
So what does all of this elliptic-curve stuff have to do with public-key cryptogra-
phy? Recall that RSA and classic Diffi e-Hellman get their security and feasibility
from the fact that exponentiation modulo a number is solvable. There’s an O(n)
algorithm to raise a number to an n-bit power modulo a given prime, but there’s
no known feasible inverse operation. There’s no (known) algorithm to compute

c03.indd 150c03.indd 150 12/20/2012 12:46:06 PM12/20/2012 12:46:06 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 151

a discrete logarithm in polynomial time. Well, for elliptic curves, there’s an O(n)
algorithm to multiply a point by a scalar n, but no feasible inverse operation.
You can’t “divide” a point by a scalar and fi nd the original point. This property
of being able to perform an operation in one direction in a reasonable amount of
time, but not invert it, makes it usable as a public-key cryptosystem.

Diffi e-Hellman can be redefi ned in terms of elliptic-curve operations. The
private key is a scalar, and the public key is that scalar, multiplied by another
shared point G. The two entities, A and B, which want to perform a secure key
exchange, each have a private scalar and a public point, plus another shared point
and, of course, the a, b, and p that defi ne an elliptic-curve and its prime fi eld. If
A multiplies his private key by B’s public-key and B multiplies his private key
by A’s public key, they both arrive at the same point Z because they started at
the same shared point G. Z can’t be computed by anybody else without access
to one of the private keys, so Z can be used as a shared secret. Typically the
x-coordinate of Z is used and the y-coordinate is discarded.

At this point, your head may be spinning. An example might help clarify
things. To keep things semi-readable, just stick to integer arithmetic for now
and use small (less than 32-bit) values as an example.

 1. Start off with a few defi nitions as shown in Listing 3-37.

Listing 3-37: “ecc_int.h” structure defi nitions

typedef struct

{

 int x;

 int y;

}

point;

typedef struct

{

 int private_key;

 point public_key;

}

key_pair;

/**

 * Describe y^2 = (x^3 + ax + b) % p

 */

typedef struct

{

 int p;

 int a;

 int b;

 point G; // base point

}

domain_parameters;

c03.indd 151c03.indd 151 12/20/2012 12:46:06 PM12/20/2012 12:46:06 PM

152 Chapter 3 n Secure Key Exchange over an Insecure Medium

NOTE If you look at other texts on elliptic curves, notice that they also
defi ne n the order of the curve and h the cofactor of the curve. h is used to
speed things up in advanced ECC implementations and isn’t discussed here.
n is discussed in Chapter 4.

 2. You also need a modular inversion routine. You examined one for the huge
implementation earlier, but because you’re just doing integer arithmetic
here, you can use the simple ext_euclid routine from Listing 3-25. This
is wrapped up in Listing 3-38.

Listing 3-38: “ecc_int.c” invert routine

/**

 * Extended Euclidean algorithm to perform a modular inversion

 * of x by y (e.g. (x/y) % p).

 */

static int invert(int x, int y, int p)

{

 int inverse = ext_euclid(y, p);

 return x * inverse;

}

 3. Now, defi ne an add_points operation (modulo a prime p), shown in
Listing 3-39.

Listing 3-39: “ecc_int.c” add_points routine

static void add_points(point *p1, point *p2, int p)

{

 point p3;

 int lambda = invert(p2->y - p1->y, p2->x - p1->x, p);

 p3.x = ((lambda * lambda) - p1->x - p2->x) % p;

 p3.y = ((lambda * (p1->x - p3.x)) - p1->y) % p;

 p1->x = p3.x;

 p1->y = p3.y;

}

Compare this to the equations defi ning point addition, in the previous sec-
tion. Notice that the result is returned in p1, just as with the huge routines.

 4. You also need a double_point routine, shown in Listing 3-40.

Listing 3-40: “ecc_int.c” double_point routine

static void double_point(point *p1, int p, int a)

{

 point p3;

 int lambda = invert(3 * (p1->x * p1->x) + a, 2 * p1->y, p);

c03.indd 152c03.indd 152 12/20/2012 12:46:06 PM12/20/2012 12:46:06 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 153

 p3.x = ((lambda * lambda) - (2 * p1->x)) % p;

 p3.y = ((lambda * (p1->x - p3.x)) - p1->y) % p;

 p1->x = p3.x;

 p1->y = p3.y;

}

 5. Finally, you can implement multiplication in terms of double and add,
shown in Listing 3-41.

Listing 3-41: “ecc_int.c” multiply_point routine

static void multiply_point(point *p1, int k, int a, int p)

{

 point dp;

 int mask;

 int paf = 1;

 dp.x = p1->x;

 dp.y = p1->y;

 for (mask = 0x00000001; mask; mask <<= 1)

 {

 if (mask & k)

 {

 if (paf)

 {

 paf = 0;

 p1->x = dp.x;

 p1->y = dp.y;

 }

 else

 {

 add_points(p1, &dp, p);

 }

 }

 double_point(&dp, p, a);

 }

}

NOTE Notice the paf fl ag that indicates that p1 is the point at infi nity (that
is, the ECC equivalent of “zero”). It’s not particularly pretty, but it works.
Otherwise, this should look fairly familiar. The same routine has effectively
been implemented twice now — once for large integer multiplication and once
for large integer exponentiation.

 6. To implement Diffi e-Hellman, you need a set of domain parameters T and
a private key each for A and B. You can’t just make up random domain
parameters; in this case, just hardcode them:

c03.indd 153c03.indd 153 12/20/2012 12:46:06 PM12/20/2012 12:46:06 PM

154 Chapter 3 n Secure Key Exchange over an Insecure Medium

 domain_parameters T;

 key_pair A;

 key_pair B;

 point Z1, Z2;

 T.p = 23;

 T.a = 1;

 T.b = 1;

 T.G.x = 5;

 T.G.y = 19;

 7. Obviously, you want most of these numbers to be much larger — although
the value 1 for a and b is fairly typical in real ECC. A and B each have
private keys — random numbers which are again hardcoded here:
 A.private_key = 4;

 B.private_key = 2;

The public keys are not random. They’re � private_key * G:
 A.public_key.x = T.G.x;

 A.public_key.y = T.G.y;

 multiply_point(&A.public_key, A.private_key, T.a, T.p);

 B.public_key.x = T.G.x;

 B.public_key.y = T.G.y;

 multiply_point(&B.public_key, B.private_key, T.a, T.p);

This is important for key agreement. At this point, A’s public key is the
point (13, 16) and B’s public key is the point (17, 3). Of course, they would
compute these individually, after having agreed on the domain parameters.

 8. Finally, there’s the matter of key agreement. A sends B his public key
(13, 16) and B sends A his public key (17, 3), and each computes the fi nal
point Z:
 Z1.x = A.public_key.x;

 Z1.y = A.public_key.y;

 multiply_point(&Z1, B.private_key, T.a, T.p);

 Z2.x = B.public_key.x;

 Z2.y = B.public_key.y;

 multiply_point(&Z2, A.private_key, T.a, T.p);

A and B have both computed ZZ � (5, �4). In this case, by convention, ZZ.x
� 5 is the shared secret — although of course, they could have used ZZ.y � �4,
as long as both sides agreed on this convention beforehand.

Why Elliptic-Curve Cryptography?
As you can see, ECC is quite a bit more complex than “modulus” cryptography
such as RSA or classic Diffi e-Hellman. So, why bother with it? Speed. ECC can
provide the same security with an 80-bit private key as RSA can provide with a

c03.indd 154c03.indd 154 12/20/2012 12:46:06 PM12/20/2012 12:46:06 PM

 Chapter 3 n Secure Key Exchange over an Insecure Medium 155

512-bit private key because every single bit (provably) contributes to the security
of the cryptosystem. Remember that the public-key operations are O(n), where
n is the number of bits in the private key. ECC is fast enough, and has a small
enough operating footprint, that it can be used in smartcard implementations.

Although ECC is popular in the banking industry, it’s only just now begin-
ning to fi nd its way into TLS. OpenSSL 1.0, although it includes elliptic-curve
operations, doesn’t support TLS 1.2, and therefore doesn’t support online ECC.
GnuTLS does support TLS 1.2 and ECC, but is disabled by default. I’m not aware
of any commercial (or open source) website or browser that supports TLS 1.2
at the time of this writing. Still, you can expect to see ECC gain in popularity
in the coming years simply because of its speed advantages over RSA and DH.

I revisit ECC again in Chapter 4 when I examine ECDSA, and it will be added
to the TLS library in Chapter 9 which covers TLS 1.2.

c03.indd 155c03.indd 155 12/20/2012 12:46:06 PM12/20/2012 12:46:06 PM

c03.indd 156c03.indd 156 12/20/2012 12:46:06 PM12/20/2012 12:46:06 PM

157

C H A P T E R

4
Authenticating Communications

Using Digital Signatures

In Chapter 3, you examined public key cryptography in detail. Public key cryp-
tography involves generating two mathematically related keys, one of which
can be used to encrypt a value and the other of which can be used to decrypt
a value previously encrypted with the other. One important point to note is
that it technically doesn’t matter which key you use to perform the encryp-
tion, as long as the other one is available to perform the decryption. The RSA
algorithm defi nes a public key that is used to encrypt, and a private key that is
used to decrypt. However, the algorithm works if you reverse the keys — if you
encrypt something with the private key, it can be decrypted with — and only
with — the public key.

At fi rst glance, this doesn’t sound very useful. The public key, after all, is
public. It’s freely shared with anybody and everybody. Therefore, if a value is
encrypted with the private key, it can be decrypted by anybody and everybody as
well. However, the nature of public/private keypairs is such that it’s also impos-
sible — or, to be technically precise, mathematically infeasible — for anybody
except the holder of the private key to generate something that can be decrypted
using the public key. After all, the encryptor must fi nd a number c such that
ce%n � m for some arbitrary m. By defi nition, c � md satisfi es this condition and
it is believed to be computationally infeasible to fi nd another such number c.

As a result, the private key can also be used to prove identity. The holder of
the private key generates a message m, and sends it to the receiver (unencrypted).
Then the holder of the private key encrypts m using the private key (d,n) and

c04.indd 157c04.indd 157 12/10/2010 9:44:37 AM12/10/2010 9:44:37 AM

158 Chapter 4 n Authenticating Communications Using Digital Signatures

sends the resulting c to the receiver. The receiver uses the public key (e,n) to
“decrypt” c. If the decrypted value is exactly equal to m, the message is veri-
fi ed. The receiver is confi dent that it was truly sent by somebody with access to
the private key. Note that, in this scenario, anybody can read m — it is sent in
cleartext. In this case, you’re just proving identity. Of course, this sort of digital
signature can be easily combined with encryption. The sender could encrypt the
request, sign the encrypted value, and send that on for the receiver to verify.
An eavesdropper could, of course, decrypt the signature, but all he would get
is the encrypted string, which he can’t decrypt without the key.

There’s another benefi t to this approach as well. If anything changed in
transit — due to a transmission error or a malicious hacker — the decrypted
value won’t match the signature. This guarantees not only that the holder of the
private key sent it, but that what was received is exactly what was sent.

There’s one problem with this approach to digital signatures, though. You’ve
essentially doubled, at least, the length of each message. And, as you recall from
the previous chapter, public key cryptography is too slow for large blocks of
information. In general, you use public key operations to encode a symmetric
key for subsequent cryptography operations. Obviously, you can’t do this for
digital signatures; you’re trying to prove that somebody with access to the pri-
vate key generated the message. What you need is a shortened representation of
the message that can be computed by both sides. Then the sender can encrypt
that using the private key, and the receiver can compute the same shortened
representation, decrypt it using the public key and verify that they’re identical.

Using Message Digests to Create Secure Document
Surrogates

Such a shortened representation of a message is referred to as a message digest. The
simplest form of a message digest is a checksum. Given a byte array of arbitrary
length, add up the integer value of each byte (allowing the sum to overfl ow),
and return the total, for example, Listing 4-1.

Listing 4-1: checksum

int checksum(char *msg)

{

 int sum = 0;

 int i;

 for (i = 0; i < strlen(msg); i++)

 {

 sum += msg[i];

 }

c04.indd 158c04.indd 158 12/10/2010 9:44:38 AM12/10/2010 9:44:38 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 159

 return sum;

}

Here, the message “abc” sums to 294 because, in ASCII, a � 97, b � 98 and c
� 99; “abd” sums to 295. Because you just ignore overfl ow, you can compute a
digest of any arbitrarily sized message.

The problem with this approach is that it can be easily reversed. Consider
the following scenario: I want to send a message that says, “Please transfer
$100 to account 123,” to my bank. My bank wants to ensure that this message
came from me, so I digitally sign it. First I compute the checksum of this
message: 2,970. I then use my private key to compute the signature. Using the
mini-key pair e � 79, d � 1019, n � 3337 from Chapter 3, this encodes (without
any padding) to 29701019 % 3337 � 2552. The bank receives the message, com-
putes the same checksum, decodes 2552 using the public key and computes
255279 % 3337 � 2970. Because the computed checksum matches the encrypted
checksum, the message can be accepted as authentic because nobody else can
solve x79 % 3337 � 2970.

However, there’s a problem with this simple checksum digest routine. Although
an attacker who might want to submit, “Please transfer $1,000,000 to account
3789,” which sums to 3171, is not able to solve x79 % 3337 � 3171, he can instead
look for ways to change the message itself so that it sums to 2970. Remember that
the signature itself is public, transmitted over a clear channel. If the attacker can
do this, he can reuse my original signature of 2552. As it turns out, it’s not hard
to work backward from 2970 to engineer a collision by changing the message to
“Transfer $1,000,000 to account 3789 now!” (Notice that I dropped the “please”
from the beginning and inserted “now!”) A bank employee might consider this
rude, but the signature matches. You may have to play tricks with null termina-
tors and backspace characters to get the messages to collide this way, but for
$1,000,000, an attacker would consider it well worth the effort. Note that this
would have been a vulnerability even if you had encoded the whole message
rather than the output of the digest algorithm.

Therefore, for cryptographic security, you need a more secure message digest
algorithm. Although it may seem that cryptography would be the hardest cat-
egory of secure algorithms to get right, message digests actually are. The history
of secure message digest algorithms is littered with proposals that were later
found to be insecure — that is, not properly collision resistant.

Implementing the MD5 Digest Algorithm
One of the earliest secure message digest algorithms in the literature is MD2
(MD1 appears never to have been released). It was followed by MD4 (rather than
MD3), which was fi nally followed by MD5 and is the last of the MD series of

c04.indd 159c04.indd 159 12/10/2010 9:44:38 AM12/10/2010 9:44:38 AM

160 Chapter 4 n Authenticating Communications Using Digital Signatures

message digest algorithms. All were created by Dr. Ron Rivest, who was also
one-third of the RSA team.

Understanding MD5

The goal of MD5, specifi ed in RFC 1321, or any secure hashing algorithm, is to
reduce an arbitrarily sized input into an n-bit hash in such a way that it is very
unlikely that two messages, regardless of length or content, produce identi-
cal hashes — that is, collide — and that it is impossible to specifi cally reverse
engineer such a collision. For MD5, n � 128 bits. This means that there are 2128
possible MD5 hashes. Although the input space is vastly larger than this, 2128
makes it highly unlikely that two messages will share the same MD5 hash. More
importantly, it should be impossible, assuming that MD5 hashes are evenly,
randomly distributed, for an attacker to compute a useful message that collides
with another by way of brute force.

MD5 operates on 512-bit (64-byte) blocks of input. Each block is reduced to a
128-bit (16-byte) hash. Obviously, with such a 4:1 ratio of input blocks to output
blocks, there will be at least a one in four chance of a collision. The challenge
that MD5’s designer faced is making it diffi cult or impossible to work backward
to fi nd one.

If the message to be hashed is greater than 512 bits, each 512-bit block is hashed
independently and the hashes are added together, being allowed to overfl ow, and
the result is the fi nal sum. This obviously creates more potential for collisions.

Unlike cryptographic algorithms, though, message digests do not have to be
reversible — in fact, this irreversibility is the whole point. Therefore, algorithm
designers do not have to be nearly as cautious with the number and type of
operations they apply to the input. The more operations, in fact, the better; this
is because operations make it more diffi cult for an attacker to work backward
from a hash to a message. MD5 applies 64 transformations to each input block.
It fi rst splits the input into 16 32-bit chunks, and the current hash into four
32-bit chunks referred to tersely as A, B, C, and D in the specifi cation. Most of
the operations are done on A, B, C, and D, which are subsequently added to
the input. The 64 operations themselves consist of 16 repetitions of the four bit
fl ipping functions F, G, H, and I as shown in Listing 4-2.

Listing 4-2: “md5.c” bit manipulation routines

unsigned int F(unsigned int x, unsigned int y, unsigned int z)

{

 return (x & y) | (~x & z);

}

unsigned int G(unsigned int x, unsigned int y, unsigned int z)

{

 return (x & z) | (y & ~z);

}

c04.indd 160c04.indd 160 12/10/2010 9:44:38 AM12/10/2010 9:44:38 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 161

unsigned int H(unsigned int x, unsigned int y, unsigned int z)

{

 return (x ^ y ^ z);

}

unsigned int I(unsigned int x, unsigned int y, unsigned int z)

{

 return y ^ (x | ~z);

}

The purpose of these functions is simply to shuffl e bits in an unpredictable
way; don’t look for any deep meaning here.

Notice that this is implemented using unsigned integers. As it turns out,
MD5, unlike any of the other cryptographic algorithms in this book, operates
on little-endian numbers, which makes implementation a tad easier on an Intel-
based machine — although MD5 has an odd concept of “little endian” in places.

The function F is invoked 16 times — once for each input block — and then
G is invoked 16 times, and then H, and then I. So, what are the inputs to F, G,
H, and I? They’re actually permutations of A, B, C, and D — remember that the
hash was referred to as A, B, C, and D. The results of F, G, H, and I are added to
A, B, C, and D along with each of the input blocks, as well as a set of constants,
shifted, and added again. In all cases, adds are performed modulo 32 — that is,
they’re allowed to silently overfl ow in a 32-bit register. After all 64 operations,
the fi nal values of A, B, C, and D are concatenated together to become the hash
of a 512-bit input block.

More specifi cally, each of the 64 transformations on A, B, C, and D involve
applying one of the four functions F, G, H, or I to some permutation of A, B, C,
or D, adding it to the other, adding the value of input block (i % 4), adding the
value of 4294967296 * abs(sin(i)), rotating by a per-round amount, and adding
the whole mess to yet one more of the A, B, C, or D hash blocks.

A Secure Hashing Example

If this is all making your head spin, it’s supposed to. Secure hashing algo-
rithms are necessarily complex. In general, they derive their security from
their complexity:

 1. Define a ROUND macro that will be expanded 64 times, as shown in
Listing 4-3.

Listing 4-3: “md5.c” ROUND macro

#define BASE_T 4294967296.0

#define ROUND(F, a, b, c, d, k, s, i) \

 a = (a + F(b, c, d) + x[k] + \

(Continued)

c04.indd 161c04.indd 161 12/10/2010 9:44:38 AM12/10/2010 9:44:38 AM

162 Chapter 4 n Authenticating Communications Using Digital Signatures

 (unsigned int) (BASE_T * fabs(sin((double) i)))); \

 a = (a << s) | (a >> (32 - s)); \

 a += b;

This macro takes as input the function to be performed, a, b, c and d; a
value k which is an offset into the input; a value s which is an amount
to rotate; and a value i which is the operation number. Notice that i is
used to compute the value of 4294967296 * abs(sin(i)) on each invocation.
Technically speaking, these values ought to be precomputed because
they’ll never change.

 2. Using this macro, the MD5 block operation function is straightforward,
if a bit tedious, to code, as in Listing 4-4:

Listing 4-4: “md5.c” md5_block_operate function

// Size of MD5 hash in ints (128 bits)

#define MD5_RESULT_SIZE 4

void md5_block_operate(const unsigned char *input,

 unsigned int hash[MD5_RESULT_SIZE])

{

 unsigned int a, b, c, d;

 int j;

 unsigned int x[16];

 a = hash[0];

 b = hash[1];

 c = hash[2];

 d = hash[3];

 for (j = 0; j < 16; j++)

 {

 x[j] = input[(j * 4) + 3] << 24 |

 input[(j * 4) + 2] << 16 |

 input[(j * 4) + 1] << 8 |

 input[(j * 4)];

 }

 // Round 1

 ROUND(F, a, b, c, d, 0, 7, 1);

 ROUND(F, d, a, b, c, 1, 12, 2);

 ROUND(F, c, d, a, b, 2, 17, 3);

 ROUND(F, b, c, d, a, 3, 22, 4);

 ROUND(F, a, b, c, d, 4, 7, 5);

 ROUND(F, d, a, b, c, 5, 12, 6);

 ROUND(F, c, d, a, b, 6, 17, 7);

 ROUND(F, b, c, d, a, 7, 22, 8);

 ROUND(F, a, b, c, d, 8, 7, 9);

 ROUND(F, d, a, b, c, 9, 12, 10);

c04.indd 162c04.indd 162 12/10/2010 9:44:38 AM12/10/2010 9:44:38 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 163

 ROUND(F, c, d, a, b, 10, 17, 11);

 ROUND(F, b, c, d, a, 11, 22, 12);

 ROUND(F, a, b, c, d, 12, 7, 13);

 ROUND(F, d, a, b, c, 13, 12, 14);

 ROUND(F, c, d, a, b, 14, 17, 15);

 ROUND(F, b, c, d, a, 15, 22, 16);

 // Round 2

 ROUND(G, a, b, c, d, 1, 5, 17);

 ROUND(G, d, a, b, c, 6, 9, 18);

 ROUND(G, c, d, a, b, 11, 14, 19);

 ROUND(G, b, c, d, a, 0, 20, 20);

 ROUND(G, a, b, c, d, 5, 5, 21);

 ROUND(G, d, a, b, c, 10, 9, 22);

 ROUND(G, c, d, a, b, 15, 14, 23);

 ROUND(G, b, c, d, a, 4, 20, 24);

 ROUND(G, a, b, c, d, 9, 5, 25);

 ROUND(G, d, a, b, c, 14, 9, 26);

 ROUND(G, c, d, a, b, 3, 14, 27);

 ROUND(G, b, c, d, a, 8, 20, 28);

 ROUND(G, a, b, c, d, 13, 5, 29);

 ROUND(G, d, a, b, c, 2, 9, 30);

 ROUND(G, c, d, a, b, 7, 14, 31);

 ROUND(G, b, c, d, a, 12, 20, 32);

 // Round 3

 ROUND(H, a, b, c, d, 5, 4, 33);

 ROUND(H, d, a, b, c, 8, 11, 34);

 ROUND(H, c, d, a, b, 11, 16, 35);

 ROUND(H, b, c, d, a, 14, 23, 36);

 ROUND(H, a, b, c, d, 1, 4, 37);

 ROUND(H, d, a, b, c, 4, 11, 38);

 ROUND(H, c, d, a, b, 7, 16, 39);

 ROUND(H, b, c, d, a, 10, 23, 40);

 ROUND(H, a, b, c, d, 13, 4, 41);

 ROUND(H, d, a, b, c, 0, 11, 42);

 ROUND(H, c, d, a, b, 3, 16, 43);

 ROUND(H, b, c, d, a, 6, 23, 44);

 ROUND(H, a, b, c, d, 9, 4, 45);

 ROUND(H, d, a, b, c, 12, 11, 46);

 ROUND(H, c, d, a, b, 15, 16, 47);

 ROUND(H, b, c, d, a, 2, 23, 48);

 // Round 4

 ROUND(I, a, b, c, d, 0, 6, 49);

 ROUND(I, d, a, b, c, 7, 10, 50);

 ROUND(I, c, d, a, b, 14, 15, 51);

 ROUND(I, b, c, d, a, 5, 21, 52);

 ROUND(I, a, b, c, d, 12, 6, 53);

 ROUND(I, d, a, b, c, 3, 10, 54);

(Continued)

c04.indd 163c04.indd 163 12/10/2010 9:44:38 AM12/10/2010 9:44:38 AM

164 Chapter 4 n Authenticating Communications Using Digital Signatures

 ROUND(I, c, d, a, b, 10, 15, 55);

 ROUND(I, b, c, d, a, 1, 21, 56);

 ROUND(I, a, b, c, d, 8, 6, 57);

 ROUND(I, d, a, b, c, 15, 10, 58);

 ROUND(I, c, d, a, b, 6, 15, 59);

 ROUND(I, b, c, d, a, 13, 21, 60);

 ROUND(I, a, b, c, d, 4, 6, 61);

 ROUND(I, d, a, b, c, 11, 10, 62);

 ROUND(I, c, d, a, b, 2, 15, 63);

 ROUND(I, b, c, d, a, 9, 21, 64);

 hash[0] += a;

 hash[1] += b;

 hash[2] += c;

 hash[3] += d;

}

 3. Create a work area to hold the a, b, c, and d values from the current hash.
You see in just a minute how this is initialized — this is important. Then,
split the input, which is required to be exactly 512 bits, into 16 integers.
Notice that you convert to integers using little-endian conventions, rather
than the big-endian conventions you’ve been following thus far:
 for (j = 0; j < 16; j++)

 {

 x[j] = input[(j * 4) + 3] << 24 |

 input[(j * 4) + 2] << 16 |

 input[(j * 4) + 1] << 8 |

 input[(j * 4)];

 }

Technically speaking, because you know you’re compiling to a 32-bit
little-endian architecture, you could actually memcpy into x — or even forgo
it completely if you are willing to be fast and loose with your typecasting.
The rest of the function consists of 64 expansions of the ROUND macro. You can
probably see how, if you just index hash directly, rather than using the work
area variables a, b, c, and d, you can change this from a macro expansion
to a loop. In fact, if you want to get a bit tricky, you could follow the pattern
in the k’s and s’s and code the whole thing in a terse loop. You can replace
md5_block_operate with the shorter, but more divergent — in terms of the
specifi cation — function shown in Listing 4-5.

Listing 4-5: Alternate md5_block_operate implementation

static int s[4][4] = {

 { 7, 12, 17, 22 },

 { 5, 9, 14, 20 },

 { 4, 11, 16, 23 },

 { 6, 10, 15, 21 }

};

c04.indd 164c04.indd 164 12/10/2010 9:44:38 AM12/10/2010 9:44:38 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 165

void md5_block_operate(const unsigned char *input,

 unsigned int hash[MD5_RESULT_SIZE])

{

 int a, b, c, d, x_i, s_i;

 int i, j;

 unsigned int x[16];

 unsigned int tmp_hash[MD5_RESULT_SIZE];

 memcpy(tmp_hash, hash, MD5_RESULT_SIZE * sizeof(unsigned int));

 for (j = 0; j < 16; j++)

 {

 x[j] = input[(j * 4) + 3] << 24 |

 input[(j * 4) + 2] << 16 |

 input[(j * 4) + 1] << 8 |

 input[(j * 4)];

 }

 for (i = 0; i < 64; i++)

 {

 a = 3 - ((i + 3) % 4);

 b = 3 - ((i + 2) % 4);

 c = 3 - ((i + 1) % 4);

 d = 3 - (i % 4);

 if (i < 16)

 {

 tmp_hash[a] += F(tmp_hash[b], tmp_hash[c], tmp_hash[d]);

 x_i = i;

 }

 else if (i < 32)

 {

 tmp_hash[a] += G(tmp_hash[b], tmp_hash[c], tmp_hash[d]);

 x_i = (1 + ((i - 16) * 5)) % 16;

 }

 else if (i < 48)

 {

 tmp_hash[a] += H(tmp_hash[b], tmp_hash[c], tmp_hash[d]);

 x_i = (5 + ((i - 32) * 3)) % 16;

 }

 else

 {

 tmp_hash[a] += I(tmp_hash[b], tmp_hash[c], tmp_hash[d]);

 x_i = ((i - 48) * 7) % 16;

 }

 s_i = s[i / 16][i % 4];

 tmp_hash[a] += x[x_i] + (unsigned int)

 (BASE_T * fabs(sin((double) i + 1)));

 tmp_hash[a] = (tmp_hash[a] << s_i) | (tmp_hash[a] >> (32 - s_i));

(Continued)

c04.indd 165c04.indd 165 12/10/2010 9:44:38 AM12/10/2010 9:44:38 AM

166 Chapter 4 n Authenticating Communications Using Digital Signatures

 tmp_hash[a] += tmp_hash[b];

 }

 hash[0] += tmp_hash[0];

 hash[1] += tmp_hash[1];

 hash[2] += tmp_hash[2];

 hash[3] += tmp_hash[3];

}

The longer implementation in Listing 4-5 follows the specifi cation more closely;
the shorter implementation is a bit diffi cult to read, but it yields the same results.

NOTE Actually, the specifi cation includes C code! The implementation there
is a bit different than this one, though. The reason is covered later.

This produces a 128-bit hash on a 512-bit block. If the input is greater than
512 bits, just call the function again, this time passing the output of the previ-
ous call as the initializer. If this is the fi rst call, initialize the hash code to the
cryptographically meaningless initializer in Listing 4-6.

Listing 4-6: “md5.c” md5 initial hash

unsigned int md5_initial_hash[] = {

 0x67452301,

 0xefcdab89,

 0x98badcfe,

 0x10325476

};

Notice that this initializer doesn’t have any quasi-mystical cryptographic
security properties; it’s just the byte sequence 0123456789abcdef (in little-endian
form), followed by the same thing backward. It doesn’t much matter what you
initialize the hash to — although 0’s would be a bad choice — as long as every
implementation agrees on the starting value.

Securely Hashing Multiple Blocks of Data

If you need to encrypt less than 512 bits, or a bit string that’s not an even multiple
of 512 bits, you pad the last block. However, you can’t just pad with 0’s or just
with 1’s. Remember, 512 0’s is a legitimate input to MD5. So is one 0. You need
some way to ensure that 512 0’s hashes to a different value than one 0. Therefore,
MD5 requires that the last eight bytes of the input be set to the length, in bits
(remember that you may want to hash a value that’s not an even multiple of eight
bits) of the input preceding it. This means that MD5 is essentially undefi ned for
lengths greater than 264 bits, and that if the input happens to be between 448
(512 – 64) and 512 bits, you need to add an extra 512-bit block of padding just to

c04.indd 166c04.indd 166 12/10/2010 9:44:38 AM12/10/2010 9:44:38 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 167

store the length. A sole “1” bit follows the last bit of input, followed by enough
0’s to pad up to 448 bits, followed by the length of the message itself in bits.

NOTE According to the specifi cation, if the length is greater than 264 bits,
you can throw away the high-order bits of the length. This won’t come up with
any of the values that are hashed in this book.

Now, the MD5 specifi cation has a strange formulation for the length. Rather
than just being a little-endian 64-bit integer, it’s instead stored as “low-order 32
bits” and “high-order 32 bits.”

The code to process an arbitrarily sized input into an MD5 hash, including
padding and iteration over multiple blocks, is shown in Listing 4-7.

Listing 4-7: “md5.c” md5 hash algorithm

#define MD5_BLOCK_SIZE 64

#define MD5_INPUT_BLOCK_SIZE 56

#define MD5_RESULT_SIZE 4

int md5_hash(const unsigned char *input,

 int len,

 unsigned int hash[MD5_RESULT_SIZE])

{

 unsigned char padded_block[MD5_BLOCK_SIZE];

 int length_in_bits = len * 8;

 // XXX should verify that len < 2^64, but since len is only 32 bits, this won’t

 // be a problem.

 hash[0] = md5_initial_hash[0];

 hash[1] = md5_initial_hash[1];

 hash[2] = md5_initial_hash[2];

 hash[3] = md5_initial_hash[3];

 while (len >= MD5_INPUT_BLOCK_SIZE)

 {

 // Special handling for blocks between 56 and 64 bytes

 // (not enough room for the 8 bytes of length, but also

 // not enough to fill up a block)

 if (len < MD5_BLOCK_SIZE)

 {

 memset(padded_block, 0, sizeof(padded_block));

 memcpy(padded_block, input, len);

 padded_block[len] = 0x80;

 md5_block_operate(padded_block, hash);

 input += len;

 len = -1;

(Continued)

c04.indd 167c04.indd 167 12/10/2010 9:44:38 AM12/10/2010 9:44:38 AM

168 Chapter 4 n Authenticating Communications Using Digital Signatures

 }

 else

 {

 md5_block_operate(input, hash);

 input += MD5_BLOCK_SIZE;

 len -= MD5_BLOCK_SIZE;

 }

 }

 // There’s always at least one padded block at the end, which includes

 // the length of the message

 memset(padded_block, 0, sizeof(padded_block));

 if (len >= 0)

 {

 memcpy(padded_block, input, len);

 padded_block[len] = 0x80;

 }

 // Only append the length for the very last block

 // Technically, this allows for 64 bits of length, but since we can only

 // process 32 bits worth, we leave the upper four bytes empty

 // This is sort of a bizarre concept of “little endian”...

 padded_block[MD5_BLOCK_SIZE - 5] = (length_in_bits & 0xFF000000) >> 24;

 padded_block[MD5_BLOCK_SIZE - 6] = (length_in_bits & 0x00FF0000) >> 16;

 padded_block[MD5_BLOCK_SIZE - 7] = (length_in_bits & 0x0000FF00) >> 8;

 padded_block[MD5_BLOCK_SIZE - 8] = (length_in_bits & 0x000000FF);

 md5_block_operate(padded_block, hash);

 return 0;

}

NOTE Notice that this code requires that the entire input to be hashed be
available when this function is called. As it turns out, you can’t assume that
this is always be the case. I address this shortcoming later.

Now, follow these steps:

 1. Initialize the hash response to the standard starting value defi ned earlier.

 2. Iterate through 512-bit blocks, calling md5_block_operate until you come
to the last, or next-to-last block depending on whether the last block aligns
on less than 448 bits or not.

 3. If the last block is between 448 and 512 bits (56 and 64 bytes), pad by add-
ing a “1” bit, which is always hex 0x80 because this implementation never
accepts non-byte-aligned input, and fi ll the rest of the buffer with 0’s.

 4. The length is appended to the next block. Set len � –1 as a reminder for
the next section not to append another “1” bit.

c04.indd 168c04.indd 168 12/10/2010 9:44:38 AM12/10/2010 9:44:38 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 169

 // Special handling for blocks between 56 and 64 bytes

 // (not enough room for the 8 bytes of length, but also

 // not enough to fill up a block)

 if (len < MD5_BLOCK_SIZE)

 {

 memset(padded_block, 0, sizeof(padded_block));

 memcpy(padded_block, input, len);

 padded_block[len] = 0x80;

 md5_block_operate(padded_block, hash);

 input += len;

 len = -1;

 }

 5. Append the length, the padding bits and a trailing “1” bit — if it hasn’t
already been added — and operate on the fi nal block. There will be
448 � l. These are l bits of padding, where l is the length of the input in
bits. Note that this always happens, even if the input is 1 bit long.

 // There’s always at least one padded block at the end, which includes

 // the length of the message

 memset(padded_block, 0, sizeof(padded_block));

 if (len >= 0)

 {

 memcpy(padded_block, input, len);

 padded_block[len] = 0x80;

 }

 // Only append the length for the very last block

 // Technically, this allows for 64 bits of length, but since we can only

 // process 32 bits worth, we leave the upper four bytes empty

 // This is sort of a odd concept of “little endian”...

 padded_block[MD5_BLOCK_SIZE - 5] = (length_in_bits & 0xFF000000) >> 24;

 padded_block[MD5_BLOCK_SIZE - 6] = (length_in_bits & 0x00FF0000) >> 16;

 padded_block[MD5_BLOCK_SIZE - 7] = (length_in_bits & 0x0000FF00) >> 8;

 padded_block[MD5_BLOCK_SIZE - 8] = (length_in_bits & 0x000000FF);

 md5_block_operate(padded_block, hash);

 6. Because input greater than 232 isn’t allowed in this implementation, leave
the last four bytes empty (0) in all cases.

And you now have a 128-bit output that is essentially unique to the input.

MD5 Vulnerabilities
If you gathered 366 people in a room, there’s a 100 percent chance that two of
them will share the same birthday. There are only 365 birthdays to go around,
so with 366 people at least two must have the same birthday (367 if you want
to count Feb. 29 and Mar. 1 as two distinct birthdays). This is clear. Here’s a

c04.indd 169c04.indd 169 12/10/2010 9:44:38 AM12/10/2010 9:44:38 AM

170 Chapter 4 n Authenticating Communications Using Digital Signatures

question for you, though: How many people would you have to gather in a room
to have a 50 percent chance that two of them share the same birthday? You might
hazard a guess that it would take about 183 — half the people, half the chance.

As it turns out, the answer is stunningly lower. If 23 people are gathered
together in a room, there’s a 50 percent chance that two of them share the same
birthday. To resolve this seeming paradox, consider this: If there are n people
in a room, there are 365n possible birthdays. The fi rst person can have any of
365 birthdays; the second can have any of 365 birthdays; and so on. However,
there are only 365*364 ways that two people can have unique birthdays. The
fi rst person has “used up” one of the available birthdays. Three people can only
have 365*364*363 unique birthday combinations. In general, n people can have

365!

(365 � n)! unique combinations of birthdays. So, there are 365n �

365!

(365 � n)! ways that

at least two people share a birthday — that is, that the birthday combinations are
not unique. The math is complex, but clear: With n possibilities, you need n � 1
instances to guarantee a repeat, but you need ª 1.1772 n to have a 50% chance
of a repeat. This surprising result is often referred to as the birthday paradox.

This doesn’t bode well for MD5. MD5 produces 128 bits for each input. 2128 is
a mind-bogglingly large number. In decimal, it works out to approximately 340
million trillion trillion. However, 1.1772 2128 ª 2.2 � 1019. That’s still a lot, but quite
a few less than 2128. Remember that the purpose of using MD5 rather than a
simple checksum digest was that it ought to be impossible for an attacker to
engineer a collision. If I deliberately go looking for a collision with a published
hash, I have to compute for a long time. However, if I go looking for two docu-
ments that share a hash, I need to look for a much shorter time, albeit still
for a long time. And, as you saw with DES, this brute-force birthday attack is
infi nitely parallelizable; the more computers I can add to the attack, the faster
I can get an answer.

This vulnerability to a birthday attack is a problem that all digest algo-
rithms have; the only solution is to make the output longer and longer until
a birthday attack is infeasible in terms of computing power. As you saw with
symmetric cryptography, this is a never-ending arms race as computers get
faster and faster and protocol designers struggle to keep up. However, MD5
is even worse off than this. Researchers have found cracks in the protocol’s
fundamental design.

In 2005, security researchers Xiaoyan Wang and Hongbo Yu presented their
paper “How to break MD5 and other hash functions” (http://merlot.usc.
edu/csac-s06/papers/Wang05a.pdf), which detailed an exploit capable of
producing targeted MD5 collisions in 15 minutes to an hour using commodity
hardware. This is not a theoretical exploit; Magnus Daum and Stefaun Lucks
illustrate an actual real-world MD-5 collision in their paper http://th.informatik
.uni-mannheim.de/people/lucks/HashCollisions/.

c04.indd 170c04.indd 170 12/10/2010 9:44:38 AM12/10/2010 9:44:38 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 171

In spite of this, MD5 is fairly popular; TLS mandates its use! Fortunately for
the TLS-using public, it does so in a reasonably secure way — or, at least, a not
terribly insecure way — so that the TLS protocol itself is not weakened by the
inclusion of MD5.

Increasing Collision Resistance with the SHA-1 Digest
Algorithm
Secure Hash Algorithm (SHA-1) is similar to MD5. The only principal difference
is in the block operation itself. The other two superfi cial differences are that
SHA-1 produces a 160-bit (20-byte) hash rather than a 128-bit (16-byte) hash,
and SHA-1 deals with big-endian rather than little-endian numbers. Like MD5,
SHA-1 operates on 512-bit blocks, and the fi nal output is the sum (modulo 32) of
the results of all of the blocks. The operation itself is slightly simpler; you start
by breaking the 512-bit input into 16 4-byte values x. You then compute 80 four-
byte W values from the original input where the following is rotated left once:
W[0<t<16] = x[t], and W[17<7<80] = W[t – 3] xor W[t – 8] xor
W[t – 14] xor W[t – 16]

This W array serves the same purpose as the 4294967296 * abs(sin(i)) com-
putation in MD5, but is a bit easier to compute and is also based on the input.

After that, the hash is split up into fi ve four-byte values a, b, c, d, and e,
which are operated on in a series of 80 rounds, similar to the operation in
MD5 — although in this case, somewhat easier to implement in a loop. At each
stage, a rotation, an addition of another hash integer, an addition of an indexed
constant, an addition of the W array, and an addition of a function whose opera-
tion depends on the round number is applied to the active hash value, and then
the hash values are cycled so that a new one becomes the active one.

Understanding SHA-1 Block Computation

If you understood the MD5 computation in Listing 4-4, you should have no
trouble making sense of the SHA-1 block computation in Listing 4-8.

Listing 4-8: “sha.c” bit manipulation, initialization and block operation

static const int k[] = {

 0x5a827999, // 0 <= t <= 19

 0x6ed9eba1, // 20 <= t <= 39

 0x8f1bbcdc, // 40 <= t <= 59

 0xca62c1d6 // 60 <= t <= 79

};

// ch is functions 0 - 19

unsigned int ch(unsigned int x, unsigned int y, unsigned int z)

(Continued)

c04.indd 171c04.indd 171 12/10/2010 9:44:38 AM12/10/2010 9:44:38 AM

172 Chapter 4 n Authenticating Communications Using Digital Signatures

{

 return (x & y) ^ (~x & z);

}

// parity is functions 20 - 39 & 60 - 79

unsigned int parity(unsigned int x, unsigned int y, unsigned int z)

{

 return x ^ y ^ z;

}

// maj is functions 40 - 59

unsigned int maj(unsigned int x, unsigned int y, unsigned int z)

{

 return (x & y) ^ (x & z) ^ (y & z);

}

#define SHA1_RESULT_SIZE 5

void sha1_block_operate(const unsigned char *block,

unsigned int hash[SHA1_RESULT_SIZE])

{

 unsigned int W[80];

 unsigned int t = 0;

 unsigned int a, b, c, d, e, T;

 // First 16 blocks of W are the original 16 blocks of the input

 for (t = 0; t < 80; t++)

 {

 if (t < 16)

 {

 W[t] = (block[(t * 4)] << 24) |

 (block[(t * 4) + 1] << 16) |

 (block[(t * 4) + 2] << 8) |

 (block[(t * 4) + 3]);

 }

 else

 {

 W[t] = W[t - 3] ^

 W[t - 8] ^

 W[t - 14] ^

 W[t - 16];

 // Rotate left operation, simulated in C

 W[t] = (W[t] << 1) | ((W[t] & 0x80000000) >> 31);

 }

 }

 a = hash[0];

 b = hash[1];

 c = hash[2];

 d = hash[3];

 e = hash[4];

c04.indd 172c04.indd 172 12/10/2010 9:44:39 AM12/10/2010 9:44:39 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 173

 for (t = 0; t < 80; t++)

 {

 T = ((a << 5) | (a >> 27)) + e + k[(t / 20)] + W[t];

 if (t <= 19)

 {

 T += ch(b, c, d);

 }

 else if (t <= 39)

 {

 T += parity(b, c, d);

 }

 else if (t <= 59)

 {

 T += maj(b, c, d);

 }

 else

 {

 T += parity(b, c, d);

 }

 e = d;

 d = c;

 c = ((b << 30) | (b >> 2));

 b = a;

 a = T;

 }

 hash[0] += a;

 hash[1] += b;

 hash[2] += c;

 hash[3] += d;

 hash[4] += e;

}

Regarding Listing 4-8:

 1. The constants k are defi ned — one for each set of 20 rounds.

 2. The functions ch, maj, and parity are defi ned: ch for rounds 0–19, maj
for rounds 40–59, and parity for the remaining rounds. Like MD5’s
F, G, H, and I, these four functions just shuffl e the bits of their input
randomly.

 3. The block operation function computes the W array. Notice that you’re
using unsigned ints here, rather than four-byte blocks, so you have to
be careful to account for endian-ness as usual. The benefi t is that you
only have to keep track of this transformation once, at the beginning of
the computation, and from that point you can use native operations on
a 32-bit architecture.

c04.indd 173c04.indd 173 12/10/2010 9:44:39 AM12/10/2010 9:44:39 AM

174 Chapter 4 n Authenticating Communications Using Digital Signatures

 4. After W has been computed, the individual fi ve hash integers are copied
into a, b, c, d, and e for computation; at each round, a new T value is
computed according to

 T = ((a << 5) | (a >> 27)) � e � k[(t / 20)] � W[t] �

 ch/parity/maj(b,c,d);

 5. a, b, c, d, and e are then rotated through each other, just as in MD5, and, for
good measure, c is rotated left 30 positions as well. Although the mechan-
ics are slightly different, this is very similar to what was done with MD5.

You don’t really have to try to make sense of the mechanics of this. It’s sup-
posed to be impossible to do so. As long as the details are correct, you can safely
think of the block operation function as a true black-box function.

Understanding the SHA-1 Input Processing Function

The input processing function of SHA-1 is almost identical to that of MD5. The
length is appended, in bits, at the very end of the last block, each block is 512
bits, the hash must be initialized to a standard value before input begins, and
the hash computations of each block are added to one another, modulo 32, to
produce the fi nal result. The function in Listing 4-9, which computes SHA-1
hashes of a given input block, differs from md5_hash in only a few places, which
are highlighted in bold .

Listing 4-9: “sha.c” SHA-1 hash algorithm

#define SHA1_INPUT_BLOCK_SIZE 56

#define SHA1_BLOCK_SIZE 64

unsigned int sha1_initial_hash[] = {

 0x67452301,

 0xefcdab89,

 0x98badcfe,

 0x10325476,

 0xc3d2e1f0

};

int sha1_hash(unsigned char *input, int len,

 unsigned int hash[SHA1_RESULT_SIZE])

{

 unsigned char padded_block[SHA1_BLOCK_SIZE];

 int length_in_bits = len * 8;

 hash[0] = sha1_initial_hash[0];

 hash[1] = sha1_initial_hash[1];

c04.indd 174c04.indd 174 12/10/2010 9:44:39 AM12/10/2010 9:44:39 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 175

 hash[2] = sha1_initial_hash[2];

 hash[3] = sha1_initial_hash[3];

 hash[4] = sha1_initial_hash[4];

 while (len >= SHA1_INPUT_BLOCK_SIZE)

 {

 if (len < SHA1_BLOCK_SIZE)

 {

 memset(padded_block, 0, sizeof(padded_block));

 memcpy(padded_block, input, len);

 padded_block[len] = 0x80;

 sha1_block_operate(padded_block, hash);

 input += len;

 len = -1;

 }

 else

 {

 sha1_block_operate(input, hash);

 input += SHA1_BLOCK_SIZE;

 len -= SHA1_BLOCK_SIZE;

 }

 }

 memset(padded_block, 0, sizeof(padded_block));

 if (len >= 0)

 {

 memcpy(padded_block, input, len);

 padded_block[len] = 0x80;

 }

 padded_block[SHA1_BLOCK_SIZE - 4] = (length_in_bits & 0xFF000000) >> 24;

 padded_block[SHA1_BLOCK_SIZE - 3] = (length_in_bits & 0x00FF0000) >> 16;

 padded_block[SHA1_BLOCK_SIZE - 2] = (length_in_bits & 0x0000FF00) >> 8;

 padded_block[SHA1_BLOCK_SIZE - 1] = (length_in_bits & 0x000000FF);

 sha1_block_operate(padded_block, hash);

 return 0;

}

In fact, sha1_hash and md5_hash are so similar it’s almost painful not
to just go ahead and consolidate them into a common function. Go ahead
and do so.

Because md5_block_operate and sha1_block_operate have identical method
signatures (what a coincidence!), you can just pass the block_operate function
in as a function pointer as in Listing 4-10.

c04.indd 175c04.indd 175 12/10/2010 9:44:39 AM12/10/2010 9:44:39 AM

176 Chapter 4 n Authenticating Communications Using Digital Signatures

Listing 4-10: “digest.h” digest_hash function prototype

int digest_hash(unsigned char *input,

 int len,

 unsigned int *hash,

 void (*block_operate)(const unsigned char *input, unsigned int hash[]));

Because SHA1_BLOCK_SIZE and MD5_BLOCK_SIZE are actually identical, there’s
not much benefi t in using two different constants. You could pass the block
size in as a parameter to increase fl exibility, but there are already quite a few
parameters, and you don’t need this fl exibility — at least not yet. The initializa-
tion is different because SHA has one extra four-byte integer, but you can just
initialize outside of the function to take care of that.

Understanding SHA-1 Finalization

The only remaining difference is the fi nalization. Remember that MD5 had
sort of an odd formulation to append the length to the end of the block in little-
endian format. SHA doesn’t; it sticks with the standard big endian. You could
probably code your way around this, but a better approach is to just refactor
this into another function in Listing 4-11 and Listing 4-12.

Listing 4-11: “md5.c” md5_fi nalize

void md5_finalize(unsigned char *padded_block, int length_in_bits)

{

 padded_block[MD5_BLOCK_SIZE - 5] = (length_in_bits & 0xFF000000) >> 24;

 padded_block[MD5_BLOCK_SIZE - 6] = (length_in_bits & 0x00FF0000) >> 16;

 padded_block[MD5_BLOCK_SIZE - 7] = (length_in_bits & 0x0000FF00) >> 8;

 padded_block[MD5_BLOCK_SIZE - 8] = (length_in_bits & 0x000000FF);

}

Listing 4-12: “sha.c” sha1_fi nalize

void sha1_finalize(unsigned char *padded_block, int length_in_bits)

{

 padded_block[SHA1_BLOCK_SIZE - 4] = (length_in_bits & 0xFF000000) >> 24;

 padded_block[SHA1_BLOCK_SIZE - 3] = (length_in_bits & 0x00FF0000) >> 16;

 padded_block[SHA1_BLOCK_SIZE - 2] = (length_in_bits & 0x0000FF00) >> 8;

 padded_block[SHA1_BLOCK_SIZE - 1] = (length_in_bits & 0x000000FF);

}

So the fi nal “digest” function looks like Listing 4-13, with two function
parameters.

Listing 4-13: “digest.c” digest_hash

#define DIGEST_BLOCK_SIZE 64

#define INPUT_BLOCK_SIZE 56

c04.indd 176c04.indd 176 12/10/2010 9:44:39 AM12/10/2010 9:44:39 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 177

/**

 * Generic digest hash computation. The hash should be set to its initial

 * value *before* calling this function.

 */

int digest_hash(unsigned char *input,

 int len,

 unsigned int *hash,

 void (*block_operate)(const unsigned char *input,

 unsigned int hash[]),

 void (*block_finalize)(unsigned char *block, int length))

{

 unsigned char padded_block[DIGEST_BLOCK_SIZE];

 int length_in_bits = len * 8;

 while (len >= INPUT_BLOCK_SIZE)

 {

 // Special handling for blocks between 56 and 64 bytes

 // (not enough room for the 8 bytes of length, but also

 // not enough to fill up a block)

 if (len < DIGEST_BLOCK_SIZE)

 {

 memset(padded_block, 0, sizeof(padded_block));

 memcpy(padded_block, input, len);

 padded_block[len] = 0x80;

 block_operate(padded_block, hash);

 input += len;

 len = -1;

 }

 else

 {

 block_operate(input, hash);

 input += DIGEST_BLOCK_SIZE;

 len -= DIGEST_BLOCK_SIZE;

 }

 }

 memset(padded_block, 0, sizeof(padded_block));

 if (len >= 0)

 {

 memcpy(padded_block, input, len);

 padded_block[len] = 0x80;

 }

 block_finalize(padded_block, length_in_bits);

 block_operate(padded_block, hash);

 return 0;

}

c04.indd 177c04.indd 177 12/10/2010 9:44:39 AM12/10/2010 9:44:39 AM

178 Chapter 4 n Authenticating Communications Using Digital Signatures

This single function is now responsible for computing both MD5 and SHA-1
hashes. To compute an MD5 hash, call
 unsigned int hash[4];

 memcpy(hash, md5_initial_hash, 4 * sizeof(unsigned int));

 digest_hash(argv[2], strlen(argv[2]), hash, 4, md5_block_operate,

 md5_finalize);

and to compute an SHA-1 hash, call
 unsigned int hash[5];

 memcpy(hash, sha1_initial_hash, 5 * sizeof(unsigned int));

 digest_hash(argv[2], strlen(argv[2]), hash, 5, sha1_block_operate,

 sha1_finalize);

If you were paying close attention, you may have also noticed that the fi rst
four integers of the sha1_initial_hash array are the same as the fi rst four
integers of the md5_initial_hash array. Technically you could even use one
initial_hash array and share it between the two operations.

There’s one fi nal problem you run into when trying to use digest as in Listing 4-13.
The output of md5 is given in big-endian format, whereas the output of SHA-1
is given in little-endian format. In and of itself, this isn’t really a problem, but
you want to be able to treat digest as a black box and not care which algorithm
it encloses. As a result, you need to decide which format you want to follow.
Arbitrarily, pick the MD5 format, and reverse the SHA-1 computations at each
stage. The changes to sha.c are detailed in Listing 4-14.

Listing 4-14: “sha.c” SHA-1 in little-endian format

unsigned int sha1_initial_hash[] = {

 0x01234567,

 0x89abcdef,

 0xfedcba98,

 0x76543210,

 0xf0e1d2c3

};

...

void sha1_block_operate(const unsigned char *block, unsigned int hash[5])

{

...

 W[t] = (W[t] << 1) | ((W[t] & 0x80000000) >> 31);

 }

 }

 hash[0] = ntohl(hash[0]);

 hash[1] = ntohl(hash[1]);

 hash[2] = ntohl(hash[2]);

 hash[3] = ntohl(hash[3]);

 hash[4] = ntohl(hash[4]);

c04.indd 178c04.indd 178 12/10/2010 9:44:39 AM12/10/2010 9:44:39 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 179

 a = hash[0];

 b = hash[1];

 c = hash[2];

 d = hash[3];

...

 hash[3] += d;

 hash[4] += e;

 hash[0] = htonl(hash[0]);

 hash[1] = htonl(hash[1]);

 hash[2] = htonl(hash[2]);

 hash[3] = htonl(hash[3]);

 hash[4] = htonl(hash[4]);

}

Notice that all this does is reverse the hash values prior to each sha1_block_
operate call so that you can use the native arithmetic operators to work on
the block. It then re-reverses them on the way out. Of course, you also have to
reverse sha1_initial_hash.

Now you can call digest and treat the hash results uniformly, whether the
hash algorithm is MD5 or SHA-1. Go ahead and build a test main routine and
see some results as shown in Listing 4-15.

Listing 4-15: “digest.c” main routine

#ifdef TEST_DIGEST

int main(int argc, char *argv[])

{

 unsigned int *hash;

 int hash_len;

 int i;

 unsigned char *decoded_input;

 int decoded_len;

 if (argc < 3)

 {

 fprintf(stderr, “Usage: %s [-md5|-sha] [0x]<input>\n”, argv[0]);

 exit(0);

 }

 decoded_len = hex_decode(argv[2], &decoded_input);

 if (!(strcmp(argv[1], “-md5”)))

 {

 hash = malloc(sizeof(int) * MD5_RESULT_SIZE);

 memcpy(hash, md5_initial_hash, sizeof(int) * MD5_RESULT_SIZE);

 hash_len = MD5_RESULT_SIZE;

 digest_hash(decoded_input, decoded_len, hash,

 md5_block_operate, md5_finalize);

 }

(Continued)

c04.indd 179c04.indd 179 12/10/2010 9:44:39 AM12/10/2010 9:44:39 AM

180 Chapter 4 n Authenticating Communications Using Digital Signatures

 else if (!(strcmp(argv[1], “-sha1”)))

 {

 hash = malloc(sizeof(int) * SHA1_RESULT_SIZE);

 memcpy(hash, sha1_initial_hash, sizeof(int) * SHA1_RESULT_SIZE);

 hash_len = SHA1_RESULT_SIZE;

 digest_hash(decoded_input, decoded_len, hash,

 sha1_block_operate, sha1_finalize);

 }

 else

 {

 fprintf(stderr, “unsupported digest algorithm ‘%s’\n”, argv[1]);

 exit(0);

 }

 {

 unsigned char *display_hash = (unsigned char *) hash;

 for (i = 0; i < (hash_len * 4); i++)

 {

 printf(“%.02x”, display_hash[i]);

 }

 printf(“\n”);

 }

 free(hash);

 free(decoded_input);

 return 0;

}

#endif

Compile and run this to see it in action:

jdavies@localhost$ digest -md5 abc

900150983cd24fb0d6963f7d28e17f72

jdavies@localhost$ digest -sha1 abc

a9993e364706816aba3e25717850c26c9cd0d89d

Notice that the SHA-1 output is a bit longer than the MD5 output; MD5 gives
you 128 bits, and SHA-1 gives you 160.

Even More Collision Resistance with the SHA-256
Digest Algorithm
Even SHA, with its 160 bits of output, is no longer considered suffi cient to effec-
tively guard against hash collisions. There have been three new standardized
SHA extensions named SHA-256, SHA-384 and SHA-512. In general, the SHA-n
algorithm produces n bits of output. You don’t examine them all here, but go
ahead and add support for SHA-256 because it’s rapidly becoming the minimum

c04.indd 180c04.indd 180 12/10/2010 9:44:39 AM12/10/2010 9:44:39 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 181

required standard where secure hashing is concerned (you’ll also need it later in
this chapter, to support elliptic-curve cryptography). At the time of this writing,
the NIST is evaluating proposals for a new SHA standard, which will almost
certainly have an even longer output.

Everything about SHA-256 is identical to SHA-1 except for the block process-
ing itself and the output length. The block size, padding, and so on are all the
same. You can reuse the digest_hash function from Listing 4-13 verbatim, if
you just change the block_operate function pointer.

SHA-256’s block operation is similar; ch and maj reappear, but the parity func-
tion disappears and four new functions, which are identifi ed in the specifi cation
as �1, �0, �1 and �0are introduced:

�0 (x) � rotr(x, 2) ^ rotr(x, 13) ^ rotr(x, 22)

�1 (x) � rotr(x, 6) ^ rotr(x, 11) ^ rotr(x, 25)

�0 (x) � rotr(x, 7) ^ rotr(x, 18) ^ shr(x ^ 3)

�1 (x) � rotr(x, 17) ^ rotr(x, 19)^ shr(x, 10)

This choice of nomenclature doesn’t translate very well into code, so call �

sigma_rot (because the last operation is a rotr — “rotate right”) and � sigma_shr
(because the last operation is a shr — “shift right”). In code, this looks like
Listing 4-16.

Listing 4-16: “sha.c” SHA-256 sigma functions

unsigned int rotr(unsigned int x, unsigned int n)

{

 return (x >> n) | ((x) << (32 - n));

}

unsigned int shr(unsigned int x, unsigned int n)

{

 return x >> n;

}

unsigned int sigma_rot(unsigned int x, int i)

{

 return rotr(x, i ? 6 : 2) ^ rotr(x, i ? 11 : 13) ^ rotr(x, i ? 25 : 22);

}

unsigned int sigma_shr(unsigned int x, int i)

{

 return rotr(x, i ? 17 : 7) ^ rotr(x, i ? 19 : 18) ^ shr(x, i ? 10 : 3);

}

The block operation itself should look familiar; instead of just a, b, c, d and e,
you have a-h because there are eight 32-bit integers in the output now. There’s a
64-int (instead of an 80-int) W that is precomputed, and a static k block. There’s

c04.indd 181c04.indd 181 12/10/2010 9:44:39 AM12/10/2010 9:44:39 AM

182 Chapter 4 n Authenticating Communications Using Digital Signatures

also a 64-iteration round that’s applied to a-h where they shift positions each
round and whichever input is at the head is subject to a complex computation.
The code should be more or less self-explanatory; even if you can’t see why
this works, you should be more than convinced that the output is a random
permutation of the input, which is what you want from a hash function. This
is shown in Listing 4-17.

Listing 4-17: “sha.c” SHA-256 block operate

void sha256_block_operate(const unsigned char *block,

 unsigned int hash[8])

{

 unsigned int W[64];

 unsigned int a, b, c, d, e, f, g, h;

 unsigned int T1, T2;

 int t, i;

 /**

 * The first 32 bits of the fractional parts of the cube roots

 * of the first sixty-four prime numbers.

 */

 static const unsigned int k[] =

 {

 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,

 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,

 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,

 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,

 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,

 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,

 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,

 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,

 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,

 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,

 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2

 };

 // deal with little-endian-ness

 for (i = 0; i < 8; i++)

 {

 hash[i] = ntohl(hash[i]);

 }

 for (t = 0; t < 64; t++)

 {

 if (t <= 15)

 {

 W[t] = (block[(t * 4)] << 24) |

 (block[(t * 4) + 1] << 16) |

c04.indd 182c04.indd 182 12/10/2010 9:44:39 AM12/10/2010 9:44:39 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 183

 (block[(t * 4) + 2] << 8) |

 (block[(t * 4) + 3]);

 }

 else

 {

 W[t] = sigma_shr(W[t - 2], 1) +

 W[t - 7] +

 sigma_shr(W[t - 15], 0) +

 W[t - 16];

 }

 }

 a = hash[0];

 b = hash[1];

 c = hash[2];

 d = hash[3];

 e = hash[4];

 f = hash[5];

 g = hash[6];

 h = hash[7];

 for (t = 0; t < 64; t++)

 {

 T1 = h + sigma_rot(e, 1) + ch(e, f, g) + k[t] + W[t];

 T2 = sigma_rot(a, 0) + maj(a, b, c);

 h = g;

 g = f;

 f = e;

 e = d + T1;

 d = c;

 c = b;

 b = a;

 a = T1 + T2;

 }

 hash[0] = a + hash[0];

 hash[1] = b + hash[1];

 hash[2] = c + hash[2];

 hash[3] = d + hash[3];

 hash[4] = e + hash[4];

 hash[5] = f + hash[5];

 hash[6] = g + hash[6];

 hash[7] = h + hash[7];

 // deal with little-endian-ness

 for (i = 0; i < 8; i++)

 {

 hash[i] = htonl(hash[i]);

 }

}

c04.indd 183c04.indd 183 12/10/2010 9:44:39 AM12/10/2010 9:44:39 AM

184 Chapter 4 n Authenticating Communications Using Digital Signatures

Notice that there are quite a few more k values for SHA-256 than for SHA-1,
and that � shows up only in the computation of W and � in the main loop. You
also have to have an initial hash in Listing 4-18.

Listing 4-18: “sha.c” SHA-256 initial hash

static const unsigned int sha256_initial_hash[] =

{

 0x67e6096a,

 0x85ae67bb,

 0x72f36e3c,

 0x3af54fa5,

 0x7f520e51,

 0x8c68059b,

 0xabd9831f,

 0x19cde05b

};

These are presented here backward (that is, in little-endian format) with
respect to the specifi cation. If you want to invoke this, you need to call the same
digest_hash function developed earlier:
 unsigned int hash[8];

 memcpy(hash, sha256_initial_hash, 8 * sizeof(unsigned int));

 digest_hash(argv[2], strlen(argv[2]), hash, 8, sha256_block_operate,

 sha1_finalize);

Notice that the fi nalize pointer points to sha1_finalize — fi nalization is
exactly the same for SHA-256 as it is for SHA-1, so there’s no reason to defi ne
a new function here.

Preventing Replay Attacks with the HMAC Keyed-Hash
Algorithm
Related to message digests (and particularly relevant to SSL) are HMACs, speci-
fi ed in RFC 2104. To understand the motivation for HMAC, consider the secure
hash functions (MD5 and SHA) examined in the previous three sections. Secure
hashes are reliable, one-way functions. You give them the input, they give you
the output, and nobody — not even you — can work backward from the output
to uncover the input. Right?

Well, not exactly — or at least, not always. Imagine that a company maintains
a database of purchase orders, and to verify that the customer is in posses-
sion of the credit card number used to place an order, a secure hash of the
credit card number is stored for each order. The customer is happy, because
her credit card number is not being stored in a database for some hacker to
steal; and the company is happy, because it can ask a customer for her credit
card number and then retrieve all orders that were made using that card for

c04.indd 184c04.indd 184 12/10/2010 9:44:40 AM12/10/2010 9:44:40 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 185

customer service purposes. The company just asks the customer for the credit
card number again, hashes it, and searches the database on the hash column.

Unfortunately, there’s a problem with this approach. Although there are a lot
of potential hash values — even for a small hash function such as MD5 — there
aren’t that many credit card numbers. About 10,000 trillion. In fact, not every
16-digit number is a valid credit card number, and the LUHN consistency
check that verifi es the validity of a credit card number is a public algorithm. In
cryptography terms, this isn’t actually a very big number. A motivated attacker
might try to compute the MD5 hash — or whatever hash was used — of all
10,000 trillion possible credit card numbers and store the results, keyed back
to the original credit card number. This might take months to complete on a
powerful cluster of computers, but after it’s computed this database could be
used against any database that stores an MD5 hash of credit card numbers.
Fortunately, this direct attack is infeasible for a different reason. This would
require 320,000 trillion bytes of memory — about 320 petabytes. The cost of
this storage array far outweighs the value of even the largest database of credit
card numbers.

So far, so good. An attacker would have to spend months mounting a targeted
attack against the database or would have to have an astronomical amount
of storage at his disposal. Unfortunately, Martin Hellman, in his paper “A
Cryptanalytic Time — Memory Trade-Off”, came up with a way to trade stor-
age space for speed. His concept has been refi ned into what are now called
rainbow tables. The idea is to start with an input, hash it, and then arbitrarily
map that hash back to the input space. This arbitrary mapping doesn’t undo
the hash — that’s impossible — it just has to be repeatable. You then take the
resulting input, hash it, map it back, and so on. Do this n times, but only store
the fi rst and the last values. This way, although you have to go through every
possible input value, you can drastically reduce the amount of storage you need.

When you have a hash code you want to map back to its original input, look
for it in your table. If you don’t fi nd it, apply your back-mapping function, hash
that, and look in the table again. Eventually, you fi nd a match, and when you do,
you have uncovered the original input. This approach has been successfully used
to crack passwords whose hashes were stored rather than their actual contents;
rainbow tables of common password values are available for download online;
you don’t even have to compute them yourself.

The easiest way to guard against this is to include a secret in the hash; with-
out the secret, the attacker doesn’t know what to hash in the fi rst place. This
is, in fact, the idea behind the HMAC. Here, both sides share a secret, which is
combined with the hash in a secure way. Only a legitimate holder of the secret
can fi gure out H(m,s) where H is the secure hash function, m is the message,
and s is the secret.

A weak, naïve, shared-secret MAC operation might be:
h(m) £ s

c04.indd 185c04.indd 185 12/10/2010 9:44:40 AM12/10/2010 9:44:40 AM

186 Chapter 4 n Authenticating Communications Using Digital Signatures

where h refers to a secure digest. The problem with this approach is its vulner-
ability to known plaintext attacks. The attack works like this: The attacker convinces
somebody with the MAC secret to hash and XOR the text “abc” or some other
value that is known to the attacker. This has the MD5 hash 900150983cd24fb0
d6963f7d28e17f72. Remember that the attacker can compute this as well — an
MD5 hash never changes. The holder of the secret then XORs this value with
the secret and makes the result available.

Unfortunately, the attacker can then XOR the hash with the result and recover
the secret. Remember that a ≈ b ≈ b � a, but a ≈ b ≈ a � b as well. So hash ≈
secret ≈ hash � secret. Since mac � (hash ≈ secret), mac ≈ hash � secret, and the
secret has been revealed.

Implementing a Secure HMAC Algorithm

A more secure algorithm is specifi ed in RFC 2104 and is the standard for com-
bining shared secrets with secure hash algorithms. Overall, it’s not radically
different in concept than XORing the shared secret with the result of a secure
hash; it just adds a couple of extra functions.

An HMAC-hash prepends one block of data to the data to be hashed. The
prepended block consists of 64 bytes of 0x36, XORed with the shared secret.
This means that the shared secret can’t be longer than 64 bytes. If it is, it should
be securely hashed itself, and the results of that hash used as the shared secret.
This result (the prepended block, plus the input data itself) is then hashed, using
a secure hash algorithm. Finally, this hash is appended to a new block of data
that consists of one block of the byte 0x5C, XORed again with the shared secret
(or its computed hash as described previously), and hashed again to produce
the fi nal hash value. Figure 4-1 illustrates this process.

This double-hash technique stops the attacker in the known-plaintext attack
described earlier from computing the hash code and XORing it against the secret
to recover it. All of this complexity is carefully designed to create a repeatable
process. Remember, if “abc” hashes to “xyz” for me, it must hash that way for
you no matter when you run it or what type of machine you’re on — but in such
a way that can’t be reversed or forged. It seems complicated (and it is), but after
it’s implemented, it can be treated as a black box.

Using the digest algorithm above, you can put together an HMAC imple-
mentation that can work with any hash algorithm in Listing 4-19.

Listing 4-19: “hmac.c” HMAC function

/**

 * Note: key_length, text_length, hash_block_length are in bytes.

 * hash_code_length is in ints.

 */

void hmac(const unsigned char *key,

c04.indd 186c04.indd 186 12/10/2010 9:44:40 AM12/10/2010 9:44:40 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 187

 int key_length,

 const unsigned char *text,

 int text_length,

 void (*hash_block_operate)(const unsigned char *input, unsigned int hash[]),

 void (*hash_block_finalize)(const unsigned char *block, int length),

 int hash_block_length,

 int hash_code_length,

 unsigned int *hash_out)

{

 unsigned char *ipad, *opad, *padded_block;

 unsigned int *hash1;

 int i;

 // TODO if key_length > hash_block_length, should hash it using “hash_

 // function” first and then use that as the key.

 assert(key_length < hash_block_length);

 hash1 = (unsigned int *) malloc(hash_code_length * sizeof(unsigned int)

);

 ipad = (unsigned char *) malloc(hash_block_length);

 padded_block = (unsigned char *) malloc(text_length + hash_block_length);

 memset(ipad, 0x36, hash_block_length);

 memset(padded_block, ‘\0’, hash_block_length);

 memcpy(padded_block, key, key_length);

 for (i = 0; i < hash_block_length; i++)

 {

 padded_block[i] ^= ipad[i];

 }

 memcpy(padded_block + hash_block_length, text, text_length);

 memcpy(hash1, hash_out, hash_code_length * sizeof(unsigned int));

 digest_hash(padded_block, hash_block_length + text_length, hash1,

 hash_code_length, hash_block_operate, hash_block_finalize);

 opad = (unsigned char *) malloc(hash_block_length);

 memset(opad, 0x5C, hash_block_length);

 free(padded_block);

 padded_block = (unsigned char *) malloc(

 (hash_code_length * sizeof(int)) + hash_block_length);

 memset(padded_block, ‘\0’, hash_block_length);

 memcpy(padded_block, key, key_length);

 for (i = 0; i < hash_block_length; i++)

 {

 padded_block[i] ^= opad[i];

(Continued)

c04.indd 187c04.indd 187 12/10/2010 9:44:40 AM12/10/2010 9:44:40 AM

188 Chapter 4 n Authenticating Communications Using Digital Signatures

 }

 memcpy(padded_block + hash_block_length, hash1,

 hash_code_length * sizeof(int));

 digest_hash(padded_block,

 hash_block_length + (hash_code_length * sizeof(int)), hash_out,

 hash_code_length, hash_block_operate, hash_block_finalize);

 free(hash1);

 free(ipad);

 free(opad);

 free(padded_block);

}

Figure 4-1: HMAC Function

Key

text

hash code

HMAC

0×36 0×36 0×36 ...

0×5c 0×5c 0×5c

hash (e.g. MD5 or SHA-1)

hash

The method signature is a behemoth, repeated in Listing 4-20.

Listing 4-20: “hmac.h” HMAC function prototype

void hmac(const unsigned char *key,

 int key_length,

 const unsigned char *text,

 int text_length,

 int (*hash_block_operate)(const unsigned char *input, unsigned int hash[]),

 int (*hash_block_finalize)(unsigned char *block, int length),

 int hash_block_length,

 int hash_code_length,

 unsigned int *hash_out)

c04.indd 188c04.indd 188 12/10/2010 9:44:40 AM12/10/2010 9:44:40 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 189

Here, key and key_length describe the shared secret; text and text_length
describe the data to be HMAC-ed; hash_block_operate and hash_block_final-
ize describe the hash operation; hash_block_length describes the length of a
block in bytes (which is always 64 for MD5 and SHA-1); hash_code_length is
the length of the resultant hash in ints (4 for MD5, 5 for SHA-1); and hash_out
is a pointer to the hash code to be generated.

Because you don’t need to deal with shared secrets that are greater than 64
bytes for SSL, just ignore them:

 // TODO if key_length > hash_block_length, should hash it using “hash_

 // function” first and then use that as the key.

 assert(key_length < hash_block_length);

NOTE Note that hash_out must be initialized properly, according to the
secure hashing algorithm. Alternatively, you could have added an initialization
parameter, but you’re already up to nine parameters here.

Remember that HMAC requires that you compute an initial hash based on
the text to be hashed, prepended with a block of 0x36s XORed with the shared
secret, called the key here. This section of the HMAC function builds this block
of data:
 hash1 = (unsigned int *) malloc(hash_code_length * sizeof(unsigned int));

 ipad = (unsigned char *) malloc(hash_block_length);

 padded_block = (unsigned char *) malloc(text_length � hash_block_length);

 memset(ipad, 0x36, hash_block_length);

 memset(padded_block, ‘\0’, hash_block_length);

 memcpy(padded_block, key, key_length);

 for (i = 0; i < hash_block_length; i��)

 {

 padded_block[i] ^= ipad[i];

 }

You allocate a new block of memory as long as the text to be hashed plus one
extra block, fi ll it with 0x36s, and XOR that with the key. Finally, compute the
hash of this new data block:

 memcpy(padded_block � hash_block_length, text, text_length);

 memcpy(hash1, hash_out, hash_code_length * sizeof(unsigned int));

 digest_hash(padded_block, hash_block_length � text_length, hash1,

 hash_code_length, hash_block_operate, hash_block_finalize);

Notice that you’re hashing into an internal block called hash1, and remember
that HMAC requires you to hash that hash. There’s a minor implementation
problem here, though. The caller of digest_hash must preinitialize the hash

c04.indd 189c04.indd 189 12/10/2010 9:44:40 AM12/10/2010 9:44:40 AM

190 Chapter 4 n Authenticating Communications Using Digital Signatures

code to its proper initialization value. You could ask the caller of this function
to pass the correct initialization value in as a parameter, but you can “cheat”
instead to save an input parameter. Because you know that the caller of hmac
had to initialize hash_out, copy that value into hash1 to properly initialize it.

Completing the HMAC Operation

Now you have the fi rst hash code computed in hash1, according to the secure
hashing algorithm that was passed in. To complete the HMAC operation, you
need to prepend that with another block of 0x5Cs, XORed with the shared
secret, and hash it:
 opad = (unsigned char *) malloc(hash_block_length);

 memset(opad, 0x5C, hash_block_length);

 free(padded_block);

 padded_block = (unsigned char *) malloc(hash_code_length �

 (hash_block_length * sizeof(int)));

 memset(padded_block, ‘\0’, hash_block_length);

 memcpy(padded_block, key, key_length);

 for (i = 0; i < hash_block_length; i��)

 {

 padded_block[i] ^= opad[i];

 }

Notice that this frees and reallocates padded_block. You may wonder why
you’d want to reallocate here because you already allocated this temporary space
to compute the fi rst hash value. However, consider the case where text_length
is less than hash_code_length, which sometimes it is. In this case, you’d have
too little space for the prepended hash code. You could make this a bit more
effi cient by allocating max(hash_code_length, text_length) at the top of
the function, but this implementation is good enough.

Finally, compute the hash into hash_out, which is the return value of the
function
 memcpy(padded_block � hash_block_length, hash1,

 hash_code_length * sizeof(int));

 digest_hash(padded_block,

 hash_block_length � (hash_code_length * sizeof(int)), hash_out,

 hash_code_length, hash_block_operate, hash_block_finalize);

Creating Updateable Hash Functions
Notice that, in order to compute an HMAC, you had to build an internal buffer
consisting of a padded, XORed key followed by the text to be hashed. However,
the hash functions presented here don’t ever need to go back in the data stream.

c04.indd 190c04.indd 190 12/10/2010 9:44:40 AM12/10/2010 9:44:40 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 191

After block #N has been hashed, subsequent operations won’t change the hash of
block #N. They are just added to it, modulo 32. Therefore, you can save memory
and time by allowing the hash operation to save its state and pick back up where
it left off later — that is, feed it a block of data, let it update the hash code, and
then feed it another, and so on.

Of course, the padding requirements of MD5 and SHA make this a little
trickier than it sounds at fi rst. You need to keep track of the running bit-length
of the input so that it can be appended later on. This is, incidentally, how a
32-bit architecture can hash an input of more than 232 bits. Plus, for additional
fl exibility, you’d want to allow the caller to pass in less than a single block at a
time and accumulate the blocks yourself.

You could store this running state in a static global, but this would cause
thread-safety problems (if you ever wanted to use this routine in a threaded
context, anyway). Instead, you’d do better to pass a context object into the hash-
ing function, with a routine named something like hash_update that would
also take the data to be added to the running hash, and another routine named
hash_finalize that would add the fi nal padding blocks and return the result.
This is, in fact, the only non-superfi cial difference between the MD5 code included
in RFC 1321 and the MD5 implementation presented here. You need to be able
to compute running hashes for SSL, so implement this extension for MD5 and
SHA. Change your digest function to allow running updates and improve the
HMAC implementation a bit.

Defi ning a Digest Structure

Because you can no longer call digest in one shot, but must instead keep track
of a long-running operation, defi ne a context structure that stores the state of
an ongoing digest computation as shown in Listing 4-21.

Listing 4-21: “digest.h” digest context structure declaration

typedef struct

{

 unsigned int *hash;

 int hash_len;

 unsigned int input_len;

 void (*block_operate)(const unsigned char *input, unsigned int hash[]);

 void (*block_finalize)(const unsigned char *block, int length);

 // Temporary storage

 unsigned char block[DIGEST_BLOCK_SIZE];

 int block_len;

}

digest_ctx;

c04.indd 191c04.indd 191 12/10/2010 9:44:40 AM12/10/2010 9:44:40 AM

192 Chapter 4 n Authenticating Communications Using Digital Signatures

hash and hash_len are fairly straightforward; this is the hash code as it has
been computed with the data that’s been given so far. input_len is the number
of bytes that have been passed in; remember input_len needs to be tracked in
order to append the length in bits to the virtual buffer before computing the
fi nal hash code. Go ahead and stick the block_operate and block_finalize
function pointers in here so that you don’t have to further pollute your function
call signatures. Finally, there’s a block of temporary storage; if a call to update
is made with less than a full block (or with a non-aligned bit left over), store it
here, along with its length, and pass it on to block_operate when there’s enough
data to make a full block. This is shown in Listing 4-22.

Listing 4-22: “digest.c” update digest function

void update_digest(digest_ctx *context, const unsigned char *input, int input_

len)

{

 context->input_len += input_len;

 // Process any left over from the last call to “update_digest”

 if (context->block_len > 0)

 {

 // How much we need to make a full block

 int borrow_amt = DIGEST_BLOCK_SIZE - context->block_len;

 if (input_len < borrow_amt)

 {

 memcpy(context->block + context->block_len, input, input_len);

 context->block_len += input_len;

 input_len = 0;

 }

 else

 {

 memcpy(context->block + context->block_len, input, borrow_amt);

 context->block_operate(context->block, context->hash);

 context->block_len = 0;

 input += borrow_amt;

 input_len -= borrow_amt;

 }

 }

 while (input_len >= DIGEST_BLOCK_SIZE)

 {

 context->block_operate(input, context->hash);

 input += DIGEST_BLOCK_SIZE;

 input_len -= DIGEST_BLOCK_SIZE;

 }

 // Have some non-aligned data left over; save it for next call, or

 // “finalize” call.

c04.indd 192c04.indd 192 12/10/2010 9:44:41 AM12/10/2010 9:44:41 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 193

 if (input_len > 0)

 {

 memcpy(context->block, input, input_len);

 context->block_len = input_len;

 }

}

This is probably the most complex function presented so far, so it’s worth
going through carefully:

 1. Update the input length. You have to append this to the very last block,
whenever that may come.
 context->input_len �= input_len;

 // Process any left over from the last call to “update_digest”

 if (context->block_len > 0)

 {

 ...

 }

 2. Check to see if you have any data left over from a previous call. If you
don’t, go ahead and process the data, one block at a time, until you run
out of blocks:
 while (input_len >= DIGEST_BLOCK_SIZE)

 {

 context->block_operate(input, context->hash);

 input �= DIGEST_BLOCK_SIZE;

 input_len -= DIGEST_BLOCK_SIZE;

 }

This ought to look familiar; it’s the main loop of the original digest func-
tion from Listing 4-13.

 3. Process one entire block, update the hash, increment the input pointer
and decrement the length counter. At the end, input_len is either 0 or
some integer less than the block size, so just store the remaining data in
the context pointer until the next time update_digest is called:
if (input_len > 0)

 {

 memcpy(context->block, input, input_len);

 context->block_len = input_len;

 }

At this point, you know that input_len is less than one block size, so
there’s no danger of overrunning the temporary buffer context->block.

 4. Next time update_digest is called, check to see if there’s any data left over
from the previous call. If so, concatenate data from the input buffer onto

c04.indd 193c04.indd 193 12/10/2010 9:44:41 AM12/10/2010 9:44:41 AM

194 Chapter 4 n Authenticating Communications Using Digital Signatures

the end of it, process the resulting block, and process whatever remaining
blocks are left.
 if (context->block_len > 0)

 {

 // How much we need to make a full block

 int borrow_amt = DIGEST_BLOCK_SIZE - context->block_len;

 if (input_len < borrow_amt)

 {

 5. borrow_amt is the number of bytes needed to make a full block. If you
still don’t have enough, just add it to the end of the temporary block and
allow the function to exit.
 memcpy(context->block � context->block_len, input, input_len);

 context->block_len �= input_len;

 input_len = 0;

 }

Otherwise, go ahead and copy borrow_amt bytes into the temporary block,
process that block, and continue:
 else

 {

 memcpy(context->block � context->block_len, input, borrow_amt);

 context->block_operate(context->block, context->hash);

 context->block_len = 0;

 input �= borrow_amt;

 input_len -= borrow_amt;

 }

Appending the Length to the Last Block

So, the caller calls update_digest repeatedly, as data becomes available, allow-
ing it to compute a running hash code. However, to complete an MD5 or SHA-1
hash, you still have to append the length, in bits, to the end of the last block. The
function finalize_digest handles what used to be the complex logic in digest_
hash to fi gure out if the remaining data consists of one or two blocks — that is,
if there’s enough space for the end terminator and the length on the end of the
remaining block as shown in Listing 4-23.

Listing 4-23: “digest.c” fi nalize digest

/**

 * Process whatever’s left over in the context buffer, append

 * the length in bits, and update the hash one last time.

 */

void finalize_digest(digest_ctx *context)

{

 memset(context->block + context->block_len, 0, DIGEST_BLOCK_SIZE -

c04.indd 194c04.indd 194 12/10/2010 9:44:41 AM12/10/2010 9:44:41 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 195

 context->block_len);

 context->block[context->block_len] = 0x80;

 // special handling if the last block is < 64 but > 56

 if (context->block_len >= INPUT_BLOCK_SIZE)

 {

 context->block_operate(context->block, context->hash);

 context->block_len = 0;

 memset(context->block + context->block_len, 0, DIGEST_BLOCK_SIZE -

 context->block_len);

 }

 // Only append the length for the very last block

 // Technically, this allows for 64 bits of length, but since we can only

 // process 32 bits worth, we leave the upper four bytes empty

 context->block_finalize(context->block, context->input_len * 8);

 context->block_operate(context->block, context->hash);

}

This logic was described when it was originally presented in the context
of MD5.

Listing 4-24 shows how you initialize the MD5 digest context.

Listing 4-24: “md5.c” MD5 digest initialization

void new_md5_digest(digest_ctx *context)

{

 context->hash_len = 4;

 context->input_len = 0;

 context->block_len = 0;

 context->hash = (unsigned int *)

 malloc(context->hash_len * sizeof(unsigned int));

 memcpy(context->hash, md5_initial_hash,

 context->hash_len * sizeof(unsigned int));

 memset(context->block, ‘\0’, DIGEST_BLOCK_SIZE);

 context->block_operate = md5_block_operate;

 context->block_finalize = md5_finalize;

}

Listing 4-25 shows how you initialize the SHA-1 context.

Listing 4-25: “sha.c” SHA-1 digest initialization

void new_sha1_digest(digest_ctx *context)

{

 context->hash_len = 5;

 context->input_len = 0;

 context->block_len = 0;

 context->hash = (unsigned int *)

 malloc(context->hash_len * sizeof(unsigned int));

 memcpy(context->hash, sha1_initial_hash,

 context->hash_len * sizeof(unsigned int));

(Continued)

c04.indd 195c04.indd 195 12/10/2010 9:44:41 AM12/10/2010 9:44:41 AM

196 Chapter 4 n Authenticating Communications Using Digital Signatures

 memset(context->block, ‘\0’, DIGEST_BLOCK_SIZE);

 context->block_operate = sha1_block_operate;

 context->block_finalize = sha1_finalize;

}

And fi nally, Listing 4-26 shows how you initialize the SHA-256 context.

Listing 4-26: “sha.c” SHA-256 digest initialization

void new_sha256_digest(digest_ctx *context)

{

 context->hash_len = 8;

 context->input_len = 0;

 context->block_len = 0;

 context->hash = (unsigned int *) malloc(context->hash_len *

 sizeof(unsigned int));

 memcpy(context->hash, sha256_initial_hash, context->hash_len *

 sizeof(unsigned int));

 memset(context->block, ‘\0’, DIGEST_BLOCK_SIZE);

 context->block_operate = sha256_block_operate;

 context->block_finalize = sha1_finalize;

}

Of course if you want to support more hash contexts, just add more of them
here.

After the contexts have been initialized, they’re just passed to update_digest
as new data becomes available, and passed to finalize_digest after all the data
to be hashed has been accumulated.

Computing the MD5 Hash of an Entire File

An example might help to clarify how these updateable digest functions work.
Consider a real-world example — computing the MD5 hash of an entire fi le:

 // hash a file; buffer input

 digest_ctx context;

 const char *filename = “somefile.tmp”;

 char buf[400]; // purposely non-aligned to exercise updating logic

 int bytes_read;

 int f = open(filename, O_RDONLY);

 if (!f)

 {

 fprintf(stderr, “Unable to open ‘%s’ for reading: “, filename);

 perror(“”);

 exit(0);

 }

 new_md5_digest(&context);

c04.indd 196c04.indd 196 12/10/2010 9:44:41 AM12/10/2010 9:44:41 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 197

 while ((bytes_read = read(f, buf, 400)) > 0)

 {

 update_digest(&context, buf, bytes_read);

 }

 finalize_digest(&context);

 if (bytes_read == -1)

 {

 fprintf(stderr, “Error reading file ‘%s’: “, filename);

 perror(“”);

 }

 close(f);

 {

 unsigned char *hash = (unsigned char *) context.hash;

 for (i = 0; i < (context.hash_len * 4); i��)

 {

 printf(“%.02x”, hash[i]);

 }

 printf(“\n”);

 }

 free(context.hash);

Pay special attention to how this works:

 1. A new MD5 digest structure is initialized by calling new_md5_digest from
Listing 4-24.

 2. The fi le is opened and read, 400 bytes at a time.

 3. These 400-byte blocks are passed into update_digest from Listing 4-22,
which is responsible for computing the hash “so far,” on top of the hash
that’s already been computed.

 4. Before completing, finalize_digest from Listing 4-23 is called to append
the total length of the fi le as required by the digest structure and the fi nal
hash is computed.

 5. At this point, the context parameter can no longer be reused; if you wanted
to compute another hash, you’d have to initialize another context.

The benefi t of this approach is that rather than reading the whole fi le into
memory and calling md5_hash from Listing 4-7 (which would produce the exact
same result), the whole fi le doesn’t need to be stored in memory all at once.

The hash is converted to a char array at the end so that it prints out in canonical
order — remember that MD5 is little-endian; however, it’s customary to display
a hash value in big-endian order anyway.

c04.indd 197c04.indd 197 12/10/2010 9:44:41 AM12/10/2010 9:44:41 AM

198 Chapter 4 n Authenticating Communications Using Digital Signatures

NOTE This update_digest/fi nalize_digest/digest_ctx all but invents C++.
(Don’t worry, I promise it won’t happen again.) In fact, if C and C++ weren’t so
diffi cult to interoperate, I’d just turn digest into a new superclass with three
subclasses, md5digest, sha1digest, and sha256digest.

This new updateable hash operation simplifi es HMAC a bit because you
don’t need to do so much copying to get the buffers set up correctly as shown
in Listing 4-27.

Listing 4-27: “hmac.c” modifi ed HMAC function to use updateable digest functions

void hmac(unsigned char *key,

 int key_length,

 unsigned char *text,

 int text_length,

 digest_ctx *digest)

{

 unsigned char ipad[DIGEST_BLOCK_SIZE];

 unsigned char opad[DIGEST_BLOCK_SIZE];

 digest_ctx hash1;

 int i;

 // TODO if key_length > hash_block_length, should hash it using

 // “hash_function” first and then use that as the key.

 assert(key_length < DIGEST_BLOCK_SIZE);

 // “cheating”; copy the supplied digest context in here, since we don’t

 // know which digest algorithm is being used

 memcpy(&hash1, digest, sizeof(digest_ctx));

 hash1.hash = (unsigned int *) malloc(

 hash1.hash_len * sizeof(unsigned int));

 memcpy(hash1.hash, digest->hash, hash1.hash_len * sizeof(unsigned int));

 memset(ipad, 0x36, DIGEST_BLOCK_SIZE);

 for (i = 0; i < key_length; i++)

 {

 ipad[i] ^= key[i];

 }

 update_digest(&hash1, ipad, DIGEST_BLOCK_SIZE);

 update_digest(&hash1, text, text_length);

 finalize_digest(&hash1);

 memset(opad, 0x5C, DIGEST_BLOCK_SIZE);

 for (i = 0; i < key_length; i++)

c04.indd 198c04.indd 198 12/10/2010 9:44:41 AM12/10/2010 9:44:41 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 199

 {

 opad[i] ^= key[i];

 }

 update_digest(digest, opad, DIGEST_BLOCK_SIZE);

 update_digest(digest, (unsigned char *) hash1.hash,

 hash1.hash_len * sizeof(int));

 finalize_digest(digest);

 free(hash1.hash);

}

Although update_digest and finalize_digest themselves are practi-
cally impenetrable if you don’t already know what they’re doing, HMAC is
actually much easier to read now that you’ve shunted memory management
off to update_digest. Now you simply XOR the key with a block of 0x36s,
update the digest, update it again with the text, fi nalize, XOR the key with
another block of 0x5Cs, update another digest, update it again with the result
of the fi rst digest, and fi nalize that. The only real “magic” in the function
is at the beginning.

 memcpy(&hash1, digest, sizeof(digest_ctx));

 hash1.hash = (unsigned int *) malloc(

 hash1.hash_len * sizeof(unsigned int));

 memcpy(hash1.hash, digest->hash, hash1.hash_len * sizeof(unsigned int));

Remember that the hmac function can be called with an MD5, SHA-1, or SHA-
256 context. However, the function has no way of knowing which it was called
with. There are multitudes of ways to work around that: You could pass in a
fl ag or add an initializer function to the digest_ctx structure, but the simplest
way is to just memcpy the whole initialized structure at the start of the function.
You know it was initialized prior to invocation; the only thing to be careful of
is that hash was dynamically allocated, so you need to reallocate and recopy it.
If you were doing this in C��, this would be the sort of thing you’d use a copy
constructor for. OK, really, I promise to stop talking C�� now.

You can develop a main routine in Listing 4-28 to test this out.

Listing 4-28: “hmac.c” main routine

#ifdef TEST_HMAC

int main(int argc, char *argv[])

{

 int i;

 digest_ctx digest;

 int key_len;

 unsigned char *key;

 int text_len;

 unsigned char *text;

(Continued)

c04.indd 199c04.indd 199 12/10/2010 9:44:41 AM12/10/2010 9:44:41 AM

200 Chapter 4 n Authenticating Communications Using Digital Signatures

 if (argc < 4)

 {

 fprintf(stderr, “usage: %s [-sha1|md5] [0x]<key> [0x]<text>\n”, argv[0]);

 exit(0);

 }

 if (!(strcmp(argv[1], “-sha1”)))

 {

 new_sha1_digest(&digest);

 }

 else if (!(strcmp(argv[1], “-md5”)))

 {

 new_md5_digest(&digest);

 }

 else

 {

 fprintf(stderr, “usage: %s [-sha1|md5] <key> <text>\n”, argv[0]);

 exit(1);

 }

 key_len = hex_decode(argv[2], &key);

 text_len = hex_decode(argv[3], &text);

 hmac(key, key_len, text, text_len, &digest);

 for (i = 0; i < digest.hash_len * sizeof(int); i++)

 {

 printf(“%.02x”, ((unsigned char *) digest.hash)[i]);

 }

 printf(“\n”);

 free(digest.hash);

 free(key);

 free(text);

 return 0;

}

#endif

To compute an HMAC, call it like this:

jdavies@localhost$ hmac -md5 Jefe “what do ya want for nothing?”

750c783e6ab0b503eaa86e310a5db738

Where Does All of This Fit into SSL?

You may still be wondering what all this has to do with SSL. After all, you have
secure key exchange and symmetric cryptography. Where does the HMAC
function fi t in?

c04.indd 200c04.indd 200 12/10/2010 9:44:41 AM12/10/2010 9:44:41 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 201

SSL requires that every record fi rst be HMAC’ed before being encrypted. This
may seem like overkill — after all, HMAC guarantees the integrity of a record.
But because you’re using symmetric cryptography, the odds are infi nitesimally
small that an attacker could modify a record in such a way that it decrypts mean-
ingfully, at least without access to the session key. Consider a secure application
that transmits the message, “Withdraw troops from Bunker Hill and move them
to Normandy beach.” If you run this through the AES algorithm with the key
“passwordsecurity” and the initialization vector “initializationvc,” you get:

0xc99a87a32c57b80de43c26f762556a76bfb3040f7fc38e112d3ffddf4a5cb703
989da2a11d253b6ec32e5c45411715006ffa68b20dbc38ba6fa03fce44fd581b

So far, so good. An attacker can’t modify the message and move the troops — say,
to Fort Knox — without the key. If he tries to change even one bit of the message,
it decrypts to gibberish and is presumably rejected.

He can, however, cut half of it off. The attacker could modify the encrypted
message to be

0xc99a87a32c57b80de43c26f762556a76bfb3040f7fc38e112d3ffddf4a5cb703

This message is received and decrypted correctly to “Withdraw troops from
Bunker Hill.” The recipient has no way to detect the modifi cation. For this
reason, some hash function must be used to verify the integrity of the message
after it’s been decrypted. SSL mandates that every record be protected this way
with an HMAC function. You examine this in more detail when the details of
the SSL protocol are discussed.

Also, SSL uses the HMAC function quite a bit as a pseudo-random number
generator. Because the output is not predictably related to the input, the HMAC
function is actually used to generate the keying material from a shared secret.
In fact, the HMAC function is used to generate the fi nal HMAC secret!

Understanding Digital Signature Algorithm (DSA)
Signatures
Now it’s time to return to the primary topic of this chapter — digital signatures.
Recall from the beginning of this chapter that, in order to properly support digital
signatures, you must fi rst compute a secure hash of the document/message that
you want to sign, and then perform a public-key operation on that secure hash
using a private key. By now, you should have a very good understanding of
secure hash algorithms, but not the actual mechanics of what to do with those
secure hashes because this hasn’t yet been covered.

RSA support for digital signatures is straightforward — compute a secure hash
over the bytes to be signed and “encrypt” it using a private key. The recipient
then verifi es the same signature by computing the secure hash of the same set

c04.indd 201c04.indd 201 12/10/2010 9:44:42 AM12/10/2010 9:44:42 AM

202 Chapter 4 n Authenticating Communications Using Digital Signatures

of bytes, “decrypting” using the associated public key, and comparing the two.
The only difference between an RSA digital signature and an RSA encryption
(other than the fact that encryption is done with a public key and signing is done
with a private key) is that the padding type from Listing 3-21 is 0x01, instead of
0x02, and the padding bytes are all 1s instead of random bytes.

However, RSA isn’t the only game in town, at least not when it comes to digi-
tal signatures. A competing standard is the U.S. government’s Digital Signature
Algorithm, specifi ed in FIPS 186-3.

Implementing Sender-Side DSA Signature Generation

If you were pleasantly surprised by the simplicity and elegance of the RSA
algorithm, where encryption, decryption, signatures, and verifi cation were all
essentially the same operation with different parameters, DSA is going to be
a bit of a shock to your system. The signature and verifi cation operations are
both completely different, and both are fairly complex. They also take quite a
few extra parameters.

A DSA signature accepts fi ve input parameters, including the message to be
signed, and returns two output parameters. The input parameters are named
g, p, q, and x (and, of course, the message itself). g, p, and q are part of the public
key, and x is the private key. Like RSA, the signature is performed on a secure
hash of the message to be signed. However, the hash algorithm is somewhat part
of the signature, so you can’t necessarily just pick a random signature algorithm
and try to apply it. DSA is certifi ed for SHA-1 and SHA-256; if you try to use it
with some other hash algorithm, “behavior is undefi ned.”

So, to generate the two-element DSA signature, whose elements are named
r and s by the standard (apparently nobody ever told the FIPS people the
general rule on using meaningful variable names), you perform the follow-
ing computations:

k � (c % (q � 1)) � 1

r � (gk % p) % q

z � hash(message), truncated to sizeof(q)

s � ((k-1 % q) * (z � xr)) % q

where (k-1 % q) means the inverse mod q, as defi ned in Chapter 3, of k.
What about this c? c is just a random number — securely generated, of

course — whose length in bits is the same as q. After performing these opera-
tions, you’ve generated r and s, which make up the signature.

To slightly minimize the method signatures, defi ne a new structure named
dsa_params in Listing 4-29 to hold the general parameters g, p, and q.

c04.indd 202c04.indd 202 12/10/2010 9:44:42 AM12/10/2010 9:44:42 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 203

Listing 4-29: “dsa.h” dsa_params structure

typedef struct

{

 huge g;

 huge p;

 huge q;

}

dsa_params;

Defi ne the structure in Listing 4-30 to hold the actual signature.

Listing 4-30: “dsa.h” dsa_signature structure

typedef struct

{

 huge r;

 huge s;

}

dsa_signature;

So now, in code, the signature algorithm can be implemented as shown in
Listing 4-31.

Listing 4-31: “dsa.c” DSA signature generation algorithm

void dsa_sign(dsa_params *params,

 huge *private_key,

 unsigned int *hash,

 int hash_len,

 dsa_signature *signature)

{

 huge k;

 huge z;

 huge q;

 set_huge(&q, 1);

 generate_message_secret(params, &k);

 // r = (g ^ k % p) % q

 mod_pow(¶ms->g, &k, ¶ms->p, &signature->r);

 copy_huge(&q, ¶ms->q);

 divide(&signature->r, &q, NULL);

 // z = hash(message), only approved with SHA

 load_huge(&z, (unsigned char *) hash,

 ((hash_len * 4) < params->q.size) ?

 (hash_len * 4) : params->q.size);

 (Continued)

c04.indd 203c04.indd 203 12/10/2010 9:44:42 AM12/10/2010 9:44:42 AM

204 Chapter 4 n Authenticating Communications Using Digital Signatures

 // s = (inv(k) * (z + xr)) % q

 inv(&k, ¶ms->q);

 set_huge(&signature->s, 0);

 copy_huge(&signature->s, private_key);

 multiply(&signature->s, &signature->r);

 add(&signature->s, &z);

 multiply(&signature->s, &k);

 copy_huge(&q, ¶ms->q);

 divide(&signature->s, &q, NULL);

 free_huge(&z);

}

Notice that this keeps essentially the same variable names that the specifi cation
suggests, although it does call x private_key to make it a bit clearer what it does.
You should be able to follow the last parts of the code. I’ve added comments to
indicate what each section is doing with respect to the overall algorithm. Note
that this calls the inv routine defi ned in Listing 3-36 to compute (k–1 % q) as
part of the computation of s. Also, the caller passes in the hash, not the message
itself; this makes the routine a bit more fl exible, although DSA is only offi cially
approved for use with SHA. The signature function doesn’t know or care what
the original message was.

The computation of k is delegated to its own routine in Listing 4-32.

Listing 4-32: “dsa.c” message secret generation

static void generate_message_secret(dsa_params *params, huge *k)

{

 int i;

 huge q;

 huge one;

 set_huge(&q, 0); // initialize this so that copy works

 set_huge(&one, 1);

 copy_huge(&q, ¶ms->q);

 subtract(&q, &one);

 // XXX the extra + 8 aren’t really necessary since we’re not generating

 // a random “c”

 k->sign = 0;

 k->size = params->q.size + 8;

 k->rep = malloc(k->size);

 // TODO this should be filled with random bytes

 for (i = 0; i < k->size; i++)

 {

 k->rep[i] = i + 1;

 }

c04.indd 204c04.indd 204 12/10/2010 9:44:42 AM12/10/2010 9:44:42 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 205

 // k will become k % (q - 1);

 divide(k, &q, NULL);

 add(k, &one);

}

The whole dsa_params structure is passed here, although technically only q
is required.

So, given a message, a set of DSA parameters, and a private key, you can
compute a DSA signature for the message. Remember that a DSA signature
consists of two separate elements. Because r and s are both computed mod q,
they are of the same length as q, but they have to be separated somehow in the
output. This is in contrast to an RSA signature which is just a single, very long,
number. You’ll see in Chapter 5 that this comes up as a bit of an issue in SSL/TLS.

Implementing Receiver-Side DSA Signature Verifi cation

Now you may be saying, “OK, that DSA signature algorithm was a little complex,
but it wasn’t that bad.” Get ready to see the signature verifi cation algorithm.

Remember that the purpose of this whole thing is for the holder of the private
key to be able to transmit, in some authenticated way, the public key and the
signature to anybody else and allow that person to verify that only the holder
of the private key could have produced that signature over the given message.
With RSA, verifi cation was a trivial extension of signature generation. You
“encrypt” a hash using the private key, and the recipient “decrypts” using the
public key and compares the hashes. If the two match, the signature is verifi ed.

Because DSA isn’t encrypting or decrypting anything, DSA signature veri-
fi cation is a bit more complex. The recipient has the DSA parameters g, p, and
q, the public key y and the signature elements r and s — along with, of course,
the message itself. From this, it needs to check to see if r and s were generated
from g, p, q, x, and the message. The DSA way to accomplish this is to perform
the following operations:

w � s-1 % q

z � hash(message), truncated to sizeof(q)

u1 � (zw) % q

u2 � (rw) % q

v � ((gu1 yu2) % p) % q

If everything went correctly, v is equal to r. Otherwise, something went wrong
or the signature is faked.

The signature part, then, is in r; s is just transmitted to allow the recipient to
invert enough of the original computation to recover r. The security is mostly in

c04.indd 205c04.indd 205 12/10/2010 9:44:42 AM12/10/2010 9:44:42 AM

206 Chapter 4 n Authenticating Communications Using Digital Signatures

the secrecy of the parameter k — which, you’ll recall, was generated randomly
in the signature stage. Since s depends on k and the private key x — and x and
y are of course mathematically related — v depends on s and y. The whole com-
plicated mess described in this section just repeats the computation

r � (gk % p) % q

without having access to k.
In code, this can be implemented as in Listing 4-33.

Listing 4-33: “dsa.c” DSA signature verifi cation algorithm

int dsa_verify(dsa_params *params,

 huge *public_key,

 unsigned int *hash,

 int hash_len,

 dsa_signature *signature)

{

 int match;

 huge w, z, u1, u2, q, p;

 set_huge(&q, 1);

 set_huge(&p, 1);

 set_huge(&w, 0);

 // w = inv(s) % q

 copy_huge(&w, &signature->s);

 inv(&w, ¶ms->q);

 // z = hash(message), truncated to sizeof(q)

 load_huge(&z, (unsigned char *) hash,

 ((hash_len * 4) < params->q.size) ?

 (hash_len * 4) : params->q.size);

 // u1 = (zw) % q

 multiply(&z, &w);

 copy_huge(&q, ¶ms->q);

 divide(&z, ¶ms->q, NULL); // u1 = z

 // u2 = (rw) % q

 multiply(&w, &signature->r);

 copy_huge(&q, ¶ms->q);

 divide(&w, &q, NULL); // u2 = w

 // v = (((g^u1) % p * (y^u2) %p) % p) % q

 mod_pow(¶ms->g, &z, ¶ms->p, &u1);

 mod_pow(public_key, &w, ¶ms->p, &u2);

 multiply(&u1, &u2);

 copy_huge(&p, ¶ms->p);

 divide(&u1, &p, NULL);

c04.indd 206c04.indd 206 12/10/2010 9:44:42 AM12/10/2010 9:44:42 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 207

 copy_huge(&q, ¶ms->q);

 divide(&u1, &q, NULL); // u1 is “v” now

 // Check to see if v & s match

 match = !compare(&u1, &signature->r);

 free_huge(&w);

 free_huge(&z);

 free_huge(&u1);

 free_huge(&u2);

 return match;

}

As with the signing algorithm, I’ve added comments so that you can match
what the code is doing with the algorithm. Notice that this doesn’t use u1 and
u2 exactly as they’re shown in the algorithm, instead putting u1 and u2 into z
and w because you don’t need them again, and then using u1 and u2 to hold
the mod_pow values later on.

Also notice how:

v � ((gu1 yu2) % p) % q

is put together. You don’t want to compute gu1, then compute yu2 and then mul-
tiply them by each other to fi nally fi gure out “mod p” of the whole mess. You
want to be able to use your mod_pow algorithm to keep the memory constraints
manageable. So instead, factor the v computation out into

v � (((gu1 % p) * (yu2 % p)) % p) % q

by the distributivity of the modulus operator. Now you can use mod_pow to
compute (gu1) % p and (yu2 % p), multiply these together, which results in at
most 2p bits, and then apply the modulus operation twice.

You can put together a main routine to test this but, like RSA’s e, d, and n, the
DSA parameters g, p, q, x, and y must be specifi cally related and you haven’t yet
seen how. So just hardcode a sample set in the routine in Listing 4-34 to show
how it can be called.

Listing 4-34: “dsa.c” test main routine

#ifdef TEST_DSA

int main(int argc, char *argv[])

{

 unsigned char priv[] = {

0x53, 0x61, 0xae, 0x4f, 0x6f, 0x25, 0x98, 0xde, 0xc4, 0xbf, 0x0b, 0xbe, 0x09,

 0x5f, 0xdf, 0x90, 0x2f, 0x4c, 0x8e, 0x09 };

 unsigned char pub[] = {

0x1b, 0x91, 0x4c, 0xa9, 0x73, 0xdc, 0x06, 0x0d, 0x21, 0xc6, 0xff, 0xab, 0xf6,

(Continued)

c04.indd 207c04.indd 207 12/10/2010 9:44:42 AM12/10/2010 9:44:42 AM

208 Chapter 4 n Authenticating Communications Using Digital Signatures

 0xad, 0xf4, 0x11, 0x97, 0xaf, 0x23, 0x48, 0x50, 0xa8, 0xf3, 0xdb, 0x2e, 0xe6,

 0x27, 0x8c, 0x40, 0x4c, 0xb3, 0xc8, 0xfe, 0x79, 0x7e, 0x89, 0x48, 0x90, 0x27,

 0x92, 0x6f, 0x5b, 0xc5, 0xe6, 0x8f, 0x91, 0x4c, 0xe9, 0x4f, 0xed, 0x0d, 0x3c,

 0x17, 0x09, 0xeb, 0x97, 0xac, 0x29, 0x77, 0xd5, 0x19, 0xe7, 0x4d, 0x17 };

 unsigned char P[] = {

0x00, 0x9c, 0x4c, 0xaa, 0x76, 0x31, 0x2e, 0x71, 0x4d, 0x31, 0xd6, 0xe4, 0xd7,

 0xe9, 0xa7, 0x29, 0x7b, 0x7f, 0x05, 0xee, 0xfd, 0xca, 0x35, 0x14, 0x1e, 0x9f,

 0xe5, 0xc0, 0x2a, 0xe0, 0x12, 0xd9, 0xc4, 0xc0, 0xde, 0xcc, 0x66, 0x96, 0x2f,

 0xf1, 0x8f, 0x1a, 0xe1, 0xe8, 0xbf, 0xc2, 0x29, 0x0d, 0x27, 0x07, 0x48, 0xb9,

 0x71, 0x04, 0xec, 0xc7, 0xf4, 0x16, 0x2e, 0x50, 0x8d, 0x67, 0x14, 0x84, 0x7b

};

 unsigned char Q[] = {

0x00, 0xac, 0x6f, 0xc1, 0x37, 0xef, 0x16, 0x74, 0x52, 0x6a, 0xeb, 0xc5, 0xf8,

 0xf2, 0x1f, 0x53, 0xf4, 0x0f, 0xe0, 0x51, 0x5f };

 unsigned char G[] = {

0x7d, 0xcd, 0x66, 0x81, 0x61, 0x52, 0x21, 0x10, 0xf7, 0xa0, 0x83, 0x4c, 0x5f,

 0xc8, 0x84, 0xca, 0xe8, 0x8a, 0x9b, 0x9f, 0x19, 0x14, 0x8c, 0x7d, 0xd0, 0xee,

 0x33, 0xce, 0xb4, 0x57, 0x2d, 0x5e, 0x78, 0x3f, 0x06, 0xd7, 0xb3, 0xd6, 0x40,

 0x70, 0x2e, 0xb6, 0x12, 0x3f, 0x4a, 0x61, 0x38, 0xae, 0x72, 0x12, 0xfb, 0x77,

 0xde, 0x53, 0xb3, 0xa1, 0x99, 0xd8, 0xa8, 0x19, 0x96, 0xf7, 0x7f, 0x99 };

 dsa_params params;

 dsa_signature signature;

 huge x, y;

 unsigned char *msg = “abc123”;

 digest_ctx ctx;

 // TODO load these from a DSA private key file instead

 load_huge(¶ms.g, G, sizeof(G));

 load_huge(¶ms.p, P, sizeof(P));

 load_huge(¶ms.q, Q, sizeof(Q));

 load_huge(&x, priv, sizeof(priv));

 load_huge(&y, pub, sizeof(pub));

 new_sha1_digest(&ctx);

 update_digest(&ctx, msg, strlen(msg));

 finalize_digest(&ctx);

 dsa_sign(¶ms, &x, ctx.hash, ctx.hash_len, &signature);

 printf(“DSA signature of abc123 is:”);

 printf(“r:”);

 show_hex(signature.r.rep, signature.r.size);

 printf(“s:”);

 show_hex(signature.s.rep, signature.s.size);

 if (dsa_verify(¶ms, &y, ctx.hash, ctx.hash_len, &signature))

 {

 printf(“Verified\n”);

 }

 else

c04.indd 208c04.indd 208 12/10/2010 9:44:42 AM12/10/2010 9:44:42 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 209

 {

 printf(“Verificiation failed\n”);

 }

 free_huge(&x);

 free_huge(&y);

 return 0;

}

#endif

The output of this function isn’t too interesting.

jdavies@localhost$./dsa

DSA signature of abc123 is:

r: 14297f2522458d809b6c5752d3975a00bb0d89e0

s: 2f6e24ed330faf27700470cc6074552e58cbea3a

Verifying:

Verified

But it illustrates how DSA signatures are generated. You can see a noticeable
pause when this example runs; public-key cryptography strikes again.

NOTE DSA keys consist of the parameters p, q, and g, a private key x, and a
public key y. q must be a (random) prime number; p – 1 must be a multiple of
q; and g is a small number (usually 2). x, the private key, is random, and y = gx
% p. In general, rather than compute their own p, q, and g, most implementa-
tions use standardized DSA parameters. As long as x is random, the security of
the algorithm isn’t weakened by the sharing of parameters.

How to Make DSA Effi cient

As you can imagine, it takes a bit longer to compute or verify a DSA signature
than it does to compute or verify an RSA signature. The parameters p and y
need to be at least 512 bits to be secure (2,048 bits is common). q and x can be
a bit shorter; typically these are 160 bits, to match the output from an SHA-1
hash, and can still be secure as long as p and y are long. Still, this requires a lot
of computation and a lot of memory compared to RSA.

However, if you look at the signature algorithm, you notice that the only
part that depends on the message is s — r can actually be precomputed before
the message is known, as long as q is known because the secret parameter
k depends on it. Because p, g, and q are part of the public key, a very speed-
conscious implementation could create a table of r and k values and speed up
the signature process quite a bit.

Also, notice that RSA verifi cation involves a modular exponentiation of an
enormous parameter d, which is 1,024 bits for reasonable security. This takes

c04.indd 209c04.indd 209 12/10/2010 9:44:42 AM12/10/2010 9:44:42 AM

210 Chapter 4 n Authenticating Communications Using Digital Signatures

a long time to process. In contrast, DSA signature verifi cation only requires
modular exponentiation of u1 and u2, which are both the same length as q,
which is 160 bits. On the other hand, you have to compute a modular inverse
for every signature verifi cation.

Finally, notice that although mod_pow is aware of, and optimized for, the fact
that it’s operating in a Galois fi eld (that is, the fi nal result is computed modulo
a target p), the DSA implementation here does several multiplication and addi-
tion operations only to throw away all but the “mod p” bits of the results. If you
reworked your add and multiply operations to be aware of their fi eld, you could
cut down quite a bit on the amount of memory you’d need to set aside to compute
interim results. You could even speed up mod_pow this way. This optimization
won’t be explored here; see Michael Brown’s paper “Software Implementations
of the NIST Elliptic Curves over Prime Fields” (www.eng.auburn.edu/users/
hamilton/security/pubs/Software_Implementation_of_the_NIST_Elliptic

.pdf) for a good discussion on optimal arithmetic operations in a Galois fi eld.
The paper itself is about elliptic-curve cryptography, but a lot of it is applicable
to large-number modular arithmetic in general.

DSA is not particularly common, or popular, in spite of being a U.S. gov-
ernment standard (in fact, I wasn’t able to fi nd any U.S. government web sites
using SSL with DSA, including the NIST web site, which published the DSA
standard in the fi rst place!). Still, it’s worth examining both because support
for it is a mandatory part of TLS as well as because supporting it demonstrates
how fl exible you need to be on signature algorithms.

Getting More Security per Bit: Elliptic Curve DSA
DSA has been defi ned using ECC primitives, just like DH was. For the most
part, ECDSA works like DSA, but it uses elliptic-curve keypairs instead of
public/private keypairs. Instead of r being (gk % p) % q, r is just G — the
generator point that is part of an elliptic-curve’s defi nition — multiplied by k. s
is computed identically; remember that in an elliptic-curve keypair, the private
key is just an integer. Signature verifi cation is also almost identical up until the
computation of v (which is compared to r and, if they’re identical, indicates that
the signature is verifi ed). Even this computation is similar; you just replace the
mod_pow operations with ECC point-multiplication operations.

However, for ECDSA, you can’t “cheat” and just use integer operations
like in the ECDH implementation of the last chapter; remember that there’s
a hash computation that’s used in the signature generation process. The
smallest hash examined so far is MD5, which outputs 128 bits — quite a
few more than you can fi t into a 32-bit int. In fact, ECDSA is only defi ned
for an SHA-256 hash, unlike “regular” DSA, which used a plain-old 160-bit

c04.indd 210c04.indd 210 12/10/2010 9:44:43 AM12/10/2010 9:44:43 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 211

SHA-1 hash. Because you’re going to be dealing with a 256-bit integer, at
least, go ahead and rewrite the elliptic-curve math functions from Chapter 3
to work with huge integers.

Rewriting the Elliptic-Curve Math Functions to Support Large
Numbers

The implementations are, obviously, not drastically different than with 32-bit
integers; a few things are shuffl ed around to reduce the number of temporary
huge objects, though, so you might want to compare this code carefully to the
ECC code in Chapter 3.

If you recall, ECC involves two operations: point addition — which works on
two distinct points in a Cartesian plane, whose X-values must be different — and
point multiplication — which works on one point and a scalar value. To imple-
ment, follow these steps:

 1. Redefi ne the point, elliptic_curve, and ecc_key structures in Listing 4-35
to work with huges instead of points.

Listing 4-35: “ecc.h” elliptic curve structure declarations

typedef struct

{

 huge x;

 huge y;

}

point;

typedef struct

{

 huge p;

 huge a;

 huge b;

 point G;

 huge n; // n is prime and is the “order” of G

 huge h; // h = #E(F_p)/n (# is the number of points on the curve)

}

elliptic_curve;

typedef struct

{

 huge d; // random integer < n; this is the private key

 point Q; // Q = d * G; this is the public key

}

ecc_key;

 2. You need an add_points operation in Listing 4-36.

c04.indd 211c04.indd 211 12/10/2010 9:44:43 AM12/10/2010 9:44:43 AM

212 Chapter 4 n Authenticating Communications Using Digital Signatures

Listing 4-36: “ecc.c” point addition implementation

void add_points(point *p1, point *p2, huge *p)

{

 point p3;

 huge denominator;

 huge numerator;

 huge invdenom;

 huge lambda;

 set_huge(&denominator, 0);

 copy_huge(&denominator, &p2->x); // denominator = x2

 subtract(&denominator, &p1->x); // denominator = x2 - x1

 set_huge(&numerator, 0);

 copy_huge(&numerator, &p2->y); // numerator = y2

 subtract(&numerator, &p1->y); // numerator = y2 - y1

 set_huge(&invdenom, 0);

 copy_huge(&invdenom, &denominator);

 inv(&invdenom, p);

 set_huge(&lambda, 0);

 copy_huge(&lambda, &numerator);

 multiply(&lambda, &invdenom); // lambda = numerator / denominator

 set_huge(&p3.x, 0);

 copy_huge(&p3.x, &lambda); // x3 = lambda

 multiply(&p3.x, &lambda); // x3 = lambda * lambda

 subtract(&p3.x, &p1->x); // x3 = (lambda * lambda) - x1

 subtract(&p3.x, &p2->x); // x3 = (lambda * lambda) - x1 - x2

 divide(&p3.x, p, NULL); // x3 = ((lamdba * lambda) - x1 - x2) % p

 // positive remainder always

 if (p3.x.sign)

 {

 p3.x.sign = 0;

 subtract(&p3.x, p);

 p3.x.sign = 0;

 }

 set_huge(&p3.y, 0);

 copy_huge(&p3.y, &p1->x); // y3 = x1

 subtract(&p3.y, &p3.x); // y3 = x1 - x3

 multiply(&p3.y, &lambda); // y3 = (x1 - x3) * lambda

 subtract(&p3.y, &p1->y); // y3 = ((x1 - x3) * lambda) - y

 divide(&p3.y, p, NULL);

 // positive remainder always

 if (p3.y.sign)

 {

 p3.y.sign = 0;

 subtract(&p3.y, p);

 p3.y.sign = 0;

 }

c04.indd 212c04.indd 212 12/10/2010 9:44:43 AM12/10/2010 9:44:43 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 213

 // p1->x = p3.x

 // p1->y = p3.y

 copy_huge(&p1->x, &p3.x);

 copy_huge(&p1->y, &p3.y);

 free_huge(&p3.x);

 free_huge(&p3.y);

 free_huge(&denominator);

 free_huge(&numerator);

 free_huge(&invdenom);

 free_huge(&lambda);

}

I’ve left comments indicating the int operations that the huge operation
blocks correspond to so you can cross-reference this implementation back
to the easier-to-understand integer-based operation in Listing 3-39.

 3. Recall that multiplication is defi ned in terms of “double-and-add” — in
this case, not as a performance optimization, but because adding a point
to itself is actually not defi ned, so you need a double_point operation in
Listing 4-37.

Listing 4-37: “ecc.c” point-doubling algorithm

static void double_point(point *p1, huge *a, huge *p)

{

 huge lambda;

 huge l1;

 huge x1;

 huge y1;

 set_huge(&lambda, 0);

 set_huge(&x1, 0);

 set_huge(&y1, 0);

 set_huge(&lambda, 2); // lambda = 2;

 multiply(&lambda, &p1->y); // lambda = 2 * y1

 inv(&lambda, p); // lambda = (2 * y1) ^ -1 (% p)

 set_huge(&l1, 3); // l1 = 3

 multiply(&l1, &p1->x); // l1 = 3 * x

 multiply(&l1, &p1->x); // l1 = 3 * x ^ 2

 add(&l1, a); // l1 = (3 * x ^ 2) + a

 multiply(&lambda, &l1); // lambda = [(3 * x ^ 2) + a] / [2 * y1]) % p

 copy_huge(&y1, &p1->y);

 // Note - make two copies of x2; this one is for y1 below

 copy_huge(&p1->y, &p1->x);

 set_huge(&x1, 2);

 multiply(&x1, &p1->x); // x1 = 2 * x1

 copy_huge(&p1->x, &lambda); // x1 = lambda

(Continued)

c04.indd 213c04.indd 213 12/10/2010 9:44:43 AM12/10/2010 9:44:43 AM

214 Chapter 4 n Authenticating Communications Using Digital Signatures

 multiply(&p1->x, &lambda); // x1 = (lambda ^ 2);

 subtract(&p1->x, &x1); // x1 = (lambda ^ 2) - (2 * x1)

 divide(&p1->x, p, NULL); // [x1 = (lambda ^ 2) - (2 * x1)] % p

 if (p1->x.sign)

 {

 subtract(&p1->x, p);

 p1->x.sign = 0;

 subtract(&p1->x, p);

 }

 subtract(&p1->y, &p1->x); // y3 = x3 – x1

 multiply(&p1->y, &lambda); // y3 = lambda * (x3 - x1);

 subtract(&p1->y, &y1); // y3 = (lambda * (x3 - x1)) - y1

 divide(&p1->y, p, NULL); // y3 = [(lambda * (x3 - x1)) - y1] % p

 if (p1->y.sign)

 {

 p1->y.sign = 0;

 subtract(&p1->y, p);

 p1->y.sign = 0;

 }

 free_huge(&lambda);

 free_huge(&x1);

 free_huge(&y1);

 free_huge(&l1);

}

 4. Finally, you can implement multiply_point in Listing 4-38, the really
important function, in terms of double_point and add_points.

Listing 4-38: “ecc.c” point-multiplication algorithm

void multiply_point(point *p1, huge *k, huge *a, huge *p)

{

 int i;

 unsigned char mask;

 point dp;

 int paf = 1;

 set_huge(&dp.x, 0);

 set_huge(&dp.y, 0);

 copy_huge(&dp.x, &p1->x);

 copy_huge(&dp.y, &p1->y);

 for (i = k->size; i; i--)

 {

 for (mask = 0x01; mask; mask <<= 1)

 {

 if (k->rep[i - 1] & mask)

 {

 if (paf)

 {

c04.indd 214c04.indd 214 12/10/2010 9:44:43 AM12/10/2010 9:44:43 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 215

 paf = 0;

 copy_huge(&p1->x, &dp.x);

 copy_huge(&p1->y, &dp.y);

 }

 else

 {

 add_points(p1, &dp, p);

 }

 }

 // double dp

 double_point(&dp, a, p);

 }

 }

 free_huge(&dp.x);

 free_huge(&dp.y);

}

You might want to compare this implementation to the multiply function
presented in Listing 3-41. There is, of course, no divide equivalent. If there were,
ECC wouldn’t be cryptographically secure.

Implementing ECDSA

Now you have enough ammunition to put together an implementation of ECDSA.
Recall that DSA signature generation involved the computation of two numbers
r and s from the parameters g, p, and q. ECDSA signatures are similar. In essence,
the modular multiplications are replaced by point multiplications. The generator
is a point on an elliptic curve; r is that point multiplied by a random integer k;
and s is computed exactly the same way as in DSA. The only elliptic-curve func-
tion involved is in the computation of r. In code, this is shown in Listing 4-39.

Listing 4-39: “ecdsa.c” elliptic-curve DSA signature generation

void ecdsa_sign(elliptic_curve *params,

 huge *private_key,

 unsigned int *hash,

 int hash_len,

 dsa_signature *signature)

{

 unsigned char K[] = {

 0x9E, 0x56, 0xF5, 0x09, 0x19, 0x67, 0x84, 0xD9, 0x63, 0xD1, 0xC0,

 0xA4, 0x01, 0x51, 0x0E, 0xE7, 0xAD, 0xA3, 0xDC, 0xC5, 0xDE, 0xE0,

 0x4B, 0x15, 0x4B, 0xF6, 0x1A, 0xF1, 0xD5, 0xA6, 0xDE, 0xCE

 };

 huge k;

 point X;

 huge z;
(Continued)

c04.indd 215c04.indd 215 12/10/2010 9:44:43 AM12/10/2010 9:44:43 AM

216 Chapter 4 n Authenticating Communications Using Digital Signatures

 // This should be a random number between 0 and n-1

 load_huge(&k, (unsigned char *) K, sizeof(K));

 set_huge(&X.x, 0);

 set_huge(&X.y, 0);

 copy_huge(&X.x, ¶ms->G.x);

 copy_huge(&X.y, ¶ms->G.y);

 multiply_point(&X, &k, ¶ms->a, ¶ms->p);

 set_huge(&signature->r, 0);

 copy_huge(&signature->r, &X.x);

 divide(&signature->r, ¶ms->n, NULL); // r = x1 % n

 // z is the L_n leftmost bits of hash - cannot be longer than n

 load_huge(&z, (unsigned char *) hash,

 ((hash_len * 4) < params->n.size) ? (hash_len * 4) : params->n.size);

 // s = k^-1 (z + r d_a) % n

 inv(&k, ¶ms->n);

 set_huge(&signature->s, 0);

 copy_huge(&signature->s, private_key);

 multiply(&signature->s, &signature->r);

 add(&signature->s, &z);

 multiply(&signature->s, &k);

 divide(&signature->s, ¶ms->n, NULL);

 free_huge(&k);

 free_huge(&z);

 free_huge(&X.x);

 free_huge(&X.y);

}

You can see a lot of parallels between the DSA signature verifi cation routine
and the ECDSA signature verifi cation routine in Listing 4-40.

Listing 4-40: “ecdsa.c” elliptic-curve DSA signature verifi cation

int ecdsa_verify(elliptic_curve *params,

 point *public_key,

 unsigned int *hash,

 int hash_len,

 dsa_signature *signature)

{

 huge z;

 huge w;

 point G;

 point Q;

 int match;

 // w = s^-1 % n

c04.indd 216c04.indd 216 12/10/2010 9:44:43 AM12/10/2010 9:44:43 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 217

 set_huge(&w, 0);

 copy_huge(&w, &signature->s);

 inv(&w, ¶ms->n);

 // z is the L_n leftmost bits of hash - cannot be longer than n

 load_huge(&z, (unsigned char *) hash,

 ((hash_len * 4) < params->n.size) ? (hash_len * 4) : params->n.size);

 // u1 = zw % n

 multiply(&z, &w);

 divide(&z, ¶ms->n, NULL); // u1 = z

 // u2 = (rw) % q

 multiply(&w, &signature->r);

 divide(&w, ¶ms->n, NULL); // u2 = w

 // (x1,y1) = u1 * G + u2 * Q

 set_huge(&G.x, 0);

 set_huge(&G.y, 0);

 set_huge(&Q.x, 0);

 set_huge(&Q.y, 0);

 copy_huge(&G.x, ¶ms->G.x);

 copy_huge(&G.y, ¶ms->G.y);

 copy_huge(&Q.x, &public_key->x);

 copy_huge(&Q.y, &public_key->y);

 multiply_point(&G, &z, ¶ms->a, ¶ms->p);

 multiply_point(&Q, &w, ¶ms->a, ¶ms->p);

 add_points(&G, &Q, ¶ms->p);

 // r = x1 % n

 divide(&G.x, ¶ms->n, NULL);

 match = !compare(&G.x, &signature->r);

 free_huge(&z);

 free_huge(&w);

 free_huge(&G.x);

 free_huge(&G.y);

 free_huge(&Q.x);

 free_huge(&Q.y);

 return match;

}

Here, as in signature generation, modular exponentiation has been replaced
with elliptic-curve addition and multiplication operations.

c04.indd 217c04.indd 217 12/10/2010 9:44:43 AM12/10/2010 9:44:43 AM

218 Chapter 4 n Authenticating Communications Using Digital Signatures

Generating ECC Keypairs

One point glossed over thus far is that of the elliptic-curve parameters themselves.
In fact, generating elliptic-curve parameters is so complex, so time consuming,
and so hard to get right that the NIST publishes a list of approved named curves
for use in elliptic curve operations. Of course, the actual keypairs — the secret
integer and the public point — are generated per-user from the parameters.
Generating a keypair is actually pretty simple: Pick a random large integer d
and multiply it by the point G. The result of the multiplication is the public key,
and d is the private key.

To illustrate how to use this, you can borrow an elliptic curve from RFC 4754
that includes some ECDSA examples. The test routine is shown in Listing 4-41.

Listing 4-41: “ecdsa.c” test routine

#ifdef TEST_ECDSA

int main(int argc, char *argv[])

{

 // ECC parameters

 unsigned char P[] = {

 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF

 };

 unsigned char b[] = {

 0x5A, 0xC6, 0x35, 0xD8, 0xAA, 0x3A, 0x93, 0xE7, 0xB3, 0xEB, 0xBD, 0x55, 0x76,

 0x98, 0x86, 0xBC, 0x65, 0x1D, 0x06, 0xB0, 0xCC, 0x53, 0xB0, 0xF6, 0x3B, 0xCE,

 0x3C, 0x3E, 0x27, 0xD2, 0x60, 0x4B

 };

 unsigned char q[] = {

 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD, 0xA7, 0x17, 0x9E, 0x84, 0xF3, 0xB9,

 0xCA, 0xC2, 0xFC, 0x63, 0x25, 0x51

 };

 unsigned char gx[] = {

 0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8, 0xBC, 0xE6, 0xE5,

0x63,

 0xA4, 0x40, 0xF2, 0x77, 0x03, 0x7D, 0x81, 0x2D, 0xEB, 0x33, 0xA0, 0xF4,

0xA1,

 0x39, 0x45, 0xD8, 0x98, 0xC2, 0x96

 };

 unsigned char gy[] = {

 0x4F, 0xE3, 0x42, 0xE2, 0xFE, 0x1A, 0x7F, 0x9B, 0x8E, 0xE7, 0xEB, 0x4A, 0x7C,

 0x0F, 0x9E, 0x16, 0x2B, 0xCE, 0x33, 0x57, 0x6B, 0x31, 0x5E, 0xCE, 0xCB, 0xB6,

 0x40, 0x68, 0x37, 0xBF, 0x51, 0xF5

 };

 // key

 unsigned char w[] = { 0xDC, 0x51, 0xD3, 0x86, 0x6A, 0x15, 0xBA, 0xCD, 0xE3,

 0x3D, 0x96, 0xF9, 0x92, 0xFC, 0xA9, 0x9D, 0xA7, 0xE6, 0xEF, 0x09, 0x34, 0xE7,

c04.indd 218c04.indd 218 12/10/2010 9:44:43 AM12/10/2010 9:44:43 AM

 Chapter 4 n Authenticating Communications Using Digital Signatures 219

 0x09, 0x75, 0x59, 0xC2, 0x7F, 0x16, 0x14, 0xC8, 0x8A, 0x7F };

 elliptic_curve curve;

 ecc_key A;

 dsa_signature signature;

 digest_ctx ctx;

 load_huge(&curve.p, (unsigned char *) P, sizeof(P));

 set_huge(&curve.a, 3);

 curve.a.sign = 1;

 load_huge(&curve.b, b, sizeof(b));

 load_huge(&curve.G.x, gx, sizeof(gx));

 load_huge(&curve.G.y, gy, sizeof(gy));

 load_huge(&curve.n, q, sizeof(q));

 // Generate new public key from private key “w” and point “G”

 load_huge(&A.d, w, sizeof(w));

 set_huge(&A.Q.x, 0);

 set_huge(&A.Q.y, 0);

 copy_huge(&A.Q.x, &curve.G.x);

 copy_huge(&A.Q.y, &curve.G.y);

 multiply_point(&A.Q, &A.d, &curve.a, &curve.p);

 new_sha256_digest(&ctx);

 update_digest(&ctx, “abc”, 3);

 finalize_digest(&ctx);

 ecdsa_sign(&curve, &A.d, ctx.hash, ctx.hash_len, &signature);

 printf(“R:”);

 show_hex(signature.r.rep, signature.r.size);

 printf(“S:”);

 show_hex(signature.s.rep, signature.r.size);

 if (!ecdsa_verify(&curve, &A.Q, ctx.hash, ctx.hash_len, &signature))

 {

 printf(“Signatures don’t match.\n”);

 }

 else

 {

 printf(“Signature verified.\n”);

 }

 return 0;

}

#endif

Like the DSA test routine output, this one isn’t particularly interesting, but
it demonstrates the concept:
jdavies@localhost$./ecdsa

c04.indd 219c04.indd 219 12/10/2010 9:44:43 AM12/10/2010 9:44:43 AM

220 Chapter 4 n Authenticating Communications Using Digital Signatures

R:

cb28e0999b9c7715fd0a80d8e47a77079716cbbf917dd72e97566ea1c066957c

S:

86fa3bb4e26cad5bf90b7f81899256ce7594bb1ea0c89212748bff3b3d5b0315

Verifying

Signature verified.

If you ran this on your own computer, you may have noticed that it was
slow. Murderously slow, in fact. Each point-multiplication operation requires
between log2k and 2 * log2k modular inversions, each of which involves many
operations in its own right. Nor can you speed the thing up by precomputing
some inversions and reusing them because l is going to be different for each
call. The whole process, including the generation of the public key, took me
three minutes on a relatively modern computer running Windows Vista, and
this was a 256-bit key — although, for ECC, that’s actually pretty long whereas
for RSA or DSA it would be unusably short.

NOTE Incidentally, on the same computer, the same code, compiled with
GCC even with optimizations off, ran in less than one minute when I booted
over to Linux, so ECC isn’t entirely to blame here.

So, what’s the point of ECC, then? The idea was that it was supposed to be faster.
Actually, there’s been quite a bit of research in speeding up the somewhat naïve
implementation presented here. These techniques generally involve translating
the point to be multiplied from the two-dimensional coordinate system pre-
sented here into a three-dimensional coordinate system, performing equivalent
operations, and then transforming them back to the two-dimensional coordinate
system, all the while taking into account the prime-fi eld you’re working in.

The implementation is even more complex than the simple multiplication
routine presented above, and involves orders of magnitude more operations
(but you can trade lots of operations to get rid of just one modular inversion
and still be ahead). The Jacobian projection is one such popular transformation;
I don’t cover it here, but it can speed up elliptic-curve operations by an order of
magnitude to bring it to parity with modular exponentiation operations. Because
ECC offers equivalent security with far fewer public-key bits, this makes ECC an
attractive choice for public-key cryptography operations, which will probably
become more and more important in the future.

c04.indd 220c04.indd 220 12/10/2010 9:44:43 AM12/10/2010 9:44:43 AM

221

C H A P T E R

5

Creating a Network of Trust
Using X.509 Certifi cates

Chapters 3 and 4 discussed public and private keypairs and reviewed their
importance to secure communications over insecure channels. Until now, where
these keys come from and how they’re exchanged has been mostly glossed over.
Where the keys come from is the topic of this chapter. This chapter also includes
some further discussion on authentication.

You’re probably familiar with the term certifi cate, even if you’re fuzzy on the
details. You’ve undoubtedly visited web sites that have reported errors such as
“this website’s certifi cate is no longer valid” or “this website’s host name does not
match its certifi cate’s host name” or “this certifi cate was not signed by a trusted
CA.” If you’re like most Internet users, you generally ignore these warnings,
although in some cases they can indicate something important.

Fundamentally, the certifi cate is a holder for a public key. Although it contains
a lot more information about the subject of the public key — in the case of web
sites, that would be the DNS name of the site which has the corresponding pri-
vate key — the primary purpose of the certifi cate is to present the user agent
with a public key that should then be used to encrypt a symmetric key that is
subsequently used to protect the remainder of the connection’s traffi c.

At this point, you may have at least a hazy idea of how most of the concepts
of the past three chapters can be put together to establish a secure communica-
tions link: First, a symmetric algorithm and key is chosen, and then the key is
exchanged using public-key techniques. Finally, everything is encrypted using
the secret symmetric key and authenticated using an HMAC with another secret

c05.indd 221c05.indd 221 12/10/2010 9:45:03 AM12/10/2010 9:45:03 AM

222 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

key. However, the digital signatures examined in Chapter 4 haven’t come into
play yet. How are these used and why are they important? Digital signatures are
how certifi cates are authenticated and how you can determine whether or not to
trust a certifi cate. This is examined in much greater detail later in this chapter.

Putting It Together: The Secure Channel Protocol

Armed with symmetric encryption and some method of secure key exchange,
such as public key encryption of the symmetric encryption key, you have enough
to implement a secure channel against passive eavesdroppers. Assuming that an
attacker can see, but not modify, your data, you could adopt the simple secure
channel protocol shown in Figure 5-1.

Figure 5.1: Naïve secure channel protocol

client

encrypt a symmetric
session key using the

public key

decrypt session key
using private key

normal conversation
begins, everything is
encrypted using the

negotiated symmetric key

server

request public key

send public key

send encrypted session key

acknowledge

Even if an attacker can view all packets exchanged, all he sees is that the
public key was requested and what the public key was — which, by defi nition,
is not a secret. From that point forward, everything is encrypted and, assuming
the encryption method is unbreakable, the remainder of the session is secure.

However, a more dangerous form of attack is called a man-in-the middle attack
and is carried out by an adversary who can not only view traffi c, but also can
intercept and modify it. Consider the scenario shown in Figure 5-2.

The problem here is that the client implicitly trusts that the public key belongs
to the server. Solving this trust issue surrounds most of the complexity associ-
ated with SSL/TLS. The remainder of this book is spent looking at how to get
around this problem.

The solution adopted by SSL requires the use of a trusted intermediary. This
trusted intermediary digitally signs the public key of the server — using the

c05.indd 222c05.indd 222 12/10/2010 9:45:04 AM12/10/2010 9:45:04 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 223

algorithms discussed in Chapter 4 — and the client must verify this signature.
Such a signed public key is called a certifi cate, and a trusted intermediary respon-
sible for signing certifi cates is called a certifi cate authority (CA). The client must
have access to the public key of the CA so that it can authenticate the signature
before accepting the key as genuine. Web browsers have a list of trusted CAs
with their public keys built in for just this purpose.

Figure 5.2: Man-in-the-middle attack

client

encrypt a symmetric
session key using the

public key

normal conversation
begins, everything is
intercepted and first

decrypted and then re-
encrypted by attacker

attacker
ignore request, issue own

request

replace with own public
key

decrypt session key using
private key; re-encrypt using

server’s public key and re-send

server

request public key

send public key

send encrypted session key

acknowledge

request public key

send public key

send encrypted session key

acknowledge

This buys a bit of security against a man-in-the-middle attack, but not much.
After all, if the server can get a certifi cate signed by the trusted CA, you must
assume that the attacker, if suffi ciently motivated, could do so too. He could
present himself to the CA as a legitimate business, for example. This makes his
job a bit more diffi cult, but hardly insurmountable.

What you really need is some way to associate the public key with the server
you’re connecting to. Thus, a properly formatted certifi cate needs to have not
only the public key of the server included, but also the domain name of the
server that the public key belongs to, all signed by the trusted intermediary.

This foils the man-in-the-middle attack. The client requests a certifi cate from
the server, and the man in the middle replaces it with his own. The client
then validates the attacker’s certifi cate as legitimate — it’s signed by a trusted
CA — but observes that the domain doesn’t match that of www.server.com, as
expected. Nor can the attacker forge a certifi cate with the domain name www
.server.com — this is protected by the digital signature. If he obtains a digitally
signed certifi cate from the CA, with the domain name www.attacker.com, and
then changes his own domain in the certifi cate to www.server.com, the hash

c05.indd 223c05.indd 223 12/10/2010 9:45:04 AM12/10/2010 9:45:04 AM

224 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

code in the signature won’t match the hash code of the contents of the certifi cate,
and the client rejects it on this basis.

So, at a bare minimum, in order to protect yourself against man-in-the-middle
attacks, you need a trusted CA and a certifi cate format that includes the domain
name, the public key and a digital signature issued by the CA. Now, imagine
that a few years go by, and the administrator of the server fi gures that it’s time
to reissue the certifi cate. After all, technology changes, and certifi cate security
holes are found from time to time. And who knows? Some hacker could have
broken into the system and stolen the private key without the administrator’s
knowledge.

Unfortunately, the administrator can’t reissue the certifi cate. Assuming that
there’s a problem with the certifi cate — the private key has been compromised
or the certifi cate technology is outdated and includes a security fl aw — and the
server installs a new certifi cate, the man in the middle strikes again. When the
client tries to connect, the attacker substitutes the old, and presumably weaker,
certifi cate for the new one. The client has no way to authenticate this certifi cate;
the domain is correct, and so is the issuer’s digital signature.

To partially guard against this, certifi cates also include a validity period: a not
before date and a not after date. It’s the responsibility of the client to check that
the certifi cate’s not after date does not fall in the past. If the date is in the past,
the client should not connect to the server.

As you can imagine, this is really only half a solution. Imagine that the pri-
vate key has been compromised and the server administrator knows that the
private key been compromised. He should immediately stop allowing use of
the compromised certifi cate. The validity period guarantees that clients stop
using the certifi cate at some point in the future, but you really want a way to
accelerate that date. Again, that can’t be forced, because a man in the middle
can just replace any new certifi cate with an old one, right up until the end of
the validity period.

To fi ght against this, CAs are responsible for keeping a list of revoked certifi cates
that is called a certifi cate revocation list (CRL). The client periodically checks this
list. But wait — checks it for what? How can you uniquely identify a certifi cate?
As they’ve been specifi ed so far, you can’t; you need one more fi eld in the cer-
tifi cate format, the serial ID. This is a number, unique within a CA, assigned to
each certifi cate. When a certifi cate is known or believed to be compromised,
its serial number is added to the CRL. If the man in the middle tries to replace
a new certifi cate with an old one, the client recognizes that the serial number
has been revoked and rejects the connection.

Finally, it’s unlikely that everybody on the Internet will use a single CA. That
means that the client, when presented with a certifi cate, needs some way to know
whose public key to use to verify the signature. As such, each certifi cate also
includes an issuer that uniquely identifi es the CA. The client decides whether
or not to trust the issuer dynamically.

c05.indd 224c05.indd 224 12/10/2010 9:45:05 AM12/10/2010 9:45:05 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 225

Encoding with ASN.1

Certifi cates need to be precisely defi ned. Although this sort of structured data
is now usually represented and defi ned in XML, certifi cates have been around
for quite a while, longer than XML. They’re specifi ed instead using a syntax
referred to as Abstract Syntax Notation (ASN), or ASN.1 (the .1 being the version
of Abstract Syntax Notation). ASN serves the same purpose as a DTD or an XSD
might serve in an XML context; it describes how elements are nested within
one another, what order they must occur in, and what type each is. Offi cial
ASN.1 looks quite a bit like a C struct defi nition, although the differences are
signifi cant enough that you can’t map directly from one to another.

The certifi cate format that SSL/TLS uses is defi ned and maintained by the
International Telecommunication Union (ITU) in a series of documents they just
refer to as the X series. The documents themselves can be found at http://www
.itu.int/rec/T-REC-X/en. Each one has a number, and the corresponding docu-
ment/standard is referred to as X.nnn where nnn is a number. So, for instance,
if you want to see the offi cial standard for X.509, you look under http://www
.itu.int/rec/T-REC-X.509/en. I’ll refer to several of these specifi cations by
number throughout this chapter.

You may notice that the specifi cations presented here aren’t always specifi c to
SSL/TLS. They were developed independently and adopted later by the Internet
consortium. As such, the specifi cations contain quite a few elements that aren’t
necessarily relevant to the subject matter of this book itself; I’ll mention some of
these elements here but refer the interested reader to other sources for details.

Understanding Signed Certifi cate Structure
ASN.1 is used to describe the structure of an X.509 certifi cate, which is the
offi cial standard for public-key certifi cates and the format on which TLS 1.0
relies. X.509 has been through three revisions; the current, at the time of this
writing, revision of X.509 is 3. The top-level structure of an X.509v3 certifi cate
is shown in Listing 5-1.

Listing 5-1: X.509 Certifi cate structure declaration

SEQUENCE {

 version [0] EXPLICIT Version DEFAULT v1,

 serialNumber CertificateSerialNumber,

 signature AlgorithmIdentifier,

 issuer Name,

 validity Validity,

 subject Name,

 subjectPublicKeyInfo SubjectPublicKeyInfo,

 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,

 -- If present, version shall be v2 or v3

(Continued)

c05.indd 225c05.indd 225 12/10/2010 9:45:05 AM12/10/2010 9:45:05 AM

226 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,

 -- If present, version shall be v2 or v3

 extensions [3] EXPLICIT Extensions OPTIONAL

 -- If present, version shall be v3

 }

Excerpted from http://www.ietf.org/rfc/rfc2459.txt

The syntax is given in ASN.1. ASN.1 syntax isn’t covered completely here;
however, you have to understand a fair bit of it to analyze X.509 because X.509
makes use of most of ASN.1. See http://luca.ntop.org/Teaching/Appunti/
asn1.html for a complete overview of ASN.1 syntax.

The fi rst line here in the top-level structure of the X.509v3 certifi cate is SEQUENCE.
An ASN.1 SEQUENCE is analogous to a C struct, which may be confusing to a
C programmer because sequence sounds more like an array. An ASN.1 sequence
groups other elements. As you can see, this sequence contains 10 subelements.
The most important of these, of course, is the seventh, subjectPublicKeyInfo,
because the primary purpose of a certifi cate is to transmit a public key.

Each subelement is presented with a name followed by a type — just like
a C struct, but inverted. Each of these is examined in detail in the following
sections. I’ll go over the meaning of each at a high-level, and then come back
and show you how to parse a real certifi cate; if some of this seems a bit abstract,
the code samples at the end of this chapter should clear up the intent behind
all of these elements.

Version

 version [0] EXPLICIT Version DEFAULT v1

The version is an integer between 0 and 2, with 0 representing version 1, 1 rep-
resenting version 2, 2 representing version 3, and so on. The version number
indicates how to parse the remaining structures. For example, the comments
at the bottom that indicate issuerUniqueId, subjectUniqueId, and extensions
cannot be present if the version is less than 2. However, the original X.509
specifi cation didn’t include a version number, so it’s necessary for the parser to
fi rst check to see if a version number is present. If no version number is present,
the parser should assume that the version number is 0 (that is, v1). That’s the
meaning of the EXPLICIT DEFAULT v1 in the declaration.

The type Version itself is defi ned in the specifi cation as

Version ::= INTEGER { v1(0), v2(1), v3(2) }

This tells you that the version fi eld is an integer and that it can take on three
discrete values.

c05.indd 226c05.indd 226 12/10/2010 9:45:05 AM12/10/2010 9:45:05 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 227

serialNumber

 serialNumber CertificateSerialNumber

As discussed in the section “Putting It Together: The Secure Channel Protocol”
earlier in this chapter, certifi cates are signed by CAs. The process of signing a
certifi cate is often referred to as issuing a certifi cate, and the signer is referred to
as the issuer, although this terminology is a bit misleading. Each signer is required
to assign a unique serial number to each certifi cate issued. The serial number
is not necessarily globally unique, but it can safely be assumed that VeriSign
(a popular CA), for example, never reuses a serial number. Two different CAs
may issue two certifi cates with identical serial numbers, but the same CA never
will. The CertificateSerialNumber is defi ned as an INTEGER.

signature

 signature AlgorithmIdentifier,

An X.509 certifi cate must have been signed by a CA. Whether that CA is
trusted or not is a matter for the client to decide. In fact, for testing purposes,
it’s often useful to create self-signed certifi cates, in which case the certifi cate
is digitally signed by the private key corresponding to the public key that it
contains.

Whoever signed the certifi cate, the signature algorithm used must be identi-
fi ed by this fi eld. The declaration for an algorithm identifi er is

AlgorithmIdentifier ::= SEQUENCE {

 algorithm OBJECT IDENTIFIER,

 parameters ANY DEFINED BY algorithm OPTIONAL }

Here you see a new type you haven’t come across before: the object identifi er
(OID). OIDs are used quite a bit in the X.509 standard and anything else that’s
based on ASN.1. OIDs are actually murderously complex and describe a hierar-
chy of just about anything you can think of. Fortunately, you don’t really need
to fully understand OIDs. You can treat them simply as byte arrays and keep
track of the mappings of these byte arrays and their meanings.

Recall from the Chapter 4 that digitally signing a sequence of bytes involves
fi rst securely hashing those bytes using a secure hash algorithm such as MD5
or SHA and then encrypting the bytes using a private key. Thus, a digital sig-
nature algorithm identifi er must identify both the secure hashing algorithm
applied as well as the encrypting algorithm. Given MD5 and SHA for secure
hashing algorithms and RSA and DSS for private-key encryption algorithms,
you end up with four separate algorithm identifi ers. However, because MD5 is
not specifi ed for use with DSS, there are only three algorithm identifi ers, which
are shown in Table 5-1.

c05.indd 227c05.indd 227 12/10/2010 9:45:05 AM12/10/2010 9:45:05 AM

228 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

Table 5-1: Signing Algorithm OIDs

HASH ALGORITHM
IDENTIFIER

ENCRYPTION ALGORITHM OBJECT IDENTIFIER

MD5 RSA 2A 86 48 86 F7 0D 01 01 04

SHA-1 RSA 2A 86 48 86 F7 0D 01 01 05

SHA-1 DSS 2A 86 52 CE 38 04 03

See X.690 and RFC 2313 for more details on how these values are determined.
All you particularly care about is that the third fi eld of the certifi cate (or the sec-
ond, if the version number was not supplied) is equal to one of these three-byte
sequences. You use this value as a switch to validate the signature of the certifi cate.

NOTE You may be wondering: “What about ECDSA?” Well, that’s sort of
complicated. The topic of elliptic-curve cryptography (ECC) in X.509 is revis-
ited in Chapter 9. In general, ECC is not explicitly supported by any version of
TLS < 1.2, and supporting it in any version can get a bit hairy.

OIDs

If you read any of the ITU X series specifi cation documents, you’ll notice that
the OIDs are not given in hexadecimal form as they are in Table 5-1. Instead,
they’re given in a dotted-decimal form such as 1.2.840.113549.1.1.4. However,
in order to be used, they must be converted to the hexadecimal forms shown in
this book. The X.690 specifi cation details this conversion authoritatively. You
don’t actually need to know how to convert from these dotted-decimal num-
bers to the normalized hexadecimal forms in order to use them. I’ve converted
all of the ones you need to know but if you’re curious, read on.

An OID in X.509 is a leaf in a very, very large tree structure. For example,
the OID for the MD5withRSA signature algorithm is 1.2.840.113549.1.1.4. Each
number in this very long digit string identifi es an element in a large hierarchy.
1 represents iso; 1.2 represents iso/memberBody; 1.2.840 represents iso/
member-body/usa and so on. All in all, the OID in this example represents
iso/memberBody/usa/rsadsi/pkcs/pkcs1/MD5. Each number only has meaning
relative to what came before it. The RSA corporation controls the 1.2.840.113549
namespace and they use 1.1.4 to identify rsa with pkcs #1 padding md5.

So how do you get from 1.2.840.113549.1.1.4 to 2A 86 48 86 F7 0D 01 01 04?
Well, the 01 01 04 part is pretty obvious: This is the byte representation of the
digits 1.1.4. But as you can see, even the third numeral, 840, is too large to fi t
into a single byte. Rather than include separators, they adopted a variable-
length encoding scheme (The X.500 family of specifi cations, which includes
X.509, is big on variable-length encoding schemes). The 86 48 represents 840,
and the 86 F7 0D represents 113549. The encoding scheme used here is this: If
the high-order bit is 1 then the other seven bits in this byte should be concat-
enated with the next byte. If the high-order bit is 0 then this is the last byte in

c05.indd 228c05.indd 228 12/10/2010 9:45:05 AM12/10/2010 9:45:05 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 229

the identifi er. So 840, in binary, is 1101001000. This is longer than seven bits,
so break it up into chunks of seven or less:

110 1001000

Now, add the high-order bits (and pad the fi rst one):

10000110 01001000

Or hexadecimal 86 48.
The decoder then sees the fi rst byte, recognizes that the high-order bit

is 1, continues on to the next byte, sees that the high-order bit is zero, and
concatenates the seven lower-order bits of the two constituent bytes back
into the value 1101001000, or decimal 840. Likewise, 113549 encodes to
11011101110001101 in binary. This requires 20 bits to encode, so you use three

bytes (20 = 3
7

), with the high-order bits of the fi rst two being set to 1, which

tells the decoder that this should be concatenated with the next byte:

10000110 11110111 00001101

Or 86 F7 0D in hexadecimal.
Is your head spinning yet? Actually, it gets worse. Notice that the hex encoding

of the “1.2” on the very beginning of the OID is a single byte: 2A. To save space,
X.690 dictates that the fi rst byte encodes two numeric elements according to the
algebraic equation Z = 40X + Y. So, 1.2 is 40 * 1 + 2 = 42 (0x2A). On the unpack-
ing side, it’s safe to assume that if the byte is in the range 0–40, the decoded
value should be 0.(byte); if it’s in the range of 41–80, it should be 1.(byte – 40); if
it is in the range of 81–120, it should be 2.(byte – 80); and so on. Obviously, this
limits the range of values that can be encoded by the fi rst byte.

Fortunately, I’ve done all of the conversion for you, so you don’t have to
understand any of this to code around it. All you need to know is that the
unique byte sequence 2A 86 48 86 F7 0D 01 01 04 represents the MD5withRSA
signature algorithm.

There is also an optional section for parameters. DSS includes a few parameters,
so you re-examine this when DSA is covered. Notice that the ANY DEFINED BY
algorithm indicates that if the object identifi er is one of the two RSA algorithms,
the parameters fi eld is not present.

issuer

 issuer Name

If you found the subject of OIDs slightly complicated, hold on to your hat as
you examine X.509 distinguished names. You’ve likely seen a distinguished name
written out at some point in long form, such as
CN=Joshua Davies,OU=Architecture,O=Travelocity,L=Southlake,ST=Texas,C=USA

You may even be familiar with the meanings of the terse one- and two-letter
codes shown in the example, but in case you aren’t, they expand to the long
names shown in Table 5-2.

c05.indd 229c05.indd 229 12/10/2010 9:45:05 AM12/10/2010 9:45:05 AM

230 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

Table 5-2: An Expanded X.509 Distinguished Name

TWO-LETTER CODE LONG NAME VALUE

CN Common Name Joshua Davies

OU Organizational Unit Architecture

O Organization Travelocity

L Locality, usually a city name Southlake

ST State Texas

C Country USA

As you can see, this identifi es, fairly uniquely, an individual person. In the
case of an X.509 certifi cate, a distinguished name is used to identify the issuer.
Here’s an example issuer name:
CN = VeriSign Class 3 Extended Validation SSL SGC CA,

OU = Terms of use at https://www.verisign.com/rpa (c)06,

OU = VeriSign Trust Network, O = VeriSign, Inc., C = US

This is the issuer string on the certifi cate that identifi es the Travelocity
.com web site at the time of this writing. As you can see, the CN (common name)
doesn’t actually identify a person; it identifi es an entity. The OU fi eld appears
twice and is used to transmit data not actually related to the organizational
unit. However, it identifi es an issuer well enough for the receiver to decide if it
wants to trust it or not. However, see the discussion later in this chapter about
the issuerUniqueId fi eld for more on this topic.

You can see this yourself. As way of example, follow these steps:
In FireFox:

 1. Navigate to a secure page.

 2. Double-click the lock icon, and click the View button. The Issued By sec-
tion details the contents of the “issuer” fi eld in the X.509 certifi cate that
the server presented to negotiate the secure connection in the fi rst place.

 Using Microsoft’s Internet Explorer 8:

 1. Navigate to a secure page.

 2. Click the lock icon on the URL bar, select View Certifi cates. The Certifi cate
dialog appears as shown in Figure 5-3.

 3. Click the Details tab, and click Issuer.

One thing you may notice about the two distinguished name examples I’ve
given is that not every fi eld appears in each distinguished name because at
least some of them are optional. In fact, technically speaking, all of them are
optional. If you look at the declaration of the Name type, which issuer is, you
see that it’s defi ned generically:

c05.indd 230c05.indd 230 12/10/2010 9:45:05 AM12/10/2010 9:45:05 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 231

Name ::= CHOICE {

 RDNSequence }

 RDNSequence ::= SEQUENCE OF RelativeDistinguishedName

 RelativeDistinguishedName ::=

 SET OF AttributeTypeAndValue

 AttributeTypeAndValue ::= SEQUENCE {

 type AttributeType,

 value AttributeValue }

 AttributeType ::= OBJECT IDENTIFIER

 AttributeValue ::= ANY DEFINED BY AttributeType

Figure 5.3: Example of an Issuer field

A name is an RDNSequence, which is a SEQUENCE OF another type, the
RelativeDistinguishedName. Remember earlier when SEQUENCE was com-
pared to a C struct, which may be confusing because SEQUENCE sounds like a
repeating fi eld? Well, SET OF, which RelativeDistinguishedName is defi ned
as, is a repeating fi eld.

What this all means is that a name is a variable-length array of
AttributeTypeAndValue structures. The attribute type is an OID, and the attri-
bute value can be any type, depending on its OID. Again, you don’t need to
care much about the encoding structure of OIDs; you just need to care about
their values and what they map to. As you can probably guess, CN, O, OU, L, ST,
and C each have their own OID values. They’re not represented as string values
anywhere in the certifi cate. These OIDs are shown in Table 5-3.

c05.indd 231c05.indd 231 12/10/2010 9:45:05 AM12/10/2010 9:45:05 AM

232 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

Table 5-3: DistinguishedName OIDs

LONG NAME OID

CommonName 0x55, 0x04, 0x03

CountryName 0x55, 0x04, 0x06

LocalityName 0x55, 0x04, 0x07

StateOrProvinceName 0x55, 0x04, 0x08

OrganizationName 0x55, 0x04, 0x0A

OrganizationalUnitName 0x55, 0x04, 0x0B

Although the actual type of the attribute value of each depends on the OID,
all of the OIDs you typically see (within the distinguished name, at least) have
attribute values whose types are strings. Notice also that these OIDs are only
three bytes long, whereas the OIDs of the algorithm identifi ers shown earlier
are each nine bytes long. See X.520 for more detail on the attribute type OIDs (as
well as many, many more attribute types — distinguished names are permitted
to be very detailed, although they’re usually relatively simple).

For now, you just have to identify an issuer well enough to make a trust decision,
or provide this same information to the user and let the user make this decision.
If you’ve ever come across the error message “The certifi cate is signed by an
unrecognized CA or one you have chosen not to trust” while browsing the web,
your browser is telling you that you should take a look at the “issued by” fi eld.

validity

 validity Validity

Recall the purpose and concept of validity period — the validity period represents
a time window outside of which the certifi cate should be considered suspect.
You’ve likely come across the error message “The web site’s certifi cate has
expired” while browsing. This is actually a much less serious condition than an
untrusted issuer. You know that the certifi cate was valid at some point in the
past; it’s just due to be resissued. If it’s not terribly old, you can probably trust it.

TRACKING CERTIFICATE VALIDITY PERIODS

Keeping track of validity periods and expiration dates, and ensuring that certifi -
cates get reissued before their expiration date, can be an onerous responsibility
for a website administrator. Expired certifi cates are a user annoyance when a
web server presents one — the user is presented with an ominous error
message and given the option to continue or abort. However, in automated
communications, such as secured web services, where a program is making a
secure connection to another program, certifi cate expiration can be fatal.

c05.indd 232c05.indd 232 12/10/2010 9:45:05 AM12/10/2010 9:45:05 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 233

One day your web services are connecting to one another as they should be; the
next day they’re failing for no apparent reason with a “certifi cate expired” error
message buried in a log fi le somewhere. No certifi cate-based library I’m aware
of gives you any warning that a certifi cate is about to expire (as nice as that
would be).

One way to get around this is to have all certifi cates that protect program-
to-program services expire on the same day — for instance, you can have
all the test environment certifi cates expire on Feb. 1, and all the production
environment certifi cates expire on Mar. 1. This way, you’ll get some warning
and when your test environment certifi cates start expiring and you’ll know it’s
time to start reissuing your production environment certifi cates.

How is validity represented in X.509, then?
Validity ::= SEQUENCE {

 notBefore Time,

 notAfter Time }

Time ::= CHOICE {

 utcTime UTCTime,

 generalTime GeneralizedTime }

 There are two Time values, each of which can either be a UTCTime or a
GeneralizedTime. Each is a year, followed by a month, a day, an hour, a minute,
a second, and the letter Z. The only difference between the two is that general-
ized time uses a four-digit year and UTCTime a two-digit year. A UTCTime is 13
bytes long; a GeneralizedTime is 15. Lengths are discussed later in the chapter,
when representations are covered.

So, with a two-digit year, the client has to do a bit of detective work to fi gure out
if 35 expired a very, very long time ago, or if it will expire in 25 years. Because no
X.509 certifi cates were issued in 1935, it’s safe to assume that a year of 35 means
2035. In fact, the specifi cation mandates that all certifi cates issued before 2050
must use UTCTime, so if the year is less than 50, it’s in the 21st century. After the
year 2050, CA’s are supposed to begin using GeneralizedTime, with a four-digit
year. However, having lived through the Y2K “crisis,” I have faith that computer
programmers will not actually fi x this two-digit year problem until a few years
before it actually does become a problem — sometime around the year 2080.

subject

 subject Name

The subject, like the issuer, is a relative distinguished name. It includes an
optional number of identifying fi elds, hopefully enough to identify the subject
of the certifi cate. But, now that you mention it, who is the subject? If I have a
certifi cate that identifi es me, personally, the subject name (the CN fi eld) should
be my name, but if I’m connecting to a web site named www.whizbang.com, the
subject fi eld should identify that web site somehow.

c05.indd 233c05.indd 233 12/10/2010 9:45:05 AM12/10/2010 9:45:05 AM

234 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

As it turns out, this is actually poorly specifi ed. The compromise here has
been to insert the domain name into the CN fi eld of the subject name and allow
the client to compare the domain name it thinks it’s connecting to against the
domain name listed in the CN fi eld of the certifi cate’s subject. However, this is
imperfect. Consider an e-commerce site that controls three different domains:
shop.whizbang.com, purchase.whizbang.com and orders.whizbang.com. SSL
certifi cates are expensive to obtain — at least, those issued by reputable CAs — and
something of a hassle to maintain. The site administrator has to keep track of
expiration dates and ensure that the certifi cates get reissued within a reason-
able timeframe. As the administrator of whizbang.com, you’d really want one
certifi cate that authenticates all of the site’s servers. After all, www.whizbang
.com almost certainly identifi es multiple physical IP addresses.

As a result, it’s acceptable for the certifi cate’s subject’s CN fi eld to include a
wildcard, such as *.whizbang.com. This actually creates other problems. If you
can convince a CA to register you a certifi cate with a subject name including
CN=*.com, you can masquerade as any site on the Internet, and the browser has
no way of differentiating your certifi cate from the legitimate owner of the site.
Although authorities are smart enough to check for this, security researcher Moxie
Marlinspike, in his paper “Null Prefi x Attacks Against SSL Certifi cates,” detailed
an interesting vulnerability not in the protocol itself but in most implementations
of it. An attacker requests a certifi cate whose common name was *\0.badguy
.com. Note the insertion of the null-terminator \0 in the domain name. Because
he owns the top-level domain name badguy.com, the CA issues the certifi cate.
However, a C-based client implementation almost certainly loads the common
name into a string fi eld and does a strcmp to determine equality — reading the
common name as * or “any website”. This is something that implementers of the
TLS protocol need to be aware of; the length of the string needs to be checked,
and null terminators before the actual end of the string should be removed. If
you’re lucky, the CA checks for this as well. You shouldn’t rely on luck, though;
as the implementer, make sure you protect your users against lazy CA’s.

RFC 2247 extends the X.509 subject name to explicitly include domain-name
components, split out according to the DNS hierarchy, so that www.whizbang.com
becomes DC=www,DC=whizbang,DC=com. This new DC (domain-name component)
attribute has OID 0.9.2342.19200300.100.1.25 and is not particularly common;
most sites still instead use the CN fi eld to identify their domain names. This is
part of a chicken-and-egg problem; some older clients don’t recognize the DC
component, so to interoperate with them, sites identify themselves using the
CN fi eld. Because so few sites advertise DC components, there’s little incentive
for clients to recognize it. At the time of this writing, neither Firefox 3.6.3 nor
Internet Explorer 8 properly recognize the DC fi eld in the subject name, although
RFC 3280 states that recognizing it is mandatory. If the DC fi eld correctly identi-
fi es the domain name, but the CN does not (or is missing), a security exception is
still reported. The DC fi eld is more common in LDAP-based certifi cates; perhaps
someday in the future, web browsers will make use of it.

c05.indd 234c05.indd 234 12/10/2010 9:45:05 AM12/10/2010 9:45:05 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 235

A recent Internet-wide security analysis by Qualys Research found “22
million SSL servers with certificates that are completely invalid because
they do not match the domain name on which they reside” (see http://www
.esecurityplanet.com/features/article.php/3890171/SSL-Certificates-

In-Use-Today-Arent-All-Valid.htm), although some of this is likely caused
by virtual hosting rather than truly invalid SSL certifi cates.

subjectPublicKeyInfo

 subjectPublicKeyInfo SubjectPublicKeyInfo

Here is the heart of the certifi cate — the public key that it presents. On the client
side, when the certifi cate is received, you use the issuer, validity period, and
the subject fi eld to decide whether you trust the public key well enough to use
it to perform a key exchange. If the subject matches the host you think you’re
connecting to, the certifi cate hasn’t expired, and the issuer is one you trust, you
have reasonable assurance that there’s no man in the middle and you can go
forward with the key exchange and, presumably, trade sensitive information
over the now-secured channel.

The defi nition for SubjectPublicKeyInfo is
SubjectPublicKeyInfo ::= SEQUENCE {

 algorithm AlgorithmIdentifier,

 subjectPublicKey BIT STRING }

The AlgorithmIdentifier, it should come as no surprise, includes an OID.
Two possible values of interest are shown in Table 5-4.

Table 5-4: Public-Key Algorithm OIDs

ALGORITHM IDENTIFIER OID

RSA 2A 86 48 86 F7 0D 01 01 01

Diffi e-Hellman 2A 86 48 CE 3E 02 01

NOTE Elliptic-curve Diffi e-Hellman support in X.509 certifi cates is examined
in Chapter 9.

The public key itself is defi ned here as a simple bit string. Recall from Chapter 4,
though, that you need some pretty specifi c information in a pretty specifi c for-
mat to do key exchanges, For RSA, for example, you need the modulus n and
the public exponent e. So, as it turns out, the BIT STRING here actually encodes
another ASN.1 formatted value, whose contents vary depending on the value
of the algorithm identifi er. For RSA, this is
RSAPublicKey ::= SEQUENCE {

 modulus INTEGER, -- n

 publicExponent INTEGER -- e -- }

c05.indd 235c05.indd 235 12/10/2010 9:45:05 AM12/10/2010 9:45:05 AM

236 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

So, after decoding the OID, you then need to ASN.1 decode the bit string as
yet another ASN.1 value to extract the actual public key.

If you recall, regular (e.g. non-elliptic-curve) Diffi e-Hellman key exchange
doesn’t involve a public key the way RSA does. There were two parameters
needed, though: the generator g and the fi eld parameter p. The contents of the
public key fi eld, in this case, is simply:

DHPublicKey ::= INTEGER -- public key, y = g^x mod p

Of course, the public y value is useless to the client without g and p. You
might expect to see them in the public key structure, as you see with n in
the RSAPublicKey, but instead the Diffi e-Hellman generator and group are
passed as algorithm parameters. Notice in the declaration of algorithm in
SubjectPublicKeyInfo that the type is actually AlgorithmIdentifier. This
includes an OID identifying the algorithm, but allows optional parameters to
be included:
AlgorithmIdentifier ::= SEQUENCE {

 algorithm OBJECT IDENTIFIER,

 parameters ANY DEFINED BY algorithm OPTIONAL }

The parameters fi eld is empty for RSA, but for DH, it’s defi ned as
DomainParameters ::= SEQUENCE {

 p INTEGER, -- odd prime, p=jq +1

 g INTEGER, -- generator, g

 q INTEGER, -- factor of p-1

 j INTEGER OPTIONAL, -- subgroup factor

 validationParms ValidationParms OPTIONAL }

 ValidationParms ::= SEQUENCE {

 seed BIT STRING,

 pgenCounter INTEGER }

HOW TO AVOID A SMALL SUBGROUP ATTACK USING THE
DIFFIE-HELLMAN KEY

If you recall the discussion of Diffi e-Hellman key exchange in Chapter 3, you
may remember that p and g are the only two parameters that you need in
order to perform a key exchange. Each side chooses a random secret number
a or b, sends the other side y = ga%p, and the receiving side computes yb%p to
complete the key agreement (refer back to Chapter 3 if this is still a bit fuzzy).
So — you may wonder — what are those extra parameters, q, j, and validation-
Parms for? Well, when p and g are fi xed parameters — used over and over for
multiple key exchanges — a poorly chosen p value can open the user to an
attack called the small subgroup attack, described by Chae Hoon Lim and Pil
Joon Lee in their paper, “A Key Recovery Attack on Discrete Log-based Schemes
Using a Prime Order Subgroup.” The attack itself is mathematically complex,
and I won’t go into the details here. As it turns out, SSL/TLS ordinarily uses

c05.indd 236c05.indd 236 12/10/2010 9:45:06 AM12/10/2010 9:45:06 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 237

Diffi e-Hellman key exchange in such a way that guarding against the small sub-
group attack is unnecessary; this will be examined in more detail in Chapter 8. If
you’re curious, and would like to see more detail on how these parameters may
be used to guard against small subgroup attacks, you may refer to RFC 2631.

extensions

 extensions [3] EXPLICIT Extensions OPTIONAL

 -- If present, version shall be v3

Finally, there is the generic extensions fi eld introduced in X.509v3 — in fact,
this was the only addition to X.509v3. Certifi cate extensions, if present — which
they almost always are these days — are appended here. extensions is a nested
SEQUENCE of object identifi ers, optionally followed by data (depending on the
object identifi er).

This book doesn’t go through all the available certifi cate extensions. RFC
5280, section 4.2 lists all of the standard ones, but be aware that two entities
can agree on non-standard extensions as well. There are, however, a handful
of particularly important ones.

The extensions type is defi ned as
Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

and the extension type itself is defi ned as
Extension ::= SEQUENCE {

 extnID OBJECT IDENTIFIER,

 critical BOOLEAN DEFAULT FALSE,

 extnValue OCTET STRING }

Each extension has a unique object identifi er; this object identifi er determines
how the extnValue is parsed, or if it’s even present. Additionally, there’s a criti-
cal fi eld. If an extension is marked critical, and the reader doesn’t recognize it,
it must reject the entire certifi cate; otherwise, unrecognized extensions can be
ignored. Most extensions are not marked critical.

The Subject Alternative Name extension (OID 55 1D 11) is a useful, but not
widely used, extension. This extension offers a place to specifi cally identify a
server’s domain name; it also supports e-mail addresses, IP addresses, other direc-
tory names, and so on. Because the domain name is explicit, the common-name
fi eld no longer needs to be assumed to be the domain name. Unfortunately, this
extension has failed to catch on, chiefl y for the same reason the DC component
in the subject name failed to catch on; to support older clients, servers must
continue to set the common name to be the same as domain name. (In fact,
it’s unclear what, if anything, ought to be in the CN component of a certifi cate’s
subject when the certifi cate identifi es a web site, if not the domain name.)

There are additional certifi cate extensions throughout the remainder of this
chapter. Each one is encoded according to the Extension structure defi ned

c05.indd 237c05.indd 237 12/10/2010 9:45:06 AM12/10/2010 9:45:06 AM

238 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

above, and is identifi ed uniquely by an OID. Incidentally, all of the extension
OIDs start with 55 1D.

Signed Certifi cates

Now, as you browse over the list of fi elds described in the certifi cate structure
from Listing 5-1, you may have noticed that although a signing algorithm is
included, a signature isn’t. As you recall from Chapter 4, a signature is generated
when a byte sequence is hashed and the hash is encrypted using a private key.
So, one thing that must be agreed upon before a signature can be generated is
exactly which bytes are hashed. In this case, it’s the bytes of the certifi cate struc-
ture — technically, the certifi cate’s DER encoding (described later). So, there’s
another outer structure defi ned, which includes the certifi cate, the signature
algorithm (again), and the signature value itself, as shown in Listing 5-2.

Listing 5-2: X.509 signed certifi cate declaration

Certificate ::= SEQUENCE {

 tbsCertificate TBSCertificate,

 signatureAlgorithm AlgorithmIdentifier,

 signatureValue BIT STRING }

The certifi cate structure defi ned here is properly referred to as the TBSCertificate.
TBS stands for To Be Signed, although the ones examined here have already been
signed. If you think about the overall lifecycle of a certifi cate, this nomenclature
makes sense. First, the certifi cate requester (e.g. the website owner) generates a
public/private keypair and wraps up that information in a To-be-signed certifi cate
structure. This is sent off to the CA, which signs it (after verifying it) and returns
the whole certifi cate back, complete with its digital signature.

The signature algorithm is — in fact, must be — the exact same as the OID
given in the TBSCertificate itself. The signature, of course, is a bit string.
The use of a bit string — the ASN.1 equivalent of a void pointer — runs into the
same defi nitional problem with subjectPublicKeyInfo; the precise contents vary
depending on the signature algorithm itself. Therefore, again, the BIT STRING
itself is another ASN.1-defi ned structure, depending on the algorithm identifi er.

NOTE A certifi cate can legally be signed by the private key corresponding
to the public key contained within it. This sort of certifi cate is called a self-
signed certifi cate. After all, my certifi cate is signed by a CA, but who signs
their certifi cates? As a result, all top-level certifi cates are self-signed this way.
How the client decides which self-signed top-level certifi cates to trust is not
defi ned by the SSL specifi cation. In the context of a web browser, for example,
there’s always a list of trusted CAs that can be updated by the user.

You can see which CAs your browser trusts. If you’re using Internet Explorer 8,
for instance, go to Tools � Internet Options � Publishers, and click the Trusted
Root Certifi cation Authorities tab, as shown in Figure 5-4:

c05.indd 238c05.indd 238 12/10/2010 9:45:06 AM12/10/2010 9:45:06 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 239

Figure 5.4: Sample of trusted root authorities in IE 8

X.509 is designed to allow delegation of signing authority. A top-level CA can
issue and sign a certifi cate to, for instance, a “west coast” authority and an “east
coast” authority. These authorities can sign certifi cates on behalf of the top-level
CA. The receiver fi rst verifi es that the lowest-level certifi cate is valid according to
the delegated authority’s certifi cate. Then it checks the signature of the delegated
authority against that of the root-level authority as illustrated in Figure 5-5.

Figure 5.5: Certificate authority delegation

root

delegate

server certificate

This way, the verifi er — for example, the web client — only needs to keep
track of a small number of root CAs. A handful of trusted root authorities can

c05.indd 239c05.indd 239 12/10/2010 9:45:06 AM12/10/2010 9:45:06 AM

240 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

certify other authorities, and the client only has to be aware of a dozen or so
root authorities. You can extend this scheme to any level of sub-delegates; the
client just goes on checking signatures until it fi nds a signature issued by an
authority it already trusts.

Unfortunately, this system was put in place and used for a while before
somebody identifi ed a fatal fl aw. The problem is that every certifi cate includes
a public key, and any public key can sign another certifi cate. Therefore, there’s
nothing stopping an unscrupulous site administrator from using a regular
server certifi cate to sign another certifi cate, as shown in Figure 5-6, for example.

Figure 5.6: Illegitimate delegation

root

delegate

legitimately
obtained server

certificate

certificate
identifying any

website

As a result, almost all clients are designed to require that each certifi cate be
signed by a trusted authority and to reject delegated signatures.

The Key Usage certifi cate extension — OID 55 1D 0F — was introduced to
allow this sort of delegated signature scheme in a safe way; this (critical) exten-
sion encodes a bit string, each of whose eight bits is either set or unset to iden-
tify that the public-key contained in this certifi cate may or may not be used
for a particular purpose. Of course, there’s nothing stopping an unscrupulous
user from using the key for a nonspecifi ed purpose anyway, but the receiver
can check the key usage bit and determine whether to allow the sender to do
so. The most important bit is bit 5, which, if set, identifi es this certifi cate as a
legitimate signing authority. Presumably, the issuing CA only allows this bit

c05.indd 240c05.indd 240 12/10/2010 9:45:06 AM12/10/2010 9:45:06 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 241

to be set if it trusts the requester to be responsible and sign other certifi cates
on behalf of the CA itself.

Summary of X.509 Certifi cates

I’ve covered a lot of ground in this section, and it’s easy to get lost in all of the
details. To summarize: when your browser warns you about certifi cate errors,
it’s referring to an X.509 certifi cate that was presented by the target web site to
identify itself. Such a certifi cate must be presented in order to guard against
man-in-the-middle attacks. An X.509 certifi cate itself is a mapping of an entity
name (e.g. a person or a website) to a public key. This mapping has a validity
period and is vouched for by a trusted entity called a certifi cate authority. As
long as all of these elements are present, you have a legitimate certifi cate. The
X.509 specifi cation takes it a step further and tells you what order they should
be stored in and what form they should take.

Transmitting Certifi cates with ASN.1 Distinguished
Encoding Rules (DER)
Quite a bit has been said so far about the abstract structure of a certifi cate without
discussing how one is actually represented in byte form. The translation of primi-
tive (ASN.1) types to byte representation is described according to a set of rules.
Technically, these rules are independent of ASN.1 itself. I mentioned earlier that
a certifi cate is the sort of thing that would probably be represented in XML these
days — there is, in fact, a set of rules to encode ASN.1 in XML format! However,
by far the most common encoding, and the one that SSL relies on, is called the
Distinguished Encoding Rules (DER). The distinguished differentiates the rules from
another set called the basic encoding rules. Fundamentally, the distinguished
rules are more restrictive than the basic rules. For example, the basic rules allow
the encoder to use more bytes than necessary to specify lengths (if the encoder
wants all lengths to be encoded in a fi xed set of bytes, for example). For the most
part, the differences are superfi cial, and the basic encoding rules (BER) won’t be
specifi cally covered here.

The DER describes how to format integers, strings, dates, object identifi ers, bit
strings, sequences and sets — as well as several others, but these are the ones
that are pertinent to the present discussion about X.509 certifi cates. See X.690
for a complete listing of DER encoding rules.

Encoded Values

Every encoded value is represented as a type, followed by the value’s length,
followed by the actual contents of the value itself; the representation of the value
depends on the type. So, for example, the type integer is byte 02. DER allows

c05.indd 241c05.indd 241 12/10/2010 9:45:06 AM12/10/2010 9:45:06 AM

242 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

for multi-byte types as well — and has complex rules on how to encode and
recognize them — but X.509 doesn’t need to make use of them and sticks with
single-byte types. Therefore, the integer value 5 is encoded, according to DER, as
02 01 05

That’s type 2 (integer), one byte in length, value 5. The integer value 65535
is encoded as
02 02 FF FF

That’s type 2, two bytes, value 0xFFFF equals 65535. The length byte tells you
when to stop reading the value and start looking for another tag.

So far, so good. It’s pretty simple. OID’s are just as simple to encode. They’re
stored just like integers, but they have a type of 6 instead of 2. Otherwise, they’re
encoded the same way: type, length, value. The OID common name (in the subject
and issuer distinguished name fi elds) of 55 04 03 is represented as
06 03 55 04 03

The length byte tells you that there are three bytes of OID.

Strings and Dates

Strings and dates are both encoded similarly. The type code for a date is either
23 or 24; 23 is a generalized — four-digit year — time. 24 is a UTC — two-digit
year — time. Although the type actually includes enough information to infer
the length — you know that generalized times are 15 digits, and UTC times
are 13 — for consistency’s sake the lengths are included as well. After that, the
year, month, day, hour, minute, second and Z are included in ASCII format. So
the date Feb. 23, 2010, 6:50:13 is encoded in UTC time as

17 0d 31 30 30 32 32 33 30 36 35 30 31 33 5A

tag length 1 0 0 2 2 3 0 6 5 0 1 3 Z

and is encoded in generalized time as

16 0f 32 30 31 30 30 32 32 33 30 36 35 30 31 33 5A

tag length 2 0 1 0 0 2 2 3 0 6 5 0 1 3 Z

Strings are also coded this way. However, there are quite a few different string
types to account for different byte encodings (among other things). The offi cial
specifi cation is actually not proscriptive about which type of string should be used,
and you actually see different kinds. However, the most common are IA5Strings
(type 22) and printable strings (type 19), which you can treat interchangeably.
Given, for example, the country code “US” in a name fi eld, the encoding would be
13 02 55 53

which is the ASCII representation of the string “US.”

c05.indd 242c05.indd 242 12/10/2010 9:45:06 AM12/10/2010 9:45:06 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 243

Bit Strings

So far, DER is pretty straightforward, and everything except bit strings, sequences
and sets has been covered. Bit strings are just like strings, with one minor
difference. Their type is 3 to distinguish them from printable strings, but the
encoding is exactly the same: tag, length, contents. The only difference between
bit strings and character strings is that bit strings don’t necessarily have to end
on an eight-bit boundary, so they have an extra byte to indicate how much pad-
ding was included. In practice, this is always 0 because all useful bit patterns
are eight-bit aligned anyway.

However, as you recall from the discussion of public key algorithms and
signature values, bit strings contain nested ASN.1 structures. All the examples
of DER-encoded values examined so far have been able to get away with repre-
senting their length with a single byte, but a nested ASN.1 structure is bound
to be larger than this. So how are lengths greater than 255 represented?

Actually, a single-length byte can only represent 127 byte values. The high-
order bit is reserved. If it’s 1, then the low order seven bits represent not the
length of the value, but the length of the length — that is, how many of the
bytes following encode the length of the subsequently following value. So, if a
bit string is 512 bytes long, the DER-encoded representation looks like Table 5-5:

Table 5-5: ASN.1 Encoding of Long Values

TAG
NUMBER

NUMBER OF
LENGTH BYTES

ACTUAL
LENGTH VALUE

BITS OF
PADDING

VALUE

03 83 02 00 00 00 (512 bytes of
value)

Technically, a value doesn’t have to be a bit string to have a length greater
than 127; integers, strings, and OIDs could, at least in theory. In practice, though,
this never happens.

Sequences and Sets: Grouping and Nesting ASN.1 Values

So, you’re almost ready to start encoding an entire X.509 certifi cate. There are two
missing pieces, though. Notice that there are several sequences nested inside other
sequences, and sets nested inside sequences (and sequences nested inside sets...).
Sets and sequences are what ASN.1 calls a constructed type — that is, a type contain-
ing other types. Technically, they’re encoded the same way other values are. They
start with a tag, are followed by a variable number of length bytes, and are then
followed by their contents. However, for constructed types, the contents themselves
are further ASN.1-encoded tags. Sequences are identifi ed by tag 0x30, and sets are
identifi ed by tag 0x31. Any tag value whose sixth bit is 1 is a constructed tag and
the parser must recognize that it contains additional ASN.1-encoded data.

c05.indd 243c05.indd 243 12/10/2010 9:45:06 AM12/10/2010 9:45:06 AM

244 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

ASN.1 Explicit Tags

Finally, turn back and look at the defi nition of the tbsCertifi cate. Notice that
the fi rst fi eld is an optional version number, and the second fi eld is a required
serialNumber, and they’re both numeric. When parsing a certifi cate, then, you
know for certain that the fi rst value you come across is a number, but you have
to check the value of the fi rst value to determine how to interpret the fi rst value!
Clearly this is not an optimal way to go about parsing certifi cates.

To get around this, ASN.1 also allows for explicit tags. Notice in the defi nition
of the tbsCertificate that Version is listed as [0] EXPLICIT.
SEQUENCE {

 version [0] EXPLICIT Version DEFAULT v1,

 serialNumber CertificateSerialNumber,

So far, tags have been presented as randomly distributed identifi ers. Actually,
the fi rst two bits of a tag identify its tag class. In X.509 you come across two types
of tag classes: universal (00) and context-specifi c (10). (The other two are applica-
tion and private and are not used in X.509 certifi cates.) Context-specifi c tags are
explicit tags. So, to create an explicit tag 0, OR 0 with 1000 0000 (0x80). This is
also a constructed tag — its contents are the actual version number — so the
sixth bit is set to 1 (OR 0x20).

A Real-World Certifi cate Example

An example might help clear up any remaining confusion here. To see an actual
certifi cate, you can download one from any SSL-enabled site, or create a new one.
The latest version of IE makes it a bit diffi cult to directly download a certifi cate,
but it’s still fairly straightforward with Firefox:

 1. Navigate to a secure site.

 2. Click the lock icon.

 3. Select Security � View Certifi cate.

 4. Click the Details tab, shown in fi gure 5-7, and then click the Export button.

Using OpenSSL to Generate an RSA KeyPair and Certifi cate

To keep the fi rst example simple, go ahead and just create a new certifi cate.
OpenSSL has a req option that enables you to generate a self-signed certifi cate.
Do so and then examine its contents.
jdavies@home:ssl$ openssl req -x509 -newkey rsa:512 -keyout key.der -keyform der \

 -out cert.der -outform der

Generating a 512 bit RSA private key

.....++++++++++++

........++++++++++++

c05.indd 244c05.indd 244 12/10/2010 9:45:06 AM12/10/2010 9:45:06 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 245

writing new private key to ‘key.der’

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter ‘.’, the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:TX

Locality Name (eg, city) []:Southlake

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Travelocity

Organizational Unit Name (eg, section) []:Architecture

Common Name (eg, YOUR name) []:Joshua Davies

Email Address []:joshua.davies@travelocity.com

Figure 5.7: Downloading/exporting a certificate in Firefox

Notice that it created two output fi les: a key fi le, containing the encrypted
private key, and a cert fi le, containing the certifi cate. It doesn’t make much sense

c05.indd 245c05.indd 245 12/10/2010 9:45:06 AM12/10/2010 9:45:06 AM

246 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

to generate a new public key without a private key to go with it. The structure
of this key fi le is revisited later.

Also, notice the parameters: -keyform and -outform. There are two options
here, der and pem. der is, unsurprisingly, the ASN.1 DER-encoded representa-
tion of the certifi cate or key fi le. pem, which stands for Privacy Enhanced Mail, is
a Base-64 encoded representation of the DER-encoded certifi cate with a header
and a footer. A pem-encoded certifi cate fi le looks like this:
-----BEGIN CERTIFICATE-----

MIIDUjCCAvygAwIBAgIJAMdcnerewaJQMA0GCSqGSIb3DQEBBQUAMIGkMQswCQYD

VQQGEwJVUzEOMAwGA1UECBMFVGV4YXMxEjAQBgNVBAcTCVNvdXRobGFrZTEUMBIG

...

AwEB/zANBgkqhkiG9w0BAQUFAANBAKf3QiQgbre9DSq4aeED9v0nonEHXPRsU79j

l3q/IUMlhmtuZ4SIlNAPvRdZ6DUIvWqVVJbtl5Bm7MKo7KCMarc=

-----END CERTIFICATE-----

And a pem-encoded key fi le looks like this:
-----BEGIN RSA PRIVATE KEY-----

Proc-Type: 4,ENCRYPTED

DEK-Info: DES-EDE3-CBC,DF6F51939AF51B22

+cvob7sZl6Ew8/iBqNUF1Q40B14mYzw43cS08/xpzbqtkczYfiQeYN8N4dl8h3tp

VzoeCoRKsBKtl89NtpzTJocv33vgcaTFHt1BXBnOPxrQALhyV1x4ADIoW5e7rvsW

...

RmyqjA8BH9JeCPzvJlmir55OYB9aCQBTR3+mAlvVrnx5eng1f0YCw/tneXJor3jT

IgYBcTpEvug5qeGVl27UA2cI/lcCuNQ0Cjdfztlhhmo=

-----END RSA PRIVATE KEY-----

These structures are more amenable to being transmitted in e-mail than
DER-encoded fi les. SSL always deals in DER-encoded fi les, though.

NOTE You’ll encounter the term PEM every once in a while as you read
through the offi cial Internet documentation on certifi cates. Privacy-Enhanced
Mail was the fi rst attempt to apply X.509 certifi cates in an Internet context, so
some of the terminology stuck.

The cert.der fi le is 845 bytes long. If you did this yourself and used your own
name, location, and e-mail information, it might be slightly longer or shorter,
but should be in this same neighborhood. The contents of this fi le are

jdavies@home:ssl$ od -t x1 cert.der

0000000 30 82 03 49 30 82 02 f3 a0 03 02 01 02 02 09 00

0000020 ca 30 e1 8f 77 8d a2 81 30 0d 06 09 2a 86 48 86

0000040 f7 0d 01 01 05 05 00 30 81 a1 31 0b 30 09 06 03

0000060 55 04 06 13 02 55 53 31 0b 30 09 06 03 55 04 08

0000100 13 02 54 58 31 12 30 10 06 03 55 04 07 13 09 53

0000120 6f 75 74 68 6c 61 6b 65 31 14 30 12 06 03 55 04

0000140 0a 13 0b 54 72 61 76 65 6c 6f 63 69 74 79 31 15

0000160 30 13 06 03 55 04 0b 13 0c 41 72 63 68 69 74 65

0000200 63 74 75 72 65 31 16 30 14 06 03 55 04 03 13 0d

c05.indd 246c05.indd 246 12/10/2010 9:45:07 AM12/10/2010 9:45:07 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 247

0000220 4a 6f 73 68 75 61 20 44 61 76 69 65 73 31 2c 30

0000240 2a 06 09 2a 86 48 86 f7 0d 01 09 01 16 1d 6a 6f

0000260 73 68 75 61 2e 64 61 76 69 65 73 40 74 72 61 76

0000300 65 6c 6f 63 69 74 79 2e 63 6f 6d 30 1e 17 0d 31

0000320 30 30 33 30 32 32 32 34 36 32 33 5a 17 0d 31 30

0000340 30 34 30 31 32 32 34 36 32 33 5a 30 81 a1 31 0b

0000360 30 09 06 03 55 04 06 13 02 55 53 31 0b 30 09 06

0000400 03 55 04 08 13 02 54 58 31 12 30 10 06 03 55 04

0000420 07 13 09 53 6f 75 74 68 6c 61 6b 65 31 14 30 12

0000440 06 03 55 04 0a 13 0b 54 72 61 76 65 6c 6f 63 69

0000460 74 79 31 15 30 13 06 03 55 04 0b 13 0c 41 72 63

0000500 68 69 74 65 63 74 75 72 65 31 16 30 14 06 03 55

0000520 04 03 13 0d 4a 6f 73 68 75 61 20 44 61 76 69 65

0000540 73 31 2c 30 2a 06 09 2a 86 48 86 f7 0d 01 09 01

0000560 16 1d 6a 6f 73 68 75 61 2e 64 61 76 69 65 73 40

0000600 74 72 61 76 65 6c 6f 63 69 74 79 2e 63 6f 6d 30

0000620 5c 30 0d 06 09 2a 86 48 86 f7 0d 01 01 01 05 00

0000640 03 4b 00 30 48 02 41 00 e0 13 38 0f 83 b6 ef 06

0000660 70 f5 5b aa 3a 2b cf 8e 95 ff 91 b1 90 03 52 51

0000700 69 73 de a7 fa 97 fb 56 0d b9 e9 0f e8 30 22 8c

0000720 5e f0 1f 07 f0 dc cc 61 b8 01 0e b1 b0 58 ef b5

0000740 b4 54 16 70 eb 59 b4 bf 02 03 01 00 01 a3 82 01

0000760 0a 30 82 01 06 30 1d 06 03 55 1d 0e 04 16 04 14

0001000 2d f1 04 e4 46 1d 72 ef bb a7 ce 05 58 4c 31 f1

0001020 ff 8e 4e 2e 30 81 d6 06 03 55 1d 23 04 81 ce 30

0001040 81 cb 80 14 2d f1 04 e4 46 1d 72 ef bb a7 ce 05

0001060 58 4c 31 f1 ff 8e 4e 2e a1 81 a7 a4 81 a4 30 81

0001100 a1 31 0b 30 09 06 03 55 04 06 13 02 55 53 31 0b

0001120 30 09 06 03 55 04 08 13 02 54 58 31 12 30 10 06

0001140 03 55 04 07 13 09 53 6f 75 74 68 6c 61 6b 65 31

0001160 14 30 12 06 03 55 04 0a 13 0b 54 72 61 76 65 6c

0001200 6f 63 69 74 79 31 15 30 13 06 03 55 04 0b 13 0c

0001220 41 72 63 68 69 74 65 63 74 75 72 65 31 16 30 14

0001240 06 03 55 04 03 13 0d 4a 6f 73 68 75 61 20 44 61

0001260 76 69 65 73 31 2c 30 2a 06 09 2a 86 48 86 f7 0d

0001300 01 09 01 16 1d 6a 6f 73 68 75 61 2e 64 61 76 69

0001320 65 73 40 74 72 61 76 65 6c 6f 63 69 74 79 2e 63

0001340 6f 6d 82 09 00 ca 30 e1 8f 77 8d a2 81 30 0c 06

0001360 03 55 1d 13 04 05 30 03 01 01 ff 30 0d 06 09 2a

0001400 86 48 86 f7 0d 01 01 05 05 00 03 41 00 1b 63 7b

0001420 f5 13 ef 2e 3d 56 22 3d a2 4c d5 0e 31 8d 0c 25

0001440 bb 24 30 fd a3 20 f5 a3 b5 7d 1b cb 1e a8 bd b0

0001460 ce 78 8b e7 5e 7a ac 66 2c 6d 06 06 e8 e3 06 24

0001500 ca d5 ce 0d 99 1a 7c 37 53 4d d3 be 83

It’s worth taking the time to break this fi le down into its constituent parts.
As discussed above, the fi rst byte is a tag. 0x30 is a sequence, as you would
expect — this should be a signed certifi cate sequence. This tag is followed
by its length. Because the high-order bit of the length byte (0x82) is 1, this
indicates that the next two bytes are the length of the sequence. These bytes
are 0x0349, or decimal 841. This looks right — four bytes of the 845-byte fi le

c05.indd 247c05.indd 247 12/10/2010 9:45:07 AM12/10/2010 9:45:07 AM

248 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

are the sequence and length tag, the remaining 841 are its content. The next
byte is another sequence (0x30). Remember that the fi rst element of a signed
certifi cate is a tbsCertificate, which is itself a sequence. Again, the length
takes up two bytes of the input stream, and is 0x02F3, or decimal 755. That
leaves 86 bytes, toward the end, to contain the signature. Recall from Chapter 4
that this is about the right length for a 512-bit RSA signature value.

Table 5-6 presents an annotated breakdown of this certifi cate.

Table 5-6: Disassembled Certifi cate

BYTE CONTENTS ASN.1 MEANING X.509 CERTIFICATE
MEANING

30 82 03 49 841 byte sequence Certifi cate

 30 82 02 f3 755 byte sequence TBSCertifi cate

 a0 03 3 byte explicit tag 0

 02 01 02 1 byte integer version number 3

 02 09 00 ca 30 e1 8f 77
8d a2 81

9 byte integer Serial Number

 30 0d 13 byte sequence Algorithm Identifi er

 06 09 2a 86 48 f7 0d 01
01 01 05

9 byte OID SHA-1 with RSA Encryption

 05 00 Empty space fi ller

 30 81 a1 161 byte sequence Issuer Name

 31 0b 11 byte set AttributeTypeAndValue

 30 09 9 byte sequence AttributeTypeAndValue

 06 03 55 04 06 3 byte OID id-at-countryName

 13 02 55 53 2 byte string US

 31 0b 11 byte set AttributeTypeAndValue

 30 09 9 byte sequence AttributeTypeAndValue

 06 03 44 04 08 3 byte OID id-at-stateOrProvinceName

 13 02 54 58 2 byte string TX

 31 12 18 byte set AttributeTypeAndValue

 30 10 16 byte sequence AttributeTypeAndValue

 06 03 55 04 07 3 byte OID id-at-localityName

 13 09 53 6f 75 74 68
6c 61 6b 65

9 byte string Southlake

 31 14 20 byte set AttributeTypeAndValue

c05.indd 248c05.indd 248 12/10/2010 9:45:07 AM12/10/2010 9:45:07 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 249

 30 12 18 byte sequence AttributeTypeAndValue

 06 03 55 04 0a 3 byte OID id-at-organizationName

 13 0b 54 72 61 76 65
6c 6f 63 69 74 79

11 byte string Travelocity

 31 15 21 byte set AttributeTypeAndValue

 30 13 19 byte sequence AttributeTypeAndValue

 06 03 55 04 0b 3 byte OID id-at-organizationalUnit-
Name

 13 0c 41 72 63 68 69
74 65 63 74 75 72 65

12 byte string Architecture

 31 16 22 byte set AttributeTypeAndValue

 30 14 20 byte sequence AttributeTypeAndValue

 06 03 55 04 03 3 byte OID id-at-commonName

 13 0d 4a 6f 73 68 75
61 20 44 61 76 69 65 73

13 byte string Joshua Davies

 30 1e 31 byte sequence Validity

 17 0d 31 30 30 33 30 32
32 32 34 36 32 33 5a

13 byte UTC time notBefore=100302224623Z

 17 0d 31 30 30 34 30 31
32 32 34 36 32 33 5a

13 byte UTC time notAfter =100401224623Z

 30 81 a1 161 byte sequence subject name

 31 0b 11 byte set AttributeTypeAndValue

 30 09 9 byte sequence AttributeTypeAndValue

 06 03 55 04 06 3 byte OID id-at-countryName

 13 02 55 53 2 byte string US

 31 0b 11 byte set AttributeTypeAndValue

 30 09 9 byte sequence AttributeTypeAndValue

 06 03 44 04 08 3 byte OID id-at-stateOrProvinceName

 13 02 54 58 2 byte string TX

 31 12 18 byte set AttributeTypeAndValue

 30 10 16 byte sequence AttributeTypeAndValue

 06 03 55 04 07 3 byte OID id-at-localityName

 13 09 53 6f 75 74 68
6c 61 6b 65

9 byte string Southlake

 31 14 20 byte set AttributeTypeAndValue

Continued

c05.indd 249c05.indd 249 12/10/2010 9:45:07 AM12/10/2010 9:45:07 AM

250 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

BYTE CONTENTS ASN.1 MEANING X.509 CERTIFICATE
MEANING

 30 12 18 byte sequence AttributeTypeAndValue

 06 03 55 04 0a 3 byte OID id-at-organizationName

 13 0b 54 72 61 76 65
6c 6f 63 69 74 79

11 byte string Travelocity

 31 15 21 byte set AttributeTypeAndValue

 30 13 19 byte sequence AttributeTypeAndValue

 06 03 55 04 0b 3 byte OID id-at-organizationalUnit-
Name

 13 0c 41 72 63 68 69
74 65 63 74 75 72 65

12 byte string Architecture

 31 16 22 byte set AttributeTypeAndValue

 30 14 20 byte sequence AttributeTypeAndValue

 06 03 55 04 03 3 byte OID id-at-commonName

 13 0d 4a 6f 73 68 75
61 20 44 61 76 69 65 73

13 byte string Joshua Davies

 30 5c 92 byte sequence SubjectPublicKeyInfo

 30 0d 13 byte sequence AlgorithmIdentifi er

 06 09 2a 86 48 f7 0d 01
01 01

9 byte OID RSA

 05 00 0 byte fi ller

 03 4b 75 byte bit string subjectPublicKey

 00 30 48 02 41 00 … ASN.1 encoded public key
bit string

 a3 82 01 0a 266 byte explicit
tag 3

extensions

 30 82 01 06 262 byte sequence Extension

 30 1d 29 byte sequence Extension

 06 03 55 1d 0e 3 byte OID Subject Key Identifi er

 04 16 04 14 2d f1 04
e4 46 1d 72 ef bb a7 ce 05
58 4c 31 f1 ff 8e 4e 2e

22 byte octet string

 30 81 d6 214 byte sequence Extension

 06 03 55 1d 23 3 byte OID Authority key identifi er

Table 5-6 (continued)

c05.indd 250c05.indd 250 12/10/2010 9:45:07 AM12/10/2010 9:45:07 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 251

 04 81 ce 206 byte octet
string

 30 81 cb 80 14 2d …

 30 0d 13 byte sequence Signature Algorithm

 06 09 2a 86 48 86 f7 0d
01 01 05

9 byte OID RSA with SHA-1

 05 00 0 byte fi ller

 03 41 00 1b 63 7b … 65 byte string signatureValue

Note that the interpretation of the second column is automatic and requires
no context. However, the interpretation of the third column — the actual certifi -
cate contents — requires that you keep close track of the sequences, sets, and so
on and match them against the defi nition. One frustrating thing about ASN.1
DER-encoded strings is that they don’t carry any identifying information with
them. You can often recognize a DER-encoded fi le by the 30 byte that (usually)
starts it, but if you don’t have some external information indicating what type
of fi le it is, you’ll never be able to fi gure out what sort of fi le you’re looking at.

Using OpenSSL to Generate a DSA KeyPair and Certifi cate

The example certifi cate in the previous section included an RSA public key.
Although this is by far the most common certifi cate form, OpenSSL allows you
to generate certifi cates that include DSA keys as well. (It does not, at the time of
this writing, allow the creation of a certifi cate with Diffi e-Hellman parameters
as discussed earlier). The process is slightly more involved, though. First, you
must create a set of DSA parameters (p, q, and g):
 [jdavies@localhost ssl]$ openssl dsaparam 512

 -out dsaparam.cer

Generating DSA parameters, 512 bit long prime

This could take some time

..+................+.....+++*

.......+..+...........+..+.....+..+......

...

........+..+.....+......................+............+....+.+....+.............

...

.+.+........+...+....+..+.+.....+..+..+..

...

.+...........+...+..........+.........................+.............+..........

...

+.......+...+............+....+....++

+++

++++*

c05.indd 251c05.indd 251 12/10/2010 9:45:07 AM12/10/2010 9:45:07 AM

252 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

You pass this in to your certifi cate request:
[jdavies@localhost ssl]$ openssl req -x509 -newkey dsa:dsaparam.cer -keyout \

 dsakey.der -keyform der -out dsacert.der -outform der

Generating a 512 bit DSA private key

writing new private key to ‘dsakey.der’

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter ‘.’, the field will be left blank.

Country Name (2 letter code) [GB]:US

State or Province Name (full name) [Berkshire]:Texas

Locality Name (eg, city) [Newbury]:Southlake

Organization Name (eg, company) [My Company Ltd]:Travelocity

Organizational Unit Name (eg, section) []:Architecture

Common Name (eg, your name or your server’s hostname) []:Joshua Davies

Email Address []:joshua.davies@travelocity.com

Developing an ASN.1 Parser

By now, you’re probably itching to see some code. You develop code to parse
an X.509 certifi cate in two parts; fi rst, deconstruct the DER-encoded ASN.1
structure into its constituent parts and then interpret these parts as an X.509
certifi cate. ASN.1-encoded values can be represented naturally as nodes of the
form shown in Listing 5-3.

Listing 5-3: “asn1.h” asn1struct defi nition

struct asn1struct

{

 int constructed; // bit 6 of the identifier byte

 int tag_class; // bits 7-8 of the identifier byte

 int tag; // bits 1-5 of the identifier byte

 int length;

 const unsigned char *data;

 struct asn1struct *children;

 struct asn1struct *next;

};

Converting a Byte Stream into an ASN.1 Structure
The fi rst fi ve elements ought to be relatively straightforward if you understood
the description of ASN.1 DER in the previous section. The last two are used to

c05.indd 252c05.indd 252 12/10/2010 9:45:07 AM12/10/2010 9:45:07 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 253

navigate the hierarchy. Each asn1struct is part of a linked list of other asn-
1struct structures, and each one optionally points to the head of another linked
list that is its child. So, after parsing, the fi rst part of the certifi cate is represented
in memory as shown in Figure 5-8.

F igure 5.8: Partial illustration of a certificate structure

constructed: true
tag_class:
tag: 0×16
length: 841
data: null constructed: true

tag_class:
tag: 0×16
length: 755
data: null

constructed: true
tag_class:
tag: 0×03
length: 13
data: null

constructed: true
tag_class:
tag: 0×03
length: 13
data: null

constructed: false
tag_class:
tag: 0×05
length: 0
data: null

constructed: true
tag_class:
tag: 0×16
length: 161
data: null

constructed: true
tag_class:
tag: 0×03
length: 3
data: null

constructed: false
tag_class:
tag: 0×02
length: 9
data: 00 ca 30 e1
8f 77 8d a2 81

constructed: false
tag_class:
tag: 0×06
length: 9
data: 2a 86 48 86
f7 0d 01 01 05

constructed: false
tag_class:
tag: 0×02
length: 1
data: 2

next

next

next

next

next

children

children

children

children

As you can see, locating a node is a matter of starting at the root, and travers-
ing any number of children or nexts until you reach the one you’re looking
for. The tree structure is preserved by the use of the children pointers. Defi ne
a handful of constants to clarify the code as shown in Listing 5-4.

c05.indd 253c05.indd 253 12/10/2010 9:45:07 AM12/10/2010 9:45:07 AM

254 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

Listing 5-4: “asn1.h” constants

#define ASN1_CLASS_UNIVERSAL 0

#define ASN1_CLASS_APPLICATION 1

#define ASN1_CONTEXT_SPECIFIC 2

#define ASN1_PRIVATE 3

#define ASN1_BER 0

#define ASN1_BOOLEAN 1

#define ASN1_INTEGER 2

#define ASN1_BIT_STRING 3

#define ASN1_OCTET_STRING 4

#define ASN1_NULL 5

#define ASN1_OBJECT_IDENTIFIER 6

#define ASN1_OBJECT_DESCRIPTOR 7

#define ASN1_INSTANCE_OF_EXTERNAL 8

#define ASN1_REAL 9

#define ASN1_ENUMERATED 10

#define ASN1_EMBEDDED_PPV 11

#define ASN1_UTF8_STRING 12

#define ASN1_RELATIVE_OID 13

// 14 & 15 undefined

#define ASN1_SEQUENCE 16

#define ASN1_SET 17

#define ASN1_NUMERIC_STRING 18

#define ASN1_PRINTABLE_STRING 19

#define ASN1_TELETEX_STRING 20

#define ASN1_T61_STRING 20

#define ASN1_VIDEOTEX_STRING 21

#define ASN1_IA5_STRING 22

#define ASN1_UTC_TIME 23

#define ASN1_GENERALIZED_TIME 24

#define ASN1_GRAPHIC_STRING 25

#define ASN1_VISIBLE_STRING 26

#define ASN1_ISO64_STRING 26

#define ASN1_GENERAL_STRING 27

#define ASN1_UNIVERSAL_STRING 28

#define ASN1_CHARACTER_STRING 29

#define ASN1_BMP_STRING 30

The recursive ASN.1 parser routine itself is surprisingly simple (see Listing 5-5).

Listing 5-5: “asn1.c” asn1parse

int asn1parse(const unsigned char *buffer,

 int length,

 struct asn1struct *top_level_token)

{

 unsigned int tag;

 unsigned char tag_length_byte;

 unsigned long tag_length;

 const unsigned char *ptr;

c05.indd 254c05.indd 254 12/10/2010 9:45:08 AM12/10/2010 9:45:08 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 255

 const unsigned char *ptr_begin;

 struct asn1struct *token;

 ptr = buffer;

 token = top_level_token;

 while (length)

 {

 ptr_begin = ptr;

 tag = *ptr;

 ptr++;

 length--;

 // High tag # form (bits 5-1 all == “1”), to encode tags > 31. Not used

 // in X.509

 if ((tag & 0x1F) == 0x1F)

 {

 tag = 0;

 while (*ptr & 0x80)

 {

 tag <<= 8;

 tag |= *ptr & 0x7F;

 }

 }

 tag_length_byte = *ptr;

 ptr++;

 length--;

 // TODO this doesn’t handle indefinite-length encodings (according to

 // ITU-T X.690, this never occurs in DER, only in BER, which X.509 doesn’t

 // use)

 if (tag_length_byte & 0x80)

 {

 const unsigned char *len_ptr = ptr;

 tag_length = 0;

 while ((len_ptr - ptr) < (tag_length_byte & 0x7F))

 {

 tag_length <<= 8;

 tag_length |= *(len_ptr++);

 length--;

 }

 ptr = len_ptr;

 }

 else

 {

 tag_length = tag_length_byte;

 }

 // TODO deal with “high tag numbers”

 token->constructed = tag & 0x20;

(Continued)

c05.indd 255c05.indd 255 12/10/2010 9:45:08 AM12/10/2010 9:45:08 AM

256 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

 token->tag_class = (tag & 0xC0) >> 6;

 token->tag = tag & 0x1F;

 token->length = tag_length;

 token->data = ptr;

 token->children = NULL;

 token->next = NULL;

 if (tag & 0x20)

 {

 token->length = tag_length + (ptr - ptr_begin);

 token->data = ptr_begin;

 // Append a child to this tag and recurse into it

 token->children = (struct asn1struct *)

 malloc(sizeof(struct asn1struct));

 asn1parse(ptr, tag_length, token->children);

 }

 ptr += tag_length;

 length -= tag_length;

 // At this point, we’re pointed at the tag for the next token in the buffer.

 if (length)

 {

 token->next = (struct asn1struct *) malloc(sizeof(struct asn1struct));

 token = token->next;

 }

 }

 return 0;

}

This routine is passed a complete certifi cate structure, so the whole thing
must be resident in memory before this routine is called; this approach might
need to be revisited in, say, a handheld device where memory is constrained. It
reads through the whole buffer, recognizing ASN.1 structures, and allocating
asn1struct instances to represent them.

 1. Check to see if this is a multi-byte tag:
 if ((tag & 0x1F) == 0x1F)

 {

 tag = 0;

 while (*ptr & 0x80)

 {

 tag <<= 8;

c05.indd 256c05.indd 256 12/10/2010 9:45:08 AM12/10/2010 9:45:08 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 257

 tag |= *ptr & 0x7F;

 }

 }

X.509 doesn’t defi ne any of these, but you ought to recognize them for
completeness — if for no other reason than to be able to safely ignore them
if you happen to come across one.

 2. Parse out the length of the structure itself; this is always present. If the
fi rst byte is a multi-length byte, the processing is a bit complex in part
because of the endian-ness issue.
 if (tag_length_byte & 0x80)

 {

 const unsigned char *len_ptr = ptr;

 tag_length = 0;

 while ((len_ptr - ptr) < (tag_length_byte & 0x7F))

 {

 tag_length <<= 8;

 tag_length |= *(len_ptr++);

 length--;

 }

 ptr = len_ptr;

 }

 else

 {

 tag_length = tag_length_byte;

 }

 3. Now that you know the type of tag and the length of its contents — whether
they are data or other ASN.1 structures — you can start fi lling out the
asn1struct instance:
 token->constructed = tag & 0x20;

 token->tag_class = (tag & 0xC0) >> 6;

 token->tag = tag & 0x1F;

 token->length = tag_length;

 token->data = ptr;

 token->children = NULL;

 token->next = NULL;

 4. Now the tricky part — if this is a constructed tag, its contents are more
ASN.1 structures, which must be appended to the children list. If it is
then allocate a new structure to store the children and recursively call this
routine:
 if (tag & 0x20)

 {

 token->length = tag_length + (ptr - ptr_begin);

c05.indd 257c05.indd 257 12/10/2010 9:45:08 AM12/10/2010 9:45:08 AM

258 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

 token->data = ptr_begin;

 token->children = (struct asn1struct *)

 malloc(sizeof(struct asn1struct));

 asn1parse(ptr, tag_length, token->children);

 }

 5. When it returns, or if it wasn’t called because the tag was a non-constructed
tag, you’re either at the end of the data or you’re pointing at the next ele-
ment relative to the one that was just parsed.
 if (length)

 {

 token->next = (struct asn1struct *)

 malloc(sizeof(struct asn1struct));

 token = token->next;

 }

 6. If there is another element to parse, allocate space for it, update the target
token pointer, and loop back around to process this element. When you’re
fi nished the supplied top_level_token structure points to the root of a
fully parsed ASN.1 tree.

 7. Finally, because a lot of memory is allocated by the ASN.1 parsing process,
defi ne a function to recursively go through and clean it all up as shown
in Listing 5-6.

Listing 5-6: “asn1.c” asn1free

/**

 * Recurse through the given node and free all of the memory that was allocated

 * by asn1parse. Don’t free the “data” pointers, since that points to memory

 * that was not allocated by asn1parse.

 */

void asn1free(struct asn1struct *node)

{

 if (!node)

 {

 return;

 }

 asn1free(node->children);

 free(node->children);

 asn1free(node->next);

 free(node->next);

}

c05.indd 258c05.indd 258 12/10/2010 9:45:08 AM12/10/2010 9:45:08 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 259

As you can see, the recursive defi nition of the asn1struct structure makes
cleanup and traversal very straightforward.

The asn1parse Code in Action
To see this code in action, put together a sample main routine as in Listing 5-7
that takes as input a certifi cate fi le (or any other ASN.1 DER-encoded fi le) and
output the ASN.1 structure elements.

Listing 5-7: “asn1.c” test routine

#ifdef TEST_ASN1

int main(int argc, char *argv[])

{

 int certificate_file;

 struct stat certificate_file_stat;

 unsigned char *buffer, *bufptr;

 int buffer_size;

 int bytes_read;

 struct asn1struct certificate;

 if (argc < 2)

 {

 fprintf(stderr, “Usage: %s <certificate file>\n”, argv[0]);

 exit(0);

 }

 if ((certificate_file = open(argv[1], O_RDONLY)) == -1)

 {

 perror(“Unable to open certificate file”);

 return 1;

 }

 // Slurp the whole thing into memory

 if (fstat(certificate_file, &certificate_file_stat))

 {

 perror(“Unable to stat certificate file”);

 return 2;

 }

 buffer_size = certificate_file_stat.st_size;

 buffer = (char *) malloc(buffer_size);

(Continued)

c05.indd 259c05.indd 259 12/10/2010 9:45:08 AM12/10/2010 9:45:08 AM

260 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

 if (!buffer)

 {

 perror(“Not enough memory”);

 return 3;

 }

 bufptr = buffer;

 while (bytes_read = read(certificate_file, (void *) buffer,

 certificate_file_stat.st_size))

 {

 bufptr += bytes_read;

 }

 asn1parse(buffer, buffer_size, &certificate);

 asn1show(0, &certificate);

 asn1free(&certificate);

 return 0;

}

#endif

This invokes the asn1show routine in Listing 5-8.

Listing 5-8: “asn1.c” asn1show

static char *tag_names[] = {

 “BER”, // 0

 “BOOLEAN”, // 1

 “INTEGER”, // 2

 “BIT STRING”, // 3

 “OCTET STRING”, // 4

 “NULL”, // 5

 “OBJECT IDENTIFIER”, // 6

 “ObjectDescriptor”, // 7

 “INSTANCE OF, EXTERNAL”, // 8

 “REAL”, // 9

 “ENUMERATED”, // 10

 “EMBEDDED PPV”, // 11

 “UTF8String”, // 12

 “RELATIVE-OID”, // 13

 “undefined(14)”, // 14

 “undefined(15)”, // 15

 “SEQUENCE, SEQUENCE OF”, // 16

 “SET, SET OF”, // 17

 “NumericString”, // 18

 “PrintableString”, // 19

 “TeletexString, T61String”, // 20

c05.indd 260c05.indd 260 12/10/2010 9:45:08 AM12/10/2010 9:45:08 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 261

 “VideotexString”, // 21

 “IA5String”, // 22

 “UTCTime”, // 23

 “GeneralizedTime”, // 24

 “GraphicString”, // 25

 “VisibleString, ISO64String”, // 26

 “GeneralString”, // 27

 “UniversalString”, // 28

 “CHARACTER STRING”, // 29

 “BMPString” // 30

};

void asn1show(int depth, struct asn1struct *certificate)

{

 struct asn1struct *token;

 int i;

 token = certificate;

 while (token)

 {

 for (i = 0; i < depth; i++)

 {

 printf(“ “);

 }

 switch (token->tag_class)

 {

 case ASN1_CLASS_UNIVERSAL:

 printf(“%s”, tag_names[token->tag]);

 break;

 case ASN1_CLASS_APPLICATION:

 printf(“application”);

 break;

 case ASN1_CONTEXT_SPECIFIC:

 printf(“context”);

 break;

 case ASN1_PRIVATE:

 printf(“private”);

 break;

 }

 printf(“ (%d:%d) “, token->tag, token->length);

 if (token->tag_class == ASN1_CLASS_UNIVERSAL)

 {

 switch (token->tag)

 {

 case ASN1_INTEGER:

 break;

(Continued)

c05.indd 261c05.indd 261 12/10/2010 9:45:08 AM12/10/2010 9:45:08 AM

262 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

 case ASN1_BIT_STRING:

 case ASN1_OCTET_STRING:

 case ASN1_OBJECT_IDENTIFIER:

 {

 int i;

 for (i = 0; i < token->length; i++)

 {

 printf(“%.02x “, token->data[i]);

 }

 }

 break;

 case ASN1_NUMERIC_STRING:

 case ASN1_PRINTABLE_STRING:

 case ASN1_TELETEX_STRING:

 case ASN1_VIDEOTEX_STRING:

 case ASN1_IA5_STRING:

 case ASN1_UTC_TIME:

 case ASN1_GENERALIZED_TIME:

 case ASN1_GRAPHIC_STRING:

 case ASN1_VISIBLE_STRING:

 case ASN1_GENERAL_STRING:

 case ASN1_UNIVERSAL_STRING:

 case ASN1_CHARACTER_STRING:

 case ASN1_BMP_STRING:

 case ASN1_UTF8_STRING:

 {

 char *str_val = (char *) malloc(token->length + 1);

 strncpy(str_val, (char *) token->data, token->length);

 str_val[token->length] = 0;

 printf(“ %s”, str_val);

 free(str_val);

 }

 break;

 default:

 break;

 }

 }

 printf(“\n”);

 if (token->children)

 {

 asn1show(depth + 1, token->children);

 }

 token = token->next;

 }

}

If you run this on a DER-encoded certifi cate fi le, you get an output similar
to Table 5-6 (this was, in fact, how that table was generated). However, when
most software saves certifi cate fi les, it doesn’t do it in DER form; it uses PEM

c05.indd 262c05.indd 262 12/10/2010 9:45:08 AM12/10/2010 9:45:08 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 263

form instead. To use this parsing routine to see the contents of a PEM-encoded
fi le, you can call the base64decode routine from Chapter 1 to convert PEM to
DER as in Listing 5-9.

Listing 5-9: “asn1.c” pem_decode

int pem_decode(unsigned char *pem_buffer, unsigned char *der_buffer)

{

 unsigned char *pem_buffer_end, *pem_buffer_begin;

 unsigned char *bufptr = der_buffer;

 int buffer_size;

 // Skip first line, which is always “-----BEGIN CERTIFICATE-----”.

 if (strncmp(pem_buffer, “-----BEGIN”, 10))

 {

 fprintf(stderr,

 “This does not appear to be a PEM-encoded certificate file\n”);

 exit(0);

 }

 pem_buffer_begin = pem_buffer;

 pem_buffer= pem_buffer_end = strchr(pem_buffer, ‘\n’) + 1;

 while (strncmp(pem_buffer, “-----END”, 8))

 {

 // Find end of line

 pem_buffer_end = strchr(pem_buffer, ‘\n’);

 // Decode one line out of pem_buffer into buffer

 bufptr += base64_decode(pem_buffer,

 (pem_buffer_end - pem_buffer) -

 ((*(pem_buffer_end - 1) == ‘\r’) ? 1 : 0),

 bufptr);

 pem_buffer = pem_buffer_end + 1;

 }

 buffer_size = bufptr - der_buffer;

 return buffer_size;

}

Change the test main routine to accept either PEM or DER form:
 if (argc < 3)

 {

 fprintf(stderr, “Usage: %s [-der|-pem] <certificate file>\n”, argv[0]);

 exit(0);

 }

 if ((certificate_file = open(argv[2], O_RDONLY)) == -1)

 {

…

 }

(Continued)

c05.indd 263c05.indd 263 12/10/2010 9:45:08 AM12/10/2010 9:45:08 AM

264 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

 if (!(strcmp(argv[1], “-pem”)))

 {

 // XXX this overallocates a bit, since it sets aside space for markers, etc.

 unsigned char *pem_buffer = buffer;

 buffer = (unsigned char *) malloc(buffer_size);

 buffer_size = pem_decode(pem_buffer, buffer);

 free(pem_buffer);

 }

 asn1parse(buffer, buffer_size, &certificate);

You now have a working ASN.1 parser that can be used to read and interpret
X.509 certifi cates. You could stop here, and write code like this:
root->next->next->children->next->children->next->data

to look up the values of specifi c elements in the tree, but to make your code have
any semblance of readability, you should really continue to parse this ASN.1
tree into a proper X.509 structure.

Turning a Parsed ASN.1 Structure into X.509 Certifi cate
Components
The X.509 structure is decidedly more complex than the ASN.1 structure; defi ne
it to mirror the ASN.1 defi nition. To keep the implementation easy to digest, the
code is presented for RSA certifi cates — by far the most common case — and
then extended to support DSA and Diffi e-Hellman. The structure defi nitions
are shown in Listing 5-10.

Listing 5-10: “x509.h” structure defi nitions

typedef enum

{

 rsa,

 dh

}

algorithmIdentifier;

typedef enum

{

 md5WithRSAEncryption,

 shaWithRSAEncryption

}

signatureAlgorithmIdentifier;

/**

 * A name (or “distinguishedName”) is a list of attribute-value pairs.

 * Instead of keeping track of all of them, just keep track of

 * the most interesting ones.

 */

typedef struct

c05.indd 264c05.indd 264 12/10/2010 9:45:09 AM12/10/2010 9:45:09 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 265

{

 char *idAtCountryName;

 char *idAtStateOrProvinceName;

 char *idAtLocalityName;

 char *idAtOrganizationName;

 char *idAtOrganizationalUnitName;

 char *idAtCommonName;

}

name;

typedef struct

{

 // TODO deal with the “utcTime” or “GeneralizedTime” choice.

 time_t notBefore;

 time_t notAfter;

}

validity_period;

typedef huge uniqueIdentifier;

typedef struct

{

 algorithmIdentifier algorithm;

 rsa_key rsa_public_key;

}

public_key_info;

typedef huge objectIdentifier;

typedef struct

{

 int version;

 huge serialNumber; // This can be much longer than a 4-byte long allows

 signatureAlgorithmIdentifier signature;

 name issuer;

 validity_period validity;

 name subject;

 public_key_info subjectPublicKeyInfo;

 uniqueIdentifier issuerUniqueId;

 uniqueIdentifier subjectUniqueId;

 int certificate_authority; // 1 if this is a CA, 0 if not

}

x509_certificate;

typedef struct

{

 x509_certificate tbsCertificate;

 signatureAlgorithmIdentifier algorithm;

 huge signature_value;

}

signed_x509_certificate;

c05.indd 265c05.indd 265 12/10/2010 9:45:09 AM12/10/2010 9:45:09 AM

266 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

Compare the x509_certificate structure in Listing 5-10 with the offi cial ITU
defi nition shown in Listing 5-1 and signed_x509_certificate with Listing 5-2.
The goal of the certifi cate parsing process is to take a “blob” of unstructured
bytes and turn it into a signed_x509_certificate instance. As you can see
above, there’s quite a bit of unallocated memory in this structure defi nition,
so the fi rst thing you need is an initializer function, as shown in Listing 5-11.

Listing 5-11: “x509.c” init_x509_certifi cate

void init_x509_certificate(signed_x509_certificate *certificate)

{

 set_huge(&certificate->tbsCertificate.serialNumber, 1);

 memset(&certificate->tbsCertificate.issuer, 0, sizeof(name));

 memset(&certificate->tbsCertificate.subject, 0, sizeof(name));

 certificate->tbsCertificate.subjectPublicKeyInfo.rsa_public_key.modulus =

 malloc(sizeof(huge));

 certificate->tbsCertificate.subjectPublicKeyInfo.rsa_public_key.exponent =

 malloc(sizeof(huge));

 set_huge(

 certificate->tbsCertificate.subjectPublicKeyInfo.rsa_public_key.modulus,

 0);

 set_huge(

 certificate->tbsCertificate.subjectPublicKeyInfo.rsa_public_key.exponent,

 0);

 set_huge(&certificate->signature_value, 0);

 certificate->tbsCertificate.certificate_authority = 0;

}

You also need, of course, a companion “free” function as shown in Listing 5-12.

Listing 5-12: “x509.c” free_x509_certifi cate

static void free_x500_name(name *x500_name)

{

 if (x500_name->idAtCountryName) { free(x500_name->idAtCountryName); }

 if (x500_name->idAtStateOrProvinceName) { free(x500_name-

>idAtStateOrProvinceName); }

 if (x500_name->idAtLocalityName) { free(x500_name->idAtLocalityName); }

 if (x500_name->idAtOrganizationName) { free(x500_name->idAtOrganizationName

); }

 if (x500_name->idAtOrganizationalUnitName) { free(x500_name-

>idAtOrganizationalUnitName); }

 if (x500_name->idAtCommonName) { free(x500_name->idAtCommonName); }

}

void free_x509_certificate(signed_x509_certificate *certificate)

{

 free_huge(&certificate->tbsCertificate.serialNumber);

 free_x500_name(&certificate->tbsCertificate.issuer);

c05.indd 266c05.indd 266 12/10/2010 9:45:09 AM12/10/2010 9:45:09 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 267

 free_x500_name(&certificate->tbsCertificate.subject);

 free_huge(

 certificate->tbsCertificate.subjectPublicKeyInfo.rsa_public_key.modulus);

 free_huge(

 certificate->tbsCertificate.subjectPublicKeyInfo.rsa_public_key.exponent);

 free(

 certificate->tbsCertificate.subjectPublicKeyInfo.rsa_public_key.modulus);

 free(

 certificate->tbsCertificate.subjectPublicKeyInfo.rsa_public_key.exponent);

 free_huge(&certificate->signature_value);

}

After the signed_x509_certificate structure has been properly initialized,
parsing it involves invoking the parse_asn1_certificate function shown previ-
ously and then selectively copying data values from the asn1struct nodes into
the appropriate locations in the signed_x509_certificate target. The top-level
function that controls this whole process is in Listing 5-13.

Listing 5-13: “x509.c” parse_x509_certifi cate

int parse_x509_certificate(const unsigned char *buffer,

 const unsigned int certificate_length,

 signed_x509_certificate *parsed_certificate)

{

 struct asn1struct certificate;

 struct asn1struct *tbsCertificate;

 struct asn1struct *algorithmIdentifier;

 struct asn1struct *signatureValue;

 // First, read the whole thing into a traversable ASN.1 structure

 asn1parse(buffer, certificate_length, &certificate);

 tbsCertificate = (struct asn1struct *) certificate.children;

 algorithmIdentifier = (struct asn1struct *) tbsCertificate->next;

 signatureValue = (struct asn1struct *) algorithmIdentifier->next;

 if (parse_tbs_certificate(&parsed_certificate->tbsCertificate,

 tbsCertificate))

 {

 fprintf(stderr, “Error trying to parse TBS certificate\n”);

 return 42;

 }

 if (parse_algorithm_identifier(&parsed_certificate->algorithm,

 algorithmIdentifier))

 {

 return 42;

 }

 if (parse_signature_value(parsed_certificate, signatureValue))

 {

 return 42;

c05.indd 267c05.indd 267 12/10/2010 9:45:09 AM12/10/2010 9:45:09 AM

268 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

 }

 asn1free(&certificate);

 return 0;

}

Joining the X.509 Components into a Completed X.509
Certifi cate Structure
According to the ITU specifi cation, the top level node should be a structure con-
taining three child nodes — the TBS certifi cate, the signature algorithm identifi er,
and the signature value itself. First, parse the tbsCertificate in Listing 5-14,
which is where the most interesting information is anyway. Afterward, the algo-
rithm identifi er and signature values are parsed, as was shown in Listing 5-13.

Listing 5-14: “x509.c” parse_tbs_certifi cate

static int parse_tbs_certificate(x509_certificate *target,

 struct asn1struct *source)

{

 struct asn1struct *version;

 struct asn1struct *serialNumber;

 struct asn1struct *signatureAlgorithmIdentifier;

 struct asn1struct *issuer;

 struct asn1struct *validity;

 struct asn1struct *subject;

 struct asn1struct *publicKeyInfo;

 struct asn1struct *extensions;

 // Figure out if there’s an explicit version or not; if there is, then

 // everything else “shifts down” one spot.

 version = (struct asn1struct *) source->children;

 if (version->tag == 0 && version->tag_class == ASN1_CONTEXT_SPECIFIC)

 {

 struct asn1struct *versionNumber =

 (struct asn1struct *) version->children;

 // This will only ever be one byte; safe

 target->version = (*versionNumber->data) + 1;

 serialNumber = (struct asn1struct *) version->next;

 }

 else

 {

 target->version = 1; // default if not provided

 serialNumber = (struct asn1struct *) version;

 }

 signatureAlgorithmIdentifier = (struct asn1struct *) serialNumber->next;

c05.indd 268c05.indd 268 12/10/2010 9:45:09 AM12/10/2010 9:45:09 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 269

 issuer = (struct asn1struct *) signatureAlgorithmIdentifier->next;

 validity = (struct asn1struct *) issuer->next;

 subject = (struct asn1struct *) validity->next;

 publicKeyInfo = (struct asn1struct *) subject->next;

 extensions = (struct asn1struct *) publicKeyInfo->next;

 if (parse_huge(&target->serialNumber, serialNumber)) { return 2; }

 if (parse_algorithm_identifier(&target->signature,

 signatureAlgorithmIdentifier))

 { return 3; }

 if (parse_name(&target->issuer, issuer)) { return 4; }

 if (parse_validity(&target->validity, validity)) { return 5; }

 if (parse_name(&target->subject, subject)) { return 6; }

 if (parse_public_key_info(&target->subjectPublicKeyInfo, publicKeyInfo))

 { return 7; }

 if (extensions)

 {

 if (parse_extensions(target, extensions)) { return 8; }

 }

 return 0;

}

The only thing that makes the tbsCertificate structure tricky to parse is
the version number. The original designers of the X.509 structure didn’t see fi t
to include a version number in it, so the version was added later on, necessitat-
ing an explicit tag as discussed previously. So, if the tag class of the fi rst node
is context-specifi c and the tag is explicit tag 0, it must be the version number
and the serial number follows as the next element. Otherwise, the version of the
certifi cate is 1 and the serial number is the fi rst element. To mix things up just
a bit more, the version number, if present, is contained within the explicit tag,
so you need to look for the fi rst child of the explicit tag. Almost all certifi cates
you fi nd on the public Internet these days include a version tag, but you must
be prepared to deal with a very, very old one.

Also, version 1 is identifi ed by the number 0, version 2 by the number 1, and
version 3 by the number 2. I think they’re just messing with your head.

Whether a version number was supplied or not, the next element is the serial
number. Go ahead and parse this into a huge structure as shown in Listing 5-15,
although it is just treated as a byte array; you won’t be performing any huge
math on it.

Listing 5-15: “x509.c” parse_huge

static int parse_huge(huge *target, struct asn1struct *source)

{

 target->sign = 0;

 target->size = source->length;

 target->rep = (char *) malloc(target->size);
(Continued)

c05.indd 269c05.indd 269 12/10/2010 9:45:09 AM12/10/2010 9:45:09 AM

270 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

 memcpy(target->rep, source->data, target->size);

 return 0;

}

Parsing Object Identifi ers (OIDs)
Following the serial number is the algorithm identifi er of the signature. This
is an OID and can take on several possible values; each value is unique and
identifi es a digest algorithm/digital signature algorithm pair. For now, only
support two: MD5 with RSA and SHA-1 with RSA, as shown in Listing 5-16.

Listing 5-16: “x509.c” parse_algorithm_identifi er

static const unsigned char OID_md5WithRSA[] =

 { 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x04 };

static const unsigned char OID_sha1WithRSA[] =

 { 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x05 };

static int parse_algorithm_identifier(signatureAlgorithmIdentifier *target,

 struct asn1struct *source)

{

 struct asn1struct *oid = (struct asn1struct *) source->children;

 if (!memcmp(oid->data, OID_md5WithRSA, oid->length))

 {

 *target = md5WithRSAEncryption;

 }

 else if (!memcmp(oid->data, OID_sha1WithRSA, oid->length))

 {

 *target = shaWithRSAEncryption;

 }

 else

 {

 int i;

 fprintf(stderr, “Unsupported or unrecognized algorithm identifier OID “);

 for (i = 0; i < oid->length; i++)

 {

 fprintf(stderr, “%.02x “, oid->data[i]);

 }

 fprintf(stderr, “\n”);

 return 2;

 }

 return 0;

}

Remember that OIDs are being hardcoded in expanded form so that you can
just do a memcmp to identify them.

c05.indd 270c05.indd 270 12/10/2010 9:45:09 AM12/10/2010 9:45:09 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 271

Parsing Distinguished Names
Following the signature algorithm identifi er is the issuer name. Name parsing
is by far the most involved part of X.509 certifi cate management. Recall that an
X.509 distinguished name is a list of components such as CN, O, OU, each of which
is identifi ed by its own OID and may or may not be present. None of them is
required, and any of them can appear more than once. However, for all practi-
cal purposes, the names you’ll be looking at have exactly one each of a country
name, a state/province name, a city/locality name, an organization name, an
organizational unit name and, most importantly, a common name. As such the
structure for the name only contains pointers for this data and throws away any
additional information; a more robust implementation than the one shown in
Listing 5-17 would be much more complex.

Listing 5-17: “x509.c” parse_name

static unsigned char OID_idAtCommonName[] = { 0x55, 0x04, 0x03 };

static unsigned char OID_idAtCountryName[] = { 0x55, 0x04, 0x06 };

static unsigned char OID_idAtLocalityName[] = { 0x55, 0x04, 0x07 };

static unsigned char OID_idAtStateOrProvinceName[] = { 0x55, 0x04, 0x08 };

static unsigned char OID_idAtOrganizationName[] = { 0x55, 0x04, 0x0A };

static unsigned char OID_idAtOrganizationalUnitName[] = { 0x55, 0x04, 0x0B };

/**

 * Name parsing is a bit different. Loop through all of the

 * children of the source, each of which is going to be a struct containing

 * an OID and a value. If the OID is recognized, copy its contents

 * to the correct spot in “target”. Otherwise, ignore it.

 */

static int parse_name(name *target, struct asn1struct *source)

{

 struct asn1struct *typeValuePair;

 struct asn1struct *typeValuePairSequence;

 struct asn1struct *type;

 struct asn1struct *value;

 target->idAtCountryName = NULL;

 target->idAtStateOrProvinceName = NULL;

 target->idAtLocalityName = NULL;

 target->idAtOrganizationName = NULL;

 target->idAtOrganizationalUnitName = NULL;

 target->idAtCommonName = NULL;

 typeValuePair = source->children;

 while (typeValuePair)

 {

 typeValuePairSequence = (struct asn1struct *) typeValuePair->children;

 type = (struct asn1struct *) typeValuePairSequence->children;

(Continued)

c05.indd 271c05.indd 271 12/10/2010 9:45:09 AM12/10/2010 9:45:09 AM

272 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

 value = (struct asn1struct *) type->next;

 if (!memcmp(type->data, OID_idAtCountryName, type->length))

 {

 target->idAtCountryName = (char *) malloc(value->length + 1);

 memcpy(target->idAtCountryName, value->data, value->length);

 target->idAtCountryName[value->length] = 0;

 }

 else if (!memcmp(type->data, OID_idAtStateOrProvinceName, type->length))

 {

 target->idAtStateOrProvinceName = (char *) malloc(value->length + 1);

 memcpy(target->idAtStateOrProvinceName, value->data, value->length);

 target->idAtStateOrProvinceName[value->length] = 0;

 }

 else if (!memcmp(type->data, OID_idAtLocalityName, type->length))

 {

 target->idAtLocalityName = (char *) malloc(value->length + 1);

 memcpy(target->idAtLocalityName, value->data, value->length);

 target->idAtLocalityName[value->length] = 0;

 }

 else if (!memcmp(type->data, OID_idAtOrganizationName, type->length))

 {

 target->idAtOrganizationName = (char *) malloc(value->length + 1);

 memcpy(target->idAtOrganizationName, value->data, value->length);

 target->idAtOrganizationName[value->length] = 0;

 }

 else if (!memcmp(type->data, OID_idAtOrganizationalUnitName,

 type->length))

 {

 target->idAtOrganizationalUnitName = (char *)

 malloc(value->length + 1);

 memcpy(target->idAtOrganizationalUnitName, value->data, value->length);

 target->idAtOrganizationalUnitName[value->length] = 0;

 }

 else if (!memcmp(type->data, OID_idAtCommonName, type->length))

 {

 target->idAtCommonName = (char *) malloc(value->length + 1);

 memcpy(target->idAtCommonName, value->data, value->length);

 target->idAtCommonName[value->length] = 0;

 }

 else

 {

 int i;

 // This is just advisory - NOT a problem

 printf(“Skipping unrecognized or unsupported name token OID of “);

 for (i = 0; i < type->length; i++)

 {

 printf(“%.02x “, type->data[i]);

 }

 printf(“\n”);

 }

c05.indd 272c05.indd 272 12/10/2010 9:45:09 AM12/10/2010 9:45:09 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 273

 typeValuePair = typeValuePair->next;

 }

 return 0;

}

As you can see, after you’ve decided how to represent a distinguished name,
parsing it isn’t complex, although it is a bit tedious.

Following the issuer name is the validity structure that tells the user between
which dates the certifi cate is valid. It is parsed in Listing 5-18.

Listing 5-18: “parse_validity”

static int parse_validity(validity_period *target, struct asn1struct *source)

{

 struct asn1struct *not_before;

 struct asn1struct *not_after;

 struct tm not_before_tm;

 struct tm not_after_tm;

 not_before = source->children;

 not_after = not_before->next;

 // Convert time instances into time_t

 if (sscanf((char *) not_before->data, “%2d%2d%2d%2d%2d%2d”,

 ¬_before_tm.tm_year, ¬_before_tm.tm_mon, ¬_before_tm.tm_mday,

 ¬_before_tm.tm_hour, ¬_before_tm.tm_min, ¬_before_tm.tm_sec) < 6)

 {

 fprintf(stderr, “Error parsing not before; malformed date.”);

 return 6;

 }

 if (sscanf((char *) not_after->data, “%2d%2d%2d%2d%2d%2d”,

 ¬_after_tm.tm_year, ¬_after_tm.tm_mon, ¬_after_tm.tm_mday,

 ¬_after_tm.tm_hour, ¬_after_tm.tm_min, ¬_after_tm.tm_sec) < 6)

 {

 fprintf(stderr, “Error parsing not after; malformed date.”);

 return 7;

 }

 not_before_tm.tm_year += 100;

 not_after_tm.tm_year += 100;

 not_before_tm.tm_mon -= 1;

 not_after_tm.tm_mon -= 1;

 // TODO account for TZ information on end

 target->notBefore = mktime(¬_before_tm);

 target->notAfter = mktime(¬_after_tm);

 return 0;

}

c05.indd 273c05.indd 273 12/10/2010 9:45:09 AM12/10/2010 9:45:09 AM

274 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

Following the validity period is the subject name; this is parsed using the
same routine as the issuer name.

Finally, it’s time to parse the element you’ve been waiting this whole time
to see — the public key itself, which is the one piece of information that you
can’t complete a secure key exchange without. Because the designers of the
X.509 structure wanted to leave room for arbitrary public encryption algo-
rithms, the structure is a bit more complex than you might expect; the public
key node starts with an OID that indicates what to do with the rest. For now,
to keep things relatively simple, just look at the RSA specifi cation.

The element following the algorithm identifi er OID is a bit string. This bit
string is itself an ASN.1 DER-encoded value and must be parsed. Its contents
vary depending on the algorithm. For RSA, the contents are a single sequence
containing two integers — the fi rst is the public exponent and the second is the
modulus (of course, the private exponent is not included).

RSA public key info parsing is shown in Listing 5-19.

Listing 5-19: “x509.c” parse_public_key_info

static const unsigned char OID_RSA[] =

 { 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01 };

static int parse_public_key_info(public_key_info *target,

 struct asn1struct *source)

{

 struct asn1struct *oid;

 struct asn1struct *public_key;

 struct asn1struct public_key_value;

 oid = source->children->children;

 public_key = source->children->next;

 // The public key is a bit string encoding yet another ASN.1 DER-encoded

 // value - need to parse *that* here

 // Skip over the “0” byte in the public key.

 if (asn1parse(public_key->data + 1,

 public_key->length - 1,

 &public_key_value))

 {

 fprintf(stderr,

 “Error; public key node is malformed (not ASN.1 DER-encoded)\n”);

 return 5;

 }

 if (!memcmp(oid->data, &OID_RSA, sizeof(OID_RSA)))

 {

 target->algorithm = rsa;

 parse_huge(target->rsa_public_key.modulus, public_key_value.children);

c05.indd 274c05.indd 274 12/10/2010 9:45:09 AM12/10/2010 9:45:09 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 275

 parse_huge(target->rsa_public_key.exponent, public_key_value.children->next);

 // This is important. Most times, the response includes a trailing 0 byte

 // to stop implementations from interpreting it as a twos-complement

 // negative number. However, in this implementation, this causes the

 // results to be the wrong size, so they need to be contracted.

 contract(target->rsa_public_key.modulus);

 contract(target->rsa_public_key.exponent);

 }

 else

 {

 fprintf(stderr, “Error; unsupported OID in public key info.\n”);

 return 7;

 }

 asn1free(&public_key_value);

 return 0;

}

The only potential surprise in this routine is the “skip over the 0 byte” part.
What’s the 0 byte? Well, the subject public key is declared as an ASN.1 bit string.
The DER encoding of a bit string starts with a length — just like any other
ASN.1 value — but a bit string can be any length; it doesn’t necessarily need
to be a multiple of eight bits. Because DER encoding requires that the result
be normalized to eight-bit octets, the fi rst byte of any bit string following the
length is the amount of padding bits that were added to the bit string to pad it
up to a multiple of eight. In the case of an RSA public key, the result is always
a multiple of eight, so this byte is always 0.

NOTE Technically, you really ought to verify that this is the case, but, practi-
cally speaking, you never see a public key value that’s not a multiple of eight
bits. If you actually fi nd an example “in the wild” that contradicts this code, I’d
like to know about it.

Parsing Certifi cate Extensions
Optionally, and only if the version of the certifi cate is greater than or equal to
three, the public key information can be followed by a sequence of extensions.
Practically speaking, all certifi cates that you come across on today’s Internet
include extensions; RFC 2459 dedicates 19 pages to describing a subset of the
available X.509 certifi cate extensions. Although many of them are important,
I’m just showing you how to deal with extensions in general and focus on
one — perhaps the most important one: the key usage extension that enables the
receiver to determine if the certifi cate is allowed to sign other certifi cates or not.

First, if extensions are present, loop through them as in Listing 5-20.

c05.indd 275c05.indd 275 12/10/2010 9:45:10 AM12/10/2010 9:45:10 AM

276 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

Listing 5-20: “x509.c” parse_extensions

static int parse_extensions(x509_certificate *certificate,

 struct asn1struct *source)

{

 // Parse each extension; if one is recognized, update the certificate

 // in some way

 source = source->children->children;

 while (source)

 {

 if (parse_extension(certificate, source))

 {

 return 1;

 }

 source = source->next;

 }

 return 0;

}

An extension consists of an OID, an optional critical marker, and another
optional data section whose interpretation varies depending on the OID. Parsing
of the actual extension is shown in Listing 5-21.

Listing 5-21: “x509.c” parse_extension

static int parse_extension(x509_certificate *certificate,

 struct asn1struct *source)

{

 struct asn1struct *oid;

 struct asn1struct *critical;

 struct asn1struct *data;

 oid = (struct asn1struct *) source->children;

 critical = (struct asn1struct *) oid->next;

 if (critical->tag == ASN1_BOOLEAN)

 {

 data = (struct asn1struct *) critical->next;

 }

 else

 {

 // critical defaults to false

 data = critical;

 critical = NULL;

 }

 // TODO recognize and parse extensions – there are several

 return 0;

}

The fi rst tag is always an OID; the second can be a boolean value, in which
case it indicates whether the extension should be considered critical or not.

c05.indd 276c05.indd 276 12/10/2010 9:45:10 AM12/10/2010 9:45:10 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 277

Because the default of this optional value is false, for all intents and purposes
if it’s present then the extension is critical.

What differentiates a critical from a non-critical extension? According to
the specifi cation, if an implementation does not recognize an extension that
is marked critical, it should reject the whole certifi cate. Otherwise, the exten-
sion can be safely ignored. Note that the implementation presented here is not
compliant, for this reason.

How the data fi eld is interpreted depends on the OID. It’s always declared
as an OCTET STRING; for all defi ned extensions, this is an string of bytes whose
contents must in turn be parsed as an ASN.1 DER-encoded structure (the X.509
people clearly weren’t really aiming for optimal effi ciency).

This book doesn’t have enough space to cover all, or even most, X.509 exten-
sions. One worth examining is the key usage extension, though. If the OID
is 2.5.29.15 then the extension describes key usage, and the fi nal fi eld is a bit
fi eld. The bits are interpreted in big-endian order, and the most important
is bit 5. If bit 5 is set then the certifi cate is a CA and can legitimately sign
other certifi cates. Presumably, the signing CA checked that this was truly
the case before signing the certifi cate. Processing the key usage bit is shown
in Listing 5-22.

Listing 5-22: “x509.c” parse_extension with key usage recognition

static const unsigned char OID_keyUsage[] = { 0x55, 0x1D, 0x0F };

#define BIT_CERT_SIGNER 5

...

 }

 if (!memcmp(oid->data, OID_keyUsage, oid->length))

 {

 struct asn1struct key_usage_bit_string;

 asn1parse(data->data, data->length, &key_usage_bit_string);

 if (asn1_get_bit(key_usage_bit_string.length,

 key_usage_bit_string.data,

 BIT_CERT_SIGNER))

 {

 certificate->certificate_authority = 1;

 }

 asn1free(&key_usage_bit_string);

 }

 // TODO recognize and parse other extensions – there are several

As you can see, the data node is itself another ASN.1-encoded structure, which
must be parsed when the key usage OID is encountered. In the case of key usage,
the contents of this ASN.1 structure are a single-bit string. Bit strings can be a
tad complex because they’re permitted by ASN.1 to be of arbitrary length. The
fi rst byte of the data fi eld is the number of padding bits that were added to pad
up to an eight-bit boundary. Implement a handling function as shown in Listing
5-23 to retrieve the value of a single bit from an ASN.1 bit string.

c05.indd 277c05.indd 277 12/10/2010 9:45:10 AM12/10/2010 9:45:10 AM

278 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

Listing 5-23: “asn1.c” asn1_get_bit

int asn1_get_bit(const int length,

 const unsigned char *bit_string,

 const int bit)

{

 if (bit > ((length - 1) * 8))

 {

 return 0;

 }

 else

 {

 return bit_string[1 + (bit / 8)] & (0x80 >> (bit % 8));

 }

}

Another potentially useful extension is the subjectAltName extension 2.5.29.17.
Look over the defi nition of the subjectName. It specifi es a country, a state, a city,
an organizational unit. This is a pretty good qualifi er for a person, but fairly
irrelevant for a web site. Or an e-mail address. Or an IP address. Or any of a dozen
other entities that you might want to identify with a certifi cate. Therefore, the
subjectAltName extension allows the certifi cate to simply identify, for instance,
a domain name. If the subjectAltName extension is present, the subjectName
can actually be empty. However, the subjectAltName extension is pretty rare, so
in general the subjectName’s CN fi eld identifi es the domain name of the bearer
site. Of course, there’s also an IssuerAltName (OID 2.5.29.18), which serves the
same purpose and is equally rare.

The last extension examined here has to do with certifi cate validation. The
entire trust model outlined in this chapter hinges on how accurately CAs vet
certifi cate requests. The CertificatePolicies extension 2.5.29.32 provides a
way for the CA to indicate how it goes about verifying that the requester of a
certifi cate is, in fact, the entity it purports to be. Recently, the CA/Browser forum
began compiling a list of CAs that perform what is called extended validation.
Extended validation just indicates that a CA has made extraordinary efforts to
ensure that it is signing a certifi cate on behalf of the true owner of the identity
in question. Recent browsers have begun displaying a green bar in addition to
the traditional padlock icon to tell the user that the certifi cate is not only valid,
but that it has been signed by an extended validation CA.

A complete X.509 implementation should recognize all of the extensions
listed in RFC 5280.

The extensions mark the end of the TBSCertificate. There are two fi elds
left in the signed certifi cate structure: the signature algorithm and the signa-
ture itself. The signature algorithm is an OID, and must match the signature
algorithm listed in the tbsCertificate. The signature, of course, is a bit string
whose interpretation varies depending on the signature algorithm. For RSA,
it’s simply a large integer, parsed in Listing 5-24.

c05.indd 278c05.indd 278 12/10/2010 9:45:10 AM12/10/2010 9:45:10 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 279

Listing 5-24: “x509.c” parse_signature_value

static int parse_signature_value(signed_x509_certificate *target,

 struct asn1struct *source)

{

 parse_huge(&target->signature_value, source);

 contract(&target->signature_value);

 return 0;

}

Signature Verifi cation
You’re not quite done yet. Remember that you also have to be able to verify this
signature; just ensuring that it’s there isn’t enough. You must also check that
it is a proper digital signature of the hash of the tbsCertificate bytes. So,
after parsing the entire certifi cate, you must hash it and store the hash for later
inspection. Extend parse_x509_certificate to do so as shown in Listing 5-25.

Listing 5-25: “x509.c” parse_x509_certifi cate with stored hash

typedef struct

{

 x509_certificate tbsCertificate;

 unsigned int *hash; // hash code of tbsCertificate

 int hash_len;

 signatureAlgorithmIdentifier algorithm;

 huge signature_value;

}

signed_x509_certificate;

int parse_x509_certificate(const unsigned char *buffer,

 const unsigned int certificate_length,

 signed_x509_certificate *parsed_certificate)

{

 struct asn1struct certificate;

 struct asn1struct *tbsCertificate;

 struct asn1struct *algorithmIdentifier;

 struct asn1struct *signatureValue;

 digest_ctx digest;

…

 switch (parsed_certificate->algorithm)

 {

 case md5WithRSAEncryption:

 new_md5_digest(&digest);

 break;

 case shaWithRSAEncryption:

 new_sha1_digest(&digest);

 break;

 default:
(Continued)

c05.indd 279c05.indd 279 12/10/2010 9:45:10 AM12/10/2010 9:45:10 AM

280 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

 break;

 }

 update_digest(&digest, tbsCertificate->data, tbsCertificate->length);

 finalize_digest(&digest);

 parsed_certificate->hash = digest.hash;

 parsed_certificate->hash_len = digest.hash_len;

 asn1free(&certificate);

...

Notice that, although tbsCertificate is a structure type, the data itself is
still made available by the ASN.1 parsing routine (Listing 5-5), which means
that you can easily write code to securely hash the DER-encoded representation
of the tbsCertificate.

Validating PKCS #7-Formatted RSA Signatures

Validating a certifi cate involves fi nding the public key of the issuer, using it to run
the digital signature algorithm on the computed hash, and then verifying that it
matches the signature included in the certifi cate itself. When the RSA algorithm
is used for signing a certifi cate, the hash value itself is concatenated onto the
OID representing the signing algorithm and stored in an ASN.1 sequence. This
is then DER encoded, and the whole thing is encrypted with the private key.
This is called PKCS #7, which is offi cially documented by RSA labs at http://
www.rsa.com/rsalabs/node.asp?id=2129. The code to unwrap the signed hash
code and compare it to the previously computed one is shown in Listing 5-26.

Listing 5-26: “x509.c” validate_certifi cate_rsa

/**

 * An RSA signature is an ASN.1 DER-encoded PKCS-7 structure including

 * the OID of the signature algorithm (again), and the signature value.

 */

static int validate_certificate_rsa(signed_x509_certificate *certificate,

 rsa_key *public_key)

{

 unsigned char *pkcs7_signature_decrypted;

 int pkcs7_signature_len;

 struct asn1struct pkcs7_signature;

 struct asn1struct *hash_value;

 int valid = 0;

 pkcs7_signature_len = rsa_decrypt(certificate->signature_value.rep,

 certificate->signature_value.size, &pkcs7_signature_decrypted,

 public_key);

 if (pkcs7_signature_len == -1)

c05.indd 280c05.indd 280 12/10/2010 9:45:10 AM12/10/2010 9:45:10 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 281

 {

 fprintf(stderr, “Unable to decode signature value.\n”);

 return valid;

 }

 if (asn1parse(pkcs7_signature_decrypted, pkcs7_signature_len,

 &pkcs7_signature))

 {

 fprintf(stderr, “Unable to parse signature\n”);

 return valid;

 }

 hash_value = pkcs7_signature.children->next;

 if (memcmp(hash_value->data, certificate->hash, certificate->hash_len))

 {

 valid = 0;

 }

 else

 {

 valid = 1;

 }

 asn1free(&pkcs7_signature);

 return valid;

}

Verifying a Self-Signed Certifi cate

How to map issuers to public keys is outside the scope of the implementation;
browsers ship with a (long) list of trusted root CAs and their known public
keys, which are compared to the issuer each time a certifi cate is received. To
illustrate the concept, though, you can go ahead and write code to verify a self-
signed certifi cate in Listing 5-27, such as those that are distributed by the CAs
to the browsers to begin with. Like the ASN.1 test routine, this routine expects
a DER- or PEM-encoded certifi cate fi le and outputs the contents of the fi le. This
time, though, it does a lot more interpretation and actually produces useful,
meaningful content.

Listing 5-27: “x509.c” main routine

#ifdef TEST_X509

int main(int argc, char *argv[])

{

 int certificate_file;

 struct stat certificate_file_stat;

 char *buffer, *bufptr;

 int buffer_size;

 int bytes_read;

(Continued)

c05.indd 281c05.indd 281 12/10/2010 9:45:10 AM12/10/2010 9:45:10 AM

282 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

 int error_code;

 signed_x509_certificate certificate;

 if (argc < 3)

 {

 fprintf(stderr, “Usage: x509 [-pem|-der] [certificate file]\n”);

 exit(0);

 }

 if ((certificate_file = open(argv[2], O_RDONLY)) == -1)

 {

 perror(“Unable to open certificate file”);

 return 1;

 }

 // Slurp the whole thing into memory

 if (fstat(certificate_file, &certificate_file_stat))

 {

 perror(“Unable to stat certificate file”);

 return 2;

 }

 buffer_size = certificate_file_stat.st_size;

 buffer = (char *) malloc(buffer_size);

 if (!buffer)

 {

 perror(“Not enough memory”);

 return 3;

 }

 bufptr = buffer;

 while ((bytes_read = read(certificate_file, (void *) buffer,

 buffer_size)))

 {

 bufptr += bytes_read;

 }

 if (!strcmp(argv[1], “-pem”))

 {

 // XXX this overallocates a bit, since it sets aside space for markers, etc.

 unsigned char *pem_buffer = buffer;

 buffer = (unsigned char *) malloc(buffer_size);

 buffer_size = pem_decode(pem_buffer, buffer);

 free(pem_buffer);

 }

 // now parse it

 init_x509_certificate(&certificate);

 if (!(error_code = parse_x509_certificate(buffer, buffer_size,

 &certificate)))

c05.indd 282c05.indd 282 12/10/2010 9:45:10 AM12/10/2010 9:45:10 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 283

 {

 printf(“X509 Certificate:\n”);

 display_x509_certificate(&certificate);

 // Assume it’s a self-signed certificate and try to validate it that

 switch (certificate.algorithm)

 {

 case md5WithRSAEncryption:

 case shaWithRSAEncryption:

 if (validate_certificate_rsa(&certificate,

 &certificate.tbsCertificate.subjectPublicKeyInfo.rsa_public_key))

 {

 printf(“Certificate is a valid self-signed certificate.\n”);

 }

 else

 {

 printf(“Certificate is corrupt or not self-signed.\n”);

 }

 break;

 }

 }

 else

 {

 printf(“error parsing certificate: %d\n”, error_code);

 }

 free_x509_certificate(&certificate);

 free(buffer);

 return 0;

}

#endif

This invokes the companion display_x509_certificate function in
Listing 5-28.

Listing 5-28: “x509.c” display_x509_certifi cate

static void output_x500_name(name *x500_name)

{

 printf(“C=%s/ST=%s/L=%s/O=%s/OU=%s/CN=%s\n”,

 (x500_name->idAtCountryName ? x500_name->idAtCountryName : “?”),

 (x500_name->idAtStateOrProvinceName ? x500_name->idAtStateOrProvinceName :

“?”),

 (x500_name->idAtLocalityName ? x500_name->idAtLocalityName : “?”),

 (x500_name->idAtOrganizationName ? x500_name->idAtOrganizationName : “?”),

 (x500_name->idAtOrganizationalUnitName ? x500_name-

>idAtOrganizationalUnitName : “?”),

 (x500_name->idAtCommonName ? x500_name->idAtCommonName : “?”));

}

static void print_huge(huge *h)

{

c05.indd 283c05.indd 283 12/10/2010 9:45:10 AM12/10/2010 9:45:10 AM

284 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

 show_hex(h->rep, h->size);

}

static void display_x509_certificate(signed_x509_certificate *certificate)

{

 printf(“Certificate details:\n”);

 printf(“Version: %d\n”, certificate->tbsCertificate.version);

 printf(“Serial number: “);

 print_huge(&certificate->tbsCertificate.serialNumber);

 printf(“issuer: “);

 output_x500_name(&certificate->tbsCertificate.issuer);

 printf(“subject: “);

 output_x500_name(&certificate->tbsCertificate.subject);

 printf(“not before: %s”, asctime(gmtime(

 &certificate->tbsCertificate.validity.notBefore)));

 printf(“not after: %s”, asctime(gmtime(

 &certificate->tbsCertificate.validity.notAfter)));

 printf(“Public key algorithm: “);

 switch (certificate->tbsCertificate.subjectPublicKeyInfo.algorithm)

 {

 case rsa:

 printf(“RSA\n”);

 printf(“modulus: “);

 print_huge(

 certificate->tbsCertificate.subjectPublicKeyInfo.rsa_public_key.modulus);

 printf(“exponent: “);

 print_huge(

 certificate->tbsCertificate.subjectPublicKeyInfo.rsa_public_key.exponent);

 break;

 case dh:

 printf(“DH\n”);

 break;

 default:

 printf(“?\n”);

 break;

 }

 printf(“Signature algorithm: “);

 switch (certificate->algorithm)

 {

 case md5WithRSAEncryption:

 printf(“MD5 with RSA Encryption\n”);

 break;

 case shaWithRSAEncryption:

 printf(“SHA-1 with RSA Encryption\n”);

 break;

 }

c05.indd 284c05.indd 284 12/10/2010 9:45:11 AM12/10/2010 9:45:11 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 285

 printf(“Signature value: “);

 switch (certificate->algorithm)

 {

 case md5WithRSAEncryption:

 case shaWithRSAEncryption:

 print_huge(&certificate->signature_value);

 break;

 }

 printf(“\n”);

 if (certificate->tbsCertificate.certificate_authority)

 {

 printf(“is a CA\n”);

 }

 else

 {

 printf(“is not a CA\n”);

 }

}

Now, you can parse the test certifi cate you generated.

[jdavies@localhost ssl]$./x509 -der cert.der

Skipping unrecognized or unsupported name token OID of 2a 86 48 86 f7 0d 01 09 01

Skipping unrecognized or unsupported name token OID of 2a 86 48 86 f7 0d 01 09 01

X509 Certificate:

Certificate details:

Version: 3

Serial number: 0ca30e18f778da281

issuer: C=US/ST=TX/L=Southlake/O=Travelocity/OU=Architecture/CN=Joshua Davies

subject: C=US/ST=TX/L=Southlake/O=Travelocity/OU=Architecture/CN=Joshua Davies

not before: Wed Mar 3 04:46:23 2010

not after: Fri Apr 2 03:46:23 2010

Public key algorithm: RSA

modulus: e013380f83b6ef0670f55baa3a2bcf8e95ff91b1900352516973dea7fa97fb560db9e90f

e830228c5ef01f07f0dccc61b8010eb1b058efb5b4541670eb59b4bf

exponent: 10001

Signature algorithm: SHA-1 with RSA Encryption

Signature value: 1b637bf513ef2e3d56223da24cd50e318d0c25bb2430fda320f5a3b57d1bcb1e

a8bdb0ce788be75e7aac662c6d0606e8e30624cad5ce0d991a7c37534dd3be83

Certificate hash (fingerprint): ac7d5752 30586fb4 3c106b90 60af5eb5 939147f1

certificate is not a CA.

01 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

00 30 21 30 09 06 05 2b 0e 03 02 1a 05 00 04 14 52 57 7d ac b4 6f 58 30 90 6b 10

3c b5 5e af 60 f1 47 91 93 00

Certificate is a valid self-signed certificate.

c05.indd 285c05.indd 285 12/10/2010 9:45:11 AM12/10/2010 9:45:11 AM

286 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

Adding DSA Support to the Certifi cate Parser

Go ahead and add support for DSA as well. This is mostly academic because
DSA-signed certifi cates are extremely rare “in the wild,” at least for SSL.
Because servers present certifi cates primarily to prepare for key exchange,
and DSA can’t be used for this purpose, there’s not much point in presenting
a certifi cate with a DSA public key to an SSL client. A CA, on the other hand,
could use DSA; the purpose of a root certifi cate is to sign other certifi cates,
and this is the one thing DSA can do. However, at the time of this writing no
CA does — at least none of those implicitly trusted by major browser vendors.

However, it’s worthwhile to see how it’s done so that you can see how differ-
ent signature algorithms change the parsing semantics. In addition, common
or not, support for DSA certifi cates is required by TLS. First of all, the structure
defi nitions change slightly as shown in Listing 5-29.

Listing 5-29: “x509.h” with DSA support

typedef enum

{

 rsa,

 dsa,

 dh

}

algorithmIdentifier;

typedef enum

{

 md5WithRSAEncryption,

 shaWithRSAEncryption,

 shaWithDSA

}

signatureAlgorithmIdentifier;

…

typedef struct

{

 algorithmIdentifier algorithm;

 // RSA parameters, only if algorithm == rsa

 rsa_key rsa_public_key;

 // DSA or DH parameters, only if algorithm == dsa

 dsa_params dsa_parameters;

 // DSA parameters, only if algorithm == dsa

 huge dsa_public_key;

}

public_key_info;

…

typedef struct

{

 x509_certificate tbsCertificate;

c05.indd 286c05.indd 286 12/10/2010 9:45:11 AM12/10/2010 9:45:11 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 287

 unsigned int *hash; // hash code of tbsCertificate

 int hash_len;

 signatureAlgorithmIdentifier algorithm;

 huge rsa_signature_value;

 dsa_signature dsa_signature_value;

}

signed_x509_certificate;

Notice that no attempt was made to have the DSA and RSA public keys or
signatures share the same memory space. An RSA public key is two distinct
numbers e and n, whereas a DSA public key is a single number y. DSA also
defi nes parameters whereas RSA does not. Conversely, a DSA signature is two
distinct numbers r and s, whereas an RSA signature is a single number. There’s
just no commonality there. If you want to be a stickler for space optimization,
you could force the declarations of these structures to include a single signature
and public key element, but the code that interpreted them would be such a
mess it would hardly be worth it. Here, one or the other is left empty, and it is
up to the invoker to check the algorithm value to determine which to ignore.

Of course, you need to modify the parse_algorithm_identifier routine to
recognize DSA; there’s no MD5 with DSA, so there’s only one new algorithm
to identify in Listing 5-30.

Listing 5-30: “x509.c” parse_algorithm_identifi er with DSA support

static const unsigned char OID_sha1WithRSA[] =

 { 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x05 };

static const unsigned char OID_sha1WithDSA[] =

 { 0x2A, 0x86, 0x48, 0xCE, 0x38, 0x04, 0x03 };

static int parse_algorithm_identifier(signatureAlgorithmIdentifier *target,

 struct asn1struct *source)

{

…

}

else if (!memcmp(oid->data, OID_sha1WithDSA, oid->length))

{

 *target = shaWithDSA;

}

else

{

The top-level parse_x509_certificate function must likewise invoke a dif-
ferent routine to parse the signature value depending on the signature algorithm
as shown in Listing 5-31.

Listing 5-31: “x509.c” parse_x509_certifi cate with DSA support

int parse_x509_certificate(const unsigned char *buffer,

 const unsigned int certificate_length,

(Continued)

c05.indd 287c05.indd 287 12/10/2010 9:45:11 AM12/10/2010 9:45:11 AM

288 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

 signed_x509_certificate *parsed_certificate)

{

…

 switch (parsed_certificate->algorithm)

 {

 case md5WithRSAEncryption:

 case shaWithRSAEncryption:

 if (parse_rsa_signature_value(parsed_certificate, signatureValue))

 {

 return 42;

 }

 break;

 case shaWithDSA:

 if (parse_dsa_signature_value(parsed_certificate, signatureValue))

 {

 return 42;

 }

…

 switch (parsed_certificate->algorithm)

 {

 case md5WithRSAEncryption:

 new_md5_digest(&digest);

 break;

 case shaWithRSAEncryption:

 case shaWithDSA:

 new_sha1_digest(&digest);

 break;

 default:

 break;

 }

...

Note that the parse_signature_value routine is now named parse_rsa_sig-
nature_value. The new parse_dsa_signature_value shown in Listing 5-32 is
pretty much like the parse_rsa_signature_value routine except that it expects
two values.

Listing 5-32: “x509.c” parse_dsa_signature_value

static int parse_dsa_signature_value(signed_x509_certificate *target,

 struct asn1struct *source)

{

 struct asn1struct dsa_signature;

 if (asn1parse(source->data + 1, source->length - 1, &dsa_signature))

 {

 fprintf(stderr, “Unable to parse ASN.1 DER-encoded signature.\n”);

 return 1;

 }

 parse_huge(&target->dsa_signature_value.r, dsa_signature.children);

c05.indd 288c05.indd 288 12/10/2010 9:45:11 AM12/10/2010 9:45:11 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 289

 parse_huge(&target->dsa_signature_value.s, dsa_signature.children->next);

 asn1free(&dsa_signature);

 return 0;

}

Most of the complexity in dealing with DSA certifi cates is in parsing the pub-
lic key information. An RSA public key is simply two numbers. A DSA public
key is a single number, but the algorithm also requires parameters. For no clear
reason, the X.509 designers split the parameters and the public key into two
separate ASN.1 sequences, with different parent elements, so the parsing code
gets a bit involved in Listing 5-33.

Listing 5-33: “x509.c” public key info parsing with DSA support

static const unsigned char OID_RSA[] =

 { 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01 };

static const unsigned char OID_DSA[] =

 { 0x2A, 0x86, 0x48, 0xCE, 0x38, 0x04, 0x01 };

…

static int parse_public_key_info(public_key_info *target,

 struct asn1struct *source)

{

…

 if (!memcmp(oid->data, &OID_RSA, sizeof(OID_RSA)))

 {

…

 }

 else if (!memcmp(oid->data, &OID_DSA, sizeof(OID_DSA)))

 {

 struct asn1struct *params;

 target->algorithm = dsa;

 parse_huge(&target->dsa_public_key, &public_key_value);

 params = oid->next;

 parse_dsa_params(target, params);

 }

Finally, parsing the DSA params themselves in Listing 5-34 is simple after
you’ve identifi ed the node.

Listing 5-34: “tls.c” parse_dsa_params

static int parse_dsa_params(public_key_info *target, struct asn1struct *source)

{

 struct asn1struct *p;

 struct asn1struct *q;

 struct asn1struct *g;

 (Continued)

c05.indd 289c05.indd 289 12/10/2010 9:45:11 AM12/10/2010 9:45:11 AM

290 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

 p = source->children;

 q = p->next;

 g = q->next;

 parse_huge(&target->dsa_parameters.p, p);

 parse_huge(&target->dsa_parameters.q, q);

 parse_huge(&target->dsa_parameters.g, g);

 return 0;

}

To test this, you have to generate your own DSA certifi cate; this was shown
in the section “Using OpenSSL to Generate a DSA KeyPair and Certifi cate”
earlier. Extend the certifi cate display routine just a bit as shown in Listing 5-35,
and you can output the details of this certifi cate:

Listing 5-35: “x509.c” display_x509_certifi cate

static void display_x509_certificate(signed_x509_certificate *certificate)

{

…

 printf(“Public key algorithm: “);

 switch (certificate->tbsCertificate.subjectPublicKeyInfo.algorithm)

 {

…

 case dsa:

 printf(“DSA\n”);

 printf(“y: “);

 print_huge(

 &certificate->tbsCertificate.subjectPublicKeyInfo.dsa_public_key);

 printf(“p: “);

 print_huge(

 &certificate->tbsCertificate.subjectPublicKeyInfo.dsa_parameters.p);

 printf(“q: “);

 print_huge(

 &certificate->tbsCertificate.subjectPublicKeyInfo.dsa_parameters.q);

 printf(“g: “);

 print_huge(

 &certificate->tbsCertificate.subjectPublicKeyInfo.dsa_parameters.g);

 break;

…

 switch (certificate->algorithm)

 {

…

 case shaWithDSA:

 printf(“SHA-1 with DSA\n”);

 break;

 }

…

 printf(“Signature value: “);

c05.indd 290c05.indd 290 12/10/2010 9:45:11 AM12/10/2010 9:45:11 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 291

 switch (certificate->algorithm)

 {

…

 case shaWithDSA:

 printf(“\n\tr:”);

 print_huge(&certificate->dsa_signature_value.r);

 printf(“\ts:”);

 print_huge(&certificate->dsa_signature_value.s);

 break;

 }

Finally, extend the test main routine in Listing 5-36 to attempt a self-signature
validation if the signature algorithm is DSA.

Listing 5-36: “x509.c” main routine

int main(int argc, char *argv[])

{

…

 switch (certificate.algorithm)

 {

...

 case shaWithDSA:

 if (validate_certificate_dsa(&certificate))

 {

 printf(“Certificate is a valid self-signed certificate.\n”);

 }

 else

 {

 printf(“Certificate is corrupt or not self-signed.\n”);

 }

DSA certifi cate validation is actually simpler than RSA certifi cate validation
because the signature value is not an encrypted ASN.1 DER-encoded structure
like RSA’s; the DSA signature algorithm doesn’t allow this. It also doesn’t allow
the algorithm OID to be embedded in the signature value the way RSA does,
though. The validation is shown in Listing 5-37.

Listing 5-37: “x509.c” validate_certifi cate_dsa

static int validate_certificate_dsa(signed_x509_certificate *certificate)

{

 return dsa_verify(

 &certificate->tbsCertificate.subjectPublicKeyInfo.dsa_parameters,

 &certificate->tbsCertificate.subjectPublicKeyInfo.dsa_public_key,

 certificate->hash,

 certificate->hash_len * 4,

 &certificate->dsa_signature_value);

}

c05.indd 291c05.indd 291 12/10/2010 9:45:11 AM12/10/2010 9:45:11 AM

292 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

This covers RSA and DSA signature validation and RSA key exchange. What
about Diffi e-Hellman? X.509 does defi ne a certifi cate structure that includes
the Diffi e-Hellman parameters; however, this is even rarer in practice than the
nonexistent DSA certifi cate. You can’t even use OpenSSL to generate such a
certifi cate. I won’t cover it here; if you’re so inclined, though, it wouldn’t be hard
to add support for it.

There’s one big, big problem with all of the X.509 parsing code presented in
this chapter. You probably noticed it while you were reading it: There’s no error
checking. At each step, the code assumes that there is, for instance, a children
.next.next.children.next structure as required by the X.509 defi nition. The
code should include a lot more error checking to validate that the parsed ASN.1
structure correctly conforms to the expected X.509 structure. As is the technical
book author’s prerogative, though, I’ll leave that as an exercise for the reader (or
you could just download the code from the companion website at www.wiley.com/
go/ImplementingSSL, which does include the aforementioned error checking).

Managing Certifi cates

The primary purpose of a certifi cate is to communicate a public key. The addi-
tional data — the subject name, the issuer name, the signature, the extensions,
and so on — are present to allow the receiver of the certifi cate to verify that the
bearer is legitimately in possession of the private key that corresponds with the
included public key. Overall, this is referred to as a public key infrastructure (PKI).
Public-key cryptography itself was originally developed to permit a secure key
exchange to occur over an insecure medium with no prior off-line communica-
tion; however, PKI requires that the identities — that is, the public keys — of
the trusted CAs be set up before secure communications can be established.
How this is done is outside the scope of SSL/TLS. Browsers come preconfi g-
ured with a list of trusted CAs, for instance, with an option to allow the user to
import new ones. It’s up to the user to verify that new public keys are correct
and trustworthy, and to keep track of the trustworthiness of the top-level CAs.
Although this is not part of the SSL/TLS fl ow, there is a set of best practices that
has grown around PKI and certifi cate management.

How Authorities Handle Certifi cate Signing Requests
(CSRs)
The CA is vouching for the legitimacy of a certifi cate. In the context of the
world-wide web, CAs are typically for-profi t businesses; their reputation, and
business viability, depends on how accurately they vet certifi cates prior to
signing them and thus providing their seal of approval. However, it’s perfectly
acceptable, in a corporate intranet environment, to establish a local CA and

c05.indd 292c05.indd 292 12/10/2010 9:45:11 AM12/10/2010 9:45:11 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 293

let it sign certifi cates that are only trusted within the local network. An entity
wishing to act as a CA must simply create a new key pair, generate a certifi cate
that contains the public key, sign the certifi cate with the private key, and publish
the self-signed certifi cate.

How the receivers decide which authorities to trust is not part of the PKI
specifi cation, but how a would-be certifi cate holder gets a signature is. First,
of course, the hopeful certifi cate holder must generate his own keypair. The
public key and the subject’s name are wrapped up into a PKCS #10 certifi cate
signing request (CSR). The whole certifi cate signing request itself is signed with
the private key, but the private key isn’t shared with the CA. Signing the request
with the private key prevents a malicious man in the middle from intercepting
the CSR, substituting his own public key in the request itself, and obtaining a
signed certifi cate in somebody else’s name. In essence, the signature proves that
whoever generated the request has access to the private key that corresponds
with the public key, without ever revealing the actual private key.

The CA should, of course, verify the signature with the public key, but should
also verify, in some unspecifi ed offl ine manner, that the requester is actually
the correct holder of the name in the CN fi eld of the subject name. If the certifi -
cate identifi es an individual, perhaps the CA would request that the individual
appear in person and present a driver’s license with a name that matches the
CN fi eld and a state that matches the ST fi eld. If the certifi cate identifi es a web
site, the CA might perform a WHOIS query against the ARIN database for the
domain in question to determine who the registered owner is and demand a
driver’s license in that name.

After the identity of the requester has been verifi ed, the CA creates an X.509
certifi cate that includes the public key and subject name, as well as the serial
number, validity period, issuer’s name as well as any extra attributes that may
be appropriate, such as key usage, and, of course, the signature using the CA’s
private key. The fi nal certifi cate can safely be returned over a cleartext channel
with no further authentication. This certifi cate is now public data and by design
contains no sensitive information.

The PKCS #10 format won’t be examined in detail here. The offi cial specifi ca-
tion can be downloaded from http://www.rsa.com/rsalabs/node.asp?id=2132,
and the OpenSSL req command can be used to generate a new CSR.

Correlating Public and Private Keys Using PKCS #12
Formatting
Notice that the private key itself doesn’t appear anywhere in the certifi cate
format, nor the CSR format. (This a good thing!) As you can imagine, when
dealing with several certifi cates, it can become diffi cult to keep track of which
private keys correspond to which public keys; some certifi cates expire, some
need to be revoked due to a key compromise, some domains have their own

c05.indd 293c05.indd 293 12/10/2010 9:45:11 AM12/10/2010 9:45:11 AM

294 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

certifi cates for security purposes, and so on. If you lose track of which private
key goes with which certifi cate, you’re pretty much out of luck; it would be nice
to store them together so you can always go back to the source.

Storing the keys, of course, must be done in a secure way. The private key
may be the most sensitive bit of information in the entire system. The PKCS
#12 format was designed as a standardized way to transmit any arbitrary bit of
data securely — by encrypting it in a standardized way — but in practice it is
generally used to store certifi cates and their corresponding private keys. The
PKCS #12 format was standardized from an older, de facto standard named PFX.
As such, many applications that generate PKCS #12 fi les give them the exten-
sion .pfx. If you export a certifi cate and private key from Internet Explorer, for
instance, you get a .pfx fi le.

The PKCS #12 format is actually extremely general — a bit too general, in fact.
The top-level structure consists of a version number, a sequence of bit strings,
and a MAC over the whole thing. It’s up to the reader of the fi le to interpret the
bit strings to fi gure out if they’re encrypted and what they contain.

Blacklisting Compromised Certifi cates Using Certifi cate
Revocation Lists (CRLs)
After a CA has applied its signature to a certifi cate, that signature can never be
revoked, ever. The signature is a mathematical operation performed over the
certifi cate data; if it’s valid today, it will be valid a million years from now. So
what can the holder of a certifi cate do if, for whatever reason, its private key is
compromised?

Depending on the usage pattern of the certifi cate, this could be very bad
news for the rightful owner of the certifi cate. Of course, if the certifi cate holder
knows about the compromise, the certifi cate can be taken out of use and a new
one generated. However, the key thief can use the old certifi cate and private key
to sign any document he likes, masquerading as the rightful certifi cate holder.

Every certifi cate has an expiration date to guard against this. Even if the right-
ful holder is unaware of the breach, the certifi cate eventually expires and a new
certifi cate, with a new public key (one would hope) is generated. However, if the
certifi cate holder is aware of a breach, it is irresponsible not to notify the users
of the certifi cate that it should be revoked prior to its expiration date.

CAs came up with half a solution with certifi cate revocation lists (CRLs). The CA
maintains a list of the serial numbers of certifi cates that have been identifi ed by
their owners as no longer applicable. The users of the certifi cates are responsible
for checking this list on a periodic basis and comparing the serial number of
each received certifi cate against the list of revoked serial numbers. The format
for a CRL is, of course, an ASN.1 syntax; it starts with a header identifying the
CA, the date it was published, and a list of serial numbers and revocation dates.

c05.indd 294c05.indd 294 12/10/2010 9:45:12 AM12/10/2010 9:45:12 AM

 Chapter 5 n Creating a Network of Trust Using X.509 Certificates 295

VeriSign’s current CRL, as an example, is 125K and includes more than 3600
certifi cates, some of which were revoked more than two years ago. The idea
behind CRLs is that a user downloads each trusted CA’s CRL on a periodic
basis. However, there’s no real upper bound on how large a CRL may grow. It
might be reasonable to try to keep a handle on the size of the fi le by removing
a certifi cate from the CRL after its validity period had passed, but an actual
compromised certifi cate is a far greater security risk than one that is simply
expired. A compromised certifi cate should never be used, under any circum-
stances; an expired certifi cate may be used, if the receiver trusts the certifi cate
holder. As a result, it’s necessary for the CA to keep a certifi cate on its CRL list
for a fairly long period of time. To keep the size of the download somewhat
manageable, the specifi cation allows the CA to distribute “delta” CRL’s that only
include newly revoked certifi cates. This is still problematic, as the user of the
CRL has no way of knowing when it’s safe to stop keeping track of an expired
certifi cate, whereas the CA knows, for instance, that a certifi cate expired six years
ago and can probably be safely removed from the list. The downloader only
knows the serial number of the certifi cate; he has no way of knowing whether
it was revoked 10 years ago or last Tuesday.

You may be wondering where to go to fi nd the CRL associated with a CA.
It would seem reasonable that the location of the CRL would be set up when
the CA itself was listed as trusted, but this doesn’t allow a CA to move its CRL
location, ever. The X.509 certifi cate form has an extension that allows the CA to
indicate where the CRL ought to be downloaded from. This does introduce one
potential confusion, though: The extension doesn’t permit the CA to indicate
the date that the CRL distribution point changed. Remember that the CRL is
associated with the CA that signed the certifi cate. If the client downloads two
certifi cates signed by the same CA, but with two different CRL URLs, which one
should be used? There are no clear guidelines in the specifi cations. This isn’t a
problem if you don’t mind downloading the entire CRL each time you want to
validate a certifi cate, but it can be a problem if you’re trying to use deltas or if
the CRL distribution point is temporarily unreachable.

How does the legitimate holder of a certifi cate inform a CA that a certifi cate
is compromised and should be revoked? The CSR format described earlier
includes an optional attributes section in which the requester can provide a
challenge password that must be supplied at any later time in order to perform
subsequent certifi cate management, including revocation.

Keeping Certifi cate Blacklists Up-to-Date with the
Online Certifi cate Status Protocol (OCSP)
As detailed in the previous section, there are quite a few problems with using
CRLs as a means of notifying consumers of the revocation of certifi cates. In

c05.indd 295c05.indd 295 12/10/2010 9:45:12 AM12/10/2010 9:45:12 AM

296 Chapter 5 n Creating a Network of Trust Using X.509 Certificates

addition to some of the management/ambiguity problems, there’s also the prob-
lem of freshness. If a private key has been compromised, the potential users of
that certifi cate probably want to know about it right away. To accomplish this,
the client has to download the entire CRL, or at least a delta (if the CA supports
them) every time a new certifi cate is encountered. The Online Certifi cate Status
Protocol (OCSP) was developed to enable the client to look up the status of a
certifi cate by serial ID.

The details can be found in RFC 2560 and aren’t covered in depth here. The
user supplies the serial number of the certifi cate along with a hash of the issuer’s
distinguished name as well as its public key. The issuer name and public key
are included so that a single OCSP can report on multiple CAs. The OCSP server
returns, at a minimum, a status of “good” or “revoked.”

Of course, this all works only if the OCSP server itself is online. If the server is
not available, the user has a decision to make: abandon the connection attempt,
or go ahead with a potentially revoked certifi cate? Ideally, the client should have
a CRL handy to verify in case the OCSP server is unavailable.

Other Problems with Certifi cates

Whenever a fl aw is found in SSL, it’s almost always related to certifi cates.
Even when certifi cates are implemented “perfectly” human behavior often

renders them moot. All browsers, at the time of this writing, allow a user to
ignore a mismatched domain name or a certifi cate past its validity period. Users
are presented with cryptic warning messages and allowed to continue, which
most of them do — even the ones who ought to know better. Still, PKI is what
we have to guard against man-in-the-middle attacks. At a bare minimum, an
implementation of TLS must be prepared to parse certifi cates to extract the
server’s public key.

c05.indd 296c05.indd 296 12/10/2010 9:45:12 AM12/10/2010 9:45:12 AM

297

C H A P T E R

6
A Usable, Secure

Communications Protocol:
Client-Side TLS

Armed with symmetric encryption to protect sensitive data from eavesdroppers,
public-key encryption to exchange keys securely over an insecure medium,
message authentication to ensure message integrity, and certifi cates and their
digital signatures to establish trust, it’s possible to create a secure protocol that
operates over an insecure line without any prior interaction between parties.
This is actually pretty amazing when you think about it. You can assume that
anybody who’s interested in snooping on your traffi c has full and complete
access to it. Nevertheless, it’s possible to securely send data such that only the
intended recipient can read it, and be assured, within reason, that you’re com-
municating with the intended recipient and not an impostor.

Even with all the pieces in place, though, it’s possible to get this subtly wrong.
This is why the TLS protocol was developed — even if you use the strongest
cryptography, key exchange, MAC and signature algorithms available, you can
still leave yourself vulnerable by improper use of random numbers, improper
seeding of random number generation, improper verifi cation of parameters, and
a lot of other, subtle, easy-to-overlook fl aws. TLS was designed as a standard for
secure communications. You must, of course, use strong, secure cryptographic
algorithms; the best way to ensure this is to use standard algorithms that were
designed and have been thoroughly reviewed by security professionals for
years. To ensure that you’re using them correctly, your best bet is to also follow
a standard protocol that was also designed and has been thoroughly reviewed
by security professionals for years.

c06.indd 297c06.indd 297 12/10/2010 9:45:28 AM12/10/2010 9:45:28 AM

298 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

FROM SSLV2 TO TLS 1.2: THE HISTORY OF THE SSL PROTOCOL

SSL is currently on its fi fth revision over its fi fteen-year history, and has
undergone one name change and one ownership change in that time period.
This book focuses mainly on TLS 1.0, which is the version in most widespread
use. This section looks over the history of the protocol at a high level. This
overview is a helpful segue into the details of TLS 1.0 — some elements of TLS
1.0 make the most sense if you understand the problems with its predecessors
that it means to solve.

SSLv2: The First Widespread Attempt at a Secure Browser Protocol

In 1995, most people had never heard of a “web browser.” The Internet itself
had been a reality for quite a while, but it was clear to a handful of visionar-
ies that the World Wide Web is what would bring networked computing to the
masses. Marc Andreessen had written Mosaic, the fi rst graphical web browser,
while at the University of Illinois. At the time, Mosaic was incredibly popular,
so Andreessen started a company named Netscape which was going to create
the computing platform of the future — the Netscape browser (and its com-
panion server).

The World Wide Web was to become the central platform for the fl edgling
“e-commerce” industry. There was one problem, though — its users didn’t
trust it with their sensitive data. In 1995, Kipp Hickman, then an employee of
Netscape Communications, drafted the fi rst public revision of SSLv2, which
was at the time viewed as an extension to HTTP that would allow the user to
establish a secure link on a nonsecure channel using the concepts and tech-
niques examined in previous chapters.

Although SSLv2 mostly got it right, it overlooked a couple of important
details that rendered it, while not useless, not as secure as it ought to have
been. The details of SSLv2 aren’t examined in detail here, but if you’re curious,
Appendix C includes a complete examination of the SSLv2 protocol.

The cracks in SSLv2 were identifi ed after it was submitted for peer review,
and Netscape withdrew it, following up with SSLv3 in 1996. However, by this
time, in spite of the fact that it was never standardized or ratifi ed by the IETF,
SSLv2 had found its way into several commercial browser and server imple-
mentations. Although its use has been deprecated for a decade, you may still
run across it from time to time. However, it’s considered to be too unsafe to
the extent that the Payment Card Industry, which regulates the use of credit
cards on the Internet, no longer permits websites that support SSLv2 to even
accept credit cards.

SSL 3.0, TLS 1.0, and TLS 1.1: Successors to SSLv2

The IETF was much happier with the SSLv3 proposal; however, it made a few
superfi cial changes before formally accepting it. The most signifi cant superfi -
cial change was that, for whatever reason, they decided to change the name
from the widespread, recognizable household name “SSL” to the somewhat
awkward “TLS.” SSLv3.1 became TLS v1.0. To this day, the version numbers

c06.indd 298c06.indd 298 12/10/2010 9:45:29 AM12/10/2010 9:45:29 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 299

transmitted and published in a TLS connection are actually SSL versions, not
TLS versions. TLS 1.0 was formally specifi ed by RFC 2246 in 1999.

Although SSLv3 was also never offi cially ratifi ed by the IETF, SSLv3 and TLS
1.0 are both widespread. Most current commercial implementations of SSL/
TLS support both SSLv3 and TLS 1.0; TLS also includes a mechanism to negoti-
ate the highest version supported. SSLv3 and TLS 1.0, although similar except
for some cosmetic differences, are not interoperable — a client that only sup-
ports SSLv3 cannot establish a secure connection with a server that only
supports TLS 1.0. However, a client that supports both can ask for TLS 1.0 and
be gracefully downgraded to SSLv3.

At the time of this writing, SSLv3 and TLS 1.0 are by far the most wide-
spread implementations of the protocol. In 2006, a new version, 1.1, was
released in RFC 4346; it’s not radically different than TLS 1.0, and the few dif-
ferences are examined at the end of this chapter. Two years later, TLS 1.2 was
released, and it was a major revision; TLS 1.2 is covered in depth in Chapter 9.

This chapter focuses on TLS 1.0. A complete implementation of the client-
side of TLS 1.0 is presented here in some detail.

Implementing the TLS 1.0 Handshake
(Client Perspective)

As much as possible, TLS aims to be completely transparent to the upper-layer
protocol. Effectively, this means that it tries to be completely transparent to the
application programmer; the application programmer implements the protocol
in question as if TLS was not being used. As long as nothing goes wrong, TLS
succeeds admirably in this goal; although, as you’ll see, if something does go
wrong, everything fails miserably and the developer is left scratching his head,
trying to fi gure out what he missed.

Of course, TLS can’t be completely transparent. The application must indicate
in some way that it wants to negotiate a secure channel. Perhaps surprisingly,
TLS doesn’t specify how the application should do this nor does it even provide
any guidance. Remembering that SSL was initially developed as an add-on to
HTTP, this makes some sense. The protocol designers weren’t thinking about
applicability to other protocols at the time. In fact, they didn’t even specify how
to use HTTP with SSL, assuming that there was only way to do so. It actually
wasn’t until 2000 that Eric Rescorla fi nally drafted RFC 2818 that describes how
it should be done.

TLS requires that the handshake — a secure key exchange — takes place
before it can protect anything. Effectively the question is when the handshake
should take place; anything that’s transmitted before the handshake is complete
is transmitted in plaintext and is theoretically interceptable. HTTPS takes an
extreme position on this. The very fi rst thing that must take place on the channel is

c06.indd 299c06.indd 299 12/10/2010 9:45:29 AM12/10/2010 9:45:29 AM

300 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

the TLS handshake; no HTTP data can be transmitted until the handshake
is complete.

You can probably spot a problem with this approach. HTTP expects the very
fi rst byte(s) on the connection to be an HTTP command such as GET, PUT, POST,
and so on. The client has to have some way of warning the server that it’s going
to start with a TLS negotiation rather than a plaintext HTTP command. The
solution adopted by HTTPS is to require secure connections to be established
on a separate port. If the client connects on port 80, the next expected commu-
nication is a valid HTTP command. If the client connects on port 443, the next
expected communication is a TLS handshake after which, if the handshake
is successful, an encrypted, authenticated valid HTTP command is expected.

Adding TLS Support to the HTTP Client
To add TLS support to the HTTP client developed in Chapter 1, you defi ne four
new top-level functions as shown in Listing 6-1.

Listing 6-1: “tls.h” top-level function prototypes

/**

 * Negotiate an TLS channel on an already-established connection

 * (or die trying).

 * @return 1 if successful, 0 if not.

 */

int tls_connect(int connection,

 TLSParameters *parameters);

/**

 * Send data over an established TLS channel. tls_connect must already

 * have been called with this socket as a parameter.

 */

int tls_send(int connection,

 const char *application_data,

 int length,

 int options,

 TLSParameters *parameters);

/**

 * Received data from an established TLS channel.

 */

int tls_recv(int connection,

 char *target_buffer,

 int buffer_size,

 int options,

 TLSParameters *parameters);

/**

 * Orderly shutdown of the TLS channel (note that the socket itself will

c06.indd 300c06.indd 300 12/10/2010 9:45:29 AM12/10/2010 9:45:29 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 301

 * still be open after this is called).

 */

int tls_shutdown(int connection, TLSParameters *parameters);

The primary “goal” of tls_connect is to fi ll in the TLSParameters structure
that is passed in. It contains, among other things, the negotiated encryption and
authentication algorithms, along with the negotiated keys. Because this struc-
ture is large and complex, it is built up incrementally throughout the course of
this chapter; the bulk of this chapter is dedicated to fi lling out the tls_connect
function and the TLSParamaters structure.

To apply these to an HTTP connection, open it as usual but immediately call
tls_connect, which performs a TLS handshake. Afterward, assuming it suc-
ceeds, replace all calls to send and recv with tls_send and tls_recv. Finally,
just before closing the socket, call tls_shutdown. Note that SSLv2 didn’t have a
dedicated shutdown function — this opened the connection to subtle attacks.

In order to support HTTPS, the fi rst thing you’ll need to do is to modify the
main routine in http.c to start with a TLS handshake as shown in Listing 6-2.

Listing 6-2: “https.c” main routine

#define HTTPS_PORT 443

...

int main(int argc, char *argv[])

{

 int client_connection;

 char *host, *path;

 struct hostent *host_name;

 struct sockaddr_in host_address;

 int port = HTTPS_PORT;

 TLSParameters tls_context;

…

 printf(“Connection complete; negotiating TLS parameters\n”);

 if (tls_connect(client_connection, &tls_context))

 {

 fprintf(stderr, “Error: unable to negotiate TLS connection.\n”);

 return 3;

 }

 printf(“Retrieving document: ‘%s’\n”, path);

 http_get(client_connection, path, host, &tls_context);

 display_result(client_connection, &tls_context);

 tls_shutdown(client_connection, &tls_context);

...

c06.indd 301c06.indd 301 12/10/2010 9:45:29 AM12/10/2010 9:45:29 AM

302 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

Here, http_get and display_result change only slightly, as shown in Listing
6-3; they take an extra parameter indicating the new tls_context, and they call
tls_send and tls_recv to send and receive data; otherwise, they’re identical to
the functions presented in Chapter 1:

Listing 6-3: “https.c” http_get and display_result

int http_get(int connection, const char *path, const char *host,

 TLSParameters *tls_context)

{

 static char get_command[MAX_GET_COMMAND];

 sprintf(get_command, “GET /%s HTTP/1.1\r\n”, path);

 if (tls_send(connection, get_command,

 strlen(get_command), 0, tls_context) == -1)

 {

 return -1;

 }

 sprintf(get_command, “Host: %s\r\n”, host);

 if (tls_send(connection, get_command,

 strlen(get_command), 0, tls_context) == -1)

 {

 return -1;

 }

 strcpy(get_command, “Connection: Close\r\n\r\n”);

 if (tls_send(connection, get_command,

 strlen(get_command), 0, tls_context) == -1)

 {

 return -1;

 }

 return 0;

}

void display_result(int connection, TLSParameters *tls_context)

{

…

 while ((received = tls_recv(connection, recv_buf,

 BUFFER_SIZE, 0, tls_context)) >= 0)

 {

 recv_buf[received] = ‘\0’;

 printf(“data: %s”, recv_buf);

 }

…

Notice that the proxy negotiation part of http_get is missing from
Listing 6-3. Negotiating proxies is a major complication for SSL; by now you can
probably see why. The proxy performs the HTTP connection on behalf of the
client and then returns the results back to it. Unfortunately this is by defi nition a

c06.indd 302c06.indd 302 12/10/2010 9:45:29 AM12/10/2010 9:45:29 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 303

man-in-the-middle attack. HTTPS can, of course, be extended to work correctly
behind a proxy. This topic is revisited in Chapter 10.

Otherwise, this is it. After the tls_connect, tls_send, tls_recv, and tls_shutdown
routines are complete, this client is HTTPS-compliant. If you are inclined to extend
display_result to parse the HTML response and build a renderable web page,
you can do so without giving a single thought to whether or not the connection
is secure. If you add support for POST, HEAD, PUT, DELETE, and so on into the
client-side implementation, you do so just as if the connection was plaintext; just
be sure to call tls_send instead of send. Of course, you should probably extend
this to actually pay attention to the protocol and perform a TLS connection only if
the user requested “https” instead of “http.” I’ll leave that as an exercise for you
if you’re interested.

Understanding the TLS Handshake Procedure
Most of the complexity is in the handshake; after the handshake has been
completed, sending and receiving is just a matter of encrypting/decrypting,
MAC’ing/verifying data before/after it’s received. At a high-level, the handshake
procedure is as shown in Figure 6-1.

Figure 6-1: TLS handshake

client hello

server hello

certificate

hello done

key exchange

change cipher spec

finished

change cipher spec

finished

serverclient

c06.indd 303c06.indd 303 12/10/2010 9:45:29 AM12/10/2010 9:45:29 AM

304 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

The client is responsible for sending the client hello that gets the ball rolling and
informs the server, at a minimum, what version of the protocol it understands
and what cipher suites (cryptography, key exchange, and authentication triples)
it is capable of working with. It also transmits a unique random number, which
is important to guard against replay attacks and is examined in depth later.

The server selects a cipher suite, generates its own random number, and assigns
a session ID to the TLS connection; each connection gets a unique session ID.
The server also sends enough information to complete a key exchange. Most
often, this means sending a certifi cate including an RSA public key.

The client is then responsible for completing the key exchange using the
information the server provided. At this point, the connection is secured, both
sides have agreed on an encryption algorithm, a MAC algorithm, and respec-
tive keys. Of course, the whole process is quite a bit more complex than this,
but you may want to keep this high-level overview in mind as you read the
remainder of this chapter.

TLS Client Hello
Every step in the TLS handshake is responsible for updating some aspect of
the TLSParameters structure. As you can probably guess, the most important
values are the MAC secret, the symmetric encryption key, and, if applicable, the
initialization vector. These are defi ned in the ProtectionParameters structure
shown in Listing 6-4.

Listing 6-4: “tls.h” ProtectionParameters

typedef struct

{

 unsigned char *MAC_secret;

 unsigned char *key;

 unsigned char *IV;

 ...

}

ProtectionParameters;

Tracking the Handshake State in the TLSParameters Structure

TLS actually allows a different MAC secret, key, and IV to be established for the
sender and the receiver. Therefore, the TLSParameters structure keeps track of
two sets of ProtectionParameters as shown in Listing 6-5.

Listing 6-5: “tls.h” TLSParameters

#define TLS_VERSION_MAJOR 3

#define TLS_VERSION_MINOR 1

c06.indd 304c06.indd 304 12/10/2010 9:45:30 AM12/10/2010 9:45:30 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 305

#define MASTER_SECRET_LENGTH 48

typedef unsigned char master_secret_type[MASTER_SECRET_LENGTH];

#define RANDOM_LENGTH 32

typedef unsigned char random_type[RANDOM_LENGTH];

typedef struct

{

 master_secret_type master_secret;

 random_type client_random;

 random_type server_random;

 ProtectionParameters pending_send_parameters;

 ProtectionParameters pending_recv_parameters;

 ProtectionParameters active_send_parameters;

 ProtectionParameters active_recv_parameters;

 // RSA public key, if supplied

 public_key_info server_public_key;

 // DH public key, if supplied (either in a certificate or ephemerally)

 // Note that a server can legitimately have an RSA key for signing and

 // a DH key for key exchange (e.g. DHE_RSA)

 dh_key server_dh_key;

...

}

TLSParameters;

TLS 1.0 is SSL version 3.1, as described previously. The pending_send_parameter
and pending_recv_parameters are the keys currently being exchanged; the TLS
handshake fi lls these out along the way, based on the computed master secret.
The master secret, server random, and client random values are likewise pro-
vided by various hello and key exchange messages; the public keys’ purpose
ought to be clear to you by now.

What about this active_send_parameters and active_recv_parameters?
After the TLS handshake is complete, the pending parameters become the
active parameters, and when the active parameters are non-null, the param-
eters are used to protect the channel. Separating them this way simplifi es
the code; you could get away with a single set of send and recv parameters in the
TLSParameters structure, but you’d have to keep track of a lot more state in
the handshake code.

Both the TLSParameters and ProtectionParameters structures are shown
partially fi lled out in Listings 6-4 and 6-5; you add to them along the way as
you develop the client-side handshake routine.

As always, you need a couple of initialization routines, shown in
Listing 6-6.

c06.indd 305c06.indd 305 12/10/2010 9:45:30 AM12/10/2010 9:45:30 AM

306 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

Listing 6-6: “tls.c” init_parameters

static void init_protection_parameters(ProtectionParameters *parameters)

{

 parameters->MAC_secret = NULL;

 parameters->key = NULL;

 parameters->IV = NULL;

…

}

static void init_parameters(TLSParameters *parameters)

{

 init_protection_parameters(¶meters->pending_send_parameters);

 init_protection_parameters(¶meters->pending_recv_parameters);

 init_protection_parameters(¶meters->active_send_parameters);

 init_protection_parameters(¶meters->active_recv_parameters);

 memset(parameters->master_secret, ‘\0’, MASTER_SECRET_LENGTH);

 memset(parameters->client_random, ‘\0’, RANDOM_LENGTH);

 memset(parameters->server_random, ‘\0’, RANDOM_LENGTH);

…

}

So, tls_connect, shown partially in Listing 6-7, starts off by calling
init_parameters.

Listing 6-7: “tls.c” tls_connect

/**

 * Negotiate TLS parameters on an already-established socket.

 */

int tls_connect(int connection,

 TLSParameters *parameters)

{

 init_parameters(parameters);

 // Step 1. Send the TLS handshake “client hello” message

 if (send_client_hello(connection, parameters) < 0)

 {

 perror(“Unable to send client hello”);

 return 1;

 }

…

Recall from the overview that the fi rst thing the client should do is send a
client hello message. The structure of this message is defi ned in Listing 6-8.

Listing 6-8: “tls.h” client hello structure

typedef struct

{

 unsigned char major, minor;

}

ProtocolVersion;

c06.indd 306c06.indd 306 12/10/2010 9:45:30 AM12/10/2010 9:45:30 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 307

typedef struct

{

 unsigned int gmt_unix_time;

 unsigned char random_bytes[28];

}

Random;

/**

 * Section 7.4.1.2

 */

typedef struct

{

 ProtocolVersion client_version;

 Random random;

 unsigned char session_id_length;

 unsigned char *session_id;

 unsigned short cipher_suites_length;

 unsigned short *cipher_suites;

 unsigned char compression_methods_length;

 unsigned char *compression_methods;

}

ClientHello;

Listing 6-9 shows the fi rst part of the send_client_hello function, which is
responsible for fi lling out a ClientHello structure and sending it on to the server.

Listing 6-9: “tls.c” send_client_hello

/**

 * Build and submit a TLS client hello handshake on the active

 * connection. It is up to the caller of this function to wait

 * for the server reply.

 */

static int send_client_hello(int connection, TLSParameters *parameters)

{

 ClientHello package;

 unsigned short supported_suites[1];

 unsigned char supported_compression_methods[1];

 int send_buffer_size;

 char *send_buffer;

 void *write_buffer;

 time_t local_time;

 int status = 1;

 package.client_version.major = TLS_VERSION_MAJOR;

 package.client_version.minor = TLS_VERSION_MINOR;

 time(&local_time);

 package.random.gmt_unix_time = htonl(local_time);

 // TODO - actually make this random.

 // This is 28 bytes, but client random is 32 - the first four bytes of

(Continued)

c06.indd 307c06.indd 307 12/10/2010 9:45:30 AM12/10/2010 9:45:30 AM

308 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

 // “client random” are the GMT unix time computed above.

 memcpy(parameters->client_random, &package.random.gmt_unix_time, 4);

 memcpy(package.random.random_bytes, parameters->client_random + 4, 28);

 package.session_id_length = 0;

 package.session_id = NULL;

 // note that this is bytes, not count.

 package.cipher_suites_length = htons(2);

 supported_suites[0] = htons(TLS_RSA_WITH_3DES_EDE_CBC_SHA);

 package.cipher_suites = supported_suites;

 package.compression_methods_length = 1;

 supported_compression_methods[0] = 0;

 package.compression_methods = supported_compression_methods;

NOTE Notice that the client random isn’t entirely random — the specifi cation
actually mandates that the fi rst four bytes be the number of seconds since
January 1, 1970. Fortunately, C has a built-in time function to compute this.
The remaining 28 bytes are supposed to be random. The most important thing
here is that they be different for each connection.

The session ID is left empty, indicating that a new session is being requested
(session reuse is examined in Chapter 8). To complete the ClientHello structure,
the supported cipher suites and compression methods are indicated. Only one of
each is given here: For the cipher suite, it’s RSA key exchange; 3DES (EDE) with
CBC for encryption; and SHA-1 for MAC. The compression method selected is
“no compression.” TLS allows the client and sender to agree to compress the
stream before encrypting.

You may be wondering, legitimately, what compression has to do with security.
Nothing, actually — however, it was added to TLS and, at the very least, both
sides have to agree not to compress. If the stream is going to be compressed,
however, it is important that compression be applied before encryption. One
property of secure ciphers is that they specifi cally not be compressible, so if you
try to compress after encrypting, it will be too late.

Describing Cipher Suites

So, what about this TLS_RSA_WITH_3DES_EDE_CBC_SHA value? Strictly speaking,
it’s not always safe to “mix and match” encryption functions with key exchange
and MAC functions, so TLS defi nes them in triples rather than allowing the
two sides to select them à la carte. As a result, each allowed triple has a unique
identifi er: TLS_RSA_WITH_3DES_EDE_CBC_SHA is 10 or 0x0A hex. Go ahead and
defi ne a CipherSuiteIdentifier enumeration as shown in Listing 6-10.

Listing 6-10: “tls.h” CipherSuiteIdentifi er list

typedef enum

{

 TLS_NULL_WITH_NULL_NULL = 0x0000,

c06.indd 308c06.indd 308 12/10/2010 9:45:30 AM12/10/2010 9:45:30 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 309

 TLS_RSA_WITH_NULL_MD5 = 0x0001,

 TLS_RSA_WITH_NULL_SHA = 0x0002,

 TLS_RSA_EXPORT_WITH_RC4_40_MD5 = 0x0003,

 TLS_RSA_WITH_RC4_128_MD5 = 0x0004,

 TLS_RSA_WITH_RC4_128_SHA = 0x0005,

 TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 = 0x0006,

 TLS_RSA_WITH_IDEA_CBC_SHA = 0x0007,

 TLS_RSA_EXPORT_WITH_DES40_CBC_SHA = 0x0008,

 TLS_RSA_WITH_DES_CBC_SHA = 0x0009,

 TLS_RSA_WITH_3DES_EDE_CBC_SHA = 0x000A,

 …

} CipherSuiteIdentifier;

Notice the NULL cipher suites 0, 1 and 2. TLS_NULL_WITH_NULL_NULL indicates
that there’s no encryption, no MAC and no key exchange. This is the default
state for a TLS handshake — the state it starts out in. Cipher suites 1 and 2 allow
a non-encrypted, but MAC’ed, cipher suite to be negotiated. This can actually
be pretty handy when you’re trying to debug something and you don’t want to
have to decrypt what you’re trying to debug. Unfortunately for the would-be
debugger, for obvious security reasons, most servers won’t allow you to negoti-
ate this cipher suite by default.

There’s no particular rhyme or reason to the identifi ers assigned to the vari-
ous cipher suites. They’re just a sequential list of every combination that the
writers of the specifi cation could think of. They’re not even grouped together
meaningfully; the RSA key exchange cipher suites aren’t all in the same place
because after the specifi cation was drafted, new cipher suites that used the RSA
key exchange method were identifi ed. It would certainly have been nicer, from
an implementer’s perspective, if they had allocated, say, three bits to identify
the key exchange, fi ve bits to identify the symmetric cipher, two for the MAC,
and so on.

Additional cipher suites are examined later on. For now, you’re just writing
a client that understands only 3DES, RSA, and SHA-1.

Flattening and Sending the Client Hello Structure

Now that the ClientHello message has been built, it needs to be sent on. If you
look at RFC 2246, which describes TLS, you see that the formal description of
the client hello message looks an awful lot like the C structure defi ned here.
You may be tempted to try to just do something like this:

send(connection, (void *) &package, sizeof(package), 0);

This is tempting, but your compiler thwarts you at every turn, expanding
some elements, memory-aligning others, and generally performing unexpected
optimizations that cause your code to run faster and work better (the nerve!).
Although it is possible to include enough compiler directives to force this struc-
ture to appear in memory just as it needs to appear on the wire, you’d be, at the

c06.indd 309c06.indd 309 12/10/2010 9:45:30 AM12/10/2010 9:45:30 AM

310 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

very least, locking yourself into a specifi c platform. As a result, you’re better
off manually fl attening the structure to match the expected wire-level interface
as shown in Listing 6-11:

Listing 6-11: “tls.c” send_client_hello (continued in Listing 6-13)

 // Compute the size of the ClientHello message after flattening.

 send_buffer_size = sizeof(ProtocolVersion) +

 sizeof(Random) +

 sizeof(unsigned char) +

 (sizeof(unsigned char) * package.session_id_length) +

 sizeof(unsigned short) +

 (sizeof(unsigned short) * 1) +

 sizeof(unsigned char) +

 sizeof(unsigned char);

 write_buffer = send_buffer = (char *) malloc(send_buffer_size);

 write_buffer = append_buffer(write_buffer, (void *)

 &package.client_version.major, 1);

 write_buffer = append_buffer(write_buffer, (void *)

 &package.client_version.minor, 1);

 write_buffer = append_buffer(write_buffer, (void *)

 &package.random.gmt_unix_time, 4);

 write_buffer = append_buffer(write_buffer, (void *)

 &package.random.random_bytes, 28);

 write_buffer = append_buffer(write_buffer, (void *)

 &package.session_id_length, 1);

 if (package.session_id_length > 0)

 {

 write_buffer = append_buffer(write_buffer,

 (void *)package.session_id,

 package.session_id_length);

 }

 write_buffer = append_buffer(write_buffer,

 (void *) &package.cipher_suites_length, 2);

 write_buffer = append_buffer(write_buffer,

 (void *) package.cipher_suites, 2);

 write_buffer = append_buffer(write_buffer,

 (void *) &package.compression_methods_length, 1);

 if (package.compression_methods_length > 0)

 {

 write_buffer = append_buffer(write_buffer,

 (void *) package.compression_methods, 1);

 }

The append_buffer function, in Listing 6-12, is a convenience routine designed
to be called incrementally as in Listing 6-11.

c06.indd 310c06.indd 310 12/10/2010 9:45:30 AM12/10/2010 9:45:30 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 311

Listing 6-12: “tls.c” append buffer

/**

 * This is just like memcpy, except it returns a pointer to dest + n instead

 * of dest, to simplify the process of repeated appends to a buffer.

 */

static char *append_buffer(char *dest, char *src, size_t n)

{

 memcpy(dest, src, n);

 return dest + n;

}

This fl attened structure is illustrated in Figure 6-2.

Figure 6-2: Client hello structure

current timemajor minor

random bytes

random bytes
sess

id
len

session id
(variable)

cipher
suites
length

cipher suites
(variable)

Comp
meth
len

compression
methods
(variable)

random bytes

version

client
random

Finally, the client hello is sent off in Listing 6-13:

Listing 6-13: “tls.c” send_client_hello (continued from Listing 6-11)

 assert(((char *) write_buffer - send_buffer) == send_buffer_size);

 status = send_handshake_message(connection, client_hello, send_buffer,

 send_buffer_size);

 free(send_buffer);

 return status;

}

Notice that send still isn’t called. Instead, you invoke send_handshake_
message. Like TCP and IP, and network programming in general, TLS is an
onion-like nesting of headers. Each handshake message must be prepended
with a header indicating its type and length. The defi nition of the handshake
header is shown in Listing 6-14.

c06.indd 311c06.indd 311 12/10/2010 9:45:30 AM12/10/2010 9:45:30 AM

312 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

Listing 6-14: “tls.h” handshake structure

/**

 * Handshake message types (section 7.4)

 */

typedef enum

{

 hello_request = 0,

 client_hello = 1,

 server_hello = 2,

 certificate = 11,

 server_key_exchange = 12,

 certificate_request = 13,

 server_hello_done = 14,

 certificate_verify = 15,

 client_key_exchange = 16,

 finished = 20

}

HandshakeType;

/**

 * Handshake record definition (section 7.4)

 */

typedef struct

{

 unsigned char msg_type;

 unsigned int length; // 24 bits(!)

}

Handshake;

This structure is illustrated in Figure 6-3.

Figure 6-3: TLS handshake header

msg
type length handshake message

body (variable)

The send_handshake_message function that prepends this header to a hand-
shake message is shown in Listing 6-15.

Listing 6-15: “tls.c” send_handshake_message

static int send_handshake_message(int connection,

 int msg_type,

 const unsigned char *message,

 int message_len)

{

 Handshake record;

 short send_buffer_size;

 unsigned char *send_buffer;

c06.indd 312c06.indd 312 12/10/2010 9:45:30 AM12/10/2010 9:45:30 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 313

 int response;

 record.msg_type = msg_type;

 record.length = htons(message_len) << 8; // To deal with 24-bits...

 send_buffer_size = message_len + 4; // space for the handshake header

 send_buffer = (unsigned char *) malloc(send_buffer_size);

 send_buffer[0] = record.msg_type;

 memcpy(send_buffer + 1, &record.length, 3);

 memcpy(send_buffer + 4, message, message_len);

 response = send_message(connection, content_handshake,

 send_buffer, send_buffer_size);

 free(send_buffer);

 return response;

}

This would be a bit simpler except that, for some strange reason, the TLS
designers mandated that the length of the handshake message must be given
in a 24-bit fi eld, which no compiler that I’m aware of can generate. Of course,
on a big-endian machine, this wouldn’t be a problem; just truncate the high-
order byte of a 32-bit integer and you’d have a 24-bit integer. Unfortunately,
most general purpose computers these days are little-endian, so it’s necessary
to convert it and then truncate it.

But send_handshake_message still doesn’t call send! TLS mandates not only
that every handshake message be prepended with a header indicating its type
and length, but that every message, including the already-prepended handshake
messages, be prepended with yet another header indicating its type and length!

So, fi nally, defi ne yet another header structure and some supporting enu-
merations in Listing 6-16.

Listing 6-16: “tls.h” TLSPlaintext header

/** This lists the type of higher-level TLS protocols that are defined */

typedef enum {

 content_change_cipher_spec = 20,

 content_alert = 21,

 content_handshake = 22,

 content_application_data = 23

}

ContentType;

typedef enum { warning = 1, fatal = 2 } AlertLevel;

/**

 * Enumerate all of the error conditions specified by TLS.

(Continued)

c06.indd 313c06.indd 313 12/10/2010 9:45:30 AM12/10/2010 9:45:30 AM

314 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

 */

typedef enum

{

 close_notify = 0,

 unexpected_message = 10,

 bad_record_mac = 20,

 decryption_failed = 21,

 record_overflow = 22,

 decompression_failure = 30,

 handshake_failure = 40,

 bad_certificate = 42,

 unsupported_certificate = 43,

 certificate_revoked = 44,

 certificate_expired = 45,

 certificate_unknown = 46,

 illegal_parameter = 47,

 unknown_ca = 48,

 access_denied = 49,

 decode_error = 50,

 decrypt_error = 51,

 export_restriction = 60,

 protocol_version = 70,

 insufficient_security = 71,

 internal_error = 80,

 user_canceled = 90,

 no_renegotiation = 100

}

AlertDescription;

typedef struct

{

 unsigned char level;

 unsigned char description;

}

Alert;

/**

 * Each packet to be encrypted is first inserted into one of these structures.

 */

typedef struct

{

 unsigned char type;

 ProtocolVersion version;

 unsigned short length;

}

TLSPlaintext;

There are four types of TLS messages defi ned: handshake messages, alerts,
data, and “change cipher spec,” which is technically a handshake message, but

c06.indd 314c06.indd 314 12/10/2010 9:45:30 AM12/10/2010 9:45:30 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 315

is broken out for specifi c implementation types that are examined later. Also,
the protocol version is included on every packet.

The TLS Message header is illustrated in Figure 6-4.

Figure 6-4: TLS Message header

major minor

version

length TLS Message
(variable)type

Notice that this header is added to every packet that is sent over a TLS con-
nection, not just the handshake messages. If, after handshake negotiation, either
side receives a packet whose fi rst byte is not greater than or equal to 20 and less
than or equal to 23 then something has gone wrong, and the whole connection
should be terminated.

Finally, you need one last send function that prepends this header on top of
the handshake message as shown in Listing 6-17.

Listing 6-17: “tls.c” send_message

static int send_message(int connection,

 int content_type,

 const unsigned char *content,

 short content_len)

{

 TLSPlaintext header;

 unsigned char *send_buffer;

 int send_buffer_size;

 send_buffer_size = content_len;

 send_buffer_size +=5;

 send_buffer = (unsigned char *) malloc(send_buffer_size);

 header.type = content_type;

 header.version.major = TLS_VERSION_MAJOR;

 header.version.minor = TLS_VERSION_MINOR;

 header.length = htons(content_len);

 send_buffer[0] = header.type;

 send_buffer[1] = header.version.major;

 send_buffer[2] = header.version.minor;

 memcpy(send_buffer + 3, &header.length, sizeof(short));

 memcpy(send_buffer + 5, content, content_len);

(Continued)

c06.indd 315c06.indd 315 12/10/2010 9:45:30 AM12/10/2010 9:45:30 AM

316 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

 if (send(connection, (void *) send_buffer,

 send_buffer_size, 0) < send_buffer_size)

 {

 return -1;

 }

 free(send_buffer);

 return 0;

}

At this point, the actual socket-level send function is called. Now the client
hello message, with its handshake message header, with its TLS header, are sent
to the server for processing. After all of this prepending, the fi nal wire-level
structure is as shown in Figure 6-5.

Figure 6-5: TLS Client Hello with all headers

type major minor major minor current time

current time

msg
typelength length handshake message

body (variable)

random bytes

random bytes
sess

id
len

session id
(variable)

cipher
suites
length

cipher suites
(variable)

Comp
meth
len

compression
methods
(variable)

version

client
random

TLS header

TLS Handshake
Header

version

TLS payload

TLS Server Hello
The server should now select one of the supported cipher suites and respond
with a server hello response. The client is required to block, waiting for an
answer; nothing else can happen on this socket until the server responds.
Expand tls_connect:

 // Step 2. Receive the server hello response

 if (receive_tls_msg(connection, parameters) < 0)

 {

 perror(“Unable to receive server hello”);

 return 2;

 }

c06.indd 316c06.indd 316 12/10/2010 9:45:31 AM12/10/2010 9:45:31 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 317

The function receive_tls_msg, as you can probably imagine, is responsible
for reading a packet off the socket, stripping off the TLS header, stripping
off the handshake header if the message is a handshake message, and process-
ing the message itself. This is shown in Listing 6-18.

Listing 6-18: “tls.c” receive_tls_msg

/**

 * Read a TLS packet off of the connection (assuming there’s one waiting)

 * and try to update the security parameters based on the type of message

 * received. If the read times out, or if an alert is received, return an error

 * code; return 0 on success.

 * TODO - assert that the message received is of the type expected (for example,

 * if a server hello is expected but not received, this is a fatal error per

 * section 7.3).

 * returns -1 if an error occurred (this routine will have sent an

 * appropriate alert). Otherwise, return the number of bytes read if the packet

 * includes application data; 0 if the packet was a handshake. -1 also

 * indicates that an alert was received.

 */

static int receive_tls_msg(int connection,

 TLSParameters *parameters)

{

 TLSPlaintext message;

 unsigned char *read_pos, *msg_buf;

 unsigned char header[5]; // size of TLSPlaintext

 int bytes_read, accum_bytes;

 // STEP 1 - read off the TLS Record layer

 if (recv(connection, header, 5, 0) <= 0)

 {

 // No data available; it’s up to the caller whether this is an error or not.

 return -1;

 }

 message.type = header[0];

 message.version.major = header[1];

 message.version.minor = header[2];

 memcpy(&message.length, header + 3, 2);

 message.length = htons(message.length);

Adding a Receive Loop

First, the TLSPlaintext header is read from the connection and validated.
The error handling here leaves a bit to be desired, but ignore that for the
time being. If everything goes correctly, message.length holds the number
of bytes remaining in the current message. Because TCP doesn’t guarantee
that all bytes are available right away, it’s necessary to enter a receive loop
in Listing 6-19:

c06.indd 317c06.indd 317 12/10/2010 9:45:31 AM12/10/2010 9:45:31 AM

318 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

Listing 6-19: “tls.c” receive_tls_msg (continued in Listing 6-21)

 msg_buf = (char *) malloc(message.length);

 // keep looping & appending until all bytes are accounted for

 accum_bytes = 0;

 while (accum_bytes < message.length)

 {

 if ((bytes_read = recv(connection, (void *) msg_buf,

 message.length - accum_bytes, 0)) <= 0)

 {

 int status;

 perror(“While reading a TLS packet”);

 if ((status = send_alert_message(connection,

 illegal_parameter)))

 {

 free(msg_buf);

 return status;

 }

 return -1;

 }

 accum_bytes += bytes_read;

 msg_buf += bytes_read;

 }

This loop, as presented here, is vulnerable to a denial of service attack. If the
server announces that 100 bytes are available but never sends them, the client
hangs forever waiting for these bytes. There’s not much you can do about this,
though. You can (and should) set a socket-level timeout, but if it expires, there’s
not much point in continuing the connection.

Sending Alerts

Notice that if recv returns an error, a function send_alert_message is invoked.
Remember the four types of TLS messages? Alert was one of them. This is how
clients and servers notify each other of unexpected conditions. In theory, an alert
can be recoverable — expired certifi cate is defi ned as an alert, for example — but
this poses a problem for the writer of a general-purpose TLS implementation.
If the client tells the server that its certifi cate has expired then in theory the
server could present a new certifi cate that hadn’t expired. But why did it send
an expired certifi cate in the fi rst place, if it had one that was current? In general,
all alerts are treated as fatal errors.

Alerts are also frustratingly terse. As you can see, if the client wasn’t able to
receive the entire message, it just returns an illegal parameter with no further
context. Although it logs a more detailed reason, the server developer probably
doesn’t have access to those logs and has no clue what he did wrong. It would

c06.indd 318c06.indd 318 12/10/2010 9:45:31 AM12/10/2010 9:45:31 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 319

certainly be nice if the TLS alert protocol allowed space for a descriptive error
message.

send_alert_message is shown in Listing 6-20.

Listing 6-20: “tls.c” send_alert_message

static int send_alert_message(int connection,

 int alert_code)

{

 char buffer[2];

 // TODO support warnings

 buffer[0] = fatal;

 buffer[1] = alert_code;

 return send_message(connection, content_alert, buffer, 2);

}

By reusing the send_message routine from above, sending an alert message
is extremely simple.

Parsing the Server Hello Structure

Assuming nothing went wrong, the message has now been completely read
from the connection and is contained in msg_buf. For the moment, the only
type of message you’re interested in is content_handshake, whose parsing is
shown in Listing 6-21:

Listing 6-21: “tls.c” receive_tls_msg (continued from Listing 6-19)

 read_pos = msg_buf;

 if (message.type == content_handshake)

 {

 Handshake handshake;

 // Now, read the handshake type and length of the next packet

 // TODO - this fails if the read, above, only got part of the message

 read_pos = read_buffer((void *) &handshake.msg_type,

 (void *) read_pos, 1);

 handshake.length = read_pos[0] << 16 | read_pos[1] << 8 | read_pos[2];

 read_pos += 3;

 // TODO check for negative or unreasonably long length

 // Now, depending on the type, read in and process the packet itself.

 switch (handshake.msg_type)

 {

 // Client-side messages

 case server_hello:

(Continued)

c06.indd 319c06.indd 319 12/10/2010 9:45:31 AM12/10/2010 9:45:31 AM

320 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

 read_pos = parse_server_hello(read_pos, handshake.length,

 parameters);

 if (read_pos == NULL) /* error occurred */

 {

 free(msg_buf);

 send_alert_message(connection, illegal_parameter);

 return -1;

 }

 break;

 default:

 printf(“Ignoring unrecognized handshake message %d\n”,

 handshake.msg_type);

 // Silently ignore any unrecognized types per section 6

 // TODO However, out-of-order messages should result in a fatal alert

 // per section 7.4

 read_pos += handshake.length;

 break;

 }

 }

 else

 {

 // Ignore content types not understood, per section 6 of the RFC.

 printf(“Ignoring non-recognized content type %d\n”, message.type);

 }

 free(msg_buf);

 return message.length;

}

As I’m sure you can imagine, you fi ll this out quite a bit more throughout
this chapter. For now, though, just focus on the parse_server_hello function.
The Server Hello message is illustrated in Figure 6-6.

Figure 6-6: Server Hello structure

current timemajor minor

random bytes

random bytes
sess

id
len

session id
(variable) cipher suites Comp

meth

random bytes

version

server
random

As with the client hello, go ahead and defi ne a structure to hold its value in
Listing 6-22.

c06.indd 320c06.indd 320 12/10/2010 9:45:31 AM12/10/2010 9:45:31 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 321

Listing 6-22: “tls.h” ServerHello structure

typedef struct

{

 ProtocolVersion server_version;

 Random random;

 unsigned char session_id_length;

 unsigned char session_id[32]; // technically, this len should be dynamic.

 unsigned short cipher_suite;

 unsigned char compression_method;

}

ServerHello;

Because the TLSParameters were passed into the receive_tls_message func-
tion, the parse_server_hello can go ahead and update the ongoing state as it’s
parsed, as in Listing 6-23.

Listing 6-23: “tls.c” parse_server_hello

static char *parse_server_hello(char *read_pos,

 int pdu_length,

 TLSParameters *parameters)

{

 ServerHello hello;

 read_pos = read_buffer((void *) &hello.server_version.major,

 (void *) read_pos, 1);

 read_pos = read_buffer((void *) &hello.server_version.minor,

 (void *) read_pos, 1);

 read_pos = read_buffer((void *) &hello.random.gmt_unix_time,

 (void *) read_pos, 4);

 // *DON’T* put this in host order, since it’s not used as a time! Just

 // accept it as is

 read_pos = read_buffer((void *) hello.random.random_bytes,

 (void *) read_pos, 28);

 read_pos = read_buffer((void *) &hello.session_id_length,

 (void *) read_pos, 1);

 read_pos = read_buffer((void *) hello.session_id,

 (void *) read_pos, hello.session_id_length);

 read_pos = read_buffer((void *) &hello.cipher_suite,

 (void *) read_pos, 2);

 hello.cipher_suite = ntohs(hello.cipher_suite);

 // TODO check that these values were actually in the client hello

 // list.

 parameters->pending_recv_parameters.suite = hello.cipher_suite;

 parameters->pending_send_parameters.suite = hello.cipher_suite;

 read_pos = read_buffer((void *) &hello.compression_method,

 (void *) read_pos, 1);

 if (hello.compression_method != 0)

(Continued)

c06.indd 321c06.indd 321 12/10/2010 9:45:31 AM12/10/2010 9:45:31 AM

322 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

 {

 fprintf(stderr, “Error, server wants compression.\n”);

 return NULL;

 }

 // TODO - abort if there’s more data here than in the spec (per section

 // 7.4.1.2, forward compatibility note)

 // TODO - abort if version < 3.1 with “protocol_version” alert error

 // 28 random bytes, but the preceding four bytes are the reported GMT unix

 // time

 memcpy((void *) parameters->server_random, &hello.random.gmt_unix_time, 4

);

 memcpy((void *) (parameters->server_random + 4),

 (void *) hello.random.random_bytes, 28);

 return read_pos;

}

Note that if the server asked for compression, this function returns null
because this implementation doesn’t support compression. This is recognized
by the calling routine and is used to generate an alert. Here the terseness of the
TLS alert protocol shows. If the server asked for compression, it just gets back a
nondescript illegal parameter but receives no indication of which parameter was
illegal. It certainly would be more robust if you were allowed to tell it which
parameter you were complaining about. This is generally not a problem for users
of TLS software — if you get an illegal parameter while using, say, a browser,
that means that the programmer of the browser did something wrong — but is a
hassle when developing/testing TLS software like the library developed in this
book. When developing, therefore, it’s best to test against a client or server with
its debug levels set to maximum so that if you do get back an illegal parameter
(or any other nondescript alert message), you can go look at the server logs to
see what you actually did wrong.

This routine stores the server random, of course, because it is needed later on
in the master secret computation. Primarily, though, it sets the values pending_
send_parameters and pending_recv_parameters with the selected suite. Expand
the defi nition of ProtectionParameters to keep track of this in Listing 6-24.

Listing 6-24: “tls.h” ProtectionParameters with cipher suite

typedef struct

{

 unsigned char *MAC_secret;

 unsigned char *key;

 unsigned char *IV;

 CipherSuiteIdentifier suite;

}

ProtectionParameters;

c06.indd 322c06.indd 322 12/10/2010 9:45:31 AM12/10/2010 9:45:31 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 323

Recall that CipherSuiteIdentifier was defi ned as part of the client hello.
parse_server_hello is something of the opposite of send_client_hello

and it even makes use of a function complementary to append_buffer, shown
in Listing 6-25.

Listing 6-25: “tls.c” read_buffer

static char *read_buffer(char *dest, char *src, size_t n)

{

 memcpy(dest, src, n);

 return src + n;

}

Reporting Server Alerts

What if the server doesn’t happen to support TLS_RSA_WITH_3DES_EDE_CBC_
SHA (or any of the cipher suites on the list the client sends)? It doesn’t return a
server_hello at all; instead it responds with an alert message. You need to be
prepared to deal with alerts at any time, so extend receive_tls_message to
handle alerts as shown in Listing 6-26.

Listing 6-26: “receive_tls_message” with alert support

static int receive_tls_msg(int connection,

 TLSParameters *parameters)

{

…

 if (message.type == content_handshake)

 {

 …

 }

 else if (message.type == content_alert)

 {

 while ((read_pos - decrypted_message) < decrypted_length)

 {

 Alert alert;

 read_pos = read_buffer((void *) &alert.level,

 (void *) read_pos, 1);

 read_pos = read_buffer((void *) &alert.description,

 (void *) read_pos, 1);

 report_alert(&alert);

 if (alert.level == fatal)

 {

 return -1;

 }

 }

 }

c06.indd 323c06.indd 323 12/10/2010 9:45:32 AM12/10/2010 9:45:32 AM

324 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

Notice that alert level is checked. If the server specifi cally marks an alert as
a fatal, the handshake is aborted; otherwise, the handshake process continues.
Effectively this means that this implementation is ignoring warnings, which is
technically a Bad Thing. However, as noted previously, there’s really not much
that can be done about the few alerts defi ned as warnings anyway. In any case, the
alert itself is written to stdout via the helper function report_alert in Listing 6-27.

Listing 6-27: “tls.c” report_alert

static void report_alert(Alert *alert)

{

 printf(“Alert - “);

 switch (alert->level)

 {

 case warning:

 printf(“Warning: “);

 break;

 case fatal:

 printf(“Fatal: “);

 break;

 default:

 printf(“UNKNOWN ALERT TYPE %d (!!!): “, alert->level);

 break;

 }

 switch (alert->description)

 {

 case close_notify:

 printf(“Close notify\n”);

 break;

 case unexpected_message:

 printf(“Unexpected message\n”);

 break;

 case bad_record_mac:

 printf(“Bad Record Mac\n”);

 break;

…

 default:

 printf(“UNKNOWN ALERT DESCRIPTION %d (!!!)\n”, alert->description);

 break;

 }

TLS Certifi cate
According to the handshake protocol, the next message after the server hello
ought to be the certifi cate that both identifi es the server and provides a public
key for key exchange. The client, then, should accept the server hello and imme-
diately start waiting for the certifi cate message that follows.

c06.indd 324c06.indd 324 12/10/2010 9:45:32 AM12/10/2010 9:45:32 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 325

The designers of TLS recognized that it is somewhat wasteful to rigidly
separate messages this way, so the TLS format actually allows either side to
concatenate multiple handshake messages within a single TLS message. This
capability was one of the big benefi ts of TLS over SSLv2. Remember the TLS
header that included a message length which was then followed by the seemingly
superfl uous handshake header that included essentially the same length? This is
why it was done this way; a single TLS header can identify multiple handshake
messages, each with its own independent length. Most TLS implementations
do take advantage of this optimization, so you must be prepared to handle it.

This slightly complicates the design of receive_tls_msg, though. The cli-
ent must now be prepared to process multiple handshake messages within a
single TLS message. Modify the content_handshake handler to keep process-
ing the TLS message until there are no more handshake messages remaining
as in Listing 6-28.

Listing 6-28: “tls.c” receive_tls_msg with multiple handshake support

 if (message.type == content_handshake)

 {

 while ((read_pos - decrypted_message) < decrypted_length)

 {

 Handshake handshake;

 read_pos = read_buffer((void *) &handshake.msg_type,

 (void *) read_pos, 1);

…

 switch (handshake.msg_type)

 {

…

 case certificate:

 read_pos = parse_x509_chain(read_pos, handshake.length,

 ¶meters->server_public_key);

 if (read_pos == NULL)

 {

 printf(“Rejected, bad certificate\n”);

 send_alert_message(connection, bad_certificate);

 return -1;

 }

 break;

Notice that the call is made, not directly to the parse_x509_certificate
function developed in Chapter 5, but to a new function parse_x509_chain.
TLS actually allows the server to pass in not just its own certifi cate, but the
signing certifi cate of its certifi cate, and the signing certifi cate of that certifi cate,
and so on, until a top-level, self-signed certifi cate is reached. It’s up to the client
to determine whether or not it trusts the top-level certifi cate. Of course, each
certifi cate after the fi rst should be checked to ensure that it includes the “is a
certifi cate authority” extension described in Chapter 5 as well.

c06.indd 325c06.indd 325 12/10/2010 9:45:32 AM12/10/2010 9:45:32 AM

326 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

Therefore, the TLS certifi cate handshake message starts off with the length of
the certifi cate chain so that the receiver knows how many bytes of certifi cate fol-
low. If you are so inclined, you can infer this from the length of the handshake
message and the ASN.1 structure declaration that begins each certifi cate, but
explicitness can never hurt.

Certifi cate chain parsing, then, consists of reading the length of the certifi -
cate chain from the message, and then reading each certifi cate in turn, using
each to verify the last. Of course, the fi rst must also be verifi ed for freshness
and domain name validity. At a bare minimum, though, in order to complete
a TLS handshake, you need to read and store the public key contained within
the certifi cate because it’s required to perform the key exchange. Listing 6-29
shows a bare-bones certifi cate chain parsing routine that doesn’t actually verify
the certifi cate signatures or check validity parameters.

Listing 6-29: “x509.c” parse_x509_chain

/**

 * This is called by “receive_server_hello” when the “certificate” PDU

 * is encountered. The input to this function should be a certificate chain.

 * The most important certificate is the first one, since this contains the

 * public key of the subject as well as the DNS name information (which

 * has to be verified against).

 * Each subsequent certificate acts as a signer for the previous certificate.

 * Each signature is verified by this function.

 * The public key of the first certificate in the chain will be returned in

 * “server_public_key” (subsequent certificates are just needed for signature

 * verification).

 * TODO verify signatures.

 */

char *parse_x509_chain(unsigned char *buffer,

 int pdu_length,

 public_key_info *server_public_key)

{

 int pos;

 signed_x509_certificate certificate;

 unsigned int chain_length, certificate_length;

 unsigned char *ptr;

 ptr = buffer;

 pos = 0;

 // TODO this won’t work on a big-endian machine

 chain_length = (*ptr << 16) | (*(ptr + 1) << 8) | (*(ptr + 2));

 ptr += 3;

 // The chain length is actually redundant since the length of the PDU has

 // already been input.

 assert (chain_length == (pdu_length - 3));

c06.indd 326c06.indd 326 12/10/2010 9:45:32 AM12/10/2010 9:45:32 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 327

 while ((ptr - buffer) < pdu_length)

 {

 // TODO this won’t work on a big-endian machine

 certificate_length = (*ptr << 16) | (*(ptr + 1) << 8) |

 (*(ptr + 2));

 ptr += 3;

 init_x509_certificate(&certificate);

 parse_x509_certificate((void *) ptr, certificate_length, &certificate);

 if (!pos++)

 {

 server_public_key->algorithm =

 certificate.tbsCertificate.subjectPublicKeyInfo.algorithm;

 switch (server_public_key->algorithm)

 {

 case rsa:

 server_public_key->rsa_public_key.modulus = (huge *) malloc(sizeof(

 huge));

 server_public_key->rsa_public_key.exponent = (huge *) malloc(

 sizeof(huge));

 set_huge(server_public_key->rsa_public_key.modulus, 0);

 set_huge(server_public_key->rsa_public_key.exponent, 0);

 copy_huge(server_public_key-> rsa_public_key.modulus,

 certificate.tbsCertificate.subjectPublicKeyInfo.

 rsa_public_key.modulus);

 copy_huge(server_public_key-> rsa_public_key.exponent,

 certificate.tbsCertificate.subjectPublicKeyInfo.

 rsa_public_key.exponent);

 break;

 default:

 break;

 }

 }

 ptr += certificate_length;

 // TODO compute the hash of the certificate so that it can be validated by

 // the next one

 free_x509_certificate(&certificate);

 }

 return ptr;

}

This blindly accepts whatever certifi cate is presented by the server. It doesn’t
check the domain name parameter of the subject name, doesn’t check to see
that it’s signed by a trusted certifi cate authority, and doesn’t even verify that the

c06.indd 327c06.indd 327 12/10/2010 9:45:32 AM12/10/2010 9:45:32 AM

328 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

validity period of the certifi cate contains the current date. Clearly, an industrial-
strength TLS implementation needs to do at least all of these things.

TLS Server Hello Done
After the certifi cate the server should send a hello done message — at least that’s
what happens in the most common type of TLS handshake being examined here.
This indicates that the server will not send any more unencrypted handshake
messages on this connection.

This may seem surprising, but if you think about it, there’s nothing more
for the server to do. It has chosen a cipher suite acceptable to the client and
provided enough information — the public key — to complete a key exchange
in that cipher suite. It’s incumbent on the client to now come up with a key and
exchange it. Parsing the server hello done message is trivial, as in Listing 6-30.

Listing 6-30: “tls.c” receive_tls_message with server hello done support

 switch (handshake.msg_type)

 {

…

 case server_hello_done:

 parameters->server_hello_done = 1;

 break;

As you can see, there’s really nothing there; the server hello done message
is just a marker and contains no data. Note that this will almost defi nitely be
piggy-backed onto a longer message that contains the server hello and the
server certifi cate.

This routine just sets a fl ag indicating that the server hello done message has
been received. Add this fl ag to TLSParameters as shown in Listing 6-31; it’s used
internally to track the state of the handshake.

Listing 6-31: “tls.h” TLSParameters with state tracking included

typedef struct

{

…

 int server_hello_done;

}

TLSParameters;

Finally, recall that this whole process was being controlled by tls_connect.
It sent a client hello message and then received the server hello. Due to piggy-
backing of handshake messages, though, that call to receive probably picked up
all three expected messages and processed them, culminating in the setting of
server_hello_done. This isn’t guaranteed, though; the server could legitimately
split these up into three separate messages (the server you develop in the next

c06.indd 328c06.indd 328 12/10/2010 9:45:32 AM12/10/2010 9:45:32 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 329

chapter does this, in fact). To handle either case, modify tls_connect to keep
receiving TLS messages until server_hello_done is set, as in Listing 6-32.

Listing 6-32: “tls.c” tls_connect multiple handshake messages

 // Step 2. Receive the server hello response (will also have gotten

 // the server certificate along the way)

 parameters->server_hello_done = 0;

 while (!parameters->server_hello_done)

 {

 if (receive_tls_msg(connection, parameters) < 0)

 {

 perror(“Unable to receive server hello”);

 return 2;

 }

 }

TLS Client Key Exchange
Now it’s time for the client to do a key exchange, which is the most critical part
of the whole TLS handshake. You might reasonably expect that if RSA is used
as a key exchange method then the client selects a set of keys, encrypts them,
and sends them on. If DH was used as a key exchange method, both sides would
agree on Z and that would be used as the key. As it turns out, however, TLS
mandates a bit more complexity here; the key exchange is used to exchange
a premaster secret, which is expanded using a pseudo-random function into a
master secret which is used for keying material. This procedure guards against
weaknesses in the client’s key generation routines.

Sharing Secrets Using TLS PRF (Pseudo-Random Function)

In several places during the TLS negotiation, the algorithm calls for a lot of data
to be generated deterministically so that both sides agree on the same result,
based on a seed. This process is referred to as pseudo-random, just like the soft-
ware pseudo-random generator that’s built into every C implementation. TLS
has a fairly complex pseudo-random function called the PRF that generates data
from a seed in such a way that two compliant implementations, given the same
seed data, generate the same data, but that the output is randomly distributed
and follows no observable pattern.

It should come as no surprise at this point that this pseudo-random function
is based on secure hash algorithms, which deterministically generate output
from input in a non-predictable way. TLS’s PRF is actually based on the HMAC
algorithm. It takes as input three values: the seed, a label, and a secret. The seed
and the label are both used as input to the HMAC algorithm.

The PRF for TLS v1.0 involves both MD5 and SHA-1 (and the use of these
specifi c hash algorithms is hard-coded into the specifi cation). MD5 and SHA-1

c06.indd 329c06.indd 329 12/10/2010 9:45:32 AM12/10/2010 9:45:32 AM

330 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

are each used, along with the HMAC algorithm specifi ed in Chapter 4, to gen-
erate an arbitrary quantity of output independently. Then the results of both
the MD5 HMAC and the SHA HMAC are XORed together to produce the fi nal
result. The secret is split up so that the MD5 routine gets the fi rst half and the
SHA routine gets the second half:

Consider using the triple (“abcd”, “efgh”, “ijkl”) to generate 40 bytes of output
through the PRF as shown in Figure 6-7.

Figure 6-7: TLS’s pseudo-random function

“abcd”

secret

“efgh”

label

“ijkl”

seed

PRF

P_MD5

final result

P_SHA1

½ secret, label + seed
“cd”, “efghijkl”, 40

½ secret, label + seed
“ab”, “efghijkl”, 40

So what are these P_MD5 and P_SHA1 blocks that are XORed together to pro-
duce the fi nal result? Well, if you recall from Chapter 4, MD5 produces 16 bytes
of output, regardless of input length, and SHA-1 produces 20. If you want to
produce an arbitrary amount of data based on the secret, the label, and the
seed using these hashing algorithms, you have to call them more than once. Of
course, you have to call them with different data each time, otherwise you get
the same 16 bytes back each time. P_[MD5|SHA1] actually use the HMAC algo-
rithm, again, to produce the input to the fi nal HMAC algorithm. So what goes
into the HMAC algorithms that go into the HMAC algorithms? More HMAC

c06.indd 330c06.indd 330 12/10/2010 9:45:32 AM12/10/2010 9:45:32 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 331

output, of course! The seed is HMAC’ed once to produce the HMAC input for
the fi rst n bytes (where n is 16 or 20 depending on the algorithm), and then that
is HMAC’ed again to produce the input for the next n bytes.

All of this sounds almost self-referential, but it actually does work. Figure
6-8 shows the P_MD5 algorithm, illustrated out to three iterations (to produce 48
= 16 * 3 bytes of output).

Figure 6-8: P_MD5

HMAC_MD5seed(“efghijkl”)

seed(“efghijkl”) seed(“efghijkl”)

A(1)

secret(“ab”)

secret(“ab”) secret(“ab”)

A(2) A(3)

HMAC_MD5 HMAC_MD5

output

HMAC_MD5

HMAC_MD5 HMAC_MD5

So, given a secret of “ab” and a seed of “efghijkl”, A(1) is HMAC_MD5(“ab”,
“efghijkl”), or 0xefe3a7027ddbdb424cabd0935bfb3898. A(2), then, is HMAC_
MD5(“ab”, 0xefe3a7027ddbdb424cabd0935bfb3898), or 0xda55f448c81b
93ce1231cb7668bee2a2. Because you need 40 bytes of output, and MD5 only
produces 16 per iteration, you need to iterate three times to produce 48 bytes
and throw away the last 8. This means that you need A(3) as well, which
is HMAC_MD5(“ab”, A(2) = 0xda55f448c81b93ce1231cb7668bee2a2), or
0xbfa8ec7eda156ec26478851358c7a1fa.

With all the As computed, you now have enough information to feed into the
“real” HMAC operations that generate the requisite 48 bytes of output. The fi nal
48 bytes of output (remembering that you discard the last 8) are

HMAC(“ab”, A(1) . “efghijkl”) .

HMAC(“ab”, A(2) . “efghijkl”) .

HMAC(“ab”, A(3), “efghijkl”)

c06.indd 331c06.indd 331 12/10/2010 9:45:32 AM12/10/2010 9:45:32 AM

332 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

Notice that the secret and the seed are constant throughout each HMAC
operation; the only difference in each are the A values. These operations produce
the 48 output bytes:

0x1b6ca10d18faddfbeb92b2d95f55ce2607d6c81ebe4b96d

1bec81813b9a0275725564781eda73ac521548d7d1f982c17

P_SHA1 is identical. It just replaces the SHA-1 hash algorithm with the MD5
hash algorithm. Because SHA-1 produces 20 bytes of output per iteration, though,
it’s only necessary to iterate twice and none of the output is discarded. P_SHA
is fed the exact same seed, but only the last half of the secret, as diagrammed
in Figure 6-9.

 Figure 6-9: P_SHA1

HMAC_SHAseed(“efghijkl”)

seed(“efghijkl”)

A(1)

secret(“cd”)

secret(“cd”)

A(2)

HMAC_SHA HMAC_SHA

output

HMAC_SHA

This produces the 40 bytes:
0xcbb3de5db9295cdb68eb1ab18f88939cb3146849fe167cf8f9ec5f131790005d7f27b

2515db6c590

Finally, these two results are XORed together to produce the 40-byte pseudo-
random combination:

0xd0df7f50a1d381208379a868d0dd5dbab4c2a057405dea2947244700ae30270
a5a71f5d0b011ff55

Notice that there’s no predictable repetition here, and no obvious correlation
with the input data. This procedure can be performed to produce any arbitrarily

c06.indd 332c06.indd 332 12/10/2010 9:45:33 AM12/10/2010 9:45:33 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 333

large amount of random data that two compliant implementations, both of which
share the secret, can reproduce consistently.

In code, this is shown in Listing 6-33.

Listing 6-33: “prf.c” PRF function

/**

 * P_MD5 or P_SHA, depending on the value of the “new_digest” function

 * pointer.

 * HMAC_hash(secret, A(1) + seed) + HMAC_hash(secret, A(2) + seed) + ...

 * where + indicates concatenation and A(0) = seed, A(i) =

 * HMAC_hash(secret, A(i - 1))

 */

static void P_hash(const unsigned char *secret,

 int secret_len,

 const unsigned char *seed,

 int seed_len,

 unsigned char *output,

 int out_len,

 void (*new_digest)(digest_ctx *context))

{

 unsigned char *A;

 int hash_len; // length of the hash code in bytes

 digest_ctx A_ctx, h;

 int adv;

 int i;

 new_digest(&A_ctx);

 hmac(secret, secret_len, seed, seed_len, &A_ctx);

 hash_len = A_ctx.hash_len * sizeof(int);

 A = malloc(hash_len + seed_len);

 memcpy(A, A_ctx.hash, hash_len);

 memcpy(A + hash_len, seed, seed_len);

 i = 2;

 while (out_len > 0)

 {

 new_digest(&h);

 // HMAC_Hash(secret, A(i) + seed)

 hmac(secret, secret_len, A, hash_len + seed_len, &h);

 adv = (h.hash_len * sizeof(int)) < out_len ?

 h.hash_len * sizeof(int) : out_len;

 memcpy(output, h.hash, adv);

 out_len -= adv;

 output += adv;

 // Set A for next iteration

 // A(i) = HMAC_hash(secret, A(i-1))

 new_digest(&A_ctx);

 hmac(secret, secret_len, A, hash_len, &A_ctx);

 memcpy(A, A_ctx.hash, hash_len);

(Continued)

c06.indd 333c06.indd 333 12/10/2010 9:45:33 AM12/10/2010 9:45:33 AM

334 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

 }

 free(A);

}

/**

 * P_MD5(S1, label + seed) XOR P_SHA1(S2, label + seed);

 * where S1 & S2 are the first & last half of secret

 * and label is an ASCII string. Ignore the null terminator.

 *

 * output must already be allocated.

 */

void PRF(const unsigned char *secret,

 int secret_len,

 const unsigned char *label,

 int label_len,

 const unsigned char *seed,

 int seed_len,

 unsigned char *output,

 int out_len)

{

 int i;

 int half_secret_len;

 unsigned char *sha1_out = (unsigned char *) malloc(out_len);

 unsigned char *concat = (unsigned char *) malloc(label_len + seed_len);

 memcpy(concat, label, label_len);

 memcpy(concat + label_len, seed, seed_len);

 half_secret_len = (secret_len / 2) + (secret_len % 2);

 P_hash(secret, half_secret_len, concat, (label_len + seed_len),

 output, out_len, new_md5_digest);

 P_hash(secret + (secret_len / 2), half_secret_len, concat,

 (label_len + seed_len), sha1_out, out_len, new_sha1_digest);

 for (i = 0; i < out_len; i++)

 {

 output[i] ^= sha1_out[i];

 }

 free(sha1_out);

 free(concat);

}

To see the PRF in action, put together a short test main routine in Listing 6-34.

Listing 6-34: “prf.c” main routine

#ifdef TEST_PRF

int main(int argc, char *argv[])

c06.indd 334c06.indd 334 12/10/2010 9:45:33 AM12/10/2010 9:45:33 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 335

{

 unsigned char *output;

 int out_len, i;

 int secret_len;

 int label_len;

 int seed_len;

 unsigned char *secret;

 unsigned char *label;

 unsigned char *seed;

 if (argc < 5)

 {

 fprintf(stderr,

 “usage: %s [0x]<secret> [0x]<label> [0x]<seed> <output len>\n”,

 argv[0]);

 exit(0);

 }

 secret_len = hex_decode(argv[1], &secret);

 label_len = hex_decode(argv[2], &label);

 seed_len = hex_decode(argv[3], &seed);

 out_len = atoi(argv[4]);

 output = (unsigned char *) malloc(out_len);

 PRF(secret, secret_len,

 label, label_len,

 seed, seed_len,

 output, out_len);

 for (i = 0; i < out_len; i++)

 {

 printf(“%.02x”, output[i]);

 }

 printf(“\n”);

 free(secret);

 free(label);

 free(seed);

 free(output);

 return 0;

}

#endif

You can try out the PRF, although it’s not earth-shatteringly interesting:

[jdavies@localhost ssl]$./prf secret label seed 20

b5baf4722b91851a8816d22ebd8c1d8cc2e94d55

c06.indd 335c06.indd 335 12/10/2010 9:45:33 AM12/10/2010 9:45:33 AM

336 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

Creating Reproducible, Unpredictable Symmetric Keys with
Master Secret Computation

The client selects the premaster secret and sends it to the server (or agrees on it,
in the case of DH key exchange). The premaster secret is, as the name implies,
secret — in fact, it’s really the only important bit of handshake material that’s
hidden from eavesdroppers. However, the premaster secret itself isn’t used as
a session key; this would open the door to replay attacks. The premaster secret
is combined with the server random and client random values exchanged earlier
in the handshake and then run through the PRF to generate the master secret,
which is used, indirectly, as the keying material for the symmetric encryption
algorithms and MACs that actually protect the data in transit.

Given, for example, a premaster secret
030102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e

1f202122232425262728292a2b2c2d2e2f

a client random

4af0a38100

and a server random

4af0a3818ff72033b852b9b9c09e7d8045ab270eabc74e11d565ece018c9a5ec

you would compute the fi nal master secret from which the actual keys are
derived using — you guessed it — the PRF.

Remember that the PRF takes three parameters: a secret, a label, and a seed.
The premaster secret is the secret, the label is just the unimaginative text string
“master secret”, and the seed is the client random and the server random
concatenated one after the other, client random fi rst.

The PRF is the XOR of the SHA-1 and the MD5 HMACs of the secret and
the label concatenated with the seed, expanded out iteratively. With the PRF
function defi ned above, master secret expansion is actually simple to code, as
in Listing 6-35.

Listing 6-35: “tls.c” master secret computation

/**

 * Turn the premaster secret into an actual master secret (the

 * server side will do this concurrently) as specified in section 8.1:

 * master_secret = PRF(pre_master_secret, “master secret”,

 * ClientHello.random + ServerHello.random);

 * (premaster_secret, parameters);

 * Note that, with DH, the master secret len is determined by the generator (p)

 * value.

 */

static void compute_master_secret(const unsigned char *premaster_secret,

 int premaster_secret_len,

 TLSParameters *parameters)

c06.indd 336c06.indd 336 12/10/2010 9:45:33 AM12/10/2010 9:45:33 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 337

{

 const char *label = “master secret”;

 PRF(premaster_secret, premaster_secret_len,

 label, strlen(label),

 // Note - cheating, since client_random & server_random are defined

 // sequentially in the structure

 parameters->client_random, RANDOM_LENGTH * 2,

 parameters->master_secret, MASTER_SECRET_LENGTH);

}

RSA Key Exchange

After the server hello done has been received, the server believes that the client
has enough information to complete the key exchange specifi ed in the selected
cipher suite. If the key exchange is RSA, this means that the client now has the
server’s public key. It’s the client’s problem whether to trust that key or not,
based on the certifi cate chain.

The client should thus send a key exchange as shown in Listing 6-36, in
tls_connect.

Listing 6-36: “tls.c” tls_connect with key exchange

 // Step 3. Send client key exchange, change cipher spec (7.1) and encrypted

 // handshake message

 if (!(send_client_key_exchange(connection, parameters)))

 {

 perror(“Unable to send client key exchange”);

 return 3;

 }

send_client_key_exchange is slightly complex because RSA and DH key
exchanges are so different. For now, just focus on RSA in Listing 6-37.

Listing 6-37: “tls.c” send_client_key_exchange

/**

 * Send the client key exchange message, as detailed in section 7.4.7

 * Use the server’s public key (if it has one) to encrypt a key. (or DH?)

 * Return true if this succeeded, false otherwise.

 */

static int send_client_key_exchange(int connection, TLSParameters *parameters)

{

 unsigned char *key_exchange_message;

 int key_exchange_message_len;

 unsigned char *premaster_secret;

 int premaster_secret_len;

 switch (parameters->pending_send_parameters.suite) {

 case TLS_NULL_WITH_NULL_NULL:

 // XXX this is an error, exit here

 break;

(Continued)

c06.indd 337c06.indd 337 12/10/2010 9:45:33 AM12/10/2010 9:45:33 AM

338 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

 case TLS_RSA_WITH_NULL_MD5:

 case TLS_RSA_WITH_NULL_SHA:

…

 case TLS_RSA_WITH_DES_CBC_SHA:

 case TLS_RSA_WITH_3DES_EDE_CBC_SHA:

 case TLS_RSA_WITH_AES_128_CBC_SHA:

 case TLS_RSA_WITH_AES_256_CBC_SHA:

 premaster_secret_len = MASTER_SECRET_LENGTH;

 premaster_secret = malloc(premaster_secret_len);

 key_exchange_message_len = rsa_key_exchange(

 ¶meters->server_public_key.rsa_public_key,

 premaster_secret, &key_exchange_message);

 break;

 default:

 return 0;

 }

 if (send_handshake_message(connection, client_key_exchange,

 key_exchange_message, key_exchange_message_len))

 {

 free(key_exchange_message);

 return 0;

 }

 free(key_exchange_message);

 // Now, turn the premaster secret into an actual master secret (the

 // server side will do this concurrently).

 compute_master_secret(premaster_secret, premaster_secret_len, parameters);

 // XXX - for security, should also “purge” the premaster secret from

 // memory.

 calculate_keys(parameters);

 free(premaster_secret);

 return 1;

}

The goal of the key exchange is to exchange a premaster secret, turn it into a
master secret, and use that to calculate the keys that are used for the remainder
of the connection. As you can see, send_client_key_exchange starts by check-
ing if the key exchange method is RSA. If the key exchange method is RSA,
send_client_key_exchange calls rsa_key_exchange to build the appropriate
handshake message. compute_master_secret has already been examined in
Listing 6-35, and calculate_keys is examined later in Listing 6-41.

This routine goes ahead and lets the rsa_key_exchange function select the
premaster secret. There’s no reason why send_client_key_exchange couldn’t

c06.indd 338c06.indd 338 12/10/2010 9:45:33 AM12/10/2010 9:45:33 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 339

do this, and pass the premaster secret into rsa_key_exchange. However, this
confi guration makes DH key exchange easier to support because the upcom-
ing dh_key_exchange necessarily has to select the premaster secret, due to the
nature of the Diffi e-Hellman algorithm.

The rsa_key_exchange message is built in Listing 6-38.

Listing 6-38: “tls.c” rsa_key_exchange

int rsa_key_exchange(rsa_key *public_key,

 unsigned char *premaster_secret,

 unsigned char **key_exchange_message)

{

 int i;

 unsigned char *encrypted_premaster_secret = NULL;

 int encrypted_length;

 // first two bytes are protocol version

 premaster_secret[0] = TLS_VERSION_MAJOR;

 premaster_secret[1] = TLS_VERSION_MINOR;

 for (i = 2; i < MASTER_SECRET_LENGTH; i++)

 {

 // XXX SHOULD BE RANDOM!

 premaster_secret[i] = i;

 }

 encrypted_length = rsa_encrypt(premaster_secret, MASTER_SECRET_LENGTH,

 &encrypted_premaster_secret, public_key);

 *key_exchange_message = (unsigned char *) malloc(encrypted_length + 2);

 (*key_exchange_message)[0] = 0;

 (*key_exchange_message)[1] = encrypted_length;

 memcpy((*key_exchange_message) + 2, encrypted_premaster_secret,

 encrypted_length);

 free(encrypted_premaster_secret);

 return encrypted_length + 2;

}

This function takes as input the RSA public key, generates a “random” pre-
master secret, encrypts it, and returns both the premaster secret and the key
exchange message. The format of the key exchange message is straightforward;
it’s just a two-byte length followed by the PKCS #1 padded, RSA encrypted
premaster secret. Notice that the specifi cation mandates that the fi rst two bytes
of the premaster secret must be the TLS version — in this case, 3.1. In theory,
the server is supposed to verify this. In practice, few servers do the verifi cation
because there are a few buggy TLS implementations fl oating around that they
want to remain compatible with.

c06.indd 339c06.indd 339 12/10/2010 9:45:33 AM12/10/2010 9:45:33 AM

340 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

Now the only thing left to do is to turn the master secret into a set of keys.
The amount, and even the type, of keying material needed depends on the
cipher suite. If the cipher suite uses SHA-1 HMAC, the MAC requires a 20-byte
key; if MD5, it requires a 16-byte key. If the cipher suite uses DES, it requires an
8-byte key; if AES-256, it requires a 32-byte key. If the encryption algorithm uses
CBC, initialization vectors are needed; if the algorithm is a stream algorithm,
no initialization vector is involved.

Rather than build an enormous switch/case statement for each possibility,
defi ne a CipherSuite structure as in Listing 6-39.

Listing 6-39: “tls.h” CipherSuite structure

typedef struct

{

 CipherSuiteIdentifier id;

 int block_size;

 int IV_size;

 int key_size;

 int hash_size;

 void (*bulk_encrypt)(const unsigned char *plaintext,

 const int plaintext_len,

 unsigned char ciphertext[],

 void *iv,

 const unsigned char *key);

 void (*bulk_decrypt)(const unsigned char *ciphertext,

 const int ciphertext_len,

 unsigned char plaintext[],

 void *iv,

 const unsigned char *key);

 void (*new_digest)(digest_ctx *context);

}

CipherSuite;

This includes everything you need to know about a cipher suite; by now,
the utility of declaring the encrypt, decrypt, and hash functions with identical
signatures in the previous chapters should be clear. Now, for each supported
cipher suite, you need to generate a CipherSuite instance and index it as shown
in Listing 6-40.

Listing 6-40: “tls.c” cipher suites list

static CipherSuite suites[] =

{

 { TLS_NULL_WITH_NULL_NULL, 0, 0, 0, 0, NULL, NULL, NULL },

 { TLS_RSA_WITH_NULL_MD5, 0, 0, 0, MD5_BYTE_SIZE, NULL, NULL, new_md5_digest },

 { TLS_RSA_WITH_NULL_SHA, 0, 0, 0, SHA1_BYTE_SIZE, NULL, NULL, new_sha1_digest },

 { TLS_RSA_EXPORT_WITH_RC4_40_MD5, 0, 0, 5, MD5_BYTE_SIZE, rc4_40_encrypt,

c06.indd 340c06.indd 340 12/10/2010 9:45:33 AM12/10/2010 9:45:33 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 341

 rc4_40_decrypt, new_md5_digest },

 { TLS_RSA_WITH_RC4_128_MD5, 0, 0, 16, MD5_BYTE_SIZE, rc4_128_encrypt,

 rc4_128_decrypt, new_md5_digest },

 { TLS_RSA_WITH_RC4_128_SHA, 0, 0, 16, SHA1_BYTE_SIZE, rc4_128_encrypt,

 rc4_128_decrypt, new_sha1_digest },

 { TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5, 0, 0, 0, MD5_BYTE_SIZE, NULL, NULL,

 new_md5_digest },

 { TLS_RSA_WITH_IDEA_CBC_SHA, 0, 0, 0, SHA1_BYTE_SIZE, NULL, NULL,

 new_sha1_digest },

 { TLS_RSA_EXPORT_WITH_DES40_CBC_SHA, 0, 0, 0, SHA1_BYTE_SIZE, NULL, NULL,

 new_sha1_digest },

 { TLS_RSA_WITH_DES_CBC_SHA, 8, 8, 8, SHA1_BYTE_SIZE, des_encrypt, des_decrypt,

 new_sha1_digest },

 { TLS_RSA_WITH_3DES_EDE_CBC_SHA, 8, 8, 24, SHA1_BYTE_SIZE, des3_encrypt,

 des3_decrypt, new_sha1_digest },

…

Because these instances are referred to by position, you have to list each one,
even if it’s not supported. Notice, for example, that TLS_RSA_WITH_IDEA_CBC_
SHA is declared, but left empty. It is never used by this implementation, but by
allocating space for it, the rest of the code is allowed to refer to elements in the
CipherSuite structure by just referencing the suites array.

If you wanted to create a key for a 3DES cipher suite, for example, you could
invoke

suites[TLS_RSA_WITH_3DES_EDE_CBC_SHA].key_size

In fact, because the CipherSuiteIdentifier was added to ProtectionParameters,
the key computation code can just invoke

suites[parameters->suite].key_size

when it needs to know how much keying material to retrieve from the master
secret.

Now, recall that MASTER_SECRET_LENGTH is 48 bytes, regardless of cipher suite.
If the selected cipher suite is AES 256, CBC, with SHA-1, you need 136 bytes of
keying material — 32 bytes each for the client and server keys, 16 bytes each for
the initialization vectors, and 20 bytes each for the MAC secrets. Therefore, the
master secret itself must be expanded. As you can probably guess, this is done
via the PRF; the only difference between the use of the PRF in key calculation
and the use of the PRF in master secret expansion is that the label passed in is
“key expansion” rather than “master secret”.

The key calculation routine is shown in Listing 6-41.

Listing 6-41: “tls.c” calculate_keys

/**

 6.3: Compute a key block, including MAC secrets, keys, and IVs for client & server.

Notice that the seed is server random followed by client random (whereas for master

secret computation, it’s client random followed by server random). Sheesh!

(Continued)

c06.indd 341c06.indd 341 12/10/2010 9:45:33 AM12/10/2010 9:45:33 AM

342 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

 */

static void calculate_keys(TLSParameters *parameters)

{

 // XXX assuming send suite & recv suite will always be the same

 CipherSuite *suite = &(suites[parameters->pending_send_parameters.suite]);

 const char *label = “key expansion”;

 int key_block_length =

 suite->hash_size * 2 +

 suite->key_size * 2 +

 suite->IV_size * 2;

 char seed[RANDOM_LENGTH * 2];

 unsigned char *key_block = (unsigned char *) malloc(key_block_length);

 unsigned char *key_block_ptr;

 ProtectionParameters *send_parameters = ¶meters->pending_send_parameters;

 ProtectionParameters *recv_parameters = ¶meters->pending_recv_parameters;

 memcpy(seed, parameters->server_random, RANDOM_LENGTH);

 memcpy(seed + RANDOM_LENGTH, parameters->client_random, RANDOM_LENGTH);

 PRF(parameters->master_secret, MASTER_SECRET_LENGTH,

 label, strlen(label),

 seed, RANDOM_LENGTH * 2,

 key_block, key_block_length);

 send_parameters->MAC_secret = (unsigned char *) malloc(suite->hash_size);

 recv_parameters->MAC_secret = (unsigned char *) malloc(suite->hash_size);

 send_parameters->key = (unsigned char *) malloc(suite->key_size);

 recv_parameters->key = (unsigned char *) malloc(suite->key_size);

 send_parameters->IV = (unsigned char *) malloc(suite->IV_size);

 recv_parameters->IV = (unsigned char *) malloc(suite->IV_size);

 key_block_ptr = read_buffer(send_parameters->MAC_secret, key_block,

 suite->hash_size);

 key_block_ptr = read_buffer(recv_parameters->MAC_secret, key_block_ptr,

 suite->hash_size);

 key_block_ptr = read_buffer(send_parameters->key, key_block_ptr,

 suite->key_size);

 key_block_ptr = read_buffer(recv_parameters->key, key_block_ptr,

 suite->key_size);

 key_block_ptr = read_buffer(send_parameters->IV, key_block_ptr,

 suite->IV_size);

 key_block_ptr = read_buffer(recv_parameters->IV, key_block_ptr,

 suite->IV_size);

 free(key_block);

}

NOTE One interesting point to note about this key generation routine: It
assumes that all keys are equally valid. If you recall from Chapter 2, strictly
speaking, DES requires that each byte of its keys be parity adjusted. If you

c06.indd 342c06.indd 342 12/10/2010 9:45:34 AM12/10/2010 9:45:34 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 343

were implementing TLS with a strictly correct DES implementation, you’d need
to recognize this fact and parity adjust the generated key (e.g. ensure an even
number of 1 bits), or you’d get an inexplicable error when you tried to use it.

Diffi e-Hellman Key Exchange

TLS 1.0 supports Diffi e-Hellman key exchange in addition to RSA key exchange.
Remember that, in Diffi e-Hellman key exchange, neither side gets to pick the
negotiated secret, but both sides end up computing the same value. This works
out in the context of TLS key exchange; both sides can agree on the premaster
secret, which is expanded to the master secret, which is expanded to the key-
ing material.

Add support for DH key exchange in send_client_key_exchange as shown
in Listing 6-42.

Listing 6-42: “tls.c” send_client_key_exchange with Diffi e-Hellman key exchange

 switch (parameters->pending_send_parameters.suite) {

 case TLS_NULL_WITH_NULL_NULL:

 // XXX this is an error, exit here

 break;

…

 case TLS_DH_DSS_EXPORT_WITH_DES40_CBC_SHA:

 case TLS_DH_DSS_WITH_DES_CBC_SHA:

 case TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA:

…

 premaster_secret_len = parameters->server_dh_key.p.size;

 premaster_secret = malloc(premaster_secret_len);

 key_exchange_message_len = dh_key_exchange(¶meters->server_dh_key,

 premaster_secret, &key_exchange_message);

 break;

The Diffi e-Hellman key exchange procedure continues as described in Chapter 3.
Recall that you didn’t code a specifi c Diffi e-Hellman routine because it was
essentially just a couple of calls to mod_pow. These calls can be integrated into
a premaster secret exchange as shown in Listing 6-43.

Listing 6-43: “tls.c” dh_key_exchange

/**

 * Just compute Yc = g^a % p and return it in “key_exchange_message”. The

 * premaster secret is Ys ^ a % p.

 */

int dh_key_exchange(dh_key *server_dh_key,

 unsigned char *premaster_secret,

 unsigned char **key_exchange_message)

{

 huge Yc;

 huge Z;

(Continued)

c06.indd 343c06.indd 343 12/10/2010 9:45:34 AM12/10/2010 9:45:34 AM

344 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

 huge a;

 int message_size;

 short transmit_len;

 // TODO obviously, make this random, and much longer

 set_huge(&a, 6);

 mod_pow(&server_dh_key->g, &a, &server_dh_key->p, &Yc);

 mod_pow(&server_dh_key->Y, &a, &server_dh_key->p, &Z);

 // Now copy Z into premaster secret and Yc into key_exchange_message

 memcpy(premaster_secret, Z.rep, Z.size);

 message_size = Yc.size + 2;

 transmit_len = htons(Yc.size);

 *key_exchange_message = malloc(message_size);

 memcpy(*key_exchange_message, &transmit_len, 2);

 memcpy(*key_exchange_message + 2, Yc.rep, Yc.size);

 free_huge(&Yc);

 free_huge(&Z);

 free_huge(&a);

 return message_size;

}

If you’ve been following closely, you may be wondering where the server’s
dh_key value — the p, g and Y values that this key exchange relies on — come
from? Although it’s possible to get one from a certifi cate (it’s offi cially defi ned,
anyway), practically speaking this never happens. Instead, there’s a specifi c
server key exchange handshake type where the server can provide these values
as well as authenticate them. This is examined in Chapter 8.

T LS Change Cipher Spec
After the key exchange has been successfully completed, the client should send
a change cipher spec message. Although change cipher spec can never be legally
sent outside of the context of a handshake, it’s not declared as a handshake
message. Why? According to the specifi cation,

“To help avoid pipeline stalls, ChangeCipherSpec is an independent TLS Protocol
content type, and is not actually a TLS handshake message.”

This isn’t made particularly clear, but it appears that they’re concerned with
the possibility of an implementation that automatically piggy-backs handshake
messages into one large TLS message doing so with change cipher spec mes-
sages and having the other side lose this.

The change cipher spec message is a marker message, just like server hello
done was, that doesn’t include any data. It is a major milestone in the handshake
process, though, because the reception of a change cipher spec message tells the

c06.indd 344c06.indd 344 12/10/2010 9:45:34 AM12/10/2010 9:45:34 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 345

other side that the key exchange has completed, and every subsequent message
sent by this peer is encrypted and authenticated using it. Note that neither side
should assume that the negotiated parameters are in place before receiving a
change cipher spec message — it’s entirely possible that, although a change
cipher spec message is expected, an alert could appear in plaintext instead.

So, at this point in the key exchange, the client should send a change cipher
spec and make its pending send parameters active, but not touch the pending
receive parameters. This is shown in Listing 6-44.

Listing 6-44: “tls.c” send_change_cipher_spec

static int send_change_cipher_spec(int connection, TLSParameters *parameters)

{

 char send_buffer[1];

 send_buffer[0] = 1;

 send_message(connection, content_change_cipher_spec, send_buffer, 1);

 memcpy(¶meters->active_send_parameters,

 ¶meters->pending_send_parameters,

 sizeof(ProtectionParameters));

 init_protection_parameters(¶meters->pending_send_parameters);

 return 1;

}

As promised, this is pretty simple. The server then sends a change cipher
spec of its own, and this should be accounted for as in Listing 6-45.

Listing 6-45: “tls.c” receive_tls_msg with support for change cipher spec

...

 if (message.type == content_handshake)

 {

...

 }

 else if (message.type == content_change_cipher_spec)

 {

 while ((read_pos - decrypted_message) < decrypted_length)

 {

 unsigned char change_cipher_spec_type;

 read_pos = read_buffer((void *) &change_cipher_spec_type,

 (void *) read_pos, 1);

 if (change_cipher_spec_type != 1)

 {

 printf(“Error - received message ChangeCipherSpec, but type != 1\n”);

 exit(0);

 }

(Continued)

c06.indd 345c06.indd 345 12/10/2010 9:45:34 AM12/10/2010 9:45:34 AM

346 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

 else

 {

 memcpy(¶meters->active_recv_parameters,

 ¶meters->pending_recv_parameters,

 sizeof(ProtectionParameters));

 init_protection_parameters(¶meters->pending_recv_parameters);

 }

 }

 }

Now, when the server sends its change_cipher_spec message, the pend-
ing receive parameters are updated and made the active receive parameters.
Technically, the change cipher spec messages can “cross” on the wire. The
server may legally send its change cipher spec message as soon as it receives
a proper key exchange from the client; it doesn’t strictly have to wait until the
client sends a change cipher spec.

TLS Finished
So, the key exchange has been completed, both sides have agreed that the pend-
ing parameters are now the active parameters. It’s time to start using the con-
nection, right?

Well, that’s what the designers of SSLv2 thought, too. As it turns out, this was
the fatal fl aw in SSLv2. After the key exchange had completed, the connection
was used immediately to transfer data. The problem with this is that it doesn’t
take into account man-in-the-middle attacks that occur before the key exchange.
Although the key exchange protocol designed around X.509 certifi cates does
an admirable job of protecting against man-in-the-middle attacks against the
public key, the malicious man in the middle can intercept and modify all the
exchanges prior to this.

How can an attacker use this to his advantage? Well, he could, for instance,
change the client hello message to list only one possibility for a cipher suite — DES
with MD5 MAC. If he has a DES-cracking machine, the key exchange can pro-
ceed, and he can decode the communications at his leisure.

In general, both sides need a way to strongly authenticate that what they
sent was what was received. The way TLS accomplishes this is to require
both sides to send a fi nished message before the handshake can be considered
complete. Both of these fi nished messages must be sent before the negoti-
ated parameters can be used for application data, and the fi nished messages
themselves are sent using the negotiated encryption and authentication
parameters. The contents of this fi nished message are a 12-byte verify array
whose contents are based on the hash of the contents of all of the handshake
messages to this point.

c06.indd 346c06.indd 346 12/10/2010 9:45:34 AM12/10/2010 9:45:34 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 347

Computing the Verify Message

To compute this verify message, then, it’s necessary to keep a running hash
of every byte that’s sent or received with a message type of handshake. This is,
incidentally, why I spent so much time in Chapter 4 on creating an “updateable”
HMAC function; without the updateable HMAC function, it would have been
necessary here to buffer all this data and pass it as a gigantic memory array
into the HMAC function.

Instead, following these steps:

 1. Add a pair of digest_ctx objects to the TLSParameters as shown in Listing 6-46;
the verify data is actually based on a combination of both MD5 and SHA
(similar to the PRF).

Listing 6-46: “tls.h” TLSParameters with digest contexts

typedef struct

{

…

 int server_hello_done;

 digest_ctx md5_handshake_digest;

 digest_ctx sha1_handshake_digest;

}

TLSParameters;

 2. At the top of tls_connect, initialize them both, in Listing 6-47.

Listing 6-47: “tls.c” tls_connect with handshake digests

int tls_connect(int connection,

 TLSParameters *parameters)

{

 init_parameters(parameters);

 new_md5_digest(¶meters->md5_handshake_digest);

 new_sha1_digest(¶meters->sha1_handshake_digest);

 3. Modify send_handshake_message, as shown in Listing 6-48, to update the
running digest every time a handshake message is sent.

Listing 6-48: “tls.c” send_handshake_message with handshake digest update

static int send_handshake_message(int connection,

 int msg_type,

 const unsigned char *message,

 int message_len,

 TLSParameters *parameters)

{

...

 update_digest(¶meters->md5_handshake_digest, send_buffer,

 send_buffer_size);

(Continued)

c06.indd 347c06.indd 347 12/10/2010 9:45:34 AM12/10/2010 9:45:34 AM

348 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

 update_digest(¶meters->sha1_handshake_digest, send_buffer,

 send_buffer_size);

 response = send_message(connection, content_handshake, send_buffer,

 send_buffer_size);

 4. Because send_handshake_message now takes a new parameter — the
TLSParameters — update the invocations to it to include this, as shown
in Listing 6-49.

Listing 6-49: “tls.c” send_handshake_message updates

static int send_client_hello(int connection, TLSParameters *parameters)

{

…

 status = send_handshake_message(connection, client_hello, send_buffer,

 send_buffer_size, parameters);

…

static int send_client_key_exchange(int connection, TLSParameters *parameters)

{

…

 if (send_handshake_message(connection, client_key_exchange,

 key_exchange_message, key_exchange_message_len, parameters))

 {

 5. Update the running digest within receive_tls_message, if the type of the
message is content_handshake, as in Listing 6-50.

Listing 6-50: “tls.c” receive_tls_message with handshake digest update

static int receive_tls_msg(int connection,

 TLSParameters *parameters)

{

…

 if (message.type == content_handshake)

 {

 while ((read_pos - decrypted_message) < decrypted_length)

 {

 Handshake handshake;

 // Keep track of beginning of message for handshake digest update below

 const unsigned char *handshake_msg_start = read_pos;

…

 update_digest(¶meters->md5_handshake_digest, handshake_msg_start,

 handshake.length + 4);

 update_digest(¶meters->sha1_handshake_digest, handshake_msg_start,

 handshake.length + 4);

 }

c06.indd 348c06.indd 348 12/10/2010 9:45:34 AM12/10/2010 9:45:34 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 349

 6. With the handshake digest defi ned and updated, the client can send its
finished message, in Listing 6-51.

Listing 6-51: “tls.c” tls_connect with client fi nished message

 if (!(send_change_cipher_spec(connection, parameters)))

 {

 perror(“Unable to send client change cipher spec”);

 return 4;

 }

 // This message will be encrypted using the newly negotiated keys

 if (!(send_finished(connection, parameters)))

 {

 perror(“Unable to send client finished”);

 return 5;

 }

 7. send_finished itself is straightforward, as shown in Listing 6-52.

Listing 6-52: “tls.c” send_fi nished

static int send_finished(int connection,

 TLSParameters *parameters)

{

 unsigned char verify_data[VERIFY_DATA_LEN];

 compute_verify_data(“client finished”, parameters, verify_data);

 send_handshake_message(connection, finished, verify_data, VERIFY_DATA_LEN,

 parameters);

 return 1;

}

 8. Of course, as you can likely guess, the challenge is in the computation of
verify data. This is shown in Listing 6-53.

Listing 6-53: “tls.c” compute_verify_data

/**

 * 7.4.9:

 * verify_data = PRF(master_secret, “client finished”, MD5(handshake_messages)

 * + SHA-1(handshake_messages)) [0..11]

 *

 * master_secret = PRF(pre_master_secret, “master secret”, ClientHello.random +

 * ServerHello.random);

 * always 48 bytes in length.

 */

#define VERIFY_DATA_LEN 12

static void compute_verify_data(const char *finished_label,

 TLSParameters *parameters,

(Continued)

c06.indd 349c06.indd 349 12/10/2010 9:45:34 AM12/10/2010 9:45:34 AM

350 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

 char *verify_data)

{

 unsigned char handshake_hash[(MD5_RESULT_SIZE * sizeof(int)) +

 (SHA1_RESULT_SIZE * sizeof(int))];

 finalize_digest(¶meters->md5_handshake_digest);

 finalize_digest(¶meters->sha1_handshake_digest);

 memcpy(handshake_hash, parameters->md5_handshake_digest.hash, MD5_BYTE_SIZE

);

 memcpy(handshake_hash + MD5_BYTE_SIZE, parameters->sha1_handshake_digest.hash,

 SHA1_BYTE_SIZE);

 PRF(parameters->master_secret, MASTER_SECRET_LENGTH,

 finished_label, strlen(finished_label),

 handshake_hash,

 MD5_RESULT_SIZE * sizeof(int) + SHA1_RESULT_SIZE * sizeof(int),

 verify_data, VERIFY_DATA_LEN);

}

The verify data is a PRF expansion of “client fi nished” with both hashes
concatenated next to one another. The result is 12 bytes, and both sides
end up computing the same value.

 9. Of course, the client must wait for the server to send its finished message
as well. Update tls_connect to wait for the server_finished as shown
in Listing 6-54.

Listing 6-54: “tls.c” tls_connect with server fi nished support

 parameters->server_finished = 0;

 while (!parameters->server_finished)

 {

 if (receive_tls_msg(connection, parameters) < 0)

 {

 perror(“Unable to receive server finished”);

 return 6;

 }

 }

NOTE This call will also be the fi rst time the client receives the change
cipher spec message.

 10. This requires that you also add a server_finished fl ag, similar to the
server_hello_done fl ag, in TLSParameters, in Listing 6-55:

Listing 6-55: “tls.c” TLSParameters

typedef struct

{

c06.indd 350c06.indd 350 12/10/2010 9:45:34 AM12/10/2010 9:45:34 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 351

…

 int server_hello_done;

 int server_finished;

…

}

TLSParameters;

 11. Update tls_receive_message to process the server_finished message
in Listing 6-56.

Listing 6-56: “tls.c” tls_receive_message with server fi nished support

 switch (handshake.msg_type)

 {

…

 case finished:

 {

 read_pos = parse_finished(read_pos, handshake.length, parameters);

 if (read_pos == NULL)

 {

 send_alert_message(connection, illegal_parameter);

 return -1;

 }

 }

 break;

 12. Now you can parse the fi nished message, in Listing 6-57.

Listing 6-57: “tls.c” parse_fi nished

static unsigned char *parse_finished(unsigned char *read_pos,

 int pdu_length,

 TLSParameters *parameters)

{

 unsigned char verify_data[VERIFY_DATA_LEN];

 parameters->server_finished = 1;

 compute_verify_data(“server finished”, parameters, verify_data);

 if (memcmp(read_pos, verify_data, VERIFY_DATA_LEN))

 {

 return NULL;

 }

 return read_pos + pdu_length;

}

Here, compute_verify_data is called again to recompute the verifi cation data,
and the received data is compared with the computed data.

c06.indd 351c06.indd 351 12/10/2010 9:45:34 AM12/10/2010 9:45:34 AM

352 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

Correctly Receiving the Finished Message

Unfortunately, parse_finished, in Listing 6-57, doesn’t work. The handshake
digests were fi nalized when verify_data was called the fi rst time around, but
they need to be fi nalized again when the server sends its fi nished message.
And because the server’s fi nished message is based on a hash including the cli-
ent’s fi nished message you can’t just reuse the original hashes; the server sends
verifi cation of a different hash code.

Therefore, it’s necessary to modify compute_verify_data so that it doesn’t
operate on the running hash. The easiest way to do this is to make a temporary
copy and operate on that temporary copy, as in Listing 6-58.

Listing 6-58: “tls.c” compute_verify_data with temporary copy

void compute_handshake_hash(TLSParameters *parameters, unsigned char

*handshake_hash)

{

 digest_ctx tmp_md5_handshake_digest;

 digest_ctx tmp_sha1_handshake_digest;

 // “cheating”. Copy the handshake digests into local memory (and change

 // the hash pointer) so that we can finalize twice (again in “recv”)

 memcpy(&tmp_md5_handshake_digest, ¶meters->md5_handshake_digest,

 sizeof(digest_ctx));

 memcpy(&tmp_sha1_handshake_digest, ¶meters->sha1_handshake_digest,

 sizeof(digest_ctx));

 tmp_md5_handshake_digest.hash = (unsigned int *) malloc(MD5_BYTE_SIZE);

 tmp_sha1_handshake_digest.hash = (unsigned int *) malloc(SHA1_BYTE_SIZE);

 memcpy(tmp_md5_handshake_digest.hash, parameters->md5_handshake_digest.hash,

 MD5_BYTE_SIZE);

 memcpy(tmp_sha1_handshake_digest.hash, parameters->sha1_handshake_digest.hash,

 SHA1_BYTE_SIZE);

 finalize_digest(&tmp_md5_handshake_digest);

 finalize_digest(&tmp_sha1_handshake_digest);

 memcpy(handshake_hash, tmp_md5_handshake_digest.hash, MD5_BYTE_SIZE);

 memcpy(handshake_hash + MD5_BYTE_SIZE, tmp_sha1_handshake_digest.hash,

 SHA1_BYTE_SIZE);

 free(tmp_md5_handshake_digest.hash);

 free(tmp_sha1_handshake_digest.hash);

}

static void compute_verify_data(const char *finished_label,

 TLSParameters *parameters,

 char *verify_data)

{

 // Per 6.2.3.1 - encrypted data should always be followed by a MAC

c06.indd 352c06.indd 352 12/10/2010 9:45:35 AM12/10/2010 9:45:35 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 353

 unsigned char handshake_hash[(MD5_RESULT_SIZE * sizeof(int)) +

 (SHA1_RESULT_SIZE * sizeof(int))];

 compute_handshake_hash(parameters, handshake_hash);

 // First, compute the verify data

 PRF(parameters->master_secret, MASTER_SECRET_LENGTH,

 finished_label, strlen(finished_label),

 handshake_hash,

 MD5_RESULT_SIZE * sizeof(int) + SHA1_RESULT_SIZE * sizeof(int),

 verify_data, VERIFY_DATA_LEN);

}

Now, the same compute_verify_data function can be used both when send-
ing and receiving fi nished messages.

That’s it, right? The key exchange is complete, and the fi nished messages have
been exchanged and verifi ed. Everything is in place except for the small matter
of actually encrypting and MAC’ing the data.

Secure Data Transfer with TLS

Conceptually, applying TLS is simple after the keys have been agreed upon.
First, the whole block of data to be sent, including the TLS message header, is
run through the MAC algorithm and the result is appended to the message.
There’s a chicken-and-the-egg problem here, though. The MAC includes the
TLS header, which includes the length of the following buffer, which includes
the MAC in its length. So when MAC’ing, what length is used? The transmit-
ted length is the length of the content, plus the MAC; what’s MAC’ed is just the
length of the content.

If the bulk encryption algorithm requires padding, the length also indicates
padding. Again, the MAC buffer does not refl ect the padding length. And, of
course, the whole thing — header, padding, MAC and all — are encrypted using
the bulk encryption algorithm in force before being sent.

Assigning Sequence Numbers

As a protection against replay attacks, each packet is also assigned a sequence
number. The sequence numbers start at 0 whenever a change_cipher_spec is
received and is incremented each time a new TLSMessage is sent or received.
Each side maintains a separate counter, and this counter is prepended to each
message before MAC’ing it.

Declare the sequence number as shown in Listing 6-59 and initialize it as
shown in Listing 6-60.

c06.indd 353c06.indd 353 12/10/2010 9:45:35 AM12/10/2010 9:45:35 AM

354 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

Listing 6-59: “tls.h” ProtectionParameters with seq_num

typedef struct

{

…

 unsigned long seq_num;

}

ProtectionParameters;

Listing 6-60: “tls.c” init_protection_parameters with seq_num

void init_protection_parameters(ProtectionParameters *parameters)

{

 parameters->MAC_secret = NULL;

 parameters->key = NULL;

 parameters->IV = NULL;

 parameters->seq_num = 0;

 parameters->suite = TLS_NULL_WITH_NULL_NULL;

}

static int send_change_cipher_spec(int connection, TLSParameters *parameters)

{

 send_message(connection, content_change_cipher_spec, send_buffer, 1,

 ¶meters->active_send_parameters);

…

 // Per 6.1: The sequence number must be set to zero whenever a connection

 // state is made the active state... the first record which is transmitted

 // under a particular connection state should use sequence number 0.

 parameters->pending_send_parameters.seq_num = 0;

 memcpy(¶meters->active_send_parameters,

 ¶meters->pending_send_parameters,

 sizeof(ProtectionParameters));

…

static int receive_tls_msg(int connection,

 TLSParameters *parameters)

{

…

 else if (message.type == content_change_cipher_spec)

 {

…

 if (change_cipher_spec_type != 1)

 {

 printf(“Error - received message of type ChangeCipherSpec, but type !=

1\n”);

 exit(0);

 }

 else

 {

 parameters->pending_recv_parameters.seq_num = 0;

c06.indd 354c06.indd 354 12/10/2010 9:45:35 AM12/10/2010 9:45:35 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 355

 memcpy(¶meters->active_recv_parameters,

 ¶meters->pending_recv_parameters,

 sizeof(ProtectionParameters));

…

Note that the sequence number is never transmitted, encrypted or otherwise;
it’s just prepended to the MAC buffer before the packet is MAC’ed. Therefore,
given a content buffer of “content”, the buffer that is MAC’ed looks like this:

SEQUENCE NUM MESSAGE
TYPE

VERSION CONTENT LENGTH CONTENT

 4 bytes 1 byte 2 bytes 2 bytes variable

A digest is produced over this data.
What’s actually transmitted, on the other hand, is

MESSAGE
TYPE

VERSION CONTENT LEN +
MAC LEN +
PADDING LEN

CONTENT MAC

1 byte 2 bytes 2 bytes variable variable

But this is, of course, encrypted before sending. Notice that the buffer is
MAC’ed fi rst and then encrypted. The order is clearly important so that the
other side can correctly receive it.

Supporting Outgoing Encryption
To support encryption — outgoing — the only function that needs to be updated
is the send_message function. In order to apply the active cipher suite, it needs to
be sent the active ProtectionParameters so that it can check to see what cipher
suite is active, and apply that cipher suite. Remember that TLS_NULL_WITH_NULL_
NULL is a valid cipher suite, and it’s the one that’s active when the handshake fi rst
starts. It just tells send_message to do no MAC nor encrypt. In this way, there’s
always a cipher suite active, even if it’s a “do nothing” cipher suite.

The fi rst thing send_message must do is to create the MAC buffer and compute
the MAC. To do this, follow these steps:

 1. Check for an active digest and apply it to the contents as shown in
Listing 6-61.

Listing 6-61: “tls.c” send_message with MAC support

static int send_message(int connection,

 int content_type,

 const unsigned char *content,

 short content_len,

(Continued)

c06.indd 355c06.indd 355 12/10/2010 9:45:35 AM12/10/2010 9:45:35 AM

356 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

 ProtectionParameters *parameters)

{

 TLSPlaintext header;

 unsigned char *send_buffer;

 int send_buffer_size;

 unsigned char *mac = NULL;

 digest_ctx digest;

 CipherSuite *active_suite;

 active_suite = &suites[parameters->suite];

 if (active_suite->new_digest)

 {

 // Allocate enough space for the 8-byte sequence number, the 5-byte pseudo

 // header, and the content.

 unsigned char *mac_buffer = malloc(13 + content_len);

 int sequence_num;

 mac = (unsigned char *) malloc(active_suite->hash_size);

 active_suite->new_digest(&digest);

 memset(mac_buffer, 0x0, 8);

 sequence_num = htonl(parameters->seq_num);

 memcpy(mac_buffer + 4, &sequence_num, sizeof(int));

 // These will be overwritten below

 header.type = content_type;

 header.version.major = 3;

 header.version.minor = 1;

 header.length = htons(content_len);

 mac_buffer[8] = header.type;

 mac_buffer[9] = header.version.major;

 mac_buffer[10] = header.version.minor;

 memcpy(mac_buffer + 11, &header.length, sizeof(short));

 memcpy(mac_buffer + 13, content, content_len);

 hmac(parameters->MAC_secret,

 active_suite->hash_size,

 mac_buffer, 13 + content_len,

 &digest);

 memcpy(mac, digest.hash, active_suite->hash_size);

 free(mac_buffer);

 }

 send_buffer_size = content_len + active_suite->hash_size;

…

 parameters->seq_num++;

c06.indd 356c06.indd 356 12/10/2010 9:45:35 AM12/10/2010 9:45:35 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 357

 free(send_buffer);

 return 0;

}

If the current active protection parameters include a digest, a MAC buffer
is built as described above, MAC’ed, and thrown away; after the MAC
itself has been computed, the MAC buffer is immaterial to the remainder
of the function.

 2. Check to see if the active cipher suite has a block size (that is, is not a
stream cipher). If so, add any required padding, as shown in Listing 6-62.

Listing 6-62: “tls.c” send_message with padding support

 unsigned char padding_length = 0;

…

 send_buffer_size = content_len + active_suite->hash_size;

 if (active_suite->block_size)

 {

 padding_length = active_suite->block_size -

 (send_buffer_size % active_suite->block_size);

 send_buffer_size += padding_length;

 }

 // Add space for the header, but only after computing padding

 send_buffer_size +=5;

 3. Build the actual send buffer. Recall Listing 6-15 where send_message was
initially defi ned; the send buffer was simply the TLS header followed by
the contents, verbatim. Now, it’s the TLS header, followed by the contents,
followed by any required padding, followed by the MAC. The updated
send buffer is shown in Listing 6-63.

Listing 6-63: “tls.c” send buffer

 send_buffer = (unsigned char *) malloc(send_buffer_size);

 if (mac)

 {

 memcpy(send_buffer + content_len + 5, mac, active_suite->hash_size);

 free(mac);

 }

 if (padding_length > 0)

 {

 unsigned char *padding;

 for (padding = send_buffer + send_buffer_size - 1;

 padding > (send_buffer + (send_buffer_size - padding_length - 1));

 padding--)

(Continued)

c06.indd 357c06.indd 357 12/10/2010 9:45:35 AM12/10/2010 9:45:35 AM

358 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

 {

 *padding = (padding_length - 1);

 }

 }

 header.type = content_type;

 header.version.major = 3;

 header.version.minor = 1;

 header.length = htons(content_len + active_suite->hash_size + padding_length);

 4. The send buffer itself needs to be encrypted if the cipher suite calls for it
(remember that TLS_NULL_WITH_MD5 is a legitimate cipher suite that calls for
authentication but no encryption). The encryption is shown in Listing 6-64.

Listing 6-64: “tls.c” send_message with encryption

 memcpy(send_buffer + 5, content, content_len);

 if (active_suite->bulk_encrypt)

 {

 unsigned char *encrypted_buffer = malloc(send_buffer_size);

 // The first 5 bytes (the header) aren’t encrypted

 memcpy(encrypted_buffer, send_buffer, 5);

 active_suite->bulk_encrypt(send_buffer + 5, send_buffer_size - 5,

 encrypted_buffer + 5, parameters->IV, parameters->key);

 free(send_buffer);

 send_buffer = encrypted_buffer;

 }

 if (send(connection, (void *) send_buffer, send_buffer_size, 0) <

 send_buffer_size)

The original send buffer is encrypted and then thrown away; the encrypted
buffer is the send buffer, which is what’s transmitted over the wire. Notice that
the header itself is not encrypted; this is necessary so that the receiver knows
how many bytes to process in the current packet. Everything following the
header is encrypted, though.

Adding Support for Stream Ciphers
The encryption routine in Listing 6-64 almost works, but not quite. Recall from

the calculate_keys routine in Listing 6-41 that if the cipher suite called for an
initialization vector, one was computed, but otherwise, parameters->IV was left
as a null pointer. This is fi ne for block ciphers, but causes a failure if you try to
use this routine for the RC4 routine, which expects a state vector in this position.

NOTE The state vector was developed in Chapter 2, in Listing 2-47.

c06.indd 358c06.indd 358 12/10/2010 9:45:35 AM12/10/2010 9:45:35 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 359

You might try to get around this by changing the IV size in the cipher suite
declaration to 256 so that you’d get a state vector here. Unfortunately, this won’t
work: You’d get 256 pseudo-random bytes rather than an array of 0’s as rc4_
encrypt expects on its fi rst call. The ideal way to handle this would be to defi ne
a cipher_init routine that should be called on fi rst invocation. However, the
simple hack in Listing 6-65 works well enough:

Listing 6-65: “tls.c” calculate_keys with a special RC4 exception

static void calculate_keys(TLSParameters *parameters)

{

…

 switch (suite->id)

 {

 case TLS_RSA_EXPORT_WITH_RC4_40_MD5:

 case TLS_RSA_WITH_RC4_128_MD5:

 case TLS_RSA_WITH_RC4_128_SHA:

 case TLS_DH_anon_EXPORT_WITH_RC4_40_MD5:

 case TLS_DH_anon_WITH_RC4_128_MD5:

 {

 rc4_state *read_state = malloc(sizeof(rc4_state));

 rc4_state *write_state = malloc(sizeof(rc4_state));

 read_state->i = read_state->j = write_state->i = write_state->j = 0;

 send_parameters->IV = (unsigned char *) read_state;

 recv_parameters->IV = (unsigned char *) write_state;

 memset(read_state->S, ‘\0’, RC4_STATE_ARRAY_LEN);

 memset(write_state->S, ‘\0’, RC4_STATE_ARRAY_LEN);

 }

 break;

 default:

 break;

 }

 free(key_block);

At this point, send_parameters->IV is no longer necessarily an IV, but a void
pointer to the state of the cipher suite. Although the code would be clearer if
it were renamed, the specifi cation refers specifi cally to IV in several places, so
leave it this way.

Updating Each Invocation of send_message
Of course, because you’re now applying the active encryption function to every
sent message, you must also go through and update each invocation of send_
message to include the active ProtectionParameters, as in Listing 6-66.

c06.indd 359c06.indd 359 12/10/2010 9:45:35 AM12/10/2010 9:45:35 AM

360 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

Listing 6-66: “tls.c” with protection parameters sent to send_message

static int send_handshake_message(int connection,

 int msg_type,

 const unsigned char *message,

 int message_len,

 TLSParameters *parameters)

{

…

 return send_message(connection, content_handshake, send_buffer,

 send_buffer_size, ¶meters->active_send_parameters);

…

static int send_alert_message(int connection,

 int alert_code,

 ProtectionParameters *parameters)

{

…

 return send_message(connection, content_alert, buffer, 2, parameters);

…

static int send_change_cipher_spec(int connection, TLSParameters *parameters)

{

…

 send_message(connection, content_change_cipher_spec, send_buffer, 1,

 ¶meters->active_send_parameters);

…

static int receive_tls_msg(int connection,

 TLSParameters *parameters)

{

…

 if ((status = send_alert_message(connection, illegal_parameter,

 ¶meters->active_send_parameters)))

…

 read_pos = parse_server_hello(read_pos, handshake.length, parameters

);

 if (read_pos == NULL) /* error occurred */

 {

 send_alert_message(connection, illegal_parameter,

 ¶meters->active_send_parameters);

…

 read_pos = parse_finished(read_pos, handshake.length, parameters);

 if (read_pos == NULL)

 {

 send_alert_message(connection, illegal_parameter,

 ¶meters->active_send_parameters);

Notice that the alert messages need to be updated, too. If an alert is sent after
a handshake has completed, the alert itself must be encrypted. Although this
won’t come up during an initial handshake, send_alert_message must include
a ProtectionParameters value because send_message does.

c06.indd 360c06.indd 360 12/10/2010 9:45:35 AM12/10/2010 9:45:35 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 361

Decrypting and Authenticating
Just as encryption was handled entirely within send_message, decrypting can
be handled entirely within receive_tls_msg. This time, you don’t even need
to update the parameter list because it already accepts a TLSParameters; it just
needs to look at the active receive parameters and apply them as necessary.
Decryption and authentication is shown in Listing 6-67.

Listing 6-67: “tls.c” receive_tls_msg with decrypt support

static int receive_tls_msg(int connection,

 TLSParameters *parameters)

{

 TLSPlaintext message;

 unsigned char *read_pos, *msg_buf, *decrypted_message, *encrypted_message;

 unsigned char header[5]; // size of TLSPlaintext

 int bytes_read, accum_bytes;

 int decrypted_length;

// Read header as usual – header is not encrypted

…

 encrypted_message = (char *) malloc(message.length);

 // keep looping & appending until all bytes are accounted for

 accum_bytes = 0;

 msg_buf = encrypted_message;

 while (accum_bytes < message.length)

 {

// Read the buffer as before, but update encrypted_message now

…

 }

 // If a cipherspec is active, all of “encrypted_message” will be encrypted.

 // Must decrypt it before continuing. This will change the message length

 // in all cases, since decrypting also involves verifying a MAC (unless the

 // active cipher spec is NULL_WITH_NULL_NULL).

 decrypted_message = NULL;

 decrypted_length = tls_decrypt(header, encrypted_message, message.length,

 &decrypted_message, ¶meters->active_recv_parameters);

 free(encrypted_message);

 if (decrypted_length < 0)

 {

 send_alert_message(connection, bad_record_mac,

 ¶meters->active_send_parameters);

 return -1;

 }

 parameters->active_recv_parameters.seq_num++;

 }

(Continued)

c06.indd 361c06.indd 361 12/10/2010 9:45:35 AM12/10/2010 9:45:35 AM

362 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

 read_pos = decrypted_message;

 if (message.type == content_handshake)

 {

…

 }

 free(decrypted_message);

 return decrypted_length;

}

And everything else stays the same; at this point, the message has been
decrypted and can be processed just as if it had been received in plaintext. In fact,
this code is necessary to process a server fi nished handshake message because,
per the specifi cation, server fi nished is always sent using the active cipher spec.

The heavy lifting of decryption is handled by tls_decrypt, which is respon-
sible for not only decrypting the buffer, but verifying its MAC as well. If the
MAC doesn’t verify, tls_decrypt returns –1; otherwise it returns the length
of the decrypted buffer. As mentioned earlier, this is always different than the
original buffer length, even for stream ciphers, as the tls_decrypt function
strips off the MAC after decrypting the block.

Without further ado, tls_decrypt itself is presented in Listing 6-68.

Listing 6-68: “tls.c” tls_decrypt

/**

 * Decrypt a message and verify its MAC according to the active cipher spec

 * (as given by “parameters”). Free the space allocated by encrypted message

 * and allocate new space for the decrypted message (if decrypting is “identity”,

 * then decrypted will point to encrypted). The caller must always issue a

 * “free decrypted_message”.

 * Return the length of the message, or -1 if the MAC doesn’t verify. The return

 * value will almost always be different than “encrypted_length”, since it strips

 * off the MAC if present as well as bulk cipher padding (if a block cipher

 * algorithm is being used).

 */

static int tls_decrypt(const unsigned char *header, // needed for MAC verification

 unsigned char *encrypted_message,

 short encrypted_length,

 unsigned char **decrypted_message,

 ProtectionParameters *parameters)

{

 short decrypted_length;

 digest_ctx digest;

 unsigned char *mac_buffer;

 int sequence_number;

 short length;

 CipherSuite *active_suite = &(suites[parameters->suite]);

c06.indd 362c06.indd 362 12/10/2010 9:45:36 AM12/10/2010 9:45:36 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 363

 *decrypted_message = (unsigned char *) malloc(encrypted_length);

 if (active_suite->bulk_decrypt)

 {

 active_suite->bulk_decrypt(encrypted_message, encrypted_length,

 *decrypted_message, parameters->IV, parameters->key);

 decrypted_length = encrypted_length;

 // Strip off padding

 if (active_suite->block_size)

 {

 decrypted_length -= ((*decrypted_message)[encrypted_length - 1] + 1);

 }

 }

 else

 {

 // Do nothing, no bulk cipher algorithm chosen.

 // Still have to memcpy so that “free” in caller is consistent

 decrypted_length = encrypted_length;

 memcpy(*decrypted_message, encrypted_message, encrypted_length);

 }

 // Now, verify the MAC (if the active cipher suite includes one)

 if (active_suite->new_digest)

 {

 active_suite->new_digest(&digest);

 decrypted_length -= (digest.hash_len * sizeof(int));

 // Allocate enough space for the 8-byte sequence number, the TLSPlainText

 // header, and the fragment (e.g. the decrypted message).

 mac_buffer = malloc(13 + decrypted_length);

 memset(mac_buffer, 0x0, 13 + decrypted_length);

 sequence_number = htonl(parameters->seq_num);

 memcpy(mac_buffer + 4, &sequence_number, sizeof(int));

 // Copy first three bytes of header; last two bytes reflected the

 // message length, with MAC attached. Since the MAC was computed

 // by the other side before it was attached (obviously), that MAC

 // was computed using the original length.

 memcpy(mac_buffer + 8, header, 3);

 length = htons(decrypted_length);

 memcpy(mac_buffer + 11, &length, 2);

 memcpy(mac_buffer + 13, *decrypted_message, decrypted_length);

 hmac(parameters->MAC_secret, digest.hash_len * sizeof(int),

 mac_buffer, decrypted_length + 13, &digest);

 if (memcmp(digest.hash,

 (*decrypted_message) + decrypted_length,

 digest.hash_len * sizeof(int)))

(Continued)

c06.indd 363c06.indd 363 12/10/2010 9:45:36 AM12/10/2010 9:45:36 AM

364 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

 {

 return -1;

 }

 free(mac_buffer);

 }

 return decrypted_length;

}

This is essentially the inverse of the encryption performed in
send_message. There aren’t any real surprises here; the buffer is decrypted
and a MAC buffer is built and verifi ed. The MAC buffer is built the same
as it is in send_message; if you’re so inclined, you could probably refactor
this into a common routine and share it between the two. After the local
MAC has been computed, verifying it is just a matter of comparing it, byte-
for-byte, with the MAC that the server sent.

NOTE Technically, there’s a security fl aw in this implementation. According
to the specifi cation, if the padding byte is x then it must be preceded by x
bytes of the byte x. This implementation doesn’t explicitly verify this so a
determined attacker can attempt to take advantage of this and determine the
length of the original plaintext.

This vulnerability is highly theoretical and discussed in more detail at
http://www.openssl.org/~bodo/tls-cbc.txt; on the other hand, it’s
trivial to defend against as long as you’re aware of it — just verify that the pad-
ding bytes equal the padding length.

TLS Send
That’s it. The TLS handshake is complete, and tls_connect returns control back
up to the calling function, which, in this case, is the main routine of the HTTPS
utility. From this point on, nothing can be sent on this connection unless it’s
encrypted, authenticated, and prepended with a correct TLS header. So, as you
recall from Listing 6-3, each call to the socket-level send function is replaced
with a call to tls_send. With the infrastructure developed in the previous sec-
tions, this is simple to implement, in Listing 6-69.

Listing 6-69: “tls.c” tls_send

int tls_send(int connection,

 const char *application_data,

 int length,

 int options,

 TLSParameters *parameters)

{

 send_message(connection, content_application_data, application_data, length,

 ¶meters->active_send_parameters);

c06.indd 364c06.indd 364 12/10/2010 9:45:36 AM12/10/2010 9:45:36 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 365

 return length;

}

This is nothing but a wrapper around send_message, which examines the active
protection parameters and applies them to the data buffer before sending it on.

TLS Receive
tls_recv, shown in Listing 6-70, can take advantage of the decrypt support
added to receive_tls_message. However, receive_tls_message expected to
handle the received packet after decrypting it. tls_recv wants the data itself,
so receive_tls_message also needs to be updated as shown in Listing 6-71 to
optionally pass back a chunk of decrypted data.

Listing 6-70: “tls_recv”

int tls_recv(int connection, char *target_buffer, int buffer_size, int options,

 TLSParameters *parameters)

{

 int bytes_decrypted = 0;

 bytes_decrypted = receive_tls_msg(connection, target_buffer, buffer_size,

 parameters);

 return bytes_decrypted;

}

Listing 6-71: “receive_tls_msg” with optional response buffer

static int receive_tls_msg(int connection,

 char *buffer,

 int bufsz,

 TLSParameters *parameters)

{

 if (message.type == content_handshake)

 {

…

 else if (message.type == content_application_data)

 {

 memcpy(buffer, decrypted_message, decrypted_length);

 }

...

This means that the invocations of receive_tls_msg in tls_connect must
also be updated to pass a null pointer, shown in Listing 6-72.

Listing 6-72: “tls.c” tls_connect with receive_tls_msg calls updated

int tls_connect(int connection,

 TLSParameters *parameters)

{

(Continued)

c06.indd 365c06.indd 365 12/10/2010 9:45:36 AM12/10/2010 9:45:36 AM

366 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

…

 while (!parameters->server_hello_done)

 {

 if (receive_tls_msg(connection, NULL, 0, parameters) < 0)

…

 while (!parameters->server_finished)

 {

 if (receive_tls_msg(connection, NULL, 0, parameters) < 0)

...

This change is just necessary to satisfy the compiler; at no point does receive_
tls_msg actually check this pointer for NULL. If a handshake message is expected
and application data arrives, you get an unhelpful segmentation violation.

There’s still a problem here. If you glance back at the implementation of
display_result in Listing 6-3, you notice that it calls for a buffer of data at a
time — in this case, 255 bytes. However, there’s no guarantee that this much
data is available in the next TLS packet, nor is there a guarantee that there isn’t
more. Therefore, whenever the application calls tls_recv with a buffer set to
receive a chunk of application data, the routine must check to see if there’s any
left over from a previous call, as well as store any that was decrypted but that
the user didn’t ask for.

To accommodate variable-length input, follow these steps:

 1. Add a buffer to the end of the TLSParameters structure as shown in
Listing 6-73.

Listing 6-73: “tls.h” TLSParameters with buffering support

typedef struct

{

…

 char *unread_buffer;

 int unread_length;

}

TLSParameters;

 2. receive_tls_msg must also be updated to check this buffer for any unread
bytes whenever the application asks for more data, as well as to buffer any
data that was decrypted but that the user didn’t ask for. This is shown in
Listing 6-74.

Listing 6-74: “tls.c” receive_tls_msg with buffering support

void init_parameters(TLSParameters *parameters,

 int renegotiate)

{

…

 parameters->server_hello_done = 0;

 parameters->server_finished = 0;

c06.indd 366c06.indd 366 12/10/2010 9:45:36 AM12/10/2010 9:45:36 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 367

 parameters->unread_buffer = NULL;

 parameters->unread_length = 0;

}

static int receive_tls_msg(int connection,

 char *buffer,

 int bufsz,

 TLSParameters *parameters)

{

…

 int bytes_read, accum_bytes;

 int decrypted_length;

 // First, check to see if there’s any data left over from a previous read.

 // If there is, pass that back up.

 // This means that if the caller isn’t quick about reading available data,

 // TLS alerts can be missed.

 if (parameters->unread_buffer != NULL)

 {

 decrypted_message = parameters->unread_buffer;

 decrypted_length = parameters->unread_length;

 parameters->unread_buffer = NULL;

 parameters->unread_length = 0;

 message.type = content_application_data;

 }

 else

 {

 if (recv(connection, header, 5, 0) <= 0)

…

 }

 read_pos = decrypted_message;

…

 else if (message.type == content_application_data)

 {

 if (decrypted_length <= bufsz)

 {

 memcpy(buffer, decrypted_message, decrypted_length);

 }

 else

 {

 // Need to hang on to a buffer of data here and pass it back for the

 // next call

 memcpy(buffer, decrypted_message, bufsz);

 parameters->unread_length = decrypted_length - bufsz;

 parameters->unread_buffer = malloc(parameters->unread_length);

 memcpy(parameters->unread_buffer, decrypted_message + bufsz,

 parameters->unread_length);

(Continued)

c06.indd 367c06.indd 367 12/10/2010 9:45:36 AM12/10/2010 9:45:36 AM

368 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

 decrypted_length = bufsz;

 }

 }

Now, if there’s any data left over from a previous call, as much as the caller
asked for is returned. If there’s less than the caller asked for, only what’s avail-
able is returned; the caller must invoke another call if it wants the next chunk
of data. This could be made more robust — and more complicated — if it went
ahead and read the next available TLSMessage, concatenated that on top of
whatever it had buffered, and tried to fi ll up the buffer the client requested. Of
course, in any case, if the caller requested less data than is available in the buf-
fer, the remaining data must be held on to. receive_tls_message accomplishes
this by masquerading any buffered data as decrypted_message; whether the
client consumes all of it or not, it ends up in the decrypted_length <= bufsz
else-case and is rebuffered.

If you closely compared the display_result listing of 6-3 to the display_result
Listing 1-7 in Chapter 1, you may have noticed one seemingly trivial difference:
The plaintext HTTP routine reads until recv returns 0 bytes, indicating EOF. The
secured implementation reads until tls_recv returns less than 0. Why?

To frustrate attackers, it’s acceptable for compliant TLS implementations to
return empty packets consisting of nothing but padding. When this function
receives such a packet, it removes the padding and the MAC and reports the
returned data length as 0.

“So,” you must certainly be wondering, “if tls_recv can’t return 0 to indicate
an EOF condition, how does TLS handle an end-of-stream?” Read on.

Implementing TLS Shutdown

SSLv2 didn’t have a specifi c shutdown mechanism; when either side was done
using the connection, it just issued a regular TCP FIN packet. The problem with
this was that it’s easy for a man in the middle to generate a FIN packet; it’s not
encrypted or authenticated in any way. This can be used to perform truncation
attacks as detailed in Chapter 4.

As a result, TLS has a special way to indicate shutdown. The side wishing to
shut the connection down sends an alert with the close_notify code of 0. Because
this is a TLS message, it’s subject to the standard encryption and authentication
values currently in force and is protected. tls_shutdown is shown in Listing 6-75.

Listing 6-75: “tls.c” tls_shutdown

int tls_shutdown(int connection, TLSParameters *parameters)

{

 send_alert_message(connection, close_notify,

c06.indd 368c06.indd 368 12/10/2010 9:45:36 AM12/10/2010 9:45:36 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 369

 ¶meters->active_send_parameters);

 if (parameters->unread_buffer)

 {

 free(parameters->unread_buffer);

 }

 free_protection_parameters(¶meters->pending_send_parameters);

 free_protection_parameters(¶meters->pending_recv_parameters);

 free_protection_parameters(¶meters->active_send_parameters);

 free_protection_parameters(¶meters->active_recv_parameters);

 return 1;

}

This routine goes ahead and frees any memory that was allocated by the
connection; it mostly relies on free_protection_parameters to free the MAC
secrets, keys, and IVs. This is shown in Listing 6-76.

Listing 6-76: “tls.c” free_protection_parameters

static void free_protection_parameters(ProtectionParameters *parameters)

{

 if (parameters->MAC_secret)

 {

 free(parameters->MAC_secret);

 }

 if (parameters->key)

 {

 free(parameters->key);

 }

 if (parameters->IV)

 {

 free(parameters->IV);

 }

}

Another benefi t of the dedicated TLS shutdown protocol is that either side
can switch back to plaintext if desired without severing the connection. This
could potentially be useful if for regulatory reasons some data had to be sent
in the clear. I’m not aware of any applications that take advantage of this, but
it’s nice to know that the fl exibility is there if you need it.

Examining HTTPS End-to-End Examples (TLS 1.0)

You can, and should, compile the code presented in this chapter and try to
connect to a few different public secure websites. You may have to scrounge
around to fi nd one that doesn’t require a context to be previously established;
your bank’s login landing page might be a good choice (if it’s not SSL enabled,
consider a different bank).

c06.indd 369c06.indd 369 12/10/2010 9:45:36 AM12/10/2010 9:45:36 AM

370 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

For illustration purposes, though, you can also run an instance of the Apache
web server locally, confi gure it to accept HTTPS connections, and connect to
it. The tcpdump utility can be used to monitor exactly what’s passed back and
forth over a socket connection.

NOTE See Appendix B for a brief overview on installing and confi guring
tcpdump.

Dissecting the Client Hello Request
Now you can run your https command-line client to connect to an SSL-enabled
website and monitor the packets exchanged. After invoking tcpdump to run in
the background, start up an instance of https:

[jdavies@localhost ssl]$./https https://localhost/index.html

The tcpdump output starts with the standard expected TCP 3-way handshake:

[root@localhost ssl]# /usr/sbin/tcpdump -i lo -s 0 -X tcp port 443

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on lo, link-type EN10MB (Ethernet), capture size 65535 bytes

12:37:03.937423 IP localhost.localdomain.56047 > localhost.localdomain.https: S

506618802:506618802(0) win 32792

<mss 16396,sackOK,timestamp 12673266 0,nop,wscale 7>

 0x0000: 4500 003c 0340 4000 4006 397a 7f00 0001 E..<.@@.@.9z....

 0x0010: 7f00 0001 daef 01bb 1e32 63b2 0000 0000 2c.....

 0x0020: a002 8018 cf4a 0000 0204 400c 0402 080a J....@.....

 0x0030: 00c1 60f2 0000 0000 0103 0307 ..`.........

12:37:03.937430 IP localhost.localdomain.https > localhost.localdomain.56047: S

505995792:505995792(0) ack 506618803 win 32768

<mss 16396,sackOK,timestamp 12673267 12673266,nop,wscale 7>

 0x0000: 4500 003c 0000 4000 4006 3cba 7f00 0001 E..<..@.@.<.....

 0x0010: 7f00 0001 01bb daef 1e28 e210 1e32 63b3 (...2c.

 0x0020: a012 8000 6d64 0000 0204 400c 0402 080a md....@.....

 0x0030: 00c1 60f3 00c1 60f2 0103 0307 ..`...`.....

12:37:03.937459 IP localhost.localdomain.56047 > localhost.localdomain.https: .

 ack 1 win 257 <nop,nop,timestamp 12673267 12673267>

 0x0000: 4500 0034 0341 4000 4006 3981 7f00 0001 E..4.A@.@.9.....

 0x0010: 7f00 0001 daef 01bb 1e32 63b3 1e28 e211 2c..(..

 0x0020: 8010 0101 5587 0000 0101 080a 00c1 60f3 U.........`.

 0x0030: 00c1 60f3 ..`.

After the three-way handshake is complete, the TLS protocol takes over:

 n The fi rst actual packet exchanged is the client hello. The client hello starts
at byte 0x0035. The fi rst fi ve bytes of the data packet is the TLS header
160301002d. 0x16 is the type of the message (content_handshake); 0x0301 is
the version of SSL (3.1); and 0x002d is the length of the contained packet — 45
bytes. Every packet sent over this connection must now start with a TLS header.

c06.indd 370c06.indd 370 12/10/2010 9:45:36 AM12/10/2010 9:45:36 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 371

 n Next is the handshake header 0x01000029. 0x01 is the handshake mes-
sage type (client hello), and 0x000029 is the strange three-byte length that
indicates that the actual payload is 41 bytes.

 n Following this, fi nally, is the client hello message itself. The fi rst two bytes
are the protocol version 0x0301 again, followed by 32 bytes of random
data (although as you can see the data isn’t particularly random in this
case). Remember that the random structure is required to begin with
a four-byte “seconds since January 1, 1970” time, followed by 28 actu-
ally random bytes. As you can see, this is passed in the clear. Anything
you can see with tcpdump, a malicious intruder can see with a packet
sniffer as well.

After the random bytes, a 0 byte is supplied indicating that no session ID fol-
lows. The session ID structure is followed by the cipher suites list, which must
be supplied. First the two-byte length of the cipher suites indicates that there
are two bytes of cipher suite (that is, one cipher suite). This length declaration is
followed by the cipher suite list itself — here 0x002F, which is the single cipher
suite TLS_RSA_WITH_AES_128_CBC_SHA. Notice that the length of 2 indicates
that there follows two bytes of cipher suites, which is one cipher suite because
each suite is two bytes long. The client hello message ends with the list of sup-
ported compression methods, which is simply “no compression.”

12:37:03.938207 IP localhost.localdomain.56047 > localhost.localdomain.https: P

 1:51(50) ack 1 win 257 <nop,nop,timestamp 12673267 12673267>

 0x0000: 4500 0066 0342 4000 4006 394e 7f00 0001 E..f.B@.@.9N....

 0x0010: 7f00 0001 daef 01bb 1e32 63b3 1e28 e211 2c..(..

 0x0020: 8018 0101 fe5a 0000 0101 080a 00c1 60f3 Z........`.

 0x0030: 00c1 60f3 1603 0100 2d01 0000 2903 014c ..`.....-...)..L

 0x0040: 4f19 3f00 0000 0000 0000 0000 0000 0000 O.?.............

 0x0050: 0000 0000 0000 0000 0000 0000 0000 0000

 0x0060: 0002 002f 0100 .../..

Compression

Methods

Session Id

Length (0)

TLS Version

(3.1)

Handshake

Header

Cipher

Sultes

Client

Ramdom

TLS

Header

After the client hello, the server acknowledges the packet according to the
standard rules of TCP.

12:37:03.938244 IP localhost.localdomain.https > localhost.localdomain.56047: .

 ack 51 win 256 <nop,nop,timestamp 12673267 12673267>

 0x0000: 4500 0034 82e2 4000 4006 b9df 7f00 0001 E..4..@.@.......

 0x0010: 7f00 0001 01bb daef 1e28 e211 1e32 63e5 (...2c.

 0x0020: 8010 0100 5556 0000 0101 080a 00c1 60f3 UV........`.

 0x0030: 00c1 60f3 ..`.

Because this is a book about SSL/TLS and not about TCP, packet acknowledg-
ments are omitted from the remainder of this section.

c06.indd 371c06.indd 371 12/10/2010 9:45:36 AM12/10/2010 9:45:36 AM

372 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

Dissecting the Server Response Messages
The server then sends back the server hello, certifi cate and server hello done
messages. Notice that in this case, they’re not included in a single TLS packet,
although the specifi cation allows for this. This single TCP packet includes three
individual top-level TLS messages.

The fi rst is of length 75 bytes (0x004a) and contains a handshake message of
type 2 (server hello). The server hello packet, of course, starts with the version
number 0x0301, followed by the 32-byte server random structure. Servers nor-
mally assign a session ID to every connection, so the session ID in this case is
non-empty; it is 32 bytes long and is equal to 07e76fed29bfc73b710b0c2757fcd
1a7b325561b232906ceb3d8a0347f3bd2f5. The server hello fi nishes out by select-
ing a cipher suite and a compression method. Obviously it chose 0x002F and
0x00, respectively, because those were the only two choices it was given. If it
didn’t recognize, or didn’t support, any of these choices then this server hello
message would have instead been an alert.

12:37:03.938904 IP localhost.localdomain.https > localhost.localdomain.56047: P

 1:822(821) ack 51 win 256 <nop,nop,timestamp 12673268 12673267>

 0x0000: 4500 0369 82e3 4000 4006 b6a9 7f00 0001 E..i..@.@.......

 0x0010: 7f00 0001 01bb daef 1e28 e211 1e32 63e5 (...2c.

 0x0020: 8018 0100 015e 0000 0101 080a 00c1 60f4 ^........`.

 0x0030: 00c1 60f3 1603 0100 4a02 0000 4603 014c ..`.....J...F..L

 0x0040: 4f19 3fe5 8513 ecba f396 6b6a b96f bfbe O.?.......kj.o..

 0x0050: e410 52ae 1b64 3c93 174f 38a6 548e 5320 ..R..d<..O8.T.S.

 0x0060: 07e7 6fed 29bf c73b 710b 0c27 57fc d1a7 ..o.)..;q.. W...

 0x0070: b325 561b 2329 06ce b3d8 a034 7f3b d2f5 .%V.#).....4.;..

 0x0080: 002f 00

Selected

Cipher Suite

Session ID

Server

Random

TLS

Header

Selected

Compression

Session Id

Length

TLS Version

(3.1)

Handshake

Header

A server hello is generally followed by a server certifi cate message. This is
not necessarily always the case, as you see in Chapter 8, but generally it is. Here
the TLS header indicates that the following message is 344 (0x02d8) bytes long
and is a server handshake certifi cate message (handshake message 0x0b). This
message in turns starts out with a three-byte length declaration — 0x0002d1
indicating that the following certifi cate chain is 337 bytes long. After this is yet
another length declaration 0x0002ce, indicating that the fi rst certifi cate in this
certifi cate chain — in this case, the only certifi cate in this chain — is 334 bytes
long. Finally, the ASN.1 DER representation of the server’s certifi cate follows.

 16 0301 02d8 0b00 02d4 0002 d100 ./..............

 0x0090: 02ce 3082 02ca 3082 0274 a003 0201 0202 ..0...0..t......

 0x00a0: 0900 a72f c757 5f51 e56f 300d 0609 2a86 .../.W_Q.o0...*.

 0x00b0: 4886 f70d 0101 0505 0030 7931 0b30 0906 H........0y1.0..

....

c06.indd 372c06.indd 372 12/10/2010 9:45:37 AM12/10/2010 9:45:37 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 373

The server’s side of the exchange is rounded out by the server hello done
message. As shown in the next line of code, this contains no actual data; it’s
just a TLS header indicating that the packet is four bytes whose contents are an
empty handshake message of type 0x0e.

 0x0360: 1603 0100 040e 0000 00

Dissecting the Key Exchange Message
If the client was able to parse the certifi cate and has decided to trust it, and the
certifi cate contains enough information to satisfy the key exchange method in
the selected cipher suite, it must now send a key exchange message. Because the
key exchange method in this case is RSA, this involves making up a random
premaster secret, encrypting it using the public key that the server sent in the
certifi cate message, and sending that on.

After the standard TLS header and handshake message header, an RSA key
exchange message starts with a two-byte length, followed by the data. Because
the key used here is 512 bits, the RSA-encrypted data is also 512 bits, 64 bytes.

12:37:04.007143 IP localhost.localdomain.56047 > localhost.localdomain.https: P

 51:126(75) ack 822 win 270 <nop,nop,timestamp 12673336 12673268>

 0x0000: 4500 007f 0344 4000 4006 3933 7f00 0001 E....D@.@.93....

 0x0010: 7f00 0001 daef 01bb 1e32 63e5 1e28 e546 2c..(.F

 0x0020: 8018 010e fe73 0000 0101 080a 00c1 6138 s........a8

 0x0030: 00c1 60f4 1603 0100 4610 0000 4200 407a ..`.....F...B.@z

 0x0040: 8d74 369f 97e3 86e4 494f 5e71 1e0f 2059 .t6.....IO^q...Y

 0x0050: 6583 04d2 d432 ce33 1067 251c 5a4b edef e....2.3.g%.ZK..

 0x0060: d149 935b 9256 1a20 959a b9e4 0427 175e .I.[.V.......’.^

 0x0070: 6d70 cd0d af00 e3c2 c977 ab11 5af5 f7 mp.......w..Z..

Because I have access to the private key that corresponds with the public key
used in this exchange, I can decrypt this message using the rsa code developed
in Chapter 3. If I didn’t have this private key then I’d be out of luck trying to
interpret this or any subsequent message in this connection. Of course, the pri-
vate key appears nowhere in this exchange; the security of TLS hinges around
this fact. The private key exponent is

EAFF403432CBD12A7F7174C209F5364398E62F4A1B8F9B7C32B6CE190E716696D3E866E09

AF5367743EA5CC7903515D05D667E5480C562BCC0821F4A670B27F9

and the modulus is

EEB4761CAAE2E34F56CBC3AFE479E88589A9AB398250687ADE502D53EEFAD78C6E3CF8946

301095BD0BD7A60089737E2F1BB40A152E12DDCDBC95BD86661DA4F

so the RSA-encrypted message can be decoded as

[jdavies@localhost ssl]$./rsa -d \

0xEEB4761CAAE2E34F56CBC3AFE479E88589A9AB398250687ADE502D53EEFAD78\

C6E3CF8946301095BD0BD7A60089737E2F1BB40A152E12DDCDBC95BD86661DA4F \

c06.indd 373c06.indd 373 12/10/2010 9:45:37 AM12/10/2010 9:45:37 AM

374 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

0xEAFF403432CBD12A7F7174C209F5364398E62F4A1B8F9B7C32B6CE190E71669\

6D3E866E09AF5367743EA5CC7903515D05D667E5480C562BCC0821F4A670B27F9 \

0x7a8d74369f97e386e4494f5e711e0f2059658304d2d432ce331067251c5a4be\

defd149935b92561a20959ab9e40427175e6d70cd0daf00e3c2c977ab115af5f7

02 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 00 03 01 02 03 04 05 06 07 08 09 0a 0b

0c 0d 0e 0f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 26

27 28 29 2a 2b 2c 2d 2e 2f 00

030102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f2021222324252627

28292a2b2c2d2e2f

After stripping off the padding, you’re left with a premaster secret whose
fi rst two bytes are the SSL version 0301 and then the premaster secret which,
in this case, isn’t particularly secure.

According to the protocol, the client must now send a change cipher spec
message. This is a pretty boring message, consisting of a single byte:

12:37:04.046440 IP localhost.localdomain.56047 > localhost.localdomain.https: P

 126:185(59) ack 822 win 270 <nop,nop,timestamp 12673376 12673376>

 0x0000: 4500 006f 0345 4000 4006 3942 7f00 0001 E..o.E@.@.9B....

 0x0010: 7f00 0001 daef 01bb 1e32 6430 1e28 e546 2d0.(.F

 0x0020: 8018 010e fe63 0000 0101 080a 00c1 6160 c........a`

 0x0030: 00c1 6160 1403 0100 0101

Notice that the message type is 14, not 16; change cipher spec is a separate
top-level type. Other than this, it’s just the single, plain byte 0x01.

Decrypting the Encrypted Exchange
Change cipher spec is followed by a fi nished message. This message is encrypted
using the newly negotiated parameters, so must be decrypted. My network stack
decided to aggregate these two messages into a single TCP push, but there’s no
particular reason why it would have to be this way.

The fi nished message starts with the standard, expected (unencrypted) TLS mes-
sage header, and tells the recipient that the message that follows is 48 bytes long.
Everything following the header is encrypted using the negotiated session keys.

 1603 0100 301c ..a`..........0.

 0x0040: e1a2 aaf3 1267 749d b1e7 701d 8f95 98d8 gt...p.....

 0x0050: cd65 526b 90a4 d8d0 7536 1dd4 6a26 4787 .eRk....u6..j&G.

 0x0060: 4f49 5ac7 8c89 7dcc 1ee3 ad37 b25e 8d OIZ...}....7.^.

Because you know the private key that was used for the key exchange, you know
the premaster secret. Therefore, you can work forward and discover the master
secret and the key material. Recall that the master secret was generated by applying
the PRF to the premaster secret. Specifi cally, the PRF takes three input parameters:
the secret, the label, and the seed. Recall that, for master secret computation, the
label is the fi xed string “master secret”, and the seed is the client random fol-
lowed by the server random. The secret is, of course, the premaster secret.

c06.indd 374c06.indd 374 12/10/2010 9:45:37 AM12/10/2010 9:45:37 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 375

You can reproduce the master secret with this information:

[jdavies@localhost ssl]$./prf \

0x030102030405060708090a0b0c0d0e0f101112131415161718\

191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f “master secret” \

0x4c4f193f00\

4c4f193fe58513ecbaf3966b6ab96fbfbee41052ae1b643c93174f38a6548e53 48

2dee06e1ba5e41722dd1c24286ae5a0cfbd89b38bd4688fa

fb97c3dc05a2647be55490ba733406807df8023ae75d0a0a

The master secret is always exactly 48 bytes long.
The master secret itself isn’t used for key material; instead, it’s used as a seed

into the PRF again. The PRF also needs to know how many bytes to generate in
order to determine how many times to iterate. How many bytes are needed for
the selected cipher suite? AES-128 uses 16-byte keys, and a 16-byte block size, so
you need 32 bytes of keying material and 32 bytes of IV — one of each for each
side of the conversation. SHA-1 uses a 20-byte MAC key, so you need 40 bytes
of MAC secret; this works out to 104 bytes of keying material.

You can reproduce the keys by running the PRF algorithm with this input:

[jdavies@localhost ssl]$./prf \

0x2dee06e1ba5e41722dd1c24286ae5a0cfbd89b38bd4688\

fafb97c3dc05a2647be55490ba733406807df8023ae75d0a0a “key expansion” \

0x4c4f193fe58513ecbaf3966b6ab96fbfbee41052ae1b643c93174f38a6548e\

534c4f193f00 104

3a1ee25b3fa7efb9a2c8f112de47c3276917a2bbb0f81a9a389dbc82c3fc2a073e97aa31087f312

96dbb1276d318c6551ef8245888420cf4c2a545f7a8515c42c367599cdd52cf6ef6bb0cc22615db

9c0d93ad3c21d2f58ed18324dbfb7645103f191455421cceca

Notice that the seed in this case is the server random, followed by the client
random, whereas for the master secret expansion, it was the other way around.
If you overlook this fact, you will end up tearing your hair out for days trying
to fi gure out why your code isn’t working. (Don’t ask me how I know).

The key material block starts with the MAC secrets, then the keys, then the
initialization vectors, so this works out to what is shown in Table 6-1.

Table 6-1: The Key Material Block

PURPOSE CLIENT/WRITE SERVER/READ

MAC secret 3a1ee25b3fa7efb9a2c8f112de
47c3276917a2bb

b0f81a9a389dbc82c3f
c2a073e97aa31087f3129

Encryption Key 6dbb1276d318c6551e
f8245888420cf4

c2a545f7a8515c42c367599cd
d52cf6e

Initialization
Vector

f6bb0cc22615db9c
0d93ad3c21d2f58e

d18324dbfb7645103f
191455421cceca

c06.indd 375c06.indd 375 12/10/2010 9:45:37 AM12/10/2010 9:45:37 AM

376 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

Armed with the keys and initialization vectors, you can go ahead and decrypt
the 48-byte fi nished message:

[jdavies@localhost ssl]$./aes -d 0x6dbb1276d318c6551ef8245888420cf4 \

0xf6bb0cc22615db9c0d93ad3c21d2f58e \

0x1ce1a2aaf31267749db1e7701d8f9598d8cd65526b90a4d8\

d075361dd46a2647874f495ac78c897dcc1ee3ad37b25e8d

1400000ce3945aa7b226794d96cfcaf7b79febcb41c2bd7b48a77d7b26f

958296dc1467c0b0b0b0b0b0b0b0b0b0b0b0b

This is, as expected, a handshake message of type 0x14 (fi nished), followed
by a three-byte length indicating that the message is 12 bytes long. If you recall,
this is correct; the fi nished message is 12 bytes, generated by the PRF, seeded
with the hash values of all of the handshake messages up to this point.

However, the message body is signifi cantly longer. It includes 20 bytes of
MAC and an extra 12 bytes of padding, because 4+12+20 (header + contents +
MAC) is equal to 36, which is not an even multiple of the 16-byte block size.
Notice that there are 12 bytes of padding, but the value of the padding byte is
0x0b (11); there’s always one byte on the end that indicates how much padding
there is, which isn’t actually considered padding.

You can verify the MAC as well. Remember that the MAC is the HMAC
function of the sequence number, the TLS header, and the contents. Because
this is the fi rst securely exchanged packet, the sequence number is 0. However,
be careful. If you try to do this

[jdavies@localhost ssl]$./hmac -sha1 \

0x3a1ee25b3fa7efb9a2c8f112de47c3276917a2bb \

0x000000000000000016010100301400000ce3945aa7b226794d96cfcaf7

dfc0e0ef8c50a3bc3f9db3d87168a99ce3c4f99d

you’ll get the wrong answer. The MAC is actually b79febcb41c2bd7b48a77d
7b26f958296dc1467c; what went wrong?

Remember that the MAC was generated from the sequence number and
what the TLS header would have looked like, had there been no encryption
or MAC — that is, the length before padding and MAC. So, to get the correct
answer, you have to subtract the 32 bytes of MAC and padding from the length
in the TLS header and compute:

[jdavies@localhost ssl]$./hmac -sha1 \

0x3a1ee25b3fa7efb9a2c8f112de47c3276917a2bb \

0x000000000000000016030100101400000ce3945aa7b226794d96cfcaf7

b79febcb41c2bd7b48a77d7b26f958296dc1467c

The server receives the fi nished message, decrypts it, verifi es the MAC, and
compares the verify data of e3945aa7b226794d96cfcaf7 to what it has computed
so far. It then responds with its own change cipher spec and fi nished message:

12:37:04.047107 IP localhost.localdomain.https > localhost.localdomain.56047: P

 822:881(59) ack 185 win 256 <nop,nop,timestamp 12673376 12673376>

 0x0000: 4500 006f 82e6 4000 4006 b9a0 7f00 0001 E..o..@.@.......

c06.indd 376c06.indd 376 12/10/2010 9:45:37 AM12/10/2010 9:45:37 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 377

 0x0010: 7f00 0001 01bb daef 1e28 e546 1e32 646b (.F.2dk

 0x0020: 8018 0100 fe63 0000 0101 080a 00c1 6160 c........a`

 0x0030: 00c1 6160 1403 0100 0101 1603 0100 30c8 ..a`..........0.

 0x0040: 5afc e4c0 1560 ec3b 4db9 6185 f4f4 f1b1 Z....`.;M.a.....

 0x0050: bcb1 3528 c8a6 5862 f512 30e6 02d5 62a8 ..5(..Xb..0...b.

 0x0060: 6e4d f925 8048 d19b 0a2d 6296 4b6c e9 nM.%.H...-b.Kl.

The fi nished message is encrypted just as the client’s was, but because you
know the keys you can decrypt it:

[jdavies@localhost ssl]$./aes -d 0xc2a545f7a8515c42c367599cdd52cf6e \

0xd18324dbfb7645103f191455421cceca \

0xc85afce4c01560ec3b4db96185f4f4f1b1bcb13528c8a65\

862f51230e602d562a86e4df9258048d19b0a2d62964b6ce9

1400000c45c4904ac71a5948a7198e18b8618774e12b8f58f49216bcf

59a914f236b6fef0b0b0b0b0b0b0b0b0b0b0b0b

Of course, you must use the second set of keys to decrypt this properly. You
can verify the MAC as well.

Also, notice that, in this case, the verify data is 45c4904ac71a5948a7198e18 — it
does not match the verify data that the client sent. Why not? Because the cli-
ent’s fi nished message is included in the computation of the verify data that
the server sends.

Exchanging Application Data
The TLS handshake is complete; it’s time for the top-level protocol, in this case
HTTP, to take over. The TLS header is present, but this time, it identifi es appli-
cation data:

12:37:04.049299 IP localhost.localdomain.56047 > localhost.localdomain.https: P

185:238(53) ack 881 win 270 <nop,nop,timestamp 12673378 12673376>

 0x0000: 4500 0069 0347 4000 4006 3946 7f00 0001 E..i.G@.@.9F....

 0x0010: 7f00 0001 daef 01bb 1e32 646b 1e28 e581 2dk.(..

 0x0020: 8018 010e fe5d 0000 0101 080a 00c1 6162 ]........ab

 0x0030: 00c1 6160 1703 0100 301d 6070 ca35 be42 ..a`....0.`p.5.B

 0x0040: 29da cf8a 9654 391c 08a5 981a 8d15 e87a)....T9........z

 0x0050: c058 437c 834d 957a d446 b9eb dd78 f392 .XC|.M.z.F...x..

 0x0060: 0375 de85 e852 b6e6 c0 .u...R...

This is decrypted just like the fi nished message was. However, remember
that the initialization vector used to decrypt this packet is the last 16 bytes of
the previously sent packet:

[jdavies@localhost ssl]$./aes -d 0x6dbb1276d318c6551ef8245888420cf4 \

0x874f495ac78c897dcc1ee3ad37b25e8d \

0 x1d6070ca35be4229dacf8a9654391c08a5981a8d15e87ac\

058437c834d957ad446b9ebdd78f3920375de85e852b6e6c0

474554202f696e6465782e68746d6c20485454502f312e310d0a200e496b9e2dadcf20bb5c9

2c4047baf348b1f7b0101

c06.indd 377c06.indd 377 12/10/2010 9:45:37 AM12/10/2010 9:45:37 AM

378 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS

After the MAC is verifi ed and removed and the padding is stripped off, the
payload of 474554202f696e6465782e68746d6c20485454502f312e310d0a is handed
off to the HTTP protocol. This is just the ASCII encoding of “GET /index.html
HTTP/1.0” and the CRLF delimiter. HTTP doesn’t indicate its length; the TLS
header gave the TLS layer enough information to decrypt and strip off the MAC,
but it’s up to HTTP to fi gure out what to do with this message.

The server’s response is omitted here. After the server has responded, though,
it sends

12:37:04.089204 IP localhost.localdomain.https > localhost.localdomain.56047: P

 1291:1328(37) ack 344 win 256 <nop,nop,timestamp 12673418 12673418>

 0x0000: 4500 0059 82ea 4000 4006 b9b2 7f00 0001 E..Y..@.@.......

 0x0010: 7f00 0001 01bb daef 1e28 e71b 1e32 650a (...2e.

 0x0020: 8018 0100 fe4d 0000 0101 080a 00c1 618a M........a.

 0x0030: 00c1 618a 1503 0100 20ae dd34 8655 8551 ..a........4.U.Q

 0x0040: 3836 6592 0d73 dcda 4770 9798 dc2a c22c 86e..s..Gp...*.,

 0x0050: 79da e8c2 0945 6c4f 61 y....ElOa

As you can see from the header, this is an alert. Of course, it’s encrypted,
but you know by now that this is a close_notify alert. This is followed by the
normal TCP shutdown.

Differences Between SSL 3.0 and TLS 1.0

As mentioned previously, TLS is a minor revision to SSL 3.0, which was a major
overhaul of SSLv2. There are few differences between SSL 3.0 and TLS 1.0; TLS
defi ned a handful of new alert types and removed support for the Fortezza key
exchange algorithm.

WHAT IS FORTEZZA?

Fortezza was the U.S. government’s aborted attempt at a key escrow system.
The idea was that you could use as strong cryptography as you liked, but you
had to share a copy of the private key with the U.S. government in case it ever
needed to decrypt something that you had exchanged. This didn’t go over
well with the U.S. public and went over even less well with users in foreign
countries.

The U.S. government has not resurrected a key escrow system since the fail-
ure of Fortezza. Whether this means that they’ve decided that it’s not nice to
snoop on people or whether they’ve found but kept secret a fundamental fl aw
in the cryptographic protocols that TLS relies on that allows them to decrypt
your data at will is for you to decide.

The most signifi cant difference, and what necessitated a new version, was
the introduction of the PRF. SSL 3.0 had a premaster secret, just like TLS 1.0,

c06.indd 378c06.indd 378 12/10/2010 9:45:37 AM12/10/2010 9:45:37 AM

 Chapter 6 n A Usable, Secure Communications Protocol: Client-Side TLS 379

but it became the master secret by taking the MD5 hash of the premaster secret
plus the SHA hash of the letter A plus the premaster secret, the client random,
and the server random, followed by the same MD5 hash with A replaced by
BB, and the same MD5 hash again with CCC instead of BB. The fi nished mes-
sages, the other place where the PRF shows up in TLS, were based directly on
MD5 and SHA-1 hashes as well.

There’s not much reason to go into any more detail on SSLv3 here. Because
SSLv3 and TLS 1.0 are almost identical, it’s a good bet that any server that sup-
ports one supports the other.

Differences Between TLS 1.0 and TLS 1.1

The TLS 1.0 protocol stood untouched for seven years after it was standardized
in 1999. In 2006, Tim Dierks and Eric Rescorla drafted RFC 4346, specifying TLS
1.1 and making TLS 1.0 obsolete.

By and large, TLS 1.1 is not a signifi cant change from TLS 1.0. It added some
new cipher suites and some clarifi cations and implementation notes, but the
most important change is that initialization vectors are no longer computed
from the master secret; instead, they’re prepended to each packet.

Why, you ask? Well, each record’s IV is the most recently transmitted block.
Although an attacker can’t decrypt the packet, even a passive eavesdropper
can see what the next IV is going to be. The attack is complex, but a dedicated
attacker who can inject known plaintext into the stream can guess what the last
plaintext block is and verify his guess by injecting a specially crafted plaintext
block into the stream. It’s not clear under what circumstances an attacker might
be able to inject known plaintext, but not have access to the keys; perhaps he’s
sniffi ng traffi c coming out of a call center, calls that call center, makes up an
account ID, and hopes that that account ID is the next packet on a live session.

Theoretical or not, this is an easy enough attack to defend against, so TLS 1.1
does so. TLS 1.1 is not particularly common on the public Internet, even today,
four years after it was drafted.

Two years after TLS 1.1 was drafted, it was made obsolete by RFC 5246, which
specifi es TLS 1.2. TLS 1.2 was a major modifi cation of the TLS protocol and
Chapter 9 is devoted to detailing the changes it introduced.

c06.indd 379c06.indd 379 12/10/2010 9:45:38 AM12/10/2010 9:45:38 AM

c06.indd 380c06.indd 380 12/10/2010 9:45:38 AM12/10/2010 9:45:38 AM

381

C H A P T E R

7

Adding Server-Side TLS 1.0
Support

The previous chapter examined the TLS protocol in detail from the perspec-
tive of the client. This chapter examines the server’s role in the TLS exchange.
Although you should have a pretty good handle by now on what’s expected
of the server, the implementation includes a few gotchas that you should be
aware of.

The good news is that you can reuse most of the code from the previous
chapter; the supporting infrastructure behind encrypting and authenticat-
ing is exactly the same for the server as for the client. For the most part,
implementing the server’s view of the handshake involves sending what
the client received and receiving what the client sent. After the handshake
is complete, tls_send, tls_recv, and tls_shutdown work exactly as they do
on the client side.

Implementing the TLS 1.0 Handshake from the
Server’s Perspective

You need to have a way to verify the server-side code, so add HTTPS support
to the simple web server developed in Chapter 1. The startup and listen routine
doesn’t change at all. Of course, it’s listening on port 443 instead of port 80, but
otherwise, the main routine in Listing 7-1 is identical to the one in Listing 1-18.

c07.indd 381c07.indd 381 12/10/2010 9:45:56 AM12/10/2010 9:45:56 AM

382 Chapter 7 n Adding Server-Side TLS 1.0 Support

Listing 7-1: “ssl_webserver.c” main routine

#define HTTPS_PORT 443

…

 local_addr.sin_port = htons(HTTPS_PORT);

…

 while ((connect_sock = accept(listen_sock,

 (struct sockaddr *) &client_addr,

 &client_addr_len)) != -1)

 {

 process_https_request(connect_sock);

 }

As you can see, there’s nothing TLS-specifi c here; you’re just accepting con-
nections on a different port.

process_https_request is just like process_http_request, except that it
starts with a call to tls_accept in Listing 7-2.

Listing 7-2: “ssl_webserver.c” process_https_request

static void process_https_request(int connection)

{

 char *request_line;

 TLSParameters tls_context;

 if (tls_accept(connection, &tls_context))

 {

 perror(“Unable to establish SSL connection”);

 }

 else

 {

 request_line = read_line(connection, &tls_context);

 if (strncmp(request_line, “GET”, 3))

 {

 // Only supports “GET” requests

 build_error_response(connection, 400, &tls_context);

 }

 else

 {

 // Skip over all header lines, don’t care

 while (strcmp(read_line(connection, &tls_context), “”))

 {

 printf(“skipped a header line\n”);

 }

 build_success_response(connection, &tls_context);

 }

 tls_shutdown(connection, &tls_context);

c07.indd 382c07.indd 382 12/10/2010 9:45:56 AM12/10/2010 9:45:56 AM

 Chapter 7 n Adding Server-Side TLS 1.0 Support 383

 }

#ifdef WIN32

 if (closesocket(connection) == -1)

#else

 if (close(connection) == -1)

#endif

 {

 perror(“Unable to close connection”);

 }

}

And, of course, read_line, build_error_response, and build_success_
response must be updated to invoke tls_send and tls_recv instead of send
and recv as in Listing 7-3.

Listing 7-3: “ssl_webserver.c” send and read modifi cations

char *read_line(int connection, TLSParameters *tls_context)

{

…

 while ((size = tls_recv(connection, &c, 1, 0, tls_context)) >= 0)

 {

…

static void build_success_response(int connection, TLSParameters *tls_context)

{

…

 if (tls_send(connection, buf, strlen(buf), 0, tls_context) < strlen(buf))

…

static void build_error_response(int connection,

 int error_code,

 TLSParameters *tls_context)

{

 if (tls_send(connection, buf, strlen(buf), 0, tls_context) < strlen(buf))

 {

Other than tls_accept, all of the support functions referenced here were
implemented in Chapter 6 and can be used exactly as is.

Notice the HTTPS protocol at work. The server accepts a connection and
then immediately waits for a client hello message; if any attempt is made to
send any other data, an error occurs. Although this is not strictly required by
the TLS protocol itself, it is common when integrating TLS into an existing
protocol.

tls_accept is a mirror image of tls_connect; it must wait for a client hello.
(Remember that the client must always initiate the TLS handshake.) After the
hello is received, the server responds with hello, certifi cate, and hello done
messages back-to-back, waits for the client’s change cipher-spec and fi nished
message, sends its own, and returns. This is shown in Listing 7-4.

c07.indd 383c07.indd 383 12/10/2010 9:45:56 AM12/10/2010 9:45:56 AM

384 Chapter 7 n Adding Server-Side TLS 1.0 Support

Listing 7-4: “tls.c” tls_accept

int tls_accept(int connection,

 TLSParameters *parameters)

{

 init_parameters(parameters);

 parameters->connection_end = connection_end_server;

 new_md5_digest(¶meters->md5_handshake_digest);

 new_sha1_digest(¶meters->sha1_handshake_digest);

 // The client sends the first message

 parameters->got_client_hello = 0;

 while (!parameters->got_client_hello)

 {

 if (receive_tls_msg(connection, NULL, 0, parameters) < 0)

 {

 perror(“Unable to receive client hello”);

 send_alert_message(connection, handshake_failure,

 ¶meters->active_send_parameters);

 return 1;

 }

 }

 if (send_server_hello(connection, parameters))

 {

 send_alert_message(connection, handshake_failure,

 ¶meters->active_send_parameters);

 return 2;

 }

 if (send_certificate(connection, parameters))

 {

 send_alert_message(connection, handshake_failure,

 ¶meters->active_send_parameters);

 return 3;

 }

 if (send_server_hello_done(connection, parameters))

 {

 send_alert_message(connection, handshake_failure,

 ¶meters->active_send_parameters);

 return 4;

 }

 // Now the client should send a client key exchange, change cipher spec, and

 // an encrypted “finalize” message

 parameters->peer_finished = 0;

 while (!parameters->peer_finished)

 {

 if (receive_tls_msg(connection, NULL, 0, parameters) < 0)

c07.indd 384c07.indd 384 12/10/2010 9:45:56 AM12/10/2010 9:45:56 AM

 Chapter 7 n Adding Server-Side TLS 1.0 Support 385

 {

 perror(“Unable to receive client finished”);

 send_alert_message(connection, handshake_failure,

 ¶meters->active_send_parameters);

 return 5;

 }

 }

 // Finally, send server change cipher spec/finished message

 if (!(send_change_cipher_spec(connection, parameters)))

 {

 perror(“Unable to send client change cipher spec”);

 send_alert_message(connection, handshake_failure,

 ¶meters->active_send_parameters);

 return 6;

 }

 // This message will be encrypted using the newly negotiated keys

 if (!(send_finished(connection, parameters)))

 {

 perror(“Unable to send client finished”);

 send_alert_message(connection, handshake_failure,

 ¶meters->active_send_parameters);

 return 7;

 }

 // Handshake is complete; now ready to start sending encrypted data

 return 0;

}

This listing should be easy to follow if you understood tls_connect (Listing 6-7).
It starts by initializing its own handshake digest pair so that it can validate the
fi nal fi nished message as described in Chapter 6. It also references three new
TLSParameter members that you haven’t seen yet:

 n connection_end: This requires a bit of explanation. Recall from Listing
6-37 that, when calculating keys, the fi rst mac-length bytes were the cli-
ent’s MAC secret, and the next mac-length bytes were the server’s. If you
want to reuse the same code to compute keys, you must keep track of
whether you are the client or the server, to know which keys to put into
the active_send_parameters and which to put into the active_recv_
parameters. Because tls_accept is only invoked by a TLS server, and
tls_connect is only invoked by a TLS client, it’s safe to set this fl ag here
to control common functions.

 n got_client_hello: Serves the same purpose in tls_accept as got_server_
hello did in tls_connect. Each call to receive_tls_message processes
the next available TLS message, regardless of what type it is — alert,

c07.indd 385c07.indd 385 12/10/2010 9:45:56 AM12/10/2010 9:45:56 AM

386 Chapter 7 n Adding Server-Side TLS 1.0 Support

data, handshake — so you must keep processing messages until you get
the one you were expecting.

 n peer_finished. The same as server_finished. In fact, you should delete
server_finished from the TLSParameters structures and rename it peer_
finished; the fi nished messages are identical whether they came from the
client or from the server, so handling them is exactly the same either way.

Defi ne these new members in Listing 7-5.

Listing 7-5: “tls.h” TLSParameters with server-side support

typedef enum { connection_end_client, connection_end_server } ConnectionEnd;

typedef struct

{

 ConnectionEnd connection_end;

 master_secret_type master_secret;

 random_type client_random;

 random_type server_random;

 ProtectionParameters pending_send_parameters;

 ProtectionParameters active_send_parameters;

 ProtectionParameters pending_recv_parameters;

 ProtectionParameters active_recv_parameters;

 public_key_info server_public_key;

 dh_key server_dh_key;

 // Internal state

 int got_client_hello;

 int server_hello_done;

 int peer_finished;

 digest_ctx md5_handshake_digest;

 digest_ctx sha1_handshake_digest;

 char *unread_buffer;

 int unread_length;

}

TLSParameters;

Change references from server_finished to peer_finished and change the
verify data label depending on the connection end in Listing 7-6.

Listing 7-6: “tls.c” peer_fi nished

static unsigned char *parse_finished(unsigned char *read_pos,

 int pdu_length,

 TLSParameters *parameters)

{

c07.indd 386c07.indd 386 12/10/2010 9:45:56 AM12/10/2010 9:45:56 AM

 Chapter 7 n Adding Server-Side TLS 1.0 Support 387

 unsigned char verify_data[VERIFY_DATA_LEN];

 parameters->peer_finished = 1;

 compute_verify_data(

 parameters->connection_end == connection_end_client ?

 “server finished” : “client finished”,

 parameters, verify_data);

…

int tls_connect(int connection,

 TLSParameters *parameters)

{

…

 parameters->peer_finished = 0;

 while (!parameters->peer_finished)

 {

 if (receive_tls_msg(connection, NULL, 0, parameters) < 0)

And fi nally update the initialization routine in Listing 7-7.

Listing 7-7: “tls.c” init_parameters

static void init_parameters(TLSParameters *parameters)

{

…

 // Internal state

 parameters->got_client_hello = 0;

 parameters->server_hello_done = 0;

 parameters->peer_finished = 0;

...

int tls_connect(int connection,

 TLSParameters *parameters)

{

 init_parameters(parameters);

 parameters->connection_end = connection_end_client;

TLS Client Hello
Of course, a client hello can be received by receive_tls_message now, so it
must be added in Listing 7-8.

Listing 7-8: “tls.c” receive_tls_message with client_hello

static int receive_tls_msg(int connection,

 char *buffer,

 int bufsz,

 TLSParameters *parameters)

{

…

 switch (handshake.msg_type)

 {
(Continued)

c07.indd 387c07.indd 387 12/10/2010 9:45:56 AM12/10/2010 9:45:56 AM

388 Chapter 7 n Adding Server-Side TLS 1.0 Support

…

 // Server-side messages

 case client_hello:

 if (parse_client_hello(read_pos, handshake.length,

 parameters) == NULL)

 {

 send_alert_message(connection, illegal_parameter,

 ¶meters->active_send_parameters);

 return -1;

 }

 read_pos += handshake.length;

 break;

...

Parsing and processing the client hello message involves, at a bare minimum,
selecting one of the offered cipher suites. The easiest way to do this is to cycle
through the list of cipher suites that the client offers and select the fi rst one
that the server understands. Note that this is not necessarily the best strategy;
ideally the server would select the strongest suite that both sides understand.
On the other hand, client designers can meet server designers halfway and
sort the cipher suite list by cipher strength so that the server’s cipher selection
code can be simpler. The specifi cation states that the client hello should include
its “favorite cipher fi rst.” However, there are no suggestions on what criteria it
ought to use in selecting a favorite. This does imply that the server probably
ought to select the fi rst one it recognizes, but does not actually mandate this.

Parsing the client hello message is shown in Listing 7-9.

Listing 7-9: “tls.c” parse_client_hello

static char *parse_client_hello(char *read_pos,

 int pdu_length,

 TLSParameters *parameters)

{

 int i;

 ClientHello hello;

 read_pos = read_buffer((void *) &hello.client_version.major,

 (void *) read_pos, 1);

 read_pos = read_buffer((void *) &hello.client_version.minor,

 (void *) read_pos, 1);

 read_pos = read_buffer((void *) &hello.random.gmt_unix_time,

 (void *) read_pos, 4);

 // *DON’T* put this in host order, since it’s not used as a time! Just

 // accept it as is

c07.indd 388c07.indd 388 12/10/2010 9:45:56 AM12/10/2010 9:45:56 AM

 Chapter 7 n Adding Server-Side TLS 1.0 Support 389

 read_pos = read_buffer((void *) hello.random.random_bytes,

 (void *) read_pos, 28);

 read_pos = read_buffer((void *) &hello.session_id_length,

 (void *) read_pos, 1);

 hello.session_id = NULL;

 if (hello.session_id_length > 0)

 {

 hello.session_id = (unsigned char *) malloc(hello.session_id_length);

 read_pos = read_buffer((void *) hello.session_id, (void *) read_pos,

 hello.session_id_length);

 // TODO if this is non-empty, the client is trying to trigger a restart

 }

 read_pos = read_buffer((void *) &hello.cipher_suites_length,

 (void *) read_pos, 2);

 hello.cipher_suites_length = ntohs(hello.cipher_suites_length);

 hello.cipher_suites = (unsigned short *) malloc(hello.cipher_suites_length

);

 read_pos = read_buffer((void *) hello.cipher_suites,

 (void *) read_pos,

 hello.cipher_suites_length);

 read_pos = read_buffer((void *) &hello.compression_methods_length,

 (void *) read_pos, 1);

 hello.compression_methods = (unsigned char *) malloc(

 hello.compression_methods_length);

 read_pos = read_buffer((void *) hello.compression_methods,

 (void *) read_pos,

 hello.compression_methods_length);

This reuses the read_buffer function from Listing 6-21 to fi ll in the ClientHello
structure.

After this structure is fi lled in, the server must select a cipher suite.
 for (i = 0; i < hello.cipher_suites_length; i++)

 {

 hello.cipher_suites[i] = ntohs(hello.cipher_suites[i]);

 if (hello.cipher_suites[i] < MAX_SUPPORTED_CIPHER_SUITE &&

 suites[hello.cipher_suites[i]].bulk_encrypt != NULL)

 {

 parameters->pending_recv_parameters.suite = hello.cipher_suites[i];

 parameters->pending_send_parameters.suite = hello.cipher_suites[i];

 break;

 }

 }

 if (i == MAX_SUPPORTED_CIPHER_SUITE)

 {

 return NULL;

 }

 parameters->got_client_hello = 1;

c07.indd 389c07.indd 389 12/10/2010 9:45:56 AM12/10/2010 9:45:56 AM

390 Chapter 7 n Adding Server-Side TLS 1.0 Support

The specifi cation isn’t clear on exactly what the server should do if the client
doesn’t offer any supported cipher suites; OpenSSL just closes the connection
without sending an alert. This implementation returns NULL here, which ulti-
mately triggers a handshake failed alert back in the tls_accept code.

Finally, record the client random for the key exchange step and clean up.
 memcpy((void *) parameters->client_random, &hello.random.gmt_unix_time, 4);

 memcpy((void *) (parameters->client_random + 4),

 (void *) hello.random.random_bytes, 28);

 free(hello.cipher_suites);

 free(hello.compression_methods);

 if (hello.session_id)

 {

 free(hello.session_id);

 }

 return read_pos;

}

TLS Server Hello
Sending a server hello is pretty much the same as sending a client hello; the only
difference between the two structures is that the server hello only has space for
one cipher suite and one compression method. This is shown in Listing 7-10.

Listing 7-10: “tls.c” send_server_hello

static int send_server_hello(int connection, TLSParameters *parameters)

{

 ServerHello package;

 int send_buffer_size;

 char *send_buffer;

 void *write_buffer;

 time_t local_time;

 package.server_version.major = 3;

 package.server_version.minor = 1;

 time(&local_time);

 package.random.gmt_unix_time = htonl(local_time);

 // TODO - actually make this random.

 // This is 28 bytes, but server random is 32 - the first four bytes of

 // “server random” are the GMT unix time computed above.

 memcpy(parameters->server_random, &package.random.gmt_unix_time, 4);

 memcpy(package.random.random_bytes, parameters->server_random + 4, 28);

 package.session_id_length = 0;

 package.cipher_suite = htons(parameters->pending_send_parameters.suite);

 package.compression_method = 0;

 send_buffer_size = sizeof(ProtocolVersion) +

c07.indd 390c07.indd 390 12/10/2010 9:45:57 AM12/10/2010 9:45:57 AM

 Chapter 7 n Adding Server-Side TLS 1.0 Support 391

 sizeof(Random) +

 sizeof(unsigned char) +

 (sizeof(unsigned char) * package.session_id_length) +

 sizeof(unsigned short) +

 sizeof(unsigned char);

 write_buffer = send_buffer = (char *) malloc(send_buffer_size);

 write_buffer = append_buffer(write_buffer,

 (void *) &package.server_version.major, 1);

 write_buffer = append_buffer(write_buffer,

 (void *) &package.server_version.minor, 1);

 write_buffer = append_buffer(write_buffer,

 (void *) &package.random.gmt_unix_time, 4);

 write_buffer = append_buffer(write_buffer,

 (void *) &package.random.random_bytes, 28);

 write_buffer = append_buffer(write_buffer,

 (void *) &package.session_id_length, 1);

 if (package.session_id_length > 0)

 {

 write_buffer = append_buffer(write_buffer, (void *)package.session_id,

 package.session_id_length);

 }

 write_buffer = append_buffer(write_buffer,

 (void *) &package.cipher_suite, 2);

 write_buffer = append_buffer(write_buffer,

 (void *) &package.compression_method, 1);

 assert(((char *) write_buffer - send_buffer) == send_buffer_size);

 send_handshake_message(connection, server_hello, send_buffer,

 send_buffer_size, parameters);

 free(send_buffer);

 return 0;

}

The selected cipher suite is copied from pending_send_parameters and bun-
dled off to the client. Notice that the session ID sent by this implementation is
empty; this is permissible per the specifi cation and indicates to the client that
this server either does not support session resumption or does not intend to
resume this session.

TLS Certifi cate
After the server hello is sent, the server should send a certifi cate, if the cipher
spec calls for one (which is the case in the most common cipher specs). Because
the certifi cate normally must be signed by a certifi cate authority in order to be
accepted, it’s usually pre-generated and signed, and it must be loaded from disk

c07.indd 391c07.indd 391 12/10/2010 9:45:57 AM12/10/2010 9:45:57 AM

392 Chapter 7 n Adding Server-Side TLS 1.0 Support

to be presented to the user. There’s no realistic way to generate a new certifi cate
with a new public key “on the fl y.”

Recall that the certifi cate handshake message was the length of the chain,
followed by the length of the certifi cate, followed by the certifi cate, followed by
(optionally) another length of a certifi cate/certifi cate, and so on. The simplest
case is a certifi cate chain consisting of one certifi cate, so the certifi cate must be
loaded from disk, the length must be checked, prepended twice, and the whole
array serialized as a TLS handshake message. This is shown in Listing 7-11.

Listing 7-11: “tls.c” send_certifi cate

static int send_certificate(int connection, TLSParameters *parameters)

{

 short send_buffer_size;

 unsigned char *send_buffer, *read_buffer;

 int certificate_file;

 struct stat certificate_stat;

 short cert_len;

 if ((certificate_file = open(“cert.der”, O_RDONLY)) == -1)

 {

 perror(“unable to load certificate file”);

 return 1;

 }

 if (fstat(certificate_file, &certificate_stat) == -1)

 {

 perror(“unable to stat certificate file”);

 return 1;

 }

 // Allocate enough space for the certificate file, plus 2 3-byte length

 // entries.

 send_buffer_size = certificate_stat.st_size + 6;

 send_buffer = (unsigned char *) malloc(send_buffer_size);

 memset(send_buffer, ‘\0’, send_buffer_size);

 cert_len = certificate_stat.st_size + 3;

 cert_len = htons(cert_len);

 memcpy((void *) (send_buffer + 1), &cert_len, 2);

 cert_len = certificate_stat.st_size;

 cert_len = htons(cert_len);

 memcpy((void *) (send_buffer + 4), &cert_len, 2);

 read_buffer = send_buffer + 6;

 cert_len = certificate_stat.st_size;

 while ((read_buffer - send_buffer) < send_buffer_size)

 {

 int read_size;

 read_size = read(certificate_file, read_buffer, cert_len);

c07.indd 392c07.indd 392 12/10/2010 9:45:57 AM12/10/2010 9:45:57 AM

 Chapter 7 n Adding Server-Side TLS 1.0 Support 393

 read_buffer += read_size;

 cert_len -= read_size;

 }

 if (close(certificate_file) == -1)

 {

 perror(“unable to close certificate file”);

 return 1;

 }

 send_handshake_message(connection, certificate, send_buffer,

 send_buffer_size, parameters);

 free(send_buffer);

 return 0;

}

This loads the fi le cert.der from the current directory into memory, builds
a certifi cate handshake message, and sends it on. Notice the use of fstat to
allocate a buffer of exactly the right size for the certifi cate fi le, along with two
three-byte length fi elds. The fi rst length fi eld is three more than the second
because it includes the second length in its count. Of course, all of the lengths
need to be given in network, not host, order. Although there’s no three-byte
integral type, it’s doubtful that a certifi cate is going to be greater than 65,536
bytes in length, so this code just assumes two byte lengths and pads with an
extra 0 to satisfy the formatting requirements.

You can almost certainly see an obvious performance improvement here;
nothing in this packet changes from one handshake to the next. Although the
code as presented here permits the server administrator to update the certifi cate
without a server restart, the performance hit of loading the entire thing from
fi le to satisfy every single HTTP connection is probably not worth this fl exibil-
ity. This message ought to be cached in memory and sent from cache after it’s
generated the fi rst time.

TLS Server Hello Done
As you can see from Listing 7-12, there’s not much to the server hello done
message:

Listing 7-12: “tls.c” send_server_hello_done

static int send_server_hello_done(int connection, TLSParameters *parameters)

{

 send_handshake_message(connection, server_hello_done, NULL, 0, parameters);

 return 0;

}

c07.indd 393c07.indd 393 12/10/2010 9:45:57 AM12/10/2010 9:45:57 AM

394 Chapter 7 n Adding Server-Side TLS 1.0 Support

TLS Client Key Exchange
If you look back at Listing 7-4, you see that after the server sends the hello done
message, it waits for the client to respond with a key exchange message. This
should contain either an RSA-encrypted premaster secret or the last half of a
Diffi e-Hellman handshake, depending on the key exchange method chosen. In
general, the server certifi cate is expected to have contained enough information
for the client to do so. (You see in the next chapter what happens if this is not
the case.)

So add the client_key_exchange message to receive_tls_message in Listing 7-13.

Listing 7-13: “tls.c” receive_tls_msg with client_key_exchange

static int receive_tls_msg(int connection,

 char *buffer,

 int bufsz,

 TLSParameters *parameters)

{

…

 switch (handshake.msg_type)

 {

…

 case client_key_exchange:

 read_pos = parse_client_key_exchange(read_pos, handshake.length,

 parameters);

 if (read_pos == NULL)

 {

 send_alert_message(connection, illegal_parameter,

 ¶meters->active_send_parameters);

 return -1;

 }

 break;

parse_client_key_exchange reads the premaster secret, expands it into a
master secret and then into key material, and updates the pending cipher spec.
Remember that the pending cipher spec cannot be made active until a change
cipher spec message is received.

TLS 1.0 supports two different key exchange methods: RSA and Diffi e-Hellman.
To process an RSA client key exchange, the server must use the private key to
decrypt the premaster secret that the client encrypts and sends. To process
a DH client key exchange, the server must compute z = Yca %p; Yc will have
been sent in the client key exchange message. However, the server must
have sent g, p, and Ys = ga%p in the fi rst place. Although there’s a provision in the
X.509 specifi cation to allow the server to send this information in the certifi cate
itself, I’m not aware of any software that generates a Diffi e-Hellman certifi -
cate. In fact, the specifi cation for Diffi e-Hellman certifi cates puts p and g in
the certifi cate, which makes perfect sense, but it also puts Ys in the certifi cate.

c07.indd 394c07.indd 394 12/10/2010 9:45:57 AM12/10/2010 9:45:57 AM

 Chapter 7 n Adding Server-Side TLS 1.0 Support 395

Because the whole certifi cate must be signed by a certifi cate authority, this means
that the corresponding secret value a must be used over and over for multiple
handshakes; ideally, you’d want to select a new one for each connection.

Does this mean that Diffi e-Hellman key exchange is never used in TLS? It
doesn’t, but it does mean that it’s usually used in a slightly more complex way,
which is examined in the next chapter. This section instead simply focuses on
the conceptually simpler RSA key exchange.

RSA Key Exchange and Private Key Location

RSA key exchange, then, consists of loading the private key corresponding to
the public key previously transmitted in the certifi cate message, decrypting the
client key exchange message, and extracting the premaster key. After this has
been done, the compute_master_secret and calculate_keys functions from
the previous chapter can be used to complete the key exchange (with one minor
difference, detailed later, to account for the fact that this is now the server and
the read and write keys must be swapped). You know how RSA decryption
works; the rsa_decrypt function was developed in Listing 3-20; the padding
used by TLS is the same PKCS #1.5 padding implemented there.

However, where does the private key come from in the fi rst place? It’s obvi-
ously not in the certifi cate. Recall from Chapter 5 that when you generated
your own test self-signed certifi cate, you actually output two fi les: cert.der and
key.der. key.der contained the private key. A DER-encoded fi le is a binary fi le
that you can’t read without special software, but a PEM (Base64-encoded) key
fi le — which is actually the default in OpenSSL if you don’t specifi cally ask for
DER — can be loaded in a standard text editor.
-----BEGIN RSA PRIVATE KEY-----

Proc-Type: 4,ENCRYPTED

DEK-Info: DES-EDE3-CBC,BD1FF235EA6104E1

rURbzE1gnHP0Pcq6SeXvMeP6b5pNmJSpJxCZtuBkC0iTNwRRwICcv0pVNTgkutlU

sCnstPyVh/JRU94KQKS0e471Jsq8FKFYqhpDuu1gq7eUGnajFnIh2UvNASVSit6i

6VpJAAs8y1wrt93FfiCMyKiYYGYAOEaE2paDJ4E8zjyVB253BoXDY4PUHpuZDQpL

Oxd2mplnTI+5wLomXwW4hjRpX61xfg7ed2RKw00jSx89dkqTgI3jv2VoYqzO88Rb

EnQp+2+iSEo+CYvhO26c7c12hGzW0P0fE5olOYnUv5WFPnjBmheWRkAj+K2eeS6w

qMTsv1OzKR02gxMWtlJQc2JmnUCfypjTcf9FSGHQKaPSDqbs/1/m+U9DzuzD6NUH

/EUWR6m1WxQiORzDUtHrTZ3tJmuGGUEhpqIjpFsL//0=

-----END RSA PRIVATE KEY-----

As the headers indicate, this fi le is encrypted by default; if you recall, you
were prompted for a password before this was generated.

OpenSSL does have an option to write an encrypted RSA private key fi le in
plaintext.
[jdavies@localhost ssl]$ openssl rsa -in key.pem -out key_decoded.pem

writing RSA key

c07.indd 395c07.indd 395 12/10/2010 9:45:57 AM12/10/2010 9:45:57 AM

396 Chapter 7 n Adding Server-Side TLS 1.0 Support

Now the contents of the same key are output in a nice, neat, PEM-encoded
ASN.1 structure like the ones you’re used to.
-----BEGIN RSA PRIVATE KEY-----

MIIBOwIBAAJBALGybTND0yjFYJBkXg3cFpYy/C76CFtoqOAyLEjH8RRcPCt6CsTo

bxaDC1Lmdaxddti4fbpRG+RPS8gVeCrzvwECAwEAAQJBAJrPX+Oxy11R1/bz+h0J

CYSBlsM2geFhJP9ttrcRui6JWQlbEHHQiF1OI9sedv6hDbgynUKdh+Lgo4KHzCTD

OYECIQDZ/iNMPqXJDNBd8JBHNsJIqU+tNWPS7wjvp/ivcCcVDQIhANCtu6MGz9tQ

S7DkyIYQxuvtxFQsIzir62b6yx2KV7zFAiBatPrvEOpfHCvfyufeGhUBsyHqStr8

vGYVgulh5uL8SQIgVCdLvQHZPutRquOITjBj1+8JtpwaFBeYle3bjW0l1rUCIQDV

dUNImB3h18TEB3RwSFoTufh+UlaqBHnXLR8HiTPs6g==

-----END RSA PRIVATE KEY-----

To read and use this, it’s just a matter of writing code to parse it and extract
the private key exponent. This is shown in Listing 7-14.

Listing 7-14: “privkey.c” parse_private_key

/**

 * Parse the modulus and private exponent from the buffer, which

 * should contain a DER-encoded RSA private key file. There’s a

 * lot more information in the private key file format, but this

 * app isn’t set up to use any of it.

 * This, according to PKCS #1 (note that this is not in pkcs #8 format), is:

 * Version

 * modulus (n)

 * public exponent (e)

 * private exponent (d)

 * prime1 (p)

 * prime2 (q)

 * exponent1 (d mod p-1)

 * exponent2 (d mod q-1)

 * coefficient (inverse of q % p)

 * Here, all we care about is n & d.

 */

int parse_private_key(rsa_key *privkey,

 const unsigned char *buffer,

 int buffer_length)

{

 struct asn1struct private_key;

 struct asn1struct *version;

 struct asn1struct *modulus;

 struct asn1struct *public_exponent;

 struct asn1struct *private_exponent;

 asn1parse(buffer, buffer_length, &private_key);

 version = (struct asn1struct *) private_key.children;

 modulus = (struct asn1struct *) version->next;

 // Just read this to skip over it

 public_exponent = (struct asn1struct *) modulus->next;

 private_exponent = (struct asn1struct *) public_exponent->next;

c07.indd 396c07.indd 396 12/10/2010 9:45:57 AM12/10/2010 9:45:57 AM

 Chapter 7 n Adding Server-Side TLS 1.0 Support 397

 privkey->modulus = malloc(sizeof(huge));

 privkey->exponent = malloc(sizeof(huge));

 load_huge(privkey->modulus, modulus->data, modulus->length);

 load_huge(privkey->exponent, private_exponent->data, private_exponent->length);

 asn1free(&private_key);

 return 0;

}

This is a regular ASN.1 parsing routine of the kind examined in Chapter 5.
It takes as input a DER-encoded buffer that it parses and uses to fi ll out the
privkey argument, a pointer to an rsa_key structure. Remember that an RSA
private key is structurally no different than an RSA public key, so the same
structure is used to represent both here. Notice that the input is DER-encoded;
the caller must ensure either that the fi le is loaded from the disk that way or
that it’s passed through the pem_decode routine from Listing 5-7 before being
passed to parse_private_key.

The private key structure, as indicated by the comments to this function,
contains quite a bit more information than just the modulus and the private
exponent; these numbers in theory could be used to support a more optimized
rsa_decrypt routine than the one presented in Chapter 3.

If you want to see this in action, you can put together a test main routine as
shown in Listing 7-15.

Listing 7-15: “privkey.c” test main routine

#ifdef TEST_PRIVKEY

int main(int argc, char *argv[])

{

 rsa_key privkey;

 unsigned char *buffer;

 int buffer_length;

 if (argc < 3)

 {

 fprintf(stderr, “Usage: %s [-pem|-der] <rsa private key file>\n”, argv[0]);

 exit(0);

 }

 if (!(buffer = load_file_into_memory(argv[2], &buffer_length)))

 {

 perror(“Unable to load file”);

 exit(1);

 }

 if (!strcmp(argv[1], “-pem”))

 {

 // XXX this overallocates a bit, since it sets aside space for markers, etc.

(Continued)

c07.indd 397c07.indd 397 12/10/2010 9:45:57 AM12/10/2010 9:45:57 AM

398 Chapter 7 n Adding Server-Side TLS 1.0 Support

 unsigned char *pem_buffer = buffer;

 buffer = (unsigned char *) malloc(buffer_length);

 buffer_length = pem_decode(pem_buffer, buffer);

 free(pem_buffer);

 }

 parse_private_key(&privkey, buffer, buffer_length);

 printf(“Modulus:”);

 show_hex(privkey.modulus->rep, privkey.modulus->size);

 printf(“Private Exponent:”);

 show_hex(privkey.exponent->rep, privkey.exponent->size);

 free(buffer);

 return 0;

}

#endif

This relies on the simple utility function load_file_into_memory shown in
Listing 7-16.

Listing 7-16: “fi le.c” load_fi le_into_memory

/**

 * Read a whole file into memory and return a pointer to that memory chunk,

 * or NULL if something went wrong. Caller must free the allocated memory.

 */

char *load_file_into_memory(char *filename, int *buffer_length)

{

 int file;

 struct stat file_stat;

 char *buffer, *bufptr;

 int buffer_size;

 int bytes_read;

 if ((file = open(filename, O_RDONLY)) == -1)

 {

 perror(“Unable to open file”);

 return NULL;

 }

 // Slurp the whole thing into memory

 if (fstat(file, &file_stat))

 {

 perror(“Unable to stat certificate file”);

 return NULL;

 }

 buffer_size = file_stat.st_size;

 buffer = (char *) malloc(buffer_size);

c07.indd 398c07.indd 398 12/10/2010 9:45:57 AM12/10/2010 9:45:57 AM

 Chapter 7 n Adding Server-Side TLS 1.0 Support 399

 if (!buffer)

 {

 perror(“Not enough memory”);

 return NULL;

 }

 bufptr = buffer;

 while ((bytes_read = read(file, (void *) buffer, buffer_size)))

 {

 bufptr += bytes_read;

 }

 close(file);

 if (buffer_length != NULL)

 {

 *buffer_length = buffer_size;

 }

 return buffer;

}

Supporting Encrypted Private Key Files

If you run privkey on the previously generated private key fi le, you see the
modulus and private exponent of your RSA key:

 [jdavies@localhost ssl]$./privkey -pem key_decoded.pem

Modulus:b1b26d3343d328c56090645e0ddc169632fc2efa085b68a8e0322c48c7f1145c3c2

b7a0ac4e86f16830b52e675ac5d76d8b87dba511be44f4bc815782af3bf01

Private Exponent:9acf5fe3b1cb5d51d7f6f3fa1d0909848196c33681e16124ff6db6b711ba2e8959

095b1071d0885d4e23db1e76fea10db8329d429d87e2e0a38287cc24c33981

Still, it seems a shame to require that the server user keep the private key
stored in plaintext on a disk somewhere. As you can see from the header on
the original, encrypted key fi le, this is encrypted using DES, which you have
code to decrypt. Why not go ahead and implement the code to decrypt the
encrypted fi le?

The fi le, by default, starts with two bits of information:

Proc-Type: 4,ENCRYPTED

DEK-Info: DES-EDE3-CBC,BD1FF235EA6104E1

First, the Proc-Type tells you that the fi le is encrypted. The DEK-Info gives
you the encryption algorithm, followed by an initialization vector.

Note that the key contents themselves are PKCS #1 formatted, but the extra
header information is OpenSSL/PEM-specifi c. In fact, if you use OpenSSL to
save the key fi le itself in DER format, you lose the encryption. Because there’s

c07.indd 399c07.indd 399 12/10/2010 9:45:57 AM12/10/2010 9:45:57 AM

400 Chapter 7 n Adding Server-Side TLS 1.0 Support

no way to communicate the required initialization vector and encryption algo-
rithm, OpenSSL saves you from shooting yourself in the foot and always stores
a DER-encoded key fi le unencrypted, even if you ask for encryption.

A more standardized format, PKCS #8, describes essentially the same infor-
mation. Although OpenSSL supports the format, there’s no way to generate a
key fi le in PKCS #8 format on an initial certifi cate request. You can convert an
OpenSSL to a PKCS #8 private key via:
 [jdavies@localhost ssl]$ openssl pkcs8 -topk8 -in key.der -out key.pkcs8 \

 -outform der

Enter pass phrase for key.der:

Enter Encryption Password:

Verifying - Enter Encryption Password:

This, by default, encrypts the fi le using DES; other encryption options
are possible, of course. The output is a triply nested ASN.1 DER encoded
structure. At the bottom layer of nesting is, of course, the PKCS #1-formatted
private key, which the parse_private_key routine of Listing 7-14 can parse
correctly. That structure is bit-string encoded and wrapped up as shown in
Figure 7-1 in another structure that includes an OID identifying the type of
private key — for example, to allow a non-RSA private key, such as DSA, to
be included instead.

Figure 7-1: PKCS #8 contents

OID_RSAPrivateKey

modulus (n)

public exponent (e)

private exponent (d)

prime1 (p)

prime2 (q)

exponent1 (d % p-1)

exponent2 (e % q-1)

coefficient (q^-1 %p)

bit string containing ASN.1 DER-encoded private key

c07.indd 400c07.indd 400 12/10/2010 9:45:57 AM12/10/2010 9:45:57 AM

 Chapter 7 n Adding Server-Side TLS 1.0 Support 401

This whole structure is bit-string encoded, encrypted, and wrapped up in
the fi nal, third, ASN.1 structure shown in Figure 7-2 that indicates the encryp-
tion method used and enough information to decrypt it before processing. This
section bears a bit more explanation.

Recall from Chapter 2 that you examined examples of symmetric encryption
where a passphrase such as “password” or “encrypt_thisdata” was used as a
key input to the encryption algorithms. However, using human-readable text
such as this is actually a bad idea when you want to protect data. An attacker
knows that the keyspace is limited to the printable-ASCII character set that the
user can type on the keyboard. However, you can’t exactly require your users
to type characters not available on their keyboards either. PKCS #5 describes a
solution to this conundrum called password-based encryption (PBE). The idea here
is to take the user’s input and feed it into a one-way hash function to securely
generate a key whose bits are far better distributed than the limited range of
the available printable-ASCII character set.

By itself, this doesn’t accomplish anything, though. An attacker can still eas-
ily mount a dictionary attack on the one-way hash function; the rainbow tables
examined in Chapter 4 are perfect for this. Not only is the user’s typed input
fed into the hash function to generate the keying material, a salt is added to this
to thwart dictionary attacks.

However, as you recall, salts/initialization vectors must be distributed non-
securely so that both sides know what they are, and PKCS #5 is no exception.
Therefore, a determined attacker (and remember we’re talking about protecting
the keys to the kingdom — the server’s private key — here) could still mount a
dictionary attack using the unencrypted salt value. He couldn’t take advantage
of a pre-computed rainbow table, but still, the input space of printable-ASCII
characters is far smaller than the entire space of potential hash inputs. Especially
considering that users generally pick bad passwords that follow the typing and
spelling conventions of their native spoken languages, the attacker can probably
mount an offl ine attack in a few weeks to a month. To slow the attacker down
a bit, PKCS #5 fi nally mandates that the output from the fi rst hash be rehashed
and the output of that hash be rehashed, over and over again, up to a specifi ed
iteration count. Typically this is a large number, in the thousands – it’s not a big
deal for somebody with access to the correct passphrase to do a few thousand
hashes, but it is a big deal for an attacker who has a large key space to search
through. Finally, after all that hashing, the key material is taken from the fi nal
resultant hash value.

The top-level PKCS #8 structure indicates what encryption algorithm was
used to encrypt the actual private key data — for instance “password-based
encryption using the MD5 hash function and the DES encryption function.” In
the case of DES with MD5, because MD5 produces 16 bytes of output, the DES
key is the fi rst eight bytes of this output, and the initialization vector is the last
eight bytes.

c07.indd 401c07.indd 401 12/10/2010 9:45:57 AM12/10/2010 9:45:57 AM

402 Chapter 7 n Adding Server-Side TLS 1.0 Support

Thus, the fi nal PKCS #8 structure looks like this:

Figure 7-2: PKCS #8-encoded private key file

OID_RSAPrivateKey

modulus (n)

public exponent (e)

OID_pbeWithMD5AndDES_CBC

salt

iteration count

private exponent (d)

prime1 (p)

prime2 (q)

exponent1 (d % p – 1)

exponent2 (e % q – 1)

coefficient (q^ – 1 %p)

bit string

bit string DES-Encrypted

To decode this, then, you must fi rst unwrap the top level structure and then
decrypt it to reveal the second level structure, and fi nally unwrap that to reveal
the key. Listing 7-17 illustrates this process for the case of an RSA private key
encrypted using PBE with DES/MD5.

Listing 7-17: “privkey.c” parse_pkcs8_private_key

static unsigned char OID_pbeWithMD5andDES_CBC[] =

 { 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x05, 0x03 };

c07.indd 402c07.indd 402 12/10/2010 9:45:57 AM12/10/2010 9:45:57 AM

 Chapter 7 n Adding Server-Side TLS 1.0 Support 403

static unsigned char OID_RSAPrivateKey [] =

 { 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01 };

int parse_pkcs8_private_key(rsa_key *privkey,

 const unsigned char *buffer,

 const int buffer_length,

 const unsigned char *passphrase)

{

 struct asn1struct pkcs8_key;

 struct asn1struct private_key;

 struct asn1struct *encryptionId;

 struct asn1struct *salt;

 struct asn1struct *iteration_count;

 struct asn1struct *encrypted_key;

 struct asn1struct *key_type_oid;

 struct asn1struct *priv_key_data;

 digest_ctx initial_hash;

 int counter;

 unsigned char passphrase_hash_in[MD5_RESULT_SIZE * sizeof(int)];

 unsigned char passphrase_hash_out[MD5_RESULT_SIZE * sizeof(int)];

 unsigned char *decrypted_key;

 asn1parse(buffer, buffer_length, &pkcs8_key);

 encryptionId = pkcs8_key.children->children;

 if (memcmp(OID_pbeWithMD5andDES_CBC, encryptionId->data,

 encryptionId->length))

 {

 fprintf(stderr, “Unsupported key encryption algorithm\n”);

 asn1free(&pkcs8_key);

 return 1;

 }

 // TODO support more algorithms

 salt = encryptionId->next->children;

 iteration_count = salt->next;

 encrypted_key = pkcs8_key.children->next;

 // ugly typecasting

 counter = ntohs(*iteration_count->data);

 new_md5_digest(&initial_hash);

 update_digest(&initial_hash, passphrase, strlen(passphrase));

 update_digest(&initial_hash, salt->data, salt->length);

 finalize_digest(&initial_hash);

 memcpy(passphrase_hash_out, initial_hash.hash,

 initial_hash.hash_len * sizeof(int));

 while (--counter)

 {

 memcpy(passphrase_hash_in, passphrase_hash_out,

 sizeof(int) * MD5_RESULT_SIZE);

(Continued)

c07.indd 403c07.indd 403 12/10/2010 9:45:57 AM12/10/2010 9:45:57 AM

404 Chapter 7 n Adding Server-Side TLS 1.0 Support

 md5_hash(passphrase_hash_in,

 sizeof(int) * MD5_RESULT_SIZE,

 (unsigned int *) passphrase_hash_out);

 }

 decrypted_key = (unsigned char *) malloc(encrypted_key->length);

 des_decrypt(encrypted_key->data, encrypted_key->length, decrypted_key,

 (unsigned char *) passphrase_hash_out + DES_KEY_SIZE,

 (unsigned char *) passphrase_hash_out);

 // sanity check

 if (decrypted_key[encrypted_key->length - 1] > 8)

 {

 fprintf(stderr, “Decryption error, bad padding\n”);

 asn1free(&pkcs8_key);

 free(decrypted_key);

 return 1;

 }

 asn1parse(decrypted_key,

 encrypted_key->length - decrypted_key[encrypted_key->length - 1],

 &private_key);

 free(decrypted_key);

 key_type_oid = private_key.children->next->children;

 if (memcmp(OID_RSAPrivateKey, key_type_oid->data, key_type_oid->length))

 {

 fprintf(stderr, “Unsupported private key type”);

 asn1free(&pkcs8_key);

 asn1free(&private_key);

 }

 priv_key_data = private_key.children->next->next;

 parse_private_key(privkey, priv_key_data->data, priv_key_data->length);

 asn1free(&pkcs8_key);

 asn1free(&private_key);

 return 0;

}

The fi rst part is pretty straightforward; at this point, you’re dealing with an
ASN.1 DER-encoded structure just like the ones you examined in Chapter 5.
Parse it with asn1parse and extract the information, after making sure that the
encryption algorithm is actually the one supported by this routine.
 asn1parse(buffer, buffer_length, &pkcs8_key);

 encryptionId = pkcs8_key.children->children;

 if (memcmp(OID_pbeWithMD5andDES_CBC, encryptionId->data,

 encryptionId->length))

 {

c07.indd 404c07.indd 404 12/10/2010 9:45:58 AM12/10/2010 9:45:58 AM

 Chapter 7 n Adding Server-Side TLS 1.0 Support 405

 fprintf(stderr, “Unsupported key encryption algorithm\n”);

 asn1free(&pkcs8_key);

 return 1;

 }

 // TODO support more algorithms

 salt = encryptionId->next->children;

 iteration_count = salt->next;

 encrypted_key = pkcs8_key.children->next;

The same caveat about error checking from Chapter 5 applies here, although
at the very least, you’re not dealing with data transmitted by some random
stranger over the Internet. A mistake here is likely to be user or programmer
error rather than a malicious attack.

Next, decrypt the encrypted private key structure following the PKCS #5
structure.
 // ugly typecasting

 counter = ntohs(*iteration_count->data);

 // Since the passphrase can be any length, not necessarily 8 bytes,

 // must use a digest here.

 new_md5_digest(&initial_hash);

 update_digest(&initial_hash, passphrase, strlen(passphrase));

 update_digest(&initial_hash, salt->data, salt->length);

 finalize_digest(&initial_hash);

 memcpy(passphrase_hash_out, initial_hash.hash,

 initial_hash.hash_len * sizeof(int));

 while (--counter)

 {

 memcpy(passphrase_hash_in, passphrase_hash_out,

 sizeof(int) * MD5_RESULT_SIZE);

 // Since MD5 always outputs 8 bytes, input size is known; can

 // use md5_hash directly in this case; no need for a digest.

 md5_hash(passphrase_hash_in,

 sizeof(int) * MD5_RESULT_SIZE,

 (unsigned int *) passphrase_hash_out);

 }

 decrypted_key = (unsigned char *) malloc(encrypted_key->length);

 des_decrypt(encrypted_key->data, encrypted_key->length, decrypted_key,

 (unsigned char *) passphrase_hash_out + DES_KEY_SIZE,

 (unsigned char *) passphrase_hash_out);

If PBE was used elsewhere in this program, this section might be useful to
extract as a separate function call; it’s instead included inline here:

 1. The initial hash is built as the concatenation of the passphrase, which was
passed as an argument to the function, and the salt, which was part of the
key fi le itself.

 2. This hash is hashed over and over, counter times, to generate the keying
material.

c07.indd 405c07.indd 405 12/10/2010 9:45:58 AM12/10/2010 9:45:58 AM

406 Chapter 7 n Adding Server-Side TLS 1.0 Support

 3. This keying material, along with the encrypted structure, is passed into
des_decrypt. This process is illustrated in Figure 7-3.

Figure 7-3: PKCS #5 password-based encryption

passphrase salt

MD5

16-byte MD5 output

DES key IV

once

counter times

Checking That Decryption was Successful

If the passphrase was wrong, you still get back a data block here; it’s probably a
bad idea to blindly continue with the data without fi rst checking that it decrypted
correctly. Fortunately, there’s a simple way to check for success with a reason-
able degree of accuracy. Remember that DES data is always block-aligned. If the
input is already eight-byte aligned, an extra eight bytes of padding is always
added to the end. Therefore, if the last byte of the decrypted data is not between
1 and 8, then the decryption process failed. Of course, it could fail and still have
a fi nal byte in the range between 1 and 8. Technically speaking, you ought to go
ahead and check the padding bytes themselves as well to minimize the chance
of a false positive.
 // sanity check

 if (decrypted_key[encrypted_key->length - 1] > 8)

 {

 fprintf(stderr, “Decryption error, bad padding\n”);

 asn1free(&pkcs8_key);

 free(decrypted_key);

 return 1;

 }

c07.indd 406c07.indd 406 12/10/2010 9:45:58 AM12/10/2010 9:45:58 AM

 Chapter 7 n Adding Server-Side TLS 1.0 Support 407

Finally, the decrypted data must be ASN.1 parsed. After parsing, double-check
that OID really declares it as an RSA private key before passing it on to the pre-
viously examined parse_private_key routine to extract the actual key value.
 asn1parse(decrypted_key,

 encrypted_key->length - decrypted_key[encrypted_key->length - 1],

 &private_key);

 free(decrypted_key);

 key_type_oid = private_key.children->next->children;

 if (memcmp(OID_RSAPrivateKey, key_type_oid->data, key_type_oid->length))

 {

 fprintf(stderr, “Unsupported private key type”);

 asn1free(&pkcs8_key);

 asn1free(&private_key);

 }

 priv_key_data = private_key.children->next->next;

 parse_private_key(privkey, priv_key_data->data, priv_key_data->length);

Completing the Key Exchange

Now that you can read a stored private key from disk, whether it’s stored unen-
crypted or in the standardized PKCS #8 format (they’re also sometimes stored
in PKCS #12 format, which isn’t examined here), you can complete the key
exchange, as shown in Listing 7-18.

Listing 7-18: “tls.c” parse_client_key_exchange

/**

 * By the time this is called, “read_pos” points at an RSA encrypted (unless

 * RSA isn’t used for key exchange) premaster secret. All this routine has to

 * do is decrypt it. See “privkey.c” for details.

 * TODO expand this to support Diffie-Hellman key exchange

 */

static unsigned char *parse_client_key_exchange(unsigned char *read_pos,

 int pdu_length,

 TLSParameters *parameters)

{

 int premaster_secret_length;

 unsigned char *buffer;

 int buffer_length;

 unsigned char *premaster_secret;

 rsa_key private_key;

 // TODO make this configurable

 // XXX this really really should be buffered

 if (!(buffer = load_file_into_memory(“key.pkcs8”, &buffer_length)))

 {

 perror(“Unable to load file”);

(Continued)

c07.indd 407c07.indd 407 12/10/2010 9:45:58 AM12/10/2010 9:45:58 AM

408 Chapter 7 n Adding Server-Side TLS 1.0 Support

 return 0;

 }

 parse_pkcs8_private_key(&private_key, buffer, buffer_length, “password”);

 free(buffer);

 // Skip over the two length bytes, since length is already known anyway

 premaster_secret_length = rsa_decrypt(read_pos + 2, pdu_length - 2,

 &premaster_secret, &private_key);

 if (premaster_secret_length <= 0)

 {

 fprintf(stderr, “Unable to decrypt premaster secret.\n”);

 return NULL;

 }

 free_huge(private_key.modulus);

 free_huge(private_key.exponent);

 free(private_key.modulus);

 free(private_key.exponent);

 // Now use the premaster secret to compute the master secret. Don’t forget

 // that the first two bytes of the premaster secret are the version 0x03 0x01

 // These are part of the premaster secret (8.1.1 states that the premaster

 // secret for RSA is exactly 48 bytes long).

 compute_master_secret(premaster_secret, MASTER_SECRET_LENGTH, parameters);

 calculate_keys(parameters);

 return read_pos + pdu_length;

}

This should be easy to follow. The private key is loaded into memory and
parsed; the private key is then used to decrypt the premaster secret. Of course,
the same points about storing and buffering the private key apply here as they
did to the certifi cate in the previous section.

The master secret computation and key calculation are almost identical on
the server side as on the client side. The only difference is that, now, as the
server, the read and write keys are reversed. Because you want to go ahead and
use the exact same tls_send and tls_recv functions as before, remember that
tls_send is looking for the write key, and tls_recv is looking for the read key.
This means that you have to add a check in calculate_keys to determine if the
current process is the client or the server and adjust accordingly in Listing 7-19.

Listing 7-19: “tls.c” calculate_keys with server support

static void calculate_keys(TLSParameters *parameters)

{

…

 if (parameters->connection_end == connection_end_client)

c07.indd 408c07.indd 408 12/10/2010 9:45:58 AM12/10/2010 9:45:58 AM

 Chapter 7 n Adding Server-Side TLS 1.0 Support 409

 {

 key_block_ptr = read_buffer(send_parameters->MAC_secret, key_block,

 suite->hash_size);

 key_block_ptr = read_buffer(recv_parameters->MAC_secret, key_block_ptr,

 suite->hash_size);

 key_block_ptr = read_buffer(send_parameters->key, key_block_ptr,

 suite->key_size);

 key_block_ptr = read_buffer(recv_parameters->key, key_block_ptr,

 suite->key_size);

 key_block_ptr = read_buffer(send_parameters->IV, key_block_ptr,

 suite->IV_size);

 key_block_ptr = read_buffer(recv_parameters->IV, key_block_ptr,

 suite->IV_size);

 }

 else // I’m the server

 {

 key_block_ptr = read_buffer(recv_parameters->MAC_secret, key_block,

 suite->hash_size);

 key_block_ptr = read_buffer(send_parameters->MAC_secret, key_block_ptr,

 suite->hash_size);

 key_block_ptr = read_buffer(recv_parameters->key, key_block_ptr,

 suite->key_size);

 key_block_ptr = read_buffer(send_parameters->key, key_block_ptr,

 suite->key_size);

 key_block_ptr = read_buffer(recv_parameters->IV, key_block_ptr,

 suite->IV_size);

 key_block_ptr = read_buffer(send_parameters->IV, key_block_ptr,

 suite->IV_size);

 }

The benefi t of this approach is that tls_recv and tls_send work exactly as before.
They don’t care whether they’re operating in the context of a client or a server.

TLS Change Cipher Spec
After receiving the key exchange and parsing it correctly, the server must send
a change cipher spec message. It can’t send one until the key exchange is complete
because it doesn’t know the keys. This message informs the client that it is start-
ing to encrypt every following packet, and it expects the client to do the same.

The send_change_cipher_spec function is the same one shown in Listing
6-40; it looks exactly the same when the server sends it as it does when the cli-
ent sends it.

TLS Finished
Finally, the server sends its fi nished message. Recall from Listing 7-4 that the cli-
ent sends its fi nished message before the server does. Making sure to keep this
ordering straight is important because one of the fi nished messages includes
the other one in the handshake digest. The protocol would have worked just as

c07.indd 409c07.indd 409 12/10/2010 9:45:58 AM12/10/2010 9:45:58 AM

410 Chapter 7 n Adding Server-Side TLS 1.0 Support

well if the client waited for the server to send its fi nished message fi rst, but it’s
critical that they both agree on the order for interoperability.

The send_finished code from Listing 6-48 can be used almost as is; the only
difference between a client fi nished and a server fi nished is that the label input
to the PRF by the server is the string “server finished”, rather than the string
“client finished”. This necessitates one small change to the send_finished
function shown in Listing 7-20.

Listing 7-20: “tls.c” send_fi nished with server support

static int send_finished(int connection,

 TLSParameters *parameters)

{

 unsigned char verify_data[VERIFY_DATA_LEN];

 compute_verify_data(

 parameters->connection_end == connection_end_client ?

 “client finished” : “server finished”,

 parameters, verify_data);

And that’s it. Everything else continues on just as it would have if this were a
client connection; TLS doesn’t care which endpoint you are after the handshake
is complete.

You can run this ssl_webserver and connect to it from a standard browser;
the response is the simple “Nothing here” message that was hardcoded into it.
You’ll have problems with Firefox and IE, unfortunately, because they (still!)
try to negotiate an SSLv2 connection before “falling back” to TLS 1.0. Most TLS
implementations are set up to recognize and reject SSLv2 connections; this one
simply hangs if an SSLv2 connection request is submitted. Of course, the HTTPS
client from Chapter 6 should connect with no problems.

You can (and should!) disable SSLv2 support within IE8:

 1. Go to Tools � Internet Options � Advanced, and scroll down to the
Security section.

 2. Uncheck the boxes Use SSL 2.0 and Use SSL 3.0

 3. Check the Use TLS 1.0 box, which is unchecked by default. Your Internet
Options should look like Figure 7-4.

You should now be able to run the ssl_webserver example and connect to
it from your browser. The page just states “Nothing here,” but if you’re feeling
adventurous, you can easily change this to display anything you can think of.

If you run into otherwise inexplicable problems, ensure that the certifi cate
fi le and the key fi le match. It’s very easy to accidentally change a certifi cate fi le
and forget to change the key fi le. One way to ensure that you’ve got the right
key fi le for your certifi cate fi le is to compare the RSA moduli of each. If they’re
the same, the fi les are matches.

c07.indd 410c07.indd 410 12/10/2010 9:45:58 AM12/10/2010 9:45:58 AM

 Chapter 7 n Adding Server-Side TLS 1.0 Support 411

Figure 7-4: IE8 Internet Options

Also ensure that your client doesn’t request one of the Diffi e-Hellman key
exchange protocols; this server doesn’t support those yet. This is addressed in
Chapter 8.

Avoiding Common Pitfalls When Adding HTTPS
Support to a Server

The server must pay closer attention to security than the client. If the client is
compromised, one user’s data is exposed; if the server is compromised, many
users’ data is at risk. The developer of the server code must be more careful
to guard against security hazards such as data left over in shared cache lines.
The topic of secure programming can, and does, span entire books. If you’re
developing code that will be deployed and used in a multi-user environment,
you must be aware of these dangers.

When RSA is used for key exchange, the private key is especially vulnerable
to attack. Ensuring that it’s stored encrypted on disk using a solid, secure
encryption method such as PKCS #5 is a good start. However, the private key
itself must also necessarily be stored in memory, and you must take care to
ensure that other users of the shared system that the server runs on can’t, for
example, force a core dump and then read the decrypted key at their leisure.

c07.indd 411c07.indd 411 12/10/2010 9:45:58 AM12/10/2010 9:45:58 AM

412 Chapter 7 n Adding Server-Side TLS 1.0 Support

Although a lazy system administrator can render all of your cautious cod-
ing moot, you must still ensure that a diligent system administrator’s efforts
don’t go to waste.

Daniel Bleichenbacher discovered an interesting attack on the RSA private
key. This attack wasn’t on the server, but on most common implementations of
TLS. His idea was to ignore the supplied public key and instead pass a specifi -
cally chosen bit string in the client key exchange message. At this point, the
server has no choice but to attempt to decrypt it using its private key; it almost
certainly retrieves gibberish. Because the server expects a PKCS 1.5-padded
premaster secret, it fi rst checks that the fi rst byte is the expected padding byte
0x02; if it isn’t, it issues an alert immediately.

Bleichenbacher took advantage of this alert — specifi cally that it was, at the
time, always implemented as a different alert message than the alert that would
occur later if a bad record MAC occurred. What would happen is that, most
of the time, the server would immediately send an alert indicating that the
RSA decryption failed. However, occasionally, the decrypted message would
accidentally appear as a valid, padded message. The rest would decrypt in a
garbled, unpredictable way, and the subsequent fi nished message would result in
a bad record MAC, but the damage would have been done. The attacker knew
that the chosen ciphertext did decrypt to a correctly padded message, even if
he didn’t know what that message was. In this way, TLS was leaking bits of
information about the private key, which an attacker could exploit with about
a million carefully chosen key exchanges.

The solution to this attack is simple: ignore padding errors and continue on
with the key exchange, letting the fi nal fi nished message failure abort the hand-
shake. This way, the attacker doesn’t know if the key exchange decrypted to a
properly padded message or not. The implementation presented here doesn’t
address this, and is susceptible to the Bleichenbacher attack. If you want to tighten
up the code to defend against the attack, you can either modify rsa_decrypt
itself to go ahead and perform a decryption even if the padding type is unrec-
ognized, but still return an error code, or modify parse_client_key_exchange
to fi ll the premaster secret buffer with random values on a decryption failure
and just continue on with the handshake, allowing the fi nished verifi cation to
cause the handshake to fail.

When a Browser Displays Errors: Browser Trust
Issues

Of course, if you tried to connect to the SSL-secured web server described in
this chapter, you almost defi nitely received some variant of the error message
shown in Figure 7-5.

c07.indd 412c07.indd 412 12/10/2010 9:45:58 AM12/10/2010 9:45:58 AM

 Chapter 7 n Adding Server-Side TLS 1.0 Support 413

Figure 7-5: Certificate Error Message

The error messages make sense. The server is using the self-signed certifi -
cate that you generated in Chapter 5, which is certainly not trusted. If you’re so
inclined, you can add it as a trusted certifi cate; go to Tools � Internet Options �
Content � Certifi cate � Trusted Root Certifi cation Authorities. (See Figure 7-6.)

Figure 7-6: Trusted root certification authorities

Click the Import button and follow the instructions in Figure 7-7 to import
cert.der into your trusted certifi cates list.

c07.indd 413c07.indd 413 12/10/2010 9:45:58 AM12/10/2010 9:45:58 AM

414 Chapter 7 n Adding Server-Side TLS 1.0 Support

 Figure 7-7: New trusted certification authority

This clears up the fi rst error that the certifi cate was issued by an untrusted
certifi cate authority (it was issued by itself, actually). The browser still complains
that the certifi cate was issued for a different website’s address. You should
understand by now that this means that the browser is connecting to localhost,
but the certifi cate’s subject has a CN of Joshua Davies. There’s nothing stopping
you, of course, from issuing a new certifi cate whose CN fi eld is localhost, which
makes this error disappear as well. As long as the certifi cate is signed by a trusted
authority, the browser accepts anything that matches. If you click Continue to
This Website, however, your browser remembers that you trust this certifi cate
and automatically connects to it the next time you request it. IE 8 at least has the
sense to display a red URL bar and provide a Certifi cate Error popup.

Watch the server and keep track of how an untrusted certifi cate error is handled.
The client goes ahead and completes the handshake, but then immediately shuts
down the connection. It then displays an error message to the user. If the user
clicks through, it begins an entirely new SSL session, but this time with a security
exception indicating that this site is to be trusted even if something looks wrong.

The only other common error message you might come across is “This site’s
certifi cate has expired.” Of the error messages you might see, this one is probably
the most benign, although it’s certainly a headache for a server administrator
because most TLS implementations give you no warning when a certifi cate is
close to expiration. One day your site is working just fi ne; the next day the traffi c
has dropped to practically zero because your customers are being presented with
a scary error message and bailing out. If you don’t keep close track of logged
error messages, you might have to spend some time investigating before you
realize you’ve had yet another certifi cate expire.

c07.indd 414c07.indd 414 12/10/2010 9:45:59 AM12/10/2010 9:45:59 AM

415

C H A P T E R

8

Advanced SSL Topics

The prior two chapters examined the TLS handshake process in detail, walk-
ing through each message that each side must send and receive. So far, you’ve
looked at the most common use of SSL/TLS — a server-authenticated RSA key
exchange. However, there are actually quite a few more options available to the
user when performing a TLS handshake. Some potential scenarios are simpler,
and some are more complex than those presented so far — it’s possible to con-
nect without authenticating the server, or to force the client to authenticate itself,
or to employ different key exchange mechanisms. It’s even possible to bypass
the handshake completely, if secure parameters have already been negotiated.
This chapter looks at the less common — or not strictly required — but still
important aspects of the TLS handshake.

Passing Additional Information with Client Hello
Extensions

Peek back to the defi nition of the handshake messages defi ned in Chapter
6. Although each one is prepended with a length, most of them — with the
exception of the certifi cate message — have lengths that are fi xed or that can
easily be inferred from their structure. The client hello message, for instance,
is a fi xed two bytes of version information, 32 bytes of random data, and three

c08.indd 415c08.indd 415 12/10/2010 9:46:26 AM12/10/2010 9:46:26 AM

416 Chapter 8 n Advanced SSL Topics

variable-length structures each of which includes their length. The receiver can
easily fi gure out where the record ends without being given an explicit length.

So, why restate the length? Well, the designers of the protocol anticipated,
correctly, that they might not have covered all the bases when they described
the handshake, so they allowed extra data to be appended to the client hello
handshake message. This is the reason why the code in the last chapter handles
the parsing of client hello messages differently than all the other messages. In
fact, if you tried using TCPdump to sniff your own browser’s traffi c, you probably
noticed some of these extensions in its client hello messages. The TLS protocol
designers didn’t, however, specify what form these extensions should take. This
wasn’t actually standardized until years later, when RFC 3546 was drafted.

One of the most important of these standardized extensions is the server
name identifi cation (SNI) extension. It’s common in today’s Internet for low-
traffi c websites to share a hosting provider. There’s no particular reason why a
blog that gets a few hundred hits a day needs a dedicated server; it can share
bandwidth (and costs) with several other sites on a single host. However,
this can pose problems for TLS. Each physical server on the Internet has its
own IP address, even if that physical host maps to multiple domains. So, for
instance, if a shared hosting provider had three hosts named www.hardware.com,
www.books.com, and www.computers.com, all hosted from a single physical server,
each one would resolve to the same IP address.

This doesn’t seem like a problem for TLS until you consider that TLS must
send a certifi cate whose domain name matches the requested domain name
to avoid the man-in-the-middle attack described in Chapter 5. However, TLS
doesn’t know what domain was requested. Domain names are for people; com-
puters deal in IP addresses. Therefore, the client has to have some way to notify
the server that it should present the certifi cate for www.books.com rather than the
certifi cate for www.computers.com; wildcard certifi cates don’t help here, because
it’s specifi cally prohibited to generate a wildcard of the form *.com — for obvi-
ous reasons.

Therefore, the client is optionally permitted to indicate with a client hello
extension the name of the host it’s trying to connect to, and all modern browsers
do this. It’s easy to add client hello extension parsing to the parse_client_hello
routine from Listing 7-9 as shown in Listing 8-1.

Listing 8-1: “tls.c” parse_client_hello with client hello extension support

static char *parse_client_hello(char *read_pos,

 int pdu_length,

 TLSParameters *parameters)

{

 char *init_pos;

 init_pos = read_pos; // keep track of start to check for extensions

c08.indd 416c08.indd 416 12/10/2010 9:46:26 AM12/10/2010 9:46:26 AM

 Chapter 8 n Advanced SSL Topics 417

…

 free(hello.session_id);

 }

 // Parse client hello extensions

 if ((read_pos - init_pos) < pdu_length)

 {

 read_pos = parse_client_hello_extensions(read_pos, parameters);

 }

 return read_pos;

}

Client hello extensions are, of course, a list of extensions; like every other
variable-length list in TLS, the extensions list is preceded by the byte count (not
the item count!) of the list that follows. The extensions themselves are as open-
ended as possible; each starts with a two-byte extension identifi er and another
variable-length blob of data whose contents depend on the extension identifi er.
The interpretation of this blob varies greatly from one extension to the next. In
many cases, it’s yet another variable-length list of data, but in other cases it’s a
simple numeric type, and sometimes it’s empty if the extension is just a marker
that indicates that a certain feature is supported.

This book won’t exhaustively cover all the available client hello extensions.
Of those that are covered, most are discussed as they come up rather than in
this section. They’ll make more sense that way. However, Listings 8-2 and 8-3
illustrate the parsing of the server name extension:

Listing 8-2: “tls.c” parse_client_hello_extensions

typedef enum

{

 server_name = 0

}

ExtensionType;

static char *parse_client_hello_extensions(char *read_pos,

 TLSParameters *parameters)

{

 unsigned short extensions_size, extension_data_size;

 char *init_pos;

 ExtensionType type;

 read_pos = read_buffer((void *) &extensions_size, (void *) read_pos, 2);

 extensions_size = ntohs(extensions_size);

 init_pos = read_pos;

 while ((read_pos - init_pos) < extensions_size)

(Continued)

c08.indd 417c08.indd 417 12/10/2010 9:46:26 AM12/10/2010 9:46:26 AM

418 Chapter 8 n Advanced SSL Topics

 {

 read_pos = read_buffer((void *) &type, (void *) read_pos, 2);

 read_pos = read_buffer((void *) &extension_data_size,

 (void *) read_pos, 2);

 type = ntohs(type);

 extension_data_size = ntohs(extension_data_size);

 switch (type)

 {

 case server_name:

 parse_server_name_extension(read_pos, extension_data_size,

 parameters);

 printf(“Got server name extension\n”);

 break;

 default:

 printf(“warning, skipping unsupported client hello extension %d\n”,

 type);

 break;

 }

 read_pos += extension_data_size;

 }

 return read_pos;

}

Listing 8-3: “tls.c” parse_server_name_extension

typedef enum

{

 host_name = 0

}

NameType;

static void parse_server_name_extension(unsigned char *data,

 unsigned short data_len,

 TLSParameters *parameters)

{

 unsigned short server_name_list_len;

 unsigned char name_type;

 unsigned char *data_start;

 data = read_buffer((void *) &server_name_list_len, (void *) data, 2);

 server_name_list_len = ntohs(server_name_list_len);

 data_start = data;

 data = read_buffer((void *) &name_type, (void *) data, 1);

 switch (name_type)

 {

 case host_name:

c08.indd 418c08.indd 418 12/10/2010 9:46:27 AM12/10/2010 9:46:27 AM

 Chapter 8 n Advanced SSL Topics 419

 {

 unsigned short host_name_len;

 unsigned char *host_name;

 data = read_buffer((void *) &host_name_len,

 (void *) data, 2);

 host_name_len = ntohs(host_name_len);

 host_name = malloc(host_name_len + 1);

 data = read_buffer((void *) host_name,

 (void *) data, host_name_len);

 host_name[host_name_len] = ‘\0’;

 printf(“got host name ‘%s’\n”, host_name);

 // TODO store this and use it to select a certificate

 // TODO return an “unrecognized_name” alert if the host name

 // is unknown

 free(host_name);

 }

 break;

 default:

 // nothing else defined by the spec

 break;

 }

}

As you can see from these listings, there’s nothing particularly different about
the server name extension — it’s a triply-nested list. Each list is prepended with
a two-byte length that needs to be converted from network order to host order
before the list can be processed, as usual. A client hello with a server name
extension is illustrated in Figure 8-1. Compare this to the plain client hello in
Figure 6-2.

Figure 8-1: Client Hello with SNI

current timemajor minor

random bytes

random bytes

extensions
length

server name
extension

length of
server name

extension

length of
server name

list

name
type

length of
server name server name (variable)

sess
id
len

session id
(variable)

cipher
suites
length

cipher suites
(variable)

Comp
meth
len

compression
methods
(variable)

random bytes

version

client
random

Strangely, the server name extension itself allows for a list of host names. It’s
not clear how the server ought to behave if one of the names was recognized,
but another wasn’t, or if both were recognized and correspond, for example,

c08.indd 419c08.indd 419 12/10/2010 9:46:27 AM12/10/2010 9:46:27 AM

420 Chapter 8 n Advanced SSL Topics

to available certifi cates. P refer the fi rst? Prefer the last? I know of no TLS client
that supports SNI but also sends more than one host name. OpenSSL, reason-
ably enough, regards it as an error if you pass more than one (prior to version
1.0, though, OpenSSL just ignores this).

The implementation presented in this book is only capable of sending one certifi -
cate, so all this code does is print out the host name it receives from the client and
throws away the negotiated server name. A more robust implementation would,
of course, keep track of this. If the server recognized, accepted, and understood
the server name extension, it should include an empty server-name extension in
its own hello message, to let the client know that the extension was recognized.
This might prompt the client, for instance, to tighten its security requirements if
the received certifi cate was invalid. Of course, this wouldn’t be useful against a
malicious server, but might expose an innocently misconfi gured one.

There are quite a few other extensions defi ned; RFC 3546 defi nes six, and
there are several others that are fairly common and are examined later.

Safely Reusing Key Material with Session
Resumption

Recall in Chapter 6 that the server was responsible for assigning a unique session
ID to each TLS connection. However, if you browse through the remainder of the
handshake, that session ID is never used again. Why does the server generate it, then?

SSL, since v2, has always supported session resumption. Remember that SSL
was originally conceived as an HTTP add-on; it was only later retrofi tted to
other protocols. It was also designed back when HTTP 1.0 was state-of-the-art,
and HTTP 1.0 required the web client — the browser — to close the socket con-
nection to indicate the end of request. This meant that a lot of HTTP requests
needed to be made for even a single web page. Although this was corrected
somewhat in HTTP 1.1 with pipelining of requests/keepalives, the fact still
remains that HTTP has a very low data-to-socket ratio. Add the time it takes to
do a key exchange and the corresponding private key operations, and SSL can
end up being a major drain on the throughput of the system.

To get a handle on this, SSL, and TLS, allow keying material to be reused
across multiple sockets. This works by passing an old session ID in the client
hello message and short-circuiting the handshake. This allows the lifetime of
the SSL session — the keying material that’s used to protect the data — to be
independent of the lifetime of the socket. Regardless of the protocol used, this
is a good thing. After a 128-bit key has been successfully negotiated, depending
on the cipher spec, it can be used to protect potentially hundreds of thousands
of bytes of content. There’s no reason to throw away these carefully negotiated
keys just because the top-level protocol itself has ended.

c08.indd 420c08.indd 420 12/10/2010 9:46:27 AM12/10/2010 9:46:27 AM

 Chapter 8 n Advanced SSL Topics 421

Figure 8-2 shows that the certifi cate, hello done, and key exchange messages
have all been elided. Because the client and the server have already negotiated
a master secret, there’s no reason to resend these parameters.

Figure 8-2: Shortened session resumption handshake sequence

client hello

server hello

finished

finished

change cipher spec

change cipher spec

serverclient

Interestingly, when the handshake is shortened for session resumption, the
server sends the fi nished message fi rst, whereas for a normal handshake as
shown back in Figure 6-1, it’s the client. This is a nod to effi ciency: The server
needn’t wait for the client to send a key exchange before it computes its fi nished
message, so it can go ahead and pipeline all three of its messages in a single
burst if the server is willing to renegotiate.

Adding Session Resumption on the Client Side
What if the server isn’t willing to renegotiate? According to the specifi cation,
the server should go ahead and silently begin a new handshake, and send its
certifi cate and hello done message. It’s technically up to the client if it wants to
abort at this point, or go ahead and just negotiate a new session. In most cases,
the client wants to continue anyway. It’s hard to imagine a scenario where a
client wouldn’t want to negotiate a new session in this case. All TLS-based
software that I’m familiar with automatically does so, without prompting or
notifying the user. It’s possible, though, that some particularly security-conscious
(say, military) software somewhere may say, “Hey, you gave me this session ID
two minutes ago, and now you’re not willing to resume it? Something’s wrong
here, I’m bailing,” and notify the user to investigate what could possibly be a
security breach.

c08.indd 421c08.indd 421 12/10/2010 9:46:27 AM12/10/2010 9:46:27 AM

422 Chapter 8 n Advanced SSL Topics

Requesting Session Resumption

To add session resumption to the TLS client from Chapter 6, modify the
TLSParameters structure from Listing 6-5 to include an optional session ID as
shown in Listing 8-4:

Listing 8-4: “tls.h” TLSParameters with session ID

#define MAX_SESSION_ID_LENGTH 32

typedef struct

{

…

 int session_id_length;

 unsigned char session_id[MAX_SESSION_ID_LENGTH];

}

TLSParameters;

Adding Session Resumption Logic to the Client

Now, go ahead and defi ne a new top-level function called tls_resume that
renegotiates a previously negotiated session. If you were so inclined, you could
probably work this into the logic of tls_connect from Listing 6-7, but it’s clearer
to just defi ne a new function. tls_resume is shown in Listing 8-5.

Listing 8-5: “tls.c” tls_resume

int tls_resume(int connection,

 int session_id_length,

 const unsigned char *session_id,

 const unsigned char *master_secret,

 TLSParameters *parameters)

{

 init_parameters(parameters);

 parameters->connection_end = connection_end_client;

 parameters->session_id_length = session_id_length;

 memcpy(¶meters->session_id, session_id, session_id_length);

 new_md5_digest(¶meters->md5_handshake_digest);

 new_sha1_digest(¶meters->sha1_handshake_digest);

 // Send the TLS handshake “client hello” message

 if (send_client_hello(connection, parameters) < 0)

 {

 perror(“Unable to send client hello”);

 return 1;

 }

 // Receive server hello, change cipher spec & finished.

 parameters->server_hello_done = 0;

c08.indd 422c08.indd 422 12/10/2010 9:46:27 AM12/10/2010 9:46:27 AM

 Chapter 8 n Advanced SSL Topics 423

 parameters->peer_finished = 0;

 while (!parameters->peer_finished)

 {

 if (receive_tls_msg(connection, NULL, 0, parameters) < 0)

 {

 perror(“Unable to receive server finished”);

 return 6;

 }

 if (server_hello_done)

 {

 // Check to see if the server agreed to resume; if not,

 // abort, even though the server is probably willing to continue

 // with a new session.

 if (memcmp(session_id, ¶meters->session_id, session_id_length))

 {

 printf(“Server refused to renegotiate, exiting.\n”);

 return 7;

 }

 else

 {

 memcpy(parameters->master_secret, master_secret,

 MASTER_SECRET_LENGTH);

 calculate_keys(parameters);

 }

 }

 }

 if (!(send_change_cipher_spec(connection, parameters)))

 {

 perror(“Unable to send client change cipher spec”);

 return 4;

 }

 if (!(send_finished(connection, parameters)))

 {

 perror(“Unable to send client finished”);

 return 5;

 }

 return 0;

}

This is pretty close to tls_connect from Chapter 6; the differences are, of
course, that it doesn’t send a client_key_exchange message, and it has some
special processing when the server_hello_done message is received:

 if (server_hello_done)

 {

 if (memcmp(session_id, ¶meters->session_id, session_id_length))

 {

(Continued)

c08.indd 423c08.indd 423 12/10/2010 9:46:27 AM12/10/2010 9:46:27 AM

424 Chapter 8 n Advanced SSL Topics

 printf(“Server refused to renegotiate, exiting.\n”);

 return 7;

 }

 else

 {

 memcpy(parameters->master_secret, master_secret,

 MASTER_SECRET_LENGTH);

 calculate_keys(parameters);

 }

 }

First, it checks to see if the session ID returned by the server matches the
one offered by the client. If not, the server is unable to or is unwilling to rene-
gotiate this session. This code aborts if this is the case; normally you’d want
to just continue on with the handshake and negotiate new keys. However,
for experimental purposes, you should be more interested in ensuring that a
resumption succeeded. This way, if you mistype the session ID, for instance,
you get an immediate error.

Restoring the Previous Session’s Master Secret

If the server is willing to resume, the client has to reproduce the master secret,
so it had better have it handy. If it does, it can just perform the calculate keys
routine. You could do this with the premaster secret, the master secret, or the
keying material itself, but it’s easiest to work with the master secret. Notice that
the fi nished messages start over “from scratch” when a session resumes; neither
side needs to keep track of the digest from the original handshake.

None of the subordinate functions except send_client_hello and parse_
server_hello are aware that they are participating in a resumption instead of
an initial handshake. send_client_hello, of course, needs to send the ID of
the session it’s trying to resume as shown in Listing 8-6.

Listing 8-6: “tls.c” send_client_hello with session resumption

static int send_client_hello(int connection, TLSParameters *parameters)

{

...

 memcpy(package.random.random_bytes, parameters->client_random + 4, 28);

 if (parameters->session_id_length > 0)

 {

 package.session_id_length = parameters->session_id_length;

 package.session_id = parameters->session_id;

 }

 else

 {

 package.session_id_length = 0;

 package.session_id = NULL;

c08.indd 424c08.indd 424 12/10/2010 9:46:27 AM12/10/2010 9:46:27 AM

 Chapter 8 n Advanced SSL Topics 425

 }

 package.cipher_suites_length = htons(2);

If the client supports any extensions, it re-sends them here. This is important if
the session ID is not recognized and the server starts a new handshake. It needs
to be able to see all of the original extensions. Of course, if the client negotiates
an extension the fi rst time around, you should assume it’s still in effect if the
session is resumed.

Testing Session Resumption

You must update parse_server_hello, of course, to store the session ID assigned
by the server as shown in Listing 8-7.

Listing 8-7: “tls.c” parse_server_hello with session ID support

 memcpy((void *) (parameters->server_random + 4), (void *)

 hello.random.random_bytes, 28);

 parameters->session_id_length = hello.session_id_length;

 memcpy(parameters->session_id, hello.session_id, hello.session_id_length);

Go ahead and expand the https example from Listing 6-2 to allow the user to
pass in a session ID/master secret combination from a prior session for resump-
tion. The session ID is unique to the target server. If you try to pass a session ID
to a different server, the session ID will almost certainly not be recognized, and
if it is, you don’t know what the master secret was, so the session resumption
fails when the server tries to verify your fi nished message. The modifi ed https
example is shown in Listing 8-8.

Listing 8-8: “https.c” main routine with session resumption

int main(int argc, char *argv[])

{

…

 int master_secret_length;

 unsigned char *master_secret;

 int session_id_length;

 unsigned char *session_id;

…

 proxy_host = proxy_user = proxy_password = host = path =

 session_id = master_secret = NULL;

 session_id_length = master_secret_length = 0;

 for (ind = 1; ind < (argc - 1); ind++)

 {

 if (!strcmp(“-p”, argv[ind]))

 {

 if (!parse_proxy_param(argv[++ind], &proxy_host, &proxy_port,

(Continued)

c08.indd 425c08.indd 425 12/10/2010 9:46:27 AM12/10/2010 9:46:27 AM

426 Chapter 8 n Advanced SSL Topics

 &proxy_user, &proxy_password))

 {

 fprintf(stderr, “Error - malformed proxy parameter ‘%s’.\n”, argv[2]);

 return 2;

 }

 }

 else if (!strcmp(“-s”, argv[ind]))

 {

 session_id_length = hex_decode(argv[++ind], &session_id);

 }

 else if (!strcmp(“-m”, argv[ind]))

 {

 master_secret_length = hex_decode(argv[++ind], &master_secret);

 }

 }

 if (((master_secret_length > 0) && (session_id_length == 0)) ||

 ((master_secret_length == 0) && (session_id_length > 0)))

 {

 fprintf(stderr, “session id and master secret must both be provided.\n”);

 return 3;

 }

…

 if (session_id != NULL)

 {

 if (tls_resume(client_connection, session_id_length,

 session_id, master_secret, &tls_context))

 {

 fprintf(stderr, “Error: unable to negotiate SSL connection.\n”);

 if (close(client_connection) == -1)

 {

 perror(“Error closing client connection”);

 return 2;

 }

 return 3;

 }

 }

 else

 {

 if (tls_connect(client_connection, &tls_context))

 {

…

 if (session_id != NULL)

 {

 free(session_id);

 }

c08.indd 426c08.indd 426 12/10/2010 9:46:27 AM12/10/2010 9:46:27 AM

 Chapter 8 n Advanced SSL Topics 427

 if (master_secret != NULL)

 {

 free(master_secret);

 }

Other than calling tls_resume instead of tls_connect, nothing else changes.
As far as the rest of the library is concerned, it’s as if the socket was never closed.
Of course, if you actually want to try this out, you need to know what the ses-
sion ID and master secret are; you can go ahead and print them out just after
performing the TLS shutdown:

 tls_shutdown(client_connection, &tls_context);

 printf(“Session ID was: “);

 show_hex(tls_context.session_id, tls_context.session_id_length);

 printf(“Master secret was: “);

 show_hex(tls_context.master_secret, MASTER_SECRET_LENGTH);

 if (close(client_connection) == -1)

Viewing a Resumed Session

The following code illustrates a network trace of a resumed session:

debian:/home/jdavies/devl/test/c/ssl# tcpdump -s 0 -X -i lo tcp port 8443

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on lo, link-type EN10MB (Ethernet), capture size 65535 bytes

… (omitted initial handshake)

21:54:05.568241 IP localhost.37289 > localhost.8443: Flags [P.], ack 1, win 257,

options [nop,nop,TS val 274087 ecr 274087], length 82

 0x0000: 4500 0086 88b0 4000 4006 b3bf 7f00 0001 E.....@.@.......

 0x0010: 7f00 0001 91a9 20fb d246 a60a d260 dc47 F...`.G

 0x0020: 8018 0101 fe7a 0000 0101 080a 0004 2ea7 z..........

 0x0030: 0004 2ea7 1603 0100 4d01 0000 4903 014c M...I..L

 0x0040: 743f 7d00 0000 0000 0000 0000 0000 0000 t?}.............

 0x0050: 0000 0000 0000 0000 0000 0000 0000 0020

 0x0060: be2e b988 f5bc 6412 5981 35f7 7e3b 2128 d.Y.5.~;!(

 0x0070: f8cc 4e6f fc52 77fd a687 2ac5 0f1e cbbb ..No.Rw...*.....

 0x0080: 0002 000a 0100

Compression

Methods

List of Cipher

Suites

Session Id

TLS Header

Session Id

Length

Client

Random

Client Hello

Version

Handshake

Header

H ere, the client hello message looks like the client hello message in Chapter
6, except that, this time, the session ID is non-empty.

c08.indd 427c08.indd 427 12/10/2010 9:46:27 AM12/10/2010 9:46:27 AM

428 Chapter 8 n Advanced SSL Topics

21:54:05.568432 IP localhost.8443 > localhost.37289: Flags [P.], ack 83, win

256, options [nop,nop,TS val 274087 ecr 274087], length 130

 0x0000: 4500 00b6 f2e1 4000 4006 495e 7f00 0001 E.....@.@.I^....

 0x0010: 7f00 0001 20fb 91a9 d260 dc47 d246 a65c `.G.F.\

 0x0020: 8018 0100 feaa 0000 0101 080a 0004 2ea7

 0x0030: 0004 2ea7 1603 0100 4a02 0000 4603 014c J...F..L

 0x0040: 743f 7dc9 fc4e af63 d94b e2e0 672e 5a0d t?}..N.c.K..g.Z.

 0x0050: ea6b 91da 9e2f 2f48 f733 23d5 4b0d 8720 .k...//H.3#.K...

 0x0060: be2e b988 f5bc 6412 5981 35f7 7e3b 2128 d.Y.5.~;!(

 0x0070: f8cc 4e6f fc52 77fd a687 2ac5 0f1e cbbb ..No.Rw...*.....

 0x0080: 000a 0014 0301 0001 0116 0301 0028 1d95 (..

 0x0090: a8c8 56f3 841b 0046 4e40 29d9 6b83 036b ..V....FN@).k..k

 0x00a0: c30f 624e c3b9 fc32 d8f2 9d1e 8ae5 6b18 ..bN...2......k.

 0x00b0: cb75 d7a7 d311 .u....

Finished

Message

Headshake

Header

Change Cipher

Spec

Same Session

Id

TLS Header

The server responds with a server hello message containing the identical ses-
sion ID. If the session ID is different here, the client should begin negotiating a
new connection. If the session ID is the same, however, the client should expect
the server hello to be followed immediately by a change cipher spec message,
followed by a server fi nished.

The client follows up with its own change cipher spec and server fi nished mes-
sage; this is followed immediately by encrypted application data, as shown here:

21:54:05.572924 IP localhost.37289 > localhost.8443: Flags [P.], ack 131, win

265, options [nop,nop,TS val 274088 ecr 274087], length 6

 0x0000: 4500 003a 88b2 4000 4006 b409 7f00 0001 E..:..@.@.......

 0x0010: 7f00 0001 91a9 20fb d246 a65c d260 dcc9 F.\.`..

 0x0020: 8018 0109 fe2e 0000 0101 080a 0004 2ea8

 0x0030: 0004 2ea7 1403 0100 0101

21:54:05.613696 IP localhost.37289 > localhost.8443: Flags [P.], ack 131, win

265, options [nop,nop,TS val 274098 ecr 274098], length 196

 0x0000: 4500 00f8 88b3 4000 4006 b34a 7f00 0001 E.....@.@..J....

 0x0010: 7f00 0001 91a9 20fb d246 a662 d260 dcc9 F.b.`..

 0x0020: 8018 0109 feec 0000 0101 080a 0004 2eb2

 0x0030: 0004 2eb2 1603 0100 2892 32f1 da76 4138 (.2..vA8

 0x0040: cb21 3a05 15f0 803b 34d3 e308 f12c 7aee .!:....;4....,z.

 0x0050: 634f 9246 924d f6bd d646 9c92 3879 a882 cO.F.M...F..8y..

 0x0060: 2e17 0301 0030 0127 7be8 e387 2b97 5f9c 0.’{...+._.

 0x0070: 8d2b 02fe 8587 a91a ef3a fa53 fb54 d577 .+.......:.S.T.w

 0x0080: e62a 44fd 5e0d eaf1 769f c2a2 619c 27aa .*D.^...v...a.’.

 0x0090: d619 fc02 3d81

…

Adding Session Resumption on the Server Side
How about supporting session resumption on the server side? The server has
to do quite a bit more work than the client. It must remember each session ID
it assigns and the master key associated with each.

c08.indd 428c08.indd 428 12/10/2010 9:46:27 AM12/10/2010 9:46:27 AM

 Chapter 8 n Advanced SSL Topics 429

Assigning a Unique Session ID to Each Session

The fi rst change you must make to support server-side session resumption
is to assign a unique session ID to each session. Recall that in Chapter 7, each
server hello message is sent with an empty session ID, which the client should
interpret as “server unable to resume session.” The changes to assign unique
session IDs to each session are shown in Listing 8-9.

Listing 8-9: “tls.c” server-side session resumption support

static int next_session_id = 1;

static int send_server_hello(int connection, TLSParameters *parameters)

{

 ServerHello package;

…

 memcpy(package.random.random_bytes, parameters->server_random + 4, 28);

 if (parameters->session_id_length == 0)

 {

 // Assign a new session ID

 memcpy(parameters->session_id, &next_session_id, sizeof(int));

 parameters->session_id_length = sizeof(int);

 next_session_id++;

 }

 package.session_id_length = parameters->session_id_length;

Here, I’ve gone ahead and made next_session_id a static variable. This could
potentially create some threading problems if I was using this in a multithreaded
application. The session ID in this case is a monotonically increasing 4-byte
identifi er. I also didn’t bother correcting for host ordering, so if this is run on a
little-endian machine, the fi rst session ID shows up as 0x01000000, the second
as 0x02000000, and so on. This increase doesn’t really matter in this case, as long
as each is unique. Finally, notice that the code checks whether a session ID has
already been assigned before assigning one. This will be the case, when session
resumption is added in Listing 8-15, if a session is being resumed.

Adding Session ID Storage

To actually store these, you need some internal data structure that can easily
map session IDs to master secret values. As a nod to effi ciency, go ahead and
make this a hash table. First, declare a storage structure and a static instance to
contain it as shown in Listing 8-10.

Listing 8-10: “tls.c” session storage hash table

#define HASH_TABLE_SIZE 100

typedef struct StoredSessionsList_t

(Continued)

c08.indd 429c08.indd 429 12/10/2010 9:46:28 AM12/10/2010 9:46:28 AM

430 Chapter 8 n Advanced SSL Topics

{

 int session_id_length;

 unsigned char session_id[MAX_SESSION_ID_LENGTH];

 unsigned char master_secret[MASTER_SECRET_LENGTH];

 struct StoredSessions_list_t *next;

}

StoredSessionsList;

static StoredSessionsList *stored_sessions[HASH_TABLE_SIZE];

This structure simply contains the session ID and the master secret, which is
the bare minimum amount of information you need to resume a prior session.

Because this is a static variable (again, not thread safe), it must be initialized
on startup by the init_tls function shown in Listing 8-11.

Listing 8-11: “tls.c” init_tls

void init_tls()

{

 int i = 0;

 for (i = 0; i < HASH_TABLE_SIZE; i++)

 {

 stored_sessions[i] = NULL;

 }

}

First of all, you need to store each successfully negotiated session in this struc-
ture. Listing 8-12 illustrates how to fi nd the correct placement in the hash map
for the master secret. By forcing the session IDs themselves to be numeric values,
the hash function is simply the session ID modulo the size of the hash table.

Listing 8-12: “tls.c” remember_session

/**

 * Store the session in the stored sessions cache

 */

static void remember_session(TLSParameters *parameters)

{

 if (parameters->session_id_length > 0)

 {

 int session_id;

 StoredSessionsList *head;

 memcpy(&session_id, parameters->session_id, sizeof(int));

 head = stored_sessions[session_id % HASH_TABLE_SIZE];

 if (head == NULL)

 {

 head = stored_sessions[session_id % HASH_TABLE_SIZE] =

 malloc(sizeof(StoredSessionsList));

 }

 else

c08.indd 430c08.indd 430 12/10/2010 9:46:28 AM12/10/2010 9:46:28 AM

 Chapter 8 n Advanced SSL Topics 431

 {

 while (head->next != NULL)

 {

 head = (StoredSessionsList *) head->next;

 }

 head->next = malloc(sizeof(StoredSessionsList));

 head = (StoredSessionsList *) head->next;

 }

 head->session_id_length = parameters->session_id_length;

 memcpy(head->session_id, &session_id, head->session_id_length);

 memcpy(head->master_secret, parameters->master_secret,

 MASTER_SECRET_LENGTH);

 head->next = NULL;

 }

}

Figure 8-3 illustrates how this would be laid out in memory if you stored,
for example, six sessions with IDs 100, 106, 199, 200, 299, and 599. Each entry in
the stored_sessions array is a pointer to a linked list of every session whose
ID is equal to its index, mod 100.

If you’ve ever studied data structures, this common technique for balancing
storage space with lookup speed ought to look familiar. Listing 8-13 is the cor-
responding retrieval function.

Listing 8-13: “tls.c” fi nd_stored_session

/**

 * Check to see if the requested session ID is stored in the local cache.

 * If the session ID is recognized, parameters will be updated to include

 * it, and the master secret will be stored in the parameters.

 * If it is not recognized, the session

 * ID in the parameters will be left empty, indicating that a new handshake

 * should commence.

 */

static void find_stored_session(int session_id_length,

 const unsigned char *session_id,

 TLSParameters *parameters)

{

 int session_id_num;

 StoredSessionsList *head;

 if (session_id_length > sizeof(int))

 {

 // Definitely didn’t come from this server.

 return;

 }

 memcpy(&session_id_num, session_id, session_id_length);

 for (head = stored_sessions[session_id_num % HASH_TABLE_SIZE];

(Continued)

c08.indd 431c08.indd 431 12/10/2010 9:46:28 AM12/10/2010 9:46:28 AM

432 Chapter 8 n Advanced SSL Topics

 head != NULL;

 head = (StoredSessionsList *) head->next)

 {

 if (!memcmp(session_id, head->session_id, session_id_length))

 {

 parameters->session_id_length = session_id_length;

 memcpy(parameters->session_id, head->session_id, session_id_length);

 memcpy(parameters->master_secret, head->master_secret,

 MASTER_SECRET_LENGTH);

 break;

 }

 }

}

Figure 8-3: stored_sessions table

stored_sessions

0

1

2

3

4

5

6

7

8

9

10

session_id_length: 4 session_id_length: 4

session_id_length: 4

.

.

.

session_id_length: 4

session_id: 100 session_id: 200

session_id: 106

next

next

next

next

next next

master_secret: abcdef master_secret: abcdef

master_secret: abcdef

master_secret: abcdef master_secret: abcdef master_secret: abcdef

session_id: 199 session_id: 299 session_id: 599

session_id_length: 4 session_id_length: 4

98

99

c08.indd 432c08.indd 432 12/10/2010 9:46:28 AM12/10/2010 9:46:28 AM

 Chapter 8 n Advanced SSL Topics 433

Notice that find_stored_session doesn’t actually return anything. If it fi nds
an entry corresponding to the request session, it updates the TLSParameters
structure with the corresponding master secret and continues on. It’s up to the
caller to check to see if the TLSParameters structure was updated or not.

Modifying parse_client_hello to Recognize Session Resumption
Requests

To make use of these new functions, parse_client_hello must fi rst be modifi ed
to check to see if the client is attempting a renegotiation as shown in Listing 8-14.

Listing 8-14: “tls.c” parse_client_hello with session resumption support

static char *parse_client_hello(char *read_pos,

 int pdu_length,

 TLSParameters *parameters)

{

…

 free(hello.compression_methods);

 if (hello.session_id_length > 0)

 {

 find_stored_session(hello.session_id_length, hello.session_id,

 parameters);

 }

 if (hello.session_id)

This just invokes find_stored_session_id if the client passes one in. If
the requested session ID is found, the parameters structure now contains the
master secret and the session ID that has been found. If not, nothing is done
and the handshake should continue as if no session ID had been suggested. An
unrecognized session ID is not necessarily an error — the client could just be
trying to resume an old session.

Correspondingly, tls_accept must be updated to check this condition and
perform the shortened handshake if the client is resuming as in Listing 8-15.

Listing 8-15: “tls.c” tls_accept with session resumption support

int tls_accept(int connection,

 TLSParameters *parameters)

{

…

 parameters->got_client_hello = 0;

 while (!parameters->got_client_hello)

 {

 if (receive_tls_msg(connection, NULL, 0, parameters) < 0)

 {

(Continued)

c08.indd 433c08.indd 433 12/10/2010 9:46:28 AM12/10/2010 9:46:28 AM

434 Chapter 8 n Advanced SSL Topics

 perror(“Unable to receive client hello”);

 send_alert_message(connection, handshake_failure,

 ¶meters->active_send_parameters);

 return 1;

 }

 }

 if (parameters->session_id_length > 0)

 {

 // Client asked for a resumption, and this server recognized the

 // session id. Shortened handshake here. “parse_client_hello”

 // will have already initiated calculate keys.

 if (send_server_hello(connection, parameters))

 {

 send_alert_message(connection, handshake_failure,

 ¶meters->active_send_parameters);

 return 3;

 }

 // Can’t calculate keys until this point because server random

 // is needed.

 calculate_keys(parameters);

 // send server change cipher spec/finished message

 // Order is reversed when resuming

 if (!(send_change_cipher_spec(connection, parameters)))

 {

 perror(“Unable to send client change cipher spec”);

 send_alert_message(connection, handshake_failure,

 ¶meters->active_send_parameters);

 return 7;

 }

 // This message will be encrypted using the newly negotiated keys

 if (!(send_finished(connection, parameters)))

 {

 perror(“Unable to send client finished”);

 send_alert_message(connection, handshake_failure,

 ¶meters->active_send_parameters);

 return 8;

 }

 parameters->peer_finished = 0;

 while (!parameters->peer_finished)

 {

 if (receive_tls_msg(connection, NULL, 0, parameters) < 0)

 {

 perror(“Unable to receive client finished”);

 send_alert_message(connection, handshake_failure,

 ¶meters->active_send_parameters);

 return 6;

 }

c08.indd 434c08.indd 434 12/10/2010 9:46:28 AM12/10/2010 9:46:28 AM

 Chapter 8 n Advanced SSL Topics 435

 }

 }

 else

 {

 if (send_server_hello(connection, parameters))

If the session isn’t being resumed — that is, it’s new — the tls_accept must
also remember it for future resumptions as shown in Listing 8-16.

Listing 8-16: “tls.c” tls_accept with session storage

 if (!(send_finished(connection, parameters)))

 {

 perror(“Unable to send client finished”);

 send_alert_message(connection, handshake_failure,

 ¶meters->active_send_parameters);

 return 7;

 }

 // Handshake is complete; now ready to start sending encrypted data

 // IFF the handshake was successful, put it into the sesion ID cache

 // list for reuse.

 remember_session(parameters);

 }

The only other change that needs to made here is that init_parameters must
initialize the session ID to be empty, as in Listing 8-17.

Listing 8-17: “tls.c” init_parameters with session resumption support

static void init_parameters(TLSParameters *parameters)

{

…

 parameters->session_id_length = 0;

}

Drawbacks of This Implementation

This implementation is by no means perfect, or complete. After a session is
added to the hash table, it’s never removed until the server shuts down. Not
only is this an operational problem — its memory consumption grows without
bounds until it crashes — it’s also a security problem because a session can be
resumed days or even weeks afterward. This won’t be a signifi cant problem
for the use you put this server to, but it would be for a highly available server.

The TLS specifi cation, RFC 2246, mandates that if a session was not shut down
correctly — if the client didn’t send a close notify alert before shutting down the
socket — then the session should be marked non-resumable and attempts to resume
it should fail. From section 7.2.1 of the RFC, which discusses the close_notify alert:

c08.indd 435c08.indd 435 12/10/2010 9:46:28 AM12/10/2010 9:46:28 AM

436 Chapter 8 n Advanced SSL Topics

close_notify

This message notifies the recipient that the sender will not send any more
messages on this connection. The session becomes unresumable if any connection
is terminated without proper close_notify messages with level equal to warning.

This was not widely implemented, and later versions of the specifi cation
rescinded this requirement. However, to be technically compliant with RFC
2246, this implementation ought to include this requirement when the negoti-
ated protocol version is 3.1.

There’s also a theoretical problem with this implementation. The server
remembers the session ID and the master secret, and nothing else. What
happens if the client sends a hello request with the same session ID, but a
different set of cipher suites? What if, for example, the original session used
RC4/MD5, but the new client hello only includes AES/SHA-1? In this case,
it actually does work correctly because the master secret is just expanded
as many times as it needs to be to generate the appropriate keying material.
If the client is requesting the wrong cipher suite, though, you should just
abandon the connection because it’s most likely that somebody is trying to
do something nasty.

A more robust server implementation should also keep track of which client
hello extensions are successfully negotiated and ensure that the second hello
request includes those same extensions. Depending on the negotiated extension,
omitting it on a resumption request might be a fatal error.

Avoiding Fixed Parameters with Ephemeral Key
Exchange

Chapter 6 states that after the server hello, the server should follow up with
a certifi cate for key exchange. Technically, this isn’t always true. Recall from
Chapter 5 that although X.509 defi nes and allows the server to provide Diffi e-
Hellman parameters — Ys, p and g — in a certifi cate, the reality of Diffi e-Hellman
is that it works best when Ys is computed from a different secret value a for
each instance. If the key exchange parameters aren’t in the certifi cate, is the
certifi cate strictly necessary?

As it turns out, no. There is a class of cipher suites referred to as ephemeral
cipher suites that don’t expect a key to be supplied in a certifi cate at all. Instead,
the server sends a server key exchange message that contains the key exchange
parameters — normally a set of Diffi e-Hellman parameters. This way, each con-
nection gets its own, unique, key exchange parameters which are never stored
anywhere after the connection ends.

c08.indd 436c08.indd 436 12/10/2010 9:46:28 AM12/10/2010 9:46:28 AM

 Chapter 8 n Advanced SSL Topics 437

Supporting the TLS Server Key Exchange Message
To support ephemeral key exchange on the client side, the client must be pre-
pared to accept either a certifi cate or a server key exchange message. As you
can probably guess, implementing this fi rst involves adding a new case arm to
receive_tls_msg, shown in Listing 8-18.

Listing 8-18: “tls.c” receive_tls_msg with server key exchange

static int receive_tls_msg(int connection,

 char *buffer,

 int bufsz,

 TLSParameters *parameters)

{

…

 switch (handshake.msg_type)

 {

…

 case server_key_exchange:

 read_pos = parse_server_key_exchange(read_pos, parameters);

 if (read_pos == NULL)

 {

 send_alert_message(connection, handshake_failure,

 ¶meters->active_send_parameters);

 return -1;

 }

 break;

The optional server key exchange message is sent after the server hello. Both
the certifi cate and the server key exchange handshake messages are optional,
as indicated by the dashed lines in Figure 8-4.

Recall from Listing 6-37 that the send_client_key_exchange was coded to
perform Diffi e-Hellman key exchange if the cipher suite called for it, so the only
thing left to do in parse_server_key_exchange is to store the Diffi e-Hellman
parameters for the subsequent key exchange as shown in Listing 8-19.

Listing 8-19: “tls.c” parse_server_key_exchange

static char *parse_server_key_exchange(unsigned char *read_pos,

 TLSParameters *parameters)

{

 short length;

 int i;

 unsigned char *dh_params = read_pos;

 for (i = 0; i < 3; i++)

 {

 memcpy(&length, read_pos, 2);

 length = ntohs(length);

(Continued)

c08.indd 437c08.indd 437 12/10/2010 9:46:28 AM12/10/2010 9:46:28 AM

438 Chapter 8 n Advanced SSL Topics

 read_pos += 2;

 switch (i)

 {

 case 0:

 load_huge(¶meters->server_dh_key.p, read_pos, length);

 break;

 case 1:

 load_huge(¶meters->server_dh_key.g, read_pos, length);

 break;

 case 2:

 load_huge(¶meters->server_dh_key.Y, read_pos, length);

 break;

 }

 read_pos += length;

 }

 return read_pos;

}

Figure 8-4: TLS handshake with server key exchange

server key exchange

certificate

hello done

key exchange

change cipher spec

finished

change cipher spec

finished

client hello

server hello

serverclient

The server key exchange message is just a list of parameters; the receiver must
know how to interpret them. Each element p, g, and Ys are given as variable-length

c08.indd 438c08.indd 438 12/10/2010 9:46:28 AM12/10/2010 9:46:28 AM

 Chapter 8 n Advanced SSL Topics 439

structures so, in TLS style, are prepended by their lengths. Here you can see,
they’re each loaded into huge structures.

That’s it; you already added support for the rest of the Diffi e-Hellman key
exchange in Listing 6-42. It was just a matter of getting the parameters to com-
plete the exchange.

You can use this on a live server. The cipher suites that are named DH_anon_
XXX work correctly with this code, as is, if the server supports the cipher suite.
Wait — “if the server supports them”? Why wouldn’t the server support them?
Well, the name of the cipher suite offers a clue: DH_anon. This means that the
handshake is anonymous and no protection against man-in-the-middle attacks
is offered. How could you even check? There’s no certifi cate, so there’s no com-
mon name to compare to the domain name. Even if there were, there’d be no
signature to verify with a trusted public key.

Authenticating the Server Key Exchange Message

Strictly speaking, it’s not necessarily the case that certifi cate messages and server
key exchange messages are mutually exclusive. Remember DSA certifi cates,
which didn’t seem terribly useful because you couldn’t use the DSA public key
for a key exchange? This is what they’re useful for. A DSA certifi cate can provide
a public key that can be used to verify a signature over a set of ephemeral
Diffi e-Hellman parameters. This same certifi cate can include a verifi able com-
mon name and a trusted signature. The signature itself can even be an RSA
signature (which is fortunate, because I have yet to fi nd a certifi cate authority
that uses DSA to sign certifi cates).

In fact, the server can even send an RSA certifi cate before sending the server
key exchange message in support of a Diffi e-Hellman key exchange. You may
wonder why anybody would want to go to all this trouble if they’ve already
gotten an RSA certifi cate that can be used directly to do a key exchange, but
remember that Diffi e-Hellman achieves perfect forward secrecy. If RSA is used
for key exchange, and the server’s private key is ever compromised, every com-
munication that is protected by that key is at risk.

Therefore, TLS defi nes another set of cipher suites called DHE_DSS_XXX for
Diffi e-Hellman with a DSA signature and DHE_RSA_XXX for Diffi e-Hellman with an
RSA signature. In both cases, the server key exchange is preceded by a certifi cate
bearing either a DSA public key or an RSA public key. (There are also DH_XXX
cipher suites that skip the server key exchange and expect the Diffi e-Hellman
parameters to appear in the certifi cate itself. As has been noted, this is rare).

As presented so far, though, this is still vulnerable to a man-in-the-middle
attack. You can verify that the certifi cate belongs to the site you believe you’re
connecting to, but you can’t verify that the key exchange parameters are the
ones that were sent by the server itself. The man in the middle can replace
the server’s DH parameters with his own and you have no way of detecting this.

c08.indd 439c08.indd 439 12/10/2010 9:46:28 AM12/10/2010 9:46:28 AM

440 Chapter 8 n Advanced SSL Topics

After you verify the certifi cate and decide to trust this connection, the man in
the middle takes over, drops the connection to the server, and you complete the
handshake with the falsifi ed server, none the wiser.

Therefore, the specifi cation enables the server key exchange to be signed by
the public key in the certifi cate. This optional signature immediately follows the
key exchange parameters if present; it is present for any key exchange except
for the anonymous types.

Extend the parse_server_key_exchange function from Listing 8-19 as shown
in Listing 8-20 to recognize this signature if it is present and verify it. If it is
present but doesn’t verify according to the previously received certifi cate, return
NULL, which causes the calling tls_receive_message to fail with the illegal
parameter handshake alert.

Listing 8-20: “tls.c” parse_server_key_exchange with signature verifi cation

static char *parse_server_key_exchange(unsigned char *read_pos,

 TLSParameters *parameters)

{

…

 for (i = 0; i < 4; i++)

…

 case 3:

 // The third element is the signature over the first three, including their

 // length bytes

 if (!verify_signature(dh_params,

 (read_pos - 2 - dh_params),

 read_pos, length, parameters))

 {

 return NULL;

 }

 break;

 }

The signature type depends on the type of public key in the certifi cate. TLS
defi nes two: RSA and DSA. Recall from Chapter 3 that an RSA signature is
a secure hash of the data to be signed, encrypted with the private key. TLS
actually takes a slightly more paranoid approach to RSA signatures, and
encrypts both the MD5 and the SHA-1 hash, presumably to guard against
a compromise of either hash function. Unfortunately, both are fairly weak
today, and TLS 1.0 doesn’t provide a way to negotiate a stronger hash function.
Recall from Chapter 5 that the X.509 certifi cate signature included the OID
of the corresponding hash function in its signature; TLS 1.0, unfortunately,
didn’t follow suit.

c08.indd 440c08.indd 440 12/10/2010 9:46:29 AM12/10/2010 9:46:29 AM

 Chapter 8 n Advanced SSL Topics 441

To verify an RSA signature over the server key exchange parameters, imple-
ment the verify_signature function in Listing 8-21.

Listing 8-21: “tls.c” verify_signature

static int verify_signature(unsigned char *message,

 int message_len,

 unsigned char *signature,

 int signature_len,

 TLSParameters *parameters)

{

 unsigned char *decrypted_signature;

 int decrypted_signature_length;

 digest_ctx md5_digest;

 digest_ctx sha1_digest;

 new_sha1_digest(&sha1_digest);

 update_digest(&sha1_digest, parameters->client_random, RANDOM_LENGTH);

 update_digest(&sha1_digest, parameters->server_random, RANDOM_LENGTH);

 update_digest(&sha1_digest, message, message_len);

 finalize_digest(&sha1_digest);

 new_md5_digest(&md5_digest);

 update_digest(&md5_digest, parameters->client_random, RANDOM_LENGTH);

 update_digest(&md5_digest, parameters->server_random, RANDOM_LENGTH);

 update_digest(&md5_digest, message, message_len);

 finalize_digest(&md5_digest);

 decrypted_signature_length = rsa_decrypt(signature, signature_len,

 &decrypted_signature,

 ¶meters->server_public_key.rsa_public_key);

 if (memcmp(md5_digest.hash, decrypted_signature, MD5_BYTE_SIZE) ||

 memcmp(sha1_digest.hash, decrypted_signature + MD5_BYTE_SIZE,

 SHA1_BYTE_SIZE))

 {

 return 0;

 }

 free(decrypted_signature);

 return 1;

}

Each digest is over the two random values and then the parameters; incorpo-
rating the random values this way prevents replay attacks. The whole signature
process is illustrated in Figure 8-5.

c08.indd 441c08.indd 441 12/10/2010 9:46:29 AM12/10/2010 9:46:29 AM

442 Chapter 8 n Advanced SSL Topics

Figure 8-5: Server key exchange signature

p

g

Ys

server random

Di
ffi

e-
He

llm
an

 P
ar

am
et

er
s

MD5

RSA Signature

SHA-1

client random

Examining an Ephemeral Key Exchange Handshake

Here is an illustration of an abbreviated DHE/RSA/DES/SHA-1 handshake.

debian:/home/jdavies/devl/test/c/ssl# tcpdump -s 0 -X -i lo tcp port 8443

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on lo, link-type EN10MB (Ethernet), capture size 65535 bytes

… (omitted TCP handshake) …

21:35:48.344479 IP localhost.59349 > localhost.8443: Flags [P.], ack 1, win 257,

options [nop,nop,TS val 4294952080 ecr 4294952080], length 50

 0x0000: 4500 0066 6dde 4000 4006 ceb1 7f00 0001 E..fm.@.@.......

 0x0010: 7f00 0001 e7d5 20fb aa9d a94d ab00 752a M..u*

 0x0020: 8018 0101 fe5a 0000 0101 080a ffff c490 Z..........

 0x0030: ffff c490 1603 0100 2d01 0000 2903 014c -...)..L

 0x0040: 758c b400 0000 0000 0000 0000 0000 0000 u...............

 0x0050: 0000 0000 0000 0000 0000 0000 0000 0000

 0x0060: 0002 0015 0100

TLS_DHE_RSA_

WITH_DES_CBC_

SHA

This is an ordinary client hello message, just like the one in Chapter 6. The
only noteworthy point here is that the only offered cipher suite is an ephemeral
Diffi e-Hellman cipher.

21:35:48.345236 IP localhost.8443 > localhost.59349: Flags [P.], ack 51, win

256, options [nop,nop,TS val 4294952080 ecr 4294952080], length 1158

 0x0000: 4500 04ba b1bb 4000 4006 8680 7f00 0001 E.....@.@.......

 0x0010: 7f00 0001 20fb e7d5 ab00 752a aa9d a97f u*....

c08.indd 442c08.indd 442 12/10/2010 9:46:29 AM12/10/2010 9:46:29 AM

 Chapter 8 n Advanced SSL Topics 443

 0x0020: 8018 0100 02af 0000 0101 080a ffff c490

 0x0030: ffff c490 1603 0100 4a02 0000 4603 014c J...F..L

 0x0040: 758c b47e 27e1 3d63 09fa 4c62 83c8 a510 u..~’.=c..Lb....

 0x0050: 72a1 9a98 4c4e 186d 000b c059 31c1 4220 r...LN.m...Y1.B.

 0x0060: 1823 08ca b7af a651 a39a f8e4 56c2 5934 .#.....Q....V.Y4

 0x0070: 2ffd c57b aafe 12f9 bff3 9b0f 85ef 08a9 /..{............

 0x0080: 0015 0016 0301 0357 0b00 0353 0003 5000 W...S..P.

… (omitted certificate) …

Ys

Signature

Server

Finished

p
g

Server Key

Exchange

 0x03d0: bca6 6646 f29d dea1 b1b4 888e cde5 8f16 ..fF............

 0x03e0: 0301 00cd 0c00 00c9 0040 da58 3c16 d985 @.X<...

 0x03f0: 2289 d0e4 af75 6f4c ca92 dd4b e533 b804 "....uoL...K.3..

 0x0400: fb0f ed94 ef9c 8a44 03ed 5746 50d3 6999 D..WFP.i.

 0x0410: db29 d776 276b a2d3 d412 e218 f4dd 1e08 .).v'k..........

 0x0420: 4cf6 d800 3e7c 4774 e833 0001 0200 4044 L...>|Gt.3....@D

 0x0430: 974e bd65 0890 aa9c 0279 ddb0 09e3 60b8 .N.e.....y....`.

 0x0440: 727a c542 d202 c46f 1faa 04f4 839b 926b rz.B...o.......k

 0x0450: 7a88 2d8b 0239 595a 0b83 099a b0dc f492 z.-..9YZ........

 0x0460: da9a 90f1 14c6 f39b 19f2 9c4c 4df6 a500 LM...

 0x0470: 4031 1a3e 0927 fc9e 6078 657e b1c3 6fd2 @1.>.'..`xe~..o.

 0x0480: 24c1 3097 8178 79f0 6907 e5a3 e35c 6ca9 $.0..xy.i....\l.

 0x0490: 986f db37 6f1d 302f 07e3 431c 3185 e7b1 .o.7o.0/..C.1...

 0x04a0: 1b5a 0504 6eed 7af1 6caa fc3a 7527 4df8 .Z..n.z.l..:u’M.

 0x04b0: b516 0301 0004 0e00 0000

The server hello and certifi cate messages occur as before; however, instead
of being followed immediately by server done, they’re followed by a server
key exchange message that identifi es the Diffi e-Hellman values p, g, and Ys.
The length declarations of each are highlighted in the preceding code. This
is followed by the RSA signature of the MD5 hash of client random, server
random, and the remainder of the server key exchange, followed by the
SHA-1 hash of the client random, the server random, and the remainder of
the message. The client should use the public key of the certifi cate — which
should have been verifi ed using the public key of a trusted certifi cate — to
verify these key exchange parameters.

Yc

21:35:48.449922 IP localhost.59349 > localhost.8443: Flags [P.], ack 1159, win

275, options [nop,nop,TS val 4294952106 ecr 4294952080], length 12

 0x0000: 4500 0040 6de0 4000 4006 ced5 7f00 0001 E..@m.@.@.......

 0x0010: 7f00 0001 e7d5 20fb aa9d a97f ab00 79b0 y.

 0x0020: 8018 0113 fe34 0000 0101 080a ffff c4aa 4..........

 0x0030: ffff c490 1603 0100 0710 0000 0300 0140 @

c08.indd 443c08.indd 443 12/10/2010 9:46:29 AM12/10/2010 9:46:29 AM

444 Chapter 8 n Advanced SSL Topics

The server hello done is always followed by a client key exchange, whether the
key exchange was an ephemeral one or not. In this case, the client key exchange is
signifi cantly shorter than in the case of an RSA key exchange, especially because
the “secret” value A was hardcoded to be 6 by this implementation. Because g
is 2 (see the preceding code), Yc = 26 %p = 64. To complete the key exchange, the
server must compute 64B %p. I can’t show you this computation because I don’t
know what B was. No matter how hard I try, I shouldn’t be able to fi gure it out.
The client must compute Ys6 %p to settle on the premaster secret.

The remainder of the handshake continues as in the RSA key exchange case;
now that the premaster secret has been successfully exchanged, the client sends
a change cipher spec, followed by a fi nished message, which the server recip-
rocates as shown below.

21:35:48.488513 IP localhost.59349 > localhost.8443: Flags [P.], ack 1159, win

275, options [nop,nop,TS val 4294952116 ecr 4294952116], length 51

 0x0000: 4500 0067 6de1 4000 4006 cead 7f00 0001 E..gm.@.@.......

 0x0010: 7f00 0001 e7d5 20fb aa9d a98b ab00 79b0 y.

 0x0020: 8018 0113 fe5b 0000 0101 080a ffff c4b4 [..........

 0x0030: ffff c4b4 1403 0100 0101 1603 0100 28ac (.

 0x0040: cc09 37ea 64f2 4677 68e8 0025 bf96 f1df ..7.d.Fwh..%....

 0x0050: 92f3 f83a b5a9 cb9e 6672 e245 4687 2259 ...:....fr.EF.”Y

 0x0060: 9135 c6f2 707a b6 .5..pz.

21:35:48.488901 IP localhost.8443 > localhost.59349: Flags [P.], ack 114, win

256, options [nop,nop,TS val 4294952116 ecr 4294952116], length 51

 0x0000: 4500 0067 b1be 4000 4006 8ad0 7f00 0001 E..g..@.@.......

 0x0010: 7f00 0001 20fb e7d5 ab00 79b0 aa9d a9be y.....

 0x0020: 8018 0100 fe5b 0000 0101 080a ffff c4b4 [..........

 0x0030: ffff c4b4 1403 0100 0101 1603 0100 2827 (‘

 0x0040: a9bf 753d f061 2e90 62b3 5cfa 19f8 52f4 ..u=.a..b.\...R.

 0x0050: 4ad5 6a59 5d4e 5bba 7f89 3ce3 9e25 c15f J.jY]N[...<..%._

 0x0060: 5e1d 0ef8 a8ce 22 ^.....”

This works for all of the DHE_RSA_xxx cipher suites — that is, those whose
certifi cate includes an RSA public key. What about the DHE_DSS_xxx cipher suites?

If you recall from Listing 6-5, the TLSParameters structure is declared to have
space only for an RSA public key. If the server returns a DSA public key, it is
ignored. Back then, that was a sensible decision because you were just focusing
on RSA-based key exchanges, but now you can actually do something with a
DSA certifi cate.

To support DSA verifi cation, change the TLSParameters server_public_key type
from an rsa_key to the public_key_info structure that is defi ned in Listing 5-26.
This has a section for either an rsa_key or a dsa key, plus the required dsa
params. This is shown in Listing 8-22.

Listing 8-22: “tls.h” TLSParameters with dsa key support

typedef struct

{

c08.indd 444c08.indd 444 12/10/2010 9:46:29 AM12/10/2010 9:46:29 AM

 Chapter 8 n Advanced SSL Topics 445

…

 ProtectionParameters active_recv_parameters;

 public_key_info server_public_key;

 dh_key server_dh_key;

…

}

TLSParameters;

Pass this into parse_x509_chain when parsing the certifi cate message as
shown in Listing 8-23.

Listing 8-23: “tls.c” receive_tls_message with DSA key support

static int receive_tls_msg(int connection,

 char *buffer,

 int bufsz,

 TLSParameters *parameters)

{

...

 case certificate:

 read_pos = parse_x509_chain(read_pos, handshake.length,

 ¶meters->server_public_key);

Modify send_client_key_exchange to recognize this new level of indirec-
tion as in Listing 8-24.

Listing 8-24: “tls.c” send_client_key_exchange

static int send_client_key_exchange(int connection, TLSParameters *parameters)

{

…

 key_exchange_message_len = rsa_key_exchange(

 ¶meters->server_public_key.rsa_public_key,

 premaster_secret, &key_exchange_message);

Because parse_x509_chain has to update the server_public_key structure
rather than just an RSA key structure, make the appropriate modifi cations as
shown in Listing 8-25.

Listing 8-25: “x509.c” parse_x509_chain with DSA support

char *parse_x509_chain(unsigned char *buffer,

 int pdu_length,

 public_key_info *server_public_key)

{

…

 if (!pos++)

 {

 // Copy public key information into target on first cert only

 server_public_key->algorithm =

 certificate.tbsCertificate.subjectPublicKeyInfo.algorithm;

(Continued)

c08.indd 445c08.indd 445 12/10/2010 9:46:29 AM12/10/2010 9:46:29 AM

446 Chapter 8 n Advanced SSL Topics

 switch (server_public_key->algorithm)

 {

 case rsa:

 server_public_key->rsa_public_key.modulus =

 (huge *) malloc(sizeof(huge));

 server_public_key->rsa_public_key.exponent =

 (huge *) malloc(sizeof(huge));

 set_huge(server_public_key->rsa_public_key.modulus, 0);

 set_huge(server_public_key->rsa_public_key.exponent, 0);

 copy_huge(server_public_key->rsa_public_key.modulus,

 certificate.tbsCertificate.subjectPublicKeyInfo.rsa_public_key.modulus

);

 copy_huge(server_public_key->rsa_public_key.exponent,

 certificate.tbsCertificate.subjectPublicKeyInfo.rsa_public_key.exponent

);

 break;

 case dsa:

 set_huge(&server_public_key->dsa_parameters.g, 0);

 set_huge(&server_public_key->dsa_parameters.p, 0);

 set_huge(&server_public_key->dsa_parameters.q, 0);

 set_huge(&server_public_key->dsa_public_key, 0);

 copy_huge(&server_public_key->dsa_parameters.g,

 &certificate.tbsCertificate.subjectPublicKeyInfo.dsa_parameters.g);

 copy_huge(&server_public_key->dsa_parameters.p,

 &certificate.tbsCertificate.subjectPublicKeyInfo.dsa_parameters.p);

 copy_huge(&server_public_key->dsa_parameters.q,

 &certificate.tbsCertificate.subjectPublicKeyInfo.dsa_parameters.q);

 copy_huge(&server_public_key->dsa_public_key,

 &certificate.tbsCertificate.subjectPublicKeyInfo.dsa_public_key);

 break;

 default:

 // Diffie-Hellman certificates not supported in this implementation

 break;

 }

This just copies the relevant parts of the certifi cate’s subjectPublicKeyInfo
values into the one in TLSParameters.

Modify verify_signature itself to verify a DSA signature when appropriate.
Recall from Chapter 4 that a DSA signature by its nature is computed over a
single hash value; you can’t safely play games with concatenated hash values
using DSA like TLS does with RSA. The dsa_verify function of Listing 4-33 just
returns a true or false; you don’t “decrypt” anything. Also, a DSA signature is
not just a single number; it is two numbers, r and s. To keep them straight, TLS
mandates that they be provided in ASN.1 DER-encoded form.

Modify verify_signature as shown in Listing 8-26 to verify DSA signatures
if the certifi cate contains a DSA public key.

Listing 8-26: “tls.c” verify_signature

static int verify_signature(unsigned char *message,

 int message_len,

c08.indd 446c08.indd 446 12/10/2010 9:46:30 AM12/10/2010 9:46:30 AM

 Chapter 8 n Advanced SSL Topics 447

 unsigned char *signature,

 int signature_len,

 TLSParameters *parameters)

{

 // This is needed for RSA or DSA

 digest_ctx sha1_digest;

 new_sha1_digest(&sha1_digest);

 update_digest(&sha1_digest, parameters->client_random, RANDOM_LENGTH);

 update_digest(&sha1_digest, parameters->server_random, RANDOM_LENGTH);

 update_digest(&sha1_digest, message, message_len);

 finalize_digest(&sha1_digest);

 if (parameters->server_public_key.algorithm == rsa)

 {

 unsigned char *decrypted_signature;

 int decrypted_signature_length;

 digest_ctx md5_digest;

 decrypted_signature_length = rsa_decrypt(signature, signature_len,

 &decrypted_signature,

 ¶meters->server_public_key.rsa_public_key);

 // If the signature algorithm is RSA, this will be the md5 hash, followed by

 // the sha-1 hash of: client random, server random, params).

 // If DSA, this will just be the sha-1 hash

 new_md5_digest(&md5_digest);

 update_digest(&md5_digest, parameters->client_random, RANDOM_LENGTH);

 update_digest(&md5_digest, parameters->server_random, RANDOM_LENGTH);

 update_digest(&md5_digest, message, message_len);

 finalize_digest(&md5_digest);

 if (memcmp(md5_digest.hash, decrypted_signature, MD5_BYTE_SIZE) ||

 memcmp(sha1_digest.hash, decrypted_signature + MD5_BYTE_SIZE,

 SHA1_BYTE_SIZE))

 {

 return 0;

 }

 free(decrypted_signature);

 }

 else if (parameters->server_public_key.algorithm == dsa)

 {

 struct asn1struct decoded_signature;

 dsa_signature received_signature;

 asn1parse(signature, signature_len, &decoded_signature);

 set_huge(&received_signature.r, 0);

 set_huge(&received_signature.s, 0);

 load_huge(&received_signature.r, decoded_signature.children->data,

 decoded_signature.children->length);

(Continued)

c08.indd 447c08.indd 447 12/10/2010 9:46:30 AM12/10/2010 9:46:30 AM

448 Chapter 8 n Advanced SSL Topics

 load_huge(&received_signature.s,

 decoded_signature.children->next->data,

 decoded_signature.children->next->length);

 asn1free(&decoded_signature);

 if (!dsa_verify(¶meters->server_public_key.dsa_parameters,

 ¶meters->server_public_key.dsa_public_key,

 sha1_digest.hash,

 SHA1_BYTE_SIZE,

 &received_signature))

 {

 free_huge(&received_signature.r);

 free_huge(&received_signature.s);

 return 0;

 }

 free_huge(&received_signature.r);

 free_huge(&received_signature.s);

 }

 return 1;

}

Notice that the SHA-1 digest is computed regardless of the signature type; it
is needed whether the signature is an RSA or DSA signature.

DHE is not very common; most servers still prefer RSA for key exchange,
and those that do support DHE still present an RSA, rather than a DSA,
certifi cate. This doesn’t mean that RSA has an advantage over Diffi e-Hellman
for key exchange; RSA also uses the same private key over and over, for poten-
tially millions and millions of handshakes. There’s no particular reason why
certifi cate-based Diffi e-Hellman can’t be used, or why the server key exchange
can’t include an RSA key which was different for each connection instead of DH
parameters. However, the fact that RSA can be used for both signature genera-
tion and encryption meant that it was more common in certifi cates, so this has
ended up being the way it was most often used.

Verifying Identity with Client Authentication

In almost all cases — unless the cipher suite is one of the DH_anon_XXX cipher
suites — the server is required to present a certifi cate, signed by a certifi cate
authority, whose subject name’s CN fi eld matches the DNS name to which the
client is trying to connect. This is always useful to guard against man-in-the-
middle attacks; without this certifi cate, there’s no way, at all, to be sure that a
malicious attacker didn’t hijack your connection during the handshake.

But what about the reverse situation? The server has no way of verifying
that the client is really who it says it is. This may or may not be important, but

c08.indd 448c08.indd 448 12/10/2010 9:46:30 AM12/10/2010 9:46:30 AM

 Chapter 8 n Advanced SSL Topics 449

most applications that use TLS to protect the privacy and authenticity of com-
munications also require that the client authenticate itself through some means
such as a shared password.

If you think about it, this is sort of archaic. All of the problems of synchro-
nizing shared keys apply to shared passwords. Because you have public-key
cryptography and PKI, why not use it?

Imagine, for instance, an online bank that creates its own internal CA and
then uses that CA to sign customer’s certifi cate requests at a physical branch
location (after authenticating them physically by verifying a driver’s license,
fi ngerprints, and so on). The customer can then install that CA’s root certifi cate
and his own signed certifi cate on his computer and use that to prove his identity
in addition to the primitive username/password authentication method cur-
rently used. (You need both methods to guard against the damage of a private
key compromise.)

TLS allows for this. The server can demand a certifi cate and refuse to complete
the handshake unless the client provides one, signed by a suitable certifi cate
authority. RSA Data Security’s RSA Key Manager (RKM) product uses this tech-
nique to authenticate requests from applications, but it’s not as widespread as it
could be. This is a shame, because it’s a very good, secure way to authenticate
users. If a bank started requiring this sort of “mutual authentication,” I would
defi nitely put all of my money in it.

TLS describes two additional handshake messages to support client
authentication.

 n The Certifi cateRequest handshake message is sent by the server to the client,
notifying the client that it expects the client to authenticate itself with a
certifi cate. The Certifi cate message sent by the client is exactly the same
format as the certifi cate message sent by the server.

 n the Certifi cateVerify message, the second new handshake message, is sent
by the client to prove that it is, in fact, in possession of the private key
corresponding to the public key in the certifi cate itself.

Supporting the Certifi cateRequest Message
The Certifi cateRequest handshake message is sent by the server after sending its
own certifi cate and, if applicable, server key exchange.

NOTE If the server did not send a certifi cate — for example, if it is performing
an anonymous key exchange — it may not request a certifi cate from the client.

The designers of TLS could have designed the certifi cate request to have been
defi ned as a simple marker request like the hello done and ChangeCipherSpec
messages were. However, to streamline things a bit, the TLS designers allowed

c08.indd 449c08.indd 449 12/10/2010 9:46:30 AM12/10/2010 9:46:30 AM

450 Chapter 8 n Advanced SSL Topics

the server to indicate what sorts of certifi cates it would accept, and by which CAs.
This makes some sense. The most likely use case for a client-side authentication
is a private CA, not one of the public, shared, pre-trusted (and expensive!) ones.
As long as the CA’s private key is kept private, it’s no less secure than a public
CA. In fact, it might be more secure.

The format of the CertificateRequest message is fi rst a list of the types of
certifi cates it accepts; TLS 1.0 defi nes four: rsa_sign, dss_sign, rsa_fixed_dh,
and dss_fixed_dh. Following this is a list of the ASN.1 DER-encoded distin-
guished names of the certifi cate authorities that the server trusts. The specifi ca-
tion is silent on whether this list must contain any entries or is allowed to be
empty, and what to do if the list of trusted CAs is empty. Some implementations
respond with an empty list to indicate that any CA is trusted. Although this
sort of defeats the purpose, you should be aware that it is a possible condition.

Adding Certifi cate Request Parsing Capability for the Client

The client has no way of knowing when a server might demand a client cer-
tifi cate, so it has to be ready to handle the request, whether by supplying a
certifi cate or by aborting the connection. Add a new fl ag to TLSParameters as
shown in Listing 8-27.

Listing 8-27: “tls.h” TLSParameters with certifi cate request fl ag

typedef struct

{

…

 int peer_finished;

 int got_certificate_request;

 digest_ctx md5_handshake_digest;

…

}

TLSParameters;

Of course, as with all potential handshake messages, you need to add a new
conditional in receive_tls_msg as shown in Listing 8-28.

Listing 8-28: “tls.c” receive_tls_msg with certifi cate request support

static int receive_tls_msg(int connection,

 char *buffer,

 int bufsz,

 TLSParameters *parameters)

{

…

 case certificate_request: // Abort if server requests a certificate?

 read_pos = parse_certificate_request(read_pos, parameters);

 break;

…

c08.indd 450c08.indd 450 12/10/2010 9:46:30 AM12/10/2010 9:46:30 AM

 Chapter 8 n Advanced SSL Topics 451

The certifi cate request message indicates what sort of certifi cates the server
is capable of receiving and what CAs it trusts to sign one. This implementation
isn’t robust enough to associate potential certifi cates with their signers; it just
hardcodes a single certifi cate and always returns that, if asked for any certifi cate.
This has to be good enough for the server. However, to illustrate the layout of
the certifi cate request message, go ahead and add code to parse it as shown in
Listing 8-29.

Listing 8-29: “tls.c” parse_certifi cate_request

#define MAX_CERTIFICATE_TYPES 4

typedef enum

{

 rsa_signed = 1,

 dss_signed = 2,

 rsa_fixed_dh = 3,

 dss_fixed_dh = 4

}

certificate_type;

typedef struct

{

 unsigned char certificate_types_count;

 certificate_type supported_certificate_types[MAX_CERTIFICATE_TYPES];

}

CertificateRequest;

static unsigned char *parse_certificate_request(unsigned char *read_pos,

 TLSParameters *parameters)

{

 int i;

 int trusted_roots_length;

 unsigned char *init_pos;

 CertificateRequest request;

 read_pos = read_buffer(&request.certificate_types_count, read_pos, 1);

 for (i = 0; i < request.certificate_types_count; i++)

 {

 read_pos = read_buffer(

 (void *) &request.supported_certificate_types[i], read_pos, 1);

 }

 read_pos = read_buffer((void *) &trusted_roots_length, read_pos, 2);

 trusted_roots_length = htons(trusted_roots_length);

 init_pos = read_pos;

 while ((read_pos - init_pos) < trusted_roots_length)

 {

 int dn_length;

 struct asn1struct dn_data;

(Continued)

c08.indd 451c08.indd 451 12/10/2010 9:46:30 AM12/10/2010 9:46:30 AM

452 Chapter 8 n Advanced SSL Topics

 name dn;

 read_pos = read_buffer((void *) &dn_length, read_pos, 2);

 dn_length = htons(dn_length);

 asn1parse(read_pos, dn_length, &dn_data);

 parse_name(&dn, &dn_data);

 printf(“Server trusts issuer: C=%s/ST=%s/L=%s/O=%s/OU=%s/CN=%s\n”,

 dn.idAtCountryName, dn.idAtStateOrProvinceName,

 dn.idAtLocalityName, dn.idAtOrganizationName,

 dn.idAtOrganizationalUnitName, dn.idAtCommonName);

 asn1free(&dn_data);

 read_pos += dn_length;

 }

 parameters->got_certificate_request = 1;

 return read_pos;

}

Handling the Certifi cate Request

The certifi cate request is split into two parts. The fi rst is a variable-length list of
recognized certifi cate types; the values defi ned by TLS 1.0 are described by the
enumeration certificate_types. The second part is a variable-length list of
ASN.1 DER-encoded X.509 distinguished names (whew!) of trusted CAs. Notice
in Listing 8-29 that the CertificateRequest structure defi ned in this book’s
implementation has a section to store the received certifi cate types but not the CA
names. You can — and a robust implementation certainly should — store them
for downstream processing, but the memory management gets fairly complex
and adds little to the discussion here because this code ignores the information.
Still, for your edifi cation, the list of trusted CAs is parsed and printed out. In
most common use cases, there is only a single trusted CA here.

The only really important bit of this routine is the setting of the got_certifi-
cate_request fl ag. This indicates to the tls_connect routine that it must send a
certifi cate. If, and only if, the server sends a certifi cate request, the client should
send a certifi cate. The client certifi cate message is in exactly the same format
as the server certifi cate; the code can be reused as is, as shown in Listing 8-30.

Listing 8-30: “tls.c” tls_connect with support for certifi cate requests

 // Step 2. Receive the server hello response (will also have gotten

 // the server certificate along the way)

 parameters->server_hello_done = 0;

 parameters->got_certificate_request = 0;

 while (!parameters->server_hello_done)

 {

 if (receive_tls_msg(connection, NULL, 0, parameters) < 0)

c08.indd 452c08.indd 452 12/10/2010 9:46:30 AM12/10/2010 9:46:30 AM

 Chapter 8 n Advanced SSL Topics 453

 {

 perror(“Unable to receive server hello”);

 return 2;

 }

 }

 // Certificate precedes key exchange

 if (parameters->got_certificate_request)

 {

 send_certificate(connection, parameters);

 }

The send_certificate routine is exactly the same as the one from Listing 7-11;
there’s no difference between the two at all.

NOTE Because the certifi cate name is hardcoded into this routine, if you
run the server from Chapter 7 from the same directory as you run the client,
you actually return the same certifi cate that the server uses for key exchange!
Obviously, this isn’t the way things normally work, but it’s good enough for
illustration purposes.

Supporting the Certifi cate Verify Message
The code presented in Listing 8-30 won’t quite work, though. Consider; the
client has presented a certifi cate whose common name is, for example, “Joshua
Davies.” The certifi cate is signed by a trusted CA. It’s also passed in the clear, so
any eavesdropper who’s listening in can capture it and reuse it, masquerading
as this “Joshua Davies” fellow. Recall that the server’s certifi cate was tied to a
domain name; the client could verify that the CN component of the certifi cate’s
subject name matches the domain name to which it is connecting. The server
can’t do that with the client’s certifi cate; the client is likely to be mobile and
probably won’t have a domain name.

Therefore, there’s one last thing the client needs to do in order to satisfy a
certifi cate request. It must use the private key that corresponds to the server’s
public key to sign a secure hash of the handshake messages that have been
exchanged so far.

This should sound familiar; it’s the same thing that was done for the fin-
ished message in Listing 6-53. In fact, the code to build the CertificateVerify
handshake message is pretty similar to the code to compute the verify data in
the fi nished message. The only real difference is that instead of iterating the
secure hash through the PRF, the secure hash is signed using the private key.

Refactoring rsa_encrypt to Support Signing

Recall from Chapter 4 that RSA signatures are data encrypted using an RSA
private key. This is almost exactly the same as RSA encryption, except that the

c08.indd 453c08.indd 453 12/10/2010 9:46:30 AM12/10/2010 9:46:30 AM

454 Chapter 8 n Advanced SSL Topics

block type is slightly different; rather than padding with random bytes, the
padding section contains all 1’s.

Why is this? Well, imagine that the same RSA key was used to decrypt private
data as well as to sign messages. To keep the example small and simple, use
small values — the mini-key pair e = 79, d = 1019, and n = 3337 from Chapter
3 works nicely. Now, let’s say you encrypted your secret number, 42, using the
public key e and n, which works out to 2,973. So far, so good; an eavesdropper
without access to d can’t recover your secret number 42. All he saw was 2,973,
which is useless to him.

However, he can trick the private key holder into revealing it. He can ask the
private key holder to please sign his credit card number, which happens to be
2,973. Now, the private key holder computes 2973d % n, which is your secret
number 42. Oops.

To guard against this, PKCS #1 mandates that signatures and encryptions
be padded differently. It’s the responsibility of the signer to add this padding
before signing anything.

It’s easy to refactor the rsa_encrypt routing from Listing 3-17 to support
signing and encrypting correctly. Extract everything except the padding into a
separate routing called rsa_process that takes a block_type as an argument,
and call it from rsa_encrypt and rsa_sign as shown in Listing 8-31.

Listing 8-31: “rsa.c” rsa_encrypt and rsa_sign

int rsa_process(unsigned char *input,

 unsigned int len,

 unsigned char **output,

 rsa_key *public_key,

 unsigned char block_type)

{

…

 memcpy(padded_block + (modulus_length - block_size), input, block_size);

 // set block type

 padded_block[1] = block_type;

 for (i = 2; i < (modulus_length - block_size - 1); i++)

 {

 if (block_type == 0x02)

 {

 // TODO make these random

 padded_block[i] = i;

 }

 else

 {

 padded_block[i] = 0xFF;

 }

 }

c08.indd 454c08.indd 454 12/10/2010 9:46:30 AM12/10/2010 9:46:30 AM

 Chapter 8 n Advanced SSL Topics 455

 load_huge(&m, padded_block, modulus_length);

…

}

int rsa_encrypt(unsigned char *input,

 unsigned int len,

 unsigned char **output,

 rsa_key *public_key)

{

 return rsa_process(input, len, output, public_key, 0x02);

}

int rsa_sign(unsigned char *input,

 unsigned int len,

 unsigned char **output,

 rsa_key *private_key)

{

 return rsa_process(input, len, output, private_key, 0x01);

}

Now you can use this signature routine to generate the certifi cate verify mes-
sage as shown in Listing 8-32.

Listing 8-32: “tls.c” send_certifi cate_verify

static int send_certificate_verify(int connection,

 TLSParameters *parameters)

{

 unsigned char *buffer;

 int buffer_length;

 rsa_key private_key;

 digest_ctx tmp_md5_handshake_digest;

 digest_ctx tmp_sha1_handshake_digest;

 unsigned short handshake_signature_len;

 unsigned char *handshake_signature;

 unsigned short certificate_verify_message_len;

 unsigned char *certificate_verify_message;

 unsigned char handshake_hash[(MD5_RESULT_SIZE * sizeof(int)) +

 (SHA1_RESULT_SIZE * sizeof(int))];

 compute_handshake_hash(parameters, handshake_hash);

 memcpy(handshake_hash, tmp_md5_handshake_digest.hash, MD5_BYTE_SIZE);

 memcpy(handshake_hash + MD5_BYTE_SIZE, tmp_sha1_handshake_digest.hash,

 SHA1_BYTE_SIZE);

 if (!(buffer = load_file_into_memory(“key.der”, &buffer_length)))

 {

 perror(“Unable to load file”);

 return 0;
(Continued)

c08.indd 455c08.indd 455 12/10/2010 9:46:31 AM12/10/2010 9:46:31 AM

456 Chapter 8 n Advanced SSL Topics

 }

 parse_private_key(&private_key, buffer, buffer_length);

 free(buffer);

 handshake_signature_len = (unsigned short) rsa_sign(handshake_hash,

 MD5_BYTE_SIZE + SHA1_BYTE_SIZE, &handshake_signature,

 &private_key);

 certificate_verify_message_len = handshake_signature_len +

 sizeof(unsigned short);

 certificate_verify_message = (unsigned char *)

 malloc(certificate_verify_message_len);

 // copying this “backwards” so that I can use the signature len

 // as a numeric input but then htons it to send on.

 memcpy((void *) (certificate_verify_message + 2),

 (void *) handshake_signature, handshake_signature_len);

 handshake_signature_len = htons(handshake_signature_len);

 memcpy((void *) certificate_verify_message,

 (void *) &handshake_signature_len, sizeof(unsigned short));

 send_handshake_message(connection, certificate_verify,

 certificate_verify_message, certificate_verify_message_len, parameters);

 free(certificate_verify_message);

 free(handshake_signature);

 return 1;

}

…

int tls_connect(int connection,

 TLSParameters *parameters)

{

…

 if (!(send_client_key_exchange(connection, parameters)))

 {

 perror(“Unable to send client key exchange”);

 return 3;

 }

 // Certificate verify comes after key exchange

 if (parameters->got_certificate_request)

 {

 if (!send_certificate_verify(connection, parameters))

 {

 perror(“Unable to send certificate verify message”);

 return 3;

 }

 }

c08.indd 456c08.indd 456 12/10/2010 9:46:31 AM12/10/2010 9:46:31 AM

 Chapter 8 n Advanced SSL Topics 457

 if (!(send_change_cipher_spec(connection, parameters)))

Almost all of this logic was discussed in the compute_verify_data routine
in Listing 6-53 and the parse_client_key_exchange in Listing 7-18. The only
thing new here is the formatting of the certifi cate verify message; this is just the
length of the signature, followed by the signature bytes. Network byte ordering
makes this a bit more complex than you might expect it to be, but otherwise
there’s not much to it. The full handshake, with optional client authentication,
is shown in Figure 8-6.

Figure 8-6: TLS handshake with client authentication

server key exchange

certificate

hello done

key exchange

certificate verify

certificate request

certificate

change cipher spec

finished

change cipher spec

finished

client hello

server hello

serverclient

As you can see, a full TLS handshake can take as many as 13 independent
messages. However, by taking advantage of message concatenation, this can
be reduced to four network round trips. This is still quite a few, considering

c08.indd 457c08.indd 457 12/10/2010 9:46:31 AM12/10/2010 9:46:31 AM

458 Chapter 8 n Advanced SSL Topics

that the TCP handshake itself already used up three. You can see why session
resumption is important.

Testing Client Authentication

You can use OpenSSL to test client authentication because you’ll probably fi nd
it very diffi cult to locate a server on the public Internet that requests and accepts
client certifi cates. The process for even getting OpenSSL’s test server s_server
to accept client certifi cates is a complicated one:

 1. Create a root cert; you did this in Chapter 5 via
openssl req -x509 -newkey rsa:512 -out root_cert.pem -keyout root_key.pem

 2. Copy this into a special directory; call it “trusted_certs” (for example).

 3. OpenSSL requires that all root certifi cates be named according to a special
convention — the name should be a hash of the subject name followed
by a number. You can see the hash of the subject name by running the
command
openssl x509 -hash -in root_cert.pem -noout

6018de75

6018de75 is the hash in this case. Rename (or symbolically link, if your system
supports it) the root certifi cate to 6018de75.0.

 4. Create a certifi cate that the client passes back in.

 1. First, create a CSR:
openssl req -newkey rsa:512 -out client_csr.pem -keyout client_key.pem

Notice that the same command, req, is used to create a CSR as was used
to create the self-signed root certifi cate above. The difference between
the creation of the CSR and of the root CA is that the CSR-creation
command omits the -x509 parameter.

 2. Sign the CSR using the root certifi cate you generated in step 1. This is
an involved process; OpenSSL supports it as a demonstration of how
it can be done. OpenSSL recommends that you not actually use the
software for this purpose except for testing, although apparently some
entities do use this as a full-blown CA.

 3. To confi gure your own mini-CA, you need to fi rst create a fi le called
ca.cnf as shown in Listing 8-33.

Listing 8-33: “ca.cnf”

[ca]

default_ca = CA_default

[CA_default]

c08.indd 458c08.indd 458 12/10/2010 9:46:31 AM12/10/2010 9:46:31 AM

 Chapter 8 n Advanced SSL Topics 459

database=index.txt

serial=serial

policy=policy_any

[policy_any]

commonName=supplied

NOTE These fi les are required to complete a CSR signature; if you want to
know more about what they’re for and what other options are available,
consult the OpenSSL documentation.

 4. You also need an empty index.txt fi le
touch index.txt

or, on a windows system
fsutil file createnew index.txt 0

and a fi le name serial with the next serial number in it. Because this
is a new “certifi cate authority,” the fi rst serial number it issues is serial
number 1:

echo 01 > serial

 5. With this very minimal infrastructure, you can now sign your CSR
using the root CA fi le:

[jdavies@localhost trusted_certs]$ openssl ca -config ca.cnf -cert root_

cert.pem \

-keyfile root_key.pem -in client_csr.pem -out client_cert.pem -outdir .

-md sha1 \

-days 365

Using configuration from ca.cnf

Enter pass phrase for root_key.pem:

Check that the request matches the signature

Signature ok

The Subject’s Distinguished Name is as follows

countryName :PRINTABLE:’US’

stateOrProvinceName :PRINTABLE:’TX’

localityName :PRINTABLE:’Southlake’

organizationName :PRINTABLE:’Architecture’

organizationalUnitName:PRINTABLE:’Travelocity’

commonName :PRINTABLE:’Joshua Davies Client’

emailAddress :IA5STRING:’joshua.davies@travelocity.com’

Certificate is to be certified until Aug 11 22:31:21 2011 GMT (365 days)

Sign the certificate? [y/n]:y

(Continued)

c08.indd 459c08.indd 459 12/10/2010 9:46:31 AM12/10/2010 9:46:31 AM

460 Chapter 8 n Advanced SSL Topics

1 out of 1 certificate requests certified, commit? [y/n]y

Write out database with 1 new entries

Data Base Updated

This produces the client_cert.pem fi le that you pass back to the server
from the client. You may also have noticed that it modifi es the index.txt
and serial fi les that you created earlier.

 6. Start up the openssl s_server with client certifi cate support active:
openssl s_server -tls1 -accept 8443 -cert cert.pem -key key.pem -Verify 1 \

 -CApath trusted_certs/ -CAfile trusted_certs/root_cert.pem -www

This tells the server to demand a certifi cate that has been signed by root_
cert.pem. Notice that the server does not need access to the root certifi cate’s
private key to do this; the public key is suffi cient to verify a signature, just not
to generate one. Also notice that the certifi cate presented by the server for its
own authentication need not be — shouldn’t be, in fact — the same as the root
certifi cate that signs client certifi cates.

Viewing a Mutually-Authenticated TLS Handshake

The following is an examination of a network capture of a mutually authenti-
cated handshake.

debian:/home/jdavies/devl/test/c/ssl# tcpdump -s 0 -X -i lo tcp port 8443

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode

listening on lo, link-type EN10MB (Ethernet), capture size 65535 bytes

… (omitted TCP handshake) …

21:43:42.754999 IP localhost.40795 > localhost.8443: Flags [P.], ack 1, win 257,

options [nop,nop,TS val 103385 ecr 103385], length 50

 0x0000: 4500 0066 5ad5 4000 4006 e1ba 7f00 0001 E..fZ.@.@.......

 0x0010: 7f00 0001 9f5b 20fb c914 c90b c8dd 0009 [..........

 0x0020: 8018 0101 fe5a 0000 0101 080a 0001 93d9 Z..........

 0x0030: 0001 93d9 1603 0100 2d01 0000 2903 014c -...)..L

 0x0040: 758e 8e00 0000 0000 0000 0000 0000 0000 u...............

 0x0050: 0000 0000 0000 0000 0000 0000 0000 0000

 0x0060: 0002 002f 0100 .../..

21:43:42.755151 IP localhost.8443 > localhost.40795: Flags [P.], ack 51, win

256, options [nop,nop,TS val 103385 ecr 103385], length 1124

 0x0000: 4500 0498 93d1 4000 4006 a48c 7f00 0001 E.....@.@.......

 0x0010: 7f00 0001 20fb 9f5b c8dd 0009 c914 c93d [.......=

 0x0020: 8018 0100 028d 0000 0101 080a 0001 93d9

 0x0030: 0001 93d9 1603 0100 4a02 0000 4603 014c J...F..L

 0x0040: 758e 8eae 5199 0c93 dbff 9c76 d32f 9066 u...Q......v./.f

 0x0050: f168 1527 02ba 4f7e f5d0 fd0f d343 5f20 .h.’..O~.....C_.

 0x0060: 7ed6 9019 4e6a 3807 55b2 7e5b 4f72 c0b1 ~...Nj8.U.~[Or..

 0x0070: d6bc df1d e49b c57b 9ea1 fd0f 1cb5 85e1 {........

 0x0080: 002f 0016 0301 0357 0b00 0353 0003 5000 ./.....W...S..P.

 0x0090: 034d 3082 0349 3082 02f3 a003 0201 0202 .M0..I0.........

 0x00a0: 0900 b5b5 d921 2707 fe0e 300d 0609 2a86 !’...0...*.

c08.indd 460c08.indd 460 12/10/2010 9:46:31 AM12/10/2010 9:46:31 AM

 Chapter 8 n Advanced SSL Topics 461

 0x00b0: 4886 f70d 0101 0505 0030 81a1 310b 3009 H........0..1.0.

 0x00c0: 0603 5504 0613 0255 5331 0b30 0906 0355 ..U....US1.0...U

… (omitted server certificate) …

Certificate

Certificate

Request 0x03b0: 92bd fd6e dc5a 552f ecd3 90c5 6580 2796 ...n.ZU/....e.'.

 0x03c0: b99c f8ba 0958 972b 9360 6001 3abe 3ee4 X.+.``.:.>.

 0x03d0: bca6 6646 f29d dea1 b1b4 888e cde5 8f16 ..fF............

 0x03e0: 0301 00b4 0d00 00ac 0301 0240 00a6 00a4 @....

 0x03f0: 3081 a131 0b30 0906 0355 0406 1302 5553 0..1.0...U....US

 0x0400: 310b 3009 0603 5504 0813 0254 5831 1230 1.0...U....TX1.0

 0x0410: 1006 0355 0407 1309 536f 7574 686c 616b ...U....Southlak

 0x0420: 6531 1430 1206 0355 040a 130b 5472 6176 e1.0...U....Trav

 0x0430: 656c 6f63 6974 7931 1530 1306 0355 040b elocity1.0...U..

 0x0440: 130c 4172 6368 6974 6563 7475 7265 3116 ..Architecture1.

… (omitted certificate authorities) …

 0x0450: 3014 0603 5504 0313 0d4a 6f73 6875 6120 0...U....Joshua.

List of Certificate

Authorities

Here, the client hello, server hello, and server certifi cate are exchanged as always.
However, the server certifi cate is followed by a certifi cate request, which lists
the acceptable certifi cate types and the certifi cate authorities, by DER-encoded
subject name, that the server recognizes.

Certificate

21:43:42.756657 IP localhost.40795 > localhost.8443: Flags [P.], ack 1125, win

274, options [nop,nop,TS val 103386 ecr 103385], length 860

 0x0000: 4500 0390 5ad7 4000 4006 de8e 7f00 0001 E...Z.@.@.......

 0x0010: 7f00 0001 9f5b 20fb c914 c93d c8dd 046d [.....=...m

 0x0020: 8018 0112 0185 0000 0101 080a 0001 93da

 0x0030: 0001 93d9 1603 0103 570b 0003 5300 0350 W...S..P

 0x0040: 0003 4d30 8203 4930 8202 f3a0 0302 0102 ..M0..I0........

 0x0050: 0209 00b5 b5d9 2127 07fe 0e30 0d06 092a !'...0...*

 0x0060: 8648 86f7 0d01 0105 0500 3081 a131 0b30 .H........0..1.0

 0x0070: 0906 0355 0406 1302 5553 310b 3009 0603 ...U....US1.0...

… (omitted client certificate) …

 0x0350: 4b20 8c96 7f7a d456 d9e0 5176 54e6 b850 K....z.V..QvT..P

 0x0360: 1692 bdfd 6edc 5a55 2fec d390 c565 8027 n.ZU/....e.'

 0x0370: 96b9 9cf8 ba09 5897 2b93 6060 013a be3e X.+.``.:.>

 0x0380: e4bc a666 46f2 9dde a1b1 b488 8ecd e58f ...fF...........

 0x0080: 5504 0813 0254 5831 1230 1006 0355 0407 U....TX1.0...U..

The client responds, of course, with a certifi cate. Notice that the message
is the exact same format — down to the same handshake message type — that
the server sent.

c08.indd 461c08.indd 461 12/10/2010 9:46:31 AM12/10/2010 9:46:31 AM

462 Chapter 8 n Advanced SSL Topics

Certificate

Verify

21:43:42.826911 IP localhost.40795 > localhost.8443: Flags [P.], ack 1125, win

274, options [nop,nop,TS val 103403 ecr 103396], length 75

 0x0000: 4500 007f 5ad8 4000 4006 e19e 7f00 0001 E...Z.@.@.......

 0x0010: 7f00 0001 9f5b 20fb c914 cc99 c8dd 046d [.........m

 0x0020: 8018 0112 fe73 0000 0101 080a 0001 93eb s..........

 0x0030: 0001 93e4 1603 0100 4610 0000 4200 4092 F...B.@.

 0x0040: 7029 733b 045d dc11 0944 9189 588d a503 p)s;.]...D..X...

 0x0050: 62ae 134b 81cc 5d85 aab1 bc7b 7855 b291 b..K..]....{xU..

 0x0060: 8ca2 b919 7d3e ad58 9ba3 781b c6ee 564f }>.X..x...VO

 0x0070: ac15 1de4 a83a 8a77 c7bb d112 f964 6f :.w.....do

21:43:44.786284 IP localhost.40795 > localhost.8443: Flags [P.], ack 1125, win

274, options [nop,nop,TS val 103893 ecr 103403], length 75

 0x0000: 4500 007f 5ad9 4000 4006 e19d 7f00 0001 E...Z.@.@.......

 0x0010: 7f00 0001 9f5b 20fb c914 cce4 c8dd 046d [.........m

 0x0020: 8018 0112 fe73 0000 0101 080a 0001 95d5 s..........

 0x0030: 0001 93eb 1603 0100 460f 0000 4200 4016 F...B.@.

 0x0040: 7c3c 9b7a a26d 300d b155 b494 ef9e f96c |<.z.m0..U.....l

 0x0050: a09b 262a bab7 409f dc93 79e1 cc4d 3565 ..&*..@...y..M5e

 0x0070: 4d01 aca8 d312 7b74 21ff b2eb 5595 bd M.....{t!...U..

 0x0060: 2f55 c50a ed35 8c8c 1d49 ab5e 4678 cd58 /U...5...I.^Fx.X

The client certifi cate is followed fi rst by a key exchange — in this case, an
ordinary RSA key exchange of the sort in Chapter 6 — and then a certifi cate
verify message. This is an RSA signature of the MD5, followed by the SHA-1,
hash of all of the handshake messages that preceded this message. The remainder
of the handshake proceeds as normal, assuming the server accepts the certifi cate
and its verifi cation.

You may have been struck by the utility of the server indicating a list of cer-
tifi cate authorities it trusts. Why can’t the client do the same thing? Although
TLS 1.0 itself doesn’t allow for this, RFC 3546 defi nes client hello extension 3,
trusted CA keys, to pass a list of CA identities that it trusts; if the server doesn’t
have any certifi cates signed by any of the trusted CAs it can just abort the con-
nection and not waste time completing the handshake.

It’s also permissible, if the client and server are both able to negotiate it via
client hello extension 4, client certifi cate URL, for the client to pass, rather than an
entire certifi cate in its certifi cate message, a URL from which the server should
download its certifi cate. This isn’t a security risk, because the client follows up
with the certifi cate verifi cation message after the key exchange; this proves that
the client is in possession of the certifi cate’s private key and that the client is
not replaying an older verifi cation message.

c08.indd 462c08.indd 462 12/10/2010 9:46:32 AM12/10/2010 9:46:32 AM

 Chapter 8 n Advanced SSL Topics 463

Dealing with Legacy Implementations: Exportable
Ciphers

Export-grade ciphers don’t necessarily belong in a chapter called “advanced”
TLS; they’re actually regressed. In 1999, when the TLS 1.0 specifi cation was
drafted, the U.S. government classifi ed cryptography as munitions, right along
with machine guns, hand grenades, rocket launchers, and thermonuclear
warheads. Exporting software capable of strong cryptography was subject to
the same regulations as weapons capable of killing millions of people. From the
perspective of the U.S. Department of Defense, this made a certain amount of
sense — if enemy combatants could communicate securely during wartime, it
was entirely possible that millions of American soldiers could be killed. Or at
least I assume that’s what they must have been thinking.

Finally recognizing that foreign software developers could just as easily
develop and distribute secure software and that U.S. software developers were
actually being put at a global disadvantage, the U.S. government has since
relaxed its stance on export of strong cryptography. However, export-grade
cryptography — that is, weak cryptography — was a fi xed feature of SSL and
TLS. TLS 1.0 declares certain ciphers as exportable, and any software that met
U.S. export requirements at that time had to be certifi ed as only supporting
exportable cipher suites.

There’s no reason to expend any signifi cant effort to support export-grade
ciphers, but you should be aware that they exist. The next two sections examine
briefl y, at a very high level, how export-grade SSL differs from domestic. If you
do happen to connect to an extremely old implementation that only supports
exportable ciphers, you may receive alert 60: export restriction. I recommend
simply refusing to connect to such a server.

Export-Grade Key Calculation
The main difference between exportable cipher suites and non-exportable — U.S.
customers only — cipher suites is in the key calculation. Remember that, in the
ordinary case, the key calculation routine fi rst fi gures out how much keying mate-
rial is needed and then runs the PRF to generate that much keying material from
the exchanged 48-byte master secret. In the case of export-grade cryptography, the
PRF was only allowed to generate fi ve bytes (!) for the read and write keys.

The initialization vectors don’t come from the PRF expansion of the keying
material at all, but instead come from a PRF expansion of the text string “IV
block” and the two random values — the master secret isn’t used in IV calcula-
tion at all. In code, this looks like Listing 8-34.

c08.indd 463c08.indd 463 12/10/2010 9:46:32 AM12/10/2010 9:46:32 AM

464 Chapter 8 n Advanced SSL Topics

Listing 8-34: Example export-grade initialization vector calculation

 unsigned char *iv_block = (unsigned char *)

 malloc(suites[parameters->pending_send_parameters.suite].IV_size * 2

);

 PRF(“”, 0, // empty secret, anybody can compute

 “IV block”, strlen(“IV block”),

 parameters->client_random, RANDOM_LENGTH * 2,

 iv_block,

 suites[parameters->pending_send_parameters.suite].IV_size * 2);

 memcpy(parameters->pending_send_parameters.IV, iv_block, 8);

 memcpy(parameters->pending_recv_parameters.IV, iv_block + 8, 8);

This means that any eavesdropper can compute the initialization vectors
from the client and server random values. Why the U.S. government insisted on
this concession is a bit of a mystery; recall from Chapter 6 that TLS 1.1 actually
puts the initialization vector for each individual TLS packet in plaintext with
no appreciable loss of security. Perhaps the NSA is aware of an attack on block
ciphers in CBC mode that requires nothing other than knowledge of the IV to
mount — if so, TLS 1.1 and TLS 1.2 are completely vulnerable to this attack. If
such an attack exists, it hasn’t been made public. Of course, if there were such
an attack, stream ciphers such as RC4 would have an edge because they don’t
make use of initialization vectors or CBC.

Now, there’s not much you can do with a fi ve-byte key. This is actually enough
for RC4, but it’s not suffi cient for any of the other ciphers that have been exam-
ined in this book. Remember that DES, for example, needs exactly eight bytes.
Therefore, there’s a second key expansion step to turn the temporary fi ve-byte
keys that came from the master secret into the fi nal actual keys. The key block
material is computed just as in a non-export cipher, but the fi nal keys are run
through the PRF a second time as shown in Listing 8-35:

Listing 8-35: Example of export-grade key generation

 PRF(write_key, 5,

 “client write key”, strlen(“client write key”),

 parameters->client_random, RANDOM_LENGTH * 2,

 parameters->pending_send_parameters.key,

 suites[parameters->pending_send_parameters.suite].key_size);

 PRF(read_key, 5,

 “server write key”, strlen(“server write key”),

 parameters->client_random, RANDOM_LENGTH * 2,

 parameters->pending_recv_parameters.key,

 suites[parameters->pending_recv_parameters.suite].key_size);

Notice that the secret here is the weak fi ve-byte key that was computed by
the master secret expansion. An attacker would only need to run the PRF on all
240 possible input values to brute-force the key. In 1999, this would have taken
a few days. On modern hardware, it can be done in minutes.

c08.indd 464c08.indd 464 12/10/2010 9:46:32 AM12/10/2010 9:46:32 AM

 Chapter 8 n Advanced SSL Topics 465

Step-up Cryptography
There are yet more restrictions on export-grade ciphers. If RSA is used for
key exchange, the modulus can be no larger than 512 bits. Of course, the same
restrictions were put on DH key agreement; the exchanged parameters — Yc
and Ys — could not be longer than 512 bits.

However, implementations were actually allowed to present certifi cates with
public keys whose moduli were longer than 512 bits; they just couldn’t use
those for key exchange. So, you may ask, how was key exchange performed
in this case? Actually, if the selected cipher was an exportable one, the certifi -
cate could contain an arbitrarily sized public key, but the server was required
to turn around and send an ephemeral RSA key in a server key exchange
message! Recall that the server key exchange message permitted the ephem-
eral key to be signed by the public key in the certifi cate. So, in this case, the
long key signed the short key. In fact, it is entirely permissible for the certifi cate
to contain a DSS key that signs a shorter ephemeral RSA key. This scenario
was referred to as server gated or step up cryptography. You might still come
across the term from time to time in older documentation, but be aware that
the U.S. government has relaxed its export restrictions and no commercial CA
sells server gated certifi cates anymore.

In theory, this approach could also be used in modern TLS to permit RSA
key exchange to achieve perfect forward secrecy as does Diffi e-Hellman. A
certifi cate with a fi xed RSA key could be presented, followed by a server key
exchange message with a (strong) ephemeral RSA key. However, the TLS 1.0
specifi cation states that the server key exchange message “is sent by the server
only when the server certifi cate message (if sent) does not contain enough data
to allow the client to exchange a premaster secret.” In other words, sending
a server key exchange message when the selected cipher suite is neither an
ephemeral Diffi e-Hellman key exchange method nor an exportable RSA key
exchange is an error. Internet Explorer actually accepts such an out-of-place
server key exchange message, although Firefox and Chrome (correctly, per the
spec) reject it as invalid.

Discarding Key Material Through Session
Renegotiation

In some ways, session renegotiation is the opposite of session resumption.
Session resumption exists to allow a client to reuse previously negotiated
keying material so that the negotiated keys don’t “go to waste.” Session rene-
gotiation, on the other hand, is a way for either side to indicate that it believes
that the keying material has been used plenty, thanks, so it’s time to establish
some new ones.

c08.indd 465c08.indd 465 12/10/2010 9:46:32 AM12/10/2010 9:46:32 AM

466 Chapter 8 n Advanced SSL Topics

Whereas only the client can initiate a session resumption — by including a
previously agreed-upon session identifi er in its client hello — either side can
initiate session renegotiation. After a TLS session has been established, the client
can issue a new client hello at any time. This new client hello should be encrypted
using the currently active cipher suite. The server recognizes an out-of-place
client hello message as an indication that it should perform a renegotiation; the
remainder of the handshake proceeds as normal, except that all messages are
encrypted. Of course, when the change cipher spec message is received, the
keying material — and potentially the cipher suite itself — changes.

Supporting the Hello Request
What about the server? How does it initiate a session renegotiation? Does it
just send a server hello message unprompted? TLS could have been designed
this way, but remember that the client and server random values are part of the
handshake process. If you’re going to go to all the trouble to renegotiate new
keying material, you might as well go ahead and change the random values as
well. Therefore, TLS defi nes one last handshake message type: the Hello Request.
This is a simple marker message that tells the client that it should send a new
client hello and begin a new handshake. The client should be prepared to receive
this message at any time.

The handshake hash should be reset when a hello request is received; the
fi nished message is the digest of all handshake messages that constituted
the current handshake, not all handshake messages that have occurred on the
current connection.

Adding support for session renegotiation is actually pretty simple. As always,
add a new case to handle it in receive_tls_message in Listing 8-36.

Listing 8-36: “tls.c” receive_tls_message with session renegotiation support

static int receive_tls_msg(int connection,

 char *buffer,

 int bufsz,

 TLSParameters *parameters)

{

…

 case hello_request: // Tell the client to start again from the beginning

 // No data in the hello request, nothing to parse

 if (parameters->connection_end != connection_end_client)

 {

 // This shouldn’t be sent to a server, and it shouldn’t

 // be sent until the first negotiation is complete.

 send_alert_message(connection, unexpected_message,

 ¶meters->active_send_parameters);

 return -1;

 }

c08.indd 466c08.indd 466 12/10/2010 9:46:32 AM12/10/2010 9:46:32 AM

 Chapter 8 n Advanced SSL Topics 467

 // Per the spec, this isn’t an error, just ignore if

 // currently negotiating

 if (parameters->peer_finished)

 {

 // recursive, but the check for peer_finished above

 // prevents infinite recursion.

 tls_connect(connection, parameters);

 }

 else

 {

 read_pos += handshake.length;

 }

 break;

The hello request is just a marker; there’s no data contained within it, so
there’s nothing to parse. After it’s received, fi rst make sure that it was sent by
the server; a client cannot legally send this message. Next, check to see if the
current handshake has completed — if peer_finished hasn’t been received,
ignore the hello request and continue on. Otherwise, invoke tls_connect. The
check for peer_finished prevents infi nite recursion.

This almost works. The only problem with this routine is that tls_connect
resets the active cipher suite. Remember that the renegotiation should happen
using the currently active cipher suite. So, you have to have a way to indicate
to the tls_connect routine to initialize most, but not all, of the parameters.

The easiest way to support this is to simply pass a renegotiate fl ag into
tls_connect as in Listing 8-37.

Listing 8-37: “tls.c” tls_connect with renegotiate fl ag

void init_parameters(TLSParameters *parameters,

 int renegotiate)

{

 init_protection_parameters(¶meters->pending_send_parameters);

 init_protection_parameters(¶meters->pending_recv_parameters);

 if (!renegotiate)

 {

 init_protection_parameters(¶meters->active_send_parameters);

 init_protection_parameters(¶meters->active_recv_parameters);

 }

…

int tls_connect(int connection,

 TLSParameters *parameters,

 int renegotiate)

 init_parameters(parameters, renegotiate);

This just warns the init_parameters routine not to reset the currently
active parameters; they stay in place until the renegotiation has completed
successfully.

c08.indd 467c08.indd 467 12/10/2010 9:46:32 AM12/10/2010 9:46:32 AM

468 Chapter 8 n Advanced SSL Topics

Renegotiation Pitfalls and the Client Hello
Extension 0xFF01
Believe it or not, session renegotiation was found to be problematic. After all,
if negotiating a handshake in the clear is secure, then negotiating a handshake
using a previously negotiated cipher suite must be that much more secure,
right? In 2009, Marsh Ray and Steve Dispensa detailed a series of attacks that
could be used against session renegotiation (http://extendedsubset.com/
Renegotiating_TLS.pdf). The essential problem had nothing to do with session
renegotiation per se, but instead with the way that it was commonly deployed
across secure websites.

This is not a theoretical, academic attack — this attack breaks most protocols
that use TLS. It works like this: Imagine that the attacker has compromised a
router somewhere, or has falsely advertised himself as a wireless hotspot, and
the victim is routing all traffi c through the attacker. The attacker can change,
add, or delete packets at will. This is the essence of the man-in-the-middle
attack that TLS strives so hard to guard against. Now the victim, being security
conscious, connects to his banking site securely — the attacker cannot modify
the TLS handshake in any way without being detected. Let’s say the victim just
wants to check his bank balance, so he logs in:

POST /bank/login.cgi HTTP/1.1

Host: www.bank.com

Connection: Close

user=josh&password=secret

HTTP/1.1 200 OK

Set-Cookie: session=12345

<html>

<head><title>Welcome</title></head>

<body>

check bank balance

transfer money

</body>

</html>

So far, so good. The attacker can’t eavesdrop on any of this because it’s pro-
tected by the negotiated TLS parameters. The attacker does know, however,
that the victim is connected to IP address 192.168.0.1, which he can determine
is the IP address of bank.com through a DNS lookup. Now, the victim clicks on
“check bank balance.” In the absence of an active attack, this should result in a
TLS negotiation, followed by the HTTP query:

c08.indd 468c08.indd 468 12/10/2010 9:46:33 AM12/10/2010 9:46:33 AM

 Chapter 8 n Advanced SSL Topics 469

GET /bank/login.cgi HTTP/1.1

Host: www.bank.com

Connection: Close

Cookie: session=12345

Notice that the session cookie, set by the server in the login response, is used
to correlate this request with the previous login and authenticate that whatever
action is taken next is done on behalf of a user whose ID is “josh.” Because the
connection is secure, the browser fi rst sends a TLS Client Hello message. The
attacker sees this and intercepts it. He then begins his own TLS connection
with www.bank.com, which accepts his connection. Once the connection is
established, he submits the following HTTP request

GET /bank/transferfunds.cgi?amount=1000000&destinationAccount=98765

x-ignore-header:

with no trailing CRLF. The attacker then allows the victim’s original Client
Hello request to pass through. He intercepts each message and encrypts it using
his own active cipher state. The victim negotiates what appears to him as a
brand-new TLS connection. Meanwhile, to the bank this looks like a legitimate
renegotiation — remember that TLS renegotiation can be initiated at any time
by the client, whenever it sends a new Client Hello.

Once this negotiation is complete, the attacker cannot eavesdrop on the victim’s
traffi c, but it doesn’t matter — the damage has been done. The victim sends his
original request, but to the server it looks like this:

GET /bank/transferfunds.cgi?amount=1000000&destinationAccount=98765

x-ignore-header: (slight pause for renegotiation) GET /bank/login.cgi HTTP/1.1

Host: www.bank.com

Connection: Close

Cookie: session=12345

The x-ignore-header is included to trick the server into ignoring the client’s
actual GET command. The cookie is correct, so the bank goes ahead and trans-
fers the money. This technique only allows the man-in-the-middle to prepend
data — but as you can see, that’s enough to mount a devastating attack.

Defending Against the Renegotiation Attack

The problem here is that the server has no way of verifying that the request that
preceded the renegotiation came from the same source that actually performed
the renegotiation. A malicious attacker can intercept a client request, block it,
submit his own request — for something that only an authenticated client can
do — and then allow the client to complete the authenticated renegotiation.

c08.indd 469c08.indd 469 12/10/2010 9:46:33 AM12/10/2010 9:46:33 AM

470 Chapter 8 n Advanced SSL Topics

The server automatically resubmits the last request, without fi rst checking to
be sure that it came from the same entity that performed the renegotiation. In
general, an attacker can splice any arbitrary data onto the beginning of a secure
connection and neither side has a way to detect it.

When this fl aw was identifi ed, the quick fi x solution was to disable session
renegotiation completely. However, renegotiation in general is a useful feature,
so work began on patching the security hole. In February, 2010, RFC 5746 was
released and it introduced a new client hello extension, extension 0xFF01,
which permitted secure renegotiation. The solution is simple; if renegotiating,
include the secure renegotiation Client Hello extension with the verify data of
the connection that is in effect. An attacker can’t fake this; if either side does
not believe that it should be renegotiating, it detects the non-empty verify
data and aborts the connection. Likewise, if the verify data is wrong, this is
detected by the side that accepted the renegotiation request. If a client is capable
of secure renegotiation, it must always include an empty 0xFF01 extension in
its initial client hello.

During an initial negotiation, the client will send a secure renegotiation
extension with one byte of renegotiation info; the single byte 0. The server
must indicate that it understands secure renegotiation by responding with
its own renegotiation extension. It’s permissible for the Server Hello response
to send its own extensions — as long as the client has indicated that it will
understand them.

When the client is ready to perform a renegotiation, it must send a Client
Hello with the 12 bytes of verify data that it sent with its most recent fi nished
message. The server must respond with not only the client’s verify data, but
also its own verify data as well — the server will respond back with 24 bytes
of verify data.

For example, consider the handshake that was examined at the end of
Chapter 6. The last two TLS handshake messages were the client finished and
the server finished message, which included the encrypted verify data on the
client side of e3945aa7b226794d96cfcaf7 and of 45c4904ac71a5948a7198e18
on the server side. Remember from Listing 6-53 that the verify data is com-
puted using the PRF and the master secret — an attacker without access to
the master secret cannot reproduce the verify data, nor can he eavesdrop
on it, because it was transmitted encrypted. However, both the legitimate
client and server have access to the master secret, as well as the verify data
values themselves. An example of a secure renegotiation is illustrated in
Figure 8-7.

c08.indd 470c08.indd 470 12/10/2010 9:46:33 AM12/10/2010 9:46:33 AM

 Chapter 8 n Advanced SSL Topics 471

Fi gure 8-7: Secure renegotiation example

client

client hello (ff01 0001 00)

server hello (ff01 0001 00)

handshake continues

client decides to
renegotiate

application takes over

finished (e3945aa7b226794d96cfcaf7)

finished (45c4904ac71a5948a7198e18)

client hello (ff01 000e 000e e3945aa7b226794d96cfcaf7)

server hello (ff01 000a 0018 e3945aa7b226794d96cfcaf7 45c4904ac71a5948a7198e18)

server

.

.

.

.

.

.

Implementing Secure Renegotiation

To add secure renegotiation to the TLS client:

 1. Add parameters to keep track of the client and server verify data, as well
as a fl ag to indicate whether both sides support secure renegotiation, as
shown in Listing 8-38.

Listing 8-38: “tls.h” TLSParameters with saved verify data

typedef struct

{

…

 int support_secure_renegotiation;

 unsigned char client_verify_data[VERIFY_DATA_LEN];

 unsigned char server_verify_data[VERIFY_DATA_LEN];

}

TLSParameters;

c08.indd 471c08.indd 471 12/10/2010 9:46:33 AM12/10/2010 9:46:33 AM

472 Chapter 8 n Advanced SSL Topics

 2. Expand init_parameters as shown in Listing 8-39.

Listing 8-39: “tls.c” init_parameters with saved verify data

void init_parameters(TLSParameters *parameters,

 int renegotiate)

{

 init_protection_parameters(¶meters->pending_send_parameters);

 init_protection_parameters(¶meters->pending_recv_parameters);

 if (!renegotiate)

 {

 init_protection_parameters(¶meters->active_send_parameters);

 init_protection_parameters(¶meters->active_recv_parameters);

 // Always assume secure renegotiation to begin

 parameters->support_secure_renegotiation = 1;

 memset(parameters->client_verify_data, ‘\0’, VERIFY_DATA_LEN);

 memset(parameters->server_verify_data, ‘\0’, VERIFY_DATA_LEN);

 }

…

 3. Record the verify data when it is sent or received as shown in Listing 8-40.

Listing 8-40: “tls.c” Saving verify data

static int send_finished(int connection,

 TLSParameters *parameters)

{

 unsigned char verify_data[VERIFY_DATA_LEN];

 compute_verify_data(

 parameters->connection_end == connection_end_client ? “client finished” :

“server finished”,

 parameters, verify_data);

 // Record the verify data for later secure renegotiation

 memcpy(parameters->connection_end == connection_end_client ?

 parameters->client_verify_data : parameters->server_verify_data,

 verify_data, VERIFY_DATA_LEN);

…

static unsigned char *parse_finished(unsigned char *read_pos,

 int pdu_length,

 TLSParameters *parameters)

{

 unsigned char verify_data[VERIFY_DATA_LEN];

 parameters->peer_finished = 1;

 compute_verify_data(

 parameters->connection_end == connection_end_client ? “server finished” :

“client finished”,

 parameters, verify_data);

c08.indd 472c08.indd 472 12/10/2010 9:46:33 AM12/10/2010 9:46:33 AM

 Chapter 8 n Advanced SSL Topics 473

 // Record the verify data for later secure renegotiation

 memcpy(parameters->connection_end == connection_end_client ?

 parameters->server_verify_data : parameters->client_verify_data,

 verify_data, VERIFY_DATA_LEN);

 4. Add client hello extension capabilities to send_client_hello as shown
in Listing 8-41.

Listing 8-41: “tls.c” client hello extension capability

typedef enum

{

 server_name = 0,

 secure_renegotiation = 0xFF01

}

ExtensionType;

static unsigned short add_client_hello_extensions(unsigned char **extensions,

 TLSParameters *parameters,

 int renegotiating)

{

 unsigned char *write_ptr;

 unsigned short extensions_length;

 unsigned short extension_type;

 unsigned char *renegotiation_extension;

 unsigned short renegotiation_extension_length;

 extensions_length = 0;

 if (parameters->support_secure_renegotiation)

 {

 renegotiation_extension_length =

 add_renegotiation_extension(&renegotiation_extension,

 renegotiating, parameters);

 extensions_length += renegotiation_extension_length +

 sizeof(unsigned short) + 2;

 }

 if (extensions_length)

 {

 write_ptr = *extensions = (unsigned char *) malloc(

 extensions_length);

 memset(*extensions, ‘\0’, extensions_length);

 // Insert the renegotiation extension

 extension_type = htons(secure_renegotiation);

 write_ptr = append_buffer(write_ptr, (void *) &extension_type,

 sizeof(unsigned short));

(Continued)

c08.indd 473c08.indd 473 12/10/2010 9:46:33 AM12/10/2010 9:46:33 AM

474 Chapter 8 n Advanced SSL Topics

 renegotiation_extension_length = htons(renegotiation_extension_length);

 write_ptr = append_buffer(write_ptr,

 (void *) &renegotiation_extension_length,

 sizeof(unsigned short));

 write_ptr = append_buffer(write_ptr, renegotiation_extension,

 ntohs(renegotiation_extension_length));

 free(renegotiation_extension);

 }

 return extensions_length;

}

static int send_client_hello(int connection,

 TLSParameters *parameters,

 int renegotiating)

{

…

 unsigned char *extensions;

 unsigned short extensions_length;

…

 extensions_length = add_client_hello_extensions(&extensions,

 parameters, renegotiating);

 send_buffer_size = sizeof(ProtocolVersion) +

 sizeof(Random) +

 sizeof(unsigned char) +

 (sizeof(unsigned char) * package.session_id_length) +

 sizeof(unsigned short) +

 (sizeof(unsigned short) * 1) +

 sizeof(unsigned char) +

 sizeof(unsigned char) +

 extensions_length + sizeof(unsigned short); // extensions support

…

 extensions_length = htons(extensions_length);

 write_buffer = append_buffer(write_buffer, (void *) &extensions_length,

 2);

 write_buffer = append_buffer(write_buffer, (void *) extensions,

 ntohs(extensions_length));

 free(extensions);

 assert(((char *) write_buffer - send_buffer) == send_buffer_size);

 status = send_handshake_message(connection, client_hello, send_buffer,

 send_buffer_size, parameters);

This logic is the inverse of the logic that was discussed in Listing 8-2.

 5. Add the secure renegotiation extension to every client hello request as
shown in Listing 8-42.

c08.indd 474c08.indd 474 12/10/2010 9:46:33 AM12/10/2010 9:46:33 AM

 Chapter 8 n Advanced SSL Topics 475

Listing 8-42: “tls.c” secure renegotiation extension

static unsigned short add_renegotiation_extension(

 unsigned char **renegotiation_extension,

 int renegotiating,

 TLSParameters *parameters)

{

 unsigned char *write_ptr;

 unsigned char data_length;

 unsigned short renegotiation_length;

 if (renegotiating)

 {

 renegotiation_length =

 (parameters->connection_end == connection_end_client ?

 VERIFY_DATA_LEN : (VERIFY_DATA_LEN * 2));

 write_ptr = *renegotiation_extension = (unsigned char *) malloc(

 renegotiation_length + 1);

 data_length = renegotiation_length;

 write_ptr = append_buffer(write_ptr, (void *) &data_length,

 sizeof(unsigned char));

 write_ptr = append_buffer(write_ptr,

 parameters->client_verify_data, renegotiation_length);

 return renegotiation_length + 1;

 }

 else

 {

 renegotiation_length = 1;

 write_ptr = *renegotiation_extension = (unsigned char *) malloc(

 renegotiation_length);

 write_ptr = append_buffer(write_ptr,

 parameters->client_verify_data, renegotiation_length);

 return 1;

 }

}

At this point, the client will send an empty renegotiation extension of
0xFF01 0001 00 on every initial handshake — this tells the server both that
the client is capable and interested in performing secure renegotiation. As
coded in Listing 8-42, this extension would allow for the server to support
secure renegotiation as well, because it checks the connection end. The
code in this book won’t illustrate implementing secure renegotiation on
the server, but it should be fairly clear at this point how you would go
about doing so.

c08.indd 475c08.indd 475 12/10/2010 9:46:33 AM12/10/2010 9:46:33 AM

476 Chapter 8 n Advanced SSL Topics

 6. If the server is also capable and willing, it must respond with the exact
same extension. So far, you haven’t added support to parse server hello
extensions, so you must do so now as in Listing 8-43.

Listing 8-43: “tls.c” parse_server_hello with extensions recognition

static char *parse_server_hello(char *read_pos, int pdu_length, TLSParameters

*parameters)

{

 int extensions_length;

 char *server_hello_begin = read_pos;

…

 extensions_length = pdu_length - (read_pos - server_hello_begin);

 if (extensions_length)

 {

 read_pos = parse_server_hello_extensions(read_pos, extensions_length,

 parameters);

 // Abort the handshake if the extensions didn’t parse.

 if (read_pos == NULL)

 {

 return NULL;

 }

 }

 memcpy((void *) parameters->server_random,

 &hello.random.gmt_unix_time, 4);

 memcpy((void *) (parameters->server_random + 4),

 (void *) hello.random.random_bytes, 28);

 7. When parsing server hello extensions, just skip over the ones that aren’t
recognized as shown in Listing 8-44. Technically, this violates the RFC
5246, which states:

An extension type MUST NOT appear in the ServerHello unless the same extension
type appeared in the corresponding ClientHello. If a client receives an extension
type in ServerHello that it did not request in the associated ClientHello, it MUST
abort the handshake with an unsupported_extension fatal alert.

In reality, you won’t see server extensions other than the secure renegotia-
tion extension anyway.

Listing 8-44: “tls.c” parse_server_hello_extensions

static char *parse_server_hello_extensions(char *read_pos,

 int extensions_length,

 TLSParameters *parameters)

{

 unsigned short advertised_extensions_length;

c08.indd 476c08.indd 476 12/10/2010 9:46:33 AM12/10/2010 9:46:33 AM

 Chapter 8 n Advanced SSL Topics 477

 unsigned short extension_type;

 unsigned short extension_length;

 parameters->support_secure_renegotiation = 0;

 read_pos = read_buffer((void *) &advertised_extensions_length,

 read_pos, sizeof(unsigned short));

 advertised_extensions_length = ntohs(advertised_extensions_length);

 extensions_length -= 2;

 assert(advertised_extensions_length == extensions_length);

 while (extensions_length)

 {

 read_pos = read_buffer((void *) &extension_type, read_pos,

 sizeof(unsigned short));

 read_pos = read_buffer((void *) &extension_length, read_pos,

 sizeof(unsigned short));

 extensions_length -= 4;

 extension_type = ntohs(extension_type);

 extension_length = ntohs(extension_length);

 if (extension_type == secure_renegotiation)

 {

 parameters->support_secure_renegotiation = 1;

 if (!parse_renegotiation_info(read_pos, extension_length, parameters))

 {

 return NULL;

 }

 }

 read_pos += extension_length;

 extensions_length -= extension_length;

 }

 return read_pos;

}

 8. The only extension you’re interested in for now is the secure renegotiation
extension 0xFF01. Parse it as shown in Listing 8-45.

Listing 8-45: “tls.c” parse_renegotiation_info

/**

 * Compare the server renegotiation data with the stored

 * verify data. If this is the first negotiation attempt,

 * this data should be set to 0.

 */

static int parse_renegotiation_info(const char *read_pos,

 const int extension_length,

(Continued)

c08.indd 477c08.indd 477 12/10/2010 9:46:33 AM12/10/2010 9:46:33 AM

478 Chapter 8 n Advanced SSL Topics

 TLSParameters *parameters)

{

 return !(memcmp(parameters->client_verify_data, read_pos + 1,

 extension_length - 1));

}

If the server did not respond with the correct client verify data and server
verify data, reject the renegotiation and abort the connection.

This implementation will allow renegotiation even if the server didn’t respond
with an 0xFF01 extension indicating that it understood secure renegotiation.
This is probably a bad idea; if the server doesn’t understand secure renegotia-
tion, the client should not try to renegotiate at all. What if the server tries? What
should a security-conscious TLS client do if the server sends a HelloRequest,
but is not capable of secure renegotiation? The client is strictly allowed, by the
rules of the specifi cation, to ignore a HelloRequest — but most likely, a server
that sends one is going to expect a ClientHello in response. The best option
in this case would be to abort with a no_renegotiation alert, close the socket
entirely, and start a new handshake.

c08.indd 478c08.indd 478 12/10/2010 9:46:34 AM12/10/2010 9:46:34 AM

479

C H A P T E R

9

Adding TLS 1.2 Support to Your
TLS Library

TLS 1.2 was formally specifi ed in 2008 after several years of debate. It represents
a signifi cant change to its predecessor TLS 1.1 — mostly in terms of increased
security options and additional cipher suite choices. This chapter details the
changes that you need to make to the TLS 1.0 implementation of the previous
three chapters to make it compliant with TLS 1.2.

The next two sections detail the message-format level changes that TLS 1.2
introduced. I move quickly here, assuming a good familiarity with the mate-
rial in the previous three chapters — if you don’t remember what the PRF is or
what messages are involved in the TLS handshake, you may want to jump back
and briefl y review at least Chapter 6. Alternatively, if you’re more interested in
what TLS 1.2 does, rather than how it does it, you can skip ahead to the section
in the chapter on AEAD encryption.

Supporting TLS 1.2 When You Use RSA for the
Key Exchange

This section covers changes suffi cient enough to support TLS 1.2 in the most
straightforward case: when RSA is used directly for key exchange. To do so,
you would follow these basic steps.

c09.indd 479c09.indd 479 12/10/2010 9:46:49 AM12/10/2010 9:46:49 AM

480 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

 1. Obviously, you should change the version number declared in the header
fi le from 3.1 to 3.3 as shown in Listing 9-1.

Listing 9-1: “tls.h” TLS 1.2 version declaration

#define TLS_VERSION_MAJOR 3

#define TLS_VERSION_MINOR 3

 2. After this, you need to make the code TLS 1.1 compliant. If you recall from
Chapter 6, the most signifi cant difference between TLS 1.0 and TLS 1.1 is
that, for CBC-based block ciphers, TLS 1.1 prepends the IV to each block
rather than computing it from the master secret. TLS 1.2 does this as well.

 3. You can go ahead and remove the IV calculation from the calculate_keys
routine if you’re so inclined. However, it’s not really important that you do;
for TLS 1.1+, computing an unused set of IVs just becomes a few wasted
clock cycles.

 4. You do, however, have to modify send_message and tls_decrypt to
prepend the IVs and recognize them, respectively.

The necessary changes to send_message are shown in Listing 9-2.

Listing 9-2: “tls.c” send_message with explicit IVs

 // Finally, write the whole thing out as a single packet.

 if (active_suite->bulk_encrypt)

 {

 unsigned char *encrypted_buffer = malloc(send_buffer_size +

 active_suite->IV_size);

 int plaintext_len;

 // TODO make this random

 memset(parameters->IV, ‘\0’, active_suite->IV_size);

 // The first 5 bytes (the header) and the IV aren’t encrypted

 memcpy(encrypted_buffer, send_buffer, 5);

 memcpy(encrypted_buffer + 5, parameters->IV, active_suite->IV_size);

 plaintext_len = 5 + active_suite->IV_size;

 active_suite->bulk_encrypt(send_buffer + 5,

 send_buffer_size - 5, encrypted_buffer + plaintext_len,

 parameters->IV, parameters->key);

 free(send_buffer);

 send_buffer = encrypted_buffer;

 send_buffer_size += active_suite->IV_size;

As you can see, there’s not much to change, here; just make sure to
overwrite the IV with random bytes before encrypting, and put the IV in
between the send buffer header and the encrypted data. You may wonder

c09.indd 480c09.indd 480 12/10/2010 9:46:49 AM12/10/2010 9:46:49 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 481

why you should keep the IV pointer in parameters at all given that the
IV is being generated randomly each time a message is sent. Well, don’t
forget that the IV parameter was used as a generic state area for stream
ciphers such as RC4 and needs to be kept intact, because RC4 looks just
the same in TLS 1.1+ as it does in TLS 1.0.

 5. Listing 9-3 details the converse changes that you must make to tls_decrypt
to properly decode buffers that are written this way.

Listing 9-3: “tls.c” tls_decrypt with explicit IVs

 CipherSuite *active_suite = &(suites[parameters->suite]);

 encrypted_length -= active_suite->IV_size;

 *decrypted_message = (unsigned char *) malloc(encrypted_length);

 if (active_suite->bulk_decrypt)

 {

 if (active_suite->IV_size)

 {

 memcpy(parameters->IV, encrypted_message, active_suite->IV_size);

 }

 active_suite->bulk_decrypt(encrypted_message + active_suite->IV_size,

 encrypted_length, *decrypted_message,

 parameters->IV, parameters->key);

To decrypt, it’s even easier; just check to see if the cipher suite calls for
an IV, and, if so, copy the fi rst IV_size bytes of the message into the
parameters->IV.

If you change the TLS_MINOR_VERSION to 2, you actually now have a TLS
1.1-compliant implementation. You can probably easily see how this code could
have been structured to allow the same function to service TLS 1.1 and TLS 1.0
with a handful of if statements. You might even want to try to do this as an
exercise.

NOTE Note that this code makes no attempt at checking versions. If a client
asks for version 3.1, it gets version 3.3, which is actually an error. To be prop-
erly compliant, the server should either negotiate the version requested by
the client, or the highest version it supports. It can never negotiate a version
higher than was requested.

TLS 1.2 Modifi cations to the PRF
The code in the previous section is still not TLS 1.2 compliant. TLS 1.2 made two
signifi cant structural changes to the message formats. The fi rst was a change
in the PRF.

c09.indd 481c09.indd 481 12/10/2010 9:46:49 AM12/10/2010 9:46:49 AM

482 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

Remember from Listing 6-33 that the TLS PRF defi ned a P_hash function that
took as input a label and a seed, and securely generated an arbitrary number
of bytes based on a hash function. In TLS 1.1 and earlier, this P_hash function
was called twice; once with the hash function MD5, and once with the hash
function SHA-1. The two calls each got half of the secret, and the outputs were
XORed together to create the fi nal output. Getting the PRF right is by far the
most diffi cult part of implementing TLS.

If you’re cringing in terror at what new horrors might await you with the
complexity of TLS 1.2’s modifi cations to the PRF, you’ll be pleasantly surprised
that TLS 1.2 actually simplifi es the PRF. The P_hash function stays the same, but
it’s no longer a combination of two separate hash functions. You just call P_hash
one time, give it the whole secret, and return the results directly as the output.

You may be wondering, of course, which hash function you should use if
you’re calling P_hash just one time. MD5 or SHA-1? Actually, TLS 1.2 makes
this confi gurable; there’s a new client hello extension that enables the client to
suggest a hash function that should be used. If the client doesn’t suggest one,
though, both sides should default to SHA-256. Modify the PRF function from
Listing 6-29 as shown in Listing 9-4.

Listing 9-4: “prf.c” PRF2

void PRF(const unsigned char *secret,

 int secret_len,

 const unsigned char *label,

 int label_len,

 const unsigned char *seed,

 int seed_len,

 unsigned char *output,

 int out_len)

{

 unsigned char *concat = (unsigned char *) malloc(label_len + seed_len);

 memcpy(concat, label, label_len);

 memcpy(concat + label_len, seed, seed_len);

 P_hash(secret, secret_len, concat, label_len + seed_len, output,

 out_len, new_sha256_digest);

 free(concat);

}

As you can see, you almost don’t need a PRF function anymore; you could
just as easily change the callers to directly invoke P_hash because PRF isn’t really
adding any value anymore. Leaving it in place minimizes the changes to other
code, though; everything else can stay just as it is.

c09.indd 482c09.indd 482 12/10/2010 9:46:49 AM12/10/2010 9:46:49 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 483

TLS 1.2 Modifi cations to the Finished Messages
Verify Data
You may recall from Listing 6-53 that there was one other data value that depended
on the combination of an MD5 and an SHA-1 hash: the verify data in the fi n-
ished message. And yes, sure enough, this changes in TLS 1.2 as well. Rather
than tracking the MD5 and SHA-1 hashes of the handshake messages and then
running those hashes through the PRF to generate the fi nished message, TLS
1.2 instead tracks a single hash; the same one that the PRF uses (the one nego-
tiated in the client hello or the default SHA-256). It still hashes all handshake
messages, and does so in the same way as TLS 1.1.

To support the TLS 1.2 fi nished message, follow these steps:

 1. Modify TLSParameters as shown in Listing 9-5 to keep track of an SHA-
256 digest.

Listing 9-5: “tls.h” TLSParameters

 int got_certificate_request;

 digest_ctx sha256_handshake_digest;

 char *unread_buffer;

 2. Of course, the two digest updates in send_handshake_message and receive_
tls_msg must be changed to update this digest as shown in Listing 9-6.

Listing 9-6: “tls.c” SHA-256 digest update

int send_handshake_message(int connection,

 int msg_type,

 const unsigned char *message,

 int message_len,

 TLSParameters *parameters)

{

…

 memcpy(send_buffer + 1, &record.length, 3);

 memcpy(send_buffer + 4, message, message_len);

 update_digest(¶meters->sha256_handshake_digest,

 send_buffer, send_buffer_size);

 response = send_message(connection, content_handshake, send_buffer,

 send_buffer_size, ¶meters->active_send_parameters);

…

static int receive_tls_msg(int connection,

 char *buffer,

(Continued)

c09.indd 483c09.indd 483 12/10/2010 9:46:49 AM12/10/2010 9:46:49 AM

484 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

 int bufsz,

 TLSParameters *parameters)

{

…

 update_digest(¶meters->sha256_handshake_digest,

 handshake_msg_start, handshake.length + 4);

 }

 }

 else if (message.type == content_alert)

 3. Finally, tls_resume and tls_connect must both be changed to initialize
this digest rather than the two parallel digests that they initialized in
Chapters 6 and 8. Listing 9-7 demonstrates.

Listing 9-7: “tls.c” TLS 1.2 handshake digest initialization

int tls_resume(int connection,

 int session_id_length,

 const unsigned char *session_id,

 const unsigned char *master_secret,

 TLSParameters *parameters)

{

 init_parameters(parameters, 0);

 parameters->connection_end = connection_end_client;

 parameters->session_id_length = session_id_length;

 memcpy(¶meters->session_id, session_id, session_id_length);

 new_sha256_digest(¶meters->sha256_handshake_digest);

...

int tls_connect(int connection,

 TLSParameters *parameters,

 int renegotiate)

{

 init_parameters(parameters, renegotiate);

 parameters->connection_end = connection_end_client;

 new_sha256_digest(¶meters->sha256_handshake_digest);

…

int tls_accept(int connection,

 TLSParameters *parameters)

{

 init_parameters(parameters, 0);

 parameters->connection_end = connection_end_server;

 new_sha256_digest(¶meters->sha256_handshake_digest);

...

Of course, if you want to implement this code to support TLS 1.0 through TLS
1.2 concurrently, you’d have some conditional logic to initialize the handshake
digests depending on the version of TLS.

c09.indd 484c09.indd 484 12/10/2010 9:46:49 AM12/10/2010 9:46:49 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 485

Impact to Diffi e-Hellman Key Exchange

As mentioned previously, the changes in the previous section are suffi cient to
support TLS 1.2 in the most straightforward case: when RSA is used directly
for key exchange. However, there’s one other signifi cant structural change that
was introduced by TLS 1.2 that impacts ephemeral Diffi e-Hellman (DHE) key
exchange suites. Recall that when DHE is used for key exchange the server
must sign the DH parameters g, p, and Ys with the private key corresponding to
the public key in the server’s certifi cate. Prior to TLS 1.2, the type of signature
was implied. If the server certifi cate included an RSA key, the client knew that
the signature was an RSA signature. If the certifi cate was a DSA key, the client
knew to perform a DSA signature check.

This works, but in the long-term is a bit of a burden on the implementer. It
would be nice if each signature included an indicator of what type it is; this is
exactly what TLS 1.2 added to the inline signatures. Additionally, recall from
Listing 8-21 that RSA signatures were RSA-encrypted concatenations of the
MD5 hash followed by the SHA-1 hash. TLS 1.2 changes this here, just as it
does in the PRF; an RSA signature is an encrypted representation of a single
hash — SHA-256 unless a client hello extension has negotiated a different hash.
The hash algorithm is also identifi ed in the encrypted data, just like an X.509
signature is. This is redundant; the signature fi rst declares the hash algorithm,
and then the signature itself redeclares it. Why was it done this way? DSA has
no provision for including a declaration of a hash algorithm, so TLS 1.2 adds it
before the signature as well.

Parsing Signature Types
To parse these new signature types, modify the verify_signature code from
Listing 8-21 as shown in Listing 9-8 to fi rst read off the hash and signature
algorithm and then to ASN.1-decode the decrypted RSA signature value to
locate the actual signed hash code. (DSS validation stays the same, as it must.)

Listing 9-8: “tls.c” TLS 1.2 signature verifi cation

int verify_signature(unsigned char *message,

 int message_len,

 unsigned char *signature,

 int signature_len,

 TLSParameters *parameters)

{

…

 digest_ctx sha_digest;

 new_sha256_digest(&sha_digest);

(Continued)

c09.indd 485c09.indd 485 12/10/2010 9:46:49 AM12/10/2010 9:46:49 AM

486 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

…

 if (parameters->server_public_key.algorithm == rsa)

 {

 unsigned char *decrypted_signature;

 int decrypted_signature_length;

 struct asn1struct rsa_signature;

 decrypted_signature_length = rsa_decrypt(signature, signature_len,

 &decrypted_signature,

 ¶meters->server_public_key.rsa_public_key);

 // TLS 1.2; no longer includes MD-5, just SHA-256,

 // but the RSA signature also includes the signature scheme,

 // so must be DER-decoded

 asn1parse(decrypted_signature, decrypted_signature_length,

 &rsa_signature);

 if (memcmp(sha_digest.hash, rsa_signature.children->next->data,

 SHA256_BYTE_SIZE))

 {

 asn1free(&rsa_signature);

 free(decrypted_signature);

 return 0;

 }

 asn1free(&rsa_signature);

 free(decrypted_signature);

 }

Notice that the MD5 computation has been removed here; it’s no longer needed.
The implementation in Listing 9-8 also completely ignores the declared hash
algorithm; it’s included as an OID as the fi rst child of the top-level structure.
The implementation ought to verify that the declared hash algorithm is SHA-
256 and, in theory, compute a separate hash if it isn’t. Because no other hash
algorithms are supported here, this check is omitted. If the server gives back,
say, SHA-384, the hashes don’t match and an alert is thrown.

The signature structures also prepend the signature and hash algorithms, but
they don’t do so as full-blown X.509 OIDs (fortunately). Instead, an enumeration
of supported algorithms is declared as shown in Listing 9-9.

Listing 9-9: “tls.h” signature and hash algorithms

typedef enum

{

 none = 0,

 md5 = 1,

 sha1 = 2,

 sha224 = 3,

 sha256 = 4,

 sha384 = 5,

 sha512 = 6

c09.indd 486c09.indd 486 12/10/2010 9:46:50 AM12/10/2010 9:46:50 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 487

}

HashAlgorithm;

typedef enum

{

 anonymous = 0,

 sig_rsa = 1,

 sig_dsa = 2,

 sig_ecdsa = 3

}

SignatureAlgorithm;

This is less extensible, but signifi cantly easier to code, than the X.509 OID
structure.

Modify parse_server_key_exchange from Listing 8-19 as shown in Listing
9-10 to read the hash and signature algorithm from the beginning of the packet.
Note that this implementation reads, but completely ignores, the declared sig-
nature and hash algorithms; a proper, robust implementation verifi es that the
algorithm is one that has a public key to verify with and, if the hash algorithm
is not SHA-256, the implementation computes that hash or throws an alert
indicating that it can’t.

Listing 9-10: “tls.c” parse_server_key_exchange with signature and hash algorithm declaration

static char *parse_server_key_exchange(unsigned char *read_pos,

 TLSParameters *parameters)

{

 short length;

 int i;

 unsigned char *dh_params = read_pos;

 HashAlgorithm hash_alg;

 SignatureAlgorithm sig_alg;

 // TLS 1.2 read off the signature and hash algorithm

 hash_alg = read_pos[0];

 sig_alg = read_pos[1];

 read_pos += 2;

 for (i = 0; i < 4; i++)

These changes are necessary to support ephemeral key exchange algorithms.
Because the structure of the message itself changes, you must be ready to at
least look in a different place for the key exchange parameters.

Finally, remember that if the server wants a client certifi cate, the client must
also send back a certifi cate verify message with its own signature. To save the
client the trouble of sending a certifi cate whose public key the server cannot
use to verify a signature, the certifi cate request message was changed in TLS

c09.indd 487c09.indd 487 12/10/2010 9:46:50 AM12/10/2010 9:46:50 AM

488 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

1.2 to include a list of supported signature and hash algorithms. The enumera-
tions from Listing 9-9 are reused here. To properly parse the certifi cate request,
modify the parse_certificate_request routine from Listing 8-29 as shown
in Listing 9-11:

Listing 9-11: “tls.c” parse_certifi cate_request with TLS 1.2 support

#define MAX_CERTIFICATE_TYPES 4

typedef enum

{

 rsa_signed = 1,

 dss_signed = 2,

 rsa_fixed_dh = 3,

 dss_fixed_dh = 4

}

certificate_type;

#define MAX_SIGNATURE_ALGORITHMS 28

typedef struct

{

 HashAlgorithm hash;

 SignatureAlgorithm signature;

}

SignatureAndHashAlgorithm;

typedef struct

{

 unsigned char certificate_types_count;

 certificate_type supported_certificate_types[MAX_CERTIFICATE_TYPES];

 unsigned char signature_algorithms_length;

 SignatureAndHashAlgorithm

 supported_signature_algorithms[MAX_SIGNATURE_ALGORITHMS];

}

CertificateRequest;

static unsigned char *parse_certificate_request(unsigned char *read_pos,

 TLSParameters *parameters)

{

…

 read_pos = read_buffer(

 (void *) &request.supported_certificate_types[i], read_pos, 1);

 }

 read_pos = read_buffer(&request.signature_algorithms_length, read_pos, 2);

 for (i = 0; i < request.signature_algorithms_length; i++)

 {

 read_pos = read_buffer((void *)

 &request.supported_signature_algorithms[i].hash, read_pos, 1);

c09.indd 488c09.indd 488 12/10/2010 9:46:50 AM12/10/2010 9:46:50 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 489

 read_pos = read_buffer((void *)

 &request.supported_signature_algorithms[i].signature, read_pos, 1);

 }

 read_pos = read_buffer((void *) &trusted_roots_length, read_pos, 2);

The supported signature/hash algorithms list occurs between the list of sup-
ported certifi cate types and the list of trusted root authorities. The length of the
list is declared as being two bytes, even though there are only 7 � 4 = 28 possible
combinations of signature and hash algorithms; the length is declared to be this
long for future extensibility. In a full-featured implementation, the signature and
hash algorithms are used to select an appropriate certifi cate, end the handshake
prematurely, or just decline to supply a certifi cate and see what happens.

Now, it may occur to you that it’s not very fair for the server to list its sup-
ported signature and hash algorithms while the client is left at the mercy of
whatever the server supports, and you’d be right. RFC 5246 also standardizes a
new client hello extension that enables the client to list its supported signature
and hash algorithms; this extension takes the same form as the list of signa-
ture and hash algorithms in the certifi cate request (see Listing 8-29). This new
extension is extension number 13 and is documented in section 7.4.1.4.1 of the
TLS 1.2 specifi cation.

To summarize, TLS 1.2 differs from TLS 1.0, at the message-format level, in
the following ways:

 n Initialization vectors are explicitly declared at the start of each message
for block ciphers.

 n The client can negotiate, by way of a new hello extension, a stronger hash
algorithm to be used whenever the algorithm itself calls for one.

 n The PRF is based on a single hash, rather than a combination of MD-5 and
SHA-1. If no stronger hash algorithm is negotiated, the default is SHA-256.

 n The fi nished message’s verify data is also based on SHA-256 instead of
MD-5 and SHA-1.

 n Signatures computed over handshake messages such as the server key
exchange and certifi cate verify declare their hash and signature algorithms
explicitly.

The changes described in this section are, at a minimum, what you need to
change in order to support TLS 1.2. Of course, there’s no signifi cant benefi t
to making these changes just to upgrade to TLS 1.2 if you don’t take advantage
of the cool new features that it includes. The following two sections examine the
most signifi cant cryptographic advances introduced by TLS 1.2: Authenticated
Encryption with Associated Data (AEAD) ciphers and Elliptic-Curve Cryptography
(ECC) support.

c09.indd 489c09.indd 489 12/10/2010 9:46:50 AM12/10/2010 9:46:50 AM

490 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

Adding Support for AEAD Mode Ciphers

TLS 1.0 defi ned two cipher modes: block and stream. The primary reason for the
distinction is that block ciphers need an IV and padding whereas block ciphers
don’t. TLS 1.2 describes a third cipher mode — Authenticated Encryption with
Associated Data (AEAD) — that is often described as combining the authentica-
tion with the encryption in one fell swoop. I fi nd this description somewhat
misleading; AEAD ciphers encrypt the data and then MAC it, just like block
and stream ciphers do. However, the main difference is that an AEAD cipher
describes both a protection and an authentication method that must be used
as an inseparable unit.

Maximizing Throughput with Counter Mode
Recall from Chapter 2 that the simplest way to apply a block cipher is the
electronic code book (ECB) mode: chop the input into blocks and process each
one according to the block cipher itself. This mode has some problems, though,
because identical input blocks become identical output blocks. Because most
block ciphers operate on relatively short block sizes, an attacker can spot a lot of
similarities in a large block of plaintext encrypted with a single key. Cipher block
chaining (CBC), the preferred mode of SSL and TLS, combats this by XORing
each block, before encryption, with the encrypted prior block. Yet another mode,
output feedback (OFB), inverts CBC and, rather than encrypting the plaintext and
then XORing it with the initialization vector, encrypts the initialization vector
over and over again, XORing it with the plaintext and turning a block cipher
into a stream cipher.

STREAM CIPHERS VERSUS BLOCK CIPHERS

Stream ciphers have some advantages in some contexts. With stream ciphers,
there’s no padding, so the ciphertext length is the same as the plaintext
length. On the other hand, this can be a vulnerability as well. If the ciphertext
is as long as the plaintext, a passive eavesdropper can determine the length of
the plaintext, which is a problem in many contexts. In HTTPS, for instance, the
browser usually sends a fi xed-length block of header and preamble, with
the only variable-length part of the request being the page being requested. If
an eavesdropper knows the length of the plaintext, he can likely narrow down
the actual requested page to a short list. Block ciphers have an advantage
because the padding doesn’t necessarily have to be the minimum amount that
makes a full block; if you need three bytes of padding to satisfy an eight-byte
block, you can choose to provide 3, 11, 19, 27, and so on up to 251 blocks of
padding to frustrate such an attack.

c09.indd 490c09.indd 490 12/10/2010 9:46:50 AM12/10/2010 9:46:50 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 491

You could, of course, defi ne a stream cipher that allows optional padding,
but that sort of defeats the purpose. The principal benefi t of a stream cipher
is that you can transmit data as soon as it becomes available and not wait for
an entire block.

Counter (CTR) mode , illustrated in Figure 9-1, is similar to OFB, but instead
of encrypting an initialization vector over and over again, it encrypts a mono-
tonically increasing sequence called a nonce and XOR’s that with the plaintext
to produce the ciphertext. This approach has an advantage over CBC and OFB
because it’s infi nitely parallelizable. If you have 10 dedicated AES chips that
can encrypt a block in a single clock cycle, you can encrypt 10 blocks in a single
clock cycle with CTR mode; this is not the case with CBC and OFB because
the fi nal output of each block depends on all of the blocks that preceded it.
Additionally, if you lose one block somewhere in the middle, you can’t recover
the following block if you’re using CBC and OFB, but you can recover it with
CTR mode.

Figure 9-1: Counter mode encryption

nonce nonce nonce 000n00020001

output block 1

input block 1 input block 2 ...

...

input block n

AES Encrypt AES Encrypt AES Encrypt

output block noutput block 2

Listing 9-12 illustrates how to modify the AES-CBC sample from Listing 2-42
to work in CTR mode.

Listing 9-12: AES-CTR mode

void aes_ctr_encrypt(const unsigned char *input,

 int input_len,

 unsigned char *output,

 void *iv,

 const unsigned char *key)

{

 unsigned char *nonce = (unsigned char *) iv;

(Continued)

c09.indd 491c09.indd 491 12/10/2010 9:46:50 AM12/10/2010 9:46:50 AM

492 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

 unsigned char input_block[AES_BLOCK_SIZE];

 unsigned int next_nonce;

 int block_size;

 while (input_len)

 {

 block_size = (input_len < AES_BLOCK_SIZE) ? input_len : AES_BLOCK_SIZE;

 aes_block_encrypt(nonce, input_block, key, 16);

 xor(input_block, input, block_size); // implement CTR

 memcpy((void *) output, (void *) input_block, block_size);

 memcpy((void *) &next_nonce, (void *) (nonce + 12),

 sizeof(unsigned int));

 // Have to preserve byte ordering to be NIST compliant

 next_nonce = ntohl(next_nonce);

 next_nonce++;

 next_nonce = htonl(next_nonce);

 memcpy((void *) (nonce + 12), (void *) &next_nonce,

 sizeof(unsigned int));

 input += block_size;

 output += block_size;

 input_len -= block_size;

 }

}

If you compare Listing 9-12 with Listing 2-42, you notice a few key differences:

 n Of course, the IV is referred to as a nonce to fi t the terminology used in
the CTR-mode specifi cation.

 n The input itself is never encrypted; only the nonce is. The input is XORed
with the encrypted nonce output.

This function expects to be passed in a 16-byte value, the fi rst 12 bytes of
which should be randomly chosen, but not necessarily kept secret, and the
last 4 bytes of which should be all zeros. Each block computation is followed
by an increment of the nonce; the last 4 bytes are treated as a four-byte integer,
incremented, and updated in-place.

Also notice that the input does not need to be block-aligned. CTR mode
turns a block cipher into a stream cipher. Because the nonce is the only
thing that’s encrypted, it’s the only thing that has to be an even multiple of
the block size. This implementation is hard-coded to use the 128-bit AES
encryption algorithm; of course, you can modify this or make it confi gurable
if you are so inclined.

One particularly interesting point about the CTR mode is that the exact same
routine is used to decrypt. Recall from Chapter 2 that AES isn’t a reversible
cipher like DES is, but when you use AES in CTR mode, AES doesn’t need to be
reversible. Because the counter is what’s encrypted at each step, re-creating it

c09.indd 492c09.indd 492 12/10/2010 9:46:50 AM12/10/2010 9:46:50 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 493

and encrypting it again, XORing each such encrypted block with the ciphertext
recovers the plaintext. In fact, if you try to use aes_decrypt here, you end up
getting the wrong answer.

Nonce selection is crucial with CTR mode, though. You can never, ever reuse a
nonce with the same key. In CBC mode, reusing an initialization vector was sort
of bad. With CTR mode, it’s catastrophic. Consider the CTR-mode encryption
of the ASCII string “Hello, World!!” (0x68656c6c6f20776f726c642121) with the
key 0x404142434445464748494a4b4c4d4e4f and a nonce of 0x10111213141516.
This encrypts, in CTR mode, to 0xfb35f1556ac63f6f226935cd57. So far, so
good; an attacker can’t determine anything about the plaintext from the
ciphertext.

Later, though, you encry pt the pla intext “K nown Pla intxt”
(0x4b6e6f776e20506c616e747874), which the attacker knows. Using the
same key and the same nonce (starting from counter 0), this encrypts to
0xd83ef24e6bc6186c316b259402. Unfortunately, if the attacker now XOR’s the
fi rst cipher text block with the second, and then XOR’s this with the known
input, he recovers p1. This attack is illustrated in Table 9-1. This vulnerability
has nothing to do with the strength of the cipher or the choice of the key; it’s
a fi xed property of CTR mode itself. As long as you keep incrementing the
counter, you’re safe. As soon as the counter is reset (or wraps) back to 0, you
must change the nonce.

Table 9-1: Recovering unknown plaintext from known plaintext when a nonce is reused

PURPOSE VALUE

cipher text block 2 (c1) 0xfb35f1556ac63f6f226935cd57

cipher text block 1 (c2) 0xd83ef24e6bc6186c316b259402

c1≈c2 0x230b031b010027031302105955

plain text 2 (p2) 0x4b6e6f776e20506c616e747874

p2≈c1≈c2 0x68656c6c6f20776f726c642121

As usual, the implementation presented by this book completely disregards
this critical security advice and reuses the same hardcoded nonce over and
over again for the sake of illustration. However, at least you can get around this
security hole by making sure never to reuse a nonce. There’s another problem
with CTR mode that you can’t solve, at least not within CTR mode.

Consider the plaintext 0xAB and the CTR-mode key stream byte 0x34. XORed
together, they become the cipher text 0xB2. So far, so good; the attacker can’t
recover the plaintext 0xAB without the keystream byte 0x34 and can’t learn
anything about the plaintext from the ciphertext. But say that the attacker does

c09.indd 493c09.indd 493 12/10/2010 9:46:50 AM12/10/2010 9:46:50 AM

494 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

know that the fi rst nibble is “A”, and he wants to change it to a “C” (pretend this
is a really simple protocol where C is an identifi er representing the attacker and
B is a value indicating that A or C should get a million dollars). Because “A”
XOR “C” is “2”, he can XOR the fi rst nibble of the cipher text with 2 to produce
0x82. When the recipient decrypts it, he applies the keystream byte 0x34 and
reveals 0xCB.

This is called a bit-fl ipping attack, and CTR mode is particularly vulnerable
to it. If the attacker knows part of the plaintext, he can change it to anything
he wants by XORing the known plaintext with the desired plaintext and then
XORing that with the ciphertext. Of course, you can probably guess the solution:
a MAC. This is why AEAD ciphers are so named; they use a cipher mode that
must be combined with a MAC function.

Reusing Existing Functionality for Secure Hashes with
CBC-MAC
Chapter 4 focuses on HMAC to provide Message Authentication Codes; HMAC
is a widely used, intensively scrutinized MAC algorithm. It isn’t, however, the
only way to generate a secure MAC. Recall from Chapter 4 what sort of qualities
you should look for in a good MAC algorithm. It should be impossible:

 n To reverse-engineer. Knowing the input and the MAC should not make
it any easier to discover the shared MAC key.

 n For somebody without the shared key to generate a valid MAC.

 n To deliberately construct a message such that it shares a MAC with another
message.

 n To engineer two separate messages that share a MAC.

Of course, to be cryptographically correct, you must replace the word “impos-
sible” with “computationally infeasible” in the requirements, but this is the
essence of a keyed-MAC construction. The second two requirements are met
by the use of secure hash algorithms; the fi rst two come from the HMAC
construct itself.

Similar to the concept of using OFB or CTR mode to convert a block cipher
into a stream cipher, CBC-MAC converts a block cipher into a secure keyed-
MAC construction. The construct itself is simple; you can probably guess how
it works. Encrypt the input using the block cipher in CBC mode — start with
an IV of all zeros. Throw away all output blocks except the last; this is your
MAC. Notice that a secure hash of the input is not computed or required with
CBC-MAC. You can actually implement this using the aes_encrypt function
from Listing 2-42 directly, but to be a bit more memory effi cient, you should
write a separate function that only uses a single block of output, as shown in
Listing 9-13.

c09.indd 494c09.indd 494 12/10/2010 9:46:50 AM12/10/2010 9:46:50 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 495

Listing 9-13: aes_cbc_mac

#define MAC_LENGTH 8

void aes_cbc_mac(const unsigned char *key,

 int key_length,

 const unsigned char *text,

 int text_length,

 unsigned char *mac)

{

 unsigned char input_block[AES_BLOCK_SIZE];

 unsigned char mac_block[AES_BLOCK_SIZE];

 memset(mac_block, ‘\0’, AES_BLOCK_SIZE);

 while (text_length >= AES_BLOCK_SIZE)

 {

 memcpy(input_block, text, AES_BLOCK_SIZE);

 xor(input_block, mac_block, AES_BLOCK_SIZE);

 aes_block_encrypt(input_block, mac_block, key, key_length);

 text += AES_BLOCK_SIZE;

 text_length -= AES_BLOCK_SIZE;

 }

 memcpy(mac, mac_block, MAC_LENGTH);

}

If you compare Listing 9-13 to Listing 2-42, you see that the only difference
here — besides different variable names — is that the output is copied to the
same mac_block over and over again. The mac output pointer can’t be used for
this purpose because it’s not guaranteed to be the same length as an AES block;
if you need fewer bytes of MAC, you discard the least-signifi cant bytes of the
fi nal AES block. Of course, if you need a longer MAC, you must use a different
MAC function; the output of the CBC-MAC is bounded by the block size of the
underlying block cipher. The process is illustrated in Figure 9-2.

Figure 9-2: CBC-MAC

input block 1

MAC

input block 2 input block 3 input block n...

AES Encrypt

c09.indd 495c09.indd 495 12/10/2010 9:46:50 AM12/10/2010 9:46:50 AM

496 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

However, CBC-MAC fails to provide all of the requirements for a secure MAC.

 n It satisfi es the fi rst and second requirements. You cannot discover the
key from the output, and somebody without the key cannot generate a
valid MAC.

 n It fails to satisfy the last two requirements; it is possible to deliberately
engineer collisions this way.

Therefore, CBC-MAC must be used with an encryption algorithm; the MAC
itself must be protected by a cipher.

Combining CTR and CBC-MAC into AES-CCM
AES-CCM uses AES in CTR mode to achieve encryption and the same algorithm
in CBC-MAC mode to achieve authentication (CCM just stands for Counter with
CBC-MAC). AES-CCM is specifi ed by the U.S. government’s NIST at http://csrc
.nist.gov/publications/nistpubs/800-38C/SP800-38C.pdf. Both encryption
and MAC are used with the same key to provide a simultaneously encrypted
and authenticated block. The length of the output is the same as that of the
input, plus the chosen length of the MAC.

The length of the MAC is variable; as noted previously, you can make it any
length you want, up to the length of an AES block. However, both sides must agree,
before exchanging any data, what this length is; although the MAC length affects
the output, it’s not recoverable from the ciphertext. Therefore, the length must gen-
erally be fi xed at implementation time, or exchanged out of band. To keep things
relatively simple, you fi x it at eight bytes.

Conceptually, AES-CCM is simple — CTR mode and CBC-MAC are both
fairly easy to understand. However, as they say, “the devil is in the details.”
Actually implementing AES-CCM according to the standard is fairly complex,
because everything has to be just-so to achieve proper interoperability. Most of
the complexity in CCM surrounds the MAC. Remember from Chapter 4 that a
good MAC function must include the length of the input somehow; MD5 and
SHA both append a padding block terminated with the length of the input, in
bits. This ensures that a single 0 bit MAC’s to something different than, say, two
0 bits. CCM uses CBC-MAC with such a length, but the length is prepended
rather than appended.

In fact, the fi rst input block to the MAC function is an entire 16-byte block
of header information. This header information is never encrypted, but is just
used to initialize the MAC. The fi rst byte of this header information declares
both the length of the MAC and the number of bytes that encode the length of
the input. In other words, if the length of the input is encoded in a four-byte
integer, then the fi rst byte of the header block declares “4”. (This also means that
the length of the input must be known before encryption begins. AES-CCM
does not lend itself to “running” computations.)

c09.indd 496c09.indd 496 12/10/2010 9:46:51 AM12/10/2010 9:46:51 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 497

The remaining 15 bytes of the header block are split between the nonce and
the actual length of the input. Therefore, if the number of bytes that encode the
length of the input is 4, then the nonce is 11 bytes. The encoding of the fi rst byte
is particularly complex, to keep things packed tightly; to simplify, just hardcode
the value 0x1F, which declares — in a very roundabout way — that the MAC
is 8 bytes long, and the length of the length is also 8 bytes long. This implies
that the nonce is 7 bytes long.

Therefore, if the nonce is 0x01020304050607 and the input length is 500 bytes,
the header block looks like this:

0x1F 0x01020304050607 0x00000000000001F4

This should be fed into the CBC-MAC function to initialize it. After this
initialization is complete, the CBC-MAC function operates on the input exactly
as shown in Listing 9-13.

The fi rst “input-length” bytes of output are the CTR-mode encryption of the
input itself. The only stipulation that CCM places on the CTR mode is that the fi rst
byte of each nonce must be a declaration of the number of bytes that encode the
length that was described in the header, followed by the nonce as was declared
in the header, followed by an incrementing sequence that starts at 1 (not 0!).

Finally, the last “mac-length” bytes of output are, of course, the MAC, but
before the MAC is output, it’s counter-mode encrypted itself. It’s encrypted with
the counter at 0. The whole process is illustrated in Figure 9-3.

Figure 9-3: AES-CCM

input block nAES_Encrypt

nonce (0)AES_Encrypt

nonce (n)AES_Encrypt

nonce (2)AES_Encrypt

nonce (1)AES_Encrypt

output block
n + 1

output block n

input block 2AES_Encrypt

.

.

.

.

.

.

.

.

.

.

.

.

output block 2

input block 1AES_Encrypt

header block

AES_Encrypt

output block 1

c09.indd 497c09.indd 497 12/10/2010 9:46:51 AM12/10/2010 9:46:51 AM

498 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

If this is not quite clear, the code in Listing 9-14 should clarify.

Listing 9-14: “aes.c” aes_ccm_encrypt

#define MAC_LENGTH 8

/**

 * This implements 128-bit AES-CCM.

 * The IV is the nonce; it should be seven bytes long.

 * output must be the input_len + MAC_LENGTH

 * bytes, since CCM adds a block-length header

 */

int aes_ccm_encrypt(const unsigned char *input,

 int input_len,

 unsigned char *output,

 void *iv,

 const unsigned char *key)

{

 unsigned char nonce[AES_BLOCK_SIZE];

 unsigned char input_block[AES_BLOCK_SIZE];

 unsigned char mac_block[AES_BLOCK_SIZE];

 unsigned int next_nonce;

 int block_size;

 unsigned int header_length_declaration;

 // The first input block is a (complicated) standardized header

 // This is just for the MAC; not output

 memset(input_block, ‘\0’, AES_BLOCK_SIZE);

 input_block[0] = 0x1F; // t = mac_length = 8 bytes, q = 8 bytes (so n = 7)

 header_length_declaration = htonl(input_len);

 memcpy((void *) (input_block + (AES_BLOCK_SIZE - sizeof(int))),

 &header_length_declaration, sizeof(unsigned int));

 memcpy((void *) (input_block + 1), iv, 8);

 // update the CBC-MAC

 memset(mac_block, ‘\0’, AES_BLOCK_SIZE);

 xor(input_block, mac_block, AES_BLOCK_SIZE);

 aes_block_encrypt(input_block, mac_block, key, 16);

 // Prepare the first nonce

 memset(nonce, ‘\0’, AES_BLOCK_SIZE);

 nonce[0] = 0x07; // q hardcode to 8 bytes, so n = 7

 memcpy((nonce + 1), iv, 8);

 while (input_len)

 {

 // Increment counter

 memcpy((void *) &next_nonce, (void *) (nonce + 12),

 sizeof(unsigned int));

 // Preserve byte ordering, although not strictly necessary

 next_nonce = ntohl(next_nonce);

 next_nonce++;

c09.indd 498c09.indd 498 12/10/2010 9:46:51 AM12/10/2010 9:46:51 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 499

 next_nonce = htonl(next_nonce);

 memcpy((void *) (nonce + 12), (void *) &next_nonce,

 sizeof(unsigned int));

 // encrypt the nonce

 block_size = (input_len < AES_BLOCK_SIZE) ? input_len : AES_BLOCK_SIZE;

 aes_block_encrypt(nonce, input_block, key, 16);

 xor(input_block, input, block_size); // implement CTR

 memcpy(output, input_block, block_size);

 // update the CBC-MAC

 memset(input_block, ‘\0’, AES_BLOCK_SIZE);

 memcpy(input_block, input, block_size);

 xor(input_block, mac_block, AES_BLOCK_SIZE);

 aes_block_encrypt(input_block, mac_block, key, 16);

 // advance to next block

 input += block_size;

 output += block_size;

 input_len -= block_size;

 }

 // Regenerate the first nonce

 memset(nonce, ‘\0’, AES_BLOCK_SIZE);

 nonce[0] = 0x07; // q hardcode to 8 bytes

 memcpy((nonce + 1), iv, 8);

 // encrypt the header and output it

 aes_block_encrypt(nonce, input_block, key, AES_BLOCK_SIZE);

 // MAC is the CBC-mac XOR’ed with S0

 xor(mac_block, input_block, MAC_LENGTH);

 memcpy(output, mac_block, MAC_LENGTH);

 return 0;

}

The fi rst section builds the CCM mode header in the input_block:

 memset(input_block, ‘\0’, AES_BLOCK_SIZE);

 input_block[0] = 0x1F; // t = mac_length = 8 bytes, q = 8 bytes (so n = 7)

 header_length_declaration = htonl(input_len);

 memcpy((void *) (input_block + (AES_BLOCK_SIZE - sizeof(int))),

 &header_length_declaration, sizeof(unsigned int));

 memcpy((void *) (input_block + 1), iv, 8);

As always, the length of the length must be put in network byte order.
The next section updates the CBC-MAC with this header:

 memset(mac_block, ‘\0’, AES_BLOCK_SIZE);

 xor(input_block, mac_block, AES_BLOCK_SIZE);

 aes_block_encrypt(input_block, mac_block, key, 16);

c09.indd 499c09.indd 499 12/10/2010 9:46:51 AM12/10/2010 9:46:51 AM

500 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

This is followed by a single loop through the input data that simultaneously
performs the CTR-mode encryption and updates the CBC-MAC. This enables the
encrypt-and-authenticate process to pass over the data only one time. Because CTR
mode encryption encrypts the counter, and CBC-MAC encrypts the input itself,
it’s necessary to invoke aes_block_encrypt twice inside the loop. If you want
to be hyper-effi cient, you can modify aes_block_encrypt to accept two inputs
and generate two outputs; you can then reuse the key schedule computation.

The order of things in the main loop of Listing 9-14 is only slightly different
than those of Listings 9-12 and 9-13 (you may want to compare them before
continuing). Because AES-CCM wants the fi rst counter block to have the value
of 1, the counter is initialized outside the loop and then incremented at the top
instead of after encryption.

Finally, the MAC itself is encrypted in CTR mode with the 0 counter and output:

 // Regenerate the first nonce

 memset(nonce, ‘\0’, AES_BLOCK_SIZE);

 nonce[0] = 0x07; // q hardcode to 8 bytes

 memcpy((nonce + 1), iv, 8);

 // encrypt the header and output it

 aes_block_encrypt(nonce, input_block, key, AES_BLOCK_SIZE);

 // MAC is the CBC-mac XOR’ed with S0

 xor(mac_block, input_block, MAC_LENGTH);

 memcpy(output, mac_block, MAC_LENGTH);

Although counter-mode makes a reversible cipher from any block cipher, you
do still need a special decrypt routine for AES-CCM. The encryption routine
generates the output and appends a MAC, so the decryption routine must be
aware of the MAC and not output it. For robustness, the decryption routine
should probably verify the MAC as well. However, the bulk of the routine is
the same as the encryption routine, so it makes sense to combine them into one
common routine and just pass in a fl ag indicating which operation is taking
place: encrypt or decrypt.

Rename aes_ccm_encrypt to aes_ccm_process and add a decrypt fl ag to it
as shown in Listing 9-15.

Listing 9-15: “aes.c” aes_ccm_process common routine for encrypt and decrypt

int aes_ccm_process(const unsigned char *input,

 int input_len,

 unsigned char *output,

 void *iv,

 const unsigned char *key,

 int decrypt)

{

…

c09.indd 500c09.indd 500 12/10/2010 9:46:51 AM12/10/2010 9:46:51 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 501

 unsigned int next_nonce;

 int process_len;

 int block_size;

…

 input_block[0] = 0x1F; // t = mac_length = 8 bytes, q = 8 bytes (so n = 7)

 process_len = input_len - (decrypt ? MAC_LENGTH : 0);

 header_length_declaration = htonl(process_len);

…

 while (process_len)

 {

 // Increment counter

 memcpy((void *) &next_nonce, (void *) (nonce + 12),

 sizeof(unsigned int));

…

 block_size = (process_len < AES_BLOCK_SIZE) ?

 process_len : AES_BLOCK_SIZE;

…

 // update the CBC-MAC

 memset(input_block, ‘\0’, AES_BLOCK_SIZE);

 memcpy(input_block, decrypt ? output : input, block_size);

 xor(input_block, mac_block, AES_BLOCK_SIZE);

…

 output += block_size;

 process_len -= block_size;

 }

…

 if (!decrypt)

 {

 xor(mac_block, input_block, MAC_LENGTH);

 memcpy(output, mac_block, MAC_LENGTH);

 return 1;

 }

 else

 {

 xor(input_block, input, MAC_LENGTH);

 if (memcmp(mac_block, input_block, MAC_LENGTH))

 {

 return 0;

 }

 return 1;

 }

int aes_ccm_encrypt(const unsigned char *input,

 int input_len,

 unsigned char *output,

 void *iv,

 const unsigned char *key)

{

 return aes_ccm_process(input, input_len, output, iv, key, 0);

}
(Continued)

c09.indd 501c09.indd 501 12/10/2010 9:46:51 AM12/10/2010 9:46:51 AM

502 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

int aes_ccm_decrypt(const unsigned char *input,

 int input_len,

 unsigned char *output,

 void *iv,

 const unsigned char *key)

{

 return aes_ccm_process(input, input_len, output, iv, key, 1);

}

As you can see, most of the changes involve making sure to process only the
ciphertext in decrypt mode. The big change is at the end; in decrypt mode, rather
than outputting the MAC, you decrypt it and then compare the computed MAC
with the one that was received. If they don’t match, return false.

Note that there’s nothing AES-specifi c about this routine; for optimum fl ex-
ibility, you could pass a pointer to a block encrypt function and invoke that
for each block. However, CCM with AES has been extensively studied and is
believed to be secure; if you swap AES with some arbitrary block cipher function,
you may not be so lucky. Your best bet for now is to only use CCM with AES.

Maximizing MAC Throughput with Galois-Field
Authentication
CBC-MAC has some theoretical problems, which are not serious enough to
discount using it (AES-CCM is actually becoming pretty popular), but the
problems are signifi cant enough that professional cryptanalysts have spent
effort trying to fi nd improvements. Additionally, recall that one of the benefi ts
of CTR mode is that it’s infi nitely parallelizable. Unfortunately, CBC-MAC has
the same throughput problems that CBC encryption has, so CCM loses one of
the main advantages of using CTR mode in the fi rst place.

An alternative that avoids the problems with CBC-MAC is the GHASH authen-
tication routine. GHASH is based on Galois-Field (GF) multiplication; i.e.
multiplication in a fi nite fi eld. The idea behind GHASH is to XOR each block
with the previous block, but compute the GF(2128) multiplication in the fi xed
polynomial fi eld x128 � x7 � x2 � x � 1. This may sound somewhat familiar — it’s
actually the same thing that you did to code the AES matrix multiplication, only
it’s relative to a different polynomial. The code to perform this multiplication is
similar to the dot/xtime computation from Listing 2-36. The only real difference
here, other than the new polynomial, is that GHASH computation is done over
128-bit fi elds rather than only 8.

If all of that doesn’t mean much to you, don’t worry; you can treat the GHASH
function as a black box in the same way you treated the MD5 and SHA func-
tions. It creates a probabilistically unique, impossible-to-reverse output from
its input. How it does so is not as important as the fact that it does. Listing 9-16
shows the gf_multiply function.

c09.indd 502c09.indd 502 12/10/2010 9:46:51 AM12/10/2010 9:46:51 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 503

Listing 9-16: “aes.c” gf_multiply

/**

 * “Multiply” X by Y (in a GF-128 field) and return the result in Z.

 * X, Y, and Z are all AES_BLOCK_SIZE in length.

 */

static void gf_multiply(const unsigned char *X,

 const unsigned char *Y,

 unsigned char *Z)

{

 unsigned char V[AES_BLOCK_SIZE];

 unsigned char R[AES_BLOCK_SIZE];

 unsigned char mask;

 int i, j;

 int lsb;

 memset(Z, ‘\0’, AES_BLOCK_SIZE);

 memset(R, ‘\0’, AES_BLOCK_SIZE);

 R[0] = 0xE1;

 memcpy(V, X, AES_BLOCK_SIZE);

 for (i = 0; i < 16; i++)

 {

 for (mask = 0x80; mask; mask >>= 1)

 {

 if (Y[i] & mask)

 {

 xor(Z, V, AES_BLOCK_SIZE);

 }

 lsb = (V[AES_BLOCK_SIZE - 1] & 0x01);

 for (j = AES_BLOCK_SIZE - 1; j; j--)

 {

 V[j] = (V[j] >> 1) | ((V[j - 1] & 0x01) << 7);

 }

 V[0] >>= 1;

 if (lsb)

 {

 xor(V, R, AES_BLOCK_SIZE);

 }

 }

 }

}

This is just another variant of the same double-and-add multiplication rou-
tine that has come up over and over again throughout this book — the counter
variables i and mask iterate over the bits of the input Y and add X to the Z com-
putation whenever the input bit is 1 (you may want to refer to Listing 3-9 for a
more detailed look at this format). The only big difference is that X — which is
copied into the temporary variable V at the start of the routine — is right-shifted

c09.indd 503c09.indd 503 12/10/2010 9:46:51 AM12/10/2010 9:46:51 AM

504 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

at each step and, if the least-signifi cant bit of X is a 1, X is additionally XORed
with the fi eld polynomial 0xE1 � 2120. The value of this polynomial is signifi cant,
in the number-theoretic sense, but you can just treat it as a magic constant that
you must use to maintain compatibility with other implementations.

The GHASH routine, illustrated in Figure 9-4, takes as input a key that
the specifi cation calls H. It computes a variable-length MAC from its input by
GF-multiplying each input block by H and XORing all of the resulting blocks
to each other. If the last block is not block-length aligned, it’s padded with 0’s,
and there’s a single “pseudo-block” trailer that includes the 64-bit length of the
input itself.

Figure 9-4: GHASH MAC algorithm

gcm_multiplyH

MACinput

A standalone GHASH implementation is shown in Listing 9-17.

Listing 9-17: “aes.c” ghash

static void ghash(unsigned char *H,

 unsigned char *X,

 int X_len,

 unsigned char *Y) // Y is the output value

{

 unsigned char X_block[AES_BLOCK_SIZE];

 unsigned int input_len;

 int process_len;

 memset(Y, ‘\0’, AES_BLOCK_SIZE);

 input_len = htonl(X_len << 3); // remember this for final block

 while (X_len)

 {

 process_len = (X_len < AES_BLOCK_SIZE) ? X_len : AES_BLOCK_SIZE;

 memset(X_block, ‘\0’, AES_BLOCK_SIZE);

 memcpy(X_block, X, process_len);

 xor(X_block, Y, AES_BLOCK_SIZE);

 gf_multiply(X_block, H, Y);

 X += process_len;

 X_len -= process_len;

 }

c09.indd 504c09.indd 504 12/10/2010 9:46:51 AM12/10/2010 9:46:51 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 505

 // Hash the length of the ciphertext as well

 memset(X_block, ‘\0’, AES_BLOCK_SIZE);

 memcpy(X_block + 12, (void *) &input_len, sizeof(unsigned int));

 xor(X_block, Y, AES_BLOCK_SIZE);

 gf_multiply(X_block, H, Y);

}

As you can see, it’s not too complex after you’ve gotten gf_multiply work-
ing. The input is gf_multiply’ed, one block at a time, and each resulting block
is XOR’ed with the last. Here, the block size is hardcoded as AES_BLOCK_SIZE
because this is used in the context of AES. The terse variable names presented
here match the specifi cation so you can easily compare what this code is doing
with what the specifi cation declares.

Combining CTR and Galois-Field Authentication with
AES-GCM
AES-GCM is specifi ed by http://csrc.nist.gov/publications/nistpubs/800-
38D/SP-800-38D.pdf and in more detail in http://www.csrc.nist.gov/groups/
ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf. It’s a
lot like AES-CCM, but it uses GHASH instead of CBC-MAC. It also MAC’s the
encrypted values rather than the plaintext, so although you can, in theory, try to
write one über-routine that encapsulated both, you’d end up with such a mess
of special cases it wouldn’t really be worth it. AES-GCM also does away with
AES-CCM’s special header block and starts the encryption on counter block 2,
rather than counter block 1; the MAC is encrypted with counter block 1 rather
than counter block 0.

Listing 9-18 illustrates a combined CTR/GHASH implementation of AES-GCM.
There are a lot of similarities between this and the AES-CCM implementation
in Listing 9-14, but not quite enough to make it worth trying to combine them
into a single common routine.

Listing 9-18: “aes.c” aes_gcm_encrypt

/**

 * This implements 128-bit AES-GCM.

 * IV must be exactly 12 bytes long and must consist of

 * 12 bytes of random, unique data. The last four bytes will

 * be overwritten.

 * output must be exactly 16 bytes longer than input.

 */

int aes_gcm_encrypt(const unsigned char *input,

 int input_len,

 unsigned char *output,

 void *iv,
(Continued)

c09.indd 505c09.indd 505 12/10/2010 9:46:52 AM12/10/2010 9:46:52 AM

506 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

 const unsigned char *key)

{

 unsigned char nonce[AES_BLOCK_SIZE];

 unsigned char input_block[AES_BLOCK_SIZE];

 unsigned char zeros[AES_BLOCK_SIZE];

 unsigned char H[AES_BLOCK_SIZE];

 unsigned char mac_block[AES_BLOCK_SIZE];

 unsigned int next_nonce;

 int original_input_len;

 int block_size;

 memset(zeros, ‘\0’, AES_BLOCK_SIZE);

 aes_block_encrypt(zeros, H, key, 16);

 memcpy(nonce, iv, 12);

 memset(nonce + 12, ‘\0’, sizeof(unsigned int));

 // MAC initialization

 memset(mac_block, ‘\0’, AES_BLOCK_SIZE);

 original_input_len = htonl(input_len << 3); // remember this for final block

 next_nonce = htonl(1);

 while (input_len)

 {

 next_nonce = ntohl(next_nonce);

 next_nonce++;

 next_nonce = htonl(next_nonce);

 memcpy((void *) (nonce + 12), (void *) &next_nonce,

 sizeof(unsigned int));

 block_size = (input_len < AES_BLOCK_SIZE) ? input_len : AES_BLOCK_SIZE;

 aes_block_encrypt(nonce, input_block, key, 16);

 xor(input_block, input, block_size); // implement CTR

 memcpy((void *) output, (void *) input_block, block_size);

 // Update the MAC; input_block contains encrypted value

 memset((input_block + AES_BLOCK_SIZE) -

 (AES_BLOCK_SIZE - block_size), ‘\0’,

 AES_BLOCK_SIZE - block_size);

 xor(input_block, mac_block, AES_BLOCK_SIZE);

 gf_multiply(input_block, H, mac_block);

 input += block_size;

 output += block_size;

 input_len -= block_size;

 }

 memset(input_block, ‘\0’, AES_BLOCK_SIZE);

 memcpy(input_block + 12, (void *) &original_input_len,

 sizeof(unsigned int));

 xor(input_block, mac_block, AES_BLOCK_SIZE);

 gf_multiply(input_block, H, output);

c09.indd 506c09.indd 506 12/10/2010 9:46:52 AM12/10/2010 9:46:52 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 507

 // Now encrypt the MAC block and output it

 memset(nonce + 12, ‘\0’, sizeof(unsigned int));

 nonce[15] = 0x01;

 aes_block_encrypt(nonce, input_block, key, 16);

 xor(output, input_block, AES_BLOCK_SIZE);

 return 0;

}

As you can see, the H parameter that GHASH requires is a block of all zeros,
AES-encrypted with the shared key.
 memset(zeros, ‘\0’, AES_BLOCK_SIZE);

 aes_block_encrypt(zeros, H, key, 16);

 memset(nonce + 12, ‘\0’, sizeof(unsigned int));

The CTR-mode computation is identical to that of AES-CCM; the only differ-
ence is that the nonce counter starts at 2, rather than at 1. However, the MAC
is different: AES-GCM MACs the encrypted output, instead of the plaintext
as AES-CCM does. The only potentially confusing line of Listing 9-18, then, is
this one:
 memset((input_block + AES_BLOCK_SIZE) -

 (AES_BLOCK_SIZE - block_size), ‘\0’,

 AES_BLOCK_SIZE - block_size);

Because the MAC is computed over the encrypted output, and input_block
currently contains the encrypted output (it was memcpy’d into output on the
previous line), you can feed this block into the MAC computation. However,
the GHASH MAC requires that a non-aligned block be zero-padded, whereas the
CTR mode just drops any unused output. This complex line, then, zero pads
the fi nal block, if needed. Otherwise, this looks just like the GHASH computa-
tion in Listing 9-17, with somewhat more meaningful variable names.

Finally, the trailer is appended to the MAC:
 memset(input_block, ‘\0’, AES_BLOCK_SIZE);

 memcpy(input_block + 12, (void *) &original_input_len,

 sizeof(unsigned int));

 xor(input_block, mac_block, AES_BLOCK_SIZE);

 gf_multiply(input_block, H, output);

Note that original_input_len is given in bits, not bytes — hence the << 3
at the start of the function.

Finally, the whole MAC is CTR-mode encrypted with nonce 1 (not nonce 0,
as it was with AES-CCM), and output as the fi nal block:
 memset(nonce + 12, ‘\0’, sizeof(unsigned int));

 nonce[15] = 0x01;

 aes_block_encrypt(nonce, input_block, key, 16);

 xor(output, input_block, AES_BLOCK_SIZE);

c09.indd 507c09.indd 507 12/10/2010 9:46:52 AM12/10/2010 9:46:52 AM

508 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

Of course, it’s not particularly useful to write an encryption routine without
a decryption routine. As with AES-CCM, decrypting is pretty much the same
as encrypting, you just have to remember to authenticate the last block rather
than decrypting and outputting it. In fact, the changes to support decryption in
aes_gcm_process in Listing 9-19 are nearly identical to those to apply the same
change to aes_ccm_process in Listing 9-15.

Listing 9-19: “aes.c” aes_gcm_process with encrypt and decrypt support

int aes_gcm_process(const unsigned char *input,

 int input_len,

 unsigned char *output,

 void *iv,

 const unsigned char *key,

 int decrypt)

{

…

 int original_input_len;

 int process_len;

 int block_size;

…

 memset(nonce + 12, ‘\0’, sizeof(unsigned int));

 process_len = input_len - (decrypt ? AES_BLOCK_SIZE : 0);

 // MAC initialization

 memset(mac_block, ‘\0’, AES_BLOCK_SIZE);

 original_input_len = htonl(process_len �� 3);

…

 while (process_len)

 {

…

 block_size = (process_len < AES_BLOCK_SIZE) ? process_len : AES_BLOCK_SIZE;

 aes_block_encrypt(nonce, input_block, key, 16);

 xor(input_block, input, block_size); // implement CTR

 memcpy((void *) output, (void *) input_block, block_size);

 if (decrypt)

 {

 // When decrypting, put the input – e.g. the ciphertext -

 // back into the input block for the MAC computation below

 memcpy(input_block, input, block_size);

 }

 // Update the MAC; input_block contains encrypted value

 memset((input_block + AES_BLOCK_SIZE) -

…

 process_len -= block_size;

 }

c09.indd 508c09.indd 508 12/10/2010 9:46:52 AM12/10/2010 9:46:52 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 509

…

 memset(nonce + 12, ‘\0’, sizeof(unsigned int));

 nonce[15] = 0x01;

 if (!decrypt)

 {

 gf_multiply(input_block, H, output);

 // Now encrypt the MAC block and output it

 aes_block_encrypt(nonce, input_block, key, 16);

 xor(output, input_block, AES_BLOCK_SIZE);

 }

 else

 {

 gf_multiply(input_block, H, mac_block);

 // Now decrypt the final (MAC) block and compare it

 aes_block_encrypt(nonce, input_block, key, 16);

 xor(input_block, input, AES_BLOCK_SIZE);

 if (memcmp(mac_block, input_block, AES_BLOCK_SIZE))

 {

 return 1;

 }

 }

 return 0;

}

int aes_gcm_encrypt(const unsigned char *input,

 int input_len,

 unsigned char *output,

 void *iv,

 const unsigned char *key)

{

 return aes_gcm_process(input, input_len, output, iv, key, 0);

}

int aes_gcm_decrypt(const unsigned char *input,

 int input_len,

 unsigned char *output,

 void *iv,

 const unsigned char *key)

{

 return aes_gcm_process(input, input_len, output, iv, key, 1);

}

AES-CCM and AES-GCM are fairly simple to understand, but not necessarily
simple to implement, due to the required precision surrounding their associ-
ated MACs. Fortunately, once you get the details all worked out, you can treat

c09.indd 509c09.indd 509 12/10/2010 9:46:52 AM12/10/2010 9:46:52 AM

510 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

the functions as black boxes — plaintext goes in, ciphertext comes out. As long
as you’re careful to ensure that nonces are never reused with a single key, you
can be confi dent that the encrypted data is safely protected.

Authentication with Associated Data
By now you may be wondering, “If AEAD stands for Authenticated Encryption
with Associated Data, what’s the associated data part?” The Associated Data is
data that should be authenticated along with the encrypted data, but not itself
encrypted. If you remember the use of the MAC in TLS 1.0, it MAC’ed one addi-
tional piece of data that was not transmitted — the sequence number — and some
that were transmitted but not encrypted. Because the main upside of AEAD is
to incorporate the authentication into the encryption, you need to replicate the
authentication of the original TLS 1.0 MAC.

The associated data, if present, is MAC’ed before the rest of the data stream,
but in the case of CCM, after the header block. In order to process associated
data during AES-CCM or AES-GCM, make the changes shown in Listing 9-20
to the encrypt and decrypt routines.

Listing 9-20: “aes.h” AES-CCM and AES-GCM with associated data support

int aes_ccm_encrypt(const unsigned char *input,

 const int input_len,

 const unsigned char *addldata,

 const int addldata_len,

 unsigned char output[],

 void *iv,

 const unsigned char *key)

{

 return aes_ccm_process(input, input_len, addldata, addldata_len,

 output, iv, key, 0);

}

int aes_ccm_decrypt(const unsigned char *input,

 const int input_len,

 const unsigned char *addldata,

 const int addldata_len,

 unsigned char output[],

 void *iv,

 const unsigned char *key)

{

 return aes_ccm_process(input, input_len, addldata, addldata_len,

 output, iv, key, 1);

}

int aes_gcm_encrypt(const unsigned char *plaintext,

 const int input_len,

c09.indd 510c09.indd 510 12/10/2010 9:46:52 AM12/10/2010 9:46:52 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 511

 const unsigned char *addldata,

 const int addldata_len,

 unsigned char output[],

 void *iv,

 const unsigned char *key)

{

 return aes_gcm_process(input, input_len, addldata, addldata_len,

 output, iv, key, 0);

}

int aes_gcm_decrypt(const unsigned char *input,

 const int input_len,

 const unsigned char *addldata,

 const int addldata_len,

 unsigned char output[],

 void *iv,

 const unsigned char *key)

{

 return aes_gcm_process(input, input_len, addldata, addldata_len,

 output, iv, key, 1);

}

Now modify aes_ccm_process and aes_gcm_process to accept and authen-
ticate the associated data. This is not too terribly complex; you just run the
associated data through the MAC computation before beginning the encrypt/
MAC process. The only complicating factor for CCM is that the fi rst two bytes of
the fi rst block of associated data must include the length of the additional data.
Remember that every time you MAC anything, you must include the length of
what you’re MAC’ing in the processing somehow to ensure that two inputs of
differing lengths whose trailing bytes are all zeros MAC to different values (if
the reason for this isn’t clear, you might want to jump back and briefl y review
Chapter 4). AES-CCM with additional data support is shown in Listing 9-21.

Listing 9-21: “aes.c” aes_ccm_process with associated data

int aes_ccm_process(const unsigned char *input,

 int input_len,

 const unsigned char *addldata,

 unsigned short addldata_len,

 unsigned char *output,

 void *iv,

 const unsigned char *key,

 int decrypt)

{

…

 memset(input_block, ‘\0’, AES_BLOCK_SIZE);

 input_block[0] = 0x1F; // t = mac_length = 8 bytes, q = 8 bytes (so n = 7)

(Continued)

c09.indd 511c09.indd 511 12/10/2010 9:46:52 AM12/10/2010 9:46:52 AM

512 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

 input_block[0] |= addldata_len ? 0x40 : 0x00;

…

 xor(input_block, mac_block, AES_BLOCK_SIZE);

 aes_block_encrypt(input_block, mac_block, key, 16);

 if (addldata_len)

 {

 int addldata_len_declare;

 int addldata_block_len;

 // First two bytes of addl data are the length in network order

 addldata_len_declare = ntohs(addldata_len);

 memset(input_block, ‘\0’, AES_BLOCK_SIZE);

 memcpy(input_block, (void *) &addldata_len_declare,

 sizeof(unsigned short));

 addldata_block_len = AES_BLOCK_SIZE - sizeof(unsigned short);

 do

 {

 block_size = (addldata_len < addldata_block_len) ?

 addldata_len : addldata_block_len;

 memcpy(input_block + (AES_BLOCK_SIZE - addldata_block_len),

 addldata, block_size);

 xor(input_block, mac_block, AES_BLOCK_SIZE);

 aes_block_encrypt(input_block, mac_block, key, 16);

 addldata_len -= block_size;

 addldata += block_size;

 addldata_block_len = AES_BLOCK_SIZE;

 memset(input_block, ‘\0’, addldata_block_len);

 }

 while (addldata_len);

 }

 // Prepare the first nonce

 memset(nonce, ‘\0’, AES_BLOCK_SIZE);

Remember that, in CCM, there was a header that was MAC’ed before the
data, and that the fi rst byte of this header was a byte of fl ags. One of these fl ags
indicates whether to expect associated data. The fi rst change in Listing 9-21 sets
the adata fl ag in the header that indicates that there is associated data in the fi rst
place; the remainder of the changes are contained in the if block. This if block
just cycles through the additional data supplied (if any) and computes it into the
MAC; the only thing that makes this a bit complex is that the fi rst two bytes of
the fi rst block must be the length of the additional data, in network byte order.

To see this in action, go ahead and modify the AES test main routine to call
aes_ccm_encrypt instead of aes_128_encrypt when the key size is 16 bytes,

c09.indd 512c09.indd 512 12/10/2010 9:46:52 AM12/10/2010 9:46:52 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 513

and add a provision to optionally pass in some additional data as shown in
Listing 9-22.

Listing 9-22: “aes.c” main routine modifi ed to accept associated data

#ifdef TEST_AES

int main(int argc, char *argv[])

{

 unsigned char *key;

 unsigned char *input;

 unsigned char *iv;

 unsigned char *addl_data;

 int key_len;

 int input_len;

 int iv_len;

 int addldata_len;

 if (argc < 5)

 {

 fprintf(stderr, “Usage: %s [-e|-d] <key> <iv> <input> [<addl data>]\n”,

 argv[0]);

 exit(0);

 }

 key_len = hex_decode(argv[2], &key);

 iv_len = hex_decode(argv[3], &iv);

 input_len = hex_decode(argv[4], &input);

 if (argc > 5)

 {

 addldata_len = hex_decode(argv[5], &addl_data);

 }

 else

 {

 addldata_len = 0;

 addl_data = NULL;

 }

 if (!strcmp(argv[1], “-e”))

 {

 unsigned char *ciphertext = (unsigned char *)

 malloc(input_len + MAC_LENGTH);

 if (key_len == 16)

 {

 aes_ccm_encrypt(input, input_len, addl_data, addldata_len, ciphertext,

 (void *) iv, key);

 }

…

 else if (!strcmp(argv[1], “-d”))

(Continued)

c09.indd 513c09.indd 513 12/10/2010 9:46:52 AM12/10/2010 9:46:52 AM

514 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

 {

 unsigned char *plaintext = (unsigned char *)

 malloc(input_len – MAC_LENGTH);

 if (key_len == 16)

 {

 if (aes_ccm_decrypt(input, input_len, addl_data, addldata_len,

plaintext, (void *) iv, key))

 {

 fprintf(stderr, “Error, MAC mismatch.\n”);

 }

 }

…

 show_hex(plaintext, input_len - MAC_LENGTH);

 free(plaintext);

…

 free(iv);

 free(key);

 free(input);

 free(addl_data);

 return 0;

}

#endif

Now, you can see an AES-CCM encryption in action:
[jdavies@localhost ssl]$./aes -e “@ABCDEFGHIJKLMNO” “12345678” “tuvwxyz” “abc”

404855688058bb65f9c511

Here, “@ABCDEFGHIJKLMNO” is the key, “12345678” is the nonce, “tuvwxyz”
is the associated data, and “abc” is the data to encrypt. The encrypted out-
put — the CTR-mode part — is the three bytes 0x404855. The remainder of the
output is the eight-byte MAC 0x688058bb65f9c511. This MAC is computed
over fi rst the header block 0x5f313233343536373800000000000003. 0x5F is
the declaration that there is associated data, the MAC size is eight bytes, and
that the declaration of the length of the input takes up seven bytes. This is
followed by the nonce itself and the length of the input — in this case, three
bytes. The associated data is then added to the MAC — this is 0x0007747576
7778797a00000000000000. Notice that the fi rst two bytes are the length of the
associated data, followed by the zero-padded associated data itself. Finally,
the plaintext input “abc” is added to the MAC (again, zero-padded). This fi nal
MAC block is AES-counter-mode encrypted with nonce 0: 0x3132333435363
7380000000000000000.

This entire operation is illustrated in Figure 9-5.

c09.indd 514c09.indd 514 12/10/2010 9:46:53 AM12/10/2010 9:46:53 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 515

Figure 9-5: AES-CCM encryption example

AES CBC-MACabc

AES_Encrypt
("@ABCDEFGHIJKLMNO")

12345678

5f 3132333435363738 00000000000003

00077475767778797a00000000000000

404855 688058bb65f9c511

M
AC Len = 2

3 = 8

AD Len = 7

Decrypting gives you back the original input:
[jdavies@localhost ssl]$./aes -d “@ABCDEFGHIJKLMNO” “123456789012” “tuvwxyz” \

0x404855688058bb65f9c511

616263

If the MAC is wrong, though, you just get back nothing:
[jdavies@localhost ssl]$./aes -d “@ABCDEFGHIJKLMNO” “123456789012” “tuvwxyz” \

0x404855688058bb65f9c5112

Error, MAC mismatch.

Technically, though, there’s nothing stopping you, if you have the key, from
writing a CTR-mode decryption routine and decrypting the fi rst three bytes
anyway. If you know the MAC is eight bytes, you know the input was three. You
can decrypt, but not authenticate, the ciphertext even if you don’t know what
the additional data was; it’s just used in the MAC computation.

c09.indd 515c09.indd 515 12/10/2010 9:46:53 AM12/10/2010 9:46:53 AM

516 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

AES-GCM with associated data is even easier; there’s no length to prepend to
the associated data, so you can just incorporate the associated data processing
into the MAC just before encryption starts, as shown in Listing 9-23:

Listing 9-23: “aes.c” aes_gcm_process with associated data support

int aes_gcm_process(const unsigned char *input,

 int input_len,

 const unsigned char *addl_data,

 unsigned short addldata_len,

 unsigned char *output,

 void *iv,

 const unsigned char *key,

 int decrypt)

{

…

 original_input_len = htonl(process_len << 3); // remember this for final

block

 while (addldata_len)

 {

 block_size = (addldata_len < AES_BLOCK_SIZE) ?

 addldata_len : AES_BLOCK_SIZE;

 memset(input_block, ‘\0’, AES_BLOCK_SIZE);

 memcpy(input_block, addl_data, block_size);

 xor(input_block, mac_block, AES_BLOCK_SIZE);

 gf_multiply(input_block, H, mac_block);

 addl_data += block_size;

 addldata_len -= block_size;

 }

 next_nonce = htonl(1);

…

However, remember from the previous section that the GCM MAC itself
included a trailer block whose last eight bytes was the length, in bits, of the
MAC’ed data. If you start including additional data in the MAC, you must declare
that length as well. Because the trailer block is 16 bytes long, and the last 8 bytes
are the length of the ciphertext, you can probably guess that the fi rst 8 bytes are
the length of the additional data. Modify aes_gcm_process as shown in Listing
9-24 to account for this.

Listing 9-24: “aes.c” aes_gcm_process with associated data length declaration

 int original_input_len, original_addl_len;

…

 original_input_len = htonl(process_len << 3); // remember this for final block

c09.indd 516c09.indd 516 12/10/2010 9:46:53 AM12/10/2010 9:46:53 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 517

 original_addl_len = htonl(addldata_len << 3); // remember this for final block

…

 memset(input_block, ‘\0’, AES_BLOCK_SIZE);

 memcpy(input_block + 4, (void *) &original_addl_len,

 sizeof(unsigned int));

 memcpy(input_block + 12, (void *) &original_input_len,

 sizeof(unsigned int));

You can see this in action, as well, if you modify the main routine to invoke
aes_gcm_encrypt or aes_gcm_decrypt instead of aes_ccm:

[jdavies@localhost ssl]$./aes -e “@ABCDEFGHIJKLMNO” “12345678” “tuvwxyz” “abc”

87fd0515d242cf110c77b98055c3ad3196aec6

[jdavies@localhost ssl]$./aes -d “@ABCDEFGHIJKLMNO” “12345678” “tuvwxyz” \

0x87fd0515d242cf110c77b98055c3ad3196aec6

616263

Notice that the AES-GCM output for the same input is 8 bytes longer than
the AES-CCM output because the AES-GCM routine included a 16-byte MAC,
but AES-CCM’s was just 8. There’s no particular reason why it must be this
way. This is the way they’re shown in their relative specifi cations, so they were
coded this way here. The MAC-length is variable, but remember that because
the length itself is not included anywhere in the output, both sides must agree
on what it must be before transmitting any data.

Incorporating AEAD Ciphers into TLS 1.2
AEAD ciphers such as AES-CCM and AES-GCM are just different enough than
block and stream ciphers, from the perspective of TLS 1.2, to warrant their own
format. Both ciphers examined here are stream ciphers with a MAC, which is just
like RC4 with SHA-1. However, AEAD ciphers must also transmit their nonce.
Block ciphers do something similar with their IVs; they incorporate padding,
but in theory you could implement an AEAD cipher by treating it as a block-
ciphered structure with a 0-length input block.

In fact, you could get away with this for AES-CCM. If you declared the cipher
as aes_ctr_(en/de)crypt, you could make the MAC function variable and
replace the default HMAC operation with a CBC-MAC. This would actually work
with the block ciphered encryption structure coded in Listing 6-64. However,
this would fail for AES-GCM. AES-GCM computes a MAC over the ciphertext,
rather than the plaintext. Although you could probably write code to maintain
this as a special case, AEAD ciphers are designed to be treated as a black-box.
You give it the plaintext and the key, and it gives you back an arbitrarily sized
chunk of data that it promises to decrypt and authenticate, with the key, at a
later date. To properly support AEAD, you must treat AEAD ciphers as yet
another sort of cipher.

c09.indd 517c09.indd 517 12/10/2010 9:46:53 AM12/10/2010 9:46:53 AM

518 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

To this end, modify the CipherSuite structure declaration to include a sec-
tion for AEAD ciphers as shown in Listing 9-25.

Listing 9-25: “tls.h” CipherSuite declaration with AEAD support

typedef struct

{

…

 void (*new_digest)(digest_ctx *context);

 int (*aead_encrypt)(const unsigned char *plaintext,

 const int plaintext_len,

 const unsigned char *addldata,

 const int addldata_len,

 unsigned char ciphertext[],

 void *iv,

 const unsigned char *key);

 int (*aead_decrypt)(const unsigned char *ciphertext,

 const int ciphertext_len,

 const unsigned char *addldata,

 const int addldata_len,

 unsigned char plaintext[],

 void *iv,

 const unsigned char *key);

}

CipherSuite;

Now, to add support for the standardized AES_GCM cipher mode, you must
just add another element to the list of cipher suites declared in Listing 6-10.
Unfortunately, RFC 5288 assigns the cipher suite ID 0x9C to AES-GCM. Remember
that the suites array is positional; if you skip an element, you have to insert a
NULL placeholder. Cipher suite ID 0x9C works out to element 156. Prior to this
chapter, the last element in this array was 58. To keep up with this method of
inserting new ciphers, you’d have to include 98 empty elements in this array.
Instead, just expand the list as shown in Listing 9-26.

Listing 9-26: “tls.h” aes-gcm cipher suite

typedef enum

{

...

 TLS_DH_anon_WITH_AES_256_CBC_SHA = 0x003A,

 TLS_RSA_WITH_AES_128_GCM_SHA256 = 0x009C,

 MAX_SUPPORTED_CIPHER_SUITE = 0x009D

} CipherSuiteIdentifier

Now, rather than explicitly declaring this new cipher suite in the array initial-
izer, add it to the init_tls call as shown in Listing 9-27.

c09.indd 518c09.indd 518 12/10/2010 9:46:53 AM12/10/2010 9:46:53 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 519

Listing 9-27: “tls.c” init_tls with AES-GCM cipher suite

void init_tls()

{

…

 // Extra cipher suites not previously declared

 suites[TLS_RSA_WITH_AES_128_GCM_SHA256].id = TLS_RSA_WITH_AES_128_GCM_

SHA256;

 suites[TLS_RSA_WITH_AES_128_GCM_SHA256].block_size = 0;

 suites[TLS_RSA_WITH_AES_128_GCM_SHA256].IV_size = 12;

 suites[TLS_RSA_WITH_AES_128_GCM_SHA256].key_size = 16;

 suites[TLS_RSA_WITH_AES_128_GCM_SHA256].hash_size = 16;

 suites[TLS_RSA_WITH_AES_128_GCM_SHA256].bulk_encrypt = NULL;

 suites[TLS_RSA_WITH_AES_128_GCM_SHA256].bulk_decrypt = NULL;

 suites[TLS_RSA_WITH_AES_128_GCM_SHA256].new_digest = NULL;

 suites[TLS_RSA_WITH_AES_128_GCM_SHA256].aead_encrypt = aes_gcm_encrypt;

 suites[TLS_RSA_WITH_AES_128_GCM_SHA256].aead_decrypt = aes_gcm_decrypt;

}

This declares the new cipher suite TLS_RSA_WITH_AES_128_GCM_SHA256. “But
wait,” you may be saying, “what is this ‘SHA256’? Doesn’t AES-GCM declare
its own MAC?” It does, in fact; RFC 5288 indicates that the SHA-256 should be
used to control the PRF. This is in response to section 5 of RFC 5246, which states

“New cipher suites MUST explicitly specify a PRF and, in general, SHOULD use
the TLS PRF with SHA-256 or a stronger standard hash function.”

At this point, all that’s left to do is invoke the AEAD cipher when such a suite
becomes active. This happens in the functions send_message, originally defi ned
in Listing 6-64, and tls_decrypt, originally defi ned in Listing 6-68. You might
want to peek back to their fi nal defi nitions before continuing. After the digest
routines, these are the two most complex functions in this book.

If you recall, send_message fi rst computed a MAC over the data to be sent,
prepended with a 64-bit sequence number. It then applies padding as neces-
sary, prepends the IV in the case of a block cipher (TLS 1.1+), and encrypts the
plaintext and the MAC before sending. AES-GCM is not much different, but a
single call computes the ciphertext and the MAC, and the associated data is the
sequence number and the header. The CipherSuite declaration from Listing 9-27
lists the new_digest as NULL, but the hash_size as 16. You can rewrite send_
message to take advantage of this by calculating the associated data whenever
the hash_size is non-zero as shown in Listing 9-28.

Listing 9-28: “tls.c” send_message with associated data support

int send_message(int connection,

 int content_type,

 const unsigned char *content,
(Continued)

c09.indd 519c09.indd 519 12/10/2010 9:46:53 AM12/10/2010 9:46:53 AM

520 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

 short content_len,

 ProtectionParameters *parameters)

{

…

 unsigned char *mac = NULL;

 unsigned char mac_header[13];

 digest_ctx digest;

…

 active_suite = &suites[parameters->suite];

 // Compute the MAC header always, since this will be used

 // for AEAD or other ciphers

 // Allocate enough space for the 8-byte sequence number, the 5-byte pseudo

 // header, and the content.

 // These will be overwritten below

 if (active_suite->hash_size)

 {

 int sequence_num;

 memset(mac_header, ‘\0’, 8);

 sequence_num = htonl(parameters->seq_num);

 memcpy(mac_header + 4, &sequence_num, sizeof(int));

 header.type = content_type;

 header.version.major = TLS_VERSION_MAJOR;

 header.version.minor = TLS_VERSION_MINOR;

 header.length = htons(content_len);

 mac_header[8] = header.type;

 mac_header[9] = header.version.major;

 mac_header[10] = header.version.minor;

 memcpy(mac_header + 11, &header.length, sizeof(short));

 }

 if (active_suite->new_digest)

 {

 unsigned char *mac_buffer = malloc(13 + content_len);

 mac = (unsigned char *) malloc(active_suite->hash_size);

 active_suite->new_digest(&digest);

 memcpy(mac_buffer, mac_header, 13);

 memcpy(mac_buffer + 13, content, content_len);

…

This change just creates a new mac_header buffer and pulls its computation out
of the MAC computation so that it’s accessible to the AEAD encryption function.

Of course, you must also do the encryption itself. This is a tad complex just
because you’re indexing into various places in various buffers but ultimately
boils down to a call to AEAD encrypt with the plaintext, associated data, nonce,
and key previously negotiated. This is shown in Listing 9-29.

c09.indd 520c09.indd 520 12/10/2010 9:46:53 AM12/10/2010 9:46:53 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 521

Listing 9-29: “tls.c” send_message with AEAD encryption support

…

 if (active_suite->bulk_encrypt || active_suite->aead_encrypt)

 {

 unsigned char *encrypted_buffer = malloc(send_buffer_size +

 active_suite->IV_size +

 (active_suite->aead_encrypt ? active_suite->hash_size : 0));

 int plaintext_len;

 // TODO make this random

 memset(parameters->IV, ‘\0’, active_suite->IV_size);

 // The first 5 bytes (the header) and the IV aren’t encrypted

 memcpy(encrypted_buffer, send_buffer, 5);

 memcpy(encrypted_buffer + 5, parameters->IV, active_suite->IV_size);

 plaintext_len = 5 + active_suite->IV_size;

 if (active_suite->bulk_encrypt)

 {

 active_suite->bulk_encrypt(send_buffer + 5,

 send_buffer_size - 5, encrypted_buffer + plaintext_len,

 parameters->IV, parameters->key);

 }

 else if (active_suite->aead_encrypt)

 {

 active_suite->aead_encrypt(send_buffer + 5,

 send_buffer_size - 5 - active_suite->hash_size,

 mac_header, 13, (encrypted_buffer + active_suite->IV_size + 5),

 parameters->IV, parameters->key);

 }

 free(send_buffer);

 send_buffer = encrypted_buffer;

 send_buffer_size += active_suite->IV_size;

 }

...

As you can see, other than allocating enough space in the target encryption
buffer for the MAC, this isn’t that much different than ordinary block cipher
encryption.

Decrypting with AEAD cipher support is about the same. First, declare
a mac_header independent of the MAC buffer and precompute it. However,
remember that the length declared in the MAC header was the length of the
data before padding or the MAC was added. For this reason, it’s impossible,
in the block cipher case, to precompute the MAC header before decrypting the
data; you need to know how much padding was added, and you can’t do that
without decrypting. All this means is that a bit of code — the MAC header
computation — must be duplicated in tls_decrypt as shown in Listing 9-30
whereas it was reused in send_message.

c09.indd 521c09.indd 521 12/10/2010 9:46:53 AM12/10/2010 9:46:53 AM

522 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

Listing 9-30: “tls.c” tls_decrypt with AEAD decryption

int tls_decrypt(const unsigned char *header, // need this for MAC verification

 unsigned char *encrypted_message,

 short encrypted_length,

 unsigned char **decrypted_message,

 ProtectionParameters *parameters)

{

…

 unsigned char *mac_buffer;

 unsigned char mac_header[13];

 int sequence_number;

…

 if (active_suite->bulk_decrypt)

 {

…

 }

 else if (active_suite->aead_decrypt)

 {

 if (active_suite->IV_size)

 {

 memcpy(parameters->IV, encrypted_message, active_suite->IV_size);

 }

 decrypted_length = encrypted_length - active_suite->hash_size;

 // Compute the MAC header, which is the AD part. This

 // has to be done separately here, since the length computation

 // is slightly different than in the block cipher case

 memset(mac_header, 0x0, 13);

 sequence_number = htonl(parameters->seq_num);

 memcpy(mac_header + 4, &sequence_number, sizeof(int));

 memcpy(mac_header + 8, header, 3);

 length = htons(decrypted_length);

 memcpy(mac_header + 11, &length, 2);

 if (active_suite->aead_decrypt(encrypted_message + active_suite->IV_size,

 encrypted_length, mac_header, 13, *decrypted_message,

 parameters->IV, parameters->key))

 {

 // MAC verification failed

 return -3;

 }

 }

Notice that if aead_decrypt returns a non-zero response, indicating a MAC
failure, this routine returns �3, which triggers a “bad mac” error to be returned
to the caller.

c09.indd 522c09.indd 522 12/10/2010 9:46:54 AM12/10/2010 9:46:54 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 523

This implementation of AEAD is crucially fl awed, though. It does exactly
what I warned you earlier to never ever do, which is to reuse a nonce. There’s no
provision here to ever change the IV; because each call to aead_encrypt starts
the nonce counter back over at 0, every record is encrypted with the same set
of input. You can’t let the counter run over from one record to the next, either.
The other end fails to decrypt the message because the receiving code expects to
start over from 2 (or 1, or whatever) at decryption time. However, the 12 bytes of
nonce are controlled entirely by the sender. There’s nothing stopping you from
making the last four bytes of the nonce itself another counter, whose values
do persist from one aead_encrypt to the next. In fact, you could go ahead and
safely use the MAC sequence_num for exactly this purpose.

AES-CCM has not yet been assigned a cipher suite identifi er in the TLS space;
when and if such an identifi er is assigned, its use would be exactly like the
AES-GCM example shown here.

In actual practice, AEAD ciphers don’t offer much benefi t over block ciphers
with strong MAC functions when implemented in software. Most of the interest
in these ciphers surrounds dedicated hardware. AES-GCM can be parallelized to
encrypt 10Gbps, which is more than enough to encrypt an HDMI video stream
in real time. Intel’s newest processors include a PCLMULQDQ instruction that is
explicitly stated as being an optimization to support AES-GCM. Expect AEAD
ciphers to be of great interest to embedded hardware implementers.

Working ECC Extensions into the TLS Library

Strictly speaking, ECC is not unique to TLS 1.2; AEAD is, but ECC is not. Although
TLS 1.2 is the fi rst version of TLS to mention ECC specifi cally, RFC 4492, which
defi nes the ECC extensions to TLS, was written with TLS 1.1 in mind. In fact,
OpenSSL version 1.0, which was released in March of 2010, supports RFC 4492
ECC extensions but does not support TLS 1.1. Make sure that you have a good
grasp of the ECC concepts presented in Chapters 3 and 4 before reading this
section.

Recall that ECC is mostly of interest for public-key operations; ECC operations
are used to exchange a symmetric key and validate signatures, but plain-old
AES usually takes over from there. Key exchange is done via elliptic-curve Diffi e-
Hellman (ECDH), and signatures are verifi ed using elliptic-curve DSA (ECDSA).

ECDH is analogous to integer Diffi e-Hellman. Integer Diffi e-Hellman has
both sides agree on a starting point — an integer — and each side raises it to
an arbitrary (secret) power, exchanging the results with one another. Each side
then raises the result by the secret. The distributivity of exponentiation guar-
antees that each side arrives at the same answer; the diffi culty of the discrete

c09.indd 523c09.indd 523 12/10/2010 9:46:54 AM12/10/2010 9:46:54 AM

524 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

logarithm problem thwarts an attacker’s attempt to look at the starting point
and the result to try to work backward and discover one of the secret numbers.

ECDH works the same way; both sides agree to a starting point, in this case
a point on an elliptic curve whose parameters are negotiated in the clear. Each
side then multiplies that point by a secret number, shares the resulting point
with the other, and completes the shared multiplication with its own secret
number. Because ECC point multiplication is distributive, they both arrive at
the same shared point, and because ECC division is a diffi cult problem to which
no effi cient solution is known, an attacker can’t work backward to uncover the
secret number.

As discussed in Chapter 8, this is actually good enough for a key exchange
in plain view of a passive eavesdropper. However, in order to guard against
man-in-the-middle attacks, at least one side must authenticate the other, and
the key exchange parameters must be digitally signed. Digital signatures imply
public keys, and public keys imply certifi cates. Therefore, a complete ECC key
exchange solution additionally involves the exchange of a certifi cate bearing
an ECDSA public key, which is then used to sign the ECDH parameters verifi -
ably. As long as the client trusts the signer of the certifi cate (or the signer of the
signer, and so on), the key exchange is authentic.

ECDSA is, of course, analogous to DSA. A DSA public/private keypair is just
two numbers x and y, along with a set of parameters p, g, and q. The signature is
computed over a hash of the message and produces two numbers r and s — the
verifi er takes p, g, q, and y and verifi es that r is correct for s according to y.

An ECDSA public key is a point, and the private key is an integer. Of course,
everything is relative to a curve that is defi ned in terms of two numbers a and
b, and a starting point G. The signer computes an r and s pair from the private
key point; the verifi er checks to see if r and s match according to the public key
point. So, to support ECC, you must implement ECDH for key exchange and
ECDSA for signature verifi cation.

Note that there’s no reason at all why you must use ECDH and ECDSA together.
It’s perfectly permissible — and even preferable, in some cases — for a server to
present an RSA certifi cate and use the RSA key to sign a set of parameters for
ECDH key exchange. Just like using an RSA key to sign a set of DH keys, this
enables you to present an RSA certifi cate but still achieve perfect forward secrecy.

Most of the heavy lifting surrounding the ECC implementation is done in
Chapter 4. However, to actually put it in practice, there are a couple of practical
considerations. The fi rst is the elliptic curve itself. Chapter 4 glossed over the
selection of the a and b parameters that defi ned the curve, the generator point
G, the prime fi eld p, and the order n. As it turns out, it’s not easy to create a
correct set, and it’s even harder to do so securely. Fortunately, you don’t have
to. The NIST has created a set of “named curves” that you can use. There’s no
particular danger in letting everybody share the same set of curves as long as
everyone randomly chooses the secret parameters.

c09.indd 524c09.indd 524 12/10/2010 9:46:54 AM12/10/2010 9:46:54 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 525

The Standards for Effi cient Cryptography Group (SECG) lists the named
curves and their values at http://www.secg.org/download/aid-784/sec2-v2
.pdf. The names the groups gives to the curves are along the lines of secp192r1,
which indicates that it’s an SEC (Standards for Effi cient Cryptography) prime-
fi eld curve, 192 bits long, and that it is randomly generated. You also might see
sectnnn curves that identify characteristic 2 fi nite-fi eld curves and secpnnnk
curves that identify Koblitz curves. The distinction isn’t particularly important
here; this book focuses on the “secp” curves.

Some of the SECP curves come from an older NIST standard, which referred
to the curves as simply primennnvx where nnn was the length of the parameters
and x was just a version. prime192v1 is identical to secp192r1, and prime256v1
is identical to secp256r1.

Named curve support is straightforward, if slightly tedious. A 256-bit named
curve such as secp256r1 is described by a list of six 256-bit (32-byte) numeric
values. To support a little bit of diversity, go ahead and implement two named
curves — prime192v1/secp192r1 and prime256v1/secp256r1 — as shown in
Listing 9-31.

Listing 9-31: “ecc.c” get_named_curve

unsigned char prime192v1_P[] = {

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF

};

unsigned char prime192v1_A[] = {

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC

};

unsigned char prime192v1_B[] = {

 0x64, 0x21, 0x05, 0x19, 0xE5, 0x9C, 0x80, 0xE7,

 0x0F, 0xA7, 0xE9, 0xAB, 0x72, 0x24, 0x30, 0x49,

 0xFE, 0xB8, 0xDE, 0xEC, 0xC1, 0x46, 0xB9, 0xB1

};

unsigned char prime192v1_Gx[] = {

 0x18, 0x8D, 0xA8, 0x0E, 0xB0, 0x30, 0x90, 0xF6,

 0x7C, 0xBF, 0x20, 0xEB, 0x43, 0xA1, 0x88, 0x00,

 0xF4, 0xFF, 0x0A, 0xFD, 0x82, 0xFF, 0x10, 0x12

};

unsigned char prime192v1_Gy[] = {

 0x07, 0x19, 0x2B, 0x95, 0xFF, 0xC8, 0xDA, 0x78,

 0x63, 0x10, 0x11, 0xED, 0x6B, 0x24, 0xCD, 0xD5,

 0x73, 0xF9, 0x77, 0xA1, 0x1E, 0x79, 0x48, 0x11

};

unsigned char prime192v1_N[] = {

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

(Continued)

c09.indd 525c09.indd 525 12/10/2010 9:46:54 AM12/10/2010 9:46:54 AM

526 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

 0xFF, 0xFF, 0xFF, 0xFF, 0x99, 0xDE, 0xF8, 0x36,

 0x14, 0x6B, 0xC9, 0xB1, 0xB4, 0xD2, 0x28, 0x31

};

unsigned char prime256v1_P[] = {

 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF

};

unsigned char prime256v1_A[] = {

 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01,

 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF,

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC

};

unsigned char prime256v1_B[] = {

 0x5A, 0xC6, 0x35, 0xD8, 0xAA, 0x3A, 0x93, 0xE7,

 0xB3, 0xEB, 0xBD, 0x55, 0x76, 0x98, 0x86, 0xBC,

 0x65, 0x1D, 0x06, 0xB0, 0xCC, 0x53, 0xB0, 0xF6,

 0x3B, 0xCE, 0x3C, 0x3E, 0x27, 0xD2, 0x60, 0x4B

};

unsigned char prime256v1_Gx[] = {

 0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47,

 0xF8, 0xBC, 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2,

 0x77, 0x03, 0x7D, 0x81, 0x2D, 0xEB, 0x33, 0xA0,

 0xF4, 0xA1, 0x39, 0x45, 0xD8, 0x98, 0xC2, 0x96

};

unsigned char prime256v1_Gy[] = {

 0x4F, 0xE3, 0x42, 0xE2, 0xFE, 0x1A, 0x7F, 0x9B,

 0x8E, 0xE7, 0xEB, 0x4A, 0x7C, 0x0F, 0x9E, 0x16,

 0x2B, 0xCE, 0x33, 0x57, 0x6B, 0x31, 0x5E, 0xCE,

 0xCB, 0xB6, 0x40, 0x68, 0x37, 0xBF, 0x51, 0xF5

};

unsigned char prime256v1_N[] = {

 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,

 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,

 0xBC, 0xE6, 0xFA, 0xAD, 0xA7, 0x17, 0x9E, 0x84,

 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63, 0x25, 0x51

};

int get_named_curve(const char *curve_name, elliptic_curve *target)

{

 if (!strcmp(“prime192v1”, curve_name) ||

 !strcmp(“secp192r1”, curve_name))

 {

 load_huge(&target->p, prime192v1_P, sizeof(prime192v1_P));

 load_huge(&target->a, prime192v1_A, sizeof(prime192v1_A));

 load_huge(&target->b, prime192v1_B, sizeof(prime192v1_B));

c09.indd 526c09.indd 526 12/10/2010 9:46:54 AM12/10/2010 9:46:54 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 527

 load_huge(&target->G.x, prime192v1_Gx,

 sizeof(prime192v1_Gx));

 load_huge(&target->G.y, prime192v1_Gy,

 sizeof(prime192v1_Gy));

 load_huge(&target->n, prime192v1_N, sizeof(prime192v1_N));

 return 0;

 }

 else if (!strcmp(“prime256v1”, curve_name) ||

 !strcmp(“secp256r1”, curve_name))

 {

 load_huge(&target->p, prime256v1_P, sizeof(prime256v1_P));

 load_huge(&target->a, prime256v1_A, sizeof(prime256v1_A));

 load_huge(&target->b, prime256v1_B, sizeof(prime256v1_B));

 load_huge(&target->G.x, prime256v1_Gx,

 sizeof(prime256v1_Gx));

 load_huge(&target->G.y, prime256v1_Gy,

 sizeof(prime256v1_Gy));

 load_huge(&target->n, prime256v1_N, sizeof(prime256v1_N));

 return 0;

 }

 // Unsupported named curve

 return 1;

}

Of course, there’s no rule that you must use a named curve. Everywhere
that TLS calls for an elliptic curve, a provision is made to enable either side to
declare a curve explicitly by providing the p, a, b, G, and n values. However,
named curves are far more common, so explicit curves aren’t examined here.

ECDSA Certifi cate Parsing
The fi rst step in adding ECC support is parsing an ECDSA certifi cate — that is,
an X.509 certifi cate whose public key info includes an ECDSA public key and a
description of a curve to which the public key (a point on the curve) is relative.
Recall from Chapter 5 that a certifi cate consists of eight elements: the version,
the serial number, the signature algorithm, the issuer, the validity period, the
subject, the subject’s public key, and an optional set of extensions. Of these,
only two are dependent on the public key algorithm: the signature algorithm
and the public key itself.

First, add ECDSA as a valid algorithm identifi er as shown in Listing 9-32 and
then modify parse_algorithm_identifier from Listing 5-16 to accept SHA-256
with ECDSA as shown in Listing 9-33.

c09.indd 527c09.indd 527 12/10/2010 9:46:54 AM12/10/2010 9:46:54 AM

528 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

Listing 9-32: “x509.h” ecdsa algorithm identifi er

typedef enum

{

 md5WithRSAEncryption,

 shaWithRSAEncryption,

 shaWithDSA,

 sha256WithECDSA

}

signatureAlgorithmIdentifier;

Listing 9-33: “x509.c” parse_algorithm_identifi er with ECDSA support

static const unsigned char OID_md5WithRSA[] =

 { 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x04 };

static const unsigned char OID_sha1WithRSA[] =

 { 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x05 };

static const unsigned char OID_sha1WithDSA[] =

 { 0x2A, 0x86, 0x48, 0xCE, 0x38, 0x04, 0x03 };

static const unsigned char OID_sha256WithECDSA[] =

 { 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x04, 0x03, 0x02 };

static int parse_algorithm_identifier(signatureAlgorithmIdentifier *target,

 struct asn1struct *source)

{

 struct asn1struct *oid = (struct asn1struct *) source->children;

...

 else if (!memcmp(oid->data, OID_sha256WithECDSA, oid->length))

 {

 *target = sha256WithECDSA;

 }

As you can see, there’s nothing particularly complex or surprising here; you
just recognize a new OID.

A lthough parsing the public key is not necessarily complex, it’s odd in the
context of ASN.1. An RSA public key is a bit-string representation of two numbers
n and e, both given in an ASN.1 structure, and both properly ASN.1 encoded
with a tag and a length. A DSA public key is similarly encoded as a bit string
representation of ASN.1 encoded data. An ECDSA key, however, is not. Although
the public key is an ASN.1 bit string, it’s not an ASN.1 encoded structure, but a
different, incompatible ASNI X9.62 encoded structure. This was probably done
for compatibility with existing software, or perhaps it was done in the IETF’s
ongoing quest to ensure that every specifi cation ever written for any purpose
is somehow relevant to TLS.

Fortunately, the X9.62 structure — at least in the context of an ECDSA public
key — isn’t too hard to parse. The fi rst byte is an identifi er whose value is either
3, meaning compressed, or 4, meaning uncompressed. An uncompressed ECC point
lists the x and y values back-to-back with no delimiter or length declaration.

c09.indd 528c09.indd 528 12/10/2010 9:46:54 AM12/10/2010 9:46:54 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 529

The parser must split the data in half and recognize that the fi rst half is x and
the last half is y.

What about the compressed format? Well, if you think about it, it’s somewhat
redundant to provide the y value. After all, an elliptic curve is defi ned by an
algebraic formula that describes y in terms of x. Technically speaking, all you
really need to know is the x value, along with the curve parameters themselves,
and you can compute the y value. The only wrinkle here is that there are two
possible y values for a given x — one positive and one negative — because the
formula is y2 � x3 � ax � b. A compressed point, then, is just the x value with
a single extra bit indicating whether the y value is the positive or the negative
one; the implementation must multiply out the elliptic curve to recover y. This
book only deals with uncompressed points.

Modify the algorithm identifi er as shown in Listing 9-34 to recognize the
new public key algorithm type, and modify parse_public_key_info from
Listing 5-19 as shown in Listing 9-35 to properly parse ECDSA public keys.

Listing 9-34: “x509.h” ECDSA algorithm identifi er

typedef enum

{

 rsa,

 dsa,

 dh,

 ecdsa

}

algorithmIdentifier;

typedef struct

{

 algorithmIdentifier algorithm;

…

 elliptic_curve ecdsa_curve;

 point ecdsa_public_key;

}

public_key_info;

Listing 9-35: “x509.c” parse_public_key_info with ECDSA support

static const unsigned char OID_RSA[] =

 { 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01 };

static const unsigned char OID_DSA[] =

 { 0x2A, 0x86, 0x48, 0xCE, 0x38, 0x04, 0x01 };

static const unsigned char OID_DH[] =

 { 0x2A, 0x86, 0x48, 0xCE, 0x3E, 0x02, 0x01 };

static const unsigned char OID_ECDSA[] =

 { 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x02, 0x01 };

(Continued)

c09.indd 529c09.indd 529 12/10/2010 9:46:54 AM12/10/2010 9:46:54 AM

530 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

// A.K.A. secp192R1, AKA NIST P-192

static const unsigned char OID_PRIME192V1[] =

 { 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, 0x01, 0x01 };

static int parse_public_key_info(public_key_info *target,

 struct asn1struct *source)

{

…

 public_key = source->children->next;

 if (!memcmp(oid->data, &OID_ECDSA, sizeof(OID_ECDSA)))

 {

 // TODO this only supports named curves (actually, only one specific

 // curve).

 struct asn1struct *curve = oid->next;

 target->algorithm = ecdsa;

 if (!memcmp(curve->data, &OID_PRIME192V1, sizeof(OID_PRIME192V1)))

 {

 // TODO generate a mapping of OIDs to curve names

 if (get_named_curve(“prime192v1”, &target->ecdsa_curve))

 {

 return 1;

 }

 }

 else

 {

 fprintf(stderr,

 “Error, unsupported named curve in ECDSA certificate\n”);

 return 1;

 }

 load_huge(&target->ecdsa_public_key.x, public_key->data + 2,

 (public_key->length - 2) / 2);

 load_huge(&target->ecdsa_public_key.y,

 (public_key->data + 2) + ((public_key->length - 2) / 2),

 (public_key->length - 2) / 2);

 return 0;

 }

...

As you can see, the certifi cate doesn’t refer to curve names by their actual
names; it uses another alias in OID form. The named curve OID is inserted
after the public key OID — if the OID is recognized, it’s converted into a string
curve name and the curve is populated into the ecdsa_curve parameter of the
supplied public_key_info instance.

Now, if you go back and look at Listing 5-19 that parses the RSA public key
info or Listing 5-32 that parses the DSA public key info, you see that the next
step in both cases is to ASN.1 parse the bit string that contains the public key
info. ECDSA keys are not ASN.1 encoded. They’re instead encoded as shown
in Figure 9-6.

c09.indd 530c09.indd 530 12/10/2010 9:46:55 AM12/10/2010 9:46:55 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 531

F igure 9-6: X9.62 ECC point encoding

YX

compressed/uncompressed

The end of Listing 9-35 illustrates this parsing. Because every byte-aligned
ASN.1 bit string must begin with a leading 0 byte as discussed in Chapter 5,
the parsing must skip over this 0 byte and the “compressed/uncompressed”
declaration. The remainder is split down the middle and the fi rst half becomes
the x point and the second half the y point.

Recall that the function parse_x509_chain, introduced in Listing 6-29, is
responsible for parsing a certifi cate and copying its public key info into that of
the TLSParameters structure. This must be modifi ed as shown in Listing 9-36
to recognize the case of ECDSA.

Listing 9-36: “x509.c” parse_x509_chain with ECDSA support

char *parse_x509_chain(unsigned char *buffer,

 int pdu_length,

 public_key_info *server_public_key)

{

…

 switch (server_public_key->algorithm)

 {

…

 case ecdsa:

 set_huge(&server_public_key->ecdsa_curve.a, 0);

 set_huge(&server_public_key->ecdsa_curve.b, 0);

 set_huge(&server_public_key->ecdsa_curve.G.x, 0);

 set_huge(&server_public_key->ecdsa_curve.G.y, 0);

 set_huge(&server_public_key->ecdsa_curve.p, 0);

 set_huge(&server_public_key->ecdsa_curve.n, 0);

 set_huge(&server_public_key->ecdsa_public_key.x, 0);

 set_huge(&server_public_key->ecdsa_public_key.y, 0);

 copy_huge(&server_public_key->ecdsa_curve.a,

 &certificate.tbsCertificate.subjectPublicKeyInfo.ecdsa_curve.a);

 copy_huge(&server_public_key->ecdsa_curve.b,

 &certificate.tbsCertificate.subjectPublicKeyInfo.ecdsa_curve.b);

 copy_huge(&server_public_key->ecdsa_curve.G.x,

 &certificate.tbsCertificate.subjectPublicKeyInfo.ecdsa_curve.G.x);

 copy_huge(&server_public_key->ecdsa_curve.G.y,

 &certificate.tbsCertificate.subjectPublicKeyInfo.ecdsa_curve.G.y);

 copy_huge(&server_public_key->ecdsa_curve.p,

 &certificate.tbsCertificate.subjectPublicKeyInfo.ecdsa_curve.p);

(Continued)

c09.indd 531c09.indd 531 12/10/2010 9:46:55 AM12/10/2010 9:46:55 AM

532 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

 copy_huge(&server_public_key->ecdsa_curve.n,

 &certificate.tbsCertificate.subjectPublicKeyInfo.ecdsa_curve.n);

 copy_huge(&server_public_key->ecdsa_public_key.x,

 &certificate.tbsCertificate.subjectPublicKeyInfo.ecdsa_public_key.x);

 copy_huge(&server_public_key->ecdsa_public_key.y,

 &certificate.tbsCertificate.subjectPublicKeyInfo.ecdsa_public_key.y);

 break;

…

What about the ECDSA signature itself? Actually, there’s no special handling
there; an ECDSA signature is two numbers, r and s, just like a DSA signature.
There’s no need for a special handler. Modify parse_x509_certificate to
recognize this case as shown in Listing 9-37.

Listing 9-37: “x509.c” parse_x509_certifi cate with ECDSA signatures

int parse_x509_certificate(const unsigned char *buffer,

 const unsigned int certificate_length,

 signed_x509_certificate *parsed_certificate)

{

…

 switch (parsed_certificate->algorithm)

 {

 case md5WithRSAEncryption:

 case shaWithRSAEncryption:

 if (parse_rsa_signature_value(parsed_certificate, signatureValue))

 {

 return 42;

 }

 break;

 case shaWithDSA:

 case sha256WithECDSA:

 if (parse_dsa_signature_value(parsed_certificate, signatureValue))

 {

 return 42;

 }

 break;

…

 switch (parsed_certificate->algorithm)

 {

…

 case sha256WithECDSA:

 new_sha256_digest(&digest);

 break;

Remember that there’s no particular reason that a certifi cate containing
an ECDSA public key must be signed using ECDSA. In fact, it’s likely that a

c09.indd 532c09.indd 532 12/10/2010 9:46:55 AM12/10/2010 9:46:55 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 533

commercially signed certifi cate is going to be signed using RSA because that’s
all that commercial CAs currently support.

You’re unlikely to be able to fi nd a server that presents an ECDSA certifi cate.
However, as of version 1.0.0, OpenSSL enables you to create a self-signed ECDSA,
certifi cate. First, generate a set of parameters; in other words, select a named curve:
[jdavies@localhost ssl]$ openssl ecparam -name prime192v1 -out ecprime192v1.pem

As you can see from the ASN.1 output, there’s nothing in there except the
OID of the named curve:
[jdavies@localhost ssl]$./asn1 -pem ecprime192v1.pem

0000: OBJECT IDENTIFIER (6:8) 2a 86 48 ce 3d 03 01 01

However, you can use this as input to the req command to generate a new
ECDSA certifi cate:

[jdavies@localhost ssl]$ openssl req -x509 -newkey ec:ecprime192v1.pem \

 -keyout ecdsa_key.pem -out ecdsa_cert.pem -sha256

ECDHE Support in TLS
To actually make use of this new certifi cate, you should extend the TLS imple-
mentation to support the ECDHE_ECDSA cipher suites. Not every cipher algo-
rithm is supported with ECDHE_ECDSA key exchange (nor ECDH_RSA). In
fact, the only algorithms standardized by RFC 4492 are RC4, 3DES, AES-128,
and AES-256. These suites are given the identifi ers 0xC007–0xC00A. Because
these are large numbers, you should instantiate them in the init_tls function
just like the AEAD ciphers from Listing 9-27. The initialization of TLS_ECDHE_
ECDSA_WITH_AES_128_CBC_SHA is shown in Listing 9-38.

Listing 9-38: “tls.c” init_tls with ECDHE_ECDSA support

void init_tls()

{

…

 suites[TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA].id =

 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA;

 suites[TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA].block_size = 16;

 suites[TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA].IV_size = 16;

 suites[TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA].key_size = 16;

 suites[TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA].hash_size = SHA1_BYTE_SIZE;

 suites[TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA].bulk_encrypt = aes_128_encrypt;

 suites[TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA].bulk_decrypt = aes_128_decrypt;

 suites[TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA].new_digest = new_sha1_digest;

 suites[TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA].aead_encrypt = NULL;

 suites[TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA].aead_decrypt = NULL;

}

c09.indd 533c09.indd 533 12/10/2010 9:46:55 AM12/10/2010 9:46:55 AM

534 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

You should have no problem fi lling in the remaining cipher suites; they all
use SHA-1 MACs, so the only change is the bulk_encrypt and bulk_decrypt
function pointers. There are no currently defi ned cipher suites that use both
AEAD encryption and ECC key exchange.

If you look at the typical SSL handshake shown in Figure 6-1, you can see
that the key exchange portion affects three messages: the certifi cate, which
was addressed earlier, the client key exchange, and, optionally, the server key
exchange. (It also affects the client certifi cate and client certifi cate verify, if client
authentication is being used). Because the cipher suites being examined here
are ECDHE cipher suites, the server is sending a key exchange message.

To complete its side of the ECDHE key exchange, the server must select a curve,
choose a random number b, multiply the curve’s generator point by b, and send
the resulting point on to the client. It must also, of course, hang on to b so that
it can multiply the client’s response point by this amount. Therefore, the server
key exchange must consist of a curve — either explicitly or by name — and a
point. Note that the selected curve does not have to be the same as the curve in
the certifi cate. As always, the whole server key exchange is signed according
to the previously exchanged certifi cate, unless an anonymous cipher suite is
being used.

To support ECDH, you need a place to put the ephemeral key parameters:

 1. Modify the TLSParameters, as shown in Listing 9-39.

Listing 9-39: “tls.h” TLSParameters with ECDH support

typedef struct

{

…

 dh_key server_dh_key;

 elliptic_curve server_ecdh_params;

 point server_ecdh_key;

 int got_client_hello;

…

 2. Modify the parse_server_key_exchange function from Listing 8-19 to
read and populate these new parameters as shown in Listing 9-40.

Listing 9-40: “tls.c” parse_server_key_exchange with ECDH support

typedef enum

{

 secp192r1 = 19,

 secp256r1 = 23

}

named_curve;

typedef enum

{

c09.indd 534c09.indd 534 12/10/2010 9:46:55 AM12/10/2010 9:46:55 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 535

 explicit_prime = 1,

 explicit_char2 = 2,

 named = 3

}

ec_curve_type;

typedef enum

{

 compressed = 3,

 uncompressed = 4

}

ec_point_type;

static char *parse_server_key_exchange(unsigned char *read_pos,

 TLSParameters *parameters)

{

 short length;

 int i;

 unsigned char *dh_params = read_pos;

 HashAlgorithm hash_alg;

 SignatureAlgorithm sig_alg;

 hash_alg = read_pos[0];

 sig_alg = read_pos[1];

 read_pos += 2;

 switch (parameters->pending_send_parameters.suite)

 {

 case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA:

 {

 unsigned char curve_type;

 unsigned char curve;

 unsigned char public_key_length;

 unsigned char point_type;

 read_pos = read_buffer((void *) &curve_type, read_pos, 1);

 switch (curve_type)

 {

 case named:

 // named curve takes up two bytes, but only one is populated

 read_pos += 1;

 read_pos = read_buffer((void *) &curve, read_pos, 1);

 switch (curve)

 {

 case secp256r1:

 get_named_curve(“prime256v1”,

 ¶meters->server_ecdh_params);

 break;

 default:

 fprintf(stderr, “error, unsupported named curve %d\n”, curve);

(Continued)

c09.indd 535c09.indd 535 12/10/2010 9:46:55 AM12/10/2010 9:46:55 AM

536 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

 return NULL;

 }

 break;

 default:

 fprintf(stderr, “Error, unsupported curve type %d.\n”,

 curve_type);

 return NULL;

 }

 // Followed by a length-delimited (opaque) public key.

 read_pos = read_buffer((void *) &public_key_length, read_pos, 1);

 read_pos = read_buffer((void *) &point_type, read_pos, 1);

 if (point_type == uncompressed)

 {

 load_huge(¶meters->server_ecdh_key.x, read_pos,

 (public_key_length - 1) / 2);

 load_huge(¶meters->server_ecdh_key.y,

 (read_pos + ((public_key_length - 1) / 2)),

 ((public_key_length - 1) / 2));

 read_pos += (public_key_length - 1);

 // Read and verify the signature

 memcpy(&length, read_pos, 2);

 length = ntohs(length);

 read_pos += 2;

 if (!verify_signature(dh_params, (read_pos - 2 - dh_params),

 read_pos, length, parameters))

 {

 return NULL;

 }

 read_pos += length;

 }

 else

 {

 printf(“point type %d\n”, point_type);

 fprintf(stderr, “Error, compressed ECDH public keys not supported.\n”);

 return NULL;

 }

 break;

 default:

 // XXX assume DHE if not ECDHE

 for (i = 0; i < 4; i++)

 {

Most of the logic here surrounds erroring out if any of the unsupported
options are presented. This code handles the simplest case, when the server
uses a named curve and presents the public key in uncompressed format.
The fi rst part of this is pretty similar to the public key parsing in Listing 9-35,
which is unsurprising because both functions are parsing an ECC public key.

c09.indd 536c09.indd 536 12/10/2010 9:46:55 AM12/10/2010 9:46:55 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 537

Although they are both for different algorithms — one for ECDSA, and the
other for ECDH — the key itself is the same in both cases; a curve followed
by a point on that curve. Both functions only accept named curves, although
an option is defi ned in the specifi cation to accept explicit curves. Of course,
the public key parsing routine in the certifi cate code is looking for an OID.
TLS has a simpler means of naming curves — each one is assigned a unique
two-byte identifi er. At present, only 25 are defi ned, but expect more to be
defi ned over time.

The curve itself, whether presented by name or explicitly, is followed by the
point that identifi es the public key. This is encoded in the exact same ANSI X9.62
format that the certifi cate is coded in — one byte compressed/uncompressed
marker, with the remaining bytes split in half between x and y.

Finally, the whole parameter list — the curve specifi cation and the public
key point — are signed using the certifi cate’s private key, and the signature
follows the server key exchange parameters. This whole thing is passed into
verify_signature. In the case of ECDSA, just like DSA, the signature is two
values r and s, encoded in ASN.1 DER format. Because an ECDSA signature
looks just like a DSA signature, you can reuse a lot of the code from Listing 8-26
to verify an ECDSA signature, as shown in Listing 9-41.

Listing 9-41: “tls.c” verify_signature with ECDSA support

int verify_signature(unsigned char *message,

 int message_len,

 unsigned char *signature,

 int signature_len,

 TLSParameters *parameters)

{

…

 else if ((parameters->server_public_key.algorithm == dsa) ||

 (parameters->server_public_key.algorithm == ecdsa))

 {

 int verified;

…

 asn1free(&decoded_signature);

 if (parameters->server_public_key.algorithm == dsa)

 {

 verified = dsa_verify(¶meters->server_public_key.dsa_parameters,

 ¶meters->server_public_key.dsa_public_key,

 (unsigned char *) sha_digest.hash,

 SHA1_BYTE_SIZE,

 &received_signature);

 }

 else

 {

 digest_ctx sha256_digest;

(Continued)

c09.indd 537c09.indd 537 12/10/2010 9:46:55 AM12/10/2010 9:46:55 AM

538 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

 new_sha256_digest(&sha256_digest);

 update_digest(&sha256_digest, parameters->client_random, RANDOM_LENGTH);

 update_digest(&sha256_digest, parameters->server_random, RANDOM_LENGTH);

 update_digest(&sha256_digest, message, message_len);

 finalize_digest(&sha256_digest);

 verified = ecdsa_verify(¶meters->server_public_key.ecdsa_curve,

 ¶meters->server_public_key.ecdsa_public_key,

 sha256_digest.hash,

 SHA256_BYTE_SIZE,

 &received_signature);

 }

 if (!verified)

 {

 free_huge(&received_signature.r);

 free_huge(&received_signature.s);

 return 0;

 }

NOTE The ECDSA verifi cation routine itself was shown in Listing 4-40.

To support ECDHE on the client side, in the most common case of server-
only authentication, the only thing left is to actually perform the key exchange.
Modify send_client_key_exchange from Listing 6-33 to recognize ECDHE as
an option, as shown in Listing 9-42.

Listing 9-42: “tls.c” send_client_key_exchange with ECDHE support

static int send_client_key_exchange(int connection, TLSParameters *parameters)

{

…

 switch (parameters->pending_send_parameters.suite) {

 case TLS_NULL_WITH_NULL_NULL:

…

 case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA:

 premaster_secret_len = parameters->server_ecdh_params.p.size;

 premaster_secret = malloc(premaster_secret_len);

 key_exchange_message_len = ecdh_key_exchange(

 ¶meters->server_ecdh_key, ¶meters->server_ecdh_params,

 premaster_secret, &key_exchange_message);

 break;

 default:

 break;

 }

The rest of send_client_key_exchange doesn’t change in the case of ECDH;
the key exchange function itself populates the handshake message and the
premaster secret. All that’s left is to implement the ECDH key exchange itself

c09.indd 538c09.indd 538 12/10/2010 9:46:55 AM12/10/2010 9:46:55 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 539

using the curve and the point specifi ed by the server in the server key exchange,
which is shown in Listing 9-43.

Listing 9-43: “tls.c” ecdh_key_exchange

int ecdh_key_exchange(point *server_ecdh_key,

 elliptic_curve *curve,

 unsigned char *premaster_secret,

 unsigned char **key_exchange_message)

{

 ecc_key A;

 point K;

 set_huge(&A.d, 4); // TODO this should be random, and larger

 set_huge(&A.Q.x, 0);

 set_huge(&A.Q.y, 0);

 copy_huge(&A.Q.x, &curve->G.x);

 copy_huge(&A.Q.y, &curve->G.y);

 multiply_point(&A.Q, &A.d, &curve->a, &curve->p);

 // Response is now A.Q; put that into “key_exchange_message” as an

 // explicit point

 // XXX x & y must both be the same size for the encoding to work.

 *key_exchange_message = (unsigned char *) malloc(A.Q.x.size +

 A.Q.y.size + 2);

 (*key_exchange_message)[0] = A.Q.x.size + A.Q.y.size + 1;

 (*key_exchange_message)[1] = 0x04;

 memcpy((*key_exchange_message) + 2, A.Q.x.rep, A.Q.x.size);

 memcpy((*key_exchange_message) + 2 + A.Q.x.size, A.Q.y.rep, A.Q.y.size);

 // Now compute the premaster secret from the server’s point

 set_huge(&K.x, 0);

 set_huge(&K.y, 0);

 copy_huge(&K.x, &server_ecdh_key->x);

 copy_huge(&K.y, &server_ecdh_key->y);

 multiply_point(&K, &A.d, &curve->a, &curve->p);

 // The premaster secret is in K.x

 memcpy(premaster_secret, K.x.rep, curve->p.size);

 free_huge(&K.x);

 free_huge(&K.y);

 free_huge(&A.d);

 free_huge(&A.Q.x);

 free_huge(&A.Q.y);

 return A.Q.x.size + A.Q.y.size + 3;

}

The client responsibility in an ECDH key exchange — just as in an integer DH
key exchange — is lighter than the server’s; the client must just respond with a

c09.indd 539c09.indd 539 12/10/2010 9:46:56 AM12/10/2010 9:46:56 AM

540 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library

point. The implementation presented here is hardcoded to return the generator
point * 4. A proper, secure implementation would naturally choose much larger
numbers, and choose them randomly. The resulting point is encoded in ANSI
X9.62 format; this is the handshake message itself. This same “secret” value 4 is
then multiplied by the server’s point; this is the shared, premaster secret. You
may want to compare this to dh_key_exchange in Listing 6-43. In effect, the
mod_pow calls are replaced by point multiplication calls, and the shared secret is
retrieved from the x-coordinate of the shared point. Otherwise, these routines
are very similar.

ECC Client Hello Extensions
As you might imagine, it would be a shame if the client and the server went to
all the trouble to try to perform an ECC key exchange only to fi nd out that the
server wanted to use a named curve that the client didn’t support. It would be
even worse to fi nd out that the client and the server do share a named curve,
but the server keeps picking the wrong one because it doesn’t know which one
the client supports.

To address this, RFC 4492 defi nes a new client hello extension, extension 10,
which enables the client to list the named curves it supports. It uses the same
two-byte characters for the curves that the server key exchange uses. The special
values 0xFF01 and 0xFF02 denote explicit prime curves and explicit characteristic
2 curves, respectively. If either of these two values appears in the supported
curves extension, this indicates that the client can accept explicit curves. The
specifi cation is silent on what the server should do if the client presents an
elliptic-curve cipher suite, but does not indicate which named curves it supports.
OpenSSL currently just defaults to secp256r1 in this case.

In addition, RFC 4492 defi nes a second client hello extension, extension 11,
that enables the client to indicate what point formats it supports — compressed,
uncompressed, or both. It would be strange for a client to support compressed
but not uncompressed, and the specifi cation states that all implementations
must support uncompressed points, so it’s somewhat redundant for the client
to inform the server that it can support uncompressed points, but you can do
so if you like.

The Current State of TLS 1.2

One thing you may have noticed about this chapter was the conspicuous lack
of examples. TLS 1.2 is still very new and hasn’t found its way into very many
TLS implementations yet. OpenSSL doesn’t yet support it, although all the pieces
are in place. GnuTLS does support TLS 1.2, but it’s not enabled by default. To
run a TLS 1.2-aware server:

c09.indd 540c09.indd 540 12/10/2010 9:46:56 AM12/10/2010 9:46:56 AM

 Chapter 9 n Adding TLS 1.2 Support to Your TLS Library 541

 [jdavies@localhost ssl]$ gnutls-serv -p 8443 --x509fmtder --x509certfile cert.der \

 --x509keyfile key.der --protocols TLS1.2

GnuTLS doesn’t have an option to supply a password-protected key fi le, so
you have to remove password protection from the key fi le if you’ve enabled it
as is shown in Chapter 7. At the time of this writing, version 2.8.6 is also not
quite RFC 5246 compliant, either; it’s compliant to an earlier, draft specifi cation.
The most glaring difference is that it uses SHA-1 instead of SHA-256 to compute
the PRF and the fi nalize data. This may be corrected by the time you read this,
so you may want to double-check and see if this has been addressed yet. Even
with TLS 1.2 support, it doesn’t yet support any AEAD or ECC cipher suites.

OpenSSL 1.0.0 does support ECC, but only in the context of TLS 1.0. It doesn’t
yet even support TLS 1.1. To run an ECDHE-ECDSA-capable OpenSSL server,
you must have an ECDSA certifi cate as discussed previously, and then run:
[jdavies@localhost openssl-1.0.0]$ apps/openssl s_server -tls1 -cipher \

 ECDHE-ECDSA-AES128-SHA -cert ecdsacert.pem -key ecdsakey.pem -accept 8443

If you want to test the code in the previous section against this server, though,
you need to fi rst ensure that everything else is TLS 1.0 compliant.

c09.indd 541c09.indd 541 12/10/2010 9:46:56 AM12/10/2010 9:46:56 AM

c09.indd 542c09.indd 542 12/10/2010 9:46:56 AM12/10/2010 9:46:56 AM

543

C H A P T E R

10

Other Applications of SSL

So far, this book has been almost myopically focused on the application of TLS to
HTTP. Although HTTP was the primary motivation for the development of SSL
in the fi rst place, and continues to be the principal driver behind its evolution,
HTTP is not the only protocol that relies on SSL/TLS to provide privacy and
authentication extensions. This chapter examines a few of these other applica-
tions, and looks at some of the ways that the HTTP-focused design decisions
in TLS complicate its adaptation to other protocols.

Adding the NTTPS Extension to the NTTP Algorithm

Network News Transfer Protocol (NNTP) is one of the oldest Internet protocols still
in use. “In use” might be a charitable term — although the paramedics haven’t
pronounced NNTP dead, they’ve stopped resuscitating it and are just waiting
for the heart monitor to stop beeping. I must admit I have a warm place in my
heart for NNTP and the Usenet community that relied on it — before there was
the National Center for Supercomputing Application’s Mosaic or Mosaic’s succes-
sor, Netscape Communicator, there was Usenet. I remember spending many hours
in college, when I should have been working on programming assignments, in
front of tin: the command-line, curses-based Unix Usenet reader. Although the
newsgroups have since devolved into an unusable morass of spam, the early
character-based Usenet is an example of what the Internet could be in its fi nest

c10.indd 543c10.indd 543 12/10/2010 9:47:12 AM12/10/2010 9:47:12 AM

544 Chapter 10 n Other Applications of SSL

form. I blame high-speed connections and graphics-capable displays for the
devolution of the once pure and beautiful Internet — now, you kids get off
my lawn.

Although NNTP is an older protocol whose use is not nearly as widespread
as it once was, it’s useful as an example of an alternate means of initiating an
SSL connection. HTTPS requires that you completely set up the SSL connec-
tion before a single byte of HTTP traffi c can be sent. For this to be possible,
the client must notify the server in some way of its intent to start with an SSL
connection. HTTPS does this by assigning two separate ports to HTTP traffi c.
If the client wants a plaintext connection, it connects to port 80; if it wants SSL,
it connects to port 443.

This is problematic in two ways:

 n The use of multiple ports: If every protocol on the Internet needs two
ports, the number of available ports is cut in half. TCP only allocates
two bytes for the port number, which means that there are only 65,535
ports available to begin with.

 n Switching from plaintext to encrypted communication requires a
connection change: There’s no provision in the TCP protocol for a con-
nection to start using a new port. This isn’t as bad with HTTP as with
other protocols because HTTP is fundamentally stateless to begin with,
but even HTTP has problems as a result. You’ve undoubtedly loaded a
web page and have been presented with a security warning such as, “This
page contains both secure and nonsecure items. Do you want to display
the nonsecure items?” This happens when a web page is downloaded via
HTTPS but some of the links within it are listed as using HTTP.

NNTP, defi ned in 1986 by RFC 977, was a stateful protocol. This was the
only kind of protocol back in those days. The client software established a
connection to the server on port 119 and sent text commands back and forth
over this long-running socket connection. The socket itself would be held
open until the session was complete. You could — and people did — interact
with an NNTP server directly via telnet because the commands themselves
were human-readable text.

At fi rst, Usenet servers were provided by universities free of charge. Over
time, though, Usenet traffi c outgrew what could reasonably be provided for free,
so commercial Usenet servers began to spring up, and they needed to support
authentication to ensure that only paid-up users could send and receive. The
original specifi cation didn’t provide for any means of client authentication, so
RFC 2980 standardized an AUTHINFO extension to NNTP that allowed a user
to provide a user name and password before issuing any commands.

Because you’re reading a book about SSL/TLS, you can probably immediately
spot the problem with this approach — NNTP is sent in the clear, with no provision

c10.indd 544c10.indd 544 12/10/2010 9:47:12 AM12/10/2010 9:47:12 AM

 Chapter 10 n Other Applications of SSL 545

for man-in-the-middle attacks or passive eavesdroppers. The simplest solution
is to do what HTTP did and establish a new port for SSL-enabled connections.
In fact, port 563 was assigned by the Internet Assigned Numbers Authority (IANA)
for this purpose. A better approach, though, especially given that NNTP is a
stateful protocol to begin with, is to establish a plaintext connection over port
119 and defi ne a new command to switch to SSL. When the server receives this
command, assuming the server recognizes, supports, and accepts it, the client
should begin a TLS handshake as shown in Chapter 6.

NNTP uses the STARTTLS command for this purpose. When the client sends
a STARTTLS command, the server must respond with response code 382 indi-
cating that it supports TLS — if it doesn’t, the client must either authenticate in
the clear or terminate the connection. The server could even demand client-side
authentication in this case, supplementing the password-based authentication
described in RFC 2980. After the TLS handshake is complete, the NTTP session
continues as it would have in the plaintext case, on the same socket that was
originally established without TLS.

Although the same physical connection is used pre- and post-TLS negotiation,
STARTTLS effectively resets all settings to what they were when the socket itself
was fi rst established. This is done because nothing that occurred prior to a suc-
cessful TLS handshake can be trusted in a security-conscious setting; anything
could have been modifi ed by an active attacker, even if the client established the
connection and immediately tried to submit a STARTTLS to secure it.

Implementing “Multi-hop” SMTP over TLS and
Protecting Email Content with S/MIME

After the World Wide Web itself, email is about as fundamental and ubiquitous
as Internet usage gets. Email has been around even longer than NNTP, and much
longer than SSL or TLS, so it suffers from the same eavesdropping and man-in-
the-middle vulnerabilities as NNTP, but the vulnerabilities are compounded
by the complexity of email itself.

Understanding the Email Model
In the email model, individual users have mail boxes identifi ed by email addresses
such as joshua.davies@ImplementingSSL.com. These mail boxes are hosted
by an email provider, typically at a different site than the actual user. A home
email address, for example, is probably hosted by the user’s Internet Service
Provider. The email user connects periodically to check for new messages, but
if a message is sent to a recognized email address, the hosting provider must
store the message until the user connects to download it.

c10.indd 545c10.indd 545 12/10/2010 9:47:12 AM12/10/2010 9:47:12 AM

546 Chapter 10 n Other Applications of SSL

Additionally, the sender of the email doesn’t generally establish a direct con-
nection with the hosting provider of the recipient, but rather to his own hosting
provider, who is responsible for correctly routing the email based on the email
address domain. At a bare minimum, then, an email message probably passes
through at least three distinct TCP connections, each unrelated to the other, and
this can essentially occur at random times. The connection between the email’s
sender and his own hosting provider is governed by the SMTP protocol, and the
connection between the receiver and his hosting provider is often governed by
the POP protocol, although there are other protocols that can be used.

The SSL/TLS Design and Email
The whole point of the SSL/TLS design is to protect against the dangers of
message exposure when messages are subjected to multiple hops. However,
SSL can’t do that unless it has end-to-end control over a socket that starts and
ends the logical transaction. The sender must authenticate that the receiver is
the actual receiver and not an impostor before transmitting any sensitive infor-
mation. This is impossible in the context of email because the receiver — the
holder of the email address — is probably not online when the email is sent
and cannot provide credentials in the form of a certifi cate. This means that the
client must implicitly trust the SMTP server not to expose any sensitive details
about the email message in question, as well as negotiate a secure connection
with the receiver’s hosting provider.

Does this mean that TLS is useless in the context of email? Not exactly, but
it doesn’t provide the sort of end-to-end confi dentiality and integrity that you
probably want from a secure email relay service. However, TLS is very useful
for an SMTP server because it strongly authenticates the sender and ensures
that the sender is who it says it is, and it authorizes sending email through the
SMTP service itself. Of course, it’s also useful for the client to establish that
the SMTP server is not an impostor either, and to guard against eavesdrop-
pers on the local network.

To this end, RFC 3207 describes the STARTTLS extension for SMTP for send-
ers of email and RFC 2595 describes the same extension for POP for the receiver
of the email. Still, it would be nice to protect the message itself. This is less of
a concern in the context of NNTP, where messages are always public, than in
email, where messages are almost always private.

There have been a number of attempts to design email security systems
that address end-to-end privacy; PEM and PGP both enjoyed some measure
of success at various times as de facto standards. S/MIME, described by
RFC 5751, however, is the offi cial IETF email security mechanism. S/MIME
is not actually an application of TLS because TLS was designed under the
assumption that both parties are online and capable of responding to each

c10.indd 546c10.indd 546 12/10/2010 9:47:12 AM12/10/2010 9:47:12 AM

 Chapter 10 n Other Applications of SSL 547

other’s messages synchronously throughout the whole exchange (such as is
the case with HTTP). However, S/MIME is closely related and has all the
same pieces.

An email message, at the protocol level, looks quite a bit like an HTTP mes-
sage. It starts with a set of name-value pair headers, delimited by a single CRLF
pair, after which the message itself starts. In fact, email and HTTP share a lot
of the same name-value pair headers — email messages can have Content-
Type, Content-Transfer-Encoding, and so on. A simple email message may
look like this:
 Received: from smtp.receiver.com ([192.168.1.1]) by smtp.sender.com

 with Microsoft SMTPSVC(6.0.3790.3959); Fri, 13 Aug 2010 04:58:25 -0500

Subject: I’m sending an email, do you like it?

Date: Fri, 13 Aug 2010 04:58:31 -0500

Message-ID: <12345@smtp.receiver.com>

From: “Davies, Joshua” <Joshua.Davies@ImplementingSSL.com>

To: “Reader, Avid” <reader@HopefullyABeachInMaui.com>

Hi there, I’m sending you an email. What do you think of it?

This is a pretty simple (not to mention mundane) plaintext email. The Received
header indicates the path that the email took from sender to receiver; you can have
several such Received lines if the email was transferred over multiple relays, as
most are. The Subject is what appears in the summary area, and the remaining
headers ought to be fairly self-explanatory. The actual body of the email in this
example is the single line of text after the blank line.

Multipurpose Internet Mail Extensions (MIME)
All modern email readers, for better or for worse, support the Multipurpose
Internet Mail Extensions (MIME) that allow the sender of the email to declare
what are usually referred to by email reader software as attachments and which
are offered as independent downloads to the message.

An email with attachments, at the wire-level, looks like this:
Received: from smtp.receiver.com ([192.168.1.1]) by smtp.sender.com

 with Microsoft SMTPSVC(6.0.3790.3959); Fri, 2 Jul 2010 08:44:43 -0500

MIME-Version: 1.0

Content-Type: multipart/mixed;

 boundary=”----_=_NextPart_001_01CB19EC.B9C71780”

Subject: This email contains an attachment

Date: Fri, 2 Jul 2010 08:44:23 -0500

Message-ID: <12345@smtp.receiver.com>

From: “Davies, Joshua” <joshua.davies@ImplementingSSL.com>

To: “Reader, Avid” <reader@HopefullyABeachInMaui.com>

This is a multi-part message in MIME format.

c10.indd 547c10.indd 547 12/10/2010 9:47:12 AM12/10/2010 9:47:12 AM

548 Chapter 10 n Other Applications of SSL

------_=_NextPart_001_01CB19EC.B9C71780

Content-Type: text/plain;

 charset=”iso-8859-1”

Content-Transfer-Encoding: quoted-printable

Hi there, this email has an attachment. I promise it’s not a virus.

 ------_=_NextPart_001_01CB19EC.B9C71780

Content-Type: application/vnd.ms-excel;

 name=”NotAVirus.xls”

Content-Transfer-Encoding: base64

Content-Description: NotAVirus.xls

Content-Disposition: attachment;

 filename=”NotAVirus.xls”

0M8R4KGxGuEAAAAAAAAAAAAAAAAAAAAAPgADAP7/CQAGAAAAAAAAAAAAAAABAAAAKgAAAA

EAAA/v///wAAAAD+////AAAAACkAAAD///////////////////////////////////////

//

...

------_=_NextPart_001_01CB19EC.B9C71780--

This email contains a couple of new headers: MIME-Version and Content-Type.
MIME-Version just indicates that the email reader must support MIME at a specifi c
version; the second instructs the email reader how to parse the body of the email.

Content-Type should be followed by two strings that identify the type, sepa-
rated by a forward-slash (/) delimiter, followed by a semicolon (;), followed by
name-value parameters specifi c to the type itself. MIME content types are of
the form text/html, text/xml, application/executable, image/jpeg. The fi rst
string identifi es the broad classifi cation of the type, and the second identifi es a
specialization of that class. In this case, the email’s Content-Type is mulitpart/
mixed, which indicates that the body itself consists of more than one mime type.
The boundary=”----_=_NextPart_001_01CB19EC.B9C71780” part indicates that
the embedded MIME messages themselves are separated from each other by a
long string that the email sender has verifi ed doesn’t occur within the message
body itself.

There are two embedded MIME messages here:

 n One of MIME type text/plain and a Content-Transfer-Encoding of
quoted-printable

 n Another of MIME type application/vnd.ms-excel and Content-Transfer-
Encoding base64.

By convention, the email reader interprets the fi rst message as text to display
to the user in the body. The second, it makes available as a downloadable attach-
ment. The attachment itself also declares a fi le name via the Content-Disposition
header — this fi lename can be used, for example, to suggest a fi lename to save
as if the user chooses to download the attachment.

c10.indd 548c10.indd 548 12/10/2010 9:47:12 AM12/10/2010 9:47:12 AM

 Chapter 10 n Other Applications of SSL 549

Protecting Email from Eavesdroppers with S/MIME
There’s no reason an email with an attachment must be a multi-part/mixed type.
If there’s just one attachment and nothing else, the Content-Type of the email
header can perfectly and legitimately be the type of the attachment; the
email reader just shows nothing except an attachment with no accompanying
text. S/MIME takes advantage of this by creating an application/x-pkcs7-mime
MIME type. As you can likely guess, this is another ASN.1 encoded structure.

An S/MIME encoded email message looks like this:
Received: from smtp.receiver.com ([192.168.1.1]) by smtp.sender.com

 with Microsoft SMTPSVC(6.0.3790.3959); Wed, 21 Apr 2010 12:42:48 -0500

MIME-Version: 1.0

Content-Transfer-Encoding: base64

Content-Disposition: attachment;

 filename=”smime.p7m”

Content-class: urn:content-classes:message

Content-Type: application/x-pkcs7-mime;smime-type=enveloped-data;

 name=smime.p7m;

 smime-type=enveloped-data;

 name=”smime.p7m”

Subject: This message will self-destruct in 15 seconds

Date: Wed, 21 Apr 2010 12:42:47 -0500

Message-ID: <12345@smtp.receiver.com>

From: “Davies, Joshua” <joshua.davies@ImplementingSSL.com>

To: “Reader, Avid” <reader@HopefullyABeachInMaui.com>

MIAGCSqGSIb3DQEHA6CAMIACAQAxggNGMIIBnwIBADCBhjB4MRMwEQYKCZImiZPyLGQBGRY

MRUwEwYKCZImiZPyLGQBGRYFc2FicmUxEjAQBgoJkiaJk/IsZAEZFgJhZDEWMBQGCgmSJom

ARkWBkdsb2JhbDEeMBwGA1UEAxMVU2FicmUgSW5jLiBJc3N1aW5nIENBAgo84HbtAAEABSy

CsqGSIb3DQEBAQUABIIBAKHiUib4D3g8bA1AyInu2CkcB75mgMI/Sb5mQjmMNPo7Q0ypV1n

Regarding this email:

 n Message body: This is a base64 encoded PKCS #7 envelope for which
the email reader software must have a legitimate certifi cate in order to
display. The body is simply an attachment.

 n Headers: These describe the attachment in enough detail for the receiving
email reader to interpret and decode it.

 n Attachment: This is named via the Content-Disposition header element
in the email message itself — in the case of S/MIME, the fi lename is impor-
tant. S/MIME dictates old DOS-style three-character fi le extensions that
indicate the type of the fi le. .p7m stands for “PKCS #7 Message.” (.p7s, in
contrast, is a PKCS #7 signature fi le.) The fi lename itself is usually smime.

PKCS #7 is slightly more complicated to parse than the X.509 certifi cates
examined in Chapter 5 because PKCS #7 allows indefi nite-length encodings. In
other words, it follows the Canonical Encoding Rules (CER) rather than the DER

c10.indd 549c10.indd 549 12/10/2010 9:47:12 AM12/10/2010 9:47:12 AM

550 Chapter 10 n Other Applications of SSL

(Distinguished Encoding Rules) that X.509 mandates. Indefi nite-length encod-
ings mean that the length is not explicitly output following that tag byte but
instead, the application should read until it encounters two back-to-back 0 bytes.
In other words, you process it just like a null-terminated C string, except that
it has two null terminators instead of one. Parsing indefi nitely encoded ASN.1
values can get somewhat complex because they can be nested inside one another.

The format of the message itself is currently described by RFC 5652, which
refers to it as Cryptographic Message Syntax (CMS), a superset of PKCS #7.

PARSING PKCS #7

Parsing a PKCS #7-formatted S/MIME document is not for the faint of heart;
I’ll give an overview here, but if you’re interested you should read the offi cial
specifi cation document for complete details.

An S/MIME document body — such as the Base64-encoded .p7m part in
the earlier example — is an ASN.1 sequence of what the specifi cation refers
to as content types. The most interesting case, and probably the most com-
mon, is when there is a single entry of content-type enveloped-data, which
indicates that the content is encrypted. Of course, as you know, if anything
is encrypted, a key is needed to decrypt it, so that key must be exchanged
somehow. As you can probably guess, the key is exchanged using public-key
techniques; if the sender has a certifi cate with the receiver’s public RSA key,
the content encryption key is encrypted using that key.

Securing Email When There Are Multiple Recipients
What about emails with multiple recipients? If you’ve ever sent an email, you
know that there are often many recipients, some on the To: line and some on the
CC: line. If this is the case, only one key is used to encrypt the message content,
but that same key is public-key encrypted multiple times in the recipientInfo
section of the .p7m attachment.

An encrypted S/MIME attachment with two recipients and a DES-encrypted
attachment, then, takes the general form shown in Figure 10-1.

So, if you have the private-key corresponding to one of the public keys, you
decrypt the symmetric key and use it to decrypt the message body. Notice
that the certifi cate is identifi ed by serial number, which is unique to an issuer;
therefore the issuer must also be specifi ed.

NOTE S/MIME also permits Key Agreement (for example, Diffi e-Hellman)
and pre-shared symmetric keys for encryption of the content encryption key.

Very often, when you fi nally decrypt the message body itself, you fi nd that
the contents are yet another S/MIME attachment! This is usually a plaintext

c10.indd 550c10.indd 550 12/10/2010 9:47:12 AM12/10/2010 9:47:12 AM

 Chapter 10 n Other Applications of SSL 551

email with a signature section, so that the recipient can authenticate the sender.
S/MIME is a broad specifi cation that permits messages to be signed but not
encrypted and also covers certifi cate management.

Figure 10-1: S/MIME attachment format

OID "Enveloped Data"

OID "Data"

OID "Des Encryption"

IV

OID "RSA"

OID RSA

RSApk1(des-key)

RSApk2(des-key)

DESdes-key(data)

Version

Recipient #1

Recipient #2

Serial # of recipient #1’s certificate

Serial # of recipient #2’s certificate

X.500 Name of recipient #1’s certificate issuer

X.500 Name of recipient #2’s certificate issuer

Signing email messages can be a bit complex, though. Recall from Chapter 4
that computing a digital signature consists of securely hashing a set of data and
then encrypting it using a public-key encryption algorithm with the private key.
Verifying that same signature involves computing that same hash over the same
data, decrypting the encrypted hash using the public key, and verifying that
they match. It’s important to the process that both sides agree on exactly what
the data being hashed is; if even one bit of data changes between the genera-
tion of the signature and the subsequent verifi cation, the signature is rejected.
In the context of TLS, this is not an issue, because the message format is rigidly
defi ned. The data that is signed is the data that is received; it’s streamed over
an open, established socket immediately after it’s signed

However, email is a different story. The signature is generated sometimes
days before it’s verifi ed, and traditionally, email relay systems have assumed

c10.indd 551c10.indd 551 12/10/2010 9:47:13 AM12/10/2010 9:47:13 AM

552 Chapter 10 n Other Applications of SSL

impunity to modify the email message itself however they see fi t in order to
route the message from one place to another. If an email gateway feels the need
to Base64-encode an email message, or convert from EBCDIC to ASCII, or change
the charset from ISO-8859-12 to UTF-8, it does so and lets the receiver sort it
all out later. This is a problem for email readers in general, and it’s a showstop-
per for email signatures. As a result, both sides must agree rigidly on an email
format and ensure that intervening gateways either don’t modify the message
content, or that the receiver can reliably undo whatever arbitrary transformations
may have been applied en route. The easiest way to do this is to apply the most
restrictive set of transformations to the message body, as detailed in RFC 5751.

S/MIME Certifi cate Management
One point that’s been glossed over in the discussion so far is that of certifi -
cate management. TLS mandates a rigid means of certifi cate exchange; the cli-
ent opens a connection and negotiates a key exchange, encryption, and MAC
algorithm, and the server immediately responds with a certifi cate. The client
uses that certifi cate to complete a key exchange. S/MIME is similar, but it’s a
delayed-reaction variant; the client in this scenario is the sender. In order for the
sender to encrypt the content encryption key, this certifi cate must have been
exchanged beforehand.

While TLS dictates specifi c rules on how this must happen and how this
certifi cate must be validated and even what the certifi cate contains, S/MIME
doesn’t care at all; if you can uniquely identify a certifi cate, you can use its public
key to encrypt. Whether you trust the validity of that certifi cate and whether
you believe it belongs to the purported user is up to you. Of course, any email
agent supporting S/MIME goes ahead and checks the trust-path of any certifi cate
and warns you of any discrepancies in order to help you make a trust decision.

As you can see, neither TLS nor S/MIME is a complete solution to the email
security problem — they’re both required. TLS ensures that the SMTP server
is really the SMTP server you think you’re connecting to and that the SMTP
headers themselves are private and not modifi ed, and S/MIME (or some such
equivalent) is required to ensure privacy of the email from the time it is written
to the time it is received.

Securing Datagram Traffi c

It’s somewhat ironic that SSL, originally designed as an add-on to the stateless
HTTP protocol, is itself so stateful. Everything about SSL/TLS requires that a
context be established and maintained from the start of the handshake to the
end of the tear-down; the sequence numbers must be maintained from one

c10.indd 552c10.indd 552 12/10/2010 9:47:13 AM12/10/2010 9:47:13 AM

 Chapter 10 n Other Applications of SSL 553

record to the next, the initialization vectors for CBC ciphers (prior to TLS 1.0)
must be carried forward, and so on.

This is perfectly acceptable in the context of TCP, which keeps track of its own
sequence numbers and internally handles reordering of out-of-sequence packets
and retransmission of lost packets. However, TCP provides these services at a
cost in terms of per-packet overhead and per-socket handshake time. Although
on modern networks this overhead is practically negligible, a lighter-weight
alternative, called User Datagram Protocol (UDP), has been part of TCP/IP almost
from the beginning. With UDP, a packet is built and sent across the network
with almost no header or routing information — just enough to identify a source
and a target machine and a port.

This section examines the application of TLS concepts to datagram traffi c.

Securing the Domain Name System
Chapter 1 presented, but didn’t examine in-depth, the mapping between user-
friendly hostnames and IP addresses. Ordinarily, a user doesn’t connect to
http://64.170.98.32/index.html but instead connects to http://www.ietf
.org/index.html. This mapping of (arguably) human-readable domain names
to machine-readable IP addresses is maintained by the Domain Name System
(DNS). There’s no automatic transformation that’s applied here; the IP address
isn’t derived from the host name using some complex algorithm such as Base64;
you can associate any host name with any IP address, as long as you can add
an entry into the global DNS database.

This database is huge and must be widely distributed. DNS describes a hier-
archical management system where the top-level keeps track of the registrars
for the ending parts of a DNS name such as .org, .com, .gov, and so on. These
registrars, in turn, keep track of the registrars for the next-level — the part that
comes before the .com. You can nest these names as deeply as you can imagine
until an authoritative name server, which maps a completed domain name back
to an actual IP address, is found. This hierarchy is illustrated in Figure 10-2.

There are thirteen master copies of the important top-level database, named
A-M, distributed throughout the world and continuously synchronized. The
website http://root-servers.org/ documents where these servers are physi-
cally located, what their IP addresses are, and who administers them. These
copies are referred to as the Root DNS servers, and are considered authoritative.
VeriSign, for example, operates the “J” root DNS servers, which have IP address
192.58.128.30. If VeriSign’s root server states that .org is owned by a registrar at
IP address XX.XX.XX.XX, then the Internet Corporation for Assigned Names
and Numbers (ICANN)’s copy at 199.7.83.42 will say the same thing.

However, you probably don’t (and probably shouldn’t) request domain-name
information from these root servers or the next-level registrars. Although each

c10.indd 553c10.indd 553 12/10/2010 9:47:13 AM12/10/2010 9:47:13 AM

554 Chapter 10 n Other Applications of SSL

of these databases are replicated for load-balancing and redundancy purposes,
there are many more slave copies of this same database distributed throughout
the world. If you access the Internet through an ISP, for instance, your ISP almost
certainly maintains a local cache of at least a subset of the master DNS data.
You get the IP addresses of these local name servers when you get your own IP
address at DHCP time. On a Linux system, you can see the IP addresses of the
local copies under /etc/resolv.conf. On a Windows system, you can see them
by going to Control Panel � Connection Status � Details and look under DNS
Server. (Although I must warn you that this seems to change with every release
of Windows, so you may have to hunt around a bit if you’re on such a system.)

Figure 10-2: DNS hierarchy

whitehouse.gov
authority

root
authority

.org
authority

travelocity.com
authority

ietf.org
authority

has IP information on
www.ietf.org

has IP information on
www.travelocity.com

has IP information on
www.whitehouse.gov

.com
authority

.gov
authority

So, when it comes time to resolve a human-readable, string host name to a
machine-readable IP address, you typically call an operating system function,
such as gethostbyname as illustrated in Listing 1-4. This function looks at /etc/
resolv.conf (or wherever Windows hides it in its system registry), fi nds a name
server, and asks it for the corresponding IP address. If the name server doesn’t
have the name/IP address pair cached already, it works backward through the
domain name, fi rst determining the authoritative name server for the top-level

c10.indd 554c10.indd 554 12/10/2010 9:47:13 AM12/10/2010 9:47:13 AM

 Chapter 10 n Other Applications of SSL 555

domain and then the authoritative name server for the next-level domain. When
it fi nds an authoritative server for the actual requested host name, it issues a
query to that server.

Using the DNS Protocol to Query the Database

You may be curious, though, about how gethostbyname actually queries the
database. These days, if I say database, you may start thinking about SQL and
SELECT statements, but the DNS naming system, thankfully, predates the rela-
tional database craze and instead defi nes its own Internet protocol. This proto-
col is named, unsurprisingly, DNS, and is an interesting protocol in the way it
structures requests and responses.

The DNS database is a collection of resource records (RR) as illustrated in
Figure 10-3, each of which has a name, a type, a class, and a set of associated
data that varies depending on the type. The most important type of resource
record is type A, Host Address, which actually describes the mapping between a
host name and an IP address. Type A, Host Address, RRs include an IP address
in the associated data section. So, if a client has a host name for which it wants
to query the corresponding IP address, it fi lls out as much information as it
has on the RR, sends that to the server, and the server responds with as much
information as it has — hopefully a completed record. The resource record itself
is pretty open-ended — other available and common resource records include
load-balancing information, redirect information, and mail server information.

Fig ure 10-3: Resource record format

NAME

TYPE

CLASS

TTL

DATA LENGTH

DATA

Disadvantages of the DNS Query

Normally, this query is submitted not with a TCP socket, but with a UDP (data-
gram) socket, on port 53. UDP Requests and responses aren’t rigidly matched

c10.indd 555c10.indd 555 12/10/2010 9:47:13 AM12/10/2010 9:47:13 AM

556 Chapter 10 n Other Applications of SSL

like they are in TCP. After you send a UDP request, you just wait for data — any
data at all — to be returned with the ports reversed. If a client has multiple out-
standing DNS queries, it is responsible for correlating the responses correctly.
DNS mandates that every request has a unique transaction ID for this purpose.

Herein lies the problem. Any malicious user on the network can easily spoof
a DNS reply; all he needs to know is the source port (the destination port is
always 53) and the transaction ID, both of which can be obtained with a packet
sniffer. TCP is harder to spoof this way (but not impossible); UDP’s stateless
nature makes it simple. All the attacker has to do is to respond faster than the
name server. The name server’s response is received and ignored at a later time.

This gets even worse when you consider that if a name server doesn’t have
an IP address for a given domain name, it queries the next-higher name server,
up to the root servers. An attacker can respond to the name server with his own
bogus record. If he does so, then the name server dutifully caches the wrong
information and then hands it out to all of the clients that it services. This is
called DNS cache poisoning. In 2008, security researcher Dan Kaminsky showed
how to subvert this process completely and poison the authority record, thereby
taking over not just individual hosts, but entire domains.

Preventing DNS Cache Poisoning with DNSSEC

Although there are stopgaps to make DNS cache poisoning harder — better
randomization of the transaction ID, wider variance of the request source port,
and a check to see if multiple responses are received for the same query (a sure
sign that something’s amiss) — there have been efforts to roll out DNS Security
(DNSSEC). This was specifi ed back in 1999 by RFC 2535 and in spite of the fl aws
in the DNS system still has not been widely deployed. The idea behind DNSSEC
is to deploy a public-key infrastructure around the domain-name system and
sign each DNS record. If the receiver has a copy of a public key, the signature
can be verifi ed.

You can explore the DNS system using the dig tool that comes standard on
all Unix systems. If you want to see the IP address for www.ietf.org, you can
do this:
debian:ssl$ dig www.ietf.org

; <<>> DiG 9.3.4 <<>> www.ietf.org

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 24804

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;www.ietf.org. IN A

c10.indd 556c10.indd 556 12/10/2010 9:47:13 AM12/10/2010 9:47:13 AM

 Chapter 10 n Other Applications of SSL 557

;; ANSWER SECTION:

www.ietf.org. 433 IN A 64.170.98.32

;; Query time: 19 msec

;; SERVER: 209.18.47.61#53(209.18.47.61)

;; WHEN: Mon Sep 20 21:08:21 2010

;; MSG SIZE rcvd: 46

This tells you that the IP address for www.ietf.org is 64.170.98.32. You can
also view signature information for this domain name:
debian:ssl$ dig @209.18.47.61 www.ietf.org +dnssec

; <<>> DiG 9.3.4 <<>> @209.18.47.61 www.ietf.org +dnssec

; (1 server found)

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 63769

;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags: do; udp: 4096

;; QUESTION SECTION:

;www.ietf.org. IN A

;; ANSWER SECTION:

www.ietf.org. 1649 IN A 64.170.98.32

www.ietf.org. 1649 IN RRSIG A 5 3 1800

 20110831142441 20100831132624 40452 ietf.org.

mukwwlQll9RPzlKkWKgI2TnOka17jFrkgtavMEITvU5r4xTAhbZxXA3K

mKAoK+d0OA0XiJC0u2GtsobAVtWVcrdqaeez1lw/TppW+otIj43ZzJ6e

iKpytRJdFmJOS409mNLZaYjUgm6i154clMgmatOisLhX79snqQu18jG2

sRZE4faPmKw9kw9FNtOC8QuTCOGecTsmycuYpNbTxCSyD0Z4M1behKb9

rRzk1spXTBo6j2mn9vb8NYqY+Xa9JjLOe2Xw8bLGoQrdcB0+hBOBf4Od

+bdgMKMIE1scO9QFqQvTD345v1u2FygXFe0UgE1l6KDz+ZA4prkvzbfo yPy53w==

;; Query time: 15 msec

;; SERVER: 209.18.47.61#53(209.18.47.61)

;; WHEN: Mon Sep 20 21:05:31 2010

;; MSG SIZE rcvd: 353

RFC 4034 details the format of this signature record, the RRSIG record type. Of
course, a signature is useless without a corresponding public key with which to
validate it. The public key is held by the next higher level’s authoritative name
server:
debian:ssl$ dig ietf.org dnskey

;; Truncated, retrying in TCP mode.

debian:ssl$ dig ietf.org dnskey +dnssec

; <<>> DiG 9.3.4 <<>> ietf.org dnskey +dnssec

c10.indd 557c10.indd 557 12/10/2010 9:47:13 AM12/10/2010 9:47:13 AM

558 Chapter 10 n Other Applications of SSL

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 59127

;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags: do; udp: 4096

;; QUESTION SECTION:

;ietf.org. IN DNSKEY

;; ANSWER SECTION:

ietf.org. 1800 IN DNSKEY 256 3 5

AwEAAdDECajHaTjfSoNTY58WcBah1BxPKVIHBz4IfLjfqMvium4lgKtK

ZLe97DgJ5/NQrNEGGQmr6fKvUj67cfrZUojZ2cGRizVhgkOqZ9scaTVX

NuXLM5Tw7VWOVIceeXAuuH2mPIiEV6MhJYUsW6dvmNsJ4XwCgNgroAmX

hoMEiWEjBB+wjYZQ5GtZHBFKVXACSWTiCtddHcueOeSVPi5WH94Vlubh

HfiytNPZLrObhUCHT6k0tNE6phLoHnXWU+6vpsYpz6GhMw/R9BFxW5Pd

PFIWBgoWk2/XFVRSKG9Lr61b2z1R126xeUwvw46RVy3hanV3vNO7LM5H niqaYclBbhk=

ietf.org. 1800 IN DNSKEY 257 3 5

AwEAAavjQ1H6pE8FV8LGP0wQBFVL0EM9BRfqxz9p/sZ+8AByqyFHLdZc

HoOGF7CgB5OKYMvGOgysuYQloPlwbq7Ws5WywbutbXyG24lMWy4jijlJ

UsaFrS5EvUu4ydmuRc/TGnEXnN1XQkO+waIT4cLtrmcWjoY8Oqud6lDa

Jdj1cKr2nX1NrmMRowIu3DIVtGbQJmzpukpDVZaYMMAm8M5vz4U2vRCV

ETLgDoQ7rhsiD127J8gVExjO8B0113jCajbFRcMtUtFTjH4z7jXP2ZzD

cXsgpe4LYFuenFQAcRBRlE6oaykHR7rlPqqmw58nIELJUFoMcb/BdRLg byTeurFlnxs=

ietf.org. 1800 IN RRSIG DNSKEY 5 2 1800

 20110831142353 20100831132624 40452 ietf.org.

hbpdgpVd3DHrRcO7S5Y8YfLgw+dj8YSLPU43wRzt7TLx+hdLXC3H7BGk

5UZvjTIlYiIw5fokRzu1zNgKQX+89yRASf8oHX8EFW/GqIZ03Hduvorr

PbFyG3fw5Z5aMAeWTktwEQHc+OU0+m9srVT7fBndRXSWKNCg67NTbnKA

kNKUajSohpQu3I9HiiBaFIHPm7sZYlnurxnFOQHUJiA6WvU6B332oAto

AH9yBhV5ZK58GTg4t4KhAUD+w+oBdV4GXGVViGd0mCb2fN8OzJa9nb06

+A2DfAsW5zLBEBcP+yDO5ogKGNO0atwI232Wfi5h7HDncHRri7Shg63C e6xiFA==

ietf.org. 1800 IN RRSIG DNSKEY 5 2 1800

 20110831142553 20100831132624 45586 ietf.org.

DhPTlnpVfvPUDUpz08zCXCDbNea8bu89Dok5mnyt1NXpP+OPZqZzXxDU

A/blHG6Z6ZYAqGUHbYhgPEz9XQBj/fZy0Jn2F8QVHgxkpL8+MEsDvGCd

t9o7kZoGd2eg3Hb0ImBMx59DLphHXwj3v0tOhEpZs25Pcul4QM5v7Pia

fXk+R5XQ4YtBQnI6FZYlUP2EthSWSasKmvzK4Bmky7m9sFsZrzRWNKsF

A+kvUPelbuz1m0WfsKBmh6klcok/BcVt4EluTeCoOloOra3t6JiPjrlv

MKtn2nUYmGFM6JJGN/K8CA7wtr93BwwpAjVkWftfmIOgPCi7X8uFosAq 3T0+JA==

;; Query time: 76 msec

;; SERVER: 209.18.47.61#53(209.18.47.61)

;; WHEN: Mon Sep 20 21:09:46 2010

;; MSG SIZE rcvd: 1181

This provides authentication and integrity, but it doesn’t provide confi denti-
ality — although it’s questionable what value confi dentiality would provide a
DNS lookup because all of the data is public.

c10.indd 558c10.indd 558 12/10/2010 9:47:13 AM12/10/2010 9:47:13 AM

 Chapter 10 n Other Applications of SSL 559

Still, it seems a shame that every datagram-based protocol must invent its
own means of securing its traffi c, doesn’t it?

TLS Without TCP — Datagram TLS
In 2006, Nagendra Modadugu and Eric Rescorla drafted the Datagram TLS
(DTLS) specifi cation (http://crypto.stanford.edu/~nagendra/papers/dtls
.pdf). Although you can’t apply TLS directly to datagram traffi c, the number
of changes required to support it are surprisingly small. Whereas TLS’s top-
level encapsulating header includes just type, version and length, DTLS adds
two fi elds:

 n Epoch: This fi eld increments whenever it receives a change cipher spec
handshake message. This way, if the change cipher spec itself is lost,
the server recognizes that the epoch has changed and knows something
has gone wrong. Recognizing a dropped change cipher spec message is
particularly important because that’s the signal to start using encryption
(or, in the case of a session renegotiation, to use new keying material).

 n Sequence number: The purpose of this is obvious — to recognize dropped
or out-of-order packets. TCP has one of these, too.

What about leftover cipher state? Prior to TLS 1.1, CBC-based ciphers used
the last encrypted block as the IV for the next block — if one record is dropped,
every subsequent record is undecryptable. TCP guards against this by providing
automatic replay of dropped packets, but UDP has no such provision. Rather
than require it, which would essentially force UDP to behave exactly like TCP
in order to achieve any security, DTLS doesn’t allow implicit IV’s. They’re a
security hole anyway, so IV’s are always output explicitly, TLS 1.1+ style. This
also means that RC4, which carries state from one byte to the next, cannot be
used with DTLS in any form; there’s no safe way to explicitly output the current
state of an RC4 cipher.

Interestingly, DTLS also requires that the client submit the ClientHello mes-
sage twice. The fi rst time, the server responds with a challenge “cookie” that
the client must repeat in the second ClientHello. This proves that the client is
actually receiving UDP packets at the given IP address and was designed to
prevent denial of service (DOS) attacks.

From the implementer’s perspective, the most diffi cult part of DTLS is the
timeout and retransmit algorithm. Very similar to the one used by TCP, DTLS
mandates a timeout and retransmit procedure with a sliding window. In fact,
in a lot of ways, DTLS forces a UDP connection to behave like a TCP connection
behaves. It hasn’t yet been fully explored just how much overhead DTLS adds
to a datagram connection and whether the extra overhead is worth DTLS or if
the user might be better off just using TSL over TCP instead.

c10.indd 559c10.indd 559 12/10/2010 9:47:13 AM12/10/2010 9:47:13 AM

560 Chapter 10 n Other Applications of SSL

Supporting SSL When Proxies Are Involved

If you tried to use the HTTPS example client from Chapter 6 from behind a web
proxy, you were probably disappointed in the results. The TLS model doesn’t
work at all with the proxy model. When proxies are involved, the client connects
to the proxy, tells the proxy which document it would like to view, and the proxy
retrieves that document and returns it on behalf of the client. This works fi ne
in the HTTP model; the client barely even needs to modify its behavior based
on the proxy. Rather than establishing a socket connection to the target site, the
client just establishes a socket connection to the proxy, submits essentially
the same request it would normally submit, and the proxy forwards that request
on to the target.
This breaks down completely when you want to use HTTPS. Remember that
when using HTTPS, before you transmit a byte of HTTP data, the fi rst thing
you must do is complete a TLS handshake. This is important because the TLS
handshake establishes that you’re talking to the server you think you’re talking
to (or, more pedantically, an entity that has convinced a certifi cate authority
that it legitimately owns a specifi c domain name). This is necessary to guard
against man-in-the-middle attacks. Unfortunately, a proxy is, by defi nition, a
man-in-the-middle. You may be inclined to trust it — most likely you don’t have
a choice in the matter — but TLS doesn’t.

Possible Solutions to the Proxy Problem
Other than just disallowing secure connections through proxies, the most
obvious solution to this problem might be to establish an HTTPS connection to
the proxy, forward the request, and allow it to establish an HTTPS connection
to the target and continue as usual. This means that the proxy must be able to
present a certifi cate signed by a certifi cate authority trusted by the browser, or
the user needs to prepare to ignore untrusted certifi cate warnings. If the proxy
presents a signed certifi cate, it needs to either purchase a top-level signed certifi -
cate, which is expensive, or it needs to distribute its own certifi cate authority to
every browser that is confi gured to use it — which is administratively diffi cult.

Of course, you can always mandate that the browser never establish an HTTPS
connection to the proxy; if it wants a secure document, it should establish a
plain-old socket connection to the proxy and let the proxy deal with the secure
negotiation. This presupposes, of course, that every node between the browser
and the proxy is trusted because everything that passes to the proxy is passed
in plaintext. This may or may not actually be the case.

A more serious problem with both of these approaches, however, is that the
client itself can’t see any certifi cate warnings. If the certifi cate is out of date,
untrusted, or for a different domain than the one requested, only the proxy is
aware of this. In addition, the proxy needs to know which CAs the client trusts,

c10.indd 560c10.indd 560 12/10/2010 9:47:13 AM12/10/2010 9:47:13 AM

 Chapter 10 n Other Applications of SSL 561

otherwise the client can’t update its trust list. HTTP proxies are supposed to be
pretty simple; — they have to handle huge volumes of requests, so you want to
avoid adding any more complexity than necessary. Building the protocol exten-
sions to enable the proxy to channel certifi cate warnings back to the client and
respond to them is fairly complex.

Instead, the standard solution suggested by RFC 2817 is that HTTP proxies
don’t proxy secure documents at all — they proxy connections, instead. The
proxy must accept the HTTP CONNECT command, which tells it not to establish
an HTTP socket with a target host, but instead to establish an arbitrary socket
connection. In effect, when the proxy receives a CONNECT command, rather than,
for instance, a GET or a POST, it should complete the TCP three-way handshake
with the target host on the target port, but from that point on it should tunnel
all subsequent data unchanged.

This enables the client to complete the TLS handshake and respond appro-
priately to any certifi cate warnings, and so on, that may occur — the code itself
doesn’t change at all. The only trick is making sure to establish the tunneled
connection before beginning the TLS handshake.

Adding Proxy Support Using Tunneling
You can add proxy support to the HTTPS client from Chapter 6; After you under-
stand how tunneling works, it’s not terribly complicated. Instead of affi xing a
proxy authorization to each HTTP command, you instead issue a single HTTP
CONNECT command before doing anything TLS-specifi c; the authorization string
is attached to that command and forgotten afterward. If the CONNECT command
succeeds, you just use the socket as if it was a direct connection to the target
host, which, at this point, it is.

Recognizing the proxy parameters and parsing them doesn’t change from
HTTP to HTTPS. The only difference in the main routine is that you issue
an HTTP CONNECT command after establishing the HTTP connection to the
proxy and before sending a TLS handshake as shown in Listing 10-1.

Listing 10-1: “https.c” main routine with proxy support

 if (proxy_host)

 {

 if (!http_connect(client_connection, host, port, proxy_user,

 proxy_password))

 {

 perror(“Unable to establish proxy tunnel”);

 if (close(client_connection) == -1)

 {

 perror(“Error closing client connection”);

 return 2;

(Continued)

c10.indd 561c10.indd 561 12/10/2010 9:47:13 AM12/10/2010 9:47:13 AM

562 Chapter 10 n Other Applications of SSL

 }

 return 3;

 }

 }

 if (tls_connect(client_connection, &tls_context))

 {

This makes use of the http_connect function shown in Listin g 10-2.

Listing 10-2: “https.c” http_connect

int http_connect(int connection,

 const char *host,

 int port,

 const char *proxy_user,

 const char *proxy_password)

{

 static char connect_command[MAX_GET_COMMAND];

 int received = 0;

 static char recv_buf[BUFFER_SIZE + 1];

 int http_status = 0;

 sprintf(connect_command, “CONNECT %s:%d HTTP/1.1\r\n”, host, port);

 if (send(connection, connect_command,

 strlen(connect_command), 0) == -1)

 {

 return -1;

 }

 sprintf(connect_command, “Host: %s:%d\r\n”, host, port);

 if (send(connection, connect_command,

 strlen(connect_command), 0) == -1)

 {

 return -1;

 }

 if (proxy_user)

 {

 int credentials_len = strlen(proxy_user) +

 strlen(proxy_password) + 1;

 char *proxy_credentials = malloc(credentials_len);

 char *auth_string = malloc(((credentials_len * 4) / 3) + 1);

 sprintf(proxy_credentials, “%s:%s”, proxy_user, proxy_password);

 base64_encode(proxy_credentials, credentials_len, auth_string);

 sprintf(connect_command, “Proxy-Authorization: BASIC %s\r\n”,

 auth_string);

 if (send(connection, connect_command,

 strlen(connect_command), 0) == -1)

 {

 free(proxy_credentials);

c10.indd 562c10.indd 562 12/10/2010 9:47:14 AM12/10/2010 9:47:14 AM

 Chapter 10 n Other Applications of SSL 563

 free(auth_string);

 return -1;

 }

 free(proxy_credentials);

 free(auth_string);

 }

 sprintf(connect_command, “\r\n”);

 if (send(connection, connect_command,

 strlen(connect_command), 0) == -1)

 {

 return -1;

 }

 // Have to read the response!

 while ((received = recv(connection, recv_buf,

 BUFFER_SIZE, 0)) > 0)

 {

 if (http_status == 0)

 {

 if (!strncmp(recv_buf, “HTTP”, 4))

 {

 http_status = atoi(recv_buf + 9);

 printf(“interpreted http status code %d\n”, http_status);

 }

 }

 if (!strcmp(recv_buf + (received - 4), “\r\n\r\n”))

 {

 break;

 }

 }

 return (http_status == 200);

}

This ought to look pretty familiar; the fi rst half is the http_get function
from Chapter 1 with a few details changed. If you’re so inclined, you can prob-
ably see a way to consolidate these both into a single function. Notice that you
still connect on port 80 to the proxy; the CONNECT command sent includes the
desired port of 443.

Because CONNECT is an HTTP command, the proxy starts by returning an HTTP
response. At the very least, you have to read it in its entirety so that the fi rst
recv command you invoke inside tls_connect doesn’t start reading an HTTP
response when it’s expecting a ServerHello message. Of course, it’s probably
worthwhile to have a look at the response code as well, as in Listing 10-2. If you
mistyped the password, or failed to provide a password to an authenticating
proxy, you get a 407 error code. If this is the case, you should abort the connec-
tion attempt and report an error to the user.

c10.indd 563c10.indd 563 12/10/2010 9:47:14 AM12/10/2010 9:47:14 AM

564 Chapter 10 n Other Applications of SSL

One thing that’s particularly interesting about this approach to supporting
HTTPS through proxies is that it means that, in order to properly support HTTPS,
the proxy must be capable of establishing arbitrary connections with arbitrary
hosts as long as the authentication is completed properly. This capability can
be used to tunnel any protocol through an HTTP proxy, although the client
software has to be modifi ed to support it.

SSL with OpenSSL

It would be irresponsible of me to recommend using a tried-and-true SSL library,
such as OpenSSL, but then not show you how to do so, especially if your desire is
to do production-grade security work. Listing 10-3 reworks the HTTPS example
from Chapter 6 using the OpenSSL library.

Listing 10-3: “https.c” with OpenSSL

#include <openssl/ssl.h>

…

int http_get(int connection,

 const char *path,

 const char *host,

 SSL *ssl)

{

 static char get_command[MAX_GET_COMMAND];

 sprintf(get_command, “GET /%s HTTP/1.1\r\n”, path);

 if (SSL_write(ssl, get_command, strlen(get_command)) == -1)

 {

 return -1;

 }

 sprintf(get_command, “Host: %s\r\n”, host);

 if (SSL_write(ssl, get_command, strlen(get_command)) == -1)

 {

 return -1;

 }

 strcpy(get_command, “Connection: Close\r\n\r\n”);

 if (SSL_write(ssl, get_command, strlen(get_command)) == -1)

 {

 return -1;

 }

 return 0;

}

void display_result(int connection, SSL *ssl)

c10.indd 564c10.indd 564 12/10/2010 9:47:14 AM12/10/2010 9:47:14 AM

 Chapter 10 n Other Applications of SSL 565

{

 int received = 0;

 static char recv_buf[BUFFER_SIZE + 1];

 while (SSL_get_error(ssl,

 (received = SSL_read(ssl, recv_buf, BUFFER_SIZE))) ==

 SSL_ERROR_NONE)

 {

 recv_buf[received] = ‘\0’;

 printf(“data: %s”, recv_buf);

 }

 printf(“\n”);

}

int main(int argc, char *argv[])

{

…

 int ind;

 SSL_CTX *ctx;

 SSL *ssl;

 BIO *sbio;

 BIO *bio_err=0;

 SSL_METHOD *meth;

 if (argc < 2)

 {

 fprintf(stderr,

 “Usage: %s: [-p http://[username:password@]proxy-host:proxy-port]\

<URL>\n”, argv[0]);

 return 1;

 }

 // OpenSSL-specific setup stuff

 SSL_library_init();

 SSL_load_error_strings();

 bio_err=BIO_new_fp(stderr,BIO_NOCLOSE);

 meth=SSLv23_method();

 ctx=SSL_CTX_new(meth);

 proxy_host = proxy_user = proxy_password = host = path = NULL;

… // set up the connection itself

 ssl=SSL_new(ctx);

 sbio=BIO_new_socket(client_connection,BIO_NOCLOSE);

 SSL_set_bio(ssl,sbio,sbio);

 if(SSL_connect(ssl)<=0)

 {

 fprintf(stderr, “Error: unable to negotiate SSL connection.\n”);

 if (close(client_connection) == -1)

 {
(Continued)

c10.indd 565c10.indd 565 12/10/2010 9:47:14 AM12/10/2010 9:47:14 AM

566 Chapter 10 n Other Applications of SSL

 perror(“Error closing client connection”);

 return 2;

 }

 return 3;

 }

 http_get(client_connection, path, host, ssl);

 display_result(client_connection, ssl);

 SSL_CTX_free(ctx);

 if (close(client_connection) == -1)

You should have no trouble understanding the OpenSSL library after read-
ing through the rest of this book; in fact, the source code itself should begin to
make a lot of sense to you as well.

Final Thoughts
Of course, the challenge is to ensure that TLS is implemented in a secure way —
it’s not enough to just use TLS. You must ensure that no sensitive information is
leaked, that random numbers are properly seeded, and that private keys remain
private, hidden behind secure passphrases. I can’t count how many times I’ve
seen a perfectly secure implementation rendered useless by a plaintext con-
fi guration fi le, containing the private key passphrase, checked into the source
code control system.

The only advice I can offer here is to look at your application as an attacker
might. An attacker always goes for the weakest part of your defense; so most
likely the part that you’ve focused the most effort on securing is of the least
interest to a smart attacker.

Finally, though, accept that security is ultimately a trade-off. They say that
no home security system can keep out a determined intruder. The same is true
of software security. You must balance security with usability. As long as that
tradeoff is made deliberately, conscientiously, and collaboratively, with proper
documentation, you’ve struck a decent balance; with any luck, malicious intrud-
ers will move past your system for lower-hanging fruit.

c10.indd 566c10.indd 566 12/10/2010 9:47:14 AM12/10/2010 9:47:14 AM

567

If you know how to program in C, you must have spent some time looking at
machine-level details, including binary number representations, as you learned
it. This appendix covers some of these details that you were probably familiar
with at one point, but have since (maybe willfully) forgotten.

The Decimal and Binary Numbering Systems

Humans use a base-10 numbering system. Ten unique digits (including 0) rep-
resent the fi rst nine ordinal numbers. After the ninth position, you use multiple
digits to represent numerals. Anthropologists believe that the base-10 num-
bering system, which is ubiquitous in almost all human societies, came about
because humans have 10 fi ngers. As it turns out, though, computers have just
one such “fi nger” because they’re electrical machines. I’ll go out on a limb and
assume you interact with electricity at least occasionally when you turn on a
light switch — the switch is the counter which can be in two states: on and off.
If it’s on, electricity fl ows; if it’s off, it doesn’t.

To grossly oversimplify, a CPU is nothing but a series of interrelated elec-
tronic switches. Numbers are represented by unique combinations of multiple
switches. One such switch can count two unique values. Two switches can
count four: on-on, on-off, off-on and off-off. Three switches can count eight
values, and n switches can count 2n values. Most modern computers are said

A P P E N D I X

A

Binary Representation of
Integers: A Primer

bapp01.indd 567bapp01.indd 567 12/10/2010 9:48:28 AM12/10/2010 9:48:28 AM

568 Appendix A n Binary Representation of Integers: A Primer

to be 32-bit processors, which means that the internal counters are composed of
32 switches each and are capable of counting up to 232, or about 4.3 billion.

The binary numbering system works, at a logical level at least, just like the
decimal system. With decimal numbers, the fi rst nine digits are represented (for
instance) by the Arabic numerals 1, 2, 3, 4, 5, 6, 7, 8, and 9. After 9, a tens-place is
introduced, and 90 more unique numerals can be represented. After this, a hundreds-
place is introduced, and 900 more unique numerals can be represented, and so on.
Algebraically, the numeral 97,236 is 9 * 104 � 7 * 103 � 2 * 102 � 3 * 101 � 6 * 100.

Binary numbers are usually represented with just two digits — 0 and 1 — cor-
responding to the off and on states of the internal hardware. It takes quite a few
more digits to represent a number in binary than in decimal, but any number that
can be expressed in one can be converted to the other. The binary number 11011010
is equal to 1 * 27 � 1 * 26 � 0 * 25 � 1 * 24 � 1 * 23 � 0 * 22 � 1 * 21 � 0 * 20 � 218.

It’s customary to delimit binary numbers at the byte level, where one byte
consists of eight bits. There’s no technical reason why this has to be eight bits
(although hardware design is slightly easier when the number of bits is a power
of 2). In the early days of computing, when communications providers charged
by the bit (!), early airline reservation systems adopted a fi ve-bit byte to save on
communication costs.

Understanding Binary Logical Operations

Binary numbers can be added, subtracted, multiplied and divided just like
decimal numbers. Every computing device in existence has a dedicated circuit
called an Arithmetic Logical Unit (ALU) whose purpose is to take as input two
or more numbers in binary form and output the result of a mathematical opera-
tion on those numbers. This is done using more primitive operations on binary
numbers — AND, OR, NOT, and XOR.

The AND Operation
The AND operation operates at a bit-level. If both bits are 1, AND returns 1. If
either bit is 0, AND returns 0. In other words, only if x is on AND y is on are
x AND y on. C exposes the AND operation via the & operator, and it works
on whole bytes. The result of C’s & operator is the AND of each bit in the fi rst
operand with the corresponding bit in the second operand.

bapp01.indd 568bapp01.indd 568 12/10/2010 9:48:28 AM12/10/2010 9:48:28 AM

 Appendix A n Binary Representation of Integers: A Primer 569

For example:

 10101101 (173)

& 01101011 (107)

 00101001 (41)

There’s no mathematical relationship between the two operands and their
output; the & operation just sets the bits that match in both operands. In C, this
is useful to check the value of a single bit — if you compute x & 00010000, you
get 0 if the fi fth bit (counting from the right) is unset, and you get 32 if it isn’t.
You can put this into a logical operation such as

if (x & 00010000) { do_something(); }

because C considers non-zero to be “true.”

The OR Operation
The OR operation is sort of the opposite. If x is on OR y is on, then x OR y is on.
If x is off and y is on, x OR y is on. If x is on and y is off, x OR y is on. The only
way OR returns off is if x and y are both off. C exposes this via the | operator.
This is useful to optionally set a bit without changing others. If you want to
set the fi fth bit of x, you can compute x = x | 00010000. This won’t change the
values of the other bits but does force the fi fth bit of x to be 1 even if it was 0
before. For example,

 10101101 (173)

| 01101011 (107)

 11101111 (239)

Compare this with the AND output in the previous section. Again, there’s
no mathematical relationship between the input and the output.

The NOT Operation
The NOT operation, C’s ~ operator, inverts a bit. 0 becomes 1 and 1 becomes 0.

bapp01.indd 569bapp01.indd 569 12/10/2010 9:48:28 AM12/10/2010 9:48:28 AM

570 Appendix A n Binary Representation of Integers: A Primer

The XOR Operation
Finally, the Exclusive OR (XOR) operation is just like OR, except that if both bits
are 1, the output is 0. For example,

 10101101 (173)

^ 01101011 (107)

 11000110 (198)

What makes XOR particularly interesting is that it’s invertible; this important
property is examined in depth in Chapter 2.

Position Shifting of Binary Numbers
Binary numbers can also meaningfully be shifted. Shifting a binary number
consists of moving all of the bits in one direction. Just as adding a zero to a
decimal number multiplies it by 10, shifting the bits in a binary number to the
left doubles its value. Similarly, shifting to the right halves it.

Two’s-Complement Representation of Negative
Numbers

Because humans are so bad at performing mathematical computations, com-
puters were invented to reliably add and subtract numbers. Although we’ve
found a few additional purposes for which we can use computers, they’re still
fundamentally adding and subtracting machines. However, no computer can
add or subtract infi nitely. Every ALU has a register size that dictates how many
bits represent a number; if an arithmetic operation needs more bits than the
register size, the operation overfl ows, and wraps back around to a logically
smaller number.

The idea behind two’s-complement arithmetic is to split the available space
in half, assigning one half positive numbers and the other negative numbers.
Because, logically, negative numbers are smaller than positive numbers, you
might guess that the fi rst (lowest) half are the negative numbers and that the
last half are the positive numbers. However, for compatibility with unsigned
numbers, the fi rst half are the positives, and the last half are the negatives.

Because the last (greatest) half of any binary number space is the half with
the most-significant-bit (MSB) set, this provides an easy check for a negative
number — if the MSB is set, the number is negative. This also simplifi es the pro-
cess of negating a number. If you just invert the bits — apply the NOT operation
on all of them — you get the proper representation of the same number, with the
sign reversed. This representation is called one’s complement arithmetic. The only
trick here is that if you invert 0 — binary 00000000 — you get 11111111. This is –0,

bapp01.indd 570bapp01.indd 570 12/10/2010 9:48:28 AM12/10/2010 9:48:28 AM

 Appendix A n Binary Representation of Integers: A Primer 571

which doesn’t make any sense because 0 is neither negative nor positive. To get
around this, two’s-complement arithmetic inverts the number and adds one. This
means that there is one more negative number than there are positive numbers.

Generally, you don’t need to worry much about negative number representa-
tion or two’s-complement arithmetic unless you’re displaying a number; printf,
for example, needs to know whether a number with its MSB set is a negative
number or a very large positive number. The only other time this comes up is
when you start shifting numbers. Remember that shifting to the right halves a
binary number? Well, if that number is negative, you must preserve the sign bit
to keep the number negative. Therefore, the shift operation behaves differently
with a signed number than with an unsigned one; if an unsigned number is
shifted right, the MSB becomes 0 in all cases. If a signed integer is shifted right,
the MSB is preserved, and becomes the next-most-signifi cant-bit.

Consider the binary number 10101101. Interpreted as an unsigned integer,
this is decimal 173. Interpreted as a signed integer, this is –81; invert all of the
bits except the sign bit and add one and you get 1010011. So, if the unsigned
integer is divided in half, the answer should be 86, which 01010110 is if you
right-shift each digit by 1 place and put a 0 in as the new MSB. However,
the signed integer, shifted once to the right, should be –40, which is binary
11010110. And, if you shift 10101101 (–81) to the right, but keep the MSB as a 1,
you’ll get the correct answer.

For this reason, if you need to apply bit-shifting operations, which come up
quite a bit in cryptographic programming, you need to pay careful attention to
the signed-ness of your variables.

Big-Endian versus Little-Endian Number Formats

Bits are usually segmented into bytes, which are eight bits. (Another term you’ll
come across eventually is the nybble, which is four bits. Get it? A small byte is
a nybble). Bits within a byte are logically numbered right-to-left in increasing
order, just like decimal numbers are; in the decimal number 97,236, the 6 is the
least-signifi cant digit, because changing it alters the numeric value the least.
The 9 is the most-signifi cant digit; if the fi fth digit of your bank balance changes
overnight, for example, you’ll probably start investigating immediately.

Binary numbers have a most-signifi cant and a least-signifi cant digit; by con-
vention, they’re written ordered left-to-right in decreasing signifi cance, but this
convention has no bearing on how the computer hardware actually implements
them. In fact, Intel hardware orders them the other way internally. This imple-
mentation detail isn’t important except for the fact that when a number expands
beyond the value 255 that a single eight-bit byte can represent, it expands not
to the left, but to the right. What goes on inside a single byte is none of your
concern. Unfortunately, it is your concern if you use multiple bytes to represent
a number and you want to communicate with other software systems.

bapp01.indd 571bapp01.indd 571 12/10/2010 9:48:28 AM12/10/2010 9:48:28 AM

572 Appendix A n Binary Representation of Integers: A Primer

The reason you need to care about this is that the computer systems of the
early Internet used what is called a big-endian numbering convention, where
bytes are listed in decreasing order of signifi cance, with the most signifi cant
byte occurring fi rst. If you want to transmit a number to one of these systems,
one byte at a time, you must transmit the most signifi cant byte fi rst. If your
computer stores the least-signifi cant byte fi rst in memory, which is known as
the little-endian convention, you must reverse these bytes before transmitting,
or the other side will get the wrong answer.

Listing A-1 illustrates the problem with internal byte ordering.

Listing A-1: “endian.c”

#include <stdio.h>

#include <string.h>

int main(int argc, char *argv[])

{

 int i;

 int x = 3494632738; // 32 bit integer

 unsigned char y[4]; // same integer in 8 bit chunks

 memcpy(y, &x, sizeof(int));

 printf(“%x\n”, x);

 for (i = 0; i < 4; i++)

 {

 printf(“%.02x, “, y[i]);

 }

 printf(“\n”);

}

If you run this on a little-endian machine, you see this:
[jdavies@localhost c]$./endian

d04bdd22

22, dd, 4b, d0,

As you see, although the most-signifi cant-byte-fi rst representation is d04bdd22,
its internal representation is backward, and starts with the least signifi cant byte.
Unfortunately, if you stream this or any other integer over a socket connection,
you are streaming it one byte at a time, and therefore in the wrong order. You
can fi nd numerous references in this text to the functions htonl and htons which
convert from host to network longs and shorts, respectively, and ntohl and
ntohs which reverse this. Network order is always big-endian — the dominant
computers of the early Internet (which almost nobody actually uses anymore)
fi rmly established this. Host order is whatever the individual host wants it to
be — and this is almost always little endian these days.

bapp01.indd 572bapp01.indd 572 12/10/2010 9:48:28 AM12/10/2010 9:48:28 AM

573

A P P E N D I X

B

Installing TCPDump
and OpenSSL

The code developed in this book has been tested to work on both Windows and
Linux systems. If you want to follow the examples, you also need both OpenSSL
and TCPdump installed locally. If you’re on a Linux system, OpenSSL may already
be available. TCPDump you usually need to install yourself. This appendix goes
through the installation process for both systems for both software packages.

Installing TCPDump

TCPDump is a handy, versatile utility that can capture and display every byte
that’s exchanged on any given socket in a system. Obviously, if you’re working
with network protocols, this can be incredibly useful, although it’s less useful
when you’re working with SSL/TLS-secured traffi c. After all, the whole point
of SSL/TLS is to protect users from these sorts of packet sniffers; TCPDump
can come in handy, however, when debugging certifi cate verifi cation problems
or handshake problems.

TCPDump has its roots in Unix/Linux systems and as such is a command-line
tool. You might fi nd a more modern incarnation called Ethereal (also sometimes
called Wireshark) preferable, especially if you’re running a Windows system.
However, the examples in this book use TCPDump strictly because its textual
output lends itself much better to print.

bapp02.indd 573 12/10/2010 9:48:45 AM

574 Appendix B n Installing TCPDump and OpenSSL

Installing TCPDump on a Windows System
WinDump — TCPDump for Windows — depends on a library named pcap, a
packet capture library. You can download both WinDump and pcap at the same
website: http://www.winpcap.org/windump/install/default.htm.

To install, follow these steps:

 1. Download the WinPcap self-installer and run it. The fi rst screen of the
installer appears as shown in Figure B-1. Click Next.

Figure B-1 WinPcap installation

 2. Accept the defaults, including the Automatically Start Driver at Boot Time
option.

 3. After WinPcap has been successfully installed, download WinDump itself.
This isn’t distributed in an installable package, but is instead distributed
simply as an executable. Download it and put it somewhere in your path;
c:\windows\system32 will work.

Unfortunately, Windows doesn’t provide an equivalent of Linux’s loopback
adapter. This means that if you want to sniff traffi c, you have to sniff traffi c
remotely; either network two computers together and install the sample servers
on a remote one, or connect to an external computer over the public Internet
and sniff that traffi c.

bapp02.indd 574 12/10/2010 9:48:45 AM

 Appendix B n Installing TCPDump and OpenSSL 575

Installing TCPDump on a Linux System
Your best bet on a Linux system is to just go ahead and install from source. The
source distributions for libpcap and tcpdump are both available, at the time of
this writing, from http://www.tcpdump.org. You need to install libpcap fi rst,
and tcpdump second; perform the standard
./config

make

sudo make install

on each.
The only potential challenge is that the kernel itself must have either the

CONFIG_PACKET option built in, or the af_packet module available. Virtually
all Linux distributions include a kernel with this option set. This is likely to
only be a problem if you build your own custom kernel, in which case you may
need to rebuild it.

Additionally, tcpdump must be run as root on a Linux system. An ordinary
user can’t communicate directly with the hardware in the way the tcpdump is
required to in order to capture incoming packets.

Installing OpenSSL

OpenSSL is a complete implementation of the client and server side of SSLv2,
SSLv3, and TLS 1.0. It was developed from the SSLEay library originally written
by Eric A. Young and Tim J. Hudson. At the time of this writing, the current
version is 1.0.0. A complete OpenSSL installation also includes several useful
utility programs that generate and display X.509 certifi cates, sign certifi cate
requests, run test servers and clients, and so on. OpenSSL is the library that
powers Apache’s mod_ssl, which is still the most popular web server on the
Internet. Many of this book’s examples rely on OpenSSL utility programs, so
you should have a version installed.

Installing OpenSSL on a Windows System
OpenSSL is somewhat Unix/Linux-oriented, but you can install it on Windows.
This just means that it runs on Windows; it’s still entirely a command-line appli-
cation, with no fancy graphical front-end. You need to roll up your sleeves and
open a command prompt to do anything useful with OpenSSL.

bapp02.indd 575 12/10/2010 9:48:45 AM

576 Appendix B n Installing TCPDump and OpenSSL

As you probably know, Windows software is usually distributed in binary
form, not in source code form as it traditionally is for Unix/Linux systems.
Shining Light Productions maintains a binary distribution of OpenSSL that you
can download from http://www.slproweb.com/products/Win32OpenSSL.html.
This is a port of the main OpenSSL code to the Windows environment; every
effort is made to ensure that both implementations are the same.

To install OpenSSL on a Windows system, use the following steps:

 1. Download the Win32 OpenSSL vx.x.x installer; you should probably
grab the latest one, but you need at least version 1.0.0 to follow all of the
examples in this book.

 2. Download the Visual C++ 2008 Redistributables package. There’s a link to
this on the Shining Light Productions site, but it takes you directly to the
Microsoft download site; you must download this from Microsoft. Don’t
grab the latest version, either — grab the version that Win32 OpenSSL
depends on.

 3. Both the downloads are executable fi les; the Visual C++ 2008 redistrib-
utables download is called vcredist_x86.exe, and you should run it and
follow the direction indicated by the graphical installer as shown in
Figure B-2.

Figure B-2 Visual C++ 2008 redistributables installation

 4. After this is complete, run the Win32OpenSSL-1_0_0a.exe installer. Accept
the defaults and let it install into C:\OpenSSL-Win32.

bapp02.indd 576 12/10/2010 9:48:45 AM

 Appendix B n Installing TCPDump and OpenSSL 577

Installing OpenSSL on a Linux system
Your distribution may very well have OpenSSL installed already; check to see
if you have it as well as what version you’re running. However, you may want
to download and build the latest copy from http://www.openssl.org anyway,
just so that you have the most up-to-date code available. Just as with tcpdump,
a source install is probably the easiest way to go; download the distributable
and run

./config

make

sudo make install

You may want to skip the last step if you already have OpenSSL installed; you
may have other products that rely on the version bundled with your distribu-
tion. If you don’t install the custom binaries, you can fi nd them under the apps
directory of the distribution.

bapp02.indd 577 12/10/2010 9:48:45 AM

bapp02.indd 578 12/10/2010 9:48:46 AM

579

A P P E N D I X

C

Understanding the
Pitfalls of SSLv2

With all the elements of a secure connection — cryptography, authentication, secure
key exchange and message authentication — it should be a simple matter to put
it all together securely, right? Well, as it turns out, even when all the pieces are
in place, it’s surprisingly easy to get subtly wrong. Just ask the original Netscape
engineers who released SSLv2. On paper, they did everything right, but the protocol
was found to have subtle, but fatal fl aws after it had been widely released. To the
credit of the Netscape protocol designers, everybody else thought that they had
gotten everything right the fi rst time around as well. It wasn’t until the protocol
had been intensively studied in action that the chinks in the armor began to show.

Because SSLv2 was widely disseminated before it was found to be fl awed, it’s
interesting to start by examining exactly how it worked, and then move on to see
what’s wrong with the protocol. SSL was specifi ed fairly rigorously and submit-
ted as an IETF draft (http://www.mozilla.org/projects/security/pki/nss/
ssl/draft02.html), but its fl aws were discovered before it was accepted, so it’s
never been offi cially blessed by the IETF. Although SSLv2 has been deprecated,
there are pockets of support for it, so you can easily fi nd the protocol details.

This appendix details an SSLv2 implementation similar to the TLS imple-
mentation presented in Chapter 6. I’ve assumed you’re familiar with Chapter 6;
I discuss only the differences between the two implementations here. I do my
best to avoid covering old ground, but since SSLv2 and TLS 1.0 have the same
goals — to encrypt and authenticate a channel — it’s unavoidable that some
similar elements reappear here.

bapp03.indd 579bapp03.indd 579 12/10/2010 9:49:01 AM12/10/2010 9:49:01 AM

580 Appendix C n Understanding the Pitfalls of SSLv2

Listing C-1 details the SSL function prototypes. Notice that there’s no
ssl_shutdown routine; SSLv2 didn’t explicitly mark the end of a secure session.

Listing C-1: “ssl.h” SSL function prototypes

int ssl_connect(int connection, SSLParameters *parameters);

int ssl_send(int connection, const char *application_data, int length,

 int options, SSLParameters *parameters);

int ssl_recv(int connection, char *target_buffer, int buffer_size,

 int options, SSLParameters *parameters);

You can modify the HTTP client implementation introduced in Chapter 1 as
shown in Listing C-2 to be SSL-enabled by replacing socket-layer function calls
with these new SSL library calls.

Listing C-2: “https.c” main routine with SSLv2 support

#define HTTPS_PORT 443

...

int main(int argc, char *argv[])

{

...

 SSLParameters ssl_context;

...

 host_address.sin_family = AF_INET;

 host_address.sin_port = htons(HTTPS_PORT);

 memcpy(&host_address.sin_addr, host_name->h_addr_list[0],

 sizeof(struct in_addr));

 if (connect(client_connection, (struct sockaddr *) &host_address,

 sizeof(host_address)) == -1)

 {

 perror(“Unable to connect to host”);

 return 2;

 }

 if (ssl_connect(client_connection, &ssl_context))

 {

 fprintf(stderr, “Error: unable to negotiate SSL connection.\n”);

 return 3;

 }

 http_get(client_connection, path, host, &ssl_context);

 display_result(client_connection, &ssl_context);

...

As you can see, the changes to the main routine, which establishes the HTTP
connection, are fairly minimal. The changes to the http_get routine in Listing
C-3 are similarly unobtrusive.

bapp03.indd 580bapp03.indd 580 12/10/2010 9:49:02 AM12/10/2010 9:49:02 AM

 Appendix C n Understanding the Pitfalls of SSLv2 581

Listing C-3: “https.c” http_get with SSLv2 support

int http_get(int connection, const char *path, const char *host,

 SSLParameters *ssl_context)

{

 static char get_command[MAX_GET_COMMAND];

 sprintf(get_command, “GET /%s HTTP/1.1\r\n”, path);

 if (ssl_send(connection, get_command, strlen(get_command),

 0, ssl_context) == -1)

 {

 return -1;

 }

 sprintf(get_command, “Host: %s\r\n”, host);

 if (ssl_send(connection, get_command, strlen(get_command),

 0, ssl_context) == -1)

 {

 return -1;

 }

 strcpy(get_command, “Connection: Close\r\n\r\n”);

 if (ssl_send(connection, get_command, strlen(get_command),

 0, ssl_context) == -1)

 {

 return -1;

 }

 return 0;

}

...

int display_result(int connection, SSLParameters *ssl_context)

{

 int received = 0;

 static char recv_buf[BUFFER_SIZE + 1];

 // Can’t exit when return value is 0 like in http.c, since empty SSL

 // messages can be sent (openssl does this)

 while ((received = ssl_recv(connection, recv_buf, BUFFER_SIZE,

 0, ssl_context)) >= 0)

 {

 recv_buf[received] = ‘\0’;

 printf(“data: %s”, recv_buf);

 }

 printf(“\n”);

}

The application fl ow is exactly the same as before — in fact, other than the
extra call to ssl_connect after the actual socket is connected, you could make
this completely transparent by defi ning a few macros.

bapp03.indd 581bapp03.indd 581 12/10/2010 9:49:02 AM12/10/2010 9:49:02 AM

582 Appendix C n Understanding the Pitfalls of SSLv2

Implementing the SSL Handshake

The bulk of the work in an SSL library is in the SSL handshake. When the
ssl_connect function is called, the connection is unsecured. ssl_connect is
primarily responsible for performing a secure key exchange and keeping track
of the exchanged keys. Its job is to fi ll out the SSLParameters structure that’s
passed in as shown in Listing C-4.

Listing C-4: “ssl.h” SSLParameters declaration

// Technically, this is a variable-length parameter; the client can send

// between 16 and 32 bytes. Here, it’s left as a fixed-length

// parameter.

#define CHALLENGE_LEN 16

typedef struct

{

 CipherSpec *active_cipher_spec;

 CipherSpec *proposed_cipher_spec;

 // Flow-control variables

 int got_server_hello;

 int got_server_verify;

 int got_server_finished;

 int handshake_finished;

 int connection_id_len;

 rsa_key server_public_key;

 unsigned char challenge[CHALLENGE_LEN];

 unsigned char *master_key;

 unsigned char *connection_id;

 void *read_state;

 void *write_state;

 unsigned char *read_key;

 unsigned char *write_key;

 unsigned char *read_iv;

 unsigned char *write_iv;

 int read_sequence_number;

 int write_sequence_number;

 unsigned char *unread_buffer;

 int unread_length;

}

SSLParameters;

The server_public_key is the key with which RSA key exchange is performed
as described in Chapter 3. (SSLv2 didn’t support Diffi e-Hellman key exchange.)

bapp03.indd 582bapp03.indd 582 12/10/2010 9:49:02 AM12/10/2010 9:49:02 AM

 Appendix C n Understanding the Pitfalls of SSLv2 583

You should be familiar with the read_key, write_key, and write_iv from
Chapter 2. There are a few internal variables to examine as you go through the
implementation of ssl_connect.

The fi rst two parameters are the active_cipher_spec and the proposed_
cipher_spec. The cipher_spec describes exactly what encryption and MAC
should be applied to each packet.

The format of a CipherSpec structure in Listing C-5 shouldn’t be too surprising.

Listing C-5: “ssl.h” SSLv2 CipherSpec declaration

typedef struct

{

 int cipher_spec_code;

 int block_size;

 int IV_size;

 int key_size;

 int hash_size;

 void (*bulk_encrypt)(const unsigned char *plaintext,

 const int plaintext_len,

 unsigned char ciphertext[],

 void *iv,

 const unsigned char *key);

 void (*bulk_decrypt)(const unsigned char *ciphertext,

 const int ciphertext_len,

 unsigned char plaintext[],

 void *iv,

 const unsigned char *key);

 void (*new_digest)(digest_ctx *context);

}

CipherSpec;

Each cipher and MAC combination is identifi ed by a unique, three-byte com-
bination. SSLv2 defi ned 7 cipher/MAC combinations as shown in Listing C-6.

Listing C-6: “ssl.h” CipherSuite Declarations

#define SSL_CK_RC4_128_WITH_MD5 0x800001

#define SSL_CK_DES_64_CBC_WITH_MD5 0x400006

#define SSL_CK_DES_192_EDE3_CBC_WITH_MD5 0xc00007

#define SSL_CK_RC4_128_EXPORT40_WITH_MD5 0x800002

#define SSL_CK_RC2_128_CBC_WITH_MD5 0x800003

#define SSL_CK_RC2_128_CBC_EXPORT40_WITH_MD5 0x800004

#define SSL_CK_IDEA_128_CBC_WITH_MD5 0x800005

#define SSL_PE_NO_CIPHER 0x0100

#define SSL_PE_NO_CERTIFICATE 0x0200

#define SSL_PE_BAD_CERTIFICATE 0x0400

#define SSL_PE_UNSUPPORTED_CERTIFICATE_TYPE 0x0600

(Continued)

bapp03.indd 583bapp03.indd 583 12/10/2010 9:49:02 AM12/10/2010 9:49:02 AM

584 Appendix C n Understanding the Pitfalls of SSLv2

#define SSL_CT_X509_CERTIFICATE 1

#define SSL_MT_ERROR 0

#define SSL_MT_CLIENT_HELLO 1

#define SSL_MT_CLIENT_MASTER_KEY 2

#define SSL_MT_CLIENT_FINISHED 3

#define SSL_MT_SERVER_HELLO 4

#define SSL_MT_SERVER_VERIFY 5

#define SSL_MT_SERVER_FINISHED 6

Because RC2 or IDEA weren’t examined, they won’t be supported here, although
it should be fairly straightforward at this point how you might go about doing
so. Notice that in all cases, the MAC algorithm is MD5; SHA is not supported
in SSLv2. RC4 is supported, of course, and two other bulk cipher algorithms,
DES and 3DES (identifi ed here as DES_192_EDE3) are defi ned. In all cases, block
ciphers use CBC chaining.

Also notice SSL_CK_RC4_128_EXPORT40_WITH_MD5. SSLv2 supports export-grade
ciphers as discussed in Chapter 8, but it does so slightly differently than TLS
does. The 128 in the cipher suite identifi er, of course, identifi es the key length in
bits. However, export40 mandates that only 40 bits of the key be protected by
the key exchange algorithm; the remaining 88 bits are transmitted in the clear.

Add support for three of these ciphers in Listing C-7.

Listing C-7: “ssl.c” cipher spec declarations

#define NUM_CIPHER_SPECS 3

static CipherSpec specs[] =

{

 { SSL_CK_DES_64_CBC_WITH_MD5, 8, 8, 8, MD5_BYTE_SIZE, des_encrypt,

 des_decrypt, new_md5_digest },

 { SSL_CK_DES_192_EDE3_CBC_WITH_MD5, 8, 8, 24, MD5_BYTE_SIZE,

 des3_encrypt, des3_decrypt, new_md5_digest },

 { SSL_CK_RC4_128_WITH_MD5, 0, 0, 16, MD5_BYTE_SIZE, rc4_128_encrypt,

 rc4_128_decrypt, new_md5_digest }

};

So how does the SSL handshake work? First, the client advertises to the
server which cipher specs it supports; it’s not required to support all of them.
The server responds by advising the client which specs it supports, as well as
sending an X.509 certifi cate containing its public RSA key. Assuming there’s at
least one cipher spec that both sides understand, the client selects one, creates
a key, encrypts it using the server’s public key, and sends it on. This exchange
is illustrated in Figure C-1.

As a double-check against man-in-the-middle attacks, the client also sends
a challenge token, which the server must encrypt using the newly negotiated
key before sending back the encrypted value, in its hello message. The client
verifi es that the decrypted token is the same as what was sent. If it’s not, the

bapp03.indd 584bapp03.indd 584 12/10/2010 9:49:02 AM12/10/2010 9:49:02 AM

 Appendix C n Understanding the Pitfalls of SSLv2 585

handshake is rejected. Likewise, the server sends a connection-id that the client
must send back, encrypted, after the key exchange succeeds.

The complete handshake is illustrated in Figure C-2.

Figure C-1: SSLv2 opening handshake

send_client_hello (list of cipher specs)

send_server_hello (list of cipher specs, certificates)

send_key (cipher_spec, rsa_encrypt (client_key))

serverclient

 Figure C-2: SSLv2 complete handshake

send_client_hello (list of cipher specs)

client_finished (conn_id)

send_server_hello (list of cipher specs, certificates)

server_verify (challenge)

server_finished ()

send_key (cipher_spec, rsa_encrypt (client_key))

serverclient

(Encryption Begins)

The specifi cation states that the client finished message should be sent before the
server_verify is received. However, every working implementation sends
the server_verify immediately after the key is received. This isn’t a problem
and doesn’t affect the security of the implementation, but it is something that
you need to be aware of when coding the SSLv2 handshake.

bapp03.indd 585bapp03.indd 585 12/10/2010 9:49:02 AM12/10/2010 9:49:02 AM

586 Appendix C n Understanding the Pitfalls of SSLv2

All six of these handshake messages are sent in the ssl_connect function.
After the server_finished message has been received, the higher-level protocol
begins.

The code for ssl_connect is shown in Listing C-8.

Listing C-8: “ssl.c” ssl_connect

int ssl_connect(int connection,

 SSLParameters *parameters)

{

 init_parameters(parameters);

 if (send_client_hello(connection, parameters) == -1)

 {

 return -1;

 }

 while (!parameters->got_server_hello)

 {

 // set proposed_cipher_spec from server hello

 if (receive_ssl_message(connection, NULL, 0, parameters) == -1)

 {

 return -1;

 }

 }

 // If proposed_cipher_spec is not set at this point, no cipher could

 // be negotiated

 if (parameters->proposed_cipher_spec == NULL)

 {

 send_error(connection, SSL_PE_NO_CIPHER, parameters);

 return -1;

 }

 compute_keys(parameters);

 if (send_client_master_key(connection, parameters) == -1)

 {

 return -1;

 }

 // From this point forward, everything is encrypted

 parameters->active_cipher_spec = parameters->proposed_cipher_spec;

 parameters->proposed_cipher_spec = NULL;

 if (send_client_finished(connection, parameters) == -1)

 {

 return -1;

 }

bapp03.indd 586bapp03.indd 586 12/10/2010 9:49:03 AM12/10/2010 9:49:03 AM

 Appendix C n Understanding the Pitfalls of SSLv2 587

 while (!parameters->got_server_verify)

 {

 if (receive_ssl_message(connection, NULL, 0, parameters) == -1)

 {

 return -1;

 }

 }

 while (!parameters->got_server_finished)

 {

 if (receive_ssl_message(connection, NULL, 0, parameters) == -1)

 {

 return -1;

 }

 }

 parameters->handshake_finished = 1;

 return 0;

}

The fi rst call is to init_parameters in Listing C-9, which just resets all of the
SSLParameters values.

Listing C-9: “ssl.c” init_parameters

static void init_parameters(SSLParameters *parameters)

{

 int i;

 parameters->active_cipher_spec = NULL;

 parameters->proposed_cipher_spec = NULL;

 parameters->write_key = NULL;

 parameters->read_key = NULL;

 parameters->read_state = NULL;

 parameters->write_state = NULL;

 parameters->write_iv = NULL;

 parameters->read_iv = NULL;

 parameters->write_sequence_number = 0;

 parameters->read_sequence_number = 0;

 parameters->got_server_hello = 0;

 parameters->got_server_verify = 0;

 parameters->handshake_finished = 0;

 for (i = 0; i < CHALLENGE_LEN; i++)

 {

 // XXX this should be random

 parameters->challenge[i] = i;

 }

 parameters->master_key = NULL;

(Continued)

bapp03.indd 587bapp03.indd 587 12/10/2010 9:49:03 AM12/10/2010 9:49:03 AM

588 Appendix C n Understanding the Pitfalls of SSLv2

 parameters->server_public_key.modulus = malloc(sizeof(huge));

 parameters->server_public_key.exponent = malloc(sizeof(huge));

 set_huge(parameters->server_public_key.modulus, 0);

 set_huge(parameters->server_public_key.exponent, 0);

 parameters->unread_buffer = NULL;

 parameters->unread_length = 0;

}

You can easily match the remaining function calls with the sequence diagram
in Figure C-2. If this function runs to completion, the caller can assume that a
secure channel has been successfully negotiated and, for the most part, does
not need to worry about it again. An implementation of each of the handshake
functions is presented next.

SSL Client Hello
The client is responsible for initiating an SSL handshake by sending the
ClientHello message. If this isn’t the fi rst message that is sent, the server responds
with an error and shuts down the socket. So what does this message look like?
Listing C-10 defi nes in in C struct form.

Listing C-10: “ssl.h” ClientHello declaration

typedef struct

{

 unsigned char version_major;

 unsigned char version_minor;

 unsigned short cipher_specs_length;

 unsigned short session_id_length;

 unsigned short challenge_length;

 unsigned char *cipher_specs;

 unsigned char *session_id;

 unsigned char *challenge;

}

ClientHello;

I examine the specifi cs of the wire format in a minute, but fi rst examine the
contents of the client hello message. As you see, the client starts by announcing
the version of SSL that it understands. You might expect this to be 2.0, but SSLv2
is actually version 0.2! Although SSLv2 was pretty widespread at one time, the
designers considered it to be fairly experimental when it was proposed. It was
never even actually offi cially “released.”

Following the version number are the cipher specs that this client understands,
a sessionID, and the challenge token. I have discussed the cipher specs and
the challenge token, and session IDs are in place to support session resumption
as detailed in Chapter 8.

bapp03.indd 588bapp03.indd 588 12/10/2010 9:49:03 AM12/10/2010 9:49:03 AM

 Appendix C n Understanding the Pitfalls of SSLv2 589

Because each of the three parameters — cipher specs, session ID and chal-
lenge token — can be of variable length, length bytes are given for each before
their values. You can build a client hello packet for a new, non-resumed, session
as in Listing C-11.

Listing C-11: “ssl.c” send_client_hello

#define SSL_MT_CLIENT_HELLO 1

static int send_client_hello(int connection,

 SSLParameters *parameters)

{

 unsigned char *send_buffer, *write_buffer;

 int buf_len;

 int i;

 unsigned short network_number;

 int status = 0;

 ClientHello package;

 package.version_major = 0;

 package.version_minor = 2;

 package.cipher_specs_length = sizeof(specs) / sizeof(CipherSpec);

 package.session_id_length = 0;

 package.challenge_length = CHALLENGE_LEN;

 // Each cipher spec takes up 3 bytes in SSLv2

 package.cipher_specs = malloc(sizeof(unsigned char) * 3 *

 package.cipher_specs_length);

 package.session_id = malloc(sizeof(unsigned char) *

 package.session_id_length);

 package.challenge = malloc(sizeof(unsigned char) *

 package.challenge_length);

 buf_len = sizeof(unsigned char) * 2 +

 sizeof(unsigned short) * 3 +

 (package.cipher_specs_length * 3) +

 package.session_id_length +

 package.challenge_length;

 for (i = 0; i < package.cipher_specs_length; i++)

 {

 memcpy(package.cipher_specs + (i * 3),

 &specs[i].cipher_spec_code, 3);

 }

 memcpy(package.challenge, parameters->challenge, CHALLENGE_LEN);

 write_buffer = send_buffer = malloc(buf_len);

 write_buffer = append_buffer(write_buffer,

 &package.version_major, 1);

(Continued)

bapp03.indd 589bapp03.indd 589 12/10/2010 9:49:03 AM12/10/2010 9:49:03 AM

590 Appendix C n Understanding the Pitfalls of SSLv2

 write_buffer = append_buffer(write_buffer,

 &package.version_minor, 1);

 network_number = htons(package.cipher_specs_length * 3);

 write_buffer = append_buffer(write_buffer,

 (void *) &network_number, 2);

 network_number = htons(package.session_id_length);

 write_buffer = append_buffer(write_buffer,

 (void *) &network_number, 2);

 network_number = htons(package.challenge_length);

 write_buffer = append_buffer(write_buffer,

 (void *) &network_number, 2);

 write_buffer = append_buffer(write_buffer, package.cipher_specs,

 package.cipher_specs_length * 3);

 write_buffer = append_buffer(write_buffer, package.session_id,

 package.session_id_length);

 write_buffer = append_buffer(write_buffer, package.challenge,

 package.challenge_length);

 status = send_handshake_message(connection, SSL_MT_CLIENT_HELLO,

 send_buffer, buf_len, parameters);

 free(package.cipher_specs);

 free(package.session_id);

 free(package.challenge);

 free(send_buffer);

 return status;

}

This code should be straightforward to understand. First, fi ll out a ClientHello
structure and then “fl atten” it into a linear memory array with the byte order-
ing corrected. Then invoke send_handshake_message with a pointer to the
fl attened buffer.

Listing C-12 shows the send_handshake_message call. You pass in fi ve
parameters — the socket id (connection), the message type (client hello in
this case), the buffer and its length, and fi nally the SSL parameters array
you’re building. This function is actually a small one.

Listing C-12: “ssl.c” send_handshake_message

static int send_handshake_message(int connection,

 unsigned char message_type,

 unsigned char *data,

 int data_len,

 SSLParameters *parameters)

{

 unsigned char *buffer;

 int buf_len;

 buf_len = data_len + 1;

bapp03.indd 590bapp03.indd 590 12/10/2010 9:49:03 AM12/10/2010 9:49:03 AM

 Appendix C n Understanding the Pitfalls of SSLv2 591

 buffer = malloc(buf_len);

 buffer[0] = message_type;

 memcpy(buffer + 1, data, data_len);

 if (send_message(connection, buffer, buf_len, parameters) == -1)

 {

 return -1;

 }

 free(buffer);

 return 0;

}

The send_message function in Listing C-13 actually writes something onto
the socket itself.

Listing C-13: “ssl.c” send_message

static int send_message(int connection,

 const unsigned char *data,

 unsigned short data_len,

 SSLParameters *parameters)

{

 unsigned char *buffer;

 int buf_len;

 unsigned short header_len;

 buf_len = data_len + 2;

 buffer = malloc(buf_len);

 header_len = htons(data_len);

 memcpy(buffer, &header_len, 2);

 buffer[0] |= 0x80; // indicate two-byte length

 memcpy(buffer + 2, data, data_len);

 if (send(connection, (void *) buffer, buf_len, 0) < buf_len)

 {

 return -1;

 }

 free(buffer);

 return 0;

}

This function, like the last, just prepends yet another header in front of the
data to be sent. This header consists of the two-byte length of the payload, fol-
lowed by the payload. In the case of a handshake message, the fi rst byte of the
payload is a byte indicating which handshake message this is. Note that there’s

bapp03.indd 591bapp03.indd 591 12/10/2010 9:49:03 AM12/10/2010 9:49:03 AM

592 Appendix C n Understanding the Pitfalls of SSLv2

nothing to indicate that this is a handshake message to begin with. The receiver
is supposed to keep track of where it is in the overall exchange. In other words,
if the server hasn’t gotten any data yet, it should assume that the next message
it receives will be a ClientHello handshake message.

Every record transmitted over an SSL-secured channel must start with
this header, including encrypted application data. When data is encrypted,
the header is stripped off, the data is decrypted, and then it’s passed up to the
calling function.

The only potentially confusing part of the send_message function in Listing
C-13 is this:

 buffer[0] |= 0x80; // indicate two-byte length

SSLv2 allows for two- or three-byte payload lengths. In a nod toward effi -
ciency, the SSLv2 protocol designers borrowed a page from the ASN.1 protocol
designers’ playbook and used the fi rst bit of the fi rst byte to indicate the length
of the length. If the most signifi cant bit of the fi rst byte is 1, this is a two-byte
length. This function is extended for three-byte lengths later.

At this point, the server accepts the client hello, processes it or rejects it with
an error, and sends back its own hello message.

SSL Server Hello
The ServerHello message is structured as in Listing C-14.

Listing C-14: “ssl.h” ServerHello declaration

typedef struct

{

 unsigned char session_id_hit;

 unsigned char certificate_type;

 unsigned char server_version_major;

 unsigned char server_version_minor;

 unsigned short certificate_length;

 unsigned short cipher_specs_length;

 unsigned short connection_id_length;

 signed_x509_certificate certificate;

 unsigned char *cipher_specs;

 unsigned char *connection_id;

}

ServerHello;

The fi rst byte, session_id_hit, is a true/false indicator of whether the session
ID supplied was recognized by the server — 0 for false, 1 for true. Of course,
if the client doesn’t supply a session ID indicating a request for a brand-new
session, session_id_hit is always 0.

bapp03.indd 592bapp03.indd 592 12/10/2010 9:49:03 AM12/10/2010 9:49:03 AM

 Appendix C n Understanding the Pitfalls of SSLv2 593

The next byte is the certificate_type. This was added to support other
certifi cates besides x.509, although no other certifi cate types were ever defi ned.
This is followed by the version of SSL that the server understands. The speci-
fi cation isn’t clear on what should be done if, in theory, the server understands
a higher version of the protocol than the client, or if it doesn’t understand the
version that the client sent. However, this turned out to be a moot point. The
next version of SSL was defi ned completely incompatibly with SSLv2, so ver-
sion interoperability never came up. If the client sends an SSLv3+ handshake
message to an SSLv2-only server, the server doesn’t understand the message to
begin with and immediately errors out. Likewise, if the client requests SSLv2,
but the server would rather negotiate SSLv3 (which would be good advice), its
only option is to reject the client hello with an error and hope the client retries
with SSLv3 semantics. To complicate matters even further, there’s no standard
SSLv2 error message indicating that the protocol version requested isn’t sup-
ported. As such, the only thing you ever see in these two bytes is 0, 2.

Finally, the server sends its variable length parameters — its certifi cate, its
supported cipher specs, and its connection ID.

The certifi cate is in the format described in Chapter 5. Actually, the SSLv2
specifi cation wasn’t entirely clear on how the certifi cate should be encoded,
but all implementations present the certifi cate in ANS.1 DER encoding. Notice
that the defi nition only leaves room for one certifi cate — there’s no concept
of “certifi cate chaining” here. SSLv3/TLS 1.0 introduced certifi cate chaining,
although without x.509v3 certifi cate extensions, this turned out to be a mistake.

The certifi cate is followed by a variable-length list of the cipher specs that the
server supports. It’s not clear whether this should be all of the ciphers that
the server supports, or just the union of those that it supports with those that it
knows the client supports. Remember, the client has already sent an exhaustive
list of which ciphers it supports in its own hello message. However, it’s unclear
what use a client might make of the knowledge that the server supports a cipher
that the client doesn’t, so OpenSSL 0.9.8 returns the union of the two lists. Notice that
SSLv2 lets the client fi nally select the cipher suite; SSLv3+ has the server do
this — which actually makes more sense.

Finally, the server sends back a connection_id that serves the same purpose
to the server that the challenge token served the client — to prevent replay
attacks by forcing the client to encrypt a random value on each connection
attempt. Note that the connection ID is not the session ID — that will be sent at
the very end, in the server fi nished message.

After ssl_connect sends its ClientHello message, it waits until the server
responds with a ServerHello:

 while (!parameters->got_server_hello)

 {

 // set proposed_cipher_spec from server hello

bapp03.indd 593bapp03.indd 593 12/10/2010 9:49:03 AM12/10/2010 9:49:03 AM

594 Appendix C n Understanding the Pitfalls of SSLv2

 if (receive_ssl_message(connection, NULL, 0, parameters) == -1)

 {

 return -1;

 }

 }

receive_ssl_message in Listing C-15 thus reads the data available from the
socket, strips off the SSL header, and, if it’s a handshake message, processes it.

Listing C-15: “ssl.c” receive_ssl_message

static int receive_ssl_message(int connection,

 char *target_buffer,

 int target_bufsz,

 SSLParameters *parameters)

{

 int status = 0;

 unsigned short message_len;

 unsigned short bytes_read;

 unsigned short remaining;

 unsigned char *buffer, *bufptr;

 // New message - read the length first

 if (recv(connection, &message_len, 2, 0) <= 0)

 {

 return -1;

 }

 message_len = ntohs(message_len);

 if (message_len & 0x8000)

 {

 // two-byte length

 message_len &= 0x7FFF;

 }

 // else TODO

 // Now read the rest of the message. This will fail if enough memory

 // isn’t available, but this really should never be the case.

 bufptr = buffer = malloc(message_len);

 remaining = message_len;

 bytes_read = 0;

 while (remaining)

 {

 if ((bytes_read = recv(connection, bufptr,

 remaining, 0)) <= 0)

 {

 return -1;

 }

 bufptr += bytes_read;

 remaining -= bytes_read;

bapp03.indd 594bapp03.indd 594 12/10/2010 9:49:03 AM12/10/2010 9:49:03 AM

 Appendix C n Understanding the Pitfalls of SSLv2 595

 }

 if (!parameters->handshake_finished)

 {

 switch (buffer[0])

 {

 case SSL_MT_ERROR:

 status = parse_server_error(parameters, buffer + 1);

 return -1;

 case SSL_MT_SERVER_HELLO:

 status = parse_server_hello(parameters, buffer + 1);

 if (status == -1)

 {

 send_error(connection,

 SSL_PE_UNSUPPORTED_CERTIFICATE_TYPE,

 parameters);

 }

 break;

 default:

 printf(“Skipping unrecognized handshake message %d\n”,

 buffer[0]);

 break;

 }

 }

 free(buffer);

 return status;

}

First, read the length of the message. Remember that the fi rst two or three
bytes of every SSLv2 message must be the length of the following payload:

 if (recv(connection, &message_len, 2, 0) <= 0)

 {

 return -1;

 }

 message_len = ntohs(message_len);

 if (message_len & 0x8000)

 {

 // two-byte length

 message_len &= 0x7FFF;

 }

Because you know this is an SSLv2 connection, you know that at least two
bytes should be available. Check the MSB of the fi rst byte and, if it’s 1, mask it
out to get the actual length (you’ll deal with the three-byte case below).

bapp03.indd 595bapp03.indd 595 12/10/2010 9:49:03 AM12/10/2010 9:49:03 AM

596 Appendix C n Understanding the Pitfalls of SSLv2

Next, read the whole payload into memory:

 bufptr = buffer = malloc(message_len);

 remaining = message_len;

 bytes_read = 0;

 while (remaining)

 {

 if ((bytes_read = recv(connection, bufptr,

 remaining, 0)) <= 0)

 {

 return -1;

 }

 bufptr += bytes_read;

 remaining -= bytes_read;

 }

Finally, parse and handle the message. If the HandshakeFinished fl ag hasn’t
been set, then this message ought to be a handshake message, and the fi rst byte
should therefore be a handshake message type.

 if (!parameters->handshake_finished)

 {

 switch (buffer[0])

 {

 case SSL_MT_ERROR:

 status = parse_server_error(parameters, buffer + 1);

 return -1;

 case SSL_MT_SERVER_HELLO:

 status = parse_server_hello(parameters, buffer + 1);

 if (status == -1)

 {

 send_error(connection,

 SSL_PE_UNSUPPORTED_CERTIFICATE_TYPE,

 parameters);

 }

 break;

 default:

 printf(“Skipping unrecognized handshake message %d\n”,

 buffer[0]);

 break;

 }

 }

The error message format is pretty simple as shown in Listing C-16: It’s
a two-byte error code. SSLv2 only defi nes four error codes, so one byte
would have been more than enough, but the Netscape designers were being
forward-thinking.

bapp03.indd 596bapp03.indd 596 12/10/2010 9:49:03 AM12/10/2010 9:49:03 AM

 Appendix C n Understanding the Pitfalls of SSLv2 597

Listing C-16: “ssl.c” parse_server_error

static int parse_server_error(SSLParameters *parameters,

 unsigned char *buffer)

{

 unsigned short error_code;

 memcpy(&error_code, buffer, sizeof(unsigned short));

 error_code = ntohs(error_code);

 switch (error_code)

 {

 case SSL_PE_NO_CIPHER:

 fprintf(stderr, “No common cipher.\n”);

 break;

 default:

 fprintf(stderr, “Unknown or unexpected error %d.\n”,

 error_code);

 break;

 }

 return error_code;

}

Also notice that this routine only processes one type of error code, but there
are three others spelled out in the specifi cation: no certifi cate, bad certifi cate, and
unsupported certifi cate. The server won’t send any of these to the client — at
least not in this implementation — so don’t bother recognizing them.

The server hello message is accepted and parsed by the parse_server_hello
function in Listing C-17.

Listing C-17: “ssl.c” parse_server_hello

static int parse_server_hello(SSLParameters *parameters,

 unsigned char *buffer)

{

 int i, j;

 int status = 0;

 ServerHello package;

 buffer = read_buffer(&package.session_id_hit, buffer, 1);

 buffer = read_buffer(&package.certificate_type, buffer, 1);

 buffer = read_buffer(&package.server_version_major, buffer, 1);

 buffer = read_buffer(&package.server_version_minor, buffer, 1);

 buffer = read_buffer((void *) &package.certificate_length,

 buffer, 2);

 package.certificate_length = ntohs(package.certificate_length);

 buffer = read_buffer((void *) &package.cipher_specs_length,

 buffer, 2);

(Continued)

bapp03.indd 597bapp03.indd 597 12/10/2010 9:49:03 AM12/10/2010 9:49:03 AM

598 Appendix C n Understanding the Pitfalls of SSLv2

 package.cipher_specs_length = ntohs(package.cipher_specs_length);

 buffer = read_buffer((void *) &package.connection_id_length,

 buffer, 2);

 package.connection_id_length = ntohs(package.connection_id_length);

 // Only one of these was ever defined

 if (package.certificate_type == SSL_CT_X509_CERTIFICATE)

 {

 init_x509_certificate(&package.certificate);

 if (status = parse_x509_certificate(buffer,

 package.certificate_length, &package.certificate))

 {

 // Abort immediately if there’s a problem reading the certificate

 return status;

 }

 }

 else

 {

 printf(“Error - unrecognized certificate type %d\n”,

 package.certificate_type);

 status = -1;

 return status;

 }

 buffer += package.certificate_length;

 package.cipher_specs = malloc(package.cipher_specs_length);

 buffer = read_buffer(package.cipher_specs, buffer,

 package.cipher_specs_length);

 package.connection_id = malloc(package.connection_id_length);

 buffer = read_buffer(package.connection_id, buffer,

 package.connection_id_length);

 parameters->got_server_hello = 1;

 // Copy connection ID into parameter state; this is needed for key

 // computation, next

 parameters->connection_id_len = package.connection_id_length;

 parameters->connection_id = malloc(parameters->connection_id_len);

 memcpy(parameters->connection_id, package.connection_id,

 parameters->connection_id_len);

 // cycle through the list of cipher specs until one is found that

 // matches

 // XXX this will match the last one on the list

 for (i = 0; i < NUM_CIPHER_SPECS; i++)

 {

 for (j = 0; j < package.cipher_specs_length; j++)

 {

 if (!memcmp(package.cipher_specs + (j * 3),

 &specs[i].cipher_spec_code, 3))

 {

 parameters->proposed_cipher_spec = &specs[i];

bapp03.indd 598bapp03.indd 598 12/10/2010 9:49:03 AM12/10/2010 9:49:03 AM

 Appendix C n Understanding the Pitfalls of SSLv2 599

 break;

 }

 }

 }

 // TODO validate the certificate/Check expiration date/Signer

 copy_huge(parameters->server_public_key.modulus,

 package.certificate.tbsCertificate.subjectPublicKeyInfo.

 rsa_public_key.modulus);

 copy_huge(parameters->server_public_key.exponent,

 package.certificate.tbsCertificate.subjectPublicKeyInfo.

 rsa_public_key.exponent);

 free(package.cipher_specs);

 free(package.connection_id);

 free_x509_certificate(&package.certificate);

 return status;

}

Part of the unfl attening process involves a call to parse_x509_certificate,
developed in Chapter 5. The process of parsing a certifi cate did not change
between SSLv2 and TLS 1.2, although the certifi cate format itself grew a bit to
include extensions and unique IDs.

Now, choose a cipher spec. Cycle through the list presented by the server
and when you fi nd one that’s supported by this implementation, make that the
proposed_cipher_spec. Also keep track of the connection ID, and the server’s
public RSA key.

Finally, if anything went wrong, receive_ssl_message will halt the process
with an error message:

 if (status == -1)

 {

 send_error(connection,

 SSL_PE_UNSUPPORTED_CERTIFICATE_TYPE,

 parameters);

 }

Sending an SSL error message in Listing C-18 is as simple as receiving one.

Listing C-18: “ssl.c” send_error

static int send_error(int connection,

 unsigned short error_code,

 SSLParameters *parameters)

{

 unsigned char buffer[3];

 unsigned short send_error;

 buffer[0] = SSL_MT_ERROR;

(Continued)

bapp03.indd 599bapp03.indd 599 12/10/2010 9:49:03 AM12/10/2010 9:49:03 AM

600 Appendix C n Understanding the Pitfalls of SSLv2

 send_error = htons(error_code);

 memcpy(buffer + 1, &send_error, sizeof(unsigned short));

 if (send_message(connection, buffer, 3, parameters) == -1)

 {

 return -1;

 }

 return 0;

}

If a server hello response was received, and the certifi cate parsed OK, but
the client and server had no common cipher specs, the ssl_connect responds
with an error (note that the server could, and should, have done this instead of
sending a server hello message):

 if (parameters->proposed_cipher_spec == NULL)

 {

 send_error(connection, SSL_PE_NO_CIPHER, parameters);

 return -1;

 }

If nothing has gone wrong, at this point you have a public key, a proposed
cipher spec, and have exchanged both a challenge token and a connection ID.
You now have enough information to compute keys.

SSL Client Master Key
SSLv3+ generated keying material through a fairly complex pseudo-random
function. SSLv2 didn’t; instead, it just MD5-hashed a random master key along
with the challenge token and the connection ID to produce as much keying
material — read/write keys — as it needed. This master key is the same length
as the cipher spec’s symmetric key. Because you’re only supporting three cipher
specs here, this is easy to enumerate: 8 bytes for DES, 24 bytes for 3DES, and 16
bytes for 128-bit RC4.

Remember that the MD5 algorithm produces 16 bytes of output, regardless
of the length of its input. For DES, that’s as much key material as you need for
both sides; each side needs 8 bytes. For RC4, you have to run the MD5 algorithm
twice, and for 3DES, three times. So that you don’t get the same key over and
over again, you must also increment a counter on each run.

NOTE The last published draft specifi cation for SSLv2 (version 0.2, 1995)
stated that the counter should not be used — that is, the byte itself should be
omitted — for DES, which only requires 16 bytes of keying material. No imple-
mentation of SSLv2 ever followed this element of the specifi cation; the code to
omit this byte is shown in Listing C-19, but it’s wrapped up in an #if 0 to retain

bapp03.indd 600bapp03.indd 600 12/10/2010 9:49:03 AM12/10/2010 9:49:03 AM

 Appendix C n Understanding the Pitfalls of SSLv2 601

compatibility with other SSLv2 implementations. Because the specifi cation was
never formally accepted by the IETF, the versions that don’t follow it to the letter
can’t truly be said to be non-compliant; they had nothing to comply with.

Remember that the ssl_connect routine fi rst invokes compute_keys and then
send_client_master_key:

 compute_keys(parameters);

 if (send_client_master_key(connection, parameters) == -1)

 {

 return -1;

 }

compute_keys in Listing C-19 creates a master secret and then runs the MD5
digest algorithm on it to generate the encryption keys.

Listing C-19: “ssl.c” compute_keys

static void compute_keys(SSLParameters *parameters)

{

 int i;

 digest_ctx md5_digest;

 int key_material_len;

 unsigned char *key_material, *key_material_ptr;

 char counter = ‘0’;

 key_material_len = parameters->proposed_cipher_spec->key_size * 2;

 key_material_ptr = key_material = malloc(key_material_len);

 parameters->master_key = malloc(

 parameters->proposed_cipher_spec->key_size);

 for (i = 0; i < parameters->proposed_cipher_spec->key_size; i++)

 {

 // XXX should be random

 parameters->master_key[i] = i;

 }

// Technically wrong per the 1995 draft specification, but removed to

// maintain compatibility

#if 0

 if (key_material_len <= 16)

 {

 counter = ‘\0’; // don’t use the counter here

 }

#endif

 while (key_material_len)

 {

 new_md5_digest(&md5_digest);

(Continued)

bapp03.indd 601bapp03.indd 601 12/10/2010 9:49:04 AM12/10/2010 9:49:04 AM

602 Appendix C n Understanding the Pitfalls of SSLv2

 update_digest(&md5_digest, parameters->master_key,

 parameters->proposed_cipher_spec->key_size);

 if (counter)

 {

 update_digest(&md5_digest, &counter, 1);

 counter++;

 }

 update_digest(&md5_digest, parameters->challenge, CHALLENGE_LEN);

 update_digest(&md5_digest, parameters->connection_id,

 parameters->connection_id_len);

 finalize_digest(&md5_digest);

 memcpy(key_material_ptr, md5_digest.hash, MD5_BYTE_SIZE);

 key_material_ptr += MD5_BYTE_SIZE;

 key_material_len -= MD5_BYTE_SIZE;

 }

 parameters->read_key = malloc(

 parameters->proposed_cipher_spec->key_size);

 parameters->write_key = malloc(

 parameters->proposed_cipher_spec->key_size);

 memcpy(parameters->read_key, key_material,

 parameters->proposed_cipher_spec->key_size);

 memcpy(parameters->write_key, key_material +

 parameters->proposed_cipher_spec->key_size,

 parameters->proposed_cipher_spec->key_size);

 parameters->read_iv = malloc(

 parameters->proposed_cipher_spec->IV_size);

 parameters->write_iv = malloc(

 parameters->proposed_cipher_spec->IV_size);

 for (i = 0; i < parameters->proposed_cipher_spec->IV_size; i++)

 {

 // XXX these should be random

 parameters->read_iv[i] = i;

 parameters->write_iv[i] = i;

 }

 free(key_material);

}

First, fi gure out how much keying material you need: twice as much as
the length of the key as specifi ed in the cipher spec. Generate the master key, the
same length as one key:

 key_material_len = parameters->proposed_cipher_spec->key_size * 2;

 key_material_ptr = key_material = malloc(key_material_len);

 parameters->master_key = malloc(

bapp03.indd 602bapp03.indd 602 12/10/2010 9:49:04 AM12/10/2010 9:49:04 AM

 Appendix C n Understanding the Pitfalls of SSLv2 603

 parameters->proposed_cipher_spec->key_size);

 for (i = 0; i < parameters->proposed_cipher_spec->key_size; i++)

 {

 // XXX should be random

 parameters->master_key[i] = i;

 }

You need to store the master key because it is what is RSA encrypted and
sent on to the server. Before you send it, though, go ahead and compute the
keys themselves. The server needs to repeat the computation when it receives
the RSA-encrypted master key:

 while (key_material_len)

 {

 new_md5_digest(&md5_digest);

 update_digest(&md5_digest, parameters->master_key,

 parameters->proposed_cipher_spec->key_size);

 if (counter)

 {

 update_digest(&md5_digest, &counter, 1);

 counter++;

 }

 update_digest(&md5_digest, parameters->challenge, CHALLENGE_LEN);

 update_digest(&md5_digest, parameters->connection_id,

 parameters->connection_id_len);

 finalize_digest(&md5_digest);

 memcpy(key_material_ptr, md5_digest.hash, MD5_BYTE_SIZE);

 key_material_ptr += MD5_BYTE_SIZE;

 key_material_len -= MD5_BYTE_SIZE;

 }

Depending on how much keying material you need, cycle through the loop
one to three times, creating a new digest, updating and fi nalizing it each time.
The key material is stored in the temporary buffer key_material.

Next, copy the key_material buffer’s contents into the read/write keys:

 parameters->read_key = malloc(

 parameters->proposed_cipher_spec->key_size);

 parameters->write_key = malloc(

 parameters->proposed_cipher_spec->key_size);

 memcpy(parameters->read_key, key_material,

 parameters->proposed_cipher_spec->key_size);

 memcpy(parameters->write_key, key_material +

 parameters->proposed_cipher_spec->key_size,

 parameters->proposed_cipher_spec->key_size);

bapp03.indd 603bapp03.indd 603 12/10/2010 9:49:04 AM12/10/2010 9:49:04 AM

604 Appendix C n Understanding the Pitfalls of SSLv2

Finally, generate the initialization vectors:

 parameters->read_iv = malloc(

 parameters->proposed_cipher_spec->IV_size);

 parameters->write_iv = malloc(

 parameters->proposed_cipher_spec->IV_size);

 for (i = 0; i < parameters->proposed_cipher_spec->IV_size; i++)

 {

 // XXX these should be random

 parameters->read_iv[i] = i;

 parameters->write_iv[i] = i;

 }

Notice that these values are not related to the master key — they’re transmitted
directly (in cleartext) to the server. This is generally not a problem because an
attacker still needs to have access to the key in order to make use of the values.
In fact, SSLv3 and TLS 1.0 computed the IVs from the master secret rather than
transmitting them, which was later discovered to be a minor security fl aw and
TLS 1.1+ went back to transmitting them in cleartext just as SSLv2 did. (Although
the fl aw was related to carrying CBC state from one packet to the next, which
SSLv2 also does.)

RC4 does not make use of an initialization vector, but it does need to keep
track of its state from one call to the next. Insert a special RC4-only clause in here
to support this case. If you have other stream ciphers, you should do something
similar for them:

 memcpy(parameters->write_key, key_material +

 parameters->proposed_cipher_spec->key_size,

 parameters->proposed_cipher_spec->key_size);

 // Compute IV’s (or, for stream cipher, initialize state vector)

 if (parameters->proposed_cipher_spec->cipher_spec_code ==

 SSL_CK_RC4_128_WITH_MD5)

 {

 rc4_state *read_state = malloc(sizeof(rc4_state));

 rc4_state *write_state = malloc(sizeof(rc4_state));

 read_state->i = read_state->j = write_state->i = write_state->j = 0;

 parameters->read_iv = NULL;

 parameters->write_iv = NULL;

 parameters->read_state = read_state;

 parameters->write_state = write_state;

 memset(read_state->S, ‘\0’, RC4_STATE_ARRAY_LEN);

 memset(write_state->S, ‘\0’, RC4_STATE_ARRAY_LEN);

 }

 else

 {

 parameters->read_state = NULL;

bapp03.indd 604bapp03.indd 604 12/10/2010 9:49:04 AM12/10/2010 9:49:04 AM

 Appendix C n Understanding the Pitfalls of SSLv2 605

 parameters->write_state = NULL;

 parameters->read_iv = malloc(

 parameters->proposed_cipher_spec->IV_size);

 parameters->write_iv = malloc(

 parameters->proposed_cipher_spec->IV_size);

 for (i = 0; i < parameters->proposed_cipher_spec->IV_size; i++)

 {

 // XXX these should be random

 parameters->read_iv[i] = i;

 parameters->write_iv[i] = i;

 }

 }

Now that you have generated the master key and computed the session keys,
the client must send the client_master_key message shown in Listing C-20.

Listing C-20: “ssl.h” ClientMasterKey declaration

typedef struct

{

 unsigned char cipher_kind[3];

 unsigned short clear_key_len;

 unsigned short encrypted_key_len;

 unsigned short key_arg_len;

 unsigned char *clear_key;

 unsigned char *encrypted_key;

 unsigned char *key_arg;

}

ClientMasterKey;

Note that the fi rst element here is the cipher spec that has been chosen. In
SSLv2, it’s up to the client to select a cipher spec that both it and the server
understand. It’s important that this be transmitted at this point because the
server needs to know how much key material to generate — that is, how many
times to run the MD5 algorithm over the master key.

Three variable-length arguments follow the selected cipher spec. The clear_
key, the encrypted_key, and the key_arg. Recall that SSLv2 specifi cally supports
“export grade” ciphers such as RC4_128_EXPORT40. What this means is that 40
bits of the master key are encrypted and the other 88 bits are transmitted in
cleartext. If the cipher spec calls for any unencrypted key material, the unen-
crypted bytes are transmitted in clear_key. This is the only difference between
“export grade” and standard ciphers; the actual key is 128 bits (for example),
but a potential attacker has 88 of them to start with.

The encrypted bytes are encrypted using the server’s RSA key as described in
Chapter 3. Finally, the key_arg is the optional area for the initialization vector.

bapp03.indd 605bapp03.indd 605 12/10/2010 9:49:04 AM12/10/2010 9:49:04 AM

606 Appendix C n Understanding the Pitfalls of SSLv2

The SSLv2 specifi cation isn’t clear on how many initialization vectors you
should use. Should each side have its own initialization vector, or should the
same one be used for both client and server? OpenSSL expects a single initial-
ization vector that both sides start with (of course, they diverge immediately),
so follow suit.

The send_client_master_key function is shown in Listing C-21.

Listing C-21: “ssl.c” send_client_master_key

static int send_client_master_key(int connection,

 SSLParameters *parameters)

{

 int status = 0;

 unsigned char *send_buffer, *write_buffer;

 int buf_len;

 unsigned short network_number;

 ClientMasterKey package;

 memcpy(package.cipher_kind,

 ¶meters->proposed_cipher_spec->cipher_spec_code, 3);

 package.clear_key_len = 0; // not supporting export ciphers

 package.encrypted_key_len = rsa_encrypt(parameters->master_key,

 parameters->proposed_cipher_spec->key_size,

 &package.encrypted_key, ¶meters->server_public_key);

 package.key_arg_len = parameters->proposed_cipher_spec->IV_size;

 package.clear_key = malloc(sizeof(unsigned char) *

 package.clear_key_len);

 package.key_arg = malloc(sizeof(unsigned char) *

 package.key_arg_len);

 memcpy(package.key_arg, parameters->read_iv,

 parameters->proposed_cipher_spec->IV_size);

 buf_len = sizeof(unsigned char) * 3 +

 sizeof(unsigned short) * 3 +

 package.clear_key_len +

 package.encrypted_key_len +

 package.key_arg_len;

 send_buffer = write_buffer = malloc(buf_len);

 write_buffer = append_buffer(write_buffer, package.cipher_kind, 3);

 network_number = htons(package.clear_key_len);

 write_buffer = append_buffer(write_buffer,

 (void *) &network_number, 2);

 network_number = htons(package.encrypted_key_len);

 write_buffer = append_buffer(write_buffer,

 (void *) &network_number, 2);

bapp03.indd 606bapp03.indd 606 12/10/2010 9:49:04 AM12/10/2010 9:49:04 AM

 Appendix C n Understanding the Pitfalls of SSLv2 607

 network_number = htons(package.key_arg_len);

 write_buffer = append_buffer(write_buffer,

 (void *) &network_number, 2);

 write_buffer = append_buffer(write_buffer, package.clear_key,

 package.clear_key_len);

 write_buffer = append_buffer(write_buffer, package.encrypted_key,

 package.encrypted_key_len);

 write_buffer = append_buffer(write_buffer, package.key_arg,

 package.key_arg_len);

 status = send_handshake_message(connection,

 SSL_MT_CLIENT_MASTER_KEY, send_buffer, buf_len, parameters);

 free(package.clear_key);

 free(package.encrypted_key);

 free(package.key_arg);

 free(send_buffer);

 return status;

}

First fi ll out a ClientMasterKey struct, fl atten it, and then send it as an SSL_
MT_CLIENT_MASTER_KEY handshake message. Notice that clear_key is always 0
(no support for export-grade ciphers), and that rsa_encrypt, from Chapter 3, is
invoked to encrypt the master key. Otherwise, this works just like the previous
two handshake messages.

SSL Client Finished
As noted above, the specifi cation makes it appear that the client should send
client_finished before expecting the next message, a server_verify. Technically
speaking, it doesn’t really matter; neither of these two messages depends on
the other. In general, the server sends the server_verify immediately with-
out waiting for the client_finished, and the client sends client_finished
without waiting for server verify, so these two messages can and do “pass” each
other in transmit. Go ahead and follow the specifi cation’s advice and send the
client fi nished before looking for the server verify.

ClientFinished is a pretty simple message, as shown in Listing C-22.

Listing C-22: “ssl.h” ClientFinished declaration

typedef struct

{

 unsigned char *connection_id;

}

ClientFinished;

As you can see, it just refl ects the connection_id back to the server.

bapp03.indd 607bapp03.indd 607 12/10/2010 9:49:04 AM12/10/2010 9:49:04 AM

608 Appendix C n Understanding the Pitfalls of SSLv2

However, what makes this a bit more complicated, and useful, is that the whole
client_finished message — and every subsequent packet transmitted over
this connection — should be encrypted with the newly negotiated session keys.

ssl_connect makes the “pending” cipher spec the active one:

 parameters->active_cipher_spec = parameters->proposed_cipher_spec;

 parameters->proposed_cipher_spec = NULL;

Sending the client_finished method in Listing C-23 is straightforward.

Listing C-23: “ssl.c” send_client_fi nished

static int send_client_finished(int connection,

 SSLParameters *parameters)

{

 int status = 0;

 unsigned char *send_buffer, *write_buffer;

 int buf_len;

 ClientFinished package;

 package.connection_id = malloc(parameters->connection_id_len);

 memcpy(package.connection_id, parameters->connection_id,

 parameters->connection_id_len);

 buf_len = parameters->connection_id_len;

 write_buffer = send_buffer = malloc(buf_len);

 write_buffer = append_buffer(write_buffer, package.connection_id,

 parameters->connection_id_len);

 status = send_handshake_message(connection, SSL_MT_CLIENT_FINISHED,

 send_buffer, buf_len, parameters);

 free(send_buffer);

 free(package.connection_id);

 return status;

}

There shouldn’t be any surprises here. Fill in a structure, fl atten it, and send
it via send_handshake_message.

To actually support encryption, extend send_message in Listing C-24 to check
to see if the active_cipher_spec parameter of the SSLParameters argument in
non-null. If it is, it is used to encrypt and MAC the packet.

Listing C-24: “ssl.c” send_message with encryption support

 if (parameters->active_cipher_spec == NULL)

 {

bapp03.indd 608bapp03.indd 608 12/10/2010 9:49:04 AM12/10/2010 9:49:04 AM

 Appendix C n Understanding the Pitfalls of SSLv2 609

 // TODO support three-byte headers (when encrypting)

 buf_len = data_len + 2;

 buffer = malloc(buf_len);

 header_len = htons(data_len);

 memcpy(buffer, &header_len, 2);

 buffer[0] |= 0x80; // indicate two-byte length

 memcpy(buffer + 2, data, data_len);

 }

 else

 {

 int padding = 0;

 unsigned char *encrypted, *encrypt_buf, *mac_buf;

 if (parameters->active_cipher_spec->block_size)

 {

 padding = parameters->active_cipher_spec->block_size -

 (data_len % parameters->active_cipher_spec->block_size);

 }

 buf_len = 3 + // sizeof header

 parameters->active_cipher_spec->hash_size + // sizeof mac

 data_len + // sizeof data

 padding; // sizeof padding

 buffer = malloc(buf_len);

 header_len = htons(buf_len - 3);

 memcpy(buffer, &header_len, 2);

 buffer[2] = padding;

 encrypt_buf = malloc(buf_len - 3);

 encrypted = malloc(buf_len - 3);

 memset(encrypt_buf, ‘\0’, buf_len - 3);

 // Insert a MAC at the start of “encrypt_buf”

 mac_buf = malloc(data_len + padding);

 memset(mac_buf, ‘\0’, data_len + padding);

 memcpy(mac_buf, data, data_len);

 add_mac(encrypt_buf, mac_buf, data_len + padding, parameters);

 free(mac_buf);

 // Add the data (padding was already set to zeros)

 memcpy(encrypt_buf + parameters->active_cipher_spec->hash_size,

 data, data_len);

 // Finally encrypt the whole thing

 parameters->active_cipher_spec->bulk_encrypt(encrypt_buf,

 buf_len - 3, encrypted,

 parameters->write_state ? parameters->write_state :

 parameters->write_iv,

 parameters->write_key);

 memcpy(buffer + 3, encrypted, buf_len - 3);

(Continued)

bapp03.indd 609bapp03.indd 609 12/10/2010 9:49:04 AM12/10/2010 9:49:04 AM

610 Appendix C n Understanding the Pitfalls of SSLv2

 free(encrypt_buf);

 free(encrypted);

 }

 if (send(connection, (void *) buffer, buf_len, 0) < buf_len)

 {

 return -1;

 }

 parameters->write_sequence_number++;

 free(buffer);

}

As you can see, the bulk of send_message is now handling encryption. Check
to see if the active cipher spec requires that the message be padded to a certain
multiple:

 if (parameters->active_cipher_spec->block_size)

 {

 padding = parameters->active_cipher_spec->block_size -

 (data_len % parameters->active_cipher_spec->block_size);

 }

In practice, block_size is always either 8 (for DES or 3DES) or 0 (for RC4).
Next, allocate enough space for the SSLv2 header, which now is three bytes

instead of two, the MAC, the data itself, and the padding.

 buf_len = 3 + // sizeof header

 parameters->active_cipher_spec->hash_size + // sizeof mac

 data_len + // sizeof data

 padding; // sizeof padding

 buffer = malloc(buf_len);

 header_len = htons(buf_len - 3);

 memcpy(buffer, &header_len, 2);

 buffer[2] = padding;

 encrypt_buf = malloc(buf_len - 3);

 encrypted = malloc(buf_len - 3);

 memset(encrypt_buf, ‘\0’, buf_len - 3);

Notice the allocation of two buffers. buffer is the memory array that is actu-
ally sent over the connection. This is where the three-byte header is passed.
Actually, the fi rst two bytes are the length of the message, just as they were
in the two-byte header. The third byte encodes the amount of padding on the
end of the message, which is required to be present even if the cipher spec is
a stream cipher.

NOTE Technically, this code is wrong. The next-to-most-signifi cant bit in a
three-byte header is reserved; if bit 6 is set to 1, then the message should be
treated as a “security escape.” What this might mean and what you might do

bapp03.indd 610bapp03.indd 610 12/10/2010 9:49:04 AM12/10/2010 9:49:04 AM

 Appendix C n Understanding the Pitfalls of SSLv2 611

when such a message is received has never been defi ned, so you don’t have to
worry about it. However, technically you ought to ensure that the size of the
outgoing packet is never greater than 2 1̂4 = 16,384 bytes.

The second buffer, encrypted, is the buffer that’s passed into the bulk encryp-
tion routine. You may wonder why another buffer is needed for this purpose.
After all, the input parameter data is the plaintext to be encrypted. Well,
SSLv2 requires that you prepend this data with a MAC and then encrypt the
whole thing.

So, the next thing to do is to generate the MAC in the fi rst mac-length bytes
of the encrypt buffer.

 mac_buf = malloc(data_len + padding);

 memset(mac_buf, ‘\0’, data_len + padding);

 memcpy(mac_buf, data, data_len);

 add_mac(encrypt_buf, mac_buf, data_len + padding, parameters);

 free(mac_buf);

As you can see, another buffer is used to MAC the data to be sent; this includes
the plaintext data, plus the padding (the padding must be MAC’ed). Invoke
add_mac in Listing C-25 to actually generate the MAC.

Listing C-25: “ssl.c” add_mac

static void add_mac(unsigned char *target,

 const unsigned char *src,

 int src_len,

 SSLParameters *parameters)

{

 digest_ctx ctx;

 int sequence_number;

 parameters->active_cipher_spec->new_digest(&ctx);

 update_digest(&ctx, parameters->write_key,

 parameters->active_cipher_spec->key_size);

 update_digest(&ctx, src, src_len);

 sequence_number = htonl(parameters->write_sequence_number);

 update_digest(&ctx, (unsigned char *) &sequence_number,

 sizeof(int));

 finalize_digest(&ctx);

 memcpy(target, ctx.hash,

 parameters->active_cipher_spec->hash_size);

}

Notice that SSLv2 does not use the HMAC function. HMAC wasn’t actually
specifi ed until 1997. Instead, SSLv2 uses a slightly weaker form that concatenates
the write secret, the data, and a sequence number, and then securely hashes
this combination of things.

bapp03.indd 611bapp03.indd 611 12/10/2010 9:49:04 AM12/10/2010 9:49:04 AM

612 Appendix C n Understanding the Pitfalls of SSLv2

Getting back to send_message, you have a data buffer with the MAC of the
plaintext data. Now, from the data pointer that was passed into the function
in the fi rst place, copy the actual plaintext after it and encrypt the whole thing
into the target buffer.

 // Add the data (padding was already set to zeros)

 memcpy(encrypt_buf + parameters->active_cipher_spec->hash_size,

 data, data_len);

 // Finally encrypt the whole thing

 parameters->active_cipher_spec->bulk_encrypt(encrypt_buf,

 buf_len - 3, encrypted,

 parameters->write_state ? parameters->write_state :

 parameters->write_iv,

 parameters->write_key);

Now, the encrypted buffer contains the MAC, the plaintext, and the padding,
all encrypted using the client write key. Finally, copy the encrypted data into
the target buffer:

 memcpy(buffer + 3, encrypted, buf_len - 3);

 free(encrypt_buf);

 free(encrypted);

 }

The only other addition to send_message is the following, which updates the
sequence number upon which the add_mac function relies:

 parameters->write_sequence_number++;

The server receives this encrypted message, decrypts it using the negotiated
keys, and verifi es the MAC. If decryption and MAC verifi cation succeed, the
server fi nally verifi es that the connection ID received matches the one that it sent.

What if any of these steps fail? The specifi cation states that a MAC verify or
decrypt error “is to be treated as if an ’I/O Error’ had occurred (i.e. an unrecover-
able error is asserted and the connection is closed).” However, it doesn’t defi ne any
unrecoverable (or recoverable, for that matter) error codes describing this scenario.
As a result, all existing implementations simply shut down the socket on error.

SSL Server Verify
As discussed earlier, OpenSSL goes ahead and sends the server_verify as
soon as the key exchange is complete, although the specifi cation suggests that it
should wait until the client_finished is received correctly. The ServerVerify
message in Listing C-26 looks just like, and serves the same purpose as, the
client fi nished message.

bapp03.indd 612bapp03.indd 612 12/10/2010 9:49:05 AM12/10/2010 9:49:05 AM

 Appendix C n Understanding the Pitfalls of SSLv2 613

Listing C-26: “ssl.h” ServerVerify declaration

typedef struct

{

 unsigned char challenge[CHALLENGE_LEN];

}

ServerVerify;

NOTE There’s also a server fi nished message that is not analogous to the
client fi nished.

Here the server MACs, encrypts, and refl ects back the client’s challenge token.
The client must verify that it can be decrypted, verifi ed, and that it matches
what the client sent initially. As discussed earlier, if anything goes wrong, no
specifi c error code is sent. The connection is just closed.

After sending client_finished, ssl_connect starts looking for server_verify:

 while (!parameters->got_server_verify)

 {

 if (receive_ssl_message(connection, NULL, 0, parameters) == -1)

 {

 return -1;

 }

 }

Of course, because the key exchange has been completed, this message is
encrypted. You can still invoke receive_ssl_message here, but it has to be
extended to handle encrypted incoming messages.

First of all, recognize and process the three-byte lengths described in the
previous section as shown in Listing C-27.

Listing C-27: “ssl.c” receive_ssl_message with encryption support

 unsigned char padding_len = 0;

...

 if (message_len & 0x8000)

 {

 // two-byte length

 message_len &= 0x7FFF;

 }

 else

 {

 // three-byte length, include a padding value

 if (recv(connection, &padding_len, 1, 0) <= 0)

 {

 return -1;

 }

 }

bapp03.indd 613bapp03.indd 613 12/10/2010 9:49:05 AM12/10/2010 9:49:05 AM

614 Appendix C n Understanding the Pitfalls of SSLv2

As you may recall from the previous section, the fi rst two bytes are the length
of the payload, and the third byte is the length of the padding (if any).

Next, check to see if a cipher spec is active and if so, apply it:

 bufptr += bytes_read;

 remaining -= bytes_read;

 }

 // Decrypt if a cipher spec is active

 if (parameters->active_cipher_spec != NULL)

 {

 unsigned char *decrypted = malloc(message_len);

 int mac_len = parameters->active_cipher_spec->hash_size;

 parameters->active_cipher_spec->bulk_decrypt(buffer, message_len,

 decrypted,

 parameters->read_state ? parameters->read_state :

 parameters->read_iv,

 parameters->read_key);

 if (!verify_mac(decrypted + mac_len, message_len - mac_len,

 decrypted, mac_len, parameters))

 {

 return -1;

 }

 free(buffer);

 buffer = malloc(message_len - mac_len - padding_len);

 memcpy(buffer, decrypted + mac_len,

 message_len - mac_len - padding_len);

 message_len = message_len - mac_len, padding_len;

 free(decrypted);

 }

 parameters->read_sequence_number++;

This more or less parallels the changes made to send_message, in Listing C-24.
First allocate a decrypted buffer and decrypt the whole packet into it. Next, the
MAC is verifi ed in Listing C-28.

Listing C-28: “ssl.c” verify_mac

static int verify_mac(const unsigned char *data,

 int data_len,

 const unsigned char *mac,

 int mac_len,

 SSLParameters *parameters)

{

 digest_ctx ctx;

 int sequence_number;

bapp03.indd 614bapp03.indd 614 12/10/2010 9:49:05 AM12/10/2010 9:49:05 AM

 Appendix C n Understanding the Pitfalls of SSLv2 615

 parameters->active_cipher_spec->new_digest(&ctx);

 update_digest(&ctx, parameters->read_key,

 parameters->active_cipher_spec->key_size);

 update_digest(&ctx, data, data_len);

 sequence_number = htonl(parameters->read_sequence_number);

 update_digest(&ctx, (unsigned char *) &sequence_number,

 sizeof(int));

 finalize_digest(&ctx);

 return (!memcmp(ctx.hash, mac, mac_len));

}

This works just like add_mac. In fact, the only differences here are that it uses
the read_key as the fi rst n bytes of the MAC buffer, and rather than memcpy-
ing the resultant MAC to a target output buffer, it instead does a memcmp and
returns a true or false.

If the MAC verifi es properly, the decrypted data is copied into a target buf-
fer and processed just as if it had been received as plaintext. Add a third “case
arm” to the handshake processing switch:

 if (!parameters->handshake_finished)

 {

 switch (buffer[0])

 {

…

 case SSL_MT_SERVER_VERIFY:

 status = parse_server_verify(parameters, buffer + 1);

 break;

Parsing the ServerVerify, after it’s been successfully decrypted, is straight-
forward, as shown in Listing C-29.

Listing C-29: “ssl.c” parse_server_verify

static int parse_server_verify(SSLParameters *parameters,

 const unsigned char *buf)

{

 ServerVerify package;

 memcpy(package.challenge, buf, CHALLENGE_LEN);

 parameters->got_server_verify = 1;

 return (!memcmp(parameters->challenge, package.challenge,

 CHALLENGE_LEN));

}

bapp03.indd 615bapp03.indd 615 12/10/2010 9:49:05 AM12/10/2010 9:49:05 AM

616 Appendix C n Understanding the Pitfalls of SSLv2

Compare the challenge token sent back by the server with the challenge
token sent in the “hello” message, and return an error code if they don’t match.
If the two tokens don’t match, this error code is a signal to the outer function
to close the socket.

SSL Server Finished
At this point, the secure channel has been all but negotiated. The only thing
remaining is the server_finished message. This also has only one fi eld in
Listing C-30.

Listing C-30: “ssl.h” ServerFinished declaration

typedef struct

{

 unsigned char *session_id;

}

ServerFinished;

This is the session ID, chosen by the server, that can be passed in a later cli-
ent_hello message to resume this session.

The ssl_connect function waits until this is received and, after it has been,
marks the handshake as complete:

 while (!parameters->got_server_finished)

 {

 if (receive_ssl_message(connection, NULL, 0, parameters) == -1)

 {

 return -1;

 }

 }

 parameters->handshake_finished = 1;

Server fi nished is the fi nal case arm in receive_ssl_message’s handshake
switch:

 if (!parameters->handshake_finished)

 {

 switch (buffer[0])

 {

…

 case SSL_MT_SERVER_FINISHED:

 status = parse_server_finished(parameters, buffer + 1,

 message_len);

 break;

For this implementation, parse_server_finished in Listing C-31 is a formality
because the session ID isn’t stored anywhere.

bapp03.indd 616bapp03.indd 616 12/10/2010 9:49:05 AM12/10/2010 9:49:05 AM

 Appendix C n Understanding the Pitfalls of SSLv2 617

Listing C-31: “ssl.c” parse_server_fi nished

static int parse_server_finished(SSLParameters *parameters,

 const unsigned char *buf,

 int buf_len)

{

 ServerFinished package;

 package.session_id = malloc(buf_len - 1);

 memcpy(package.session_id, buf, buf_len - 1);

 parameters->got_server_finished = 1;

 free(package.session_id);

 return 0;

}

At this point, ssl_connect returns with a successful status code, and the
calling code continues processing as if no SSL handshake had been performed.
The only difference, as shown earlier, is that instead of calling the socket-layer
send and recv messages, it instead calls ssl_send and ssl_recv.

SSL send
ssl_send in Listing C-32 is a pretty simple function.

Listing C-32: “ssl.c” ssl_send

int ssl_send(int connection, const char *application_data, int length,

 int options, SSLParameters *parameters)

{

 return (send_message(connection, application_data, length,

 parameters));

}

All of the heavy lifting is done by the send_message function. If a key exchange
has been successfully performed on the socket identifi ed by connection, send_
message pads, MAC’s, and encrypts the application_data.

SSL recv
ssl_recv in Listing C-33 is just as simple.

Listing C-33: “ssl.c” ssl_recv

int ssl_recv(int connection, char *target_buffer, int buffer_size,

 int options, SSLParameters *parameters)

{

 return receive_ssl_message(connection, target_buffer,

 buffer_size, parameters);

}

bapp03.indd 617bapp03.indd 617 12/10/2010 9:49:05 AM12/10/2010 9:49:05 AM

618 Appendix C n Understanding the Pitfalls of SSLv2

However, because an SSL packet can be up to 16,384 bytes in length, either
the caller should always supply a buffer of this length, or ssl_recv needs to
deal with the case where the input buffer is smaller than the SSL packet. This
means that it needs to remember what was left over but not read and passes
that back to the caller on the next ssl_recv.

 if (!parameters->handshake_finished)

 {

…

 }

 else

 {

 // If the handshake is finished, the app should be expecting data;

 // return it

 if (message_len > target_bufsz)

 {

 memcpy(target_buffer, buffer, target_bufsz);

 status = target_bufsz;

 // Store the remaining data so that the next “read” call just

 // picks it up

 parameters->unread_length = message_len - target_bufsz;

 parameters->unread_buffer = malloc(parameters->unread_length);

 memcpy(parameters->unread_buffer, buffer + target_bufsz,

 parameters->unread_length);

 }

 else

 {

 memcpy(target_buffer, buffer, message_len);

 status = message_len;

 }

 }

Finally, near the top of ssl_recv, check to see if there was any unread data
from the previous call:

 if (parameters->unread_length)

 {

 buffer = parameters->unread_buffer;

 message_len = parameters->unread_length;

 parameters->unread_buffer = NULL;

 parameters->unread_length = 0;

 }

 else

 {

 // New message - read the length first

 if (read(connection, &message_len, 2, 0) <= 0)

 {

 return -1;

bapp03.indd 618bapp03.indd 618 12/10/2010 9:49:05 AM12/10/2010 9:49:05 AM

 Appendix C n Understanding the Pitfalls of SSLv2 619

SSLv2 didn’t give any special treatment to connection closing as SSLv3 did,
so closing the socket requires no special processing.

Examining an HTTPS End-to-End Example
I’m sure you’d like to see this code in action. It’s very unlikely that you can fi nd
a public website that accepts an SSLv2 connection, so if you want to see this
code run you have to start a server locally. You can do this with OpenSSL; it has
a built-in s_server command that is designed specifi cally to test implementa-
tions. You need to supply a path to a certifi cate and the corresponding private
key; Chapter 5 discusses how to generate these.

On the command line, run

[jdavies@localhost ssl]$ openssl s_server -accept 8443 -cert cert.pem \

 -key key.pem

Enter pass phrase for key.pem:

Using default temp DH parameters

ACCEPT

Now, run the https application developed in this appendix:

[jdavies@localhost ssl]$./https https://localhost:8443/index.html

Connecting to host ‘localhost’ on port 8443

Connection complete; negotiating SSL parameters

Retrieving document: ‘index.html’

sending: GET /index.html HTTP/1.1

Displaying Response...

data: HTTP/1.0 200 ok

Content-type: text/html

<HTML><BODY BGCOLOR=”#ffffff”>

<pre>

s_server -accept 8443 -cert cert.pem -key key.pem -www

Ciphers supported in s_server binary

…

Viewing the TCPDump Output
To see what’s going on beneath the hood, you can run the tcpdump application
while you run the https application. You need to make sure to listen on the
“loopback” interface because you’re running both client and server on your
localhost. If you listen on your actual Ethernet card, you won’t see any traffi c.

With tcpdump enabled, if you re-run the https command again, you see
something like this:

[root@localhost ssl]# /usr/sbin/tcpdump -s 0 -x -i lo tcp port 8443

listening on lo, link-type EN10MB (Ethernet), capture size 65535 bytes

bapp03.indd 619bapp03.indd 619 12/10/2010 9:49:05 AM12/10/2010 9:49:05 AM

620 Appendix C n Understanding the Pitfalls of SSLv2

15:57:38.845640 IP localhost.localdomain.50704 >

localhost.localdomain.pcsync-https: S 2610069118:2610069118(0)

win 32792 <mss 16396,sackOK,timestamp 24215142 0,nop,wscale 7>

 0x0000: 4500 003c 0018 4000 4006 3ca2 7f00 0001

 0x0010: 7f00 0001 c610 20fb 9b92 7e7e 0000 0000

 0x0020: a002 8018 0e99 0000 0204 400c 0402 080a

 0x0030: 0171 7e66 0000 0000 0103 0307

...

Recall however that the HTTPS protocol (but not necessarily SSL!) mandates
that the very fi rst packet sent after the connection is established must be an SSL
ClientHello. The next packet, therefore, is

15:57:38.846983 IP localhost.localdomain.50704 >

localhost.localdomain.pcsync-https: P 1:37(36)

ack 1 win 257 <nop,nop,timestamp 24215144 24215142>

 0x0000: 4500 0058 001a 4000 4006 3c84 7f00 0001

 0x0010: 7f00 0001 c610 20fb 9b92 7e7f 9bb0 f1f9

 0x0020: 8018 0101 fe4c 0000 0101 080a 0171 7e68

 0x0030: 0171 7e66 8022 0100 0200 0900 0000 1006

 0x0040: 0040 0100 8007 00c0 0001 0203 0405 0607

 0x0050: 0809 0a0b 0c0d 0e0f

The TCP header ends at byte 0x0034, so the SSL data begins at 0x0035. If you
refer to the specifi cation for the ClientHello, you see that it starts with a ver-
sion major and a version minor byte. However, this is preceded by a two-byte
length fi eld with the high-bit set to “1” to indicate that this is a two-, rather than
three-, byte header. Removing the high-bit, you get a length of 34 bytes (0x22 = 34
base 10), which you can see matches the packet length. This is followed by the
handshake type, a one-byte 0x01, which is the code for ClientHello. The receiver
is responsible for keeping track of the fact that this is a new connection, and
that a handshake message is expected.

The length header is followed by the ClientHello packet:

 unsigned char version_major; // 00

 unsigned char version_minor; // 02

 unsigned short cipher_specs_length; // 0009

 unsigned short session_id_length; // 0000

 unsigned short challenge_length; // 0010

 unsigned char *cipher_specs; // 0600400100800700c0

 unsigned char *session_id; // (empty)

 unsigned char *challenge; // 000102030405060708090a0b0c0d0e0f

You can compare this to the data that was loaded in the send_client_hello
function; remember that the challenge, which actually ought to be a random
number, is just an increasing sequence of bytes.

bapp03.indd 620bapp03.indd 620 12/10/2010 9:49:05 AM12/10/2010 9:49:05 AM

 Appendix C n Understanding the Pitfalls of SSLv2 621

The server responds with its own hello, where it informs the client which
ciphers it supports, and provides a public key, wrapped up in an X.509 certifi cate.

15:57:38.847302 IP localhost.localdomain.pcsync-https >

localhost.localdomain.50704: P 1:893(892) ack 37 win 256

<nop,nop,timestamp 24215144 24215144>

 0x0000: 4500 03b0 8fa0 4000 4006 a9a5 7f00 0001

 0x0010: 7f00 0001 20fb c610 9bb0 f1f9 9b92 7ea3

 0x0020: 8018 0100 01a5 0000 0101 080a 0171 7e68

 0x0030: 0171 7e68 837a 0400 0100 0203 5600 0900

 0x0040: 1030 8203 5230 8202 fca0 0302 0102 0209

 0x0050: 00c7 5c9d eade c1a2 5030 0d06 092a 8648

 0x0060: 86f7 0d01 0105 0500 3081 a431 0b30 0906

 0x0070: 0355 0406 1302 5553 310e 300c 0603 5504

 0x0080: 0813 0554 6578 6173 3112 3010 0603 5504

 0x0090: 0713 0953 6f75 7468 6c61 6b65 3114 3012

 0x00a0: 0603 5504 0a13 0b54 7261 7665 6c6f 6369

 0x00b0: 7479 3115 3013 0603 5504 0b13 0c41 7263

 ….

 0x0380: bd17 59e8 3508 bd6a 9554 96ed 9790 66ec

 0x0390: c2a8 eca0 8c6a b706 0040 0100 8007 00c0

 0x03a0: b73b 8d2a 4c35 192b f6ff e87b 0137 8772

The length of this packet is 0x037A = 890 bytes; because the ServerHello packet
includes the certifi cate, it’s going to be fairly long. The type is 0x04, ServerHello.
This is followed by the ServerHello packet:

 unsigned char session_id_hit; // 00

 unsigned char certificate_type; // 01 = SSL_CT_X509_CERTIFICATE

 unsigned char server_version_major; // 00

 unsigned char server_version_minor; // 02

 unsigned short certificate_length; // 0356

 unsigned short cipher_specs_length; // 0009

 unsigned short connection_id_length; // 0010

 signed_x509_certificate certificate; // (an entire DER-encoded X.509

 // certificate)

 unsigned char *cipher_specs; // 0600400100800700c0

 unsigned char *connection_id; // b73b8d2a4c35192bf6ffe87b01378772

The next packet is the client’s master key message. The client selects a cipher
spec from the ones presented by the server, generates a master key, encrypts it
using the public key presented by the server, and sends it back:

15:57:38.915469 IP localhost.localdomain.50704 >

localhost.localdomain.pcsync-https: P 37:121(84) ack 893

win 271 <nop,nop,timestamp 24215212 24215144>

 0x0000: 4500 0088 001c 4000 4006 3c52 7f00 0001

 0x0010: 7f00 0001 c610 20fb 9b92 7ea3 9bb0 f575

 0x0020: 8018 010f fe7c 0000 0101 080a 0171 7eac

bapp03.indd 621bapp03.indd 621 12/10/2010 9:49:06 AM12/10/2010 9:49:06 AM

622 Appendix C n Understanding the Pitfalls of SSLv2

 0x0030: 0171 7e68 8052 0206 0040 0000 0040 0008

 0x0040: 8b78 24fb 8643 724b c052 5b9d 7460 ad16

 0x0050: ea68 5b82 70fe 138c 9701 8261 1ec7 055f

 0x0060: 7a0b ecd9 8f25 008d 62c4 f8db 8bf5 6029

 0x0070: e797 1138 8b26 3c43 d889 164d 55fd cd22

 0x0080: 0001 0203 0405 0607

Again, the length of the packet is 0x0052 = 82 bytes, and the message type is
0x02 = SSL_MT_CLIENT_MASTER_KEY.

 unsigned char cipher_kind[3]; // 060040 =

 // SSL_CK_DES_64_CBC_WITH_MD5

 unsigned short clear_key_len; // 0000 (no cleartext key,

 // not an export cipher)

 unsigned short encrypted_key_len; // 0040

 unsigned short key_arg_len; // 0008 (8 bytes of IV)

 unsigned char *clear_key; // (empty)

 unsigned char *encrypted_key; // 8b7824fb8643724bc0525b9d7460ad16

 // ea685b8270fe138c970182611ec7055f

 // 7a0becd98f25008d62c4f8db8bf56029

 // e79711388b263c43d889164d55fdcd22

 unsigned char *key_arg; // 0001020304050607

To decrypt this, you need the private key, of course. Refer to Chapter 5 to see
how to extract it from “key.pem” if you’ve forgotten. You can then use the rsa
 utility developed in Chapter 3 to decrypt this and verify that it is, indeed, the
master key that was generated:

[jdavies@localhost ssl]$./rsa -d \

0xB8C4AB64DF20DCECB49C02ACECEA1B832742550267762E4CBE39EC3A0657E779A71\

2B9DE5048313CFDE01DFDACD12E999082E08FC3FFFFABA0816E3C54337AFF \

0x1DCD8343DB05C6FCDB490AD96FC1773C99798692C3B37956619CA030DFD30FFFF601\

CEE22444C1E32C9E89B37EB8C76AC9E49FA52C3AB463306A067C05B4B1B9 \

0x8b7824fb8643724bc0525b9d7460ad16ea685b8270fe138c970182611ec7055f7a0be\

cd98f25008d62c4f8db8bf56029e79711388b263c43d889164d55fdcd22

02 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18

19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30

31 32 33 34 35 36 00 00 01 02 03 04 05 06 07 00

0001020304050607

Recall from Listing C-19 that 0001020304050607 is, in fact, the generated
master key. At this point, the key exchange is complete, and every subsequent
packet is encrypted using the chosen cipher.

Both sides now compute symmetric encryption keys. Remember that, in
SSLv2, this is done by running the MD5 algorithm against the master key, the
counter “0”, the client’s challenge, and the server’s connection ID. You can see
that this works out to

bapp03.indd 622bapp03.indd 622 12/10/2010 9:49:06 AM12/10/2010 9:49:06 AM

 Appendix C n Understanding the Pitfalls of SSLv2 623

[jdavies@localhost ssl]$./digest -md5 \

0x000102030405060730000102030405060708090a0b0c0d0e0f\

b73b8d2a4c35192bf6ffe87b01378772

14f258c2fe6bf291b84ce9aeebc6d4d8

Master Key 0001020304050607

ASCII Zero 30

Challenge 000102030405060708090a0b0c0d0e0f

Connection Id b73b8d2a4c35192bf6ffe87b01378772

Read Key 14f258c2fe6bf291

Write Key b84ce9aeebc6d4d8

According to the specification, the client should next respond with a
client_finished message, but OpenSSL jumps the gun and sends its own
server_verify. Because neither is dependent on the other, it doesn’t matter
what order they are received in:

15:57:38.916066 IP localhost.localdomain.pcsync-https >

localhost.localdomain.50704: P 893:936(43) ack 121

win 256 <nop,nop,timestamp 24215213 24215212>

 0x0000: 4500 005f 8fa1 4000 4006 acf5 7f00 0001

 0x0010: 7f00 0001 20fb c610 9bb0 f575 9b92 7ef7

 0x0020: 8018 0100 fe53 0000 0101 080a 0171 7ead

 0x0030: 0171 7eac 0028 0777 76d1 5c1e 94b1 d24d

 0x0040: a349 b24c b342 af66 537b 0b19 154b 6daf

 0x0050: 2a36 064c a459 53b4 5c55 7c70 509a 14

However, the connection is now encrypted. A passive observer could follow
along until this point, but without access to the keys — either the server’s pri-
vate key or the negotiated symmetric keys — he would be unable to fi gure out
what the contents of this packet were, or even what type it is. You can decrypt
it, though, because you know the keys. The fi rst three bytes are sent in plain
text; they are the length of the packet (0x0028), and the length of the padding
(0x07). The rest is DES encrypted:

[jdavies@localhost ssl]$./des -d 0x14f258c2fe6bf291 \

0x0001020304050607 \

0x7776d15c1e94b1d24da349b24cb342af66537b0b19154b6daf\

2a36064ca45953b45c557c70509a14490d1f61abaf26ace8326d\

baa79b5f2805000102030405060708090a0b0c0d0e0f00000000000000

You can see the seven bytes of padding, which should be removed:

490d1f61abaf26ace8326dbaa79b5f2805000102030405060708090a0b0c0d0e0f

bapp03.indd 623bapp03.indd 623 12/10/2010 9:49:06 AM12/10/2010 9:49:06 AM

624 Appendix C n Understanding the Pitfalls of SSLv2

Recall that every packet is prefi xed with a 16-byte MD5 hash of the key, the
data, the padding, and a sequence number (which starts at 1). You can verify
the hash:

[jdavies@localhost ssl]$./digest -md5 \

0x14f258c2fe6bf2910500010203040506070809\

0a0b0c0d0e0f0000000000000000000001

490d1f61abaf26ace8326dbaa79b5f28

Read Key 14f258c2fe6bf291

Payload 05000102030405060708090a0b0c0d0e0f

Padding 00000000000000

Sequence Number 00000001

Because the MAC matches, the packet is accepted. The rest is a server_
verify packet (type 0x05), which consists of the challenge echoed back to the
client. The client sends its ClientFinished message, which consists of
the connection_ID. The connection_ID can be decrypted similarly, using the
write key instead of the read key:

15:57:38.916839 IP localhost.localdomain.50704 >

localhost.localdomain.pcsync-https: P 121:164(43)

ack 936 win 271 <nop,nop,timestamp 24215214 24215213>

 0x0000: 4500 005f 001e 4000 4006 3c79 7f00 0001

 0x0010: 7f00 0001 c610 20fb 9b92 7ef7 9bb0 f5a0

 0x0020: 8018 010f fe53 0000 0101 080a 0171 7eae

 0x0030: 0171 7ead 0028 0772 7318 5138 ed06 b8d1

 0x0040: d324 e85d 9ac6 7342 41d0 d104 3f24 ac88

 0x0050: 6e3f e2d0 ae7f f45c b4cd f646 399c 5e

[jdavies@localhost ssl]$./des -d 0xb84ce9aeebc6d4d8 \

0x0001020304050607 \

0x7273185138ed06b8d1d324e85d9ac6734241d0d1043f24ac88\

6e3fe2d0ae7ff45cb4cdf646399c5e8b44c2a7fef149494ed138\

76c15ce73303b73b8d2a4c35192bf6ffe87b0137877200000000000000

[jdavies@localhost ssl]$./digest -md5 \

0xb84ce9aeebc6d4d803b73b8d2a4c35192bf6ffe87b01378772\

0000000000000000000002

8b44c2a7fef149494ed13876c15ce733

Notice that, when verifying the MAC, this is message #2 — the fi rst (#0) was
the client hello, and the second was the client master key message. You can
verify that the payload consists of the SSL_MT_CLIENT_FINISHED byte (0x03)
and the connection_ID received from the server, refl ected back. If you send
the wrong connection_ID, or if it fails to decrypt properly, the server will just
close the connection.

bapp03.indd 624bapp03.indd 624 12/10/2010 9:49:06 AM12/10/2010 9:49:06 AM

 Appendix C n Understanding the Pitfalls of SSLv2 625

To complete the handshake, the server sends an (encrypted) ServerFinished
message. Notice that, to decrypt this packet, you need to keep track of the IV
changes to do CBC correctly. The read IV is now b45c557c70509a14 — the last
eight bytes that were sent by the server.

15:57:38.916884 IP localhost.localdomain.pcsync-https >

localhost.localdomain.50704: P 936:979(43) ack 164

win 256 <nop,nop,timestamp 24215214 24215214>

 0x0000: 4500 005f 8fa2 4000 4006 acf4 7f00 0001

 0x0010: 7f00 0001 20fb c610 9bb0 f5a0 9b92 7f22

 0x0020: 8018 0100 fe53 0000 0101 080a 0171 7eae

 0x0030: 0171 7eae 0028 07e1 227d cfc0 67d8 3e3b

 0x0040: a0ec af96 31af 6ba9 089b 40b7 ad2b f6e9

 0x0050: 8272 2097 4a63 0981 1b60 7c28 512a cf

[jdavies@localhost ssl]$./des -d 0x14f258c2fe6bf291 \

0xb45c557c70509a14 \

0xe1227dcfc067d83e3ba0ecaf9631af6ba9089b40b7ad2bf6e9\

827220974a6309811b607c28512acf

852597cc4bd2463be5f8672e62b3a703060427efed281ba93999

9ff8a8f1f1ddd600000000000000

[jdavies@localhost ssl]$./digest -md5 \

0x14f258c2fe6bf291060427efed281ba939999ff8a8f1\

f1ddd60000000000000000000002

852597cc4bd2463be5f8672e62b3a703

You can verify that the supplied session ID matches the one in the response page.
At this point, the handshake is complete, and the application takes over.

The application acts as though nothing has changed; it submits an HTTP GET
request just as if it had simply negotiated an unprotected connection. The SSL
code takes care of encrypting and MAC’ing it.

15:57:38.917953 IP localhost.localdomain.50704 >

localhost.localdomain.pcsync-https: P 164:215(51)

ack 979 win 271 <nop,nop,timestamp 24215215 24215214>

 0x0000: 4500 0067 001f 4000 4006 3c70 7f00 0001

 0x0010: 7f00 0001 c610 20fb 9b92 7f22 9bb0 f5cb

 0x0020: 8018 010f fe5b 0000 0101 080a 0171 7eaf

 0x0030: 0171 7eae 0030 067b eb63 de21 6de7 ed5b

 0x0040: 45b7 969a 26a6 6d47 fbae 036d 4351 4def

 0x0050: 8e67 dcf3 c8e7 3ce4 52f7 9b26 f822 bad1

 0x0060: 942a 2ea0 6bb3 6e

[jdavies@localhost ssl]$./des -d 0x0xb84ce9aeebc6d4d8 \

0x5cb4cdf646399c5e \

0x7beb63de216de7ed5b45b7969a26a66d47fbae036d43514def8e6\

7dcf3c8e73ce452f79b26f822bad1942a2ea06bb36e

2d5720761aa3d1b19909972bd870e7c4474554202f696e6465782e68

746d6c20485454502f312e310d0a000000000000

bapp03.indd 625bapp03.indd 625 12/10/2010 9:49:06 AM12/10/2010 9:49:06 AM

626 Appendix C n Understanding the Pitfalls of SSLv2

The payload, after removing the MAC and the padding, is

47 45 54 20 2f 69 6e 64 65 78 2e 68 74 6d 6c

G E T / i n d e x . h t m l

20 48 54 54 50 2f 31 2e 31 0d 0a

H T T P / 1 . 1 \r \n

which is exactly what would have been sent if there had been no SSL involved.
The response from the server is similar. The remaining four packets are the
standard TCP FIN/ACK FIN/ACK shutdown sequence. There is no SSL involved
here.

Problems with SSLv2
So, what’s wrong with SSLv2? Everything is in place — encryption, MAC veri-
fi cation, certifi cate verifi cation. Why was SSLv2 deprecated?

Man-in-the-Middle Attacks

Man-in-the-middle attacks, which public-key cryptography and certifi cate
authorizes are supposed to thwart, are discussed in Chapter 5. However, one
signifi cant weakness of SSLv2 is that the fi rst few packets — the ClientHello
and the ServerHello — aren’t themselves protected against man-in-the-middle
attacks. An attacker can insert himself in between the client and the server,
and downgrade the connection by, for example, removing all encryption options
except for DES, or even making it look as though the client can only support
export-grade (that is, easily crackable) ciphers. The client never notices. Unless
the client is specifi cally confi gured to never negotiate weak ciphers, the con-
nection continues as requested.

Truncation Attacks

SSLv2 uses the standard TCP shutdown mechanism (the FIN packet) to indicate
that the connection is closed. An attacker can easily forge this packet, however,
leading to the same sort of truncation problems that led to the use of MACs in
the fi rst place.

Same Key Used for Encryption and Authentication

SSLv2 doesn’t allow the peers to negotiate a separate encryption key versus a
MAC key. This simplifi es a brute-force attack because the attacker has additional
data with which to attack the key.

bapp03.indd 626bapp03.indd 626 12/10/2010 9:49:06 AM12/10/2010 9:49:06 AM

 Appendix C n Understanding the Pitfalls of SSLv2 627

No Extensions

SSLv2 mandates, for example, RSA for key exchange and MD5 for MAC. There’s
no provision in the protocol itself for additional key exchange or MAC options
(for instance, an actual HMAC).

bapp03.indd 627bapp03.indd 627 12/10/2010 9:49:06 AM12/10/2010 9:49:06 AM

bapp03.indd 628bapp03.indd 628 12/10/2010 9:49:06 AM12/10/2010 9:49:06 AM

629

Index

A
Abstract Syntax Notation. See ASN.1
accept system call, 23
adding/subtracting machines

(computers), 570
addition

double and add approach
(multiplication), 106, 116, 134, 150,
153, 213, 503

“ecc.c” point addition
implementation, 212–213

“ecc_int.c” add_points routine, 152
huge numbers, 93–98
“huge.c” add (overfl ow expansion),

97
“huge.c” add routine, 94–95
“huge.c” add routine (addition

routine), 96
“huge.c” add routine (size

computation), 95
“huge.”c” add with negative number

support, 143–144
“huge.”c” add_magnitude and

subtract_magnitude, 143
Adleman, Leonard, 91. See also RSA

algorithm
Advanced Encryption Standard

algorithm. See AES algorithm
“Advances in Cryptology ‘86,” 114

AEAD (Authenticated Encryption
with Associated Data) mode
ciphers, 490–523

AES-CCM, 496–502
“aes.c” aes_ccm_encrypt, 498–500
“aes.c” aes_ccm_process common

routine for encrypt and
decrypt, 500–502

“aes.c” aes_ccm_process with
associated data, 511–512

“aes.c” main routine modifi ed to
accept associated data, 513–514

AES-GCM v., 505–509
“aes.h” AES-CCM and AES-GCM

with associated data support,
510–511

block ciphers v., 517
diagram, 497
encryption example, 514–515
overview, 496–497
popularity, 502
stream ciphers v., 517

AES-GCM
“aes.c” aes_gcm_encrypt, 505–508
“aes.c” aes_gcm_process with

associated data length
declaration, 516–517

“aes.c” aes_gcm_process with
associated data support, 516

bindex.indd 629bindex.indd 629 12/10/2010 7:46:22 PM12/10/2010 7:46:22 PM

630 Index n A–A

“aes.c” aes_gcm_process with
encrypt and decrypt support,
508–509

AES-CCM v., 505–509
“aes.h” AES-CCM and AES-GCM

with associated data support,
510–511

block ciphers v., 517
Galois-Field authentication/CTR

with, 505–510
GHASH and, 505–507
stream ciphers v., 517
“tls.c” init_tls with AES-GCM

cipher suite, 519
“tls.h” aes-gcm cipher suite, 518

associated data, 510
“aes.c” aes_ccm_process with

associated data, 511–512
“aes.c” main routine modifi ed to

accept associated data, 513–514
“aes.h” AES-CCM and AES-GCM

with associated data support,
510–511

associated data and, 510
block ciphers v., 490
CBC-MAC, 494–502
aes_cbc_mac, 495
CTR and, 496–502
diagram, 495
failure of, 496
problems, 502

CTR (counter) mode, 490–494
AES-CTR mode, 491–492
CBC-MAC and, 496–502
encryption (diagram), 491
/Galois-Field authentication, with

AES-GCM, 505–510
infi nitely parallelizable, 491, 502
known plaintext attack, 493
OFB v., 491

embedded hardware implementers
and, 523

Galois-Field authentication
“aes.c” gf_multiply, 503
/CTR, with AES-GCM, 505–510
maximizing MAC throughput,

502–505
GHASH, 502, 504–507

“aes.c” ghash, 504–505
AES-GCM and, 505–507
diagram, 504

incorporating into TLS 1.2, 517–523
“tls.c” send_message with AEAD

encryption support, 521
“tls.c” send_message with

Associated Data support,
519–520

“tls.c” tls_decrypt with AEAD
decryption, 522

“tls.h” CipherSuite declaration with
AEAD support, 518

AES (Advanced Encryption Standard)
algorithm, 60–82

brute force attacks and, 60
decryption, 74–80
DES v., 60, 74
encryption, 67–82
key combination, 68
key schedule, 60–67
key schedule computation, 128-bit,

61, 65
listings

“aes.c” add_round_key, 68
“aes.c” AES encryption and

decryption routines, 80–81
“aes.c” aes_block_decrypt, 78–79
“aes.c” aes_block_encrypt, 73–74
“aes.c” aes_encrypt and

aes_decrypt, 79–80
“aes.c” compute_key_schedule, 66
“aes.c” dot product, 72
“aes.c” inversion routines, 75–77
“aes.c” inv_mix_columns, 77–78
“aes.c” mix_columns, 73
“aes.c” rot_word, 63
“aes.c” sbox, 63–64
“aes.c” shift_rows, 69–70
“aes.c” sub_bytes, 69
“aes.c” sub_word, 64
matrix multiplication example,

70–71
matrix operations, 70–72
Rijndael algorithm and, 60, 83
row shift, 69
s-boxes, 60, 61, 77
state mapping initialization, 67

bindex.indd 630bindex.indd 630 12/10/2010 7:46:23 PM12/10/2010 7:46:23 PM

 Index n A–A 631

support for, 81
XOR operation and, 60, 72

AES-CCM, 496–502
“aes.c” aes_ccm_encrypt, 498–500
“aes.c” aes_ccm_process common

routine for encrypt and decrypt,
500–502

“aes.c” aes_ccm_process with
associated data, 511–512

“aes.c” main routine modifi ed to
accept associated data, 513–514

AES-GCM v., 505–509
“aes.h” AES-CCM and AES-GCM

with associated data support,
510–511

block ciphers v., 517
diagram, 497
encryption example, 514–515
overview, 496–497
popularity, 502
stream ciphers v., 517

AES-CTR mode, 491–492
AES-GCM

“aes.c” aes_gcm_encrypt, 505–508
“aes.c” aes_gcm_process with

associated data length
declaration, 516–517

“aes.c” aes_gcm_process with
associated data support, 516

“aes.c” aes_gcm_process with
encrypt and decrypt support,
508–509

AES-CCM v., 505–509
“aes.h” AES-CCM and AES-GCM

with associated data support,
510–511

block ciphers v., 517
Galois-Field authentication/CTR

with, 505–510
GHASH and, 505–507
stream ciphers v., 517
“tls.c” init_tls with AES-GCM cipher

suite, 519
“tls.h” aes-gcm cipher suite, 518

AlgorithmIdentifier, 235, 236
ALU (Arithmetic Logical Unit), 568, 570
AND operation, 568–569
Andreessen, Marc, 298

ANSI X9.62 format, 528, 531, 537, 540
Apache server, 27, 370, 575
Applied Cryptography (Schneier), 83
arbitrary precision binary math

module, 93–114. See also binary
number representations; huge
numbers; RSA algorithm

Arithmetic Logical Unit (ALU), 568,
570

ASN.1 (Abstract Syntax Notation),
225–252. See also certifi cate parser

certifi cate structure, 225–238
extensions fi eld, 237–238
issuer fi eld, 229–232
SEQUENCE, 226
serialNumber fi eld, 227
signature fi eld, 227–229
subject fi eld, 233–235
subjectPublicKeyInfo fi eld,

235–236
validity fi eld, 232–233
version fi eld, 226

listings
“asn1.c” asn1free, 258–259
“asn1.c” asn1_get_bit, 278
“asn1.c” asn1parse, 254–258
“asn1.c” asn1show, 260–263
“asn1.c” pem_decode, 263–264
“asn1.c” test routine, 259–260
“asn1.h” asn1struct defi nition, 252
“asn1.h” constants, 254

online overview, 226
associated data, 510. See also AEAD

mode ciphers
“aes.c” aes_ccm_process with

associated data, 511–512
“aes.c” main routine modifi ed to

accept associated data, 513–514
“aes.h” AES-CCM and AES-GCM

with associated data support,
510–511

asymmetric/public key algorithms.
See public key algorithms

attachments, email, 547–550
attackers, 2, 566
attacks

birthday attack, 170
bit-fl ipping attack, 494

bindex.indd 631bindex.indd 631 12/10/2010 7:46:23 PM12/10/2010 7:46:23 PM

632 Index n A–B

Bleichenbacher attack, 412
brute force attacks, 29–30

AES and, 60
birthday attack, 170
DES and, 55
SSLv2 and, 626
triple DES and, 56

denial of service attacks, 318, 559
“A Key Recovery Attack on Discrete

Log-based Schemes Using a
Prime Order Subgroup,” 236

known plaintext attacks, 186, 493
man-in-the middle attacks, 222–224

export-grade ciphers and, 626
SSLv2 and, 346, 626

“Null Prefi x Attacks Against SSL
Certifi cates” (Marlinspike), 234

OAEP and, 126
plaintext attacks, 186, 493
Pohlig-Hellman attack, 132
renegotiation attack, 468–470
replay attacks, 49, 184, 304, 336, 353,

441, 593. See also HMAC function
small subgroup attack, 236–237
timing attacks, 119
truncation attacks, 368, 626

Authenticated Encryption with
Associated Data. See AEAD mode
ciphers

authentication
with associated data, 510. See also

AEAD mode ciphers
“aes.c” aes_ccm_process with

associated data, 511–512
“aes.c” main routine modifi ed to

accept associated data, 513–514
“aes.h” AES-CCM and AES-GCM

with associated data support,
510–511

/decryption (secure data transfer,
TLS 1.0), 361–364

AUTHINFO extension, 544
authoritative name server, 553–555,

557. See also DNS

B
Barrett reduction, 114
base-10 numbering system, 567

Base64 encoding (HTTP client
application), 17–21

BASIC, 17, 20
Basic Encoding Rules. See BER
BER (Basic Encoding Rules), 241. See

also DER
big-endian number format, 571–572

computers, 313
DES, 32, 36
“huge.c” set_huge (little-endian/big-

endian conversion), 104, 105
little-endian v., 571–572
SHA-1, 171, 176

binary number representations,
567–572. See also arbitrary precision
binary math module

big-endian number format, 571–572
decimal number system v., 568
little-endian number format, 571–572
logical operations, 568–570
shifting binary numbers, 570
two’s-complement arithmetic, 98,

123, 275, 570–571
bind system call, 23
birthday attack, 170
birthday paradox, 169–170
bit fl ipping functions, 160–161
bit macros, “des.c”, 32–33
bit strings, 243
bit-fl ipping attack, 494
bits, 571

LSB, 39, 40, 93, 116, 504
MSB, 40, 93, 570–571, 595
parity bits, 39

bit-shifting operations, 571
blacklisting certifi cates

with CRLs, 294–295
OCSP and, 295–296

Bleichenbacher, Daniel, 412
Bleichenbacher attack, 412
blob, 266, 417
block chaining. See CBC
block cipher algorithms, 31–83.

See also AEAD mode ciphers;
AES algorithm; cipher suites;
DES algorithm; stream cipher
algorithms; triple DES

AEAD ciphers v., 490

bindex.indd 632bindex.indd 632 12/10/2010 7:46:23 PM12/10/2010 7:46:23 PM

 Index n B–C 633

AES-CCM v., 517
AES-GCM v., 517
Applied Cryptography (Schneier), 83
blowfi sh, 83
book information on, 83
Camelia, 83
CBC in, 46–55
converting, to stream ciphers, 90
defi ned, 31
FEAL, 83
LOKI, 83
padding in, 46–55
stream cipher algorithms v., 83,

490–491
twofi sh, 83
types, 83

blowfi sh, 83
Brown, Michael, 210
browsers

Chrome, 465
error messages, 412–414
Firefox, 229, 234, 244, 245, 410, 465
Internet Explorer, 230, 234, 238, 239,

244, 294, 410, 418, 465
Mosaic, 298, 543
Netscape, 4, 27, 298, 543, 579, 596
root CAs, 238–239
trust issues (TLS 1.0 server-side),

412–414
web clients, 4

brute force attacks, 29–30
AES and, 60
birthday attack, 170
DES and, 55
SSLv2 and, 626
triple DES and, 56

build_error_response, 26
build_success_response, 26
bytes, 571

internal byte ordering, 572
least-signifi cant bytes, 495, 571, 572
nybble, 63, 494, 571

C
C++, 198, 199
cache poisoning, DNS, 556–559
“ca.cnf”, 458–459
Caesar cipher, 30–31

Camelia, 83
Canonical Encoding Rules (CER),

549–550. See also DER
case sensitive HTTP, 8
CBC (cipher block chaining)

block cipher algorithms, 46–55
defi ned, 490
DES, 46–55
RSA, 126
triple DES, 56

CBC-MAC, 494–502. See also
AES-CCM

aes_cbc_mac, 495
CTR and, 496–502
diagram, 495
failure of, 496
problems, 502

CCM (Counter with CBC-MAC), 496.
See also AES-CCM

CER (Canonical Encoding Rules),
549–550. See also DER

certifi cates (X.509 certifi cates), 221–296
blacklisting

with CRLs, 294–295
OCSP and, 295–296

components, 527
compromised, 224, 294–295
defi ned, 221, 223
digital signatures and, 222
examples

DSA keypair and certifi cate,
251–252

RSA keypair and certifi cate,
244–251

expired, 232–233, 235, 295, 318, 414
issuers, 224, 227
issuing, 227
LDAP-based, 234
lifecycle, 238
listings

X.509 Certifi cate Structure
Declaration, 225–226

X.509 Signed Certifi cate
Declaration, 238

managing, 292–296
naive secure channel protocol,

222–224
not after date, 224

bindex.indd 633bindex.indd 633 12/10/2010 7:46:23 PM12/10/2010 7:46:23 PM

634 Index n C–C

not before date, 224
problems with, 295–296
purpose of, 221, 292
revoked, 224
self-signed, 227, 238
serial IDs, 224
serial numbers, 227
S/MIME and, 552
structure (ASN.1), 225–238
extensions fi eld, 237–238
issuer fi eld, 229–232
SEQUENCE, 226
serialNumber fi eld, 227
signature fi eld, 227–229
subject fi eld, 233–235
subjectPublicKeyInfo fi eld,

235–236
validity fi eld, 232–233
version fi eld, 226

summary, 241
validity periods, 224, 232–233

certifi cate authorities (CAs)
CA/Browser forum, 278
CSRs and, 292–294
defi ned, 223
extended validation, 278
root, 238–239
trusted intermediaries, 222–223
VeriSign, 227, 230, 295, 553

Certifi cate Error Message, 413
certifi cate extensions, 237–238
CertificatePolicies, 278
critical/non-critical, 277
key usage extension, 275, 277
parsing, 275–279
SSLv2 and, 627
subjectAltName, 237, 278

certifi cate message
TLS 1.0 handshake (client-side),

324–328
TLS 1.0 handshake (server-side),

391–393
certifi cate parser, 252–292

byte stream converted to ASN.1
structure, 252–259

DSA support, 286–291
error checking, 292
goal of, 266

listings
“asn1.c” asn1free, 258–259
“asn1.c” asn1_get_bit, 278
“asn1.c” asn1parse, 254–258
“asn1.c” asn1show, 260–263
“asn1.c” pem_decode, 263–264
“asn1.c” test routine, 259–260
“asn1.h” asn1struct defi nition, 252
“asn1.h” constants, 254
“parse_validity”, 273
“tls.c” parse_dsa_params, 289–290
“x509.c” display_x509_certifi cate,

283–285, 290–291
“x509.c” free_x509_certifi cate,

266–267
“x509.c” init_x509_certifi cate, 266
“x509.c” main routine, 281–283, 291
“x509.c” parse_algorithm_identifi er,

270
“x509.c” parse_algorithm_identifi er

with DSA support, 287
“x509.c” parse_dsa_signature_

value, 288–289
“x509.c” parse_extension, 276
“x509.c” parse_extension with key

usage recognition, 277
“x509.c” parse_extensions, 276
“x509.c” parse_huge, 269–270
“x509.c” parse_name, 271–273
“x509.c” parse_public_key_info,

274–275
“x509.c” parse_signature_value, 279
“x509.c” parse_tbs_certifi cate,

268–269
“x509.c” parse_x509_certifi cate,

267–268
“x509.c” parse_x509_certifi cate with

DSA support, 287–288
“x509.c” parse_x509_certifi cate with

stored hash, 279–280
“x509.c” public key info parsing with

DSA support, 289
“x509.c” validate_certifi cate_dsa,

291
“x509.c” validate_certifi cate_rsa,

280–281
“x509.h” structure defi nitions,

264–265

bindex.indd 634bindex.indd 634 12/10/2010 7:46:23 PM12/10/2010 7:46:23 PM

 Index n C–C 635

“x509.h” with DSA support,
286–287

certifi cate requests, 449–453
CertificateRequest, 449, 450, 452
handling, 452–453
“tls.c” parse_certifi cate_request,

451–452
“tls.c” receive_tls_msg with

certifi cate request support,
450–451

“tls.c” tls_connect with support for
certifi cate requests, 452–453

“tls.h” TLSParameters with
certifi cate request fl ag, 450

certifi cate revocation lists (CRLs), 224,
294–295

certifi cate signing requests (CSRs),
292–294

certifi cate verify message, 449, 453–457
CertificateVerify, 449, 453
“rsa.c” rsa_encrypt and rsa_sign,

454–455
supporting, 453–457
“tls.c” send_certifi cate_verify,

455–457
CertificatePolicies, 278
CertificateSerialNumber, 227
Chae Hoon Lim, 236
chaining methods. See CBC; ECB; OFB
challenge password, 295
challenge token, 584, 588, 589, 593, 600,

613, 616
change cipher spec
ChangeCipherSpec, 344, 449
TLS 1.0 handshake (client-side),

344–346
TLS 1.0 handshake (server-side), 409
“tls.c” receive_tls_msg with support

for change cipher spec, 345–346
“tls.c” send_change_cipher_spec, 345

checksum, 158–159, 170
Chrome, 465
cipher block chaining. See CBC
cipher suites, 304

client hello message (TLS 1.0),
308–309

DH_anon_XXX, 448
DHE_DSS_XXX, 439, 444

DHE_RSA_XXX, 439
ECDHE_ECDSA, 533, 535, 538
ephemeral, 436. See also ephemeral

key exchange
“ssl.h” CipherSuite declarations,

583–584
“tls.c” cipher suites list, 340–341
“tls.h” CipherSuite declaration with

AEAD support, 518
“tls.h” CipherSuite structure, 340
“tls.h” CipherSuiteIdentifi er list,

308–309
“tls.h” ProtectionParameters with

cipher suite, 322–323
ciphers. See AEAD mode ciphers;

block cipher algorithms; export-
grade ciphers; stream cipher
algorithms

client authentication (TLS 1.0
handshake), 448–462

“ca.cnf”, 458–459
certifi cate request message,

449–453
CertificateRequest, 449,

450, 452
handling, 452–453
“tls.c” parse_certifi cate_request,

451–452
“tls.c” receive_tls_msg with

certifi cate request support,
450–451

“tls.c” tls_connect with support for
certifi cate requests, 452–453

“tls.h” TLSParameters with
certifi cate request fl ag, 450

certifi cate verify message, 449,
453–457

Certifi cateVerify, 449, 453
“rsa.c” rsa_encrypt and rsa_sign,

454–455
supporting, 453–457
“tls.c” send_certifi cate_verify,

455–457
mutally-authenticated TLS

handshake, 460–462
RKM and, 449
testing, 458–460
with TLS handshake (diagram), 457

bindex.indd 635bindex.indd 635 12/10/2010 7:46:23 PM12/10/2010 7:46:23 PM

636 Index n C–C

client hello
dissected (HTTPS example, TLS 1.0),

370–371
with SNI, 419
SSLv2, 588–592
structure diagram, 311
TLS 1.0 handshake (client-side),

304–316
cipher suites, 308–309
fl attening/sending, 309–316
with headers, 316
tracking handshake state in

TLSParameters structure,
304–308

TLS 1.0 handshake (server-side),
387–390

client hello extensions, 415–420
ECC, 540
extension 10, 540
extension 11, 540
“tls.c” client hello extension

capability, 473–476
“tls.c” parse_client_hello with client

hello extension support, 416–417
“tls.c” parse_client_hello_extensions,

417–418
“tls.c” parse_server_name_

extension, 418–419
0xFF01, 470, 475–478, 540
0xFF02, 540

close_notify alert, 378, 435–436
CMS (Cryptographic Message Syntax),

550
CN fi eld, 233, 234
cofactor, of elliptic curves, 152
collision resistance, 171, 180
column mixing, 65, 70
column-mixing step, 68
command-line test routine, “des.c”,

52–53
comparing huge numbers, 109–112
compromised certifi cates, 224,

294–295
compute

“aes.c” compute_key_schedule, 66
“rsa.c” rsa_compute, 114–115
“ssl.c” compute_keys, 601–605
“tls.c” compute_verify_data, 349–350

“tls.c” compute_verify_data with
temporary copy, 352–353

computers
adding/subtracting machines, 570
big-endian, 313
CPUs/switches, 567–568
Intel processors, PCLMUQDQ

instruction, 523
little-endian, 313

connect
“https.c” http_connect, 562–564
“ssl.c” ssl_connect, 586–587
“tls.c” tls_connect, 306
“tls.c” tls_connect multiple

handshake messages, 329
“tls.c” tls_connect with client

fi nished message, 349
“tls.c” tls_connect with handshake

digests, 347
“tls.c” tls_connect with key

exchange, 337
“tls.c” tls_connect with renegotiate

fl ag, 467
“tls.c” tls_connect with server

fi nished support, 350
“tls.c” tls_connect with support for

certifi cate requests, 452–453
CONNECT command, 561, 562, 563
connection_end, 385
connection-id, 585
constructed types, 243
content types, 548, 550
context-specifi c tags, 244
coprime, 136
Counter mode. See CTR mode
Counter with CBC-MAC (CCM), 496.

See also AES-CCM
CPUs/switches, 567–568
critical/non-critical certifi cate

extensions, 277
CRLFs, 9, 10, 25, 26, 378, 469, 547
CRLs. See certifi cate revocation

lists
cryptographic algorithms, 29–30.

See also public key algorithms;
symmetric algorithms

Cryptographic Message Syntax (CMS),
550

bindex.indd 636bindex.indd 636 12/10/2010 7:46:23 PM12/10/2010 7:46:23 PM

 Index n C–D 637

cryptography. See also Elliptic-Curve
Cryptography

Applied Cryptography (Schneier), 83
export-grade, 463
munitions classifi cation for, 463
server gated, 462
step-up, 465
strong, 378, 463
weak, 463

CSRs. See certifi cate signing requests
CTR (Counter) mode, 490–494
AES-CTR mode, 491–492
CBC-MAC and, 496–502
encryption (diagram), 491
/Galois-Field authentication, with

AES-GCM, 505–510
infi nitely parallelizable, 491, 502
known plaintext attack, 493
OFB v., 491

D
Data Encryption Standard algorithm.

See DES algorithm
database, DNS, 555
Datagram TLS (DTLS), 559
datagram traffi c, 552–559

DNS security, 553–559
TLS and, 559
UDP, 553, 555, 556, 559

dates (DER), 242
Daum, Magnus, 170
DC fi eld, 234, 237
decimal number system, 568. See also

binary number representations
decryption

AES, 74–80
/authentication (secure data transfer,

TLS 1.0), 361–364
defi ned, 29
DES, 45–46
private key/decryption, 92
RC4, 86
RSA, 119–120

DELETE, 24, 303
denial of service (DOS) attacks, 318,

559
deprecation

IDEA, 83

RC2, 83
SSLv2, 298, 579, 626

DER (Distinguished Encoding Rules),
241–252

bit strings, 243
dates, 242
encoded values, 241–242
explicit tags, 244
sequences, 243
sets, 243
strings, 242

DES (Data Encryption Standard)
algorithm, 31–59

AES v., 60, 74
big-endian conventions, 32, 36
brute force attacks and, 55
decryption, 45–46
DHE/RSA/DES/SHA-1 handshake,

442–448
expansion function, 40–45
Feistel function and, 37
initial permutation, 34–38
initialization vectors and, 49–50, 51,

53, 55
key schedule, 38–40
listings

“des.c” bit macros, 32–33
“des.c” command-line test routine,

52–53
“des.c” des_block_operate, 43–45
“des.c“ des_block_operate with

decryption support, 45–46
“des.c” des_decrypt, 51
“des.c” des_encrypt with NIST 800-

3A padding, 48
“des.c” des_encrypt with PKCS #5

padding, 49
“des.c” des_operate with CBC for

encrypt or decrypt, 51
“des.c” des_operate with CBC

support and padding removed
from des_encrypt, 50

“des.c” des_operate with padding
support, 47–48

“des.c” expansion table, 41
“des.c” fi nal input block

permutation, 42–43
“des.c” fi nal permutation table, 38

bindex.indd 637bindex.indd 637 12/10/2010 7:46:23 PM12/10/2010 7:46:23 PM

638 Index n D–D

“des.c” initial permutation table, 36
“des.c” key permutation table 1, 39
“des.c” key permutation table 2, 39
“des.c” main routine with

decryption support, 54–55
“des.c” permutation, 34–35
“des.c” rotate left, 40
“des.c” rotate right, 46
“des.c” s-boxes, 42
“des.c” xor array, 33
“hex.c” hex_decode, 53–54
“hex.c” show_hex, 54
terse initial permutation, 35–36

overview diagram, 37
padding in, 46–55
s-boxes, 31, 36, 41, 42, 55
TLS 1.0 and, 342–343
triple DES v., 55–56
XOR operation and, 31–32

des_block_operate, 43–45
des_block_operate with decryption

support, 45–46
des_decrypt, 51
des_encrypt with NIST 800-3A

padding, 48
des_encrypt with PKCS #5 padding, 49
des_operate with CBC for encrypt or

decrypt, 51
des_operate with CBC support and

padding removed from
des_encrypt, 50

des_operate with padding support,
47–48

destination port, 3
DH_anon_XXX, 448
DHE_DSS_XXX, 439, 444
DHE/RSA/DES/SHA-1 handshake,

442–448
DHE_RSA_XXX, 439
Dierks, Tim, 379
Diffi e, Whitfi eld, 130
Diffi e-Hellman key exchange, 130–132.

See also elliptic-curve Diffi e-
Hellman

client key exchange (TLS 1.0),
343–344

“dh.c” Diffi e-Hellman key
agreement, 131–132

DHE/RSA/DES/SHA-1 handshake,
442–448

ECC primitives and, 150–154
ECDH v., 523–524
parsing signature types, 485–489

“tls.c” parse_certifi cate_request
with TLS 1.2 support, 488–489

“tls.c” parse_server_key_exchange
with signature and hash
algorithm declaration, 487–488

“tls.c” TLS 1.2 signature
verifi cation, 485–486

“tls.h” signature and hash
algorithms, 486–487

RSA v., 130, 132
small subgroup attack and, 236–237
S/MIME and, 550
TLS 1.0 and, 394–395
“tls.c” send_client_key_exchange

with Diffi e-Hellman key
exchange, 343

dig tool, 556
DIGEST, 17
digest functions, updateable, 190–200
“digest.c” fi nalize digest, 194–195
“digest.c” update digest function,

192–194
“digest.h” digest context structure

declaration, 191–192
Digital Signature Algorithm. See DSA
digital signatures, 157–220. See also

DSA; RSA algorithm
certifi cates and, 222
email and, 551–552
RSA support for, 157–158, 201–202

discrete logarithm problem, 130, 131
Dispensa, Steve, 468
Distinguished Encoding Rules. See

DER
distinguished names, 229–232
division

huge numbers, 106–109
“huge.c” divide, 108–109, 112–113
“huge.”c” divide with negative

number support, 146–147
DNS (Domain Name System), 553–559

cache poisoning, 556–559
database, 555

bindex.indd 638bindex.indd 638 12/10/2010 7:46:23 PM12/10/2010 7:46:23 PM

 Index n D–E 639

hierarchy, 554
IP addresses, 553–554
protocol, 555
queries, 555–556

DNS Security. See DNSSEC
DNSSEC (DNS Security), 556–559
Domain Name System. See DNS
domain-name components, 234, 237
DOS (denial of service) attacks, 318, 559
dot product, 72
dot product, “aes.c”, 72
dotted-decimal form/hexadecimal

form, 228–229
double and add approach

(multiplication), 106, 116, 134, 150,
153, 213, 503

DSA (Digital Signature Algorithm),
201–210. See also elliptic-curve DSA

certifi cate parser and, 286–291
ECC primitives and, 210
ECDSA v., 524
effi cient, 209–210
keys, 209
listings

“dsa.c” DSA Signature generation
algorithm, 203–204

“dsa.c” DSA signature verifi cation
algorithm, 206–207

“dsa.c” message secret generation,
204–205

“dsa.c” test main routine, 207–209
“dsa.h” dsa_params structure, 203
“dsa.h” dsa_signature structure,

203
“tls.c” receive_tls_msg with DSA

key support, 445
“tls.h” TLSParameters with dsa key

support, 444–445
“x509.c” parse_x509_chain with

DSA support, 445–446
SHA-1 and, 202, 204
SHA-256 and, 202, 204
signature generation, 202–205
signature verifi cation, 205–209

DSS, 227, 228, 229, 465, 485. See also
DHE_DSS_XXX

DTLS (Datagram TLS), 559
dummy block, 48

E
ECB (electronic code book), 49, 490
ECC. See Elliptic-Curve Cryptography
ECC client hello extensions, 540
ECC extensions, 523–540
ECC primitives

Diffi e-Hellman and, 150–154
DSA and, 210

ECDH. See elliptic-curve Diffi e-
Hellman

ECDHE_ECDSA cipher suites, 533, 535,
538

ecdh_key_exchange, 539–540
ECDSA. See elliptic-curve DSA
e-commerce, 4, 27, 234, 298
electronic code book. See ECB
elliptic curves, 132–135, 524

addition, 133
cofactor of, 152
graph, 133
named curves, 218, 524–527, 530, 537,

540
order of, 152, 524
point multiplication on, 134

Elliptic-Curve Cryptography (ECC),
132–155

client hello extensions, 540
Diffi e-Hellman and, 150–154
ECC primitives

Diffi e-Hellman and, 150–154
DSA and, 210

GCDs, 135–137
listings

“ecc.c” point addition
implementation, 212–213

“ecc.c” point-doubling algorithm,
213–214

“ecc.c” point-multiplication
algorithm, 214–215

“ecc.h” elliptic curve structure
declarations, 211

“ecc_int.c” add_points routine, 152
“ecc_int.c” double_point routine,

152–153
“ecc_int.c” Extended Euclidean

Algorithm (small numbers),
137–138

“ecc_int.c” invert routine, 152

bindex.indd 639bindex.indd 639 12/10/2010 7:46:23 PM12/10/2010 7:46:23 PM

640 Index n E–E

“ecc_int.c” multiply_point routine,
153

“ecc_int.h” structure defi nitions,
151–152

modular inversions and, 135–138
negative numbers support, 138–147
negative remainders support, 147–149
over prime fi nite fi eld, 150
purpose, 220
reasons for using, 154–155
“Software Implementations of the

NIST Elliptic Curves over Prime
Fields” (Brown), 210

speed of, 220
TLS 1.2 and, 132–133, 523–524
whole integers and, 150

elliptic-curve Diffi e-Hellman (ECDH),
523–524

Diffi e-Hellman v., 523–524
ECDHE_ECDSA cipher suites, 533,

535, 538
ECDSA and, 524
TLS 1.2, 533–540

“tls.c” ecdh_key_exchange, 539–540
“tls.c” init_tls with ECDHE_

ECDSA support, 533
“tls.c” parse_server_key_exchange

with ECDH support, 534–536
“tls.c” send_client_key_exchange

with ECDHE support, 538
“tls.c” verify_signature with

ECDSA support, 537–538
“tls.h” TLSParameters with ECDH

support, 534
elliptic-curve DSA (ECDSA), 210–220

certifi cate parsing (TLS 1.2), 527–533
“x509.c” parse_algorithm_identifi er

with ECDSA support, 528
“x509.c” parse_public_key_info

with ECDSA support, 529–530
“x509.c” parse_x509_certifi cate with

ECDSA signatures, 532–533
“x509.c” parse_x509_chain with

ECDSA support, 531–532
“x509.h” ECDSA algorithm

identifi er, 529
“x509.h” ecdsa algorithm identifi er,

528

DSA v., 524
ECDH and, 524
ECDHE_ECDSA cipher suites, 533,

535, 538
generating ECC keypairs, 218–220
implementing, 215–217
listings

“ecc.c” point addition
implementation, 212–213

“ecc.c” point-doubling algorithm,
213–214

“ecc.c” point-multiplication
algorithm, 214–215

“ecc.h” elliptic curve structure
declarations, 211

“ecdsa.c” elliptic-curve DSA
signature generation, 215–216

“ecdsa.c” elliptic-curve DSA
signature verifi cation, 216–217

“ecdsa.c” test routine, 218–220
signature generation, 215–216
signature verifi cation, 216–217

email
attachments, 547–550
digital signatures and, 551–552
email model, 545–546
HTTP v., 547
MIME and, 547–548
multiple recipients, 550–552
PEM and, 246, 263, 281, 395, 396, 400,

546
PGP and, 1, 546
security mechanism, 546–547
S/MIME and, 546–547, 549–552
SSL/TLS design and, 546–547
TLS and, 552

embedded hardware implementers,
523

encoded values, 241–242
encryption

AES, 67–82
AES-CCM, 514–515
CTR, 491
defi ned, 29
matrix operations, 70–72
public key/encryption, 92
RC4, 86
RSA, 114–119

bindex.indd 640bindex.indd 640 12/10/2010 7:46:23 PM12/10/2010 7:46:23 PM

 Index n E–F 641

support (secure data transfer, TLS
1.0), 355–358

endian-ness, 173, 182, 183, 257
big-endian number format, 571–572

computers, 313
DES, 32, 36
“huge.c” set_huge (little-endian/

big-endian conversion), 104, 105
little-endian v., 571–572
SHA-1, 171, 176

little-endian number format, 571–572
big-endian v., 571–572
computers, 313
“huge.c” set_huge (little-endian/

big-endian conversion), 104, 105
Intel x86, 32
MD5, 161, 164, 197
“md5.c” md5 initial hash, 166
“sha.c” SHA-1 in little-endian

format, 178
end-to-end example. See https

application
enveloped-data, 550
ephemeral cipher suites, 436
ephemeral key exchange, 436–448, 487

handshake, 442–448
listings

“tls.c” parse_server_key_exchange,
437–438

“tls.c” parse_server_key_exchange
with signature verifi cation, 440

“tls.c” receive_tls_msg with DSA
key support, 445

“tls.c” receive_tls_msg with server
key exchange, 437

“tls.c” send_client_key_exchange,
445

“tls.c” verify_signature, 441,
446–448

“tls.h” TLSParameters with dsa key
support, 444–445

“x509.c” parse_x509_chain with
DSA support, 445–446

server key exchange message,
436–442

Epoch fi eld, 559
error checking, 292, 405
error messages, browser, 412–414

Ethereal, 573
Euclidean algorithm, 135–138
Exclusive OR. See XOR operation
expansion function, DES, 40–45
expansion table, “des.c”, 41
expired certifi cates, 232–233, 235, 295,

318, 414
explicit tags, 244
export-grade ciphers, 463–465

key calculation, 463–464
man-in-the-middle attacks, 626
restrictions, 464–465
SSLv2 and, 584, 607

export-grade cryptography, 463
extended Euclidean algorithm,

137–138
extended validation, 278
extension 10 (client hello extension),

540
extension 11 (client hello extension),

540
extensions. See certifi cate extensions;

client hello extensions
extensions fi eld, 237–238

F
FEAL, 83
Feistel function, 37
fgets, 25
“fi le.c” load_fi le_into_memory,

398–399
FIN packet, 368, 626
fi nal input block permutation, “des.c”,

42–43
fi nal permutation table, “des.c”, 38
fi nd_stored_session, “tls.c”, 431–433
fi nished message

TLS 1.0 handshake (client-side),
346–353

TLS 1.0 handshake (server-side),
409–411

TLS 1.2, 483–484
FIPS 186-3, 137, 202
Firefox, 229, 234, 244, 245, 410, 465
500 (status code), 10
501 (status code), 24
fi xed-precision numeric

representation, 140

bindex.indd 641bindex.indd 641 12/10/2010 7:46:24 PM12/10/2010 7:46:24 PM

642 Index n F–H

fl attening/sending client hello
message, 309–316

Fortezza, 378
forward secrecy, perfect, 130, 439, 465,

524
403 (status code), 10
404 (status code), 10, 11
fstat, 393

G
Galois fi eld arithmetic operations, 210,

502
Galois-Field authentication

“aes.c” gf_multiply, 503
/CTR, with AES-GCM, 505–510
maximizing MAC throughput,

502–505
GCDs (greatest common

denominators), 135–137
gcrypt, 140
GeneralizedTime, 233
generating RSA keypairs, 129
generator point, 210, 524, 534, 540
GET command, 5–6, 8–10
GET_BIT macro, 36
gethostbyname, 7, 554–555
GHASH, 502, 504–507. See also

AES-GCM
“aes.c” ghash, 504–505
AES-GCM and, 505–507
diagram, 504

GMP, 113, 140
GnuTLS, 27, 28, 123, 140, 155, 540, 541.

See also TLS
got_client_hello, 385–386
greatest common denominators

(GCDs), 135–137

H
handshake. See also TLS 1.0 handshake

SSLv2, 582–619
TCP, 3–4

handshake digest
initialization, TLS 1.2, 484

hash functions, updateable, 190–200
HDMI video stream, 523
HEAD, 24, 303
headers, 9

Hellman, Martin, 130, 132, 185. See also
Diffi e-Hellman key exchange

hello request, session renegotiation
and, 466–467

hexadecimal form/dotted-decimal
form, 228–229

“hex.c” hex_decode, 53–54
“hex.c” show_hex, 54
Hickman, Kipp, 298
HMAC function, 184–201. See also

MACs
diagram, 188
implementation, 186–190
listings

“digest.c” fi nalize digest, 194–195
“digest.c” update digest function,

192–194
“digest.h” digest context structure

declaration, 191–192
“hmac.c” HMAC function, 186–188
“hmac.c” HMAC function

prototype, 188–189
“hmac.c” main routine, 199–200
“hmac.c” modifi ed HMAC function

to use updateable digest
functions, 198–199

“md5.c” MD5 digest initialization,
195

“sha.c” SHA-1 digest initialization,
195–196

“sha.c” SHA-256 digest initialization,
196

MD5 hash computation of fi le
(example), 196–200

message digests and, 184
PRF and, 329–332
SSL and, 200–201
SSLv2 and, 611
updateable hash functions, 190–200

Hongbo Yu, 170
HTTP (Hypertext Transport Protocol),

4–5
case sensitive, 8
CONNECT command, 561, 562, 563
email v., 547
line-oriented, 25
proxies, 12–17
“proxy-less,” 16

bindex.indd 642bindex.indd 642 12/10/2010 7:46:24 PM12/10/2010 7:46:24 PM

 Index n H–H 643

request, 24–25
response, 10–11
session resumption and, 421
SSL and, 5, 299, 543, 552
stateless, 544, 552
versions, 9

HTTP client (sample application). See
also HTTPS client

Base64 encoding implementation,
17–21

implementation, 5–12
listings

“base64.c” base64_decode, 19–20
“base64.c” base64_encode, 18–19
“http.c” display_result, 11–12
“http.c” header includes, 5–6
“http.c” http_get, 9–10
“http.c” http_get (with proxy

support), 16–17, 20–21
“http.c” main, 6–9
“http.c” main (with proxy support),

13–14
“http.c” parse_proxy_param,

14–16
“http.c” parse_url, 6
“tls.h” top-level function

prototypes, 300–301
proxy support added, 12–17
security features, 5
TLS support added, 300–303

HTTP server (sample application)
HTTPS support added, 381–390
implementation, 21–27
listings

“ssl_webserver.c” main routine,
382

“ssl_webserver.c” process_https_
request, 382–383

“ssl_webserver.c” send and read
modifi cations, 383

“webserver.c” build responses,
26–27

“webserver.c” main routine, 21–23
“webserver.c” process_http_

request, 24–25
“webserver.c“ read_line, 25–26
“webserver.c” remote connection

exclusion code, 24

HTTPS, 5, 27
end-to-end examples (TLS 1.0),

369–378
client hello request dissected,

370–371
decrypting encrypted exchange,

374–377
exchanging application data,

377–378
key exchange message dissected,

373–374
server response messages

dissected, 372–373
HTTP server (sample application)

and, 381–390
multiple ports and, 544

https application end-to-end example
(SSLv2), 619–626

HTTPS client (sample application). See
also HTTP client

listings
“https.c” http_connect, 562–564
“https.c” http_get and display_

result, 302
“https.c” http_get with SSLv2

support, 581
“https.c” main routine, 301
“https.c” main routine with proxy

support, 561–562
“https.c” main routine with session

resumption, 425–427
“https.c” main routine with SSLv2

support, 580
“https.c” with OpenSSL,

564–566
proxy support, 560–564

Hudson, Tim J., 575
huge numbers. See also Elliptic-Curve

Cryptography; RSA algorithm
addition, 93–98
arbitrary precision binary math

module, 93–114
comparing, 109–112
division, 106–109
listings

“huge.c” add (overfl ow expansion),
97

“huge.c” add routine, 94–95

bindex.indd 643bindex.indd 643 12/10/2010 7:46:24 PM12/10/2010 7:46:24 PM

644 Index n H–I

“huge.c” add routine (addition
routine), 96

“huge.c” add routine (size
computation), 95

“huge.”c” add with negative
number support, 143–144

“huge.”c” add_magnitude and
subtract_magnitude, 143

“huge.c” compare, 109–111
“huge.c” contract, 100
“huge.c” copy_huge & free huge,

103
“huge.c” divide, 108–109, 112–113
“huge.”c” divide with negative

number support, 146–147
“huge.c” expand, 97–98
“huge.c” exponentiate, 117–118
“huge.”c” initializer routines with

negative number support
included, 142

“huge.”c” inv routine, 148–149
“huge.c” left_shift, 106
“huge.c” load_huge, 123–124
“huge.c” mod_pow, 118–119
“huge.c” multiply, 102–103
“huge.”c” multiply with negative

number support, 146
“huge.c” right_shift, 112
“huge.c” set_huge, 104, 105
“huge.c” subtract, 98–99
“huge.”c” subtract with negative

number support, 145–146
“huge.c” unload_huge, 124
“huge.h” huge structure, 93
“huge.”h” huge structure with

negative number support,
141–142

modulus operations, 112–114
Barrett reduction, 114
Montgomery reduction, 114
optimizing for, 112–113

multiplication, 101–106
subtraction, 98–101

negative numbers support (ECC),
138–147

Hypertext Transport Protocol. See
HTTP

I
IANA (Internet Assigned Numbers

Authority), 545
ICANN (Internet Corporation for

Assigned Names and Numbers),
553

ICMP timeout packets, 3
IDEA, 83, 584
identity matrix, 71
“IEEE Transactions on Information

Theory,” 130, 132
IETF, 27, 84, 298, 299, 546, 579, 601
#ifdef, 52
illegal parameter, 318, 322, 440
indefi nite-length encoding, 549–550
infi nitely parallelizable, 56, 170, 491,

502
initial hash, SHA-256, 184
initial permutation, DES, 34–38
initial permutation table, “des.c”, 36
initialization vectors, DES and, 49–50,

51, 53, 55
init_parameters, “ssl.c”, 587–588
init_parameters, “tls.c”, 306, 387
init_parameters with saved verify

data, 472
init_parameters with session

resumption support, “tls.c”, 435
init_protection_parameters with

seq_num, “tls.c”, 354–355
init_tls, 430
init_tls with ECDHE_ECDSA

support, 533
init_x509_certificate, 266
input processing function, SHA-1,

174–176
Intel processors, PCLMUQDQ

instruction, 523
Intel x86 little-endian conventions, 32
internal byte ordering, 572
International Telecommunications

Union. See ITU
Internet

packet-switching network, 2
security, 1–5

Internet Assigned Numbers Authority
(IANA), 545

bindex.indd 644bindex.indd 644 12/10/2010 7:46:24 PM12/10/2010 7:46:24 PM

 Index n I–K 645

Internet Corporation for Assigned
Names and Numbers (ICANN), 553

Internet Explorer, 230, 234, 238, 239,
244, 294, 410, 418, 465

Internet Protocol. See IP
inversion routines, “aes.c”, 75–77
inv_mix_columns, “aes.c”, 77–78
IP (Internet Protocol), 2. See also TCP/

IP
IP addresses/DNS security, 553–554
irreversibility, message digests, 160
issuer fi eld, 229–232
issuers, 224, 227
issuing certifi cates, 227
ITU (International

Telecommunications Union), 225

J
Jacobian projection, 220
Java, 5, 27, 28, 113, 140
JSSE, 123

K
Kaminsky, Dan, 556
key combination, AES, 68
key escrow system, 378
key exchange. See also Diffi e-Hellman

key exchange
ephemeral key exchange, 436–448,

487
handshake, 442–448
server key exchange message,

436–442
“tls.c” parse_server_key_exchange,

437–438
“tls.c” parse_server_key_exchange

with signature verifi cation, 440
“tls.c” receive_tls_msg with DSA

key support, 445
“tls.c” receive_tls_msg with server

key exchange, 437
“tls.c” send_client_key_exchange,

445
“tls.c” verify_signature, 441,

446–448
“tls.h” TLSParameters with dsa key

support, 444–445

“x509.c” parse_x509_chain with
DSA support, 445–446

key exchange message dissected
(HTTPS example),
373–374

RSA, TLS1.0 and, 394–396
server key exchange message, 344,

436
TLS 1.0 handshake (client-side),

329–344
Diffi e-Hellman key exchange,

343–344
master secret computation,

336–337
RSA key exchange, 337–343
using PRF, 329–335

TLS 1.0 handshake (server-side),
394–409

checking for successful decryption,
406–407

completing, 407–409
RSA key exchange and private key

location, 395–399
supporting encrypted private key

fi les, 399–406
“tls.c” tls_connect with key

exchange, 337
key material block, 375–376
key permutation table 1, “des.c”, 39
key permutation table 2,

“des.c”, 39
key schedule

AES, 60–67
defi ned, 39
DES, 38–40
RC4, 84–85

key usage extension, 275, 277
“A Key Recovery Attack on Discrete

Log-based Schemes Using a Prime
Order Subgroup,” 236

keys. See also private key; public key
brute force attacks and, 29
defi ned, 29
DSA, 209

known plaintext attacks, 186, 493
Koblitz, Neal, 132
Koblitz curves, 525

bindex.indd 645bindex.indd 645 12/10/2010 7:46:24 PM12/10/2010 7:46:24 PM

646 Index n L–M

L
large numbers. See huge numbers
LDAP-based certifi cates, 234
least-signifi cant bit (LSB), 39, 40, 93,

116, 504
least-signifi cant bytes, 495, 571, 572
least-signifi cant digit, 571
left shift, 40, 64, 72
libpcap, 575
line-oriented HTTP, 25
Linux system

OpenSSL installation, 577
tcpdump installation, 575

Listings. See specifi c listings
little-endian number format, 571–572

big-endian v., 571–572
computers, 313
“huge.c” set_huge (little-endian/

big-endian conversion), 104, 105
Intel x86, 32
MD5, 161, 164, 197
“md5.c” md5 initial hash, 166
“sha.c” SHA-1 in little-endian format,

178
load_file_into_memory, 398–399
lock icon, 1, 230, 244, 278
logical operations, binary, 568–570
LOKI, 83
LSB. See least-signifi cant bit
Lucks, Stefan, 170
LUHN consistency check, 185

M
MACs (Message Authentication

Codes). See also HMAC function
GHASH, 502, 504–507
maximizing MAC throughput with

Galois-Field authentication,
502–505

qualities, 494
magic constant, 504
magic numbers, 3
“magnitude/sign” approach, 140
main routine

“aes.c” main routine modifi ed to
accept associated data, 513–514

“des.c” main routine with 3DES
support, 59

“des.c” main routine with decryption
support, 54–55

“digest.c” main routine, 179–180
“dsa.c” test main routine, 207–209
“hmac.c” main routine, 199–200
“https.c” main routine, 301
“https.c” main routine with proxy

support, 561–562
“https.c” main routine with session

resumption, 425–427
“https.c” main routine with SSLv2

support, 580
“prf.c” main routine, 334–335
“privkey.c” test main routine,

397–398
“rc4.c” main routine for testing, 87
“rsa.c” test main routine, 126–129
“ssl_webserver.c” main routine, 382
“webserver.c” main routine, 21–23
“x509.c” main routine, 281–283, 291

man-in-the middle attacks, 222–224
export-grade ciphers and, 626
SSLv2 and, 346, 626

marker request, 449
Marlinspike, Moxie, 234
master key, SSLv2, 600–607
master secret, 329, 336–337
“Math Computation,” 114
matrix multiplication example (AES),

70–71
matrix operations, 70–72
MD5, 159–169

birthday attack, 170
goal of, 160
implementing, 159–169
listings

“md5.c” alternate md5_block_
operate implementation,
164–166

“md5.c” bit manipulation routines,
160–161

“md5.c” MD5 digest initialization,
195

“md5.c” md5 hash algorithm,
167–168

“md5.c” md5 initial hash, 166
“md5.c” md5_block_operate

function, 162–164

bindex.indd 646bindex.indd 646 12/10/2010 7:46:24 PM12/10/2010 7:46:24 PM

 Index n M–N 647

“md5.c” ROUND macro, 161–162
little-endian number format, 161, 164,

197
MD5 hash computation of fi le

(example), 196–200
PRF and, 329–332
SHA-1 v., 171, 174, 176
vulnerabilities, 169–171

Message Authentication Codes. See
MACs

message digests, 158–159. See also MD5
checksum, 158–159, 170
defi ned, 158
“digest.c” fi nalize digest, 194–195
“digest.c“ update digest function,

192–194
“digest.h“ digest context structure

declaration, 191–192
HMAC function and, 184
irreversibility, 160
updateable digest functions, 190–200

METHOD, 17
Miller, Victor, 132
MIME (Multipurpose Internet Mail

Extensions), 547–548
mix_columns, “aes.c”, 73
Modadugu, Nagendra, 559
mod_pow, 118–119, 131, 207
mod_ssl, 575
modular inversions, 135–138
modulus operations, 112–114

Barrett reduction, 114
Montgomery reduction, 114
optimizing for, 112–113

Montgomery reduction, 114
Mosaic, 298, 543
most-signifi cant bit (MSB), 40, 93,

570–571, 595
most-signifi cant digit, 571
MSB. See most-signifi cant bit
“multi-hop” SMTP, 545–548
multiple ports, HTTPs and, 544
multiple recipients, email, 550–552
multiplication

double and add approach, 106, 116,
134, 150, 153, 213, 503

“ecc.c” point-multiplication
algorithm, 214–215

“ecc_int.c” multiply_point routine, 153
huge numbers, 101–106
“huge.c” multiply, 102–103
“huge.”c” multiply with negative

number support, 146
matrix multiplication example (AES),

70–71
point multiplication on elliptic curve,

134
square and multiply, 116

Multipurpose Internet Mail
Extensions. See MIME

munitions classifi cation, cryptography
and, 463

mutally-authenticated TLS handshake,
460–462

N
naive secure channel protocol, 222–224
named curves, 218, 524–527, 530, 537, 540

“ecc.c” get_named_curve, 525–527
online list, 525
SECG, 525

National Center for Supercomputing
Application, 543

National Institute for Standards and
Technology. See NIST

negative numbers
ECC, 138–147
two’s-complement arithmetic, 570–571

Netscape, 4, 27, 298, 543, 579, 596
Network News Transfer Protocol. See

NNTP
nibble (nybble), 63, 494, 571
NIST (National Institute for Standards

and Technology), 46, 60, 181
NNTP (Network News Transfer

Protocol), 543–545
nonce, 491, 492, 493, 523
not after date, 224
not before date, 224
NOT operation, 569
NSA, 31, 464
NSS, 123, 140
NTLM, 17
“Null Prefi x Attacks Against SSL

Certifi cates” (Marlinspike), 234
nybble (nibble), 63, 494, 571

bindex.indd 647bindex.indd 647 12/10/2010 7:46:24 PM12/10/2010 7:46:24 PM

648 Index n O–P

O
OAEP, 126
object identifi ers. See OIDs
OCSP (Online Certifi cate Status

Protocol), 295–296
OFB (output-feedback mode), 50, 90,

126, 490, 491, 494
OIDs (object identifi ers), 227–229

distinguished names, 231–232
dotted-decimal form/hexadecimal

form, 228–229
public-key algorithm, 235–236

one’s complement arithmetic, 570
Online Certifi cate Status Protocol

(OCSP), 295–296
open-source SSL implementations,

27–28
OpenSSL

generation
DSA keypair and certifi cate,

251–252
RSA keypair and certifi cate,

244–251
“https.c” with OpenSSL, 564–566
installation, 573, 575–577

Linux system, 577
Windows system, 575–576

req command, 244, 293, 533
s_server, 458, 460, 619
SSL with, 564–566
Young and, 27

OPTIONS, 24
OR operation, 569
order, of elliptic curves, 152, 524
output-feedback mode. See OFB

P
packets, 2–3
packet-switching network, 2
padding

block cipher algorithms, 46–55
DES, 46–55
NIST 800-3A, 48
OAEP, 126
PKCS # 5, 48, 49, 51
PKCS #1.5, 126, 395, 412
RSA, 120, 122–123
triple DES, 56

zero, 123, 507, 514
padding identifi ers, 120
padlock icon, 1, 230, 244, 278
paf fl ag, 153
parallelizable, infi nitely, 56, 170, 491,

502
parity bits, 39
parse_algorithm_identifi er, “x509.c”,

270
parse_algorithm_identifi er with DSA

support, “x509.c”, 287
parse_algorithm_identifi er with

ECDSA support, “x509.c”, 528
parse_certifi cate_request, 451–452
parse_certifi cate_request with TLS 1.2

support, 488–489
parse_client_hello, “tls.c”, 388–390
parse_client_hello with client hello

extension support,
416–417

parse_client_hello with session
resumption support, “tls.c”, 433

parse_client_hello_extensions,
417–418

parse_client_key_exchange, “tls.c”,
407–408

parse_dsa_signature_value, “x509.c”,
288–289

parse_extension, “x509.c”, 276
parse_extension with key usage

recognition, “x509.c”, 277
parse_extensions, “x509.c”, 276
parse_huge, “x509.c”, 269–270
parse_name, “x509.c”, 271–273
parse_pkcs8_private_key, 402–406
parse_private_key, 396–397
parse_proxy_param, 14–16
parse_public_key_info, “x509.c”,

274–275
parse_public_key_info with ECDSA

support, “x509.c”,
529–530

parse_renegotiation_info, 477–478
parse_server_error, “ssl.c”, 597
parse_server_fi nished, “ssl.c”, 617
parse_server_hello, “ssl.c”, 597–599
parse_server_hello with extensions

recognition, 476

bindex.indd 648bindex.indd 648 12/10/2010 7:46:24 PM12/10/2010 7:46:24 PM

 Index n P–P 649

parse_server_hello with session ID
support, “tls.c”, 425

parse_server_hello_extensions,
476–477

parse_server_key_exchange, “tls.c”,
437–438

parse_server_key_exchange with
ECDH support, 534–536

parse_server_key_exchange with
signature and hash algorithm
declaration, 487–488

parse_server_key_exchange with
signature verifi cation, 440

parse_server_name_extension,
418–419

parse_server_verify, “ssl.c”, 615–616
parse_signature_value, “x509.c”, 279
parse_tbs_certifi cate, “x509.c”, 268–269
parse_url, 6, 14
parse_x509_certifi cate, 267–268
parse_x509_certifi cate with DSA

support, 287–288
parse_x509_certifi cate with ECDSA

signatures, 532–533
parse_x509_certifi cate with stored

hash, 279–280
parse_x509_chain, 325–327, 531
parse_x509_chain with DSA support,

445–446
parse_x509_chain with ECDSA

support, 531–532
parsing certifi cates (ECDSA, TLS 1.2),

527–533
parsing signature types (Diffi e-

Hellman, TLS 1.2), 485–489
PCLMULQDQ instruction, 523
peer_finished, 386–387
PEM (Privacy-Enhanced Mail), 246,

263, 281, 395, 396, 400, 546
perfect forward secrecy, 130, 439, 465,

524
permutation, “des.c”, 34–35
permutations

defi ned, 31
DES initial permutation, 34–38

PGP, 1, 546
Pil Joon Lee, 236
PKCS

PKCS #1
format, 400, 454
padding, 339

PKCS #1.5 padding, 126, 395, 412
PKCS #5

format, 400, 401
padding, 48, 49, 51
Password-Based Encryption, 406

PKCS #7, 549, 550
PKCS #7-formatted RSA signatures

(validation), 280–285
PKCS #8

encoded private key fi le, 402
format, 400, 401, 407

PKCS #10 format, 293
PKCS #12 format, 293–294, 407

PKI. See public key infrastructure
plaintext attacks, known, 186, 493
P_MD5, 330, 331
Pohlig, Stephen, 132
Pohlig-Hellman attack, 132
point at infi nity, 150, 153
point multiplication on elliptic curve,

134
point-doubling algorithm, 134, 150, 213
ports

destination port, 3
multiple, HTTPS and, 544
port 53, 555
port 80, 8, 13, 16, 21, 300, 381, 544, 563
port 119, 544, 545
port 443, 300, 381, 544, 563
port 563, 545
source port, 3

position shifting binary numbers, 570
POST, 24, 300, 303, 561
premaster secret, 329, 336–339,

343–344, 373, 374, 378–379, 394, 408
PRF (pseudo-random function),

329–335
client key exchange (TLS 1.0) with,

329–335
diagram, 330
HMAC function and, 329–332
MD5 and, 329–332
modifi cations (TLS 1.2), 481–482
“prf.c” main routine, 334–335
“prf.c” PRF function, 333–334

bindex.indd 649bindex.indd 649 12/10/2010 7:46:24 PM12/10/2010 7:46:24 PM

650 Index n P–R

SHA-1 and, 329–332
“prf.c” PRF2, 482
prime fi nite fi eld, ECC over, 150
prime number 65,537, 115, 116, 129
Privacy-Enhanced Mail. See PEM
private key

decryption and, 92
/public key, reversibility and, 157

private key algorithms. See symmetric
algorithms

“privkey.c” parse_pkcs8_private_key,
402–406

“privkey.c” parse_private_key,
396–397

“privkey.c” test main routine, 397–398
process_http_request, 24–25
process_https_request, 382–383
proxy server, 12, 13, 14
proxy specifi cation, 13
proxy support

HTTP client application, 12–17
HTTPS client application, 560–564

“proxy-less” HTTP, 16
pseudo-random function. See PRF
P_SHA1, 330, 332
public key

encryption and, 92
/private key, reversibility and, 157

public key (asymmetric) algorithms,
91–155. See also RSA algorithm

arbitrary precision binary math
module, 93–114. See also huge
numbers

OIDs, 235–236
slowness, 129–130
symmetric algorithms v., 30, 91,

129–130
public key infrastructure (PKI),

292–293, 296, 556
PUT, 24, 300, 303

Q
Qualys Research security analysis, 235

R
rainbow tables, 185, 400, 401
Ray, Marsh, 468

RC2, 83, 584
RC4 algorithm, 84–90

cracking, 86
decryption, 84
encryption, 86
key schedule, 84–85
listings

“rc4.c” key-length wrapper
functions, 89–90

“rc4.c” main routine for testing, 87
“rc4.c” rc4_operate, 84–85
“rc4.c” rc4_operate with persistent

state, 88–89
“rc4.h” rc4_state structure, 88
“tls.c” calculate_keys with special

RC4 exception, 359
RC4-compatible algorithm, 84
read_buffer, 323, 389
receive

“receive_tls_message” with alert
support, 323

“receive_tls_msg” with optimal
response buffer, 365

“ssl.c” receive_ssl_message,
594–596

“ssl.c” receive_ssl_message with
encryption support, 613–614

“tls.c” receive_tls_message with
session renegotiation support,
466–467

“tls.c” receive_tls_msg, 317, 318,
319–320

“tls.c” receive_tls_msg with
buffering support, 366–368

“tls.c” receive_tls_msg with
certifi cate request support,
450–451

“tls.c” receive_tls_msg with decrypt
support, 361–362

“tls.c” receive_tls_msg with DSA key
support, 445

“tls.c” receive_tls_msg with
handshake digest update,
348–349

“tls.c” receive_tls_msg with multiple
handshake support, 325

“tls.c” receive_tls_msg with server
hello done support, 328

bindex.indd 650bindex.indd 650 12/10/2010 7:46:24 PM12/10/2010 7:46:24 PM

 Index n R–R 651

“tls.c” receive_tls_msg with server
key exchange, 437

“tls.c” receive_tls_msg with support
for change cipher spec, 345–346

“tls.c” tls_receive_message with
server fi nished support, 351

tls_recv, 365–368
RelativeDistinguishedName, 231
relatively prime, 136
remember_session, “tls.c”, 430–431
renegotiation. See session

renegotiation
renegotiation attack, 468–470
replay attacks, 49, 184, 304, 336, 353,

441, 593. See also HMAC function
req command, 244, 293, 533
Rescorla, Eric, 299, 379, 559
resource records (RRs), 555
resumed session. See session

resumption
resumption. See session resumption
reversibility

message digests and, 160
public key/private key, 157
XOR operation, 32, 569

revoked certifi cates, 224. See also
certifi cate revocation lists

RFC 793, 3, 4
RFC 971, 2
RFC 977, 544
RFC 1321, 160, 191
RFC 2104, 184, 186
RFC 2246, 1, 2, 27, 83, 299, 309,

435, 436
RFC 2247, 234
RFC 2313, 121, 228
RFC 2459, 275
RFC 2535, 556
RFC 2560, 296
RFC 2595, 546
RFC 2616, 4, 10
RFC 2617, 17
RFC 2631, 132, 237
RFC 2817, 561
RFC 2818, 299
RFC 2980, 544, 545
RFC 3207, 546
RFC 3268, 83

RFC 3280, 234
RFC 3546, 416, 420, 462
RFC 4034, 557
RFC 4346, 27, 299, 379
RFC 4492, 523, 533, 540
RFC 4754, 218
RFC 5246, 27, 379, 476, 489, 516, 541
RFC 5280, 237, 278
RFC 5288, 518, 519
RFC 5652, 550
RFC 5746, 470
RFC 5751, 546, 552
right-shift, 107
Rijndael algorithm, 60, 83. See also AES

algorithm
Rivest, Ron, 84, 91, 160. See also MD5;

RC4 algorithm; RSA algorithm
RKM (RSA Key Manager), 449
root CAs, 238–239
rotate left, “des.c”, 40
rotate right, “des.c”, 46
rot_word, “aes.c”, 63
round constant, 61, 64, 66, 67, 68, 72
row-shifting step, 68
RRs (resource records), 555
RSA algorithm, 91

arbitrary precision binary math
module, 93–114. See also huge
numbers

CBC, 126
decryption, 119–120
DHE/RSA/DES/SHA-1 handshake,

442–448
Diffi e-Hellman v., 130, 132
digital signatures and, 157–158,

201–202
encryption, 114–119
key exchange (TLS client key

exchange), 337–343
keypair generation, 129
listings

“huge.c” exponentiate, 117–118
“huge.c” load_huge, 123–124
“huge.c” mod_pow, 118–119
“huge.c” unload_huge, 124
“rsa.c” rsa_compute, 114–115
“rsa.c” rsa_decrypt, 124–126
“rsa.c” rsa_encrypt, 121–122

bindex.indd 651bindex.indd 651 12/10/2010 7:46:24 PM12/10/2010 7:46:24 PM

652 Index n R–S

“rsa.c” rsa_encrypt and rsa_sign,
454–455

“rsa.c” rsa_key structure, 120–121
“rsa.c” test main routine, 126–129
“tls.c” rsa_key_exchange, 339

padding, 120, 122–123
PKCS #7-formatted RSA signatures,

280–285
65,537 (prime number), 115, 116, 129
speeding up, 129
testing encryption/decryption,

126–130
theory, 92–93
TLS 1.0 and, 394–396

RSA Key Manager (RKM), 449

S
salt, 49. See also initialization vectors
sbox, “aes.c”, 63–64
s-boxes

AES, 60, 61, 77
DES, 31, 36, 41, 42, 55

s-boxes, “des.c“, 42
Schneier, Bruce, 83
SEC (Standards for Effi cient

Cryptography), 525
SECG (Standards for Effi cient

Cryptography Group), 525
secrecy, perfect forward, 130, 439, 465,

524
secure channel protocol, 222–224
secure data transfer (TLS 1.0 client-

side), 353–369
assigning sequence numbers,

353–355
decryption and authentication,

361–364
encryption support (outgoing),

355–358
listings

“receive_tls_msg” with optimal
response buffer, 365

“tls.c” calculate_keys with special
RC4 exception, 359

“tls.c” init_protection_parameters
with seq_num, 354–355

“tls.c” receive_tls_msg with
buffering support, 366–368

“tls.c” receive_tls_msg with
decrypt support, 361–362

“tls.c” send buffer, 357–358
“tls.c” send_message with

encryption, 358
“tls.c” send_message with MAC

support, 355–357
“tls.c” send_message with padding

support, 357
“tls.c” tls_connect with receive_tls_

msg calls updated, 365–366
“tls.c” tls_decrypt, 362–364
“tls.c” tls_recv, 365
“tls.c” tls_send, 364–365
“tls.c” with protection parameters

sent to send_message, 360
“tls.h” ProtectionParameters with

seq_num, 354
“tls.h” TLSParameters with

buffering support, 366
stream ciphers support, 358–359
tls_recv, 365–368
tls_send, 364–365
update each invocation of send_

message, 359–360
Secure Hash Algorithm. See SHA-1
secure renegotiation. See also session

renegotiation
example, 470–471
implementation, 471–478

secure sockets, 2–4
Secure Sockets Layer. See SSL
security

challenge, 566
Internet, 1–5
trade-off, 566

“security escape,” 610
self-signed certifi cates, 227, 238
send

client hello message (fl attening/
sending), 309–316

send_client_key_exchange with
ECDHE support, 538

“ssl.c” send_client_fi nished, 608
“ssl.c” send_client_hello, 589–590
“ssl.c” send_client_master_key,

606–607
“ssl.c” send_error, 599–600

bindex.indd 652bindex.indd 652 12/10/2010 7:46:24 PM12/10/2010 7:46:24 PM

 Index n S–S 653

“ssl.c” send_handshake_message,
590–591

“ssl.c” send_message, 591–592
“ssl.c” send_message with

encryption support, 608–611
“ssl.c” ssl_send, 617
”tls.c” send buffer, 357–358
”tls.c” send_alert_message, 319
”tls.c” send_certifi cate_verify, 455–

457
“tls.c” send_change_cipher_spec, 345
“tls.c” send_client_hello, 307–308,

310, 311
“tls.c” send_client_hello with session

resumption, 424–425
“tls.c” send_client_key_exchange,

337–338
“tls.c” send_client_key_exchange

with Diffi e-Hellman key
exchange, 343

“tls.c” send_fi nished, 349
“tls.c” send_handshake_message,

312–313
“tls.c” send_handshake_message

updates, 348
“tls.c” send_handshake_message

with handshake digest update,
347–348

“tls.c” send_message, 315–316
“tls.c” send_message with

encryption, 358
“tls.c” send_message with explicit

IVs, 480
“tls.c” send_message with MAC

support, 355–357
“tls.c” send_message with padding

support, 357
tls_send, 364–365
update each invocation of

send_message, 359–360
SEQUENCE, 226
Sequence number fi eld, 559
sequence numbers assigned (secure

data transfer, TLS 1.0), 353–355
sequences (DER), 243
serial IDs, 224
serial numbers, 227
serialNumber fi eld, 227

server gated cryptography, 465
server hello

SSLv2, 592–600
TLS 1.0 handshake (client-side),

316–324
TLS 1.0 handshake (server-side),

390–391
server hello done message

TLS 1.0 handshake (client-side),
328–329

TLS 1.0 handshake (server-side), 393
server key exchange message, 344,

436–442. See also ephemeral key
exchange

server key exchange signature, 442
server name identifi cation (SNI)

extensions, 416–420
client hello with, 419
“tls.c” parse_client_hello_extensions,

417–418
“tls.c” parse_server_name_

extension, 418–419
server_finished, 350, 386, 586
server_side session resumption

support, 429
session ID, 304, 308, 311, 316, 320, 372,

420
session renegotiation, 465–478

hello request supported, 466–467
listings

“tls.c” client hello extension
capability, 473–476

“tls.c” init_parameters with saved
verify data, 472

“tls.c” parse_renegotiation_info,
477–478

“tls.c” parse_server_hello with
extensions recognition, 476

“tls.c” parse_server_hello_
extensions, 476–477

“tls.c” receive_tls_message with
session renegotiation support,
466–467

“tls.c” Saving verify data, 472–473
“tls.c” tls_connect with renegotiate

fl ag, 467
“tls.h” TLSParameters with saved

verify data, 471–472

bindex.indd 653bindex.indd 653 12/10/2010 7:46:24 PM12/10/2010 7:46:24 PM

654 Index n S–S

pitfalls, 468–470
renegotiation attack, 468–470
secure renegotiation example,

470–471
secure renegotiation implementation,

471–478
session resumption v., 465–466
session resumption, 420–436

on client side TLS, 421–428
drawbacks of server implementation,

435–436
HTTP and, 420
listings

“https.c” main routine with session
resumption,
425–427

“tls.c” fi nd_stored_session, 431–433
“tls.c” init_parameters with session

resumption support, 435
“tls.c” init_tls, 430
“tls.c” parse_client_hello with

session resumption support,
433

“tls.c” parse_server_hello with
session ID support, 425

“tls.c” remember_session, 430–431
“tls.c” send_client_hello with

session resumption, 424–425
“tls.c” server_side session

resumption support, 429
“tls.c” session storage hash table,

429–430
“tls.c” tls_accept with session

resumption support, 433–435
“tls.c” tls_accept with session

storage, 435
“tls.c” tls_resume, 422–424
“tls.h” TLSParameters with session

ID, 416–417
requesting, 422
restoring previous session’s master

secret, 424–425
on server side TLS, 428–436
session ID storage added,

429–433
session renegotiation v., 465–466
session resumption logic added to

client, 422–424

shortened session resumption
handshake sequence, 421

testing, 425–427
unique session ID assigned to each

session, 429
viewing, 427–428

session storage hash table, 429–430
SET_BIT macro, 36
sets (DER), 243
setsockopt, 23
SHA-1 (Secure Hash Algorithm),

171–180
big-endian numbers, 171, 176
block computation, 171–174
DHE/RSA/DES/SHA-1 handshake,

442–448
DSA and, 202
fi nalization, 176–180
input processing function, 174–176
listings

“digest.c” digest_hash, 176–178
“digest.c” main routine, 179–180
“digest.h” digest_hash function

prototype, 176
“md5.c” md5_fi nalize, 176
“sha.c” bit manipulation,

initialization and block
operation, 171–174

“sha.c” SHA-1 digest initialization,
195–196

“sha.c” SHA-1 hash algorithm,
174–175

“sha.c” SHA-1 in little-endian
format, 178–179

“sha.c” sha1_fi nalize, 176
MD5 v., 171, 174, 176
PRF and, 329–332
SHA-256 v., 181, 184
SSLv2 and, 584

SHA-256, 180–184
block operation, 181–184
DSA and, 202, 204
ECDSA and, 211
fi nalization, 184
initial hash, 184
listings

“sha.c” SHA-256 block operate,
182–183

bindex.indd 654bindex.indd 654 12/10/2010 7:46:25 PM12/10/2010 7:46:25 PM

 Index n S–S 655

“sha.c” SHA-256 digest
initialization, 196

“sha.c” SHA-256 Initial Hash, 184
“sha.c” SHA-256 Sigma Functions,

181
SHA-1 v., 181, 184
sigma functions, 181

SHA-256 digest update, 483–484
Shamir, Adi, 91. See also RSA

algorithm
shared key algorithms. See symmetric

algorithms
shifting binary numbers, 570
shift_rows, “aes.c”, 69–70
Shining Light Productions, 576
shutdown (TLS 1.0 client-side), 368–

369
“tls.c” free_protection_parameters,

369
“tls.c” tls_shutdown, 368–369

sigma functions, SHA-256, 181
signature and hash algorithms, “tls.h”,

486–487
signature fi eld, 227–229
signature verification, TLS 1.2,

485–486
signed-ness, of variables, 571
“sign/magnitude” approach, 140
65,537 (prime number), 115, 116, 129
small subgroup attack, 236–237
S/MIME, 546–547, 549–552

attachment format, 551
certifi cate management, 552
Diffi e-Hellman key exchange and,

550
encoded email message, 549
multiple recipients email and, 550–

552
SMTP, “multi-hop,” 545–548
SNI extensions. See server name

identifi cation extensions
sockets, secure, 2–4
“Software Implementations of the

NIST Elliptic Curves over Prime
Fields” (Brown), 210

source port, 3
speeding up RSA decryption

operation, 129

square and multiply, 116. See also
double and add approach

s_server, 458, 460, 619
SSL (Secure Sockets Layer). See also

OpenSSL; SSLv2; TLS
advanced topics, 415–478
applications of, 543–566
certifi cate problems and, 296
history of, 4, 27, 298–299
HMAC function and, 200–201
HTTP and, 5, 299, 543, 552
open-source implementations, 27–28
OpenSSL with, 564–566
original specifi cation proposal, 4
purpose of, 5, 27
stateful, 552
support, 27
TLS/SSL design, email and, 546–547

SSLv2, 579–627
brute-force attacks and, 626
certifi cate extensions and, 627
client hello, 588–592
deprecation, 298, 579, 626
export-grade ciphers and, 584, 607
handshake, 582–619
history of, 298
HMAC function and, 611
https application (end-to-end

example), 619–626
implementation, 579–619
listings

“https.c” http_get with SSLv2
support, 581

“https.c” main routine with SSLv2
support, 580

“ssl.c” add_mac, 611–612
“ssl.c” cipher spec declarations, 584
“ssl.c” compute_keys, 601–605
“ssl.c” init_parameters, 587–588
“ssl.c” parse_server_error, 597
”ssl.c” parse_server_fi nished, 617
”ssl.c” parse_server_hello, 597–599
”ssl.c” parse_server_verify, 615–616
”ssl.c” receive_ssl_message,

594–596
”ssl.c” receive_ssl_message with

encryption support, 613–614
“ssl.c” send_client_fi nished, 608

bindex.indd 655bindex.indd 655 12/10/2010 7:46:25 PM12/10/2010 7:46:25 PM

656 Index n S–S

“ssl.c” send_client_hello, 589–590
“ssl.c” send_client_master_key,

606–607
“ssl.c” send_error, 599–600
“ssl.c” send_handshake_message,

590–591
“ssl.c” send_message, 591–592
“ssl.c” send_message with

encryption support, 608–611
“ssl.c” ssl_connect, 586–587
“ssl.c” ssl_recv, 617–618
“ssl.c” ssl_send, 617
“ssl.c” verify_mac, 614–615
“ssl.h” CipherSuite declarations,

583–584
“ssl.h” ClientFinished declaration,

607–608
“ssl.h” ClientHello declaration, 588
“ssl.h” ClientMasterKey

declaration, 605–606
“ssl.h” ServerFinished declaration,

616
“ssl.h” ServerHello declaration,

592–594
“ssl.h” ServerVerify declaration,

613
“ssl.h” SSL function prototypes,

580
“ssl.h” SSLParameters declaration,

582–583
“ssl.h” SSLv2 CipherSpec

declaration, 583
man-in-the-middle attacks and, 346,

626
master key, 600–607
problems with, 346, 579, 626–627
server hello, 592–600
SHA and, 584
successors to, 298
truncation attacks and, 368, 626

SSLv3, 27, 593, 600, 604, 619. See also
TLS 1.0

history, 298–299
TLS 1.0 v., 378–379

Standards for Effi cient Cryptography
(SEC), 525

Standards for Effi cient Cryptography
Group (SECG), 525

STARTTLS, 545, 546
state, 67
state matrix, 74
state vector, 88–89, 358, 359
stateful

NNTP, 544, 545
SSL, 552

stateless
HTTP, 544, 552
UDP, 556

status codes, 10
stdout, 10, 11, 324
step-up cryptography, 465
stored_sessions table, 432
stream cipher algorithms, 83–90. See

also AEAD mode ciphers; block
cipher algorithms

AEAD ciphers v., 490
AES-CCM v., 517
AES-GCM v., 517
benefi ts, 491
block cipher algorithms v., 83,

490–491
block cipher to stream cipher

conversion, 90
support (TLS 1.0 client-side), 358–359
XOR operation and, 83

strings (DER), 242
strong cryptography, 378, 463
sub_bytes, “aes.c”, 69
subject fi eld, 233–235
subjectAltName, 237, 278
subjectPublicKeyInfo fi eld, 235–236
subtracting/adding machines

(computers), 570
subtraction

huge numbers, 98–101
“huge.”c” add_magnitude and

subtract_magnitude, 143
“huge.c” subtract, 98–99
“huge.”c” subtract with negative

number support, 145–146
sub_word, “aes.c”, 64
switches/CPUs, 567–568
symmetric (private/shared key)

algorithms, 29–90. See also block
cipher algorithms; stream cipher
algorithms

bindex.indd 656bindex.indd 656 12/10/2010 7:46:25 PM12/10/2010 7:46:25 PM

 Index n S–T 657

challenge of, 91
public key algorithms v., 30, 91,

129–130
SYN (synchronize) packet, 3, 12
synchronize packet. See SYN packet

T
tag classes, 244
tbsCertificate, 244, 248

defi ned, 238
parsing, 268–269

TCP (Transport Control Protocol), 3–4
handshake, 3–4
TLS without, 559

tcpdump, 370, 371, 416, 573–575
https application and, 619–626
installation

Linux system, 575
Windows system, 574

TCP/IP, 4
terse initial permutation, 35–36
32-bit processors, 568
3DES. See triple DES
302 (status code), 10
TIME_WAIT, 23
timing attacks, 119
tin, 543
TLS (Transport Layer Security). See

also SSL
advanced topics, 415–478
applications of, 543–566
challenge, 566
datagram traffi c and, 559
DTLS v., 559
email and, 552. See also S/MIME
GnuTLS, 27, 28, 123, 140, 155, 540, 541
history of, 4, 27, 298–299
“multi-hop” SMTP and, 545–548
SSL/TLS design, email and, 546–547
without TCP, 559

TLS 1.0. See also TLS 1.0 handshake
client-side, 297–379

assigning sequence numbers,
353–355

decryption and authentication,
361–364

encryption support (outgoing),
355–358

secure data transfer, 353–369
stream ciphers support, 358–359
tls_recv, 365–368
tls_send, 364–365
update each invocation of

send_message, 359–360
DES and, 342–343
Diffi e-Hellman and, 394–395
HTTPS end-to-end examples,

369–378
client hello request dissected,

370–371
decrypting encrypted exchange,

374–377
exchanging application data,

377–378
key exchange message dissected,

373–374
server response messages

dissected, 372–373
PKCS #1.5 padding, 126
PRF, 329–335

client key exchange with, 329–335
diagram, 330
HMAC function and, 329–332
MD5 and, 329–332
“prf.c” main routine, 334–335
“prf.c” PRF function, 333–334
SHA-1 and, 329–332

RSA key exchange and, 394–396
secure data transfer (client-side TLS)

“receive_tls_msg” with optimal
response buffer, 365

“tls.c” calculate_keys with special
RC4 exception, 359

“tls.c” init_protection_parameters
with seq_num, 354–355

“tls.c” receive_tls_msg with
buffering support, 366–368

“tls.c” receive_tls_msg with
decrypt support, 361–362

“tls.c” send buffer, 357–358
“tls.c” send_message with

encryption, 358
“tls.c” send_message with MAC

support, 355–357
“tls.c” send_message with padding

support, 357

bindex.indd 657bindex.indd 657 12/10/2010 7:46:25 PM12/10/2010 7:46:25 PM

658 Index n T–T

“tls.c” tls_connect with receive_tls_
msg calls updated, 365–366

“tls.c” tls_decrypt, 362–364
“tls.c” tls_recv, 365
“tls.c” tls_send, 364–365
“tls.c” with protection parameters

sent to send_message, 360
“tls.h” ProtectionParameters with

seq_num, 354
“tls.h” TLSParameters with

buffering support, 366
server-side, 381–414

browser trust issues, 412–414
HTTPS support added to HTTP

server application, 381–390,
411–412

shutdown, 368–369
“tls.c” free_protection_parameters,

369
“tls.c” tls_shutdown, 368–369

SSLv3 v., 378–379
TLS 1.1 v., 299, 379, 480
TLS 1.2 (message-format level) v., 489
transparency, 299

TLS 1.0 handshake (client-side/server-
side), 299–353, 381–411

advanced topics, 415–478
certifi cate message, 324–328, 391–393
change cipher spec message,

344–346, 409
client authentication, 448–462

“ca.cnf”, 458–459
certifi cate request message, 449–453
certifi cate verify message, 449,

453–457
CertificateRequest, 449, 450, 452
CertificateVerify, 449, 453
mutally-authenticated TLS

handshake, 460–462
RKM and, 449
“rsa.c” rsa_encrypt and rsa_sign,

454–455
testing, 458–460
with TLS handshake (diagram), 457
“tls.c” parse_certifi cate_request,

451–452
“tls.c” receive_tls_msg with

certifi cate request support,
450–451

“tls.c” send_certifi cate_verify,
455–457

“tls.c” tls_connect with support for
certifi cate requests, 452–453

“tls.h” TLSParameters with
certifi cate request fl ag, 450

client hello, 304–316, 387–390
cipher suites, 308–309
fl attening/sending, 309–316
with headers, 316
tracking handshake state in

TLSParameters structure,
304–308

client hello extensions, 415–420
“tls.c” client hello extension

capability, 473–476
“tls.c” parse_client_hello with

client hello extension support,
416–417

“tls.c” parse_client_hello_
extensions, 417–418

“tls.c” parse_server_name_
extension, 418–419

client key exchange, 329–344,
394–409

checking for successful decryption,
406–407

completing, 407–409
Diffi e-Hellman key exchange,

343–344
master secret computation, 336–337
RSA key exchange, 337–343
RSA key exchange and private key

location, 395–399
supporting encrypted private key

fi les, 399–406
using PRF, 329–335

ephemeral key exchange, 436–448,
487

handshake, 442–448
server key exchange message,

436–442
“tls.c” parse_server_key_exchange,

437–438
“tls.c” parse_server_key_exchange

with signature verifi cation,
440

“tls.c” receive_tls_msg with DSA
key support, 445

bindex.indd 658bindex.indd 658 12/10/2010 7:46:25 PM12/10/2010 7:46:25 PM

 Index n T–T 659

“tls.c” receive_tls_msg with server
key exchange, 437

“tls.c” send_client_key_exchange,
445

“tls.c” verify_signature, 441,
446–448

“tls.h” TLSParameters with dsa key
support, 444–445

“x509.c” parse_x509_chain with
DSA support, 445–446

fi nished message, 346–353, 409–411
computing verify message, 347–351
correctly receiving, 352–353

HTTPS support added to HTTP
server application, 381–390

HTTPS support pitfalls, 411–412
less common aspects, 415
listings

“fi le.c” load_fi le_into_memory,
398–399

“https.c” http_get and display_
result, 302

“https.c” main routine, 301
“prf.c” main routine, 334–335
“prf.c” PRF function, 333–334
“privkey.c” parse_pkcs8_private_

key, 402–406
“privkey.c” parse_private_key,

396–397
“privkey.c” test main routine,

397–398
“receive_tls_message” with alert

support, 323
“ssl_webserver.c” main routine, 382
“ssl_webserver.c” process_https_

request, 382–383
“ssl_webserver.c” send and read

modifi cations, 383
“tls.c” append buffer, 311
“tls.c” calculate_keys, 341–342
“tls.c” calculate_keys with server

support, 408–409
“tls.c” cipher suites list, 340–341
“tls.c” client hello structure,

306–307
“tls.c” compute_verify_data,

349–350
“tls.c” compute_verify_data with

temporary copy, 352–353

“tls.c” dh_key_exchange, 343–344
“tls.c” init_parameters, 306, 387
“tls.c” master secret computation,

336–337
“tls.c” parse_client_hello,

388–390
“tls.c” parse_client_key_exchange,

407–408
“tls.c” parse_fi nished, 351
“tls.c” parse_server_hello, 321–322
“tls.c” peer_fi nished, 386–387
“tls.c” read_buffer, 323
“tls.c” receive_tls_message with

client_hello, 387–388
“tls.c” receive_tls_message with

client_key_exchange, 394–395
“tls.c” receive_tls_msg, 317, 318,

319–320
“tls.c” receive_tls_msg with

handshake digest update,
348–349

“tls.c” receive_tls_msg with
multiple handshake support,
325

“tls.c” receive_tls_msg with server
hello done support, 328

“tls.c” receive_tls_msg with
support for change cipher spec,
345–346

“tls.c” report_alert, 324
“tls.c” rsa_key_exchange, 339
“tls.c” send_alert_message, 319
”tls.c” send_certifi cate, 392–393
“tls.c” send_change_cipher_spec,

345
“tls.c” send_client_hello, 307–308,

310, 311
“tls.c” send_client_key_exchange,

337–338
“tls.c” send_client_key_exchange

with Diffi e-Hellman key
exchange, 343

“tls.c” send_fi nished, 349
“tls.c” send_fi nished with server

support, 410
“tls.c” send_handshake_message,

312–313
“tls.c” send_handshake_message

updates, 348

bindex.indd 659bindex.indd 659 12/10/2010 7:46:25 PM12/10/2010 7:46:25 PM

660 Index n T–T

“tls.c” send_handshake_message
with handshake digest update,
347–348

“tls.c” send_message, 315–316
“tls.c” send_server_hello, 390–391
“tls.c” send_server_hello_done, 393
“tls.c” tls_accept, 384–386
“tls.c” tls_connect, 306
“tls.c” tls_connect multiple

handshake messages, 329
“tls.c” tls_connect with client

fi nished message, 349
“tls.c” tls_connect with handshake

digests, 347
“tls.c” tls_connect with key

exchange, 337
“tls.c” tls_connect with server

fi nished support, 350
“tls.c” TLSParameters, 350–351
“tls.c” tls_receive_message with

server fi nished support, 351
“tls.h” CipherSuite structure, 340
“tls.h” CipherSuiteIdentifi er list,

308–309
“tls.h” handshake structure, 312
“tls.h” ProtectionParameters, 304
“tls.h” ProtectionParameters with

cipher suite, 322–323
“tls.h” ServerHello structure, 321
“tls.h” TLSParameters, 304–305
“tls.h” TLSParameters with digest

contexts, 347
“tls.h” TLSParameters with server-

side support, 386
“tls.h” TLSParameters with state

tracking included, 328
“tls.h” TLSPlaintext header, 313–315
“tls.h” top-level function

prototypes, 300–301
“x509.c” parse_x509_chain, 325–327

mutally-authenticated, 460–462
overview, 299–300
procedure (high-level diagram),

303–304
server hello, 390–391
server hello done message, 328–329,

393
server hello message, 316–324

adding receive loop, 317–318
parsing, 319–323
reporting server alerts, 323–324
sending alerts, 318–319
structure diagram, 320

server name identifi cation
extensions, 416–420

client hello with, 419
“tls.c” parse_client_hello_

extensions, 417–418
“tls.c” parse_server_name_

extension, 418–419
session renegotiation, 465–478

hello request supported, 466–467
listings
“tls.c” client hello extension

capability, 473–476
“tls.c” init_parameters with saved

verify data, 472
“tls.c” parse_renegotiation_info,

477–478
“tls.c” parse_server_hello with

extensions recognition, 476
“tls.c” parse_server_hello_

extensions, 476–477
“tls.c” receive_tls_message with

session renegotiation support,
466–467

“tls.c” Saving verify data, 472–473
“tls.c” tls_connect with renegotiate

fl ag, 467
“tls.h” TLSParameters with saved

verify data, 471–472
pitfalls, 468–470
renegotiation attack, 468–470
secure renegotiation example,

470–471
secure renegotiation

implementation, 471–478
session resumption v., 465–466

session resumption, 420–436
on client side TLS, 421–428
drawbacks of server

implementation, 435–436
HTTP and, 420
“https.c” main routine with session

resumption, 425–427
requesting, 422

bindex.indd 660bindex.indd 660 12/10/2010 7:46:25 PM12/10/2010 7:46:25 PM

 Index n T–T 661

restoring previous session’s master
secret, 424–425

on server side TLS, 428–436
session ID storage added, 429–433
session renegotiation v., 465–466
session resumption logic added to

client, 422–424
shortened session resumption

handshake sequence, 421
testing, 425–427
“tls.c” fi nd_stored_session, 431–433
“tls.c” init_parameters with session

resumption support, 435
“tls.c” init_tls, 430
“tls.c” parse_client_hello with

session resumption support,
433

“tls.c” parse_server_hello with
session ID support, 425

“tls.c” remember_session, 430–431
“tls.c” send_client_hello with

session resumption, 424–425
“tls.c” server_side session

resumption support, 429
“tls.c” session storage hash table,

429–430
“tls.c” tls_accept with session

resumption support, 433–435
“tls.c” tls_accept with session

storage, 435
“tls.c” tls_resume, 422–424
“tls.h” TLSParameters with session

ID, 416–417
unique session ID assigned to each

session, 429
viewing, 427–428

TLS support added to HTTP client
application, 300–303

TLS 1.1, 299, 379, 480
TLS 1.2, 479–541

AEAD mode ciphers, 490–523. See
also AEAD mode ciphers

current state, 540–541
Diffi e-Hellman key exchange,

485–489
parsing signature types, 485–489
“tls.c” parse_certifi cate_request

with TLS 1.2 support, 488–489

“tls.c” parse_server_key_exchange
with signature and hash
algorithm declaration, 487–488

“tls.c” TLS 1.2 signature
verifi cation, 485–486

“tls.h” signature and hash
algorithms, 486–487

ECC and, 132–133, 523–524
ECC extensions, 523–540
ECDH support, 533–540

“tls.c” ecdh_key_exchange, 539–540
“tls.c” init_tls with ECDHE_

ECDSA support, 533
“tls.c” parse_server_key_exchange

with ECDH support, 534–536
“tls.c” send_client_key_exchange

with ECDHE support, 538
“tls.c” verify_signature with

ECDSA support, 537–538
“tls.h” TLSParameters with ECDH

support, 534
ECDHE_ECDSA cipher suites, 533,

535, 538
ECDSA certifi cate parsing, 527–533

“x509.c” parse_algorithm_identifi er
with ECDSA support, 528

“x509.c” parse_public_key_info
with ECDSA support, 529–530

“x509.c” parse_x509_certifi cate with
ECDSA signatures, 532–533

“x509.c” parse_x509_chain with
ECDSA support, 531–532

“x509.h” ECDSA algorithm
identifi er, 529

“x509.h” ecdsa algorithm identifi er,
528

fi nished message support, 483–484
history, 379
message-format level changes, 479,

489
named curves, 218, 524–527, 530, 537,

540
“ecc.c” get_named_curve, 525–527
online list, 525
SECG, 525

PRF modifi cations, 481–482
RSA key exchange, 479–484

“prf.c” PRF2, 482

bindex.indd 661bindex.indd 661 12/10/2010 7:46:25 PM12/10/2010 7:46:25 PM

662 Index n T–V

“tls.c” send_message with explicit
IVs, 480

“tls.c” SHA-256 digest update,
483–484

“tls.c” TLS 1.2 handshake digest
initialization, 484

“tls.c” tls_decrypt with explicit IVs,
481

“tls.h” TLS 1.2 version declaration,
480

“tls.h” TLSParameters, 483
TLS 1.0 (message-format level) v., 489

TLS Message header, 315
tls_accept, 384–386
tls_accept with session resumption

support, 433–435
tls_accept with session storage, 435
tls_decrypt with explicit IVs, 481
TLSParameters, 304–305, 350–351, 483

TLSParameters with buffering
support, 366

TLSParameters with certifi cate
request fl ag, 450

TLSParameters with digest contexts,
347

TLSParameters with dsa key
support, 444–445

TLSParameters with ECDH support,
534

TLSParameters with saved verify
data, 471–472

TLSParameters with server-side
support, 386

TLSParameters with session ID,
416–417

TLSParameters with state tracking
included, 328

tracking handshake state in, 304–308
tls_resume, 422–424
traceroute facility, 3
tracking certifi cate validity periods,

232–233
trade-off, security, 566
transparency, TLS 1.0, 299
Transport Control Protocol. See TCP
Transport Layer Security. See TLS
triple DES (3DES), 55–59

brute force attacks and, 56
DES v., 55–56

listings
“des.c“ des3_encrypt, 58–59
“des.c“ des_block_operate with

3DES support, 57–58
“des.c” main routine with 3DES

support, 59
wrinkle in, 56

truncation attacks, 368, 626
trusted intermediary, 222–223. See also

certifi cate authorities
trusted root certifi cation authorities,

238, 413–414
tunneling, 561–564
200 (status code), 10
twofi sh, 83
two’s-complement arithmetic, 98, 123,

275, 570–571

U
UDP (User Datagram Protocol), 553,

555, 556, 559. See also datagram
traffi c

universal tags, 244
updateable digest/hash functions,

190–200
Usenet, 543
User Datagram Protocol. See UDP
UTCTime, 233
UUCP systems, 17

V
validation

extended, 278
PKCS #7-formatted RSA signatures,

280–285
ValidationParms, 236
validity fi eld, 232–233
validity periods, 224, 232–233
vcredist_x86.exe, 576
verify_mac, “ssl.c”, 614–615
verify_signature, “tls.c”, 441,

446–448
verify_signature with ECDSA

support, 537–538
VeriSign, 227, 230, 295, 553
version fi eld, 226
virtual hosting, 9, 235
Visual C++ 2008 Redistributables

package, 576

bindex.indd 662bindex.indd 662 12/10/2010 7:46:25 PM12/10/2010 7:46:25 PM

 Index n W–Z 663

W
weak cryptography, 463
web clients. See browsers
web servers, 21. See also HTTP server
WEP (Wired Equivalent Privacy), 86
wget utility, 5
whole integers, ECC and, 150
Win32 OpenSSL vx.x.x installer, 576
Windows system

OpenSSL installation, 575–576
tcpdump installation, 574

WinDump, 574
WinPcap, 574
Wired Equivalent Privacy (WEP), 86
Wireshark, 573
Wireshark packet sniffer, 20

X
X series, 225
X9.62 format, 528, 531, 537, 540
X.509 certifi cates. See certifi cates
X.509 specifi cation

online, 225
revisions, 225

“x509.c” display_x509_certifi cate,
283–285, 290–291

“x509.c” free_x509_certifi cate, 266–267
“x509.c” init_x509_certifi cate, 266
“x509.c” main routine, 281–283, 291
“x509.c” parse_algorithm_identifi er,

270
“x509.c” parse_algorithm_identifi er

with DSA support, 287
“x509.c” parse_algorithm_identifi er

with ECDSA support, 528
“x509.c” parse_dsa_signature_value,

288–289
“x509.c” parse_extension, 276
“x509.c” parse_extension with key

usage recognition, 277
“x509.c” parse_extensions, 276
“x509.c” parse_huge, 269–270
“x509.c” parse_name, 271–273
“x509.c” parse_public_key_info,

274–275

“x509.c” parse_public_key_info with
ECDSA support, 529–530

“x509.c” parse_signature_value, 279
“x509.c” parse_tbs_certifi cate, 268–269
“x509.c” parse_x509_certifi cate,

267–268
“x509.c” parse_x509_certifi cate with

DSA support, 287–288
“x509.c” parse_x509_certifi cate with

ECDSA signatures, 532–533
“x509.c” parse_x509_certifi cate with

stored hash, 279–280
“x509.c” parse_x509_chain with DSA

support, 445–446
“x509.c” parse_x509_chain with

ECDSA support, 531–532
“x509.c” public key info parsing with

DSA support, 289
“x509.c” validate_certifi cate_dsa, 291
“x509.c” validate_certifi cate_rsa,

280–281
“x509.h” ECDSA algorithm identifi er,

529
“x509.h” ecdsa algorithm identifi er,

528
“x509.h” structure defi nitions,

264–265
“x509.h” with DSA support, 286–287
Xiaoyan Wang, 170
xor array, “des.c”, 33
XOR (Exclusive OR) operation, 569

AES and, 60, 72
DES and, 31–32
reversibility, 32, 569
stream cipher algorithms and, 83

Y
Young, Eric A., 27, 575. See also

OpenSSL

Z
zero padding, 123, 507, 514
0xFF01 client hello extension, 470,

475–478, 540
0xFF02 client hello extension, 540

bindex.indd 663bindex.indd 663 12/10/2010 7:46:25 PM12/10/2010 7:46:25 PM

bindex.indd 664bindex.indd 664 12/10/2010 7:46:25 PM12/10/2010 7:46:25 PM

	ffirs
	ftoc
	flast
	c01
	c02
	c03
	c04
	c05
	c06
	c07
	c08
	c09
	c10
	bapp01
	bapp02
	bapp03
	bindex

