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Introduction

This book examines the Secure Sockets Layer (SSL) and Transport Layer Security
(TLS) protocols in detail, taking a bottom-up approach. SSL/TLS is a standard-
ized, widely implemented, peer-reviewed protocol for applying cryptographic
primitives to arbitrary networked communications. It provides privacy, integ-
rity, and some measure of authenticity to otherwise inherently untrustworthy
network connections. Rather than just present the details of the protocol itself,
this book develops, incrementally, a relatively complete SSL/TLS library. First,
all of the relevant cryptographic protocols are examined and developed, and
then the library itself is built piece by piece.

All of the code developed in this book is C (not C++) code. It’s been tested on both
Windows and Linux systems and should run as advertised on either. Although
this is a code-heavy book, non-C programmers — or even non-programmers
in general — will still be able to get quite a bit from it. All of the protocols and
examples are presented in general form as well as in source code form so that
if you're interested in a higher-level overview, you can skip the code examples
and the book should still make sense.

I chose C instead of C++ (or Java or Python or Perl, and so on) as a good “least-
common-denominator” language. If you can program in any other procedural
language, you can program in C; and if you can understand an implementation
in C, you can understand an implementation in any other language. This book
takes full advantage of the C programming language, though. I use pointer
syntax in particular throughout the book. If you plan on following along with
the code samples, make sure you're comfortable with C and pointers. I do my
best to avoid the sort of excessive macro-ization and gratuitous typedef-ing that
make professional C code easy to maintain but hard to read.

xxvii
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You might be wondering, though, why I present the source code of yet
another (partially incomplete) implementation when there are so many
good, tried-and-tested open-source implementations of SSL available. Effectively,
production-grade libraries have (at least) five primary concerns regarding
their source code:

1. It must work.

It must be secure.
It should be as fast as reasonably possible.

It must be modular/extensible.

S N

It must be easy to read /understand.

When a higher-numbered concern conflicts with a lower-numbered concern,
the lower-numbered concern wins. This must be the case for code that’s actu-
ally used by real people to perform real tasks. The upshot is that the code is not
always pretty, nor is it particularly readable, when security/speed /modularity
take precedence. The priorities for the code in this book are

1. It must work.

2. It should be as readable as possible.

Note that security, speed, and modularity aren’t concerns. In fact, the code
presented in this book (somewhat ironically) is not particularly secure. For
example, when the algorithms call for random bytes, the code in this book just
returns sequentially numbered bytes, which is the exact opposite of the random
bytes that the algorithm calls for. This is done to simplify the code as well as
to make sure that what you see if you try it out yourself matches what you see
in the book.

There isn’t any bounds-checking on buffers or verification that the input
matches what’s expected, which are things that a proper library ought to be
doing. I've omitted these things to keep this book’s (already long) page count
under control, as well as to avoid obscuring the purpose of the example code
with hundreds of lines of error checking. At various times throughout the book,
you'll see code comments such as // TODO make this randomoOr // TODO check
the length before using.I've placed these comments in the code to draw your
attention to the functionality that was intentionally omitted.

Of course, if you're coding in a hostile environment — that is, if you're work-
ing with any production quality code — you should prefer a well-established
library such as OpenSSL, GnuTLS, or NSS over home-grown code any day.
This book, however, should help you understand the internals of these librar-
ies so that, when it comes time to use one, you know exactly what’s going on
at all stages.
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Introduction

Supplemental Web Sites

Every aspect of the Internet itself — including SSL/TLS — is described by a
series of documents written and maintained by the Internet Engineering Task Force
(IETF). These documents are referred to (somewhat confusingly) as Requests for
Comments or, more commonly, just RFCs. Each such RFC describes, authoritatively,
some aspect of some protocol related to the Internet. And at the time of this
writing, there are over 5000 such documents. Although I doubt that anybody,
anywhere, has actually read all of them, you'll need to be familiar with quite
a few in order to do any serious Internet programming. As such, I'll refer to
these RFCs by number throughout the book. Rather than provide a link to each
inline, I'll just refer to them as, e.g., RFC 2246. If you want to see RFC 2246 (the
authoritative document that describes TLS 1.0 itself), you can visit the IETF’s
website at www. ietf.org. Each RFC is stored in a document under http: //www
.ietf.org/rfc/rfennnn. txt, where nnnn is the RFC number itself.

In addition, SSL/TLS borrows heavily from a couple of related standards
bodies — the International Telecommuncation Union (ITU) “X series” of docu-
ments and RSA laboratories” Public Key Cryptography Standards (PKCS). The ITU
standards can be found at http: //www.itu.int/rec/T-REC-X/en and the PKCS
standards can be found at http: //www.rsa.com/rsalabs/node.asp?id=2124.
I'll refer to RFC’s, X-series documents, and PKCS standards throughout the
book. You may want to bookmark these locations in a browser for quick refer-
ence, if you'd like to compare the text to the official standards documents. All
of the standards documents referenced in this book are freely available and
downloadable, so I don't make any great effort to repeat them. Instead, I try
to explain the background information that the standards documents always
seem to take for granted. I'm assuming that, if you're interested in the low-level
details, you can always refer to the standards document itself.

Roadmap and Companion Source Code

I've been around and reading technical documentation since before there was
an Internet, or even CD-ROM drives. Back in my day, readers of code-heavy
books such as this one couldn’t just download the samples from a compan-
ion website or an included CD-ROM. If you wanted to see the code samples
in action, you had to type them in by hand. Although typing code can be
tedious at times, I've found that it’s also the best way to completely absorb
the material. So, Luddite that I am, I tend to eschew code downloads when I
read technical material.

This book has been designed so that somebody who wants to follow along
can do so. However, I also recognize that not every reader is a dinosaur like
myself — er, I mean not everyone is quite so meticulous. Changes to code
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presented previously are listed in boldface, so it’s easy to see what’s been modi-
fied and what’s been left unchanged.

The companion website at http://www.wiley.com/go/implementingssl
has two download files — one for GCC for those following along on a Linux
platform and one for Visual Studio for those following along on Windows. Each
download is split into two sections: one that includes the finished code for each
chapter and another for somebody who might want to follow along. I urge you
to download at least the code for following along because it includes Makefiles
and headers that aren’t specifically reproduced in this book. This book’s code
is heavily self-referential — especially in the second half — so you want to
be sure to build correctly. The downloadable Makefiles ensure that you can.

Because this book is about SSL, I try my best not to get too hung up on unre-
lated implementation details. However, the code presented here does work
and is somewhat nontrivial, so some “implementation asides” are unavoidable.

Outline of the Book

Chapter 1, “Understanding Internet Security,” examines the basics of Internet
communication and what is and is not vulnerable to attackers. To motivate the
remainder of the book, a basic working HTTP example is developed here. Later
chapters incrementally add security features to this beginning HTTP example.

Chapter 2, “Protecting Against Eavesdroppers with Symmetric Cryptography,”
examines the aspect of communications security that most people think of
first, which is scrambling data in flight so that it can’t be intercepted or read
by unauthorized parties. There are many internationally recognized standard
algorithms in this space, which SSL/TLS rely heavily on. Chapter 2 examines
three of these standards in detail: DES, AES and RC4. The code developed here
will be reused in Chapter 6 when the actual TLS library is built.

Chapter 3, “Secure Key Exchange over an Insecure Medium with Public Key
Cryptography,” looks at the problem of exchanging keys when the underlying
communications channel can’t be trusted. The thorny problem of how to take an
unencrypted link and turn it into an encrypted one is examined here. There are
also several standards in this area — RSA, Diffie-Hellman, and Elliptic-Curve
Cryptography are examined in detail in this chapter.

Chapter 4, “Authenticating Communications Using Digital Signatures,” exam-
ines a less prominent, but equally as important, aspect of secure communications.
While cryptography protects data from eavesdroppers, authentication protects
data against forgers. The standards MD-5, SHA-1, SHA-256, HMAC, DSA, and
ECDSA are all examined in detail in this chapter. Each of these plays a key role
in TLS as discussed further in Chapter 6.

Chapter 5, “Creating a Network of Trust Using X.509 Certificates,” discusses
the final piece of the PKI puzzle that the previous two chapters began, digital
certificates. Digital certificates and the Public-Key Infrastructure that support
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them are required to guard against active attacks. TLS depends greatly on
certificates, so this chapter develops an ASN.1 parser and an X.509 certificate
reader, which is used in the next chapter to authenticate web sites securely.

Chapter 6, “A Usable, Secure Communications Protocol: Client-Side TLS,” ties
together all of the concepts from the previous four chapters into a working TLS
implementation. This chapter looks at TLS from the perspective of the client
and ends with a working HTTPS implementation.

Chapter 7, “Adding Server-Side TLS 1.0 Support,” takes the foundation of
TLS from Chapter 6 and expands it to the web server example from Chapter
1, developing an SSL-enabled mini—web server. Since the server needs to store
private keys, which are, by their nature, especially sensitive, Chapter 7 also
examines the topic of using password to securely encrypt data at rest.

Chapter 8, “Advanced SSL Topics,” covers the rest of TLS 1.0 — there are
several optional elements that a compliant implementation ought to sup-
port, but which are not as widespread as the most common case covered in
Chapters 6 and 7. Client authentication, server name identification, export
grade cryptography, session resumption, and session renegotiation are all
explored in depth here.

Chapter 9, “Adding TLS 1.2 Support to Your TLS Library,” implements the
latest version of the TLS protocol, 1.2, on top of the TLS 1.0 implementation that
Chapters 6-8 developed. Here you see elliptic curve cryptography put to use.
Additionally, AEAD-mode ciphers are examined, since TLS 1.2 is the first ver-
sion of TLS to permit this mode.

Chapter 10, “Other Applications of SSL,” takes a look at the non-HTTP uses
that SSL/TLS has been put to. The STARTTLS extension and DTLS are examined
here. Also, S/MIME and DNSSEC — not strictly TLS, but related — are covered
in this chapter. Finally, Chapter 10 ends by looking at how HTTPS supports
HTTP proxies, which is, overall, an interesting compromise.

How to Read This Book

This book was written to be read cover to cover. Additionally, if you have
some background in C programming, you will want to read through, and
probably compile and run, the code samples. If you're not a programmer, or
not particularly comfortable with the C programming language, you can skip
over the code samples and just read the text descriptions of the relevant pro-
tocols — the book was written to make sense when read this way. The benefit
of the code samples is that it’s impossible to omit any detail — accidentally or
intentionally — when writing code, so if you can understand the code, it will
cement your understanding of the text preceding it. 've made every effort to
ensure that the text and diagrams describe the protocols exactly. If, however,
in spite of my best efforts, my descriptions are for any reason unclear, you
can always step through the code to see exactly what’s going on.
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Although this is a book about SSL/TLS, the first half of the book just sets the
stage for SSL/TLS by presenting all of the protocols and standards they rely
on. If you're just looking for a description of TLS, and have a reasonable under-
standing of cryptography and PKI in general, you should be able to safely skip
ahead to Chapter 6 and start there with the overview of TLS itself. However,
at some point, you should jump back and read Chapters 2-5, since there are a
lot of implementation details that can bite you in surprising ways when using
cryptographic libraries. My primary motivation in writing this book was to
present, in detail, the interplay between the SSL and TLS protocols and the
cryptographic routines that they rely on.
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Understanding Internet Security

How secure is the data that you transmit on the Internet? How vulnerable is
your personal data to hackers? Even computer-literate, experienced program-
mers find it’s hard to answer these questions with certainty. You probably know
that standard encryption algorithms are used to protect data — you've likely
heard of public-key algorithms such as RSA and DSA — and you may know
that the U.S. government’s Data Encryption Standard has been replaced by an
Advanced Encryption Standard. Everybody knows about the lock icon in their
browsers that indicates that the session is protected by HTTPS. You've most
likely heard of PGP for e-mail security (even if you gave up on it after failing
to convince your friends to use it).

In all likelihood, though, you've also heard of man in the middle attacks, timing
attacks, side-channel attacks, and various other attacks that aim to compromise
privacy and security. Anybody with a web browser has been presented with the
ominous warning message that “This site’s security cannot be trusted — either
the certificate has expired, or it was issued by a certificate authority you have
chosen not to trust.” Every week, you can read about some new zero-day exploit
uncovered by security researchers that requires a round of frantic patching. As
a professional programmer, you may feel you ought to know exactly what that
means — yet trying to decipher these messages and determine whether you
should really be worried or not takes you down the rabbit hole of IETF, PKCS,
FIPS, NIST, ITU, and ASN. You may have tried to go straight to the source and
read RFC 2246, which describes TLS, but you may have discovered, to your
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chagrin, that RFC 2246 presumes a background in symmetric cryptography,
public-key cryptography, digital signature algorithms, and X.509 certificates.
It’s unclear where to even begin. Although there are a handful of books that
describe SSL and “Internet Security,” none are targeted at the technically inclined
reader who wants, or needs, to know the details.

A mantra among security professionals is that the average programmer
doesn’t understand security and should not be trusted with it until he verses
himself in it. This is good, but ultimately unhelpful, advice. Where does one
begin? What the security professionals are really trying to tell you is that, as a
practitioner rather than a casual user, it’s not enough to treat security as a black
box or a binary property; you need to know what the security is doing and how
it’s doing it so that you know what you are and aren’t protected against. This
book was written for you — the professional programmer who understands the
basics of security but wants to uncover the details without reading thousands
of pages of dry technical specifications (only some of which are relevant).

This book begins by examining sockets and socket programming in brief.
Afterward, it moves on to a detailed examination of cryptographic concepts
and finally applies them to SSL/TLS, the current standard for Internet security.
You examine what SSL/TLS does, what it doesn’t do, and how it does it. After
completing this book, you'll know exactly how and where SSL fits into an over-
all security strategy and you'll know what steps yet need to be taken, if any, to
achieve additional security.

What Are Secure Sockets?

The Internet is a packet-switching network. This means that, for two hosts to com-
municate, they must packetize their data and submit it to a router with the destina-
tion address prepended to each packet. The router then analyzes the destination
address and routes the packet either to the target host, or to a router that it
believes is closer to the target host. The Internet Protocol (IP), outlined in RFC
971, describes the standard for how this packetization is performed and how
addresses are attached to packets in headers.

A packet can and probably will pass through many routers between the sender
and the receiver. If the contents of the data in that packet are sensitive — a pass-
word, a credit card, a tax identification number — the sender would probably
like to ensure that only the receiver can read the packet, rather than the packet
being readable by any router along the way. Even if the sender trusts the rout-
ers and their operators, routers can be compromised by malicious individuals,
called attackers in security terminology, and tricked into forwarding traffic that’s
meant for one destination to another, as shown in http: //www.securesphere
.net/download/papers/dnsspoof . htm. If you'd like to get an idea just how many
different hosts a packet passes through between you and a server, you can use
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the traceroute facility that comes with every Internet-capable computer to print
a list of the hops between you and any server on the Internet.
An example of a traceroute output is shown below:

[jdavies@localhost]:~$ traceroute www.travelocity.com
traceroute to www.travelocity.com (151.193.224.81), 30 hops max, 40 byte packets
1 192.168.0.1 (192.168.0.1) 0.174 ms 0.159 ms 0.123 ms

2 ok x ok

3 172.216.125.53 (172.216.125.53) 8.052 ms 7.978 ms 9.699 ms
4 10.208.164.65 (10.208.164.65) 10.731 ms 9.895 ms 9.489 ms
5 gig8-2.dllatxarl-t-rtrl.tx.rr.com (70.125.217.92) 12.593 ms 10.952 ms
13.003 ms
6 gig0-1-0.dllatxl3-rtrl.texas.rr.com (72.179.205.72) 69.604 ms 37.540 ms
14.015 ms
7 ae-4-0.cr0.dfwl0.tbone.rr.com (66.109.6.88) 13.434 ms 13.696 ms 15.259 ms
8 ae-1-0.pr0.dfwl0.tbone.rr.com (66.109.6.179) 15.498 ms 15.948 ms 15.555 ms
9 xe-7-0-0.edged.Dallas3.Level3.net (4.59.32.17) 18.653 ms 22.451 ms 16.034
ms
10 ae-11-60.carl.Dallasl.Level3.net (4.69.145.3) 19.759 ms
ae-21-70.carl.Dallasl.Level3.net (4.69.145.67) 17.455 ms
ae-41-90.carl.Dallasl.Level3.net (4.69.145.195) 16.469 ms
11 EDS.carl.Dallasl.Level3.net (4.59.113.86) 28.853 ms 25.672 ms 26.337 ms
12 151.193.129.61 (151.193.129.61) 24.763 ms 26.032 ms 25.481 ms
13 151.193.129.99 (151.193.129.99) 28.727 ms 25.441 ms 26.507 ms
14 151.193.129.173 (151.193.129.173) 26.642 ms 23.995 ms 28.462 ms
15 E I

Here, I've submitted a traceroute to www. travelocity.com. Each router along
the way is supposed to respond with a special packet called an ICMP timeout
packet, as described in RFC 793, with its own address. The routers that cannot
or will not do so are represented with * * * in the preceding code. Typically
the routers don't respond because theyre behind a firewall that’s configured
not to forward ICMP diagnostic packets. As you can see, there are quite a few
hops between my home router and Travelocity’s main web server.

In network programming parlance, the tenuous connection between a sender
and a receiver is referred to as a socket. When one host — the client — is ready
to establish a connection with another — the server — it sends a synchronize
(SYN) packet to the server. If the server is willing to accept the connection,
it responds with a SYN and acknowledge packet. Finally, the client acknowl-
edges the acknowledgment and both sides have agreed on a connection. This
three-packet exchange is referred to as the TCP handshake and is illustrated in
Figure 1-1. The connection is associated with a pair of numbers: the source port
and the destination port, which are attached to each subsequent packet in the
communication. Because the server is sitting around, always listening for con-
nections, it must advertise its destination port ahead of time. How this is done
is protocol-specific; some protocols are lucky enough to have “magic numbers”
associated with them that are well-known (in other words, you, the programmer
are supposed to know them). This is the Transport Control Protocol (TCP); REC
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793 describes exactly how this works and how both sides agree on a source and
destination port and how they sequence these and subsequent packets.

client server

\/ Y

Figure 1-1: TCP three-way handshake

TCP and IP are usually implemented together and called TCP/IP. A socket refers
to an established TCP connection; both sides, client and server, have a socket
after the three-way handshake described above has been completed. If either side
transmits data over this socket, TCP guarantees, to the best of its ability, that the
other side sees this data in the order it was sent. As is required by IP, however,
any intermediate router along the way also sees this data.

SSL stands for Secure Sockets Layer and was originally developed by Netscape
as a way to allow the then-new browser technology to be used for e-commerce.
The original specification proposal can be found in http: //www.mozilla.org/
projects/security/pki/nss/ssl/draft02.html. Although it has since been
standardized and renamed Transport Layer Security (TLS), the name SSL is much
more recognizable and in some ways describes better what it does and what
it’s for. After a socket has been established between the client and the server,
SSL defines a second handshake that can be performed to establish a secure
channel over the inherently insecure TCP layer.

“Insecure” Communications: Understanding the
HTTP Protocol

HTTP, or Hypertext Transport Protocol, which is officially described in RFC 2616,
is the standard protocol for web communication. Web clients, typically referred
to as browsers, establish sockets with web servers. HTTP has a well-known
destination port of 80. After the socket has been established, the web browser
begins following the rules set forth by the HTTP protocol to request documents.
HTTP started out as a fairly simple protocol in which the client issued a GeT
command and a description of what it would like to get, to which the server
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responded with either what the client requested in document form or an error
indicating why it could not or did not give the client that document. Either
way, the socket would be closed after this. If the client wanted another docu-
ment, it would create another socket and request another document. Over the
years, HTTP has been refined quite a bit and optimized for bandwidth, speed,
and security features.

HTTP was also the primary motivator for SSL. Originally, SSL didn’t stand
on its own; it was designed as an add-on to HTTP, called HTTPS. Although SSL
was subsequently decoupled from HTTP, some of its features were optimized
for HTTP, leaving it to be a bit of a square peg in a round hole in some other
contexts. Because HTTP and SSL go so well together, in this book I motivate SSL
by developing an HTTP client and adding security features to it incrementally,
finally arriving at a working HTTP/SSL implementation.

Implementing an HTTP Client

Web browsers are complex because they need to parse and render HTML — and,
in most cases, render images, run Javascript, Flash, Java Applets and leave room
for new, as-yet-uninvented add-ons. However, a web client that only retrieves
a document from a server, such as the wget utility that comes standard with
most Unix distributions, is actually pretty simple. Most of the complexity is in
the socket handling itself — establishing the socket and sending and receiving
data over it.

Start with all of the includes that go along with socket communication — as
you can see, there are quite a few, shown in Listing 1-1.

Listing 1-1: "http.c" header includes

/**
* This test utility does simple (non-encrypted) HTTP.
*/

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#ifdef WIN32

#include <winsock2.h>
#include <windows.h>
#else

#include <netdb.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <unistd.h>
#endif
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The main routine is invoked with a URL of the form http://www.server
.com/path/to/document . html. You need to separate the host and the path using
a utility routine parse_ur1l, shown in Listing 1-2.

Listing 1-2: “http.c” parse_url

VAR

* Accept a well-formed URL (e.g. http://www.company.com/index.html) and return
* pointers to the host part and the path part. Note that this function

* modifies the uri itself as well. It returns 0 on success, -1 if the URL is

* found to be malformed in any way.

*/
int parse_url( char *uri, char **host, char **path )
{

char *pos;

pos = strstr( uri, "//" );

if ( !'pos )
{

return -1;

*host = pos + 2;
pos = strchr( *host, '/' );

if ( !'pos )
{

*path = NULL;
}

else

{
*pos = '\0';
*path = pos + 1;

return 0;

You scan through the URL, looking for the delimiters // and / and replace
them with null-terminators so that the caller can treat them as C strings. Notice
that the calling function passes in two pointers to pointers; these should be
null when the function starts and will be modified to point into the uri string,
which came from argv.

The main routine that coordinates all of this is shown in Listing 1-3.

Listing 1-3: “http.c” main

#define HTTP_PORT 80

/x*

* Simple command-line HTTP client.
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*/
int main( int argc, char *argv[ ] )
{

int client_connection;

char *host, *path;

struct hostent *host_name;

struct sockaddr_in host_address;
#ifdef WIN32

WSADATA wsaData;
#endif

if ( argc < 2 )

{
fprintf( stderr, "Usage: %s: <URL>\n", argv[ 0 ] );
return 1;

if ( parse_url( argv[ 1 ], &host, &path ) == -1 )

{
fprintf( stderr, "Error - malformed URL '%s'.\n", argv[ 1 ] );
return 1;

printf( "Connecting to host '%s'\n", host );

After the URL has been parsed and the host is known, you must establish
a socket to it. In order to do this, convert it from a human-readable host name,
such as www.server.com, to a dotted-decimal IP address, such as 100.218.64.2.
You call the standard gethostbyname library function to do this, and connect
to the server. This is shown in Listing 1-4.

Listing 1-4: "http.c" main (continued)

// Step 1: open a socket connection on http port with the destination host.
#ifdef WIN32
if ( WSAStartup( MAKEWORD( 2, 2 ), &wsaData ) != NO_ERROR )
{
fprintf( stderr, "Error, unable to initialize winsock.\n" );
return 2;
}
#endif

client_connection = socket( PF_INET, SOCK_STREAM, 0 );
if ( !client_connection )
{

perror ( "Unable to create local socket" );

return 2;

host_name = gethostbyname( host );

if ( 'host_name )

(Continued)
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perror ( "Error in name resolution" );
return 3;

host_address.sin_family = AF_INET;

host_address.sin_port = htons( HTTP_PORT ) ;

memcpy ( &host_address.sin_addr, host_name->h_addr_list[ 0 ],
sizeof ( struct in_addr ) );

if ( connect( client_connection, ( struct sockaddr * ) &host_address,
sizeof ( host_address ) ) == -1 )

perror ( "Unable to connect to host" );
return 4;

printf( "Retrieving document: '%s'\n", path );

Assuming nothing went wrong — the socket structure could be created, the
hostname could be resolved to an IP address, the IP address was reachable, and
the server accepted your connection on the well-known port 80 — you now have
a usable (cleartext) socket with which to exchange data with the web server. Issue
a GET command, display the result, and close the socket, as shown in Listing 1-5.

Listing 1-5: “http.c” main (continued)

http_get ( client_connection, path, host );

display_result( client_connection ) ;

printf( "Shutting down.\n" );

#ifdef WIN32

if ( closesocket( client_connection ) == -1 )
#else

if ( close( client_connection ) == -1
#endif

{
perror ( "Error closing client connection" );
return 5;

#ifdef WIN32
WSACleanup() ;
#endif

return 0;

An HTTP GeT command is a simple, plaintext command. It starts with the
three ASCII-encoded letters GET, all in uppercase (HTTP is case sensitive), a
space, the path to the document to be retrieved, another space, and the token
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HTTP/1.0 or HTTP/1.1 depending on which version of the HTTP protocol the
client understands.

.I[E At the time of this writing, there are only two versions of HTTP; the
differences are immaterial to this book.

The GeT command itself is followed by a carriage-return/line-feed pair (0x0A
0x0D) and a colon-separated, CRLF-delimited list of headers that describe how
the client wants the response to be returned. Only one header is required — the
Host header, which is required to support virtual hosting, the situation where
several hosts share one IP address or vice-versa. The connection header is not
required, but in general you should send it to indicate to the client whether you
want it to Keep-Alive the connection — if you plan on requesting more docu-
ments on this same socket — or close it. If you omit the Connection: Close
header line, the server keeps the socket open until the client closes it. If you're
just sending a single request and getting back a single response, it’s easier to
let the server just close the connection when it’s done sending. The header list
is terminated by an empty CRLF pair.

A minimal HTTP GeT command looks like this:

GET /index.html HTTP/1.1
Host: www.server.com

Connection: close

The code to format and submit a GET command over an established socket is
shown in Listing 1-6. Note that the input is the socket itself — the connection
argument — the path of the document being requested, and the host (to build
the host header).

Listing 1-6: "http.c” http_get

#define MAX_GET_COMMAND 255
/**
* Format and send an HTTP get command. The return value will be 0
* on success, -1 on failure, with errno set appropriately. The caller
* must then retrieve the response.
*/
int http_get( int connection, const char *path, const char *host )
{
static char get_command[ MAX_GET_COMMAND ] ;

sprintf ( get_command, "GET /%s HTTP/1l.1\r\n", path );
if ( send( connection, get_command, strlen( get_command ), 0 ) == -1 )
{

return -1;

sprintf ( get_command, "Host: %s\r\n", host );
if ( send( connection, get_command, strlen( get_command ), 0 ) == -1 )
{
(Continued)
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return -1;

}

sprintf ( get_command, "Connection: close\r\n\r\n" );
if ( send( connection, get_command, strlen( get_command ), 0 ) == -1 )
{

return -1;

}

return 0;

Finally, output the response from the server. To keep things simple, just dump
the contents of the response on stdout. An HTTP response has a standard for-
mat, just like an HTTP request. The response is the token HTTP/1.0 Or HTTP/1.1
depending on which version the server understands (which does not necessarily
have to match the client’s version), followed by a space, followed by a numeric
code indicating the status of the request — errored, rejected, processed, and so
on — followed by a space, followed by a textual, human-readable, description
of the meaning of the status code.

Some of the more common status codes are shown in Table 1-1.

Table 1-1: Common status codes

200 Everything was OK, requested document follows.

302 Requested document exists, but has been moved — new location
follows.

403 Forbidden: Requested document exists, but you are not authorized to
view it.

404 Requested document not found.

500 Internal Server Error.

There are quite a few more status codes, as described in RFC 2616. The response
status line is followed, again, by a CRLF, and a series of colon-separated, CRLF-
delimited headers, a standalone CRLF/blank line end-of-headers marker, and
the document itself. Here’s an example HTTP response:

HTTP/1.1 200 OK

Date: Tue, 13 Oct 2009 19:34:51 GMT

Server: Apache

Last-Modified: Fri, 27 Oct 2006 01:53:57 GMT
ETag: "1876a-ff-316£5740"

Accept-Ranges: bytes
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Content-Length: 255

Vary: Accept-Encoding

Connection: close

Content-Type: text/html; charset=IS0-8859-1

<html>

<head>

<TITLE>Welcome to the server</TITLE>
</head>

<BODY BGCOLOR=ffffff>

This is the server's homepage
</BODY>

</html>

Here’s an example of a 404 “not found” error:

HTTP/1.1 404 Not Found

Date: Tue, 13 Oct 2009 19:40:53 GMT

Server: Apache

Last-Modified: Fri, 27 Oct 2006 01:53:58 GMT
ETag: "1875d-c5-317e9980"

Accept-Ranges: bytes

Content-Length: 197

Vary: Accept-Encoding

Connection: close

Content-Type: text/html; charset=IS0-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>

<title>404 Not Found</title>

</head><body>

<hl>Not Found</hl>

<p>The requested URL was not found on this server.</p>
</body></html>

Even though the document requested was not found, a document was returned,
which can be displayed in a browser to remind the user that something has
gone wrong.

For testing purposes, you don’t care about the response itself, as long as you
get one. Therefore, don’t make any efforts to parse these responses — just dump
their contents, verbatim, on stdout as shown in Listing 1-7.

Listing 1-7: “http.c” display_result

#define BUFFER_SIZE 255

/**
* Receive all data available on a connection and dump it to stdout
*/

void display_result( int connection )

{

int received = 0;

(Continued)
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static char recv_buf|[ BUFFER_SIZE + 1 1;

while ( ( received = recv( connection, recv_buf, BUFFER_SIZE, 0 ) ) > 0 )
{
recv_buf[ received 1 = '\0';
printf( "%s", recv_buf );
}
printf( "\n" );
}

This is all that’s required to implement a bare-bones web client. Note, how-
ever, that because the socket created was a cleartext socket, everything that’s
transmitted between the client and the server is observable, in plaintext, to
every host in between. In general, if you want to protect the transmission from
eavesdroppers, you establish an SSL context — that is, secure the line — prior to
sending the GET command.

Adding Support for HTTP Proxies

One important topic related to HTTP is the HTTP proxy. Proxies are a bit tricky
for SSL. Notice in Listing 1-4 that a socket had to be created from the client to the
server before a document could be requested. This means that the client had to
be able to construct a SYN packet, hand that off to a router, which hands it off to
another router, and so on until it’s received by the server. The server then con-
structs its own SYN/ACK packet, hands it off, and so on until it’s received by the
client. However, in corporate intranet environments, packets from outside
the corporate domain are not allowed in and vice versa. In effect, there is no
route from the client to the server with which it wants to connect.

In this scenario, it’s typical to set up a proxy server that can connect to the
outside world, and have the client funnel its requests through the proxy. This
changes the dynamics a bit; the client establishes a socket connection with the
proxy server first, and issues a GET request to it as shown in Figure 1-2. After
the proxy receives the GET request, the proxy examines the request to determine the
host name, resolves the IP address, connects to that IP address on behalf of
the client, re-issues the GET request, and forwards the response back to the
client. This subtly changes the dynamics of HTTP. What’s important to notice is
that the client establishes a socket with the proxy server, and the GET request
now includes the full URL.

Because you may well be reading this behind such a firewalled environment,
and because proxies present some unique challenges for SSL, go ahead and add
proxy support to the minimal HTTP client developed in the preceding section.

First of all, you need to modify the main routine to accept an optional proxy
specification parameter. A proxy specification includes, of course, the hostname
of the proxy server itself, but it also typically allows a username and password
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to be passed in, as most HTTP proxies are, or at least can be, authenticating.
The standard format for a proxy specification is

http://[username:password@]hostname| :port]/

where hostname is the only part that’s required. Modify your main routine
as shown in Listing 1-8 to accept an optional proxy parameter, preceded by -p.

client proxy server

Connect (e.g., on port 8080)

GET http://www.server.com/somedocument.html HTTP/1.1
> resolve www.server.com, connect to it (on port 80)

GET /somedocument.html HTTP/1.1

HTTP/1.1 200 OK

HTTP/1.1 200 OK

YVY

Y

A

A

\ Y \ 4

Figure 1-2: HTTP Proxies

Listing 1-8: “http.c" main (with proxy support)

int main( int argc, char *argv[ ] )

int client_connection;
char *proxy host, *proxy user, *proxy password;
int proxy port;
char *host, *path;
struct hostent *host_name;
struct sockaddr_in host_address;
int ind;
#ifdef WIN32
WSADATA wsaData;
#endif

if ( argc < 2 )
{
fprintf ( stderr,
"Usage: %s: [-p http://[username:password@]proxy-host:proxy-port]\
<URL>\n",
argv[ 0 ] );
return 1;
}
proxy host = proxy user = proxy password = host = path = NULL;
ind = 1;
if ( !strcmp( "-p", argv[ ind ] ) )
{
if ( !parse_proxy param( argv[ ++ind ], &proxy host, &proxy_ port,

(Continued)

c0t.indd 13 @ 12/10/2010 9:43:24 AM



14  Chapter 1 = Understanding Internet Security

&proxy_user, &proxy password ) )

fprintf( stderr, "Error - malformed proxy parameter '%s'.\n",
argv[ 2 1 );
return 2;
}
ind++;
}
if ( parse_url( argv|[ ind ], &host, &path ) == -1

If the first argument is -p, take the second argument to be a proxy specification
in the canonical form and parse it. Either way, the last argument is still a URL.
If parse_proxy_paramsucceeds, proxy_host is a non-null pointer to the host-
name of the proxy server. You need to make a few changes to your connection
logic to support this correctly, as shown in Listing 1-9. First you need to establish
a socket connection to the proxy host rather than the actual target HTTP host.

Listing 1-9: “http.c” main (with proxy support) (continued)

if ( proxy host )
{
printf( "Connecting to host '%s'\n", proxy host );
host_name = gethostbyname( proxy host );
}
else
{
printf( "Connecting to host '%s'\n", host );
host_name = gethostbyname( host );
}
host_address.sin_family = AF_INET;
host_address.sin_port = htons( proxy host ? proxy port : HTTP_PORT );
memcpy ( &host_address.sin_addr, host_name->h_addr_list[ 0 ],
sizeof ( struct in_addr ) );

http_get( client_connection, path, host, proxy host,
proxy user, proxy password );

Finally, pass the proxy host, user, and password to http_get. The new parse_
proxy_param function works similarly to the parse_url function in Listing
1-2: pass in a pointer to the argv string, insert nulls at strategic places, and set
char * pointers to the appropriate places within the argv string to represent
the individual pieces, as shown in Listing 1-10.

Listing 1-10: “http.c" parse_proxy_param

int parse_proxy param( char *proxy_spec,
char **proxy_host,
int *proxy_port,
char **proxy_user,
char **proxy_password )

cot.indd 14 @

12/10/2010 9:43:24 AM



Chapter 1 = Understanding Internet Security 15

char *login_sep, *colon_sep, *trailer_sep;

// Technically, the user should start the proxy spec with
// "http://". But, be forgiving if he didn't.

if ( !strncmp( "http://", proxy_spec, 7 ) )

{

proxy_spec += 7;

}

In Listing 1-11, check to see if an authentication string has been supplied. If the e
symbol appears in the proxy_spec, it must be preceded by a “username:password”
pair. If it is, parse those out; if it isn’t, there’s no error because the username and
password are not strictly required.

Listing 1-11: "http.c” parse_proxy_param (continued)

login_sep = strchr( proxy_spec, '@' );

if ( login_sep )
{
colon_sep = strchr( proxy_spec, ':' );
if ( !colon_sep || ( colon_sep > login_sep ) )
{
// Error - if username supplied, password must be supplied.
fprintf ( stderr, "Expected password in '%s'\n", proxy_spec );
return 0;
}
*colon_sep = '\0';
*pProxy_user = proxy_spec;
*login_sep = '\0';
*proxy_password = colon_sep + 1;
proxy_spec = login_sep + 1;

Notice that, if a username and password are supplied, you modify the proxy_
spec parameter to point to the character after the e. This way, proxy_spec now
points to the proxy host whether an authentication string was supplied or not.

Listing 1-12 shows the rest of the proxy parameter parsing — the user can
supply a port number if the proxy is listening on a non-standard port.

Listing 1-12: “http.c” parse_proxy_param (continued)

// If the user added a "/" on the end (as they sometimes do),
// Jjust ignore it.

trailer_sep = strchr( proxy_spec, '/' );
if ( trailer_sep )
{

*trailer_sep = '\0';

colon_sep = strchr( proxy_spec, ':' );
if ( colon_sep )

(Continued)
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// non-standard proxy port
*colon_sep = '\0';
*proxy_host = proxy_ spec;
*proxy_port = atoi( colon_sep + 1 );
if ( *proxy_port == )
{
// 0 is not a valid port; this is an error, whether
// 1t was mistyped or specified as 0.
return 0;
}
}
else
{
*proxy_port = HTTP_PORT;
*proxy_host = proxy_ spec;
}

return 1;

The port number is also optional. If there’s a : character before the end of
the proxy specification, it denotes a port; otherwise, assume the standard HTTP
port 80.

At this point, you have all the pieces you need for HTTP proxy support except
for the changes to the actual http_get routine. Remember that, in ordinary,
“proxy-less” HTTP, you start by establishing a connection to the target HTTP
host and then send in a GET /path HTTP/1.0 request line. However, when
connecting to a proxy, you need to send a whole hostname because the socket
itself has just been established between the client and the proxy. The request
line becomes GET http://host/path HTTP/1.0. Change http_get as shown
in Listing 1-13 to recognize this case and send a proxy-friendly GET command
if a proxy host parameter was supplied.

Listing 1-13: http_get (modified for proxy support)

int http_get( int connection,
const char *path,
const char *host,
const char *proxy host,
const char *proxy user,
const char *proxy password )

static char get_command[ MAX_GET_COMMAND ] ;
if ( proxy_host )
{
sprintf( get_command, "GET http://%s/%s HTTP/l1l.1\r\n", host, path );
}
else
{
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sprintf ( get_command, "GET /%s HTTP/1.1\r\n", path );
}

If the proxy is non-authenticating, this is all you need to do. If the proxy is
an authenticating proxy, as most are, you need to supply an additional HTTP
header line including the proxy authorization string.

Proxy-Authorization: [METHOD] [connection string]

[METHOD], according to RFC 2617, is one of BasIcC or DIGEST. It’s also com-
mon to see the non-standard NTLM in Microsoft environments. BASIC is, clearly,
the simplest of the three, and the only one you'll support — hopefully, if you're
behind a proxy, your proxy does, too. The format of connection string varies
depending on the METHOD. For BASIC, it's base64_encode ( 'username:password').

Reliable Transmission of Binary Data with Base64
Encoding

You may be somewhat familiar with Base 64 encoding, or at least be familiar
with the term. In early modem-based communication systems, such as e-mail
relay or UUCP systems, an unexpected byte value outside of the printable ASCII
range 32-126 could cause all sorts of problems. Early modems interpreted byte
code 6 as an acknowledgment, for example, wherever it occurred in the stream.
This created problems when trying to transmit binary data such as compressed
images or executable files. Various (incompatible) encoding methods were
developed to map binary data into the range of printable ASCII characters; one
of the most popular was Base64.

Base64 divides the input into 6-bit chunks — hence the name Base64 because
2°=64 — and maps each 6-bit input into one of the printable ASCII characters.
The first 52 combinations map to the upper- and lowercase alphabetic characters
A-Z and a—z; the next 10 map to the numerals 0-9. That leaves two combinations
left over to map. There’s been some historical contention on exactly what these
characters should be, but compatible implementations map them, arbitrarily, to
the characters + and /. An example of a Base64 encoding is shown in Figure 1-3.

Because the input stream is, obviously, a multiple of 8 bits, dividing it into 6-bit
chunks creates a minor problem. Because 24 is the least-common-multiple of 6
and 8, the input must be padded to a multiple of 24 bits (three bytes). Although
Base64 could just mandate that the encoding routine add padding bytes to
ensure alignment, that would complicate the decoding process. Instead the
encoder adds two = characters if the last chunk is one byte long, one = character
if the last chunk is two bytes long, and no = characters if the input is an even
multiple of three bytes. This 6:8 ratio also means that the output is one third
bigger than the input.

12/10/2010 9:43:25 AM



18  Chapter 1 = Understanding Internet Security

A B C| .. |G H | .| 0 P Q| .. 3 4 5 6

Figure 1-3: Base64 Encoding

As you see in Listing 1-14, Base64 encoding is pretty simple to implement
after you understand it; most of the complexity deals with non-aligned input:

Listing 1-14: "base64.c” base64_encode

static char *base6d =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789+/";
void base64_encode( const unsigned char *input, int len, unsigned char *output )
{
do
{
*output++ = base64[ ( input[ 0 ] & OxFC ) >> 2 ];

if ( len == 1)

{
*output++ = base64[ ( ( input[ 0 ] & 0x03 ) << 4 ) 1;
*output++ = '=';
*output++ = '=';

break;

*output++ = base64[
( ( input[ 0 ] & 0x03 ) << 4 ) | ( ( input[ 1 ] & OxFO ) >> 4 ) 1;

if ( len == 2 )

{
*output++ = base64|[ ( ( input[ 1 ] & Ox0F ) << 2 ) 1;
*output++ = '=';
break;

*output++ = baseb64d|[
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( ( input[ 1 ] & Ox0F ) << 2 ) \ ( ( input[ 2 ] & 0xCO ) >> 6 ) 1;
*output++ = base64[ ( input[ 2 ] & Ox3F ) 1;
input += 3;
}
while ( len -= 3 );

*output = '\0';

Here, the output array is already assumed to have been allocated as 4/3 *
len. The input masks select 6 bits of the input at a time and process the input
in 3-byte chunks.

Base64 decoding is just as easy. Almost. Each input byte corresponds back
to six possible output bits. This mapping is the exact inverse of the encoding
mapping. However, when decoding, you have to be aware of the possibility that
you can receive invalid data. Remember that the input is given in 8-bit bytes, but
not every possible 8-bit combination is a legitimate Base64 character — this is,
in fact, the point of Base64. You must also reject non-aligned input here; if the
input is not a multiple of four, it didn’t come from a conformant Base64 encod-
ing routine. For these reasons, there’s a bit more error-checking that you need
to build into a Base64 decoding routine; when encoding, you can safely accept
anything, but when decoding, you must ensure that the input actually came
from a real Base64 encoder. Such a Base64 decoder is shown in Listing 1-15.

Listing 1-15: "base64.c” base64_decode

static int unbase64[] =
{

o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, -1, -1,

26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,

42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1, -1
Y

int base64_decode( const unsigned char *input, int len, unsigned char *output )
{

int out_len = 0, 1i;
assert( !( len & 0x03 ) ); // Is an even multiple of 4
do
{
for (1 = 0; 1 <= 3; i++ )

{
// Check for illegal base64 characters
if ( input[ i 1 > 128 || unbase64[ input[ 1 1 ] == -1 )
(Continued)
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fprintf ( stderr, "invalid character for base64 encoding: %c\n",
input[ 1 1 );
return -1;

}
*output++ = unbase64[ input[ 0 ] ] << 2 |
( unbase64[ input[ 1 ] ] & 0x30 ) >> 4;
out_len++;
if ( input[ 2 ] != '=' )
{
*output++ = ( unbase64[ input[ 1 ] ] & OxOF ) << 4 |
( unbase64[ input[ 2 ] ] & 0x3C ) >> 2;
out_len++;

if ( input[ 3 ] != '=' )
{
*output++ = ( unbase64[ input[ 2 ] ] & 0x03 ) << 6
unbase64[ input[ 3 1 1;
out_len++;

input += 4;
}
while ( len -= 4 );

return out_len;

Notice that unbase64 was declared as a static array. Technically you could have
computed this from base64, but because this never changes, it makes sense to
compute this once and hardcode it into the source. The -1 entries are non-base64
characters. If you encounter one in the decoding input, halt.

What does all of this Base64 stuff have to do with proxy authorization? Well,
BASIC authorization has the client pass a username and a password to the proxy
to identify itself. In a minor nod to security, HTTP requires that this username
and password be Base64 encoded before being transmitted. This provides some
safeguard (but not much) against accidental password leakage. Of course, even a
lazy attacker with access to a packet sniffer could easily Base64 decode the proxy
authorization line. In fact, the open-source Wireshark packet sniffer decodes it
for you! Still, it’s required by the specification, so you have to support it.

To support proxy authorization, add the following to http_get as shown in
Listing 1-16.

Listing 1-16: "http.c” http_get (with proxy support) (continued)

sprintf ( get_command, "Host: %s\r\n", host );
if ( send( connection, get_command, strlen( get_command ), 0 ) == -1 )

{

12/10/2010 9:43:25 AM



Chapter 1 = Understanding Internet Security 21

return -1;

if ( proxy user )
{
int credentials_len = strlen( proxy user ) + strlen( proxy password ) + 1;
char *proxy credentials = malloc( credentials_len );
char *auth_string = malloc( ( ( credentials len * 4 ) / 3 ) + 1 );
sprintf( proxy credentials, "%s:%s", proxy user, proxy password );
base64_encode( proxy credentials, credentials_len, auth_string );
sprintf( get_command, "Proxy-Authorization: BASIC %s\r\n", auth_string );
if ( send( connection, get_ command, strlen( get_command ), 0 ) == -1 )
{
free( proxy credentials );
free( auth_string );
return -1;
}
free( proxy credentials );
free( auth_string );
}
sprintf ( get_command, "Connection: close\r\n\r\n" );

Now, if you invoke your http main routine with just a URL, it tries to connect
directly to the target host; if you invoke it with parameters:

./http -p http://user:password@proxy-host:80/ http://some.server.com/path

You connect through an authenticating proxy and request the same page.

Implementing an HTTP Server

Because you probably also want to examine server-side SSL, develop a server-
side HTTP application — what is usually referred to as a web server — and add
SSL support to it, as well. The operation of a web server is pretty straightfor-
ward. It starts by establishing a socket on which to listen for new requests.
By default, it listens on port 80, the standard HTTP port. When a new request
is received, it reads an HTTP request, as described earlier, from the client,
forms an HTTP response that either satisfies the request or describes an error
condition, and either closes the connection (in the case of HTTP 1.0) or looks
for another request (in the case of HTTP 1.1+).

The main routine in Listing 1-17 illustrates the outer shell of an HTTP
server — or any other internet protocol server, for that matter.

Listing 1-17: "webserver.c” main routine

#define HTTP_PORT 80
int main( int argc, char *argv[ ] )

{
(Continued)
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int listen_sock;

int connect_sock;

int on = 1;

struct sockaddr_in local_addr;

struct sockaddr_in client_addr;

int client_addr_len = sizeof( client_addr );
#ifdef WIN32

WSADATA wsaData;

if ( WSAStartup( MAKEWORD( 2, 2 ), &wsaData ) != NO_ERROR )
{
perror ( "Unable to initialize winsock" );
exit( 0 );
}
#endif

if ( ( listen_sock = socket( PF_INET, SOCK_STREAM, 0 ) ) == -1 )
{

perror ( "Unable to create listening socket" );

exit( 0 );

if ( setsockopt( listen_sock,
SOL_SOCKET,
SO_REUSEADDR,
&on, sizeof( on ) ) == -1 )

perror( "Setting socket option" );
exit( 0 );

local_addr.sin_family = AF_INET;
local_addr.sin_port = htons( HTTP_PORT ) ;
local_addr.sin_addr.s_addr = htonl( INADDR_LOOPBACK
//local_addr.sin_addr.s_addr = htonl( INADDR_ANY ) ;

if ( bind( listen_sock,
( struct sockaddr * ) &local_addr,
sizeof( local_addr ) ) == -1 )

perror ( "Unable to bind to local address" );

exit( 0 );

if ( listen( listen_sock, 5 ) == -1 )

{
perror ( "Unable to set socket backlog" );
exit( 0 );

while ( ( connect_sock = accept( listen_sock,
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}

//

( struct sockaddr * ) &client_addr,
&client_addr_len ) ) != -1

TODO: ideally, this would spawn a new thread.

process_http_request( connect_sock );

(

connect_sock == -1 )

perror( "Unable to accept socket" );

return 0;

This code is standard sockets fare. It issues the four required system calls

that are required for a process to act as a TCP protocol server: socket, bind,
listen, and accept. The accept call will block — that is, not return — until a
client somewhere on the Internet calls connect with its IP and port number.
The inside of this while loop handles the request. Note that there’s nothing
HTTP specific about this loop yet; this could just as easily be an e-mail server,
an ftp server, an IRC server, and so on. If anything goes wrong, these calls
return -1, perror prints out a description of what happened, and the process
terminates.

There are two points to note about this routine:

m The call to setsockopt ( listen_socket, SOL_SOCKET, SO_REUSEADDR,

gon, sizeof( on ) ). This enables the same process to be restarted if
it terminates abnormally. Ordinarily, when a server process terminates
abnormally, the socket is left open for a period of time referred to as the
TIME_WAIT period. The socket is in TIME_wAIT state if you run netstat.
This enables any pending client 1IN packets to be received and processed
correctly. Until this TIME_waIT period has ended, no process can listen on
the same port. SO_REUSEADDR enables a process to take up ownership of a
socket that is in the TIME_wAIT state, so that on abnormal termination, the
process can be immediately restarted. This is probably what you always
want, but you have to ask for it explicitly.

Notice the arguments to bind. The bind system call tells the OS which port
you want to listen on and is, of course, required. However, bind accepts a
port as well as an interface name/IP address. By supplying an IP address
here, you can specify that you're only interested in connections coming
into a certain interface. You can take advantage of that and bind this socket
with the loopback address (127.0.0.1) to ensure that only connections from
this machine are accepted (see Listing 1-18).
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Listing 1-18: “webserver.c” remote connection exclusion code

local_addr.sin_family = AF_INET;

local_addr.sin_port = htons( HTTP_PORT ) ;
local_addr.sin_addr.s_addr = htonl( INADDR_LOOPBACK ) ;
//local_addr.sin_addr.s_addr = htonl( INADDR_ANY ) ;

if ( bind( listen_sock, ( struct sockaddr * ) &local_addr,
sizeof( local_addr ) ) == -1 )

If you uncomment the line below (INADDR_aANY), or just omit the setting of
local_addr.sin_addr.s_addr entirely, you accept connections from any avail-
able interface, including the one connected to the public Internet. In this case,
as a minor security precaution, disable this and only listen on the loopback
interface. If you have local firewall software running, this is unnecessary, but
just in case you don't, you should be aware of the security implications.

Now for the HTTP-specific parts of this server. Call process_http_request for
each received connection. Technically, you ought to spawn a new thread here so
that the main thread can cycle back around and accept new connections; however,
for the current purpose, this bare-bones single-threaded server is good enough.

Processing an HTTP request involves first reading the request line that should
be of the format

GET <path> HTTP/1.x

Of course, HTTP supports additional commands such as posT, HEAD, PUT,
DELETE, and OPTIONS, but you won't bother with any of those — GET is good
enough. If a client asks for any other functionality, return an error code 501:
Not Implemented. Otherwise, ignore the path requested and return a canned
HTML response as shown in Listing 1-19.

Listing 1-19: “webserver.c” process_http_request

static void process_http_request( int connection )
{
char *request_line;
request_line = read_line( connection );
if ( strncmp( request_line, "GET", 3 ) )
{
// Only supports "GET" requests
build_error_response( connection, 501 );
}
else
{
// Skip over all header lines, don't care
while ( strcmp( read_line( connection ), "" ) );

build_success_response( connection );

#ifdef WIN32
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if ( closesocket( connection ) == -1 )
#else
if ( close( connection ) == -1 )
#endif

{

perror ( "Unable to close connection" );

Because HTTP is line-oriented — that is, clients are expected to pass in
multiple CRLF-delimited lines that describe a request — you need a way to read
a line from the connection. fgets is a standard way to read a line of text from a
file descriptor, including a socket, but it requires that you specify a maximum
line-length up front. Instead, develop a simple (and simplistic) routine that
autoincrements an internal buffer until it’s read the entire line and returns it

as shown in Listing 1-20.

Listing 1-20: "webserver.c” read_line

#define DEFAULT_LINE_LEN 255

char *read_line( int connection )

{
static int line_len = DEFAULT_LINE_LEN;
static char *line = NULL;
int size;

char c; // must be c, not int

int pos = 0;

if ( !line )
{

line = malloc( line_len );

while ( ( size = recv( connection, &c, 1,
{
if ( (¢ == '\n' ) && ( line[ pos -1
{
line[ pos - 1 ] = '\0';
break;
}
line[ pos++ ] = c;

if ( pos > line_len )
{
line_len *= 2;

line = realloc( line, line_len );

return line;
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There are three problems with this function:

m [t keeps reallocating its internal buffer essentially forever. A rogue client
could take advantage of this, send a malformed request with no CRLF’s
and crash the server.

m [t reads one byte at a time from the socket. Each call to recv actually
invokes a system call, which slows things down quite a bit. For optimal
efficiency, you should read a buffer of text, extract a line from it, and store
the remainder for the next invocation.

m [ts use of static variables makes it non-thread-safe.

You can ignore these shortcomings, though. This implementation is good
enough for your requirements, which is to have a server to which you can add
SSL support.

To wrap up the web server, implement the functions build_success_response
and build_error_response shown in Listing 1-21.

Listing 1-21: “webserver.c” build responses
static void build_success_response( int connection )
{

char buf[ 255 ];

sprintf( buf, "HTTP/1.1 200 Success\r\nConnection: Close\r\n\
Content-Type:text/html\r\n\

\r\n<html><head><title>Test Page</title></head><body>Nothing here</body></html>\
\r\n" );

// Technically, this should account for short writes.

if ( send( connection, buf, strlen( buf ), 0 ) < strlen( buf ) )

{

perror( "Trying to respond" );

}

)
static void build_error_response( int connection, int error_code )
{
char buf[ 255 ];
sprintf( buf, "HTTP/1.1 %d Error Occurred\r\n\r\n", error_code );
// Technically, this should account for short writes.
if ( send( connection, buf, strlen( buf ), 0 ) < strlen( buf ) )

{

perror( "Trying to respond" );

}

)
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Again, these don’t add up to a fantastic customer experience, but work well
enough to demonstrate server-side SSL.

You can run this and either connect to it with the sample HTTP client developed
in the section “Implementing an HTTP client” or connect with any standard
web browser. This implements RFC-standard HTTP, albeit a microscopically
small subset of it.

Roadmap for the Rest of This Book

SSL was originally specified by Netscape, when it became clear that e-commerce
required secure communication capability. The first release of SSL was SSLv2
(vl was never released). After its release, SSLv2 was found to have significant
flaws, which will be examined in greater detail in Chapter 6. Netscape later
released and then turned over SSLv3 to the IETF, which promptly renamed it
TLS 1.0 and published the first official specification in RFC 2246. In 2006, TLS
1.1 was specified in RFC 4346 and in 2008, TLS 1.2 was released and is specified
in RFC 5246.

The rest of this book is dedicated to describing every aspect of what SSL does
and how it does it. In short, SSL encrypts the traffic that the higher-level protocol
generates so that it can’'t be intercepted by an eavesdropper. It also authenticates
the connection so that, in theory, both sides can be assured that they are indeed
communicating with who they think they’re communicating with.

SSL support is now standard in every web browser and web server, open-
or closed-source. Although SSL was originally invented for secure HTTDP, it’s
been retrofitted, to varying degrees of success, to work with other protocols. In
theory, SSL is completely specified at the network layer, and any protocol can
just layer invisibly on top of it. However, things aren’t always so nice and neat,
and there are some drawbacks to using SSL with protocols other than HTTP.
Indeed, there are drawbacks even to using it with HTTP. I guess you can say that
nothing is perfect. You come back to the details of HTTPS, and how it differs
from HTTP, in Chapter 6 after you've examined the underlying SSL protocol.

Additionally, there are several open-source implementations of the SSL protocol
itself. By far the most popular is Eric A. Young’s openssl. The ubiquitous Apache
server, for example, relies on the openssl library to provide SSL support. A more
recent implementation is GnuTLS. Whereas openssl 0.9.8e (the most recent version
as of this writing) implements SSLv2, SSLv3 and TLS 1.0, GnuTLS implements
TLS 1.0, 1.1 and 1.2. Therefore it’s called TLS rather than SSL because it doesn’t
technically implement SSL at all. Also, Sun’s Java environment has SSL support
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built in. Because Sun’s JDK has been open-sourced, you can also see the details
of how Sun built in SSL. This is interesting, as OpenSSL and GnuTLS are writ-
ten in C but most of Sun’s SSL implementation is written in Java. Throughout
the book, you examine how these three different implementations work. Of
course, because this book walks through yet another C-based implementation,
you are able to compare and contrast these popular implementations with the
approach given here.
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Protecting Against
Eavesdroppers with Symmetric

Cryptography

Encryption refers to the practice of scrambling a message such that it can only
be read (descrambled) by the intended recipient. To make this possible, you must
scramble the message in a reversible way, but in such a way that only somebody
with a special piece of knowledge can descramble it correctly. This special piece
of knowledge is referred to as the key, evoking an image of unlocking a locked
drawer with its one and only key to remove the contents. Anybody who has the
key can descramble — decrypt, in crypto-speak — the scrambled message. In
theory, at least, no one without the key can decrypt the message.

When computers are used for cryptography, messages and keys are actually
numbers. The message is converted to (or at least treated as) a number, which is
numerically combined with the key (also a number) in a specified way accord-
ing to a cryptographic algorithm. As such, an attacker without the key can try
all keys, starting at “1” and incrementing over and over again, until the correct
key is found. To determine when he’s hit the right combination, the attacker
has to know something about the message that was encrypted in the first place,
obviously. However, this is usually the case. Consider the case of an HTTP
exchange. The first four characters of the first request are likely tobe “GE T ”
The hypothetical attacker can just do a decryption using a proposed key, check
the first four letters, and if they don’t match, move on to the next.

This sort of attack is called a brute force attack. To be useful and resistant to
brute-force attacks, keys should be fairly large numbers, and algorithms should

29
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accept a huge range of potential keys so that an attacker has to try for a very, very
long time before hitting on the right combination. There’s no defense against a
brute-force attack; the best you can hope for is to ensure that an attacker spends
so much time performing one that the data loses its value before a brute force
attack might be successful.

The application of encryption to SSL is obvious — encrypting data is effectively
the point. When transmitting one’s credit card number over the public Internet,
it’s reassuring to know that only the intended recipient can read it. When you
transmit using an SSL-enabled algorithm, such as HTTPS, all traffic is encrypted
prior to transmission, and must subsequently be decrypted before processing.

There are two very broad categories of cryptographic algorithms — symmetric
and public. The difference between the two is in key management:

m Symmetric algorithms are the simpler of the two, at least conceptually
(although the implementations are the other way around), and are exam-
ined in this chapter.

m Public algorithms, properly public key algorithms, are the topic of the next
chapter.

With symmetric cryptography algorithms, the same key is used both for
encryption and decryption. In some cases, the algorithm is different, with
decryption “undoing” what encryption did. In other cases, the algorithm is
designed so that the same set of operations, applied twice successively, cycle
back to produce the same result; encryption and decryption are actually the
same algorithms. In all cases, though, both the sender and the receiver must
both agree what the key is before they can perform any encrypted communica-
tion. This key management turns out to be the most difficult part of encryption
operations and is where public-key cryptography enters in Chapter 3. For now,
just assume that this has been worked out and look at what to do with a key
after you have one.

.m This chapter is the most technically dense chapter in this book; this
is the nature of symmetric cryptography. If you're not entirely familiar with
terminology such as left shift and big endian, you might want to take a quick
look at Appendix A for a refresher.

Understanding Block Cipher Cryptography
Algorithms

Julius Caesar is credited with perhaps the oldest known symmetric cipher algo-
rithm. The so-called Caesar cipher — a variant of which you can probably find
as a diversion in your local newspaper — assigns each letter, at random, to a
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number. This mapping of letters to numbers is the key in this simple algorithm.
Modern cipher algorithms must be much more sophisticated than Caesar’s in
order to withstand automated attacks by computers. Although the basic premise
remains — substituting one letter or symbol for another, and keeping track of
that substitution for later — further elements of confusion and diffusion were
added over the centuries to create modern cryptography algorithms. One such
hardening technique is to operate on several characters at a time, rather than
just one. By far the most common category of symmetric encryption algorithm
is the block cipher algorithm, which operates on a fixed range of bytes rather than
on a single character at a time.

In this section you examine three of the most popular block cipher algo-
rithms — the ones that you'll most likely encounter in modern cryptographic
implementations. These algorithms will likely remain relevant for several
decades — changes in cryptographic standards come very slowly, and only
after much analysis by cryptographers and cryptanalysts.

Implementing the Data Encryption Standard (DES)
Algorithm

The Data Encryption Standard (DES) algorithm, implemented and specified by IBM
at the behest of the NSA in 1974, was the first publicly available computer-ready
encryption algorithm. Although for reasons you see later, DES is not considered
particularly secure any more, it’s still in widespread use (!) and serves as a good
starting point for the study of symmetric cryptography algorithms in general.
Most of the concepts that made DES work when it was first introduced appear
in other cryptographic algorithms. DES is specified at the following web site:
http://csrc.nist.gov/publications/fips/fipsd6-3/fipsd6-3.pdf.

DES breaks its input up into eight-byte blocks and scrambles them using
an eight-byte key. This scrambling process involves a series of fixed permuta-
tions — swapping bit 34 with bit 28, bit 28 with bit 17, and so on — rotations,
and XORs. The core of DES, though, and where it gets its security, is from what
the standard calls S boxes where six bits of input become four bits of output in
a fixed, but non-reversible (except with the key) way.

Like any modern symmetric cryptographic algorithm, DES relies heavily on
the XOR operation. The logic table for XOR is shown in Table 2-1:

Table 2-1: XOR Operation

A B AXORB
0 0 0

(Continued)
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Table 2-1 (continued)

INPUT OUTPUT

0 1 1
1 0 1

1 1 0

If any of the input bits are 1, the output is 1, unless both of the inputs bits
are one. This is equivalent to addition modulo 2 and is referred to that way in
the official specification. One interesting and important property of XOR for
cryptography is that it’s reversible. Consider:

0011
@ 0101

0110

However:

0110
@ 0101

0011

This is the same operation as the previous one, but reversed; the output is
the input, but it’s XORed against the same set of data. As you can see, you've
recovered the original input this way. You may want to take a moment to look at
the logic of the XOR operation and convince yourself that this is always the case.

To make your implementation match the specification and most public descrip-
tions of the algorithm, you operate on byte arrays rather than taking advantage
(where you can) of the wide integer types of the target hardware. DES is described
using big endian conventions — that is, the most significant bit is bit 1 — whereas
the Intel x86 conventions are little endian — bit 1 is the least-significant bit. To
take full advantage of the hardware, you'd have to reverse quite a few parts of
the specification, which you won't do here.

Instead, you operate on byte (unsigned char) arrays. Because you work at
the bit level — that is, bit 39 of a 64-bit block, for example — you need a few
support macros for finding and manipulating bits within such an array. The bit
manipulation support macros are outlined in Listing 2-1.

Listing 2-1: “des.c” bit macros

// This does not return a 1 for a 1 bit; it just returns non-zero
#define GET_BIT( array, bit ) \

(array[ ( int ) ( bit / 8 ) 1 & ( 0x80 >> ( bit % 8 ) ) )
#define SET BIT( array, bit ) \
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(array[ ( int ) ( bit / 8 ) 1 |= ( 0x80 >> ( bit % 8 ) ) )
#define CLEAR_BIT( array, bit ) \
(array[ ( int ) ( bit / 8 ) ] &= ~( 0x80 >> ( bit % 8 ) ) )

Although this is a bit dense, you should see that GET_sIT returns 0 if an array
contains a 0 at a specific bit position and non-zero if an array contains a 1. The
divide operator selects the byte in the array, and the shift and mod operator
selects the bit within that byte. ser_BIT and cLEAR_BIT work similarly, but actu-
ally update the position. Notice that the only difference between these three
macros is the operator between the array reference and the mask: « for get, |=
for set, and &= ~ for clear.

Because this example XORs entire arrays of bytes, you need a support routine
for that as shown in Listing 2-2.

Listing 2-2: "des.c” xor array

static void xor( unsigned char *target, const unsigned char *src, int len )
{

while ( len-- )

{

*target++ "= *src++;

This overwrites the target array with the XOR of it and the src array.

Finally, you need a permute routine. The permute routine is responsible
for putting, for instance, the 57 bit of the input into the 14" bit of the output,
depending on the entries in a permute_table array. As you'll see in the code
listings that follow, this function is the workhorse of the DES algorithm; it is
called dozens of times, with different permute_tables each time.

Listing 2-3: “des.c” permutation

/‘k*
* Implement the initial and final permutation functions. permute_table
* and target must have exactly len and len * 8 number of entries,
* respectively, but src can be shorter (expansion function depends on this).
* NOTE: this assumes that the permutation tables are defined as one-based
* rather than 0-based arrays, since they're given that way in the
* specification.
*/
static void permute( unsigned char targetl[],
const unsigned char srcl[],
const int permute_tablel],

int len )
int 1i;

for (1 =0; 1 < len * 8; i++ )

(Continued)
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{
if ( GET_BIT( src, ( permute_table[ i ] - 1) ) )
{
SET_BIT( target, i );
}

else
{
CLEAR_BIT( target, i );
}
}
}

Now, on to the steps involved in encrypting a block of data using DES.

DES Initial Permutation

DES specifies that the input should undergo an initial permutation. The purpose
of this permutation is unclear, as it serves no cryptographic purpose (the output
would be just as secure without this). It may have been added for optimization
for certain hardware types. Nevertheless, if you don't include it, your output
will be wrong, and you won't be able to interoperate with other implementa-
tions. The specification describes this permutation in terms of the input bits
and the output bits, but it works out to copying the second bit of the last byte
into the first bit of the first byte of the output, followed by the second bit of the
next-to-last byte into the second bit of the first byte of the output, and so on, so
that the first byte of output consists of the second bits of all of the input bytes,
“backward.” (Remember that the input is exactly eight-bytes long, so given an
8-bit byte, taking the second bit of each input byte yields one byte of output.)
The second byte of the output is the fourth bit of each of the input bytes, again
backward. The third is built from the sixth bits, the fourth from the eighth bits,
and the fifth comes from the first bits, and so on. So, given an 8-byte input as
shown in Figure 2-1:

Figure 2-1: Unpermuted 8-byte input

The first byte of output comes from the second bits of each input byte, back-
ward as shown in Figure 2-2.

The second byte of output comes from the fourth bits of each input byte,
backward as shown in Figure 2-3.
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Figure 2-2: First byte of output

D

12345678|

Figure 2-3: Second byte of output

and so on for bytes 3 and 4; the fifth byte of output comes from the first bit of
input as shown in Figure 2-4:

=3
=~
[=2]
o
=
[%5)
™~
=

L |
>
oo

Figure 2-4: Five permuted bytes

and so on until all of the input bits were exhausted.
You can code this all in a very terse loop without using a lookup table on that
basis, something like what’s shown in Listing 2-4.

Listing 2-4: Terse initial permutation

for (i =1; 1 !'=8; 1= (1i+2) %9)
{
for ( jJ =7; 3 >=0; j--)

(Continued)
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output[ (1 %2 ) 2 ( (1 -1)>1): ((4+ (1i>1)))1]1]|=
(

( (dnput[ j 1 & ( 0x80 >> 1 ) ) >> (7 - 1) ) << 3J );

However, the specification is given in terms of permutations, so you do the
same, using the permute routine. The permute_table for the initial permutation
is shown in Listing 2-5.

Listing 2-5: “des.c” initial permutation table

static const int ip_table[] = {
58, 50, 42, 34, 26, 18, 10,
60, 52, 44, 36, 28, 20, 12,
62, 54, 46, 38, 30, 22, 14,
64, 56, 48, 40, 32, 24, 16,
57, 49, 41, 33, 25, 17, 9,
59, 51, 43, 35, 27, 19, 11,
61, 53, 45, 37, 29, 21, 13,
63, 55, 47, 39, 31, 23, 15,

~N Ul W ooy N

}i

This specifies that the 58" bit of the input is the first bit of the output; the
50 bit of the input is the second bit of the output; and so on. You may want to
convince yourself that this is the same as described above.

.m When examining the permutation table above, remember the struc-
ture of the GET_BIT and SET_BIT macros. The first bit, bit 58, works out to
be byte #58/8 = 7, bit #58%8 = 2. Remember that DES considers bytes to be
ordered according to big endian conventions, which means that bit 2 is the
next-to-the-most significant bit.

After the input has been so permuted, it is combined with the key in a series
of 16 rounds, each of which consists of the following:

1. Expand bits 32-64 of the input to 48 bits (described in the expansion func-
tion in Listing 2-10).
2. XOR the expanded right half of the input with the key.

3. Use the output of this XOR to look up eight entries in the s-box table and
overwrite the input with these contents.

4. Permute this output according to a specific p-table.

5. XOR this output with the left half of the input (bits 1-32) and swap sides so
that the XORed left half becomes the right half, and the (as of yet untouched)
right-half becomes the left half. On the next round, the same series of opera-
tions are applied again, but this time on what used to be the right half.
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Graphically, the rounds look like Figure 2-5.

|

l

LO RO
A : -
< Feistel Function <
N
L1=R0 R1=L0 xor f(RO, K1)
v v K2
f\: Feistel Function <
N
L2=R1 R2=L1 xor f(R1, K2)
v v K3
f \: Feistel Function <
N
.3=R2 R3=L2 xor f(R2, K3)
L15=R14 R15=L14 xor f(R14, K15)
K16
A :
< Feistel Function <
N

———

L16=R15

R16=L15 xor f(R15, K16)

Figure 2-5: DES overview
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Finally, the halves are swapped one last time, and the output is subject to the
inverse of the initial permutation — this just undoes what the initial permuta-
tion did.

.m The specification suggests that you should implement this last step by
just not swapping in the last round; the approach presented here is a bit simpler
to implement and the result is the same.

The final permutation table is show in Listing 2-6.

Listing 2-6: “des.c” final permutation table

VAR

* This just inverts ip_table.

*/

static const int fp_table[] = { 40, 8, 48, 16, 56, 24, 64, 32,
39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30,
37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28,
35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26,
33, 1, 41, 9, 49, 17, 57, 25 };

There are several details missing from the description of the rounds. The
most important of these details is what’s termed the key schedule.

DES Key Schedule

In the description of step 2 of the rounds, it states “XOR the expanded right
half of the input with the key.” If you look at the diagram, you see that the
input to this XOR is shown as K1, K2, K3, ... K15, K16. As it turns out, there are
16 different 48-bit keys, which are generated deterministically from the initial
64-bit key input.

The key undergoes an initial permutation similar to the one that the input
goes through, with slight differences — this time, the first byte of the out-
put is equal to the first bits of each input byte (again, backward); the second
byte is equal to the second bit of each input byte; and so on. However, the
key itself is specified as two 28-bit halves — the second half works backward
through the input bytes so that the first byte of the second half is the seventh
bit of each input byte; the second byte is the sixth bit; and so on. Also, because
the key halves are 28 bits each, there are only three and a half bytes; the last
half byte follows the pattern but stops after four bits. Finally, although the
key input is 8 bytes (64 bits), the output of two 28-bit halves is only 56 bits.
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Eight of the key bits (the least-significant-bit of each input byte) are discarded
and not used by DES.

Again, the DES specification presents this as a bit-for-bit permutation, so you
will, too. This permutation table is shown in Listing 2-7.

Listing 2-7: “des.c” key permutation table 1

static const int pcl_table[] = { 57, 49, 41, 33, 25, 17, 9, 1
58, 50, 42, 34, 26, 18, 10, 2,
59, 51, 43, 35, 27, 19, 11, 3,
60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15, 7,
62, 54, 46, 38, 30, 22, 14, 6
61, 53, 45, 37, 29, 21, 13, 5
28, 20, 12, 4 };

If you look carefully at this table, you see that bits 8, 16, 24, 32, 40, 48, 56, and
64 — the LSBs of each input byte — never appear. Early DES implementations
used more fault-prone hardware than you are probably used to — the LSBs of
the keys were used as parity bits to ensure that the key was transmitted cor-
rectly. Strictly speaking, you should ensure that the LSB of each byte is the sum
(modulo 2) of the other seven bits. Most implementers don’t bother, as you can
probably trust your hardware to hang on to the key you loaded into it correctly.

At each round, each of the two 28-bit halves of this 56-bit key are rotated left
once or twice — once in rounds 1, 2, 9, and 16, twice otherwise. These rotated
halves are then permuted (surprise) according to the second permutation table
in Listing 2-8.

Listing 2-8: "des.c” key permutation table 2

static const int pc2_table[] = { 14, 17, 11, 24, 1, 5,
3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26,
16, 7, 27, 20, 13, ,
41, 52, 31, 37, 47, 55,
30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53,
46, 42, 50, 36, 29, 32 };

This produces a 48-bit subkey from the 56-bit (rotated) key. Due to the rota-
tion, this means that each round has a unique key K1, K2, K3, ..., K15, K16. These
subkeys are referred to as the key schedule.

Notice that the key schedule is independent of the encryption operations and
can be precomputed and stored before encryption or decryption even begins.
Most DES implementations do this as a performance optimization, although
this one doesn’t bother.
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The independent rotations of the two key-halves are shown in Listing 2-9:

Listing 2-9: “des.c” rotate left

/**

* Perform the left rotation operation on the key. This is made fairly

* complex by the fact that the key is split into two 28-bit halves, each

* of which has to be rotated independently (so the second rotation operation
* starts in the middle of byte 3).

*/

static void rol( unsigned char *target )

{

int carry_left, carry_right;

carry_left = ( target[ 0 ] & 0x80 ) >> 3;

target[ 0 ] = ( target[ 0 ] << 1) | ( ( target[ 1 ] & 0x80 ) >> 7 );
target[ 1 ] = ( target[ 1 ] << 1) | ( ( target[ 2 ] & 0x80 ) >> 7 );
target[ 2 ] = ( target[ 2 ] << 1 ) | ( ( target[ 3 1 & 0x80 ) >> 7 );

// special handling for byte 3

carry_right = ( target[ 3 ] & 0x08 ) >> 3;
target[ 3 ] = ( ( ( target[ 3 ] << 1) |

( ( target[ 4 ] & 0x80 ) >> 7 ) ) & ~0x10 ) \ carry_left;
target[ 4 ] = ( target[ 4 ] << 1 ) | ( ( target[ 5 1 & 0x80 ) >> 7 );
target[ 5 1 = ( target[ 5 ] << 1 ) | ( ( target[ 6 ] & 0x80 ) >> 7 );
target[ 6 ] = ( target[ 6 ] << 1 ) | carry right;

Here you see that each byte of the key, which is in a 7-byte array, is left-shifted
by one place, and the MSB of the next byte is used as the LSB. The only com-
plicating factor here is that the key is in a 7-byte array, but the dividing point
between the two halves is in the middle of the third byte.

DES Expansion Function

Notice in the previous section that the subkeys are 48-bits long, but the input
halves that are to be XORed are 32 bits long. Now, you can’t properly XOR
a 32-bit input with a 48-bit key, so the input is expanded — some bits are
duplicated — before being XORed. The output of the expansion function is
illustrated in Figure 2-6.

The output is split into eight six-bit blocks (which works out to six eight-bit
bytes), with the first and last bits of each block overlapping the preceding and
following blocks. Note that the first and last block wrap around and use the
last bit of the input as the first bit of output and the first bit of input as the last
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bit of output. Again, rather than specifying this in code, you use a permutation
table as shown in Listing 2-10:

1 3 5 7
— N e A N e A N\ e N o
R N v / N v / N v / N -
2 4 6 8

Figure 2-6: DES expansion function

Listing 2-10: “des.c” expansion table

static const int expansion_table[] = {
32, 1, 2, 3, 4, 5,
4, 5, 6, 7, 8, 9,
8, 9, 10, 11, 12, 13,
12, 13, 14, 15, 16, 17,
16, 17, 18, 19, 20, 21,
20, 21, 22, 23, 24, 25,
24, 25, 26, 27, 28, 29,
28, 29, 30, 31, 32, 1 };

After this has been XORed with the correct subkey for this round, it is fed
into the s-box lookup. The s-boxes are what makes DES secure. It’s important
that the output not be a linear function of the input; if it was, a simple statistical
analysis would reveal the key. An attacker knows, for example, that the letter
“E” is the most common letter in the English language — if he knew that the
plaintext was ASCII-encoded English, he could look for the most frequently
occurring byte of output, assume that was an “E”, and work backward from
there (actually, in ASCII-encoded English text, the space character 32 is more
common than the “E”). If he was wrong, he could find the second-most occur-
ring character, and try again. This sort of cryptanalysis has been perfected to
the point where it can be performed by a computer in seconds. Therefore, the
s-boxes are not permutations, rotations or XORs but are lookups into a set of
completely random tables.

Each six-bits of the input — the expanded right-half XORed with the sub-
key — correspond to four bits of table output. In other words, each six bits of input
is used as an index into a table of four-bit outputs. In this way, the expanded,
XORed right half is reduced from 48-bits to 32. The s-boxes are described in a
particularly confusing way by the DES specification. Instead, I present them
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here as simple lookup tables in Listing 2-11. Note that each six-bit block has its
own unique s-box.

Listing 2-11: “des.c” s-boxes

static const int sbox[8][64] = {

{ 14, 0, 4, 15, 13, 7, 1, 4, 2, 14, 15, 2, 11, 13, 8, 1,
3, 10, 10, 6, 6, 12, 12, 11, 5, 9, 9, 5, 0, 3, 7, 8,
4, 15, 1, 12, 14, 8, 8, 2, 13, 4, 6, 9, 2, 1, 11, 7,
15, 5, 12, 11, 9, 3, 7, 14, 3, 10, 10, 0, 5, 6, 0, 13 }

{15, 3, 1, 13, 8, 4, 14, 7, 6, 15, 11, 2, 3, 8, 4, 14,
9, 12, 7, 0, 2, 1, 13, 10, 12, 6, 0, 9, 5, 11, 10, 5,
o, 13, 14, 8, 7, 10, 11, 1, 10, 3, 4, 15, 13, 4, 1, 2,
5, 11, 8, 6, 12, 7, 6, 12, 9, 0, 3, 5, 2, 14, 15, 9 },

{10, 13, o, 7, 9, 0, 14, 9, 6, 3, 3, 4, 15, 6, 5, 10,

1, 2, 13, 8, 12, 5, 7, 14, 11, 12, 4, 11, 2, 15, 8, 1,

13, 1, 6, 10, 4, 13, 9, 0, 8, 6, 15, 9, 3, 8, 0, 7,

11, 4, 1, 15, 2, 14, 12, 3, 5, 11, 10, 5, 14, 2, 7, 12},
{7, 13, 13, 8, 14, 11, 3, 5, 0, 6, 6, 15, 9, 0, 10, 3
i, 4, 2, 7, 8, 2, 5, 12, 11, 1, 12, 10, 4, 14, 15, 9,

i0, 3, 6, 15, 9, o, 0, 6, 12, 10, 11, 1, 7, 13, 13, 8
15, 9, 1, 4, 3, 5, 14, 11, 5, 12, 2, 7, 8, 2, 4, 14 1},
14, 12, 11, 4, 2, 1, 12, 7, 4, 10, 7, 11, 13, 6, 1
5,65, 0, 3, 15, 15, 10, 13, 3, 0, 9, 14, 8, 9, 6,
11, 2, 8, 1, 12, 11, 7, 10, 1, 13, 14, 7, 2, 8, 13,
6, 9, 15, 12, 0, 5, 9, 6, 10, 3, 4, 0, 5, 14, 3}
{12, 10, 1, 15, 10, 4, 15, 2, 9, 7, 2, 12, 6

o, 6, 13, 1, 3, 13, 4, 14, 14, 0, 7, 11, 5, 3, 11, 8,
9, 4, 14, 3, 15, 2, 5, 12, 2, 9, 8, 5, 12, 15, 3, 10,
7, 11, o0, 14, 4, 1, 10, 7, 1, 6, 13, 0, 11, 8, 6, 13 1},

{4, 13, 11, 0, 2, 11, 14, 7, 15, 4, 0, 9, 8, 1, 13, 10,
3
1
1

, 14, 12, 3, 9, 5, 7, 12, 5, 2, 10, 15, 6, 8, 1, 6,
, 6, 4, 11, 11, 13, 13, 8, 12, 1, 3, 4, 7, 10, 14, 7,
0, 9, 15, 5, 6, 0, 8, 15, 0, 14, 5, 2, 9, 3, 2, 12 },
{13, 1, 2, 15, 8, 13, 4, 8, 6, 10, 15, 3, 11, 7, 1, 4,
10, 12, 9, 5, 3, 6, 14, 11, 5, 0, O, 14, 12, 9, 7, 2,
7, 2, 11, 1, 4, 14, 1, 7, 9, 4, 12, 10, 14, 8, 2, 13,
o, 15, 6, 12, 10, 9, 13, 0, 15, 3, 3, 5, 5, 6, 8, 11 }

Also note that I have taken the liberty to reorder these, as they're given
out-of-order in the specification.

After substitution, the input block undergoes a final permutation, shown in
Listing 2-12.

Listing 2-12: “des.c” final input block permutation

static const int p_table[] = { 16, 7, 20, 21,
29, 12, 28, 17,

1, 15, 23, 26,

5, 18, 31, 10,
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2, 8, 24, 14,
32, 27, 3, 9,
19, 13, 30, 6,
22, 11, 4, 25 };

All of this is performed on the right-half of the input, which is then XORed
with the left half, becoming the new right-half, and the old right-half, before
any transformation, becomes the new left half.

Finally, the code to implement this is shown in Listing 2-13. This code accepts
a single eight-byte block of input and an eight-byte key and returns an encrypted
eight-byte output block. The input block is not modified. This is the DES algo-
rithm itself.

Listing 2-13: “des.c” des_block_operate

#define DES_BLOCK_SIZE 8 // 64 bits, defined in the standard

#define DES_KEY_SIZE 8 // 56 bits used, but must supply 64 (8 are ignored)
#define EXPANSION_BLOCK_SIZE 6

#define PC1_KEY_SIZE 7

#define SUBKEY_SIZE 6

static void des_block_ operate( const unsigned char plaintext[ DES_BLOCK_SIZE ],
unsigned char ciphertext|[ DES_BLOCK_SIZE 1],
const unsigned char key[ DES_KEY_SIZE ] )

// Holding areas; result flows from plaintext, down through these,
// finally into ciphertext. This could be made more memory efficient
// by reusing these.

unsigned char ip_block[ DES_BLOCK_SIZE ];

unsigned char expansion_block|[ EXPANSION_BLOCK_SIZE ];

unsigned char substitution_block[ DES_BLOCK_SIZE / 2 1;

unsigned char pbox_target[ DES_BLOCK_SIZE / 2 ];

unsigned char recomb_box[ DES_BLOCK_SIZE / 2 ];

unsigned char pclkey[ PC1_KEY_SIZE 1];

unsigned char subkey[ SUBKEY_SIZE ];

int round;

// Initial permutation

permute ( ip_block, plaintext, ip_table, DES_BLOCK_SIZE );

// Key schedule computation
permute ( pclkey, key, pcl_table, PCl_KEY_SIZE );
for ( round = 0; round < 16; round++ )
{
// "Feistel function" on the first half of the block in 'ip_block'

// "Expansion". This permutation only looks at the first

// four bytes (32 bits of ip_block); 16 of these are repeated
// in "expansion_table".

permute ( expansion_block, ip_block + 4, expansion_table, 6 );

(Continued)
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// "Key mixing"
// rotate both halves of the initial key
rol ( pclkey );
if ( !( round <= 1 || round == 8 || round == 15 ) )
{
// Rotate twice except in rounds 1, 2, 9 & 16
rol ( pclkey );

permute ( subkey, pclkey, pc2_table, SUBKEY_SIZE );
xor ( expansion_block, subkey, 6 );

// Substitution; "copy" from updated expansion block to ciphertext block

memset ( ( void * ) substitution_block, 0, DES_BLOCK_SIZE / 2 );
substitution_block[ 0 ] =
sbox[ 0 ][ ( expansion_block[ 0 ] & OxXFC ) >> 2 ] << 4;

substitution_block[ 0 ] |=
sbox[ 1 ][ ( expansion block[ 0 ] & 0x03 ) << 4 |
( expansion_block[ 1 ] & O0xF0 ) >> 4 ];
substitution_block[ 1 ] =
sbox[ 2 ][ ( expansion_block[ 1 ] & O0x0F ) << 2 |
( expansion_block[ 2 ] & 0xCO ) >> 6 ] << 4;
substitution_block[ 1 ] |=

sbox[ 3 ][ ( expansion_block[ 2 ] & O0x3F ) 1;
substitution_block[ 2 ] =

sbox[ 4 ][ ( expansion_block[ 3 ] & OxFC ) >> 2 ] << 4;
substitution_block[ 2 ] |=

sbox[ 5 ][ ( expansion_block[ 3 ] & 0x03 ) << 4 |

( expansion_block[ 4 ] & O0xF0 ) >> 4 ];
substitution_block[ 3 ] =

sbox[ 6 ][ ( expansion_block[ 4 ] & Ox0F ) << 2 |

( expansion_block[ 5 ] & 0xCO ) >> 6 ] << 4;
substitution_block[ 3 ] |=

sbox[ 7 1[ ( expansion_block[ 5 ] & Ox3F ) 1;

// Permutation
permute ( pbox_target, substitution_block, p_table, DES_BLOCK_SIZE / 2 );

// Recombination. XOR the pbox with left half and then switch sides.
memcpy ( ( void * ) recomb_box, ( void * ) ip_block, DES_BLOCK_SIZE / 2 );
memcpy ( ( void * ) ip_block, ( void * ) ( ip_block + 4 ),
DES_BLOCK_SIZE / 2 );
xor ( recomb_box, pbox_target, DES_BLOCK_SIZE / 2 );
memcpy ( ( void * ) ( ip_block + 4 ), ( void * ) recomb_box,
DES_BLOCK_SIZE / 2 );

// Swap one last time
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memcpy ( ( void * ) recomb_box, ( void * ) ip_block, DES_BLOCK_SIZE / 2 );
memcpy ( ( void * ) ip_block, ( void * ) ( ip_block + 4 ), DES_BLOCK_SIZE / 2 );
memcpy ( ( void * ) ( ip_block + 4 ), ( void * ) recomb_box,

DES_BLOCK_SIZE / 2 );

// Final permutation (undo initial permutation)
permute ( ciphertext, ip_block, fp_table, DES_BLOCK_SIZE );

This code is a bit long, but if you followed the descriptions of the permutations
and the Feistel function, you should be able to make sense of it.

DES Decryption

One of the nice things about the way DES was specified is that decryption
is the exact same as encryption, except that the key schedule is inverted.
Instead of the original key being rotated left at each round, it’s rotated right.
Otherwise, the routines are identical. You can easily add decryption support
to des_block_operate, as illustrated in Listing 2-14.

Listing 2-14: “des.c” des_block_operate with decryption support

typedef enum { OP_ENCRYPT, OP_DECRYPT } op_type;

static void des_block_ operate( const unsigned char plaintext[ DES_BLOCK_SIZE ],
unsigned char ciphertext|[ DES_BLOCK_SIZE 1],
const unsigned char key[ DES_KEY_SIZE ],

op_type operation )

for ( round = 0; round < 16; round++ )
{

permute ( expansion_block, ip_block + 4, expansion_table, 6 );

// "Key mixing"
// rotate both halves of the initial key
if ( operation == OP_ENCRYPT )
{
rol( pclkey );
if ( ! ( round <= 1 || round == || round == 15 ) )
{
// Rotate twice except in rounds 1, 2, 9 & 16

rol( pclkey );

permute ( subkey, pclkey, pc2_table, SUBKEY_ SIZE );

if ( operation == OP_DECRYPT )

{
(Continued)
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ror( pclkey );
if ( !( round >= 14 || round == 7 || round == 0 ) )
{
// Rotate twice except in rounds 1, 2, 9 & 16
ror( pclkey );

}
xor ( expansion_block, subkey, 6 );

That’s it. The substitution boxes and all the permutations are identical; the
only difference is the rotation of the key. The ror function, in Listing 2-15, is
the inverse of the rol function.

Listing 2-15: “des.c” rotate right

static void ror (unsigned char *target )

{
int carry_left, carry_right;

carry_right = ( target[ 6 ] & 0x01 ) << 3;
target[ 6 1 = ( target[ 6 ] >> 1 ) | ( ( target[ 5 ] & 0x01 ) << 7 );
target[ 5 ] = ( target[ 5 ] >> 1 ) | ( ( target[ 4 1 & 0x01 ) << 7 );
target[ 4 1 = ( target[ 4 ] >> 1 ) | ( ( target[ 3 ] & 0x01 ) << 7 );
carry_left = ( target[ 3 ] & 0x10 ) << 3;
target[ 3 1 = ( ( ( target[ 3 1 >> 1) |

( ( target[ 2 ] & 0x01 ) << 7 ) ) & ~0x08 ) | carry_right;
target[ 2 ] = ( target[ 2 ] >> 1 ) | ( ( target[ 1 ] & 0x01 ) << 7 );
target[ 1 ] = ( target[ 1 ] >> 1 ) | ( ( target[ 0 ] & 0x01 ) << 7 );
target[ 0 ] = ( target[ 0 ] >> 1 ) | carry_left;

Padding and Chaining in Block Cipher Algorithms

As shown earlier, DES operates on eight-byte input blocks. If the input is longer
than eight bytes, the des_block_operate function must be called repeatedly. If the
input isn't aligned on an eight-byte boundary, it has to be padded. Of course,
the padding must follow a specific scheme so that the decryption routine knows
what to discard after decryption. If you adopt a convention of padding with 0
bytes, the decryptor needs to have some way of determining whether the input
actually ended with 0 bytes or whether these were padding bytes. National
Institute for Standards and Technology (NIST) publication 800-38A (http: //csrc
.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf) recommends that
a “1” bit be added to the input followed by enough zero-bits to make up eight
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bytes. Because you're working with byte arrays that must end on an 8-bit (one-
byte) boundary, this means that, if the input block is less than eight bytes, you
add the byte 0x80 (128), followed by zero bytes to pad. The decryption routine
just starts at the end of the decrypted output, removing zero bytes until 0x80 is
encountered, removes that, and returns the result to the caller.

Under this padding scheme, an input of, for example, “abcdef” (six characters)
needs to have two bytes added to it. Therefore, “abcdef” would become

61 62 63 64 65 66 80 00
abcdef

This would be encrypted under DES (using, say, a key of the ASCII string
password) to the hex string: 25 ac 8f c5 ¢4 2f 89 5d. The decryption routine would
then decryptittoa, b, ¢, d, e, f, 0x80, 0x00, search backward from the end for
the first occurrence of 0x80, and remove everything after it. If the input string
happened to actually end with hex byte 0x80, the decryptor would see 0x80
0x80 0x0 ... and still correctly remove only the padding.

There’s one wrinkle here; if the input did end on an eight-byte boundary that
happened to contain 0 bytes following a 0x80, the decryption routine would
remove legitimate input. Therefore, if the input ends on an eight-byte boundary,
you have to add a whole block of padding (0x80 0x0 0x0 0x0 0x0 0x0 0x0 0x0) so
that the decryptor doesn’t accidentally remove something it wasn't supposed to.

You can now implement a des_encrypt routine, as shown in Listing 2-16,
that uses des_block_operate after padding its input to encrypt an arbitrarily
sized block of text.

Listing 2-16: “des.c” des_operate with padding support

static void des_operate( const unsigned char *input,
int input_len,
unsigned char *output,
const unsigned char *key,

op_type operation )

unsigned char input_block[ DES_BLOCK_SIZE ];

assert( !( input_len % DES_BLOCK_SIZE ) );
while ( input_len )
{
memcpy ( ( void * ) input_block, ( void * ) input, DES_BLOCK_SIZE );

des_block_operate( input_block, output, key, operation );
input += DES_BLOCK_SIZE;

output += DES_BLOCK_SIZE;
input_len -= DES_BLOCK_SIZE;
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des_operate iterates over the input, calling des_block_operate on each eight-
byte block. The caller of des_operate is responsible for padding to ensure that
the input is eight-byte aligned, as shown in Listing 2-17.

Listing 2-17: “des.c” des_encrypt with NIST 800-3A padding

void des_encrypt( const unsigned char *plaintext,
const int plaintext_len,
unsigned char *ciphertext,

const unsigned char *key )

unsigned char *padded_plaintext;
int padding_len;

// First, pad the input to a multiple of DES_BLOCK_SIZE

padding_len = DES_BLOCK_SIZE - ( plaintext_len % DES_BLOCK_SIZE );
padded_plaintext = malloc( plaintext_len + padding_len );

// This implements NIST 800-3A padding
memset ( padded_plaintext, 0x0, plaintext_len + padding_len );
padded_plaintext|[ plaintext_len ] = 0x80;

memcpy ( padded_plaintext, plaintext, plaintext_len );

des_operate( padded_plaintext, plaintext_len + padding_len, ciphertext,
key, OP_ENCRYPT );
free( padded_plaintext );

The des_encrypt variant shown in Listing 2-17 first figures out how much
padding is needed — it will be between one and eight bytes. Remember, if the
input is already eight-byte aligned, you must add a dummy block of eight bytes
on the end so that the decryption routine doesn’t remove valid data. des_encrypt
then allocates enough memory to hold the padded input, copies the original
input into this space, sets the first byte of padding to 0x80 and the rest to 0x0
as described earlier.

Another approach to padding, called PKCS #5 padding, is to append the
number of padding bytes as the padding byte. This way, the decryptor can just
look at the last byte of the output and then strip off that number of bytes from
the result (with 8 being a legitimate number of bytes to strip off). Using the
“abcdef” example again, the padded input now becomes

61 62 63 64 65 66 02 02
abcdef

Because two bytes of padding are added, the number 2 is added twice. If the
input was “abcde,” the padded result is instead.
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61 62 63 64 65 03 03 03
abcde

des_encrypt can be changed simply to implement this padding scheme as
shown in Listing 2-18.

Listing 2-18: “des.c” des_encrypt with PKCS #5 padding

// First, pad the input to a multiple of DES_BLOCK_SIZE

padding_len = DES_BLOCK_SIZE - ( plaintext_len % DES_BLOCK_SIZE );
padded_plaintext = malloc( plaintext_len + padding_len );

// This implements PKCS #5 padding.

memset ( padded_plaintext, padding len, plaintext_len + padding len );

memcpy ( padded_plaintext, plaintext, plaintext_len );

des_operate( padded_plaintext, plaintext_len + padding_ len, ciphertext,
key, OP_ENCRYPT );

So, of these two options, which does SSL take? Actually, neither. SSL takes a
somewhat simpler approach to padding — the number of padding bytes is output
explicitly. If five bytes of padding are required, the very last byte of the decrypted
output is 5. If no padding was necessary, an extra 0 byte is appended on the end.

Implementing Cipher Block Chaining

A subtler issue with this implementation of DES is that two identical blocks of text,
encrypted with the same key, produce the same output. This can be useful informa-
tion for an attacker who can look for repeated blocks of ciphertext to determine the
characteristics of the input. Even worse, it lends itself to replay attacks. If the attacker
knows, for example, that an encrypted block represents a password, or a credit
card number, he doesn’t need to decrypt it to use it. He can just present the same
ciphertext to the authenticating server, which then dutifully decrypts it and accepts
it as though it were encrypted using the original key — which, of course, it was.
The simplest way to deal with this is called cipher block chaining (CBC). After
encrypting a block of data, XOR it with the results of the previous block. The first
block, of course, doesn’t have a previous block, so there’s nothing to XOR it with.
Instead, the encryption routine should create a random eight-byte initialization
vector (sometimes also referred to as salt) and XOR the first block with that. This
initialization vector doesn’t necessarily have to be strongly protected or strongly
randomly generated. It just has to be different every time so that encrypting a
certain string with a certain password produces different output every time.
Incidentally, you may come across the term ECB or Electronic Code Book chain-
ing, which actually refers to encryption with no chaining (that is, the encryption
routine developed in the previous section) and mostly serves to distinguish
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non-CBC from CBC. There are other chaining methods as well, such as OFB
(output feedback), which I discuss later.

You can add support for initialization vectors into des_operate easily as
shown in Listing 2-19.

Listing 2-19: “des.c” des_operate with CBC support and padding removed from des_encrypt

static void des_operate( const unsigned char *input,
int input_len,
unsigned char *output,
const unsigned char *iv,
const unsigned char *key,

op_type operation )

unsigned char input_block[ DES_BLOCK_SIZE 1];

assert( ! ( input_len % DES_BLOCK_SIZE ) );
while ( input_len )
{
memcpy ( ( void * ) input_block, ( void * ) input, DES_BLOCK_SIZE ) ;

xor( input_block, iv, DES_BLOCK SIZE ); // implement CBC
des_block_operate( input_block, output, key, operation );
memcpy( ( void * ) iv, ( void * ) output, DES_BLOCK_SIZE ); // CBC

input += DES_BLOCK_SIZE;
output += DES_BLOCK_SIZE;
input_len -= DES_BLOCK_SIZE;

void des_encrypt( const unsigned char *plaintext,

const int plaintext_len,
unsigned char *ciphertext,
const unsigned char *iv,

const unsigned char *key )

des_operate( plaintext, plaintext_len, ciphertext,
iv, key, OP_ENCRYPT );

As you can see, this isn't particularly complex. You just pass in a DES_BLOCK_
SIZE byte array, XOR it with the first block — before encrypting it — and then keep
track of the output on each iteration so that it can be XORed, before encryption,

with each subsequent block.

Notice also that, with each operation, you overwrite the contents of the iv
array. This means that the caller can invoke des_operate again, pointing to the
same iv memory location, and encrypt streamed data.

12/20/2012 12:45:34 PM



c02.indd 51

Chapter 2 = Protecting Against Eavesdroppers 51

At decryption time, then, you first decrypt a block, and then XOR that with
the encrypted previous block.

But what about the first block? The initialization vector must be remembered
and transmitted (or agreed upon) before decryption can continue. To support
CBC in decryption, you have to change the order of things just a bit as shown
in Listing 2-20.

Listing 2-20: “des.c” des_operate with CBC for encrypt or decrypt

while ( input_len )
{
memcpy ( ( void * ) input_block, ( void * ) input, DES_BLOCK_SIZE );
if ( operation == OP_ENCRYPT )
{
xor( input_block, iv, DES_BLOCK SIZE ); // implement CBC
des_block operate( input_block, output, key, operation );
memcpy( ( void * ) iv, ( void * ) output, DES_BLOCK_SIZE ); // CBC

if ( operation == OP_DECRYPT )
{
des_block operate( input_block, output, key, operation );
xor ( output, iv, DES_BLOCK_SIZE );
memcpy( ( void * ) iv, ( void * ) input, DES_BLOCK_SIZE ); // CBC

input += DES_BLOCK_SIZE;
output += DES_BLOCK_SIZE;
input_len -= DES_BLOCK_SIZE;

And finally, the decrypt routine that passes in the initialization vector and
removes the padding that was inserted, using the PKCS #5 padding scheme, is
shown in Listing 2-21.

Listing 2-21: “des.c” des_decrypt

void des_decrypt( const unsigned char *ciphertext,
const int ciphertext_len,
unsigned char *plaintext,
const unsigned char *iv,

const unsigned char *key )

des_operate( ciphertext, ciphertext_len, plaintext, iv, key, OP_DECRYPT );
// Remove any padding on the end of the input
//plaintext|[ ciphertext_len - plaintext|[ ciphertext_len - 1 ] ] = 0x0;

The commented-out line at the end of listing 2-21 illustrates how you might
remove padding. As you can see, removing the padding is simple; just read the
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contents of the last byte of the decrypted output, which contains the number of
padding bytes that were appended. Then replace the byte at that position, from
the end with a null terminator, effectively discarding the padding. You don't
want this in a general-purpose decryption routine, though, because it doesn’t
deal properly with binary input and because, in SSL, the caller is responsible
for ensuring that the input is block-aligned.

To see this in action, you can add a main routine to your des.c file so that you
can do DES encryption and decryption operations from the command line. To
enable compilation of this as a test app as well as an included object in another
app — which you do when you add this to your SSL library — wrap up the
main routine in an #ifdef as shown in Listing 2-22.

Listing 2-22: “des.c” command-line test routine

#ifdef TEST_DES
int main( int argc, char *argv[ ] )
{

unsigned char *key;

unsigned char *iv;

unsigned char *input;

unsigned char *output;

int out_len, input_len;

if ( argc < 4 )

{
fprintf ( stderr, "Usage: %s <key> <iv> <input>\n", argv[ 0 ] );
exit( 0 );

key = argv[ 1 1;
iv = argv[ 2 ];

input = argv([ 3 1;

out_len = input_len = strlen( input );
output = ( unsigned char * ) malloc( out_len + 1 );
des_encrypt ( input, input_len, output, iv, key );

while ( out_len-- )
{
printf( "%$.02x", *output++ );
}
printf( "\n" );

return 0;
}
#endif

Notice that the input must be an even multiple of eight. If you give it bad data,
the program just crashes unpredictably. The output is displayed in hexadecimal
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because it’s almost definitely not going to be printable ASCII. Alternatively, you
could have Base64-encoded this, but using hex output leaves it looking the same
as the network traces presented later. You have to provide a -pTEST_DES flag to
the compiler when building this:
gcc -DTEST_DES -g -o des des.c

After this has been compiled, you can invoke it via

[jdavies@localhost ssl]$ ./des password initialz abcdefgh
71828547387b18e5

Just make sure that the input is block-aligned. The key and the initialization
vector must be eight bytes, and the input must be a multiple of eight bytes.

What about decryption? You likely want to see this decrypted, but the output
isn’t in printable-ASCII form and you have no way to pass this in as a command-
line parameter. Expand the input to allow the caller to pass in hex-coded values
instead of just printable-ASCII values. You can implement this just like C does;
if the user starts an argument with “0x,” the remainder is assumed to be a hex-
coded byte array. Because this hex-parsing routine is useful again later, put it
into its own utility file, shown in Listing 2-23.

Listing 2-23: "hex.c” hex_decode

/**
* Check to see if the input starts with "Ox"; if it does, return the decoded
* bytes of the following data (presumed to be hex coded). If not, just return
* the contents. This routine allocates memory, so has to be free'd.

*/

int hex_decode( const unsigned char *input, unsigned char **decoded )

{
int i;

int len;

if ( strncmp( "Ox", input, 2 ) )

{
len = strlen( input ) + 1;
*decoded = malloc( len );
strcpy ( *decoded, input );
len--;

}

else

{

len

( strlen( input ) >> 1) - 1;

*decoded = malloc( len );

for (1 = 2; i < strlen( input ); 1 += 2 )
{
(*decoded) [ ( (1 /2 ) -1) 1 =
( ( ( input[ 1 1 <= '9" ) ? input[ i ] - '0"'
( ( tolower( imput[ i ] ) ) - 'a' + 10 ) ) << 4 ) |
( ( dnput[ 1 + 1 ] <= '9"'" ) ? input[ i + 1 ] - '0"'

(Continued)

@ 12/20/2012 12:45:34 PM



54 Chapter 2 = Protecting Against Eavesdroppers

( ( tolower( input[ i + 1 1 ) ) - 'a' + 10 ) );
}

return len;

Whether the input starts with “Ox” or not, the decoded pointer is initialized
and filled with either the unchanged input or the byte value of the hex-decoded
input — minus, of course, the “0x” leader. While you're at it, go ahead and move
the simple hex_display routine that was at the end of des.c’s main routine into
a reusable utility function as shown in Listing 2-24.

Listing 2-24: "hex.c” show_hex

void show_hex( const unsigned char *array, int length )
{
while ( length-- )
{
printf( "%$.02x", *array++ );
}
printf( "\n" );

Now, des.c’s main function becomes what’s shown in Listing 2-25.

Listing 2-25: "des.c” main routine with decryption support

int main( int argc, char *argv[ ] )
{

unsigned char *key;

unsigned char *iv;

unsigned char *input;

int key_ len;

int input_len;

int out_len;

int iv_len;

unsigned char *output;

if ( argc < 4 )

{
fprintf( stderr, "Usage: %s [-e|-d] <key> <iv> <input>\n", argv[ 0 ] );
exit( 0 );

key len = hex decode( argv[ 2 1, &key );
iv_len = hex decode( argv[ 3 1, &iv );

input_len = hex_decode( argv[ 4 ], &input );

out_len = input_len;
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output = ( unsigned char * ) malloc( out_len + 1 );

if ( !( stremp( argv[ 1 1, "-e" ) ) )
{
des_encrypt ( input, input_len, output, iv, key );
show_hex( output, out_len );
}
else if ( !( strcmp( argvl[ 1 1, "-d" ) ) )
{
des_decrypt ( input, input_len, output, iv, key );
show_hex( output, out_len );
}
else
{
fprintf( stderr, "Usage: %s [-e|-d] <key> <iv> <input>\n", argv[ 0 1 );
}

free( input );
free( iv );
free( key );

free( output );

return 0;

Now you can decrypt the example:

[jdavies@localhost ssl]$ ./des -d password initialz \
0x71828547387b18e5
6162636465666768

Notice that the output here is hex-coded; 6162636465666768 is the ASCII rep-
resentation of abcdefgh. The key and initialization vector were also changed to
allow hex-coded inputs. In general, real DES keys and initialization vectors are
not printable-ASCII characters, but they draw from a larger pool of potential
input bytes.

Using the Triple-DES Encryption Algorithm to Increase
Key Length

DES is secure. After forty years of cryptanalysis, no feasible attack has been
demonstrated; if anybody has cracked it, they’ve kept it a secret. Unfortunately,
the 56-bit key length is built into the algorithm. Increasing the key length requires
redesigning the algorithm completely because the s-boxes and the permutations
are specific to a 64-bit input. 56 bits is not very many, these days. 2°° possible
keys means that the most naive brute-force attack would need to try, on the
average, 2% (2% / 2), or 36,028,797,018,963,968 (about 36,000 trillion operations)

12/20/2012 12:45:34 PM



Chapter 2 = Protecting Against Eavesdroppers

c02.indd 56

before it hit the right combination. This is not infeasible; my modern laptop can
repeat the non-optimized decrypt routine shown roughly 7,500 times per second.
This means it would take me about 5 trillion seconds, or about 150,000 years
for me to search the entire keyspace. This is a long time, but the brute-forcing
process is infinitely parallelizable. If I had two computers to dedicate to the
task, I could have the first search keys from 0-2%° and the second search keys
from 2%°-2%. They would crack the key in about 79,000 years. If, with significant
optimizations, I could increase the decryption time to 75,000 operations per
second (which is feasible), I'd only need about 7,500 years with two computers.
With about 7,500 computers, I'd only need a little less than two years to search
through half the keyspace.

In fact, optimized, parallelized hardware has been shown to be capable of
cracking a DES key by brute force in just a few days. The hardware is not cheap,
but if the value of the data is greater than the cost of the specialized hardware,
alternative encryption should be considered.

The proposed solution to increase the keyspace beyond what can feasibly be
brute-forced is called triple DES or 3DES. 3DES has a 168-bit (56 * 3) key. It’s called
triple-DES because it splits the key into three 56-bit keys and repeats the DES
rounds described earlier three times, once with each key. The clearest and most
secure way to generate the three keys that 3DES requires is to just generate 168
bits, split them cleanly into three 56-bit chunks, and use each independently. The
3DES specification actually allows the same 56-bit key to be used three times, or
to use a 112-bit key, split it into two, and reuse one of the two keys for one of the
three rounds. Presumably this is allowed for backward-compatibility reasons
(for example, if you have an existing DES key that you would like to or need to
reuse as is), but you can just assume the simplest case where you have 168 bits
to play with — this is what SSL expects when it uses 3DES as well.

One important wrinkle in the 3DES implementation is that you don't encrypt
three times with the three keys. Instead you encrypt with one key, decrypt that
with a different key — remember that decrypting with a mismatched key pro-
duces garbage, but reversible garbage, which is exactly what you want when
doing cryptographic work — and finally encrypt that with yet a third key.
Decryption, of course, is the opposite — decrypt with the third key, encrypt
that with the second, and finally decrypt that with the first. Notice that you
reverse the order of the keys when decrypting; this is important! The Encrypt/
Decrypt/Encrypt procedure makes cryptanalysis more difficult. Note that the
“use the same key three times” option mentioned earlier is essentially useless.
You encrypt with a key, decrypt with the same key, and re-encrypt again with
the same key to produce the exact same results as encrypting one time.

Padding and cipher-block-chaining do not change at all. 3DES works with
eight-byte blocks, and you need to take care with initialization vectors to ensure
that the same eight-byte block encrypted twice with the same key appears dif-
ferent in the output.

12/20/2012 12:45:34 PM



c02.indd 57

Chapter 2 = Protecting Against Eavesdroppers 57
Adding support for 3DES to des_operate is straightforward. You add a new
triplicate flag that tells the function that the key is three times longer than
before and call des_block_operate three times instead of once, as shown in
Listing 2-26.
Listing 2-26: “des.c” des_block_operate with 3DES support
static void des_operate( const unsigned char *input,
int input_len,
unsigned char *output,
const unsigned char *iv,
const unsigned char *key,
op_type operation,
int triplicate )
{
unsigned char input_block[ DES_BLOCK_SIZE ];
assert( !( input_len % DES_BLOCK_SIZE ) );
while ( input_len )
{
memcpy ( ( void * ) input_block, ( void * ) input, DES_BLOCK_SIZE );
if ( operation == OP_ENCRYPT )
{
xor ( input_block, iv, DES_BLOCK_SIZE ); // implement CBC
des_block_operate( input_block, output, key, operation );
if ( triplicate )
{
memcpy ( input_block, output, DES_BLOCK_SIZE );
des_block_operate( input_block, output, key + DES_KEY SIZE,
OP_DECRYPT ) ;
memcpy ( input_block, output, DES_BLOCK_SIZE );
des_block_operate( input_block, output, key + ( DES_KEY SIZE * 2 ),
operation );
}
memcpy ( ( void * ) iv, ( void * ) output, DES_BLOCK_SIZE ); // CBC
}
if ( operation == OP_DECRYPT )
{
if ( triplicate )
{
des_block_operate( input_block, output, key + ( DES_KEY SIZE * 2 ),
operation );
memcpy ( input_block, output, DES_BLOCK_SIZE );
des_block_operate( input_block, output, key + DES_KEY SIZE,
OP_ENCRYPT ) ;
memcpy ( input_block, output, DES_BLOCK_SIZE );
des_block operate( input_block, output, key, operation );
}
(Continued)
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else
{
des_block operate( input_block, output, key, operation );
}
xor ( output, iv, DES_BLOCK_SIZE );
memcpy ( ( void * ) iv, ( void * ) input, DES_BLOCK_SIZE ); // CBC

input += DES_BLOCK_SIZE;
output += DES_BLOCK_SIZE;
input_len -= DES_BLOCK_SIZE;
}

If you were paying close attention in the previous section, you may have
noticed that des_block_operate accepts a key as an array of a fixed size, whereas
des_operate accepts a pointer of indeterminate size. Now you can see why it
was designed this way.

Two new functions, des3_encrypt and des3_decrypt, are clones of des_encrypt
and des_decrypt, other than the passing of a new flag into des_operate, shown
in Listing 2-27.

Listing 2-27: "des.c” des3_encrypt

void des_encrypt( const unsigned char *plaintext,

des_operate( plaintext, plaintext_len, ciphertext,
iv, key, OP_ENCRYPT, 0 );

void des3_encrypt( const unsigned char *plaintext, ...
{
des_operate( padded_plaintext, plaintext_len + padding_len, ciphertext,
iv, key, OP_ENCRYPT, 1 );
}

void des_decrypt( const unsigned char *ciphertext,

des_operate( ciphertext, ciphertext_len, plaintext, iv, key, OP_DECRYPT, 0 );
}
void des3_decrypt( const unsigned char *ciphertext,

des_operate( ciphertext, ciphertext_len, plaintext, iv, key, OP_DECRYPT, 1 );

You may be wondering why you created two new functions that are
essentially clones of the others instead of just adding a triplicate flag to
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des_encrypt and des_decrypt as you did to des_operate. The benefit of
this approach is that des_encrypt and des3_encrypt have identical function
signatures. Later on, when you actually start developing the SSL framework,
you take advantage of this and use function pointers to refer to your bulk
encryption routines. You see this at work in the next section on AES, which
is the last block cipher bulk encryption routine you examine. Notice also
that I've removed the padding; for SSL purposes, you want to leave the pad-
ding up to the caller.

You can easily extend the test main routine in des.c to perform 3DES as shown
in Listing 2-28; just check the length of the input key. If the input key is eight
bytes, perform “single DES”; if it’s 24 bytes, perform 3DES. Note that the block
size, and therefore the initialization vector, is still eight bytes for 3DES; it’s just
the key that’s longer.

Listing 2-28: “des.c” main routine with 3DES support

if ( ! ( strcmp( argv[ 1 ], "-e" ) ) )
{
if ( key len == 24 )
{
des3_encrypt( input, input_len, output, iv, key ):;
}
else
{

des_encrypt ( input, input_len, output, iv, key );

show_hex ( output, out_len );
}
else if ( !( strcmp( argv[ 1 ], "-d" ) ) )
{
if ( key_len == 24 )
{
des3_decrypt( input, input_len, output, iv, key );
}
else
{
des_decrypt ( input, input_len, output, iv, key );

For example,

[jdavies@localhost ssl]$ ./des -e twentyfourcharacterinput initialz abcdefgh

c0c48bc47e87cel?

[jdavies@localhost ssl]$ ./des -d twentyfourcharacterinput initialz \
0xc0c48bc47e87cel?

6162636465666768
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Faster Encryption with the Advanced Encryption
Standard (AES) Algorithm

3DES works and is secure — that is, brute-force attacks against it are compu-
tationally infeasible, and it has withstood decades of cryptanalysis. However,
it’s clearly slower than it needs to be. To triple the key length, you also have to
triple the operation time. If DES itself were redesigned from the ground up to
accommodate a longer key, processing time could be drastically reduced.

In 2001, the NIST announced that the Rijndael algorithm (http://csrc.nist
.gov/publications/fips/fips197/fips-197.pdf) would become the official
replacement for DES and renamed it the Advanced Encryption Standard. NIST
evaluated several competing block-cipher algorithms, looking not just at secu-
rity but also at ease of implementation, relative efficiency, and existing market
penetration.

If you understand the overall workings of DES, AES is easy to follow as well.
Like DES, it does a non-linear s-box translation of its input, followed by several
permutation- and shift-like operations over a series of rounds, applying a key-
schedule to its input at each stage. Just like DES, AES relies heavily on the XOR
operation — particularly the reversibility of it. However, it operates on much
longer keys; AES is defined for 128-, 192-, and 256-bit keys. Note that, assuming
that a brute-force attack is the most efficient means of attacking a cipher, 128-bit
keys are less secure than 3DES, and 192-bit keys are about the same (although
3DES does throw away 24 bits of key security due to the parity check built into
DES). 256-bit keys are much more secure. Remember that every extra bit doubles
the time that an attacker would have to spend brute-forcing a key.

AES Key Schedule Computation

AES operates on 16-byte blocks, regardless of key length. The number of rounds
varies depending on key length. If the key is 128 bits (16 bytes) long, the number
of rounds is 10; if the key size is 192 bits (24 bytes) long, the number of rounds is
12; and if the key size is 256 bits (32 bytes), the number of rounds is 14. In general,
rounds = (key-size in 4-byte words) + 6. Each round needs 16 bytes of keying
material to work with, so the key schedule works out to 160 bytes (10 rounds
* 16 bytes per round) for a 128-bit key; 192 bytes (12 * 16) for a 192-bit key; and
224 bytes (14 * 16) for a 256-bit key. (Actually there’s one extra key permutation at
the very end, so AES requires 176, 208, and 240 bytes of keying material). Besides
the number of rounds, the key permutation is the only difference between the
three algorithms.

So, given a 16-byte input, the AES key schedule computation needs to produce
176 bytes of output. The first 16 bytes are the input itself; the remaining 160 bytes
are computed four at a time. Each four bytes are a permutation of the previous
four bytes. Therefore, key schedule bytes 17-20 are a permutation of key bytes
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13-16; 21-24 are a permutation of key bytes 17-20; and so on. Three-fourths of the
time, this permutation is a simple XOR operation on the previous “key length”
four bytes — bytes 21-24 are the XOR of bytes 17-20 and bytes 5-8. Bytes 25-28
are the XOR of bytes 21-24 and bytes 9-12. Graphically, in the case of a 128-bit
key, this can be depicted as shown in Figure 2-7.

Initial Key Input Key Schedule

Y

bytes 1-4

Y

bytes 5-8

Y

bytes 9-12

E— \—I»E} bytes 13-16
v
bytes 17-20 =
— \)E} bytes 1-4 xor
bytes 13-16

f"\ bytes 21-24 =
1/

bytes 5-8 xor
bytes 17-20

Y

bytes 25-28 =
bytes 9-12 xor
bytes 21-24

Figure 2-7: AES 128-bit key schedule computation

For a 192-bit key, the schedule computation is shown in Figure 2-8. It’s just
like the 128-bit key, but copies all 24 input bytes before it starts combining them.

And the 256-bit key is the same, but copies all 32 input bytes.

This is repeated 44, 52 or 60 times (rounds * 4 + 1) to produce as much key-
ing material as needed — 16 bytes per round, plus one extra chunk of 16 bytes.

This isn’t the whole story, though — every four iterations, there’s a complex
transformation function applied to the previous four bytes before it is XORed
with the previous key-length four bytes. This function consists of first rotating
the four-byte word, then applying it to a substitution table (AES’s s-box), and
XORing it with a round constant.
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Figure 2-8: AES 192-bit key schedule computation

Rotation is straightforward and easy to understand. The first byte is overwrit-
ten with the second, the second with the third, the third with the fourth, and
the fourth with the first, as shown in Figure 2-9 and Listing 2-29.

FAVAVAN

/
Figure 2-9: AES rotation
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Listing 2-29: “aes.c” rot_word

static void rot_word( unsigned char *w )
{
unsigned char tmp;

tmp = w[ 0 ];

wl 0] =wl[1];
wl 11 =wl[21;
wl 21 =wl[ 3 1;
w[ 3 ] = tmp;

The substitution involves looking up each byte in a translation table and then
replacing it with the value found there. The translation table is 16 X 16 bytes;
the row is the high-order nibble of the source byte and the column is the low-
order nibble. So, for example, the input byte 0x1A corresponds to row 1, column
10 of the lookup table, and input byte 0xC5 corresponds to row 12, column 5.

Actually, the lookup table values can be computed dynamically. According to
the specification, this computation is “the affine transformation (over GF(2%)) of

b, + b, yos + Pisius + Pragns + Parps T G after taking the multiplicative inverse

in the finite field GF(2%)". If that means anything to you, have at it.

This isn't something you'd want to do dynamically anyway, though, because
the values never change. Instead, hardcode the table as shown in Listing 2-30,
just as you did for DES:

Listing 2-30: “aes.c” sbox

static unsigned char sbox[ 16 ][ 16 1 = {
{ 0x63, 0x7c, 0x77, 0x7b, 0xf2, O0x6b, 0x6f, O0xc5,
0x30, 0x01, 0x67, 0x2b, Oxfe, 0xd7, Oxab, 0x76 },
{ Oxca, 0x82, 0xc9, 0x7d, Oxfa, 0x59, 0x47, O0xf0,
Oxad, 0xd4, Oxa2, Oxaf, 0x9c, Oxad, 0x72, 0xcO0 },
{ 0xb7, O0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, Oxcc,
0x34, 0xa5, Oxe5, Oxfl, 0x71, 0xd8, 0x31, 0x15 },
{ 0x04, Oxc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
0x07, 0x12, 0x80, Oxe2, Oxeb, 0x27, O0xb2, 0x75 },
{ 0x09, 0x83, 0x2c, Oxla, 0xlb, Ox6e, O0x5a, O0xal,
0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, O0x2f, 0x84 1},
{ 0x53, 0xdl, 0x00, Oxed, 0x20, Oxfc, Oxbl, 0x5b,
Ox6a, Oxcb, Oxbe, 0x39, 0x4a, Ox4c, 0x58, Oxcf },
{ 0xd0, Oxef, Oxaa, Oxfb, 0x43, 0x4d, 0x33, 0x85,
0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, O0x9f, Oxa8 },
{ 0x51, Oxa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
Oxbc, 0xb6, Oxda, 0x21, 0x10, Oxff, Oxf3, 0xd2 },
{ Oxcd, 0x0c, 0x13, Oxec, Ox5f, 0x97, 0x44, 0x17,

(Continued)
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Oxc4, Oxa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73 }
{ 0x60, 0x81, 0x4f, Oxdc, 0x22, 0x2a, 0x90, 0x88,
0x46, Oxee, 0xb8, 0x14, Oxde, 0x5e, 0x0b, Oxdb },
{ Oxe0, 0x32, 0x3a, Ox0a, 0x49, 0x06, 0x24, O0x5c,
0xc2, 0xd3, Oxac, 0x62, 0x91, 0x95, Oxe4, 0x79 }
{ Oxe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, Oxde, O0xa9,
0x6c, 0x56, O0xf4, Oxea, 0x65, O0x7a, Oxae, 0x08 }
{ Oxba, 0x78, 0x25, 0x2e, Oxlc, 0xa6, O0xb4, O0xcé6,
Oxe8, 0Oxdd, 0x74, 0x1f, O0x4b, Oxbd, 0x8b, 0x8a },
{ 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, O0x0e,
0x61, 0x35, 0x57, 0xb9, 0x86, Oxcl, O0xld, 0x9%e },
{ Oxel, 0xf8, 0x98, 0x11l, 0x69, 0xd9, 0x8e, 0x94,
0x9b, Oxle, 0x87, 0xe9, Oxce, 0x55, 0x28, O0xdf }
{ 0x8c, 0Oxal, 0x89, 0x0d, Oxbf, 0xe6, 0x42, 0x68,
0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, Oxbb, 0xl6 }

Performing the substitution is a matter of indexing this table with the high-
order four bits of each byte of input as the row and the low-order four bits as
the column, which is illustrated in Listing 2-31.

Listing 2-31: “aes.c” sub_word

static void sub_word( unsigned char *w )

{

int i = 0;
for (i =0; i < 4; i++ )
{
wl 1 ] = sbox[ (w[ i ] & OxFO ) >> 4 ][ w[ i ] & OxOF ];

Finally, the rotated, substituted value is XORed with the round constant. The
low-order three bytes of the round constant are always 0, and the high-order
byte starts at 0x01 and shifts left every four iterations, so that it becomes 0x02
in the eighth iteration, 0x04 in the twelfth, and so on. Therefore, the first round
constant, applied at iteration #4 if the key length is 128 bits, iteration #6 if the
key length is 192 bits, and iteration #8 if the key length is 256 bits, is 0x01000000.
The second round constant, applied at iteration #8, #12, or #16 depending on
key length, is 0x02000000. The third at iteration #12, #18, or #24 is 0x04000000,
and so on.

If you've been following closely, though, you may notice that for a 128-bit key,
the round constant is left-shifted 10 times because a 128-bit key requires 44 itera-
tions with a left-shift occurring every four iterations. However, if you left-shift a
single byte eight times, you end up with zeros from that point on. Instead, AES
mandates that, when the left-shift overflows, you XOR the result — which in this
case is zero — with 0x1B. Why 0x1B? Well, take a look at the first 51 iterations
of this simple operation — left shift and XOR with 0x1B on overflow:

12/20/2012 12:45:36 PM



c02.indd 65

Chapter 2 = Protecting Against Eavesdroppers 65
01, 02, 04, 08, 10, 20, 40, 80, 1b, 36, 6¢, d8, ab, 4d, 9a, 2f, 5e, bc, 63, c6, 97, 35, 6a,
d4, b3, 7d, fa, ef, ¢5, 91, 39, 72, e4, d3, bd, 61, c2, 9f, 25, 4a, 94, 33, 66, cc, 83, 1d,
3a, 74, €8, cb, 8d
After the 51% iteration, it wraps back around to 0x01 and starts repeating.
This strange-looking formulation enables you to produce unique values sim-
ply and quickly for quite a while, although the key schedule computation only
requires 10 iterations (this comes up again in the column mixing in the actual
encryption/decryption process). Of course, you could have just added one each
time and produced 255 unique values, but the bit distribution wouldn’t have
been as diverse. Remember that youre XORing each time; you want widely
differing bit values when you do this.
So, for a 128-bit key, the actual key schedule process looks more like what’s
shown in Figure 2-10.
Initial Key Input Key Schedule
> bytes 1-4
> bytes 5-8
> M——1—7 bytes 9-12
Y
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Figure 2-10: AES 128-bit key schedule computation
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The 192-bit key schedule is the same, except that the rotation, substitution
and round-constant XOR is applied every sixth iteration instead of every fourth.
For a 256-bit key, rotation, substitution, and XORing happens every eighth itera-
tion. Because every eight iterations doesn’t work out to that many, a 256-bit key
schedule adds one small additional wrinkle — every fourth iteration, substitu-
tion takes place, but rotation and XOR — only take place every eighth iteration.

The net result of all of this is that the key schedule is a non-linear, but repeat-
able, permutation of the input key. The code to compute an AES key schedule

is shown in Listing 2-32.

Listing 2-32: “aes.c” compute_key_schedule

static void compute_key_schedule( const unsigned char *key,

int key_length,

unsigned char w[ 1[ 4 1]

int i;
int key_words = key_length >> 2;

unsigned char rcon = 0x01;

)

// First, copy the key directly into the key schedule

memcpy ( w, key, key_length );

for (1 = key_ words; 1 < 4 * ( key_words + 7 ); i++ )
{

memcpy( w[ 1 ], w[ 1 -1 1, 4 );

if ( !'( 1 % key_words ) )

{
rot_word( w[ i 1 );
sub_word( w[ 1 1 );
if ('( 1% 36 ) )
{

rcon = Oxlb;

}
w[ i ][ 0 1 *= rcon;
rcon <<= 1;

}

else if ( ( key_words > 6 ) && ( ( 1 % key_words ) == 4 ) )

{
sub_word( w[ i 1 );

}

wl 1 ][ 0] ~=w[i- key words ][ O
w1 ][ 11 "=wl[i- key words ][ 1
wl i1 ][ 21 *=w[ 1 - key words ][ 2
wl i ][ 31 ~=w[ i - key words ][ 3

1;
1;
1;
1;

Here, key_length is given in bytes, and w is the key schedule array to
fill out. First copy key_length bytes directly into w, and then perform
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((key_length / 4 )+ 6) * 4 iterations of the key schedule computation
described above — if the iteration number is an even multiple of the key
size, a rotation, substitution and XOR by the round constant of the previous
four-byte word is performed. In any case, the result is XORed with the value
of the previous key_length word.

The following code:

else if ( ( key_words > 6 ) && ( ( 1 % key words ) == 4 ) )
{
sub_word( w[ 1 1 );

}

covers the exceptional case of a 256-bit key. Remember, for a 256-bit key, you
have to perform a substitution every four iterations.

AES Encryption

With the key schedule computation defined, you can look at the actual encryp-
tion process. AES operates on 16-byte blocks of input, regardless of key size; the
input is treated as a 4 X 4 two-dimensional array of bytes. The input is mapped
vertically into this array as shown in Figure 2-11.

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 4 8 C

1 5 9 D

2 6 A E

3 7 B F

Figure 2-11: AES state mapping initialization

This 4 X 4 array of input is referred to as the state. It should come as no sur-
prise that the encryption process, then, consists of permuting, substituting, and
combining the keying material with this state to produce the output.

The first thing to do is to XOR the state with the first 16 bytes of keying mate-
rial, which comes directly from the key itself (see Figure 2-12). This is illustrated
in Listing 2-33.
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15116 bytes of key

Input Block (“State”) Round #1 Input

BN

Figure 2-12: AES key combination

@@@@¢:
SPASPASPAS

SPASPASPASY
SPASPASPASY

Listing 2-33: “aes.c” add_round_key

static void add_round_key( unsigned char state[ ][ 4 ],
unsigned char w[ 1[ 4 ] )
{

int ¢, r;
for (¢ = 0; ¢ < 4; c++ )

for (r = 0; ¥ < 4; r++ )
{

state[ r ][ ¢ ] = state[ r 1l ¢ ] ~wl c 1[ ¢ 1;

Note that this is done before the rounds begin.

Each round consists of four steps: a substitution step, a row-shifting step, a
column-mixing step, and finally a key combination step.

Substitution is performed on each byte individually and comes from the same
table that the key schedule substitution came from, as in Listing 2-34.
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Listing 2-34: “aes.c” sub_bytes

static void sub_bytes( unsigned char statel[ ][ 4 ] )

{

int ¥, c;
for (r = 0; ¥ < 4; r++ )
{
for (¢ = 0; c < 4; c++ )
{
state[ r ][ ¢ ] = sbox[ ( state[ r J[ ¢ ] & OxFO ) >> 4 ]

[ state[ r ][ ¢ ] & OxOF ];

Row shifting is a rotation applied to each row. The first row is rotated zero
places, the second one place, the third two, and the fourth three. Graphically,
this can be viewed as shown in Figure 2-13.

0 4 8 C 0 4 8 C
1 5 9 D D 1 9 9
2 6 A E A E 2 6
3 7 B F 7 B F 3

Figure 2-13: AES row shift

In code, this is shown in Listing 2-35.

Listing 2-35: “aes.c” shift_rows

static void shift_rows( unsigned char state[ ][ 4 ] )
{
int tmp;

tmp = state[ 1 1[ 0 1;

state[ 1 1[ 0 ] = state[ 1 1[ 1 1;
state[ 1 ][ 1 ] = state[ 1 ][ 2 1;
state[ 1 ][ 2 ] = state[ 1 1[ 3 1;
state[ 1 ][ 3 1 = tmp;

tmp = state[ 2 ][ 0 1;
state[ 2 ][ 0 ] = state[ 2 ][ 2 ];

(Continued)
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state[ 2 ][ 2 ] = tmp;
tmp = state[ 2 ][ 1 1;
state[ 2 ][ 1 ] = state[ 2 ][ 3 ];
state[ 2 ][ 3 ] = tmp;
tmp = state[ 3 1[ 3 1;
state[ 3 ][ 3 ] = state[ 3 ][ 2 ];
state[ 3 ][ 2 ] = state[ 3 ][ 1 ];
state[ 3 ][ 1 ] = state[ 3 ][ 0 ];
state[ 3 1[ 0 ] = tmp;

Note that for simplicity and clarity, the position shifts are just hardcoded at
each row. The relative positions never change, so there’s no particular reason
to compute them on each iteration.

Column mixing is where AES gets a bit confusing and where it differs consider-
ably from DES. The column mix step is actually defined as a matrix multiplica-
tion of each column in the source array with the matrix:

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

Multiplying Matrices
If you don’t remember what matrix multiplication is, or you never studied lin-
ear algebra, this works out to multiplying each element of each column with
each element of each row and then adding the results to come up with the
target column. (Don’t worry, I show you some code in just a second). If you do
remember linear algebra, don't get too excited because AES redefines the terms
multiply and add to mean something completely different than what you prob-
ably consider multiply and add.

An ordinary, traditional 4X4 matrix multiplication can be implemented as in
Listing 2-36.

Listing 2-36: Example matrix multiplication

static void matrix_multiply( unsigned char ml([4]([4],
unsigned char m2[4][4],
unsigned char target[4][4])

int r, c;
for (r = 0; ¥ < 4; r++ )
{
for (¢ =0; c < 4; c++ )
{
target[ r 1[ c 1 =
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10
10
10
10

m2 [
m2 [
m2 [
m2 [

R R R R
w N = O
* * * *
w N P O
a a aa

+ o+ o+

As you can see, each element of the target matrix becomes the sum of the
rows of the first matrix multiplied by the columns of the second. As long as
the first matrix has as many rows as the second has columns, two matrices can
be multiplied this way. This code can be made even more general to deal with
arbitrarily sized matrices, but C’s multidimensional array syntax makes that
tricky, and you won't need it for AES.

If you multiply something, there ought to be a way to unmultiply (that is,
divide) it. And certainly if you're using this in an encryption operation you need
a well-defined way to undo it. Matrix division is not as clear-cut as matrix mul-
tiplication, however. To undo a matrix multiplication, you must find a matrix’s
inverse. This is another matrix which, when multiplied, as defined above, will
yield the identity matrix:

01 00 00 00
00 01 00 00
00 00 01 00
00 00 00 01

If you look back at the way matrix multiplication was defined, you can see
why it’s called the identity matrix. If you multiply this with any other (four-row)
matrix, you get back the same matrix. This is analogous to the case of multiply-
ing a number by 1 — when you multiply any number by the number 1 you get
back the same number.

The problem with the standard matrix operations, as they pertain to encryp-
tion, is that the inversion of the matrix above is:

02 03 01 01 —01143  0.0857 —0.3143 0.4857
01 02 03 01 | | 04857 —01143 00857 —03143
01 01 02 03 | |—03143 04857 —0.1143 0.0857
03 01 01 02 00857 —0.3143 04857  —0.1143

As you can imagine, multiplying by this inverted matrix to decrypt would
be terribly slow, and the inclusion of floating point operations would introduce
round-off errors as well. To speed things up, and still allow for invertible matrices,
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AES redefines the add and multiply operations for its matrix multiplication.
This means also that you don't have to worry about the thorny topic of matrix
inversion, which is fortunate because it’s as complex as it looks (if not more so).

Adding in AES is actually redefined as XORing, which is nothing at all like
adding. Multiplying is repeated adding, just as in ordinary arithmetic, but it’s
done modulo 0x1B (remember this value from the key schedule?). The speci-
fication refers to this as a dot product — another linear algebra term, but again
redefined. If your head is spinning from this mathematicalese, perhaps some
code will help.

To multiply two bytes — that is, to compute their dot product in AES — you
XOR together the xtime values of the multiplicand with the multiplier. What are
xtime values? They're the “left-shift and XOR with 0x1B on overflow” operation
that described the round constant in the key schedule computation. In code,
this works out to Listing 2-37.

Listing 2-37: "aes.c” dot product

unsigned char xtime( unsigned char x )
{

return ( x << 1 ) ~ ( ( x & 0x80 ) ? Oxlb : 0x00 );
}

unsigned char dot( unsigned char x, unsigned char y )
{
unsigned char mask;

unsigned char product = 0;

for ( mask = 0x01; mask; mask <<= 1 )
{

if ( y & mask )

{

product "= x;

}
X = xtime( x );

}

return product;

}

This probably doesn’t look much like multiplication to you — and, honestly,
it isn't — but this is algorithmically how you'd go about performing binary
multiplication if you didn’t have a machine code implementation of it to do the
heavy lifting for you. In fact, this concept reappears in the next chapter when
the topic of arbitrary-precision binary math is examined.

Fortunately, from an implementation perspective, you can just accept that
this is “what you do” with the bytes in a column-mixing operation.

12/20/2012 12:45:38 PM



Chapter 2 = Protecting Against Eavesdroppers 73

Mixing Columns in AES

Armed with this strange multiplication operation, you can implement the matrix
multiplication that performs the column-mixing step in Listing 2-38.

Listing 2-38: "aes.c” mix_columns

static void mix_columns( unsigned char s[ ][ 4 ] )
{
int c;

unsigned char t[ 4 ];

for (¢ =0; c < 4; c++ )

{

t[ 0] =dot( 2, s[ 01[ c1 ) ~dot(3, sl ]J[c] )"
sl 21l cl sl 310[cl;

t[ 1] =s[0]J[c] ~dot(2, slT1T]1[c1])"
dot( 3, s[ 21l c1 ) ~sl[31[cl;

tl 21 =s[01][lcl]l sl 11lcl~dot(2, sl 2]1[cl)"
dot( 3, s[ 31 [ c]);

tl 31 =dot( 3, s[O]J[lcl)*sl11llcl]l*sl2]1lcl??
dot( 2, s[ 3 ][ c 1 );

sl 01l c ] =¢t[01;

s[ L1l cl=¢tl11];

s[ 210l c1=¢tl21];

s[ 3 1[0 c 1 =¢t[31;

Remembering that adding is XORing and mutiplying is dot-ing, this is a
straightforward matrix multiplication. Compare this to Listing 2-35.

And that’s it. Each round consists of substituting, shifting, column mixing,
and finally adding the round key. Encrypting a block of AES, then, can be done
as shown in Listing 2-39.

Listing 2-39: “aes.c” aes_block_encrypt

static void aes_block_encrypt( const unsigned char *input_block,
unsigned char *output_block,
const unsigned char *key,

int key_size )

int r, c;

int round;

int nr;

unsigned char state[ 4 ][ 4 ];
unsigned char w[ 60 1[ 4 1;

for (r = 0; r < 4; r++ )

{
(Continued)
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for (¢ = 0; c < 4; c++ )
{
state[ r ][ ¢ ] = input_block[ r + ( 4 * ¢ ) 1;

}
// rounds = key size in 4-byte words + 6

nr = ( key_size >> 2 ) + 6;

compute_key_schedule( key, key_size, w );

add_round_key( state, &w[ 0 ] );

for ( round = 0; round < nr; round++ )
{
sub_bytes( state );
shift_rows( state );
if ( round < ( nr - 1) )
{
mix_columns( state );

}

add_round_key( state, &w[ ( round + 1 ) * 4 1 );
}
for (r = 0; r < 4; r++ )
{
for (¢ = 0; c < 4; c++ )
{
output_block[ r + ( 4 * ¢ ) ] = state[ r 1[ ¢c 1;

}

Notice this same routine handles 128-, 192-, or 256-bit key sizes; the only
difference between the three is the number of rounds, and the amount of key
material that therefore needs to be computed. Rather than computing the size
of w— the key schedule array — dynamically, it just statically allocates enough
space for a 256-bit key schedule (60 * 4). It then copies the input into the state
matrix, applies the first round key, and starts iterating. Also, it skips column
mixing on the very last iteration. Finally, it copies from state array back into the
output, and the block is encrypted.

AES Decryption

Unlike DES, AES’s decryption operation isn’t the same as encryption. You have
to go back and undo everything that you did during the encryption step. This
starts, of course, with re-applying the round keys in reverse order, unmixing
the columns, unshifting the rows, and unsubstituting the bytes.
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Do everything in exactly the inverse order that you did it when encrypting.
This means that the loops occur in different orders. Look at the expanded set
of operations for an encryption:

1. AddRound Key
2.
3.
4.
5

42.
43.
44,

SubBytes
ShiftRows

MixColumns

. AddRoundKey

SubBytes
ShiftRows
MixColumns

AddRoundKey

SubBytes
ShiftRows

AddRoundKey

This means that the decrypt loop won't be the same as the encrypt loop. It
starts with an addroundkey and is then followed by invshiftRows, invsubBytes,

addRoundKey, and invMixColumns:

42.
43.
44.

O ® N T =

AddRound Key
SubBytes
ShiftRows
MixColumns
AddRoundKey
SubBytes
ShiftRows
MixColumns
AddRoundKey

SubBytes
ShiftRows
AddRoundKey

And then, a final invshiftRows, invSubBytes and addRoundKey. Notice that
shiftRows, subBytes and mixColumns all need specific inversion routines whereas
addRoundKey is its own inverse, because it’s just applying the XOR operation.
This is shown in Listing 2-40.
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Listing 2-40: “aes.c” inversion routines

static void inv_shift_rows( unsigned char state[ ][

{

int tmp;

tmp = state[ 1 ][

state[ 1 1[ 2 1 =
state[ 1 ][ 1 1 =
state[ 1 ][ 0 ] =
state[ 1 ][ 3 1 =

tmp = state[ 2 ][
state[ 2 ][ 0 ] =
state[ 2 1[ 2 1 =
tmp = state[ 2 ][
state[ 2 ][ 1 1 =
state[ 2 ][ 3 1 =

tmp = state[ 3 1[

state[ 3 ][ 0 ] =
state[ 3 1[ 1 1 =
state[ 3 1[ 2 ] =
state[ 3 ][ 3 ] =

2 1;
statel
statel
statel
tmp;

0 1;
statel
tmp;
11
statel
tmp;

0 1;
statel
statel
statel
tmp;

11
11
11

1;

1;

static unsigned char inv_sbox[ 16 ][

{

0x52, 0x09, Ox6a,
0xbf, 0x40, 0xa3,
0x7c, 0xe3, 0x39,
0x34, 0x8e, 0x43,
0x54, 0x7b, 0x94,
Oxee, 0Ox4c, 0x95,
0x08, 0x2e, 0Oxal,
0x76, 0x5b, 0xa2,
0x72, 0xf8, 0xfé6,
0xd4, Oxad, O0x5c,
0x6c, 0x70, 0x48,
0x5e, 0x15, 0x46,
0x90, 0xd8, Oxab,
0xf7, Oxed, 0x58,
0xd0, 0x2c, Oxle,
0xcl, Oxaf, Oxbd,
0x3a, 0x91, O0x11,
0x97, 0xf2, Oxcf,
0x96, Oxac, 0x74,
Oxe2, 0xf9, 0x37,
0x47, 0xfl, O0xla,
0x6f, 0xb7, 0x62,
O0xfc, 0x56, O0x3e,
0x9a, Oxdb, 0xcO,
0x1f, 0Oxdd, 0xa8,
0xbl, 0x12, 0x10,

0xd5,
0x9e,
0x82,
0x44,
0x32,
0x0b,
0x66,
0x49,
0x64,
Oxcc,
0x50,
0x57,
0x00,
0x05,
0x8f,
0x03,
0x41,
Oxce,
0x22,
0xe8,
0x71,
0x0e,
0x4b,
Oxfe,
0x33,
0x59,

0x30,
0x81,
0x9b,
0xc4,
0xa6,
0x42,
0x28,
0x6d,
0x86,
0x5d,
0xfd,
0xa’7,
0x8c,
0xb8,
Oxca,
0x01,
0x4f,
0xfo0,
0xe7,
Oxlc,
0x1d,
Oxaa,
0xc6,
0x78,
0x88,
0x27,

0x36,
0x£f3,
0x2f,
Oxde,
0xc2,
Oxfa,
0xd9,
0x8b,
0x68,
0x65,
Oxed,
0x8d,
Oxbc,
0xb3,
0x3f,
0x13,
0x67,
0xb4,
Oxad,
0x75,
0x29,
0x18,
0xd2,
Oxcd,
0x07,
0x80,

16 1 =

0xa5,
0xd7,
0xff,
0xe9,
0x23,
0xc3,
0x24,
0xd1,
0x98,
0xb6,
0xb9,
0x9d,
0xd3,
0x45,
0x0f,
0x8a,
0xdc,
0xe6,
0x35,
0xdf,
0xc5,
0xbe,
0x79,
0x5a,
0xc7,

Oxec,

{

0x38,
0xfb 1},
0x87,
Oxcb 1},
0x3d,
Ox4e 1},
0xb2,
0x25 1},
0x16,
0x92 1},
Oxda,
0x84 1},
0x0a,
0x06 1},
0x02,
0x6b 1},
Oxea,
0x73 1},
0x85,
0x6e 1},
0x89,
0x1b 1},
0x20,
0xf4 1},
0x31,
0x5f 1},

4
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{ 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, Ox4a, 0x0d,
0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, Oxef },
{ 0xa0, 0xe0, 0x3b, 0x4d, Oxae, 0x2a, O0xf5, 0xbo,
0xc8, 0xeb, Oxbb, 0x3c, 0x83, 0x53, 0x99, O0x6l1l },
{ 0x17, 0x2b, 0x04, 0x7e, Oxba, 0x77, 0xd6, 0x26,
Oxel, 0x69, 0x14, O0x63, 0x55, 0x21, Ox0c, 0x7d },
Yi

static void inv_sub_bytes( unsigned char state[ ][ 4 ] )
{
int r, c;
for (r = 0; r < 4; r++ )
{
for (¢ = 0; c < 4; c++ )
{
state[ r ][ ¢ ] = inv_sbox[ ( state[ r ][ ¢ ] & OxF0 ) >> 4 ]
[ state[ ¥ ][ ¢ ] & OxOF 1;

inv_shift_rows and inv_sub_bytes are fairly straightforward; notice that
the s-boxes that AES uses are not invertible like DES’s were. You need two
sets of s-boxes to encrypt and decrypt. There’s no computation involved in the
inverted s-box. If you turn back to the “forward” s-box, you see that, for example,
substitution(0x75) = sbox[7][5] = 0x9d. Conversely, inv_substitution (0x9d)
= inv_sbox[9] [d] = 0x75.

Inverting column mixing involves performing a matrix multiplication of each
column by the inversion of the matrix that the encryption operation multiplied
it by. Of course, this isn't just any matrix multiplication, and it’s not just any
matrix inversion. It’s the matrix multiplication and inversion “considered as
polynomials over GF(2%) and multiplied modulo x* + 1 with a fixed polynomial
al(x), given by a’(x) = {Ob}x® + {0d}x? + {09}x + {Oe}”. This dense phrase means
performing another “matrix multiplication” against the matrix:

Oe Ob 0d 09
09 0e Ob 0d
0d 09 Oe Ob
Ob 0d 09 Oe

which is the inversion, after redefining addition and multiplication as described
earlier, of the forward matrix. In code, this is shown in Listing 2-41.

Listing 2-41: “aes.c” inv_mix_columns

static void inv_mix_columns( unsigned char s[ 1[ 4 ] )
{
int c;

(Continued)
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unsigned char t[ 4 ];

for (¢ = 0; c < 4; c++ )
{
t[ 0 ] = dot( 0x0e, s[ 0 ][ ¢ 1 ) ~ dot( Ox0b, s[ 1 1[ c 1 )
dot( 0x0d, s[ 2 1[ ¢ 1 ) »~ dot( 0x09, s[ 3 1[ c 1 );
t[ 1 ] = dot( 0x09, s[ 0 ][ ¢ 1 ) ~ dot( OxO0e, s[ 1 ]J[ c 1 ) "
dot( 0x0b, s[ 2 ][ ¢ 1 ) »~ dot( Ox0d, s[ 3 ]1[ c ] );
t[ 2 ] = dot( 0x0d, s[ 0 ][ ¢ ] ) ~ dot( O0x09, s[ 1 ][ c 1 ) "
dot( 0x0e, s[ 2 ][ c 1 ) » dot( Ox0b, s[ 3 1[ c 1 );
t[ 3 ] = dot( 0x0b, s[ 0 ][ ¢ 1 ) ~ dot( Ox04, s[ 1 1[ c 1 )
dot( 0x09, s[ 2 1[ ¢ 1 ) » dot( Ox0e, s[ 3 ][ c 1 );
s[ 01l c]l=2¢t[01;
sl 1 ]Jlc]l=¢t01];
s[ 21l c1==¢t[21;
s[ 3 1l c1==¢tl31;

And the AES block decryption operation is shown in Listing 2-42.

Listing 2-42: “aes.c” aes_block_decrypt

static void aes_block_decrypt( const unsigned char *input_block,
unsigned char *output_block,
const unsigned char *key,

int key_size )

int r, c¢;

int round;

int nr;

unsigned char state[ 4 1[ 4 1;

unsigned char w[ 60 1[ 4 1;

for (r = 0; r < 4; r++ )
{
for (¢ = 0; c < 4; c++ )
{
state[ r ][ ¢ ] = input_block[ r + ( 4 * c ) 1;

}
// rounds = key size in 4-byte words + 6

nr = ( key_size >> 2 ) + 6;
compute_key_schedule( key, key_size, w );
add_round_key( state, &w[ nr * 4 ] );

for ( round = nr; round > 0; round-- )

{

inv_shift_rows( state );

inv_sub_bytes( state );
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add_round_key( state, &w[ ( round - 1 ) * 4 ] );
if ( round > 1 )
{

inv_mix_columns( state );

for (r = 0; r < 4; r++ )
{
for (¢ = 0; c < 4; c++ )
{
output_block[ r + ( 4 * ¢ ) ] = statel[ r 1[ ¢ 1;

With the block operations defined, encryption and decryption are simple
enough, as shown in Listing 2-43.

Listing 2-43: “aes.c” aes_encrypt and aes_decrypt

#define AES_BLOCK_SIZE 16

static void aes_encrypt( const unsigned char *input,
int input_len,
unsigned char *output,
const unsigned char *iv,
const unsigned char *key,
int key_length )

unsigned char input_block[ AES_BLOCK_SIZE ];

while ( input_len >= AES_BLOCK_SIZE )
{
memcpy ( input_block, input, AES_BLOCK_SIZE );
xor ( input_block, iv, AES_BLOCK_SIZE ); // implement CBC
aes_block_encrypt ( input_block, output, key, key_ length );
memcpy ( ( void * ) iv, ( void * ) output, AES_BLOCK_SIZE ); // CBC
input += AES_BLOCK_SIZE;
output += AES_BLOCK_SIZE;
input_len -= AES_BLOCK_SIZE;

static void aes_decrypt( const unsigned char *input,
int input_len,
unsigned char *output,
const unsigned char *iv,
const unsigned char *key,

int key_length )

while ( input_len >= AES_BLOCK_SIZE )
(Continued)
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aes_block_decrypt( input, output, key, key_length );

xor ( output, iv, AES_BLOCK_SIZE );

memcpy ( ( void * ) iv, ( void * ) input, AES_BLOCK_SIZE ); // CBC
input += AES_BLOCK_SIZE;

output += AES_BLOCK_SIZE;

input_len -= AES_BLOCK_SIZE;

Notice the similarities between aes_encrypt/aes_decrypt and des_oper-
ate. CBC and block iteration are implemented the same in both cases. In fact,
CBC and block iteration are the same for all block ciphers. If you were going to
be implementing many more block ciphers, it would be worth the investment
to generalize these operations so you could just pass in a function pointer to
a generic block_operate function. Don’t bother here, though, because you're
finished with block ciphers.

Finally — you do want the AES encryption/decryption routines to be inter-
changeable with the DES and 3DES encryption/decryption routines. For that to
be possible, the method signatures must be the same. Therefore, go ahead and
implement a couple of top-level functions as shown in Listing 2-44.

Listing 2-44: “aes.c” AES encryption and decryption routines

void aes_128_encrypt( const unsigned char *plaintext,
const int plaintext_len,
unsigned char ciphertext[],
const unsigned char *iv,

const unsigned char *key )

aes_encrypt( plaintext, plaintext_len, ciphertext, iv, key, 16 );

void aes_128_decrypt( const unsigned char *ciphertext,
const int ciphertext_len,
unsigned char plaintext[],
const unsigned char *iv,

const unsigned char *key )

aes_decrypt ( ciphertext, ciphertext_len, plaintext, iv, key, 16 );

void aes_256_encrypt( const unsigned char *plaintext,
const int plaintext_len,
unsigned char ciphertext[],
const unsigned char *iv,

const unsigned char *key )

aes_encrypt( plaintext, plaintext_len, ciphertext, iv, key, 32 );
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void aes_256_decrypt( const unsigned char *ciphertext,
const int ciphertext_len,
unsigned char plaintext[],
const unsigned char *iv,

const unsigned char *key )

aes_decrypt ( ciphertext, ciphertext_len, plaintext, iv, key, 32 );

Here the function name dictates the key length. This isn't a good approach for
general scalability, but because AES is only defined for a few specific key lengths,
you're safe in this case. Notice that there’s no aes_192_encrypt/_decrypt pair
here. AES 192 actually isn’t used in SSL, so I don’t cover it here.

AES is widely supported. In fact, recent Intel chips include assembly-level
AES instructions!

Of course, you want to be able to test this out, so create a main routine in aes.c,
blocked off by an #ifdef so that this file can be included in other applications,
as shown in Listing 2-45:

Listing 2-45: “aes.c” main routine for testing

#ifdef TEST_AES
int main( int argc, char *argv[ 1 )
{

unsigned char *key;

unsigned char *input;

unsigned char *iv;

int key_len;

int input_len;

int iv_len;

if ( argc < 5 )
{

fprintf( stderr, "Usage: %s [-e|-d] <key> <iv> <input>\n", argv[ 0 ] );
exit( 0 );
}
key_len = hex_decode( argv|[ 2 ], &key );
iv_len = hex_decode( argv[ 3 ], &iv );
input_len = hex_decode( argv[ 4 ], &input );
if ( !strcmp( argv[ 1 1, "-e" ) )
{
unsigned char *ciphertext = ( unsigned char * ) malloc( input_len );
if ( key_len == 16 )

{

aes_128_encrypt( input, input_len, ciphertext, iv, key );

(Continued)
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else if ( key_len == 32 )

{
aes_256_encrypt ( input, input_len, ciphertext, iv, key );

}

else

{
fprintf( stderr, "Unsupported key length: %d\n", key len );
exit( 0 );

show_hex ( ciphertext, input_len );

free( ciphertext );
}

else if ( !strcmp( argv[ 1 ], "-d" ) )

{
unsigned char *plaintext = ( unsigned char * ) malloc( input_len );
if ( key_len == 16 )

{
aes_128_decrypt( input, input_len, plaintext, iv, key );
}
else if ( key_len == 32 )
{
aes_256_decrypt ( input, input_len, plaintext, iv, key );
}
else
{
fprintf( stderr, "Unsupported key length %d\n", key_len );
exit( 0 );

show_hex ( plaintext, input_len );
free( plaintext );
}
else
{
fprintf( stderr, "Usage: %s [-e|-d] <key> <iv> <input>\n", argv([ 0 ]

free( iv );
free( key );
free( input );
}
#endif

This checks the length of the key and invokes aes_128_decrypt or aes_256_
decrypt. Its operation is identical to the operation of the DES tester routine

described earlier.
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Other Block Cipher Algorithms

There are actually dozens, if not hundreds, of other block cipher algorithms.
Two additional algorithms specifically named in the TLS standard are IDEA
and RC2, although support for them has been deprecated with TLS 1.2. They
weren’t widely implemented because both were patented. What’s worse is
that RC2 uses a 40-bit (!) key. AES isn’t mentioned in the specification because
Rijndael hadn’t yet been named as the NIST’s new encryption standard when
RFEC 2246 was drafted. RFC 3268, issued in 2002, defined the addition of AES
to SSL/TLS.

Other block ciphers known or believed to be secure are blowfish, twofish,
FEAL, LOKI, and Camelia. See Bruce Schneier’s book Applied Cryptography (Wiley,
1996) for a thorough (although now somewhat dated) discussion of many block
ciphers. By far the most common ciphers used in SSL, though, are 3DES and
AES. There’s one more encryption routine I'd like to discuss because it’s treated
a bit differently than the others, as it is a stream cipher.

Understanding Stream Cipher Algorithms

Stream cipher algorithms are technically the same as block cipher algorithms;
they just operate on a block size of one byte. Conceptually, the only difference
is that there’s no need for padding or for CBC. Design-wise, however, stream
ciphers tend to be quite a bit different. Whereas block ciphers are concerned
with shuffling bits around within the block, stream ciphers concentrate on
generating a secure stream of bytes whose length is the same as the plain-
text and then simply XORing those bytes with the plaintext to produce the
ciphertext. Stream ciphers derive all of their cryptographic security from
the keystream generation function.

With block ciphers, you take a key, generate a key schedule and then mix that
key schedule with the permuted, shifted, rotated, sliced, diced, and chopped-up
block one after another. Optionally, you apply CBC to each block to ensure that
identical blocks look different in the output stream.

Stream ciphers work somewhat similarly, but they generate a key schedule
that is as long as the entire block of data to be encrypted. After the key schedule
is generated, the input block is simply XORed with the input. To decrypt, the
key schedule is similarly generated and XORed with the encrypted ciphertext
to recover the original plaintext. Therefore, all of the security is in the key
schedule generation.

Stream ciphers are also interesting from a design perspective because theyre
treated somewhat differently than block ciphers; making the SSL layer treat
block and stream ciphers interchangeably is a bit tricky. Only one stream cipher
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has been widely implemented in SSL; this is the RC4 algorithm, examined in
the next section.

Understanding and Implementing the RC4 Algorithm

RC4 was invented by Ron Rivest (whose name comes up again in Chapter 3),
who also invented RC2 (and RC5 and RC6). RC4 is actually not an open standard
like AES and DES are. In fact, in spite of the fact that it’s specifically named as
one of the five encryption algorithms available for use with SSL, the details of
how RC4 works have never been officially published. However, they've been
widely distributed, and an IETF draft specification of the algorithm — referred
to as an RC4-compatible algorithm for trademark purposes — has been submit-
ted for review although it’s not yet officially published.

After the complexity of DES and AES, you may be pleasantly surprised at the
simplicity of RC4. First, a 256-byte key schedule is computed from the key, which
can be essentially any length. After that, each byte of the plaintext is XORed
with one byte of the key schedule after permuting the key schedule. This goes
on until the plaintext is completely encrypted. Decrypting is the exact same
process. Because there’s no concept of CBC, there’s no need for an initialization
vector either. An example of the RC4 operation is shown in Listing 2-46.

Listing 2-46: “rc4.c” rc4_operate

static void rc4_operate( const unsigned char *plaintext,
int plaintext_len,
unsigned char *ciphertext,
const unsigned char *key,

int key_len )

int i, 3J;
unsigned char S[ 256 ];

unsigned char tmp;

// KSA (key scheduling algorithm)
for (1 = 0; 1 < 256; 1i++ )
{
S[ 11 = 1;
}

s is the key schedule. The first step in computing the key schedule is to ini-
tialize each element with its index as shown in Figure 2-14:

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Figure 2-14: Initial RC4 key schedule
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Next, the key is combined with the key schedule:

j = 0;

for (1 =0; 1 < 256; i++ )

{
j= (3 +80l11]1 +keyli% key_len ] ) % 256;
tmp = S[ 1 1;

s i1 =258[31;
S[ j 1 = tmp;
}

Given a key of “password” (0x70617373776f7264), for example, the first few
computations are illustrated in Figure 2-15.
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Figure 2-15: RC4 key scheduling algorithm
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After 256 such iterations, the s array is completely permuted, with each ordinal
from 0 to 255 appearing once and only once.

With the key schedule computed, encryption — or decryption, remembering
that theyre identical — can begin:

i=0;

j = 0;

while ( plaintext_len-- )

(i + 1) % 256;
j=(3j+Sl[i]) % 256;

tmp S i 1;

s[ i1 ==s8[731;

S[ J 1 = tmp;

* (ciphertext++) = S[ ( S[ 1 1 + S[ J 1 ) % 256 1 ©~ *(plaintext++);

First, the key schedule is permuted, again. The permutation is a bit simpler
and doesn’t involve the key itself. Then the input is XORed with a byte of the
key schedule to produce the output (see Figure 2-16). That’s all there is to it.

Y
&
L N N1 ; L —  — N—
%
A
MM > M A M N
N
S L
N
&
; L —  U— | W ) U—
%
Y Y Y Y Y

Figure 2-16: RC4 encryption and decryption

RC4 is simple — too simple, in fact. It's been shown to be fairly straightforward
to crack, yet, like DES, it continues to be a popular encryption algorithm choice.
In fact, WEP, the Wired Equivalent Privacy encryption routine built into — and
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often the only option for — most wireless devices mandates its use! You should
add support for it because it’s the only stream cipher defined for use in SSL, and
because its implementation is so simple; however, you should almost definitely
prefer 3DES or AES-256 for encryption of any valuable data.

As you can see, there are effectively no restrictions on the key length; the key
can be as long as 256 bytes (it could be longer, but the remaining bytes wouldn’t
factor into the key scheduling algorithm). There are two standard, common key
lengths though — 40 bits and 128 bits. 40 bits is just 5 bytes (!) and is trivially
crackable. 128 bits is a decent-sized key for most crypto purposes.

Put together a simple main routine to test this, as shown in Listing 2-47.

Listing 2-47: “rc4.c” main routine for testing

#ifdef TEST _RC4
int main( int argc, char *argv([ 1 )
{

unsigned char *key;

unsigned char *input;

unsigned char *output;

int key_len;

int input_len;

if ( argc < 4 )
{

fprintf( stderr, "Usage: %s [fe|—d] <key> <input>\n", argv[ 0 ] );
exit( 0 );

}

key_len = hex_decode( argv[ 2 1, &key );

input_len = hex_decode( argv[ 3 ], &input );

output = malloc( input_len );
rcd_operate( input, input_len, output, key, key_len );
printf( "Results: " );

show_hex ( output, input_len );

free( key );

free( input );

return 0;
}
#endif

Again, you can use the hex_decode convenience function to allow you to pass
in arbitrary byte arrays and not just printable-ASCII input.

[jdavies@localhost ssl]$ ./rcd4d -e abcdef abcdefghijklmnop
Results: daf70b86e76454eb975e3bfe2cce339¢c

12/20/2012 12:45:40 PM



Chapter 2 = Protecting Against Eavesdroppers

c02.indd 88

This works, but there’s a problem with this routine, if you plan to use it in
a larger program. Every call starts over at the beginning of the key space. You
want to treat each call as if it was the next part of a very long string, which
means you need to keep track of the state of the algorithm. You can’t just make
i, j, and s static variables. In addition to not being thread-safe, you need to keep
multiple RC4 contexts around. Instead, define a structure to store the rc4 state
in, as shown in Listing 2-48.

Listing 2-48: “"rc4.h" rc4_state structure

#define RC4_STATE_ARRAY_LEN 256

typedef struct
{

int i;

int j;

unsigned char S[ RC4_STATE_ARRAY_LEN ];
}

rcd_state;

Now, instead of initializing this on each invocation, let the caller pass in a
pointer to this structure. It is updated as rc4_operate completes, and the caller
can pass it back in to the next invocation to pick up where it left off, so that the
output looks like one, long, continuous stream of encrypted data.

The only remaining issue is when to do the initial key scheduling algorithm;
the one illustrated in Figure 2-15. This should be done one time, but never
again afterward. You can sort of “cheat,” here, as shown in Listing 2-49. The
rcd_operate algorithm checks the state parameter; if the s array starts with two
zeros — an impossible state — assume that the caller is passing in an uninitial-
ized rc4_state structure. Otherwise, it is accepted as provided.

Listing 2-49: “rc4.c” rc4_operate with persistent state

static void rc4_operate( const unsigned char *plaintext,
int plaintext_len,
unsigned char *ciphertext,
const unsigned char *key,
int key_len,
rc4_state *state )

int i, 3;
unsigned char *S;

unsigned char tmp;

state->i;

[™S
n

state->3j;

n u.
n

state->S;

// KSA (key scheduling algorithm)
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if ( S[ O == ==
{

// First invocation;

1 0 & S[ 1 1] 0)

initialize the state array

for (1 =0; 1 < 256; i++ )
{
S 1] = 1;
}
i =0;
j = 0;
}
*(ciphertext++) = S[ ( S[ 1 1 + S[ J 1 ) % 256 ] ~ *(plaintext++);

state->i

state->j

Now, it’s up to the caller to initialize a new rc4_state structure, fill it with
0’s (or zero out at least the first two elements), and pass it into each rc4_operate
call. Technically, you probably ought to define an rc4_initialize function that
does this to make it more explicit — while you're at it, you could and should
define similar functions for DES and AES that compute the key schedule and
store it somewhere so it doesn’t need to be recomputed on each iteration. I leave
this as an exercise for you.

One last tweak: Because there are “standard” rc4 key sizes, create a couple
of wrapper functions that identify the key lengths explicitly, as shown in
Listing 2-50.

Listing 2-50: “rc4.c” key-length wrapper functions

void rcd4_40_encrypt( const unsigned char *plaintext,
const int plaintext_len,

unsigned char ciphertext[],

void *state,

const unsigned char *key )

key, 5,

plaintext_len, ciphertext,

)

rcd_operate( plaintext,

( rc4_state * ) state

void rcd_40_decrypt( const unsigned char *ciphertext,
const int ciphertext_len,
unsigned char plaintext[],
void *state,
const unsigned char *key )
plaintext, 5,

rcd_operate( ciphertext, ciphertext_len,

(

key,
rcd_state * ) state );

(Continued)
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}

void rc4_128_encrypt( const unsigned char *plaintext,
const int plaintext_len,
unsigned char ciphertext[],
void *state,
const unsigned char *key )

{

rcd_operate( plaintext, plaintext_len, ciphertext, key, 16,
( rcd4d_state * ) state );

}

void rcd_128_decrypt( const unsigned char *ciphertext,
const int ciphertext_len,
unsigned char plaintext([],
void *state,

const unsigned char *key )

rcd_operate( ciphertext, ciphertext_len, plaintext, key, 16,
( rc4_state * ) state );

If you compare these functions to des_encrypt, des3_encrypt and aes_encrypt,
notice that theyre almost identical except that the fourth parameter, the state,
is a void pointer rather than an unsigned char pointer to an initialization vec-
tor. In fact, go ahead and change all eight encrypt/decrypt functions to accept
void pointers and cast them to the proper type. This commonality enables you
to switch from one encryption function to another by just changing a function
pointer. You will take advantage of this flexibility in Chapter 6, when TLS itself is
examined — all of the functions developed in this chapter will be reused there.

Converting a Block Cipher to a Stream Cipher: The OFB
and COUNTER Block-Chaining Modes

Actually, a block cipher can be converted into a stream cipher. If you look at the
way CBC works, notice that the initialization vector is XORed with the input
and then the result is encrypted. What if you reverse that? What if you encrypt
the CBC, and then XOR that with the input? As it turns out, you end up with a
cipher just as secure as one that had its initialization vector applied first and then
encrypted. This method of chaining is called OFB or output-feedback mode. The
principal benefit of OFB is that the input doesn’t have to be block-aligned. As
long as the initialization vector itself is of the correct block length — which itis
for every block except the very last — the final block can just truncate its output.
The decryptor recognizes this short block and updates its output accordingly.

OFB isn’t used in SSL. CTR mode didn’t make it into TLS until version 1.2, so
this topic is revisited in Chapter 9 when AEAD encryption in TLS 1.2 is discussed.
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Secure Key Exchange over an
Insecure Medium with Public
Key Cryptography

Chapter 2 examined symmetric or private/shared key algorithms. The funda-
mental challenge in applying private key algorithms is keeping the private key
private — or, to put it another way, exchanging keys without letting an interested
eavesdropper see them. This may seem like an insoluble problem; you can’t
establish keys over an insecure channel, and you can’t establish a secure channel
without keys. Perhaps surprisingly, there is a solution: public-key cryptography.
With public-key algorithms, there are actually two keys, which are mathemati-
cally related such that an encrypt operation performed with one can only be
decrypted using the other one. Furthermore, to be usable in a cryptography
setting, it must be impossible, or at least mathematically infeasible, to compute
one from the other after the fact. By far the most common public-key algorithm
is the RSA algorithm, named after its inventors Ron Rivest, Adi Shamir, and
Leonard Adleman. You may recall Rivest from Chapter 2 as the inventor of RC4.

You may notice a difference in the technical approach between this chapter
and the last. Whereas symmetric/shared key algorithms are based on shift-
ing and XORing bits, asymmetric/public key algorithms are based entirely on
properties of natural numbers. Whereas symmetric encryption algorithms aim
to be as complex as their designers can get away with while still operating rea-
sonably quickly, public-key cryptography algorithms are constrained by their
own mathematics. In general, public-key cryptography aims to take advantage
of problems that computers are inherently bad at and as a result don't translate
nearly as easily to the domain of programming as symmetric cryptography does.
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In fact, the bulk of this chapter simply examines how to perform arithmetic on
arbitrarily large numbers. Once that’s out of the way, the actual process of public
key cryptography is surprisingly simple.

Understanding the Theory Behind the RSA
Algorithm

The theory behind RSA public-key cryptosystems is actually very simple. The
core is modulus arithmetic; that is, operations modulo a number. For example,
you're most likely familiar with C’s mod operator %; (x % 2) returns 0 if x is even
and 1if xis odd. RSA public-key cryptography relies on this property of a finite
number set. If you keep incrementing, eventually you end up back where you
started, just like the odometer of a car. Specifically, RSA relies on three numbers
e, d, and n such that (m®)? % n=m — here mis the message to be encrypted and
converted to a number.

Not all numbers work this way; in fact, finding three numbers e, d, and n that
satisfy this property is complex, and forms the core of the RSA specification. After
you've found them, though, using them to encrypt is fairly straightforward. The
number dis called the private key, and you should never share it with anybody.
e and n together make up the public key, and you can make them available to
anybody who cares to send you an encoded message. When the sender is ready
to send you something that should remain private, he first converts the message
into a number m and then computes m*® % n and sends you the result c. When
you receive it, you then compute c? % n and, by the property stated above, you
get back the original message m.

Pay special attention to the nomenclature here. Most people, when first intro-
duced to the RSA algorithm, find it confusing and “backward” that encryption
is done with the public key and decryption with the private key. However, if
you think about it, it makes sense: The public key is the one that’s shared with
anybody, anywhere, and thus you can use it to encrypt messages. You don't
care how many people can see your public key because it can only be used to
encrypt messages that you alone can read. It's the decryption that must be done
privately, thus the term private key.

The security of the system relies on the fact that even if an attacker has access to
eand n— which he does because theyre public — it’s computationally infeasible
for him to compute 4. For this to be true, dand n have to be enormous — at least
512 bit numbers (which is on the order of 10"%) — but most public key crypto-
systems use even larger numbers. 1,024- or even 2,048-bit numbers are common.

As you can imagine, computing anything to the power of a 2,048-bit number
is bound to be more than a bit computationally expensive. Most common com-
puters these days are 32-bit architectures, meaning that they can only perform
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native computations on numbers with 32 or fewer bits. Even a 64-bit architecture
isn't going to be able to deal with this natively. And even if you could find a
2,048-bit architecture, the interim results are on the order of millions of bits! To
make this possible on any hardware, modern or futuristic, you need an arbitrary
precision math module, and you need to rely on several tricks to both speed up
things and minimize memory footprint.

Performing Arbitrary Precision Binary Math to
Implement Public-Key Cryptography

Developing an arbitrary precision binary math module — one that can effi-
ciently represent and process numbers on the order of 2,048 bits — is not
difficult, although it’s somewhat tedious at times. It’s important that the numeric
representation be constrained only by available memory and, in theory, virtual
memory — that is, disk space (to oversimplify a bit). The number must be able
to grow without bounds and represent, exactly, any size number. In theory,
this is straightforward; any integer can be represented by an array of C chars,
which are eight bits each. The least-significant-bit (LSB) of the next-to-last char
represents 2%, with the most-significant-bit (MSB) of the last being 2. As the inte-
ger being represented overflows its available space, more space is automatically
allocated for it.

.m For a more detailed understanding of LSB and MSB, see Appendix A.

As such, define a new type, called huge, shown in Listing 3-1.

Listing 3-1: "huge.h” huge structure

typedef struct

{
unsigned int size;
unsigned char *rep;

}
huge;

Each huge is simply an arbitrarily-sized array of chars. As it’s manipu-
lated — added to, subtracted from, multiplied or divided by — its size will be
dynamically adjusted to fit its contents so that the size member always indicates
the current length of rep.

Implementing Large-Number Addition

Addition and subtraction are perhaps more complex than you might expect.
After all, adding and subtracting numbers is fundamentally what computers
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do; you'd expect that it would be trivial to extend this out to larger numbers.
However, when dealing with arbitrarily-sized numbers, you must deal with
inputs of differing sizes and the possibility of overflow. A large-number add
routine is shown in Listing 3-2.

Listing 3-2: "huge.c” add routine

/**
* Add two huges - overwrite hl with the result.
*/
void add( huge *hl, huge *h2 )
{
unsigned int i, 3J;
unsigned int sum;

unsigned int carry = 0;

// Adding h2 to hl. If h2 is > hl to begin with, resize hl.
if ( h2->size > hl->size )
{

unsigned char *tmp = hl->rep;

hl->rep = ( unsigned char * ) calloc( h2->size,

sizeof ( unsigned char ) );
memcpy ( hl->rep + ( h2->size - hl->size ), tmp, hl->size );
hl->size = h2->size;

free( tmp );

i = hl->size;

j = h2->size;
do
{
i--;
if (1 J)
{
j--;
sum = hl->rep[ i ] + h2->rep[ j ] + carry;
}
else
{
sum = hl->rep[ i ] + carry;

carry = sum > OxFF;
hl->rep[ i ] = sum;
}

while ( 1 );

if ( carry )
{

12/20/2012 12:45:56 PM



Chapter 3 » Secure Key Exchange over an Insecure Medium 95

// Still overflowed; allocate more space
expand( hl );

This routine adds the value of h2 to hi, storing the result in hi. It does so
in three stages. First, allocate enough space in h1 to hold the result (assuming
that the result will be about as big as h2). Second, the addition operation itself
is actually carried out. Finally, overflow is accounted for.

Listing 3-3: "huge.c” add routine (size computation)

if ( h2->size > hl->size )
{
unsigned char *tmp = hl->rep;
hl->rep = ( unsigned char * ) calloc( h2->size,
sizeof ( unsigned char ) );
memcpy ( hl->rep + ( h2->size - hl->size ), tmp, hl->size );
hl->size = h2->size;
free( tmp );
}

If h1 is already as long as or longer than h2, in listing 3-3, nothing needs to
be done. Otherwise, allocate enough space for the result in h1, and carefully
copy the contents of h1 into the right position. Remember that the chars are
read right-to-left, so if you allocate two new chars to hold the result, those
chars need to be allocated at the beginning of the array, so the old contents
need to be copied. Note the use of calloc here to ensure that the memory
is cleared.

If h1 is three chars and h2 is five, you see something like Figure 3-1.

h1->rep 7 X X X
tmp

hi->rep — > 0 0 X X X

Figure 3-1: Large Integer alignment

Note that if h2 is smaller than hi, hi is not changed at all, which means
that h1 and h2 do not necessarily line up, that is, you can add a three-char
number to a five-char number — so you have to be careful to account for this
when implementing. This is the next step in the addition operation, shown
in Listing 3-4.
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Listing 3-4: "huge.c” add routine (addition loop)

i = hl->size;

j = h2->size;
do
{
i--;
if (3)
{
j__
sum = hl->rep[ i ] + h2->rep[ j ] + carry;
}
else
{
sum = hl->rep[ i ] + carry;

carry = sum > OxFF;
hl->rep[ i ] = sum;
}

while ( 1 );

Most significantly, start at the end of each array, which, again, could be two
different sizes, although h2 is guaranteed to be equal to or smaller in length
than h1. Each char can be added independently, working right-to-left, keeping
track of overflow at each step, and propagating it backward to the subsequent
char, as shown in figure 3-2.

i=4 i=5
j=4 j=5
h1->rep — > x X X X X X
h2->rep — > X X X X X —>+\ X —> +
X X [€—— sum X X [€——sum
carry carry

Figure 3-2: Large number addition

Note that the overflow cannot be more than one bit. To convince yourself that
this is true, consider adding two four-bit numbers. The largest such (unsigned)
number is 15 (binary 1111). If you add 15 and 15, you get:
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1111(15)
+ 1111(15)
11110(30)

As you can see, the result fits into five bits. Also notice that although if you
add four bits to four bits and they overflow, they wrap. The wrapped result is
the lower four bits of the correct response. Therefore, you can just add the two
ints, keep track of whether they overflowed, and carry this overflow (of one bit)
into the next addition.

Notice that sum — the temporary workspace for each addition operation — is
itself an int. You check for overflow by comparing it to MaxcHar (0xFF). Although
the Intel instruction set does keep track of whether or not an operation — such
as an add — overflowed and updates an overflow bit (also called a carry bit),
the C language has never standardized access to such a bit, in spite of the fact
that every microprocessor or microcontroller defines one. Because you don’t
have access to the overflow bit, you have to check for it on each add operation.

The only other point to notice is that you must continue until you've looped
through all of the bytes of h1. You can't stop after you hit the last (actually, the
first because you're working backward) byte of h2 because there may be a carry
bit that needs to be propagated backward. In one extreme case, which actually
does occur in cryptographic applications, h1 may be 0x01FFFFFEFF and nh2
may be 0x0100. In this case, each byte of h1 overflows all the way to the very
first. Thus, the while loop continues until i is 0, even if there’s nothing left to
do with h2 (for example, = 0).

Finally, there’s a possibility that you can get to the end of the add operation
and still have a carry bit left over. If this is the case, you need to expand h1 by
exactly one char and set its lower-order bit to 1 as shown in Listing 3-5.

Listing 3-5: "huge.c” add (overflow expansion)

// Still overflowed; allocate more space
if ( carry )
{
expand( hl );
}

Here you call the function expand, shown in listing 3-6, which is defined for
precisely this purpose.

Listing 3-6: "huge.c" expand

/**
* Extend the space for h by 1 char and set the LSB of that int
* to 1.
*/

void expand( huge *h )

(Continued)
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unsigned char *tmp = h->rep;
h->size++;
h->rep = ( unsigned char * )

calloc( h->size, sizeof( unsigned char ) );
memcpy ( h->rep + 1, tmp,

( h->size - 1 ) * sizeof( unsigned char ) );
h->rep[ 0 ] = 0x01;
free( tmp );

The code in Listing 3-6 should look familiar. It is a special case of the expan-
sion of h1 that was done when h2 was larger than hi. In this case, the expansion
is just a bit simpler because you know you're expanding by exactly one char.

Implementing Large-Number Subtraction

Another thing to note about this add routine — and the huge datatype in
general — is that you use unsigned chars for your internal representation.
That means that there’s no concept of negative numbers or two’s-complement
arithmetic. As such, you need a specific subtract routine, shown in Listing 3-7.

Listing 3-7: "huge.c” subtract

static void subtract( huge *hl, huge *h2 )
{
int i = hl->size;
int j = h2->size;
int difference; // signed int - important!

unsigned int borrow = 0;

do
{
i--;
if (7))
{
Jj--;
difference = hl->rep[ 1 1 - h2->rep[ j ] - borrow;
}
else
{
difference = hl->rep[ i ] - borrow;
}
borrow = ( difference < 0 ) ;
hl->rep[ i ] = difference;
}
while ( 1 );
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if ( borrow && i )
{
if ( !'( hl->rep[ 1 - 11 ) ) // Don't borrow i
{
printf( "Error, subtraction result is negative\n" );
exit( 0 );
}
hl->rep[ i - 1 1--;
}

contract( hl );

The subtract routine looks a lot like the add routine, but in reverse. Note that
there’s no allocation of space at the beginning. Because you're subtracting, the
result always uses up less space than what you started with. Also, there’s no
provision in this library yet for negative numbers, so behavior in this case is
undefined if h2 is greater than hi.

Otherwise, subtracting is pretty much like adding: You work backward, keep-
ing track of the borrow from the previous char at each step. Again, although the
subtraction operation wraps if h2->rep[ j 1 > hl->repl i ], the wrap ends
up in the right position. To see this, consider the subtraction 30 — 15 (binary
11110 — 1111). To keep things simple, imagine that a char is four bits. The integer
30 then takes up two four-bit chars and is represented as:

(0001 1110) : (1 14 )

whereas 15 takes up one char and is represented as 1111 (15). When sub-
tracting, start by subtracting 15 from 14 and end up “wrapping” back to 15 as
illustrated in Table 3-1.

Table 3-1: Subtraction Wrapping Behavior

DECIMAL BINARY

0 0000 <« b. wrap back around to the bottom

1 0001
0010
0011
0100
0101
0110

o111
1000

0 (N[ |[Hh W (N

(Continued)
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Table 3-1 (continued)

DECIMAL BINARY

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110 « a. start here, go backward 15 steps
15 111 « c. end here

Because 15 is greater than 14, you set the borrow bit and subtract one extra
from the preceding char, ending up with the representation (0 15) (0000 1111),
which is the correct answer.

To be a bit more memory efficient, you should also contract the response
before returning. That is, look for extraneous chars ints on the left side and
remove them, as shown in Listing 3-8.

Listing 3-8: "huge.c” contract

/**
* Go through h and see how many of the left-most bytes are unused.
* Remove them and resize h appropriately.
*/

void contract( huge *h )

{

int 1 = 0;
while ( !( h->rep[ 1 1 ) && ( 1 < h->size ) ) { i++; }
if (1 && i < h->size )

{
unsigned char *tmp = &h->rep[ i ];
h->rep = ( unsigned char * ) calloc( h->size - 1,
sizeof ( unsigned char ) );
memcpy ( h->rep, tmp, h->size - i );

h->size -= 1i;

This happens in two steps. First, find the leftmost non-zero char, whose posi-
tion is contained in i. Second, resize the array representation of h. This works,
obviously, just like expansion but in reverse.

As shown earlier, addition and subtraction are somewhat straightforward;
you can take advantage of the underlying machine architecture to a large extent;
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most of your work involves memory management and keeping track of carries
and borrows.

Implementing Large-Number Multiplication

Multiplication and division aren’t quite so easy, unfortunately. If you tried to
multiply “backward” one char at a time as you did with addition, you'd never
even come close to getting the right result. Of course, multiplication is just
successive adding — multiplying five by three involves adding five to itself
three times — 5 + 5 + 5 = 3 *5 = 15. This suggests an easy implementation of
a multiplication algorithm. Remember, though, that you're going to be dealing
with astronomical numbers. Adding five to itself three times is not a terribly
big deal — it wouldn’t even be a big deal if you did it in the reverse and added
three to itself five times. But adding a 512-bit number to itself 2> times would
take ages, even on the fastest desktop computer. As a result, you have to look
for a way to speed this up.

When you were in elementary school, you were probably taught how to do
multi-digit multiplication like this:

123
x 456

738

6150

+ 49200
56088

You may have never given much thought to what you were doing, or why
this works, but notice that you've shortened what might otherwise have been
123 addition operations down to 3. A more algebraic way to represent this same
multiplication is

(400 + 50 + 6) * 123
(471072 + 5* 10~ + 6 * 10M0) * 123
(4*1072) * 123 + (5 * 10M1) * 123 + (6 * 10M0) * 123
(distributivity of multiplication)
4%*123*1072 + 5*123 * 10~ + 6 * 123 * 10"0
492 * 10”2 + 615 * 10~ + 123 * 1070
Because multiplying by 10" just involves concatenating n zeros onto the result,
this is simply
49200 + 6150 + 738 = 56088

What you actually did at each step was to first multiply 123 by one of
the digits of 456, and then shift it left — that is, concatenate a zero. Can you do the
same thing with binary multiplication? Yes, you can. In fact, it’s significantly
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easier because the interim multiplications — the multiplication by the digits of
456 — are unnecessary. You either multiply by 1 or 0 at each step, so the answer
is either the first number or just 0. Consider the multiplication of 12 (binary
1100) by 9 (1001):
1100
x 1001

1100
00000
000000

+ 1100000

1101100

Here, the 12 is left-shifted 0 times and 3 times, because the bits at positions 0 and 3
of the multiplicand 1001 are set. The two resulting values — 1100 and 1100000 — are
added together to produce 2° + 2° + 2% + 22 = 108, the expected answer.

Now you've reduced what might have been an O(2") operation to a simple
O(n) operation, where n is the number of bits of the smaller of the two operators.
In practice, it really doesn’t matter if you try to optimize and use the smaller
number to perform the multiplication, so this implementation just takes the
numbers as given.

In code, this algorithm is implemented as shown in Listing 3-9 and illustrated
in Figure 3-3.

Listing 3-9: "huge.c” multiply

/**
* Multiply hl by h2, overwriting the value of hl.
*/
void multiply( huge *hl, huge *h2 )
{
unsigned char mask;
unsigned int i;

huge temp;

set_huge( &temp, 0 );
copy_huge( &temp, hl );

set_huge( hl, 0 );
i = h2->size;

do
{
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i--;
for ( mask = 0x01; mask; mask <<= 1 )

{
if ( mask & h2->rep[ 1 ] )

add( hl, &temp );

}
left_shift( &temp );

while (i );

First, notice that you need a couple of utility routines: copy_huge, free_huge,
and set_huge. The implementations of the first two are straightforward in
Listing 3-10.

Listing 3-10: “huge.c” copy_huge and free_huge

void copy_huge( huge *tgt, huge *src )
{
if ( tgt->rep )
{
free( tgt->rep );

tgt->size = src->size;
tgt->rep = ( unsigned char * )
calloc( src->size, sizeof( unsigned char ) );
memcpy ( tgt->rep, src->rep,
( src->size * sizeof( unsigned char ) ) );

void free_huge( huge *h )
{
if ( h->rep )
{
free( h->rep );

To be more generally useful, set_huge is perhaps a bit more complex than
you would expect. After all, what youre doing here is copying an int into a
byte array. However, you need to be as space-efficient as possible, so you need
tolook at the int in question and figure out the minimum number of bytes that
it can fit into. Note that this space-efficiency isn't merely a performance concern;
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the algorithms illustrated here don’t work at all if the huge presented includes
extraneous leading zeros. And, of course, you have to deal with little-endian/
big-endian conversion. You can accomplish this as shown in Listing 3-11.

h1
h2 tmp

o[1]o[1]o[1]1]0 1{0[1[1]o]o[1]1 1{0[1[1]o]o[1]1
h2 & 0x01

o[1]o[1]o[1[1]0 1]o[1[1|o|o[1[1]0 +
h2 & 0x02

o[1]o[1]o[1[1]0 >1|0/11]0[o[1[1]0]0 >1|0|11]0[o[1[1]0]0
h2 & 0x04 M

o[1]o[1]o[1[1]0 > 1/0[1[1[o]o[1[1]o]o|0 >(1(0[1]1]0]o[1{1|o]0]0
h2 & 0x08

o[1]o[1]o[1[1]0 1{o[1|1{o[o[1]1]olo]o]0 +
h2 & 0x10 v

o[1]o[1]o[1[1]0 > 10[1[1]o[o[1[1]o]o[0]o|0 > 1(0[1]1[ofo[1]1]0[o]o[o|0
h2 & 0x20

o[1]o[1]o[1[1]0 1{o[1/1]ofo[1[1]o[olo|o]o|0 +
h2 & 0x40 \4

o|1{o[1[o|1]1]0 > 1/0[1[1]0[o[1]1]|0|o[o|o[o[ojo—{1]o[1|1]0]o|1]1]0|0[o]o|o[0]0
h2 & 0x80

o[1]o[1]o[1]1]0 1{o[1]1]o[o|1|1[0|o]o[olo|o|o|0

Figure 3-3: Large number multiplication
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Listing 3-11: "huge.c” set_huge

void set_huge( huge *h, unsigned int val )

{

unsigned int mask, i, shift;

h->size = 4;

// Figure out the minimum amount of space this "val" will take
// up in chars (leave at least one byte, though, if "val" is 0).
for ( mask = 0xFF000000; mask > O0x000000FF; mask >>=8 )
{

if ( val & mask )

{

break;
}

h->size--;

h->rep = ( unsigned char * ) malloc( h->size );

// Now work backward through the int, masking off each 8-bit
// byte (up to the first 0 byte) and copy it into the "huge"
// array in big-endian format.

mask = 0x000000FF;

shift = 0;
for ( i = h->size; i; 1i-- )
{
h->rep[ 1 - 1 ] = ( val & mask ) >> shift;

mask <<= 8;
shift += 8;

Notice that at the top of the multiply routine you see

set_huge( &temp, 0 );

but then you overwrite it immediately with a call to copy_huge. This is necessary
because the huge temp is allocated on the stack and is initialized with garbage
values. Because copy_huge immediately tries to free any pointer allocated, you
need to ensure that it’s initialized to NULL. set_huge accomplishes this.

Start multiplying by setting aside a temporary space for the left-shifted first
operand, copy that into the temporary space, and reset h1 to 0. Then, loop
through each char of h2 (backward, again), and check each bit of each char. If
the bit is a 1, add the contents of temp to hi. If the bit is a zero, do nothing. In
either case, left-shift temp by one position. Left-shifting a huge is, of course, a
separate operation that works on one char at a time, right-to-left.
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Listing 3-12: “huge.c” left_shift

void left_shift( huge *hl )
{
int i;

int old_carry, carry = 0;

i = hl->size;
do
{
i--;
old_carry = carry;
carry = ( hl->rep[ 1 ] & 0x80 ) == 0x80;
hl->rep[ i ] = ( hl->rep[ i ] << 1 ) | old_carry;
// Again, if C exposed the overflow bit...
}
while ( 1 );

if ( carry )
{
expand( hl );

Because each char can overflow into the next-leftmost char, it’s necessary to
manually keep track of the carry bit and expand the result if it overflows, just
as you did for addition.

This double-and-add approach to multiplication is important when dealing
with binary arithmetic. In fact, you've seen it once before, in Chapter 2, when
you implemented AES multiplication in terms of the dot and xtime opera-
tions. It comes up later when I redefine multiplication yet again in the context
of elliptic curves. However, this is not the most efficient means of performing
binary multiplication. Karatsuba’s algorithm, originally published by Anatolii
Karatsuba in the “Proceedings of the USSR Academy of Sciences” in 1962, is
actually much faster, albeit much more complicated to implement — I won't
cover it here, but you can consult a book on advanced algorithms if you're
curious. However, this routine runs well enough on modern hardware, so
just leave it as is.

Implementing Large-Number Division

Finally, what about division? Division is, of course, the inverse of multiplica-
tion, so it makes sense that you ought to be able to reverse the multiplication
process and perform a division. Consider the multiplication of 13 by 5, in
binary:
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1101

X 101
1101 (1)
00000 (0)
+ 110100 (1)

1000001

To reverse this, you have as input 100001 and 1101, and you want to recover
101. You can do this by subtracting and right-shifting:

1000001 (65)
_ 110100

001101 (13 left shifted twice = 13 * 22 = 13 * 4 = 52)
— 011010 (52 right-shifted once — do nothing)
001101
— 001101 (52 right-shifted twice — back to the original value of 13)

000000

If you just keep track of which iterations involved a subtraction — that is, which
right-shifts yielded a value less than the current value of the dividend — you
get “subtract” “nothing
you were looking for.

Of course, there’s one immediate problem with implementing this: How do
you know to left-shift 13 twice before subtracting it? You could look at the bit-
length of the dividend — 65 in the example — and compare it to the bit-length
of the divisor (13), which tells you that you need to left-shift by two positions.
However, finding the bit-length of a value is somewhat non-trivial. An easier
(and faster) approach is just to keep left-shifting the divisor until it’s greater
than the dividend.

Finally, you're doing integer division here — there’s no compensation for
uneven division. So what happens if you divide 14 by, say, 5?

7o,

subtract” or, in binary, 101, which is exactly the value

1100

— 1010 (5 left-shifted once)
0100

— 101 (do nothing, 5 > 4)
0100

Now you get a quotient of 10 (2) and the dividend, at the end of the operation,
is 4, which happens to be the remainder of the division of 14 by 5. Remember
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the discussion of the importance of modular arithmetic to the RSA cryptosys-
tem? As it turns out, you almost never call divide for the quotient. Instead, you
are interested in the remainder (or modulus). The complete division routine is
implemented in Listing 3-13.

Listing 3-13: "huge.c” divide

/**
* dividend = numerator, divisor = denominator
*
* Note that this process destroys divisor (and, of course,
* overwrites quotient). The dividend is the remainder of the
* division (if that's important to the caller). The divisor will
* be modified by this routine, but it will end up back where it
* "started".
*/
void divide( huge *dividend, huge *divisor, huge *quotient )
{

int bit_size, bit_position;

// "bit_position" keeps track of which bit, of the quotient,
// is being set or cleared on the current operation.

bit_size = bit_position = 0;

// First, left-shift divisor until it's >= than the dividend
while ( compare( divisor, dividend ) < 0 )
{

left_shift( divisor );

bit_size++;

// overestimates a bit in some cases
quotient->size = ( bit_size / 8 ) + 1;
quotient->rep = ( unsigned char * )

calloc(quotient->size, sizeof( unsigned char ) );
memset ( quotient->rep, 0, quotient->size );

bit_position = 8 - ( bit_size $ 8 ) - 1;
do
{
if ( compare( divisor, dividend ) <= 0 )
{
subtract ( dividend, divisor ); // dividend -= divisor
quotient->rep[ ( int ) ( bit_position / 8 ) ] |=

( 0x80 >> ( bit_position % 8 ) );

if ( bit_size )

{
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right_shift( divisor );
}
bit_position++;
}

while ( bit_size-- );

Start by left shifting the divisor until it’s greater than or equal to the dividend.
Most of the time, this means you “overshoot” a bit, but that’s not a problem
because you compare again when you start the actual division.

while ( compare( divisor, dividend ) < 0
{
left_shift( divisor );

bit_size++;

Comparing Large Numbers

Notice the call to the compare function. Remember the subtract function a while
ago — in theory, you could just call subtract here, and check to see if the result
is negative. Two problems with that approach are that a) subtract overwrites
its first operator, and b) you don’t have any provision for negative numbers.
Of course, you could work around both of these, but a new compare function,
shown in Listing 3-14, serves better.

Listing 3-14: "huge.c" compare

/*‘k
* Compare hl to h2. Return:
* 0 if hl == h2
* a positive number if hl > h2
* a negative number if hl < h2
*/
int compare( huge *hl, huge *h2 )
{

int i, 3;
if ( hl->size > h2->size )
{

return 1;

if ( hl->size < h2->size )

return -1;

// Otherwise, sizes are equal, have to actually compare.

(Continued)
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// only have to compare "hi-int", since the lower ints
// can't change the comparison.
i=3=0;

// Otherwise, keep searching through the representational integers
// until one is bigger than another - once we've found one, it's
// safe to stop, since the "lower order bytes" can't affect the
// comparison
while ( 1 < hl->size && j < h2->size )
{

if ( hl->rep[ i ] < h2->rep[ j 1 )

{

return -1;

}

else if ( hl->rep[ i ] > h2->rep[ j 1 )

{

return 1;

// If we got all the way to the end without a comparison, the
// two are equal

return 0;

If the sizes of the huges to be compared are different, you don't have to do
any real comparison. A five-char huge always has a larger value than a three-
char huge, assuming you've been diligent in compressing representations to
remove leading 0’s:

if ( hl->size > h2->size )

{

return 1;

if ( hl->size < h2->size )
{

return -1;

}

Otherwise, you need to do a char-by-char comparison. You can safely stop
at the first non-equal char, though. If the first char of h1 is larger than the first
char of n2, the lower-order integers can’t change the comparison.

while ( 1 < hl->size && j < h2->size )

(

if ( hl->rep[ i ] < h2->repl j 1 )
{

return -1;
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else if ( hl->rep[ 1 ] > h2->rep[ j 1 )
(
return 1;
}
i++;
J++;

}

Of course, if you go through both h1 and h2, and they’re both the same size,
and each char is equal, then they both represent equal numbers.

Referring to the original divide function, the second step is to allocate space
for the quotient by keeping track of how many times the dividend was left
shifted. The quotient can’t be any bigger than this, which overallocates just a
bit, but not so much that you need to worry about it.

quotient->size = ( bit_size / 8 ) + 1;
quotient->rep = ( unsigned char * )
calloc( quotient->size, sizeof( unsigned char ) );

memset ( quotient->rep, 0, quotient->size );

Finally, start the “compare and subtract” loop. If the current dividend, after
being left-shifted, is less than the current divisor, then the quotient should have
that bit position set, and the current dividend should be subtracted from the
divisor. In all cases, the dividend should be right-shifted by one position for
the next loop iteration. Although the comparison, subtraction and right-shift
operators are easy to understand — they just call the compare and subtract
functions coded earlier — the setting of the “current” bit of the quotient is
somewhat complex:

quotient->rep[ ( int ) ( bit_position / 8 ) ] |=

o

( 0x80 >> ( bit_position % 8 ) );

Remember that bit_position is absolute. If quotient is a 128-bit number,
bit_position ranges from 0 to 127. So, in order to set the correct bit, you need
to determine which char this refers to in the array of chars inside quotient and
then determine which bit inside that char you need to set (that is, or). This may
look familiar; this is essentially the seT_BIT macro developed in Chapter 2.

Finally, right-shift the divisor at each step except the last:

if ( bit_size )
{

right_shift( divisor );
}

Technically, you could get away with always right-shifting and not skipping
this on the last step, but by doing this, you guarantee that divisor is reset to
the value that was passed in to the function originally. This is useful behavior
because you are calling “divide” over and over again with the same argument,
which keeps you from having to make a temporary copy of the divisor.

right_shift, the reverse of left_shift, is shown in Listing 3-15.

12/20/2012 12:45:59 PM



112

Chapter 3 = Secure Key Exchange over an Insecure Medium

c03.indd 112

Listing 3-15: “"huge.c” right_shift

static void right_shift( huge
{

int i;

*hl )

unsigned int old_carry, carry = 0;

old_carry = carry;

carry = ( hl->rep[ 1 ] & 0x01 ) << 7;

hl->rep[ i ] = ( hl->rep[ i ] >> 1 ) | old_carry;
}
while ( ++i < hl->size );

contract( hl );

Optimizing for Modulo Arithmetic

One optimization you might as well make is to allow the caller to indicate that
the quotient is unimportant. For public-key cryptography operations you never
actually care what the quotient is; you're interested in the remainder, which the
dividend operator is turned into after a call to divide. Extend divide just a bit
to enable the caller to pass in a NULL pointer for quotient that indicates the
quotient itself should not be computed, as shown in Listing 3-16.

Listing 3-16: "huge.c” divide

void divide( huge *dividend, huge *divisor,

{

int i, bit_size, bit_position;

bit_size = bit_position = 0;

while ( compare( divisor, dividend ) < 0 )

{
left_shift( divisor );

bit_size++;

if ( quotient )
{

quotient->size = ( bit_size / 8 ) + 1;

quotient->rep = ( unsigned char * )

calloc( quotient->size,

memset ( quotient->rep, 0,

sizeof ( unsigned char )

quotient->size );

huge *quotient )

)
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bit_position = 8 - ( bit_size % 8 ) - 1;

do
{

if ( compare( divisor, dividend ) <= 0

subtract ( dividend, divisor );
if ( quotient )
{
quotient->rep[ ( int ) ( bit_position / 8 ) 1 |=
( 0x80 >> ( bit_position % 8 ) );

}

if ( bit_size )
{
right_shift( divisor );
}
bit_position++;
}

while ( bit_size-- );

One note about the choice to use chars—that is, bytes — instead of ints for the
huge arrays: You could reduce the number of add and subtract operations by a
factor of four if you represent huges as integer arrays rather than char arrays.
This is actually how OpenSSL, GMP, and Java implement their own arbitrary-
precision math libraries. However, this introduces all sorts of problems later
on when you try to convert from big endian to little endian. You also need to
keep close track of the exact non-padded size of the huge. A three-byte numeral
uses up one int; however, you'd need to remember that the leading byte of that
int is just padding. RSA implementations in particular are very finicky about
result length; if they expect a 128-byte response and you give them 129 bytes,
they error out without even telling you what you did wrong,.

Using Modulus Operations to Efficiently Compute
Discrete Logarithms in a Finite Field

The modulus operation — that is, the remainder left over after a division opera-
tion — is important to modern public-key cryptography and is likely going to
remain important for the foreseeable future. In general, and especially with
respect to the algorithms currently used in SSL/TLS, public-key operations
require that all mathematical operations — addition, subtraction, multiplica-
tion, division — be performed in such a finite field. In simple terms, this just
means that each operation is followed by a modulus operation to truncate it
into a finite space.
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Given the importance of modulus arithmetic to public-key cryptography, it’s
been the subject of quite a bit of research. Every computational cycle that can
be squeezed out of a modulus operation is going to go a long way in speeding
up public-key cryptography operations. There are a couple of widely imple-
mented ways to speed up cryptography operations: the Barrett reduction and the
Montgomery reduction. They work somewhat similarly; they trade a relatively
time-consuming up-front computation for faster modulus operations. If you're
going to be computing a lot of moduli against a single value — which public-key
cryptography does — you can save a significant amount of computing time by
calculating and storing the common result.

I don’t cover these reductions in detail here. The divide operation shown
earlier computes moduli fast enough for demonstration purposes, although
you can actually observe a noticeable pause whenever a private-key operation
occurs. If you're interested, the Barrett reduction is described in detail in the
journal “Advances in Cryptology ‘86" (http: / /www.springerlink.com/content/
c4f3rgbt5dxxyad4/), and the Montgomery reduction in “Math Computation
vol. 44” (http://www.jstor.org/pss/2007970).

Encryption and Decryption with RSA

You now have enough supporting infrastructure to implement RSA encryption
and decryption. How the exponents d and e or the corresponding modulus n
are computed has not yet been discussed, but after you've correctly determined
them, you just need to pass them into the encrypt or decrypt routine. How
you specify the message m is important; for now, just take the internal binary
representation of the entire message to be encrypted as m. After you have done
this, you can implement encryption as shown in Listing 3-17.

Listing 3-17: “rsa.c” rsa_compute

/**

* Compute ¢ = m”e mod n.

*/
void rsa_compute( huge *m, huge *e, huge *n, huge *c )
{

huge counter;

huge one;

copy_huge( ¢, m );
set_huge( &counter, 1 );
set_huge( &one, 1 );
while ( compare( &counter, e ) < 0 )
{
multiply( ¢, m );

add( &counter, &one );

12/20/2012 12:46:00 PM



c03.indd 115

Chapter 3 = Secure Key Exchange over an Insecure Medium

115

divide( ¢, n, NULL );

free_huge( &counter );
free_huge( &one );

// Remainder (result) is now in c

Remember that encryption and decryption are the exact same routines, just
with the exponents switched; you can use this same routine to encrypt by pass-
ing in e and decrypt by passing in d. Just keep multiplying m by itself (notice
that m was copied into c once at the beginning) and incrementing a counter by
1 each time until you've done it e times. Finally, divide the whole mess by nand
the result is in c. Here’s how you might call this:

huge e, d, n, m, c;

set_huge( &e,
set_huge( &4,
set_huge ( &n,

set_huge( &m,

rsa_compute (

79 );
1019 );
3337 );

688 );
&m, &e, &n, &c

printf( "Encrypted to: %d\n", c.repl[ 0 ] );
set_huge( &m, 0 );

rsa_compute( &c, &d, &n, &m );

printf ( "Decrypted to: %d\n", m.rep[ 0 ] );

Encrypting with RSA

Because this example uses small numbers, you can verify the accuracy by just
printing out the single int representing c and m:

Encrypted to: 1570

Decrypted to: 688

The encrypted representation of the number 688 is 1,570. You can decrypt
and verify that you get back what you put in.

However, this public exponent 79 is a small number for RSA, and the modu-
lus 3,337 is microscopic — if you used numbers this small, an attacker could
decipher your message using pencil and paper. Even with these small numbers,
6887 takes up 1,356 bytes. And this is for a small e. For reasons you see later, a
more common e value is 65,537.

.m Note that everybody can, and generally does, use the same e value as
long as the n — and by extension, the d — are different.

A 32-bit integer raised to the power of 65,537 takes up an unrealistic amount
of memory. I tried this on my computer and, after 20 minutes, I had computed
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68849422, which took up 58,236 bytes to represent. At this point, my computer
finally gave up and stopped allocating memory to my process.

First, you need to get the number of multiplications under control. If you
remember when I first discussed huge number multiplication, the naive imple-
mentation that would have involved adding a number m to itself n times to
compute m x n was rejected. Instead, you developed a technique of doubling and
adding. Can you do something similar with exponentiation? In fact, you can.
Instead of doubling and adding, square and multiply. By doing so, you reduce
65,537 operations down to log, 65,537 = 17 operations.

Fundamentally, this works the same as double and add; cycle through the
bits in the exponent, starting with the least-significant bit. If the bit position is
1, perform a multiplication. At each stage, square the running exponent, and
that’s what you multiply by at the 1 bits. Incidentally, if you look at the binary
representation of 65,537 = 10000000000000001, you can see why it’s so appeal-
ing for public-key operations; it’s big enough to be useful, but with just two 1
bits, it’s also quick to operate on. You square m 17 times, but only multiply the
first and 17th results.

.m Why 65,537? Actually, it’s the smallest prime number (which e must
be) that can feasibly be used as a secure RSA public-key exponent. There are
only four other prime numbers smaller than 65,537 that can be represented
in just two 1 bits: 3, 5, 17, and 257, all of which are far too small for the RSA
algorithm. 65,537 is also the largest such number that can be represented in
32 bits. You could, if you were so inclined, take advantage of this and speed
up computations by using native arithmetic operations.

If it’s not clear that this should work for exponentiation as well as for multi-
plication, consider x'°. This, expanded, is
XXXXXXXXXX
(XXXXX) (XXXXX)
(xxxxx)?
[(ex) (0]
[Gexx]?

(CIN

Notice how you can successively split the x’s in half, reducing them to squaring
operations each time. It should be clear that you can do this with any number;
you may have a spare x left over, if the exponent is an odd number, but that’s OK.

If you look at the binary representation of the decimal number 10 (1010 in
binary) and you work backward through its binary digits, squaring at each
step, you get:
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X 0

2

X 1 <« multiply

() 0
(x»?%)? 1 « multiply

multiplying the two “hits” together, you get :*(x*)?)?* or [((x %?)x]* which is what
you got when you deconstructed decimal 10 in the first place.

Listing 3-18 shows how you can implement this in code. Compare this to the
implementation of multiply in Listing 3-9.

Listing 3-18: “huge.c” exponentiate

/**
* Raise hl to the power of exp. Return the result in hl.
*/

void exponentiate( huge *hl, huge *exp )

{
int i = exp->size, mask;

huge tmpl, tmp2;

set_huge( &tmpl, 0 );
set_huge( &tmp2, 0 );

copy_huge( &tmpl, hl );
set_huge( hl, 1 );

i--;
for ( mask = 0x01; mask; mask <<= 1 )
{
if ( exp->rep[ i ] & mask )
{
multiply( hl, &tmpl );

// Square tmpl
copy_huge ( &tmp2, &tmpl );
multiply( &tmpl, &tmp2 );

}

while (i );

free_huge( &tmpl );
free_huge( &tmp2 );
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This works; you've drastically reduced the number of multiplications needed
to compute an exponentiation. However, you still haven't addressed the primary
problem of memory consumption. Remember that you allocated 56 kilobytes of
memory to compute an interim result — just throw it away when you compute
the modulus at the end of the operation. Is this really necessary? As it turns out,
it’s not. Because the modulus operator is distributive — that is, (abc) % n = [a
% n*b %n*c % n] % n, you can actually compute the modulus at each step.
Although this results in more computations, the memory savings are drastic.
Remember that multiplications take as many addition operations as there are
bits in the representation as well, so reducing the size of the numbers being
multiplied actually speeds things up considerably.

Listing 3-19, then, is the final RSA computation (n°) % n, with appropriate
speed-ups.

Listing 3-19: "huge.c’ mod_pow

/**
* Compute ¢ = m"e mod n.
*
* Note that this same routine is used for encryption and
* decryption; the only difference is in the exponent passed in.
* This is the "exponentiate" algorithm, with the addition of a
* modulo computation at each stage.
*/
void mod_pow( huge *hl, huge *exp, huge *n, huge *h2 )
{
unsigned int i1 = exp->size;
unsigned char mask;

huge tmpl, tmp2;

set_huge( &tmpl, 0 );
set_huge( &tmp2, 0 );

copy_huge( &tmpl, hl );
set_huge( h2, 1 );

do
{
i--;
for ( mask = 0x01; mask; mask <<= 1
{
if ( exp->repl[ 1 ] & mask )
{
multiply( h2, &tmpl );
divide( h2, n, NULL );
}
// square tmpl
copy_huge ( &tmp2, &tmpl );
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multiply( &tmpl, &tmp2 );
divide( &tmpl, n, NULL );
}
}

while (i );

free_huge( &tmpl );
free_huge( &tmp2 );

// Result is now in "h2"

Besides the introduction of a call to divide, for its side effect of computing a
modulus, and the substitution of m and c for h1, Listing 3-19 is identical to the
exponentiate routine in Listing 3-18. This works, and performs reasonably
quickly, using a reasonable amount of memory, even for huge values of m, e, and
n. Given a message mand a public key e and n, you encrypt like this:

huge c;

mod_pow( &m, &e, &n, &c );

Decrypting with RSA

Decryption is identical, except that you swap e with dand of course you switch
cand m:

huge m;

mod_pow( &c, &4, &n, &e );

There is one subtle, but fatal, security flaw with this implementation of decrypt,
however. Notice that you multiply and divide log, dtimes as you iterate through
the bits in dlooking for 1 bits. This is not a problem. However, you do an addi-
tional multiply and divide at each 1 bit in the private exponent d. These multiply
and divide operations are reasonably efficient, but not fast. In fact, they take long
enough that an attacker can measure the time spent decrypting and use this to
determine how many 1 bits were in the private exponent, which is called a timing
attack. This information drastically reduces the number of potential private keys
that an attacker has to try before finding yours. Remember, part of the security
of the RSA public key cryptosystem is the infeasibility of a brute-force attack.
The most straightforward way to correct this is to go ahead and perform the
multiply and divide even at the 0 bits of the exponent, but just throw away
the results. This way, the attacker sees a uniform duration for every private key
operation. Of course, you should only do this for the private-key operations.
You don't care if an attacker can guess your public key (it’s public, after all).

It may occur to you that, if the modulus operation is distributive through-
out exponentiation, it must also be distributive throughout multiplication
and even addition. It is perfectly reasonable to define “modulus-aware” addition
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and multiplication routines and call those from exponentiation routine. This
would actually negate the need for the division at each step of the exponentiation.
There are actually many additional speed-ups possible; real implementations,
of course, enable all of these. However, this code is performant enough.

Encrypting a Plaintext Message

So, now that you have a working RSA encrypt and decrypt algorithm, you're still
missing two important pieces of the puzzle. The first is how keys are generated
and distributed. The topic of key distribution actually takes up all of Chapter 5.
The second topic is how to convert a plaintext message into a number m to be
passed into rsa_compute. Each rsa_compute operation returns a result mod n.
This means that you can’t encrypt blocks larger than n without losing informa-
tion, so you need to chop the input up into blocks of length n or less. On the flip
side, if you want to encrypt a very small amount of data, or the non-aligned
end of a long block of data, you need to pad it to complicate brute-force attacks.

Just like the previous chapter’s symmetric algorithms, RSA works on blocks
of data. Each block includes a header and some padding (of at least 11 bytes), so
the resulting input blocks are modulus_length-11 bytes minimum. The header is
pretty simple: It’s a 0 byte, followed by a padding identifier of 0, 1, or 2. I examine
the meaning of the different padding bytes later. For RSA encryption, always
use padding identifier 2, which indicates that the following bytes, up to the first
0 byte, are padding and should be discarded. Everything following the first 0
byte, up to the length of the modulus n in bytes, is data.

.m Unlike the symmetric algorithms of the previous chapter, RSA pads at
the beginning of its block.

To implement this in code, follow these steps:

1. Define an rsa_key type that holds the modulus and exponent of a key, as
shown in Listing 3-20. Notice that it doesn’t matter whether it’s a public
or a private key. Each includes a modulus and an exponent; the only dif-
ference is which exponent.

Listing 3-20: “rsa.h” rsa_key structure

typedef struct
{
huge *modulus;
huge *exponent;
}
rsa_key;

2. Define an rsa_encrypt routine that takes in the data to be encrypted along
with the public key. Notice also that the output is a pointer to a pointer.
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Due to the way padding works, it’s difficult for the caller to figure out
how much space the decrypted data takes up (a one-byte payload could
encrypt to a 256-byte value!). As a result, listing 3-21 allocates space in
the target output array.

Listing 3-21: “rsa.c” rsa_encrypt

/**

*

*

*

*

*/

The input should be broken up into n-bit blocks, where n is the

length in bits of the modulus. The output will always be n bits

or less. Per RFC 2313, there must be at least 8 bytes of padding
to prevent an attacker from trying all possible padding bytes.

output will be allocated by this routine, must be freed by the
caller.

returns the length of the data encrypted in output

int rsa_encrypt( unsigned char *input,

unsigned int len,
unsigned char **output,

rsa_key *public_key )

int 1i;

huge c, m;

int modulus_length = public_key->modulus->size;

int block_size;

unsigned char *padded_block = ( unsigned char *

malloc( modulus_length );

int encrypted_size = 0;

*

output = NULL;

while ( len )

{

encrypted_size += modulus_length;

block_size = ( len < modulus_length - 11 ) ?
len : ( modulus_length - 11 );

memset ( padded_block, 0, modulus_length );

memcpy ( padded_block + ( modulus_length - block_size ),
input, block_size );

// set block type

padded_block[ 1 ] = 0x02;

for (1 = 2; i < ( modulus_length - block _size - 1 ); 1i++ )
{

// TODO make these random

padded_block[ i ] = i;

(Continued)
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load_huge( &m, padded_block, modulus_length );
mod_pow( &m, public_key->exponent, public_key->modulus, &c );

*output = ( unsigned char * ) realloc( *output, encrypted_size );

unload_huge( &c, *output + ( encrypted_size - modulus_length ),

modulus_length ) ;

len -= block_size;
input += block_size;
free_huge( &m );

free_huge( &c );

free( padded_block );

return encrypted_size;

0 2 R R R R R R R|..[R 0 D D D D D D
— v v
Block Type Random filler bytes Actual Payload

Figure 3-4: RSA Padding
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Figure out how long the block size is. It should be the same as the length
of the modulus, which is usually 512, 1024, or 2048 bits. There’s no fun-
damental reason why you couldn’t use any other modulus lengths if you
wanted, but these are the usual lengths. The encrypted result is the same
length as the modulus:

int modulus_length = public_key->modulus->size;

Allocate that much space and then fill up this block with the padding, as
described earlier, and encrypt it using rsa_compute.

unsigned char *padded_block = ( unsigned char * )
malloc( modulus_length );

Operate on the input data until there is no more. Figure out if you're deal-
ing with a whole block (modulus-length - 11 bytes) or less than that,
copy the input to the end of the block (remember that in RSA, the padding
goes at the beginning), and set the padding type to 2.
while ( len )
{
encrypted_size += modulus_length;
block_size = ( len < modulus_length - 11 ) ?
len : ( modulus_length - 11 );
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memset ( padded_block, 0, modulus_length );

memcpy ( padded_block + ( modulus_length - block_size ),
input, block_size );

// set block type

padded_block[ 1 ] = 0x02;

6. Technically speaking, you ought to follow this with random bytes of
padding, up to the beginning of the data. Throw security out the window
here, and just pad with sequential bytes:

for (1 = 2; i < ( modulus_length - block size - 1 ); 1i++ )
{

// TODO make these random

padded_block[ 1 ] = 1i;
}

7. RSA-encrypt the padded block:

load_huge( &m, padded_block, modulus_length );

rsa_compute( &m, public_key->exponent, public_key->modulus, &c );

Notice the new function load_huge. This function essentially just memcpy’s
a block into a huge, as shown in Listing 3-22:

Listing 3-22: “huge.c” load_huge

/‘k*k
* Given a byte array, load it into a "huge", aligning integers
* appropriately
*/
void load_huge( huge *h, const unsigned char *bytes, int length )
{
while ( !( *bytes ) )
{
bytes++;
length--;

h->size = length;
h->rep = ( unsigned char * ) malloc( length );

memcpy ( h->rep, bytes, length );

.m One interesting point to note here is that you start by skipping over
the zero bytes. This is an important compatibility point. Most SSL implemen-
tations (including OpenSSL, GnuTLS, NSS and JSSE) zero-pad positive numbers
so that they aren't interpreted as negative numbers by a two’s-complement-
aware large number implementation. This one isn't, and zero-padding actually
confuses the comparison routine, so just skip them.
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8. Returning to the rsa_encrypt function; now you've encrypted the input
block, and the result is in huge c. Convert this huge c into a byte array:

*output = ( unsigned char * ) realloc( *output, encrypted_size );

unload_huge( &c, *output + ( encrypted_size - modulus_length ),

modulus_length );

9. Allocate space for the output at the end of the output array — if this is
the first iteration, the end is the beginning — and unload_huge, shown in
Listing 3-23, into it.

Listing 3-23: "huge.c” unload_huge

void unload_huge( const huge *h, unsigned char *bytes, int length )
{
memcpy ( bytes + ( length - h->size ), h->rep, length );

10. Adjust 1en and input and free the previously allocated huges for the next
iteration.
len -= block_size;
input += block_size;
free_huge( &m );
free_huge( &c );
}
If the input is less than modulus_length - 11 bytes (which, for SSL/TLS, is
actually always the case), there will only be one iteration.

Decrypting an RSA-Encrypted Message

Decryption is, of course, the opposite.

You operate on blocks of modulus_length at a time, decrypt the block — again
using rsa_compute, but this time with the private key — and remove the pad-
ding, as shown in Listing 3-24.

Listing 3-24: “rsa.c” rsa_decrypt

/**
* Convert the input into key-length blocks and decrypt, unpadding
* each time.
* Return -1 if the input is not an even multiple of the key modulus
* length or if the padding type is not "2", otherwise return the
* length of the decrypted data.
*/
int rsa_decrypt( unsigned char *input,
unsigned int len,
unsigned char **output,

rsa_key *private_key )
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int i, out_len = 0;

huge ¢, m;

int modulus_length = private_key->modulus->size;

unsigned char *padded_block = ( unsigned char * ) malloc(

modulus_length ) ;
*output = NULL;

while ( len )
{
if ( len < modulus_length )
{
fprintf ( stderr, "Error - input must be an even multiple \
of key modulus %d (got %d)\n",
private_key->modulus->size, len );
free( padded_block );

return -1;

load_huge( &c, input, modulus_length );
mod_pow ( &c, private_key->exponent,

private_key->modulus, &m );
unload_huge( &m, padded_block, modulus_length );

if ( padded_block[ 1 ] > 0x02 )
{
fprintf ( stderr, "Decryption error or unrecognized block \
type %$d.\n", padded_block[ 1 ] );
free_huge( &c );
free_huge( &m );
free( padded_block );

return -1;

// Find next 0 byte after the padding type byte; this signifies
// start-of-data

i=2;

while ( padded_block[ i++ 1 );

out_len += modulus_length - i;

*output = realloc( *output, out_len );

memcpy ( *output + ( out_len - ( modulus_length - i ) ),
padded_block + i, modulus_length - i );

len -= modulus_length;

input += modulus_length;

(Continued)
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free_huge( &c );
free_huge( &m );

free( padded_block );

return out_len;

This should be easy to follow, after the description of rsa_encrypt in
Listing 3-21 — the primary differences are that the input is always a multiple
of modulus_length; exit with an error if this is not the case. The block-length
computation is simpler. Check for padding type 2; most likely, if the decrypted
padding type is not 2, this represents a decryption error (for example, you
decrypted using the wrong private key). Remove the padding and copy the
resultant output, one block at a time, into the output array.

.m The previously described padding algorithm is called PKCS1.5 pad-
ding. There are other, even more secure padding algorithms such as OAEP.
For now, though, PKCS1.5 padding is just fine; the attacks that OAEP guards
against are all theoretical attacks, although interesting. Additionally, TLS v1.0
mandates this padding, so there’s not much point in implementing another
format unless it is used outside of SSL.

Note also that, technically speaking, you should also permit CBC chaining, as
well as other chaining algorithms such as OFB. However, SSL never uses RSA
for more than a single block, so this won’t be examined here. If you're inter-
ested, the discussion on CBC in the previous chapter should make it simple to
add this feature.

Testing RSA Encryption and Decryption

Finally, develop a main routine, shown in Listing 3-25, that you can use to test
this out. How to compute e, d, and n has still not been covered, so hardcode
some default values that are used if nothing is passed in.

Listing 3-25: “rsa.c” test main routine

#ifdef TEST_RSA

const unsigned char TestModulus[] = {

0xC4, 0xF8, O0xE9, OxEl, 0x5D, 0xCA, OxDF, 0x2B,
0x96, 0xC7, 0x63, 0xD9, 0x81, 0x00, Ox6A, 0x64,
0x4F, OxFB, 0x44, 0x15, 0x03, 0x0A, 0x1l6, OxXED,
0x12, 0x83, 0x88, 0x33, 0x40, OxF2, O0xAA, O0xO0E,
0x2B, 0xE2, OxBE, O0x8F, 0xA6, 0x01, 0x50, O0xB9,
0x04, 0x69, 0x65, 0x83, 0x7C, 0x3E, 0x7D, 0x15,
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0x1B, 0x7D, 0xE2, 0x37, O0xEB, 0xB9, 0x57, 0xC2,
0x06, 0x63, 0x89, 0x82, 0x50, 0x70, 0x3B, O0x3F

};

const unsigned char TestPrivateKey[] = {

0x8a, 0x7e, 0x79, 0xf3, 0xfb, Oxfe, 0xa8, Oxeb,
0xfd, 0x18, 0x35, Oxlc, 0xb9, 0x97, 0x91, 0x36,
0xf7, 0x05, Oxb4, 0xd9, 0xl1ll, Ox4da, 0x06, 0xd4,
Oxaa, O0x2f, 0xdl, 0x94, 0x38, 0xl6, 0x67, 0x7a,
0x53, 0x74, 0x66, 0x18, 0x46, Oxa3, O0x0c, 0x45,
0xb3, 0x0a, 0x02, 0x4b, 0x4d, 0x22, Oxbl, 0x5a,
0xb3, 0x23, 0x62, 0x2b, 0x2d, Oxed4, 0x7b, 0xa2,
0x91, 0x15, 0xf0, Ox6e, Oxed, O0x2c, 0x41l

Y

const unsigned char TestPublicKey[] = { 0x01, 0x00, 0x01 };

int main( int argc, char *argv|[ ] )

{

int exponent_len;

int modulus_len;

int data_len;

unsigned char *exponent;
unsigned char *modulus;
unsigned char *data;
rsa_key public_key;

rsa_key private_key;

if ( argc < 3 )
{

fprintf( stderr, "Usage: rsa [—e|—d] [<modulus> <exponent>]

exit( 0 );

}

if ( argc == 5 )

{
modulus_len = hex_decode( argv[ 2 ], &modulus );
exponent_len = hex_decode( argv|[ 3 ], &exponent );
data_len = hex_decode( argv|[ 4 ], &data );

}

else

{
data_len = hex_decode( argv|[ 2 ], &data );

modulus_len = sizeof( TestModulus ) ;
modulus = TestModulus;
if ( !strcmp( "-e", argv[ 1 1 ) )
{
exponent_len = sizeof( TestPublicKey );

exponent = TestPublicKey;

<data>\n" );

(Continued)
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else
{

exponent_len = sizeof( TestPrivateKey );

exponent = TestPrivateKey;

public_key.modulus = ( huge * ) malloc( sizeof( huge ) );
public_key.exponent = ( huge * ) malloc( sizeof( huge ) );
private_key.modulus = ( huge * ) malloc( sizeof( huge ) );
private_key.exponent = ( huge * ) malloc( sizeof( huge ) );
if ( !strcmp( argv[ 1 1, "-e" ) )

{
unsigned char *encrypted;

int encrypted_len;

load_huge( public_key.modulus, modulus, modulus_len );

load_huge( public_key.exponent, exponent, exponent_len );

encrypted_len = rsa_encrypt( data, data_len, &encrypted, &public_key );

show_hex( encrypted, encrypted_len );
free( encrypted );
}
else if ( !strcmp( argv[ 1 1, "-4d" ) )
{
int decrypted_len;

unsigned char *decrypted;

load_huge( private_key.modulus, modulus, modulus_len );

load_huge( private_key.exponent, exponent, exponent_len );

decrypted_len = rsa_decrypt( data, data_len, &decrypted, &private_key );

show_hex ( decrypted, decrypted_len );

free( decrypted );
}

else

{

fprintf( stderr, "unrecognized option flag '%s'\n", argv[ 1

free( data );
if ( argc == 5 )
{
free( modulus );

free( exponent );

}
#endif
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If called with only an input, this application defaults to the hardcoded keypair.
If you run this, you see
jdavies@localhost$ rsa -e abc
40£73315d3£74703904e51e1c72686801de06a55417110e56280£1£8471a380240642110011e1£38
7£7b4c43258b0aleedc558a3aac5aa2d20c£5e0d65380db3

The output is hex encoded as before. Notice that although you only encrypted
three bytes of input, you got back 64 bytes of output. The modulus is 512 bits,
so the output must also be 512 bits.

You can see this decoded:

jdavies@localhost$ rsa -d \ 0x40£73315d3£74703904e51elc7\
2686801de06a55417110e56280£1£8471a3802406d2110011e1£387£\
7b4cd3258bl0aleedc558a3aac5aa2d20cf5e0d65d80db3

616263

The decryption routine decrypts, removes the padding, and returns the origi-
nal input “616263” (the hex values of the ASCII characters a, b, and c). Note that
if you try to decrypt with the public key, you get gibberish; once encrypted, the
message can only be decrypted using the private key.

PROCEDURE FOR GENERATING RSA KEYPAIRS

Although code to generate RSA keypairs isn't examined here, it’s not
prohibitively difficult to do so. The procedure is as follows:

Select two random prime numbers p and q.
Compute the modulus n = pq.

Compute the totient function (p-1)(q-1)

SRS

Select a random public exponent e < ¢(n) (as previously mentioned,
65,537 is a popular choice).

5. Perform a modular inversion (to be introduced shortly) to compute the
private exponent d: de % n = 1.

You also likely noticed that your computer slowed to a crawl while decrypt-
ing; encrypting isn’t too bad, because of the choice of public exponent (65,537).
Decrypting is slow — not unusably slow, but also not something you want to
try to do more than a few times a minute. It should come as no surprise to you
that reams of research have been done into methods of speeding up the RSA
decryption operation. None of them are examined here; they mostly involve
keeping track of the interim steps in the original computation of the private key
and taking advantage of some useful mathematical properties thereof.

So, because public-key cryptography can be used to exchange secrets, why
did Chapter 2 spend so much time (besides the fact that it’s interesting) looking
at private-key cryptography? Well, public-key cryptography is painfully slow.
There are actually ways to speed it up — the implementation presented here
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is slower than it could be, even with all the speed-ups employed — but it’s still
not realistic to apply RSA encryption to a data stream in real time. You would
severely limit the network utilization if you did so. As a result, SSL actually calls
on you to select a symmetric-key algorithm, generate a key, encrypt that key
using an RSA public key, and, after that key has been sent and acknowledged,
to begin using the symmetric algorithm for subsequent communications. The
details of how precisely to do this is examined in painstaking detail in Chapter 6.

Achieving Perfect Forward Secrecy with Diffie-
Hellman Key Exchange

The security in RSA rests in the difficulty of computing first the private exponent
d from the public key e and the modulus n as well as the difficulty in solving
the equation m*%n=c for m. This is referred to as the discrete logarithm prob-
lem. These problems are both strongly believed (but technically not proven) to
be impossible to solve other than by enumerating all possible combinations.
Note that although RSA can be used as a complete cryptography solution, its
slow runtime limits its practical uses to simple encryption of keys to be used
for symmetric cryptography. Another algorithm that relies similarly on the
difficulty of factoring large prime numbers and the discrete logarithm prob-
lem is Diffie-Hellman key exchange, named after its inventors, Whitfield Diffie
and Martin Hellman and originally described by Diffie and Hellman in the
“Journal IEEE Transactions on Information Theory 22” in 1976. One significant
difference between RSA and Diffie-Hellman is that although RSA can be used
to encrypt arbitrary bits of data, Diffie-Hellman can only be used to perform a
key exchange because neither side can predict what value both sides will ulti-
mately agree upon, even though it’s guaranteed that they’ll both arrive at the
same value. This ability to encrypt arbitrary data using RSA, although desir-
able in some contexts, is something of a double-edged sword. One potential
drawback of the RSA algorithm is that, if the private key is ever compromised,
any communication that was secured using that private key is now exposed.
There’s no such vulnerability in the Diffie-Hellman key exchange algorithm.
This property — communications remaining secure even if the private key is
uncovered — is referred to as perfect forward secrecy.
Diffie-Hellman key agreement relies on the fact that

gabo/op — gbaO/Op — (gaO/op)bO/op — ( gbO/Op)aO/op
gand pare agreed on by both sides, either offline or as part of the key exchange.
They don’t need to be kept secret and SSL/TLS transmits them in the clear. The

server chooses a value a at random and the client chooses a value b at random.
Then the server computes

Ys = (g°%p)
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And the client computes
Yc = (g*%p)

The server transmits vs to the client and the client transmits vc to the server.
At this point, they each have enough to compute the final value z = **%p:

Client Server
(g°%p)*%p  (g°%p)*%p
(Ys)*%p (Yo)*%p
Z Z

And z is the key that both sides use as the symmetric key. The server knows
the value a (because it chose it), and the client knows the value b (because,
again, it chose it). Neither knows the other’s value, but they don’t need to. Nor
can an eavesdropper glean the value of z without either a or b, neither of which
has been shared. You can think of each side as computing one-half of an expo-
nentiation and sharing that half with the other side, which then completes the
exponentiation. Because the exponentiation operation is done mod p, it can’t
be feasibly inverted by an attacker, unless the attacker has solved the discrete
logarithm problem.

Using the mod_pow function developed earlier for RSA, this is simple to imple-
ment in code as shown in Listing 3-26.

Listing 3-26: “dh.c” Diffe-Hellman key agreement

static void dh_agree( huge *p, huge *g, huge *e, huge *Y )
{

mod_pow( g, &e, p, Y );
}

static void dh_finalize( huge *p, huge *Y, huge *e, huge *Z )
{
mod_pow( Y, &e, p, &Z );

In fact, there’s not much point in defining new functions to implement this
because all they do is call mod_pow. Given p, g, and 4, the server does something like
huge Ys, Yc, Z;
dh_agree( p, g, a, &Ys );
send_to_client( &Ys );
receive_from_client( &Yc );
dh_finalize( p, Yc, a, Z );

// ... use "Z" as shared key

At the same time, the client does:

huge Ys, Yc, Z;
dh_agree( p, g, b, &Yc );
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send_to_server( &Yc );
receive_from_server( &Ys );
dh_finalize( p, &Ys, b, &z );
// ... use "Z" as shared key

Notice also that the client doesn’t need to wait for vs before computing vc,
assuming p and g are known to both sides. In SSL, the server picks p and g, and
transmits them along with vs, but Diffie-Hellman doesn’t actually require that
key exchange be done this way.

One particularly interesting difference between RSA and DH is that RSA is
very, very picky about what values you can use for e, d,and n. As you saw ear-
lier, not every triple of numbers works (in fact, relative to the size of all natural
numbers, very few do). However, DH key exchange works with essentially any
random combination of p, g, a, and b. What guidance is there for picking out
“good” values? Of course, you want to use large numbers, especially for p; other
than using a large number — 512-bit, 1024-bit, and so on — you at least want to
ensure that the bits are securely randomly distributed.

It also turns out that some choices of p leave the secret z vulnerable to eaves-
droppers who can employ the Pohlig-Hellman attack. The attack itself, originally
published by Stephen Pollig and Martin Hellman in the journal “IEEE Transactions
on Information Theory” in 1978, is mathematically technical, but it relies on a
p — 1thathasno large prime factors. The math behind the attack itself is outside
of the scope of this book, but guarding against it is straightforward, as long as
you're aware of the risk. Ensure that the choice p ~ 1 is not only itself large,
but that it includes at least one large prime factor. RFC 2631 recommends that
p = jg + 1 where gis a large prime number and 7 is greater than or equal to 2.
Neither g nor 7 needs to be kept secret; in fact, it’s recommended that they be
shared so that the receiver can verify that p is a good choice.

In most implementations, gis actually a very small number — 2 is a popular
choice. Aslong as p, a, and b are very large, you can get away with such a small
g and still be cryptographically secure.

Getting More Security per Key Bit: Elliptic Curve
Cryptography
Although the concept and theory of elliptic curves and their application in

cryptography have been around for quite a while (Miller and Koblitz described
the first ECC cryptosystem in 1985), elliptic curves only managed to find their
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way into TLS in the past few years. TLS 1.2 introduced support for Elliptic-Curve
Cryptography (ECC) in 2008. Although it hasn't, at the time of this writing, found
its way into any commercial TLS implementations, it’s expected that ECC will
become an important element of public-key cryptography in the future. I explore
the basics of ECC here — enough for you to add support for it in the chapter
9, which covers TLS 1.2 — but overall, I barely scratch the surface of the field.

ECC — elliptic-curves in general, in fact — are complex entities. An elliptic-
curve is defined by the equation y? = x* + ax + b. a and b are typically fixed
and, for public-key cryptography purposes, small numbers. The mathematics
behind ECC is extraordinarily complex compared to anything you've seen so
far.  won't get any deeper into it than is absolutely necessary.

Figure 3-5 shows the graph of y* = x> + ax + b, the elliptic curve defined by
a = —1, b = 0. Notice the discontinuity between 0 and 1; V x> — ax has no solu-

tions between 0 and 1 because x®> — x < 0.

3 . . . . .
ol ]
1+ ]
O (-
RS i
2k i
23 ) o 0 1 2 3

Figure 3-5: Elliptic curve witha=—-1,b=0

Cryptographic operations are defined in terms of multiplicative operations
on this curve. It’s not readily apparent how one would go about “multiplying”
anything on a curve, though. Multiplication is defined in terms of addition,
and “addition,” in ECC, is the process of drawing a line through two points
and finding it’s intersection at a third point on the curve as illustrated in
Figure 3-6.
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-3 1 1 1 1 1
-3 -2 -1 0 1 2 3

Figure 3-6: Point multiplication on an elliptic curve

So, given two points p, = (x,y,), p, = (x,, ¥,), “addition” of points p, = p, + p,
is defined as:
X; =AM — X, — X,
Y?, = X(Xl - X3) -y
where
Y27 N

X, T X

A=

(that is, the slope of the line through p, and p,). You may be able to spot a problem
with this definition, though: How do you add a point to itself? A point all by
itself has no slope — A = 9 in this case. So you need a special rule for “doubling”
a point. Given p, = (x,, y,), 2p, is defined as:

X; = A — 2x,

Y3 =A0q = x) —

where
3 +a

7\‘ =
2y,

Remember that a was one of the constants in the definition of the curve.

So, armed with a point addition and a point-doubling routine, you can define
multiplication of a point by a scalar in terms of double and add. Recall that, for
integer operations, double-and-add was a “nice” speed-up. In terms of elliptic
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curves, though, it’s a necessity because you can’t add a point to itself a given
number of times. Notice also that multiplication of points is meaningless; you
can add two points together, but you can only meaningfully multiply a point
by a scalar value.

Whew! I warned you elliptic curves were complex. However, that’s not all.
As a programmer, you can likely still spot a problem with this definition: the
division operation in the definition of A. Whenever you divide integers, you get
fractions, and fractions create all sorts of problems for cryptographic systems,
which need absolute precision. The solution to this problem, which is probably
not a surprise to you at this point, is to define everything modulo a prime number.

But — how do you divide modulo a number?

How Elliptic Curve Cryptography Relies on Modular
Inversions

Recall that addition modulo a number n is pretty straightforward: Perform
the addition normally and then compute the remainder after dividing by n.
Multiplication and exponentiation are the same; just perform the operation
as you normally would and compute the remainder. The distributivity of the
modulus operator enables you to implement this as multiple operations each
followed by modulo, but the end result is the same.

What about division modulo n? Can you divide x by y and then compute
the remainder when divided by n? Consider an example. 5 X 6 = 30 and 30 %
13 = 4 (because 2 * 13 = 26 and 30 — 26 = 4). Division mod n ought to return 6
if you apply it to 5. In other words, you need an operation that, given 4, 5, and
13, returns 6. Clearly, normal division doesn’t work at all: (5 X 6) % 13 = 4, but
@ / 5) % 13 = 0.8, not 6. In fact, division modulo nisn't particularly well defined.

You can't really call it division, but you do need an operation referred to as
the modular inverse to complete elliptic-curve operations. This is an operation
on x such that

X x%n = 1
So, going back to the example of (5 X 6) % 13 = 4, you want to discover an

operation to compute a number which, when multiplied by 4 and then computed
% 13 returns 6, inverting the multiplication.

Using the Euclidean Algorithm to compute Greatest
Common Denominators

Such an operation exists, but it’s not easily expressible; it’s not nearly as simple as
modulus addition or multiplication. Typically, x ! is computed via the extended
Euclidean algorithm. The normal (that is, non-extended) Euclidean algorithm
is an efficient way to discover the greatest common denominator (GCD) of two
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numbers; the largest number that divides both evenly. The idea of the algorithm
is to recursively subtract the smaller of the two numbers from the larger until
one is 0. The other one is the GCD. In code, this can be implemented recursively

as in Listing 3-27.

Listing 3-27: gcd (small numbers)

int gcd( int x, int y )
{
if ( x =
if (y ==

0 ) { return y; }
0 ) { return x; }
if (x>vy)
{
return ged( x -y, vy );
}
else
{
return gcd( y - x, X );
}
}

So, for example, given x = 105, y = 252:

ITERATION X Y

0 105 252
1 147 105
2 42 105
3 63 42
4 21 42
5 21 21
6 0 21

This tells you that 21 is the largest number that evenly divides both 105 and
252 —105/21 = 5, and 252/21 = 12. The actual values of the division operations
aren’t particularly important in this context. What’s important is that 21 is the
largest number that divides both without leaving a fractional part.

It may not be intuitively clear, but it can be proven that this will always complete.
If nothing else, any two numbers always share a GCD of 1. In fact, running the
GCD algorithm and verifying that the result is 1 is a way of checking that two
numbers are coprime or relatively prime, in other words they share no common factors.
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Computing Modular Inversions with the Extended
Euclidean Algorithm

Although certainly interesting, it’s not yet clear how you can use the Euclidean
algorithm to compute the modular inverse of a number as defined earlier. The
extended Euclidean algorithm actually runs this same process in reverse, starting
from 0 up to the GCD. It also computes, in the process, two numbers y, and vy,
such that ay, + zy, = gcd(a,z); if z is a prime number, v, is also the solution
to a "' a%z = 1, which is exactly what you're looking for.

The extended Euclidean algorithm for computing modular inverses is described
algorithmically in FIPS-186-3, Appendix C.1. Listing 3-28 presents it in C code
form.

Listing 3-28: “ecc_int.c” extended Euclidean algorithm (small numbers)

int ext_euclid( int z, int a )
{

int i, j, v2, vl, vy, quotient, remainder;

while ( j > 0 )
{
quotient = 1 / j;

remainder = i % J;

y =y2 - (yl * quotient );
i=3;

j = remainder;

y2 = yl;

vyl = vy;

}
return ( y2 % a );

Returning again to the example above of 5 and 6 % 13, remember that
(5 X 6) % 13 = 4. ext_euclid tells you what number x satisfied the rela-
tionship (4x) % 13 = 6, thus inverting the multiplication by 5. In this case,
z=>5and a = 13.
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QUOTIENT REMAINDER ) 4 y? Y!
2 3 —2 0 1
1 2 3 1 —2
1 1 -5 -2 3
2 0 13 3 -5

Halt because remainder = 0.

The solution, ext_euclid(5,13) = y1 % a = -5 % 13 = -5. You can check
this result by verifying that (4 X —5) % 13 = —20 % 13 = 6 because 13 X -2 =
—26 and —20 — (—26) = 6.

Of course, it should come as no surprise that, to compute secure elliptic curve
parameters, you are dealing with numbers far too large to fit within a single
32-bit integer, or even a 64-bit integer. Secure ECC involves inverting 1,024- or
2,048-bit numbers, which means you need to make use of the huge library again.

You may see a problem here, though. When you inverted the multiplication
of 5 modulo 13, you got a negative result, and the interim computation likewise
involved negative numbers, which the huge library was not equipped to handle.
Unfortunately, there’s just no way around it. You need negative number support
in order to compute modular inverses that are needed to support ECC.

Adding Negative Number Support to the Huge
Number Library

You may be familiar with two’s complement binary arithmetic. In two’s comple-
ment binary arithmetic, the lower half of the bit space represents positive
numbers and the upper half represents negative numbers. This enables you
to take advantage of the natural wrapping behavior of digital registers to effi-
ciently perform signed operations. Given, say, a 4-bit register (to keep things
small), you'd have the following:

0000 0
0001 1
0010
0011

0100

0101

0110

N (oo | WN

o111
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1000 —8
1001 -7
1010 —6
1011 —5
1100 —4
1101 -3
1110 —2

1111

If you subtract 3 (0011) from 1 (0001), the counters naturally wrap and end up
back on 1110, which is chosen to represent —2. Multiplication preserves sign as

well -2 X -3 = 0010 X 1101:

Truncate the leading three digits and you get the correct result: 1010, or —6.
This truncation creates a problem when you're trying to implement arbitrary
precision binary math, though. Consider 7 X 7, which overflows this four-bit

implementation:

You've computed the correct answer — 49 — but according to the rule stated
earlier, you should throw away the first bit and end up with an incorrect answer
of —7. You could, of course, check the magnitude of each operand, check to see
if it would have overflowed, and adjust accordingly, but this is an awful lot of

1101

X 0010

0000
11010
000000

+ 0000000

0011010

0111

x 0111

0111
01110
011100

+ 0000000

11001

N N N~
Sceee

@
@
@
©
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trouble to go to. It also negates the benefit of two’s complement arithmetic. In
general, two’s complement arithmetic only works correctly when bit length is
fixed. Instead, just keep track of signs explicitly and convert the “huge” data
type to a sign/magnitude representation.

COMPUTING WITH A FIXED-PRECISION NUMERIC REPRESENTATION

As an aside, it would be possible to create, say, a fixed-precision 2,048-bit
numeric representation and perform all calculations using this representation;
if you do, then you can, in fact, make use of two’s complement arithmetic to
handle negative numbers. You can get away with this in the context of public-
key cryptography because all operations are performed modulo a fixed 512-,
1024-, or 2048-bit key. Of course, in the future, you might need to expand this
out to 4,096 bits and beyond. The downside of this approach is that every
number, including single-byte numbers, take up 256 bytes of memory, so you
trade memory for speed. I'm not aware of any arbitrary-precision math library
that works this way, however; OpenSSL, GnuTLS (via GMP, via gcrypt), NSS and
Java all take the “sign/magnitude” approach that’s examined here.

When negative numbers enter the mix, additions and subtractions essentially
become variants of the same operation; keep an explicit “add” and “subtract”
routine for clarity, but additions become subtractions when the signs of the
operators differ and vice versa.

Treat adding and subtracting as occurring in two separate stages — first,
computing the magnitude of the result, and then computing the sign. The
magnitude of the result depends, of course, on the operation requested and
the operator’s values as well as the signs of each; the sign depends on the opera-
tion and the sign of each value, as well as whether the addend (or subtrahend)
is greater than the summand (or minuend). Table 3-2 summarizes, hopefully,
the preceding paragraph.

Table 3-2: Negative Number Operations

OPERATION X SIGN Y SIGN ABS(X) > MAGNITUDE £ [e])]
REQUESTED ABS(Y)?

add + + N X+y +
add + - N X—y +
add - + N X—y -
add - - N X+y -
add + + Y y+ X +
add + - Y y—x -
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OPERATION X SIGN Y SIGN ABS(X) > MAGNITUDE SIGN
REQUESTED ABS(Y)?

add — + Y y — X +
add - - Y y +X -
subtract + + N X—y +
subtract + - N X+y +
subtract - + N X+y -
subtract - - N X—y -
subtract + + Y y — X —
subtract + - Y y+x +
subtract - + Y y + X -
subtract - - Y y — X +

To summarize, when adding or subtracting, if x is greater than y, invert the
operation if the signs of the operators are different. Perform the operation as
requested if the signs are the same. If x is less than y, swap the operators first.
Of course, x + yis the same as y + x. This gives the magnitude. The sign of the
operation can be determined, essentially independently, as the following: If x is
greater than y, the result has the same sign as x, whether adding or subtracting.
Otherwise, if adding, and the operators have the same sign, the result has the
same sign as x; if they differ, the result has the same sign as y. When subtracting,
and x is less than y, the sum has the opposite sign as x if x and y have the same
sign, and the opposite sign as y if x and y have different signs. You may find it
worthwhile to work through a few examples to convince yourself that we've
covered every case, except for the exceptional case where x = y, which is dealt
with specially because 0 is neither positive nor negative.

Follow these steps to support arbitrary-sized negative number addition and
subtraction.

1. Add an element to the huge struct from Listing 3-1 to keep track of its sign,
as shown in Listing 3-29. Let 0 represent positive and 1 represent negative:

Listing 3-29: "huge.h” huge structure with negative number support

typedef struct
{
int sign;
unsigned int size;
unsigned char *rep;
}
huge;
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2. There are three initializer functions that create huges: set_huge, copy_huge,
and load_huge. Each needs to be updated to initialize the sign bit, as shown

in Listing 3-30.

Listing 3-30: "huge.c” initializer routines with negative number support included

void set_huge( huge *h, unsigned int val )
{

unsigned int mask, i, shift;

// Negative number support

h->sign = 0; // sign of 0 means positive

void copy_huge( huge *tgt, huge *src )
{
if ( tgt->rep )
{
// TODO make this a little more efficient by reusing "rep"
// 1f it's big enough
free( tgt->rep );

tgt->sign = src->sign;

void load_huge( huge *h, const unsigned char *bytes, int length )

{
while ( !( *bytes ) )
{
bytes++;
length--;

h->sign = 0;

Notice that there’s no way to initialize a huge as a negative number; you
don’t need one and, in fact, negative numbers get in the way if, for example,
you treat a high 1 bit as a negative number indicator in load_huge. If a
computation results in a negative number, the routines keep track of it

internally.

3. Because the current add and subtract routines do a good job of computing
magnitudes of arbitrarily sized numbers — provided, of course, that h1
is greater than h2 in the case of subtraction — those routines can be used
unchanged to compute magnitudes, and you can do sign computation
and swapping in a separate routine. As such, rename add and subtract and

make them static as shown in Listing 3-31.
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Listing 3-31: “huge.c” add_magnitude and subtract_magnitude

/**
* Add two huges - overwrite hl with the result.
*/
static void add_magnitude( huge *hl, huge *h2 )
{
unsigned int i, j;
unsigned int sum;

unsigned int carry = 0;

/‘k*
* Subtract h2 from hl, overwriting the value of hl.
*/
static void subtract_magnitude( huge *hl, huge *h2 )
{
int 1 = hl->size;
int j = h2->size;
int difference; // signed int - important!

unsigned int borrow = 0;

if ( borrow && i )
{
if ( hl->rep[ 1 - 1 ] ) // Don't borrow i
{
// negative reults are now OK
hl->rep[ i - 1 1--;

Nothing else changes in these routines.

4. Now, create two new routines named add and subtract thatinvoke add_
magnitude and subtract_magnitude, after performing the rules described
by Table 3-2 as shown in Listing 3-32. These new routines have the same
method signatures as the old add and subtract. In fact, they end up tak-
ing their places, which means you need to relink anything linked using
the old object file. This won’t be a problem because your Make rules are
set up correctly.

Listing 3-32: "huge.c” add with negative number support

void add( huge *hl, huge *h2 )
{

int result_sign;

// First compute sign of result, then compute magnitude
if ( compare( hl, h2 ) > 0 )
(Continued)
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result_sign = hl->sign;

if ( hl->sign == h2->sign )
{
add_magnitude( hl, h2 );
}
else
{
subtract_magnitude( hl, h2 );

}
else

{
huge tmp;

// put hl into tmp and h2 into hl to swap the operands
set_huge( &tmp, 0 ); // initialize

copy_huge( &tmp, hl );

copy_huge( hl, h2 );

if ( hl->sign == tmp.sign )
{
result_sign = hl->sign;
add_magnitude( hl, &tmp );
}
else
{
result_sign = h2->sign;

subtract_magnitude( hl, &tmp );
free_huge( &tmp );

// Use the stored sign to set the result
hl->sign = result_sign;

5. This routine embodies the signing rules described by the first half of
Table 3-2. If n1 is greater than h2 (see Figure 3-7), add or subtract, depend-
ing on whether the signs of the two operands are the same or different,
and preserve the sign of hil. h2 never changes regardless. If h1 is less
than h2, swap them; you want to preserve h2 as before, so copy h1 into
a temporary object and h2 into hi.

The net effect here is that you add or subtract h1 from h2, overwriting h1,
just as if the operation had been called with the operators reversed, but
not touching h2, which is what you want.

12/20/2012 12:46:04 PM



c03.indd 145

Chapter 3 = Secure Key Exchange over an Insecure Medium

145

h1

h2

A
A

tmp

Add or Subtract

Figure 3-7: Arithmetic routines with negative numbers

6. Subtracting is similar, in Listing 3-33.

Listing 3-33: "huge.c” subtract with negative number support

void subtract( huge *hl, huge *h2 )
{

int result_sign;

// First compute sign of result, then compute magnitude
if ( compare( hl, h2 ) > 0 )
{

result_sign = hl->sign;

if ( hl->sign == h2->sign )
{
subtract_magnitude( hl, h2 );
}
else
{
add_magnitude( hl, h2 );

}
else
{
huge tmp;

// put hl into tmp and h2 into hl to swap the operands
set_huge( &tmp, 0 ); // initialize

copy_huge( &tmp, hl );

copy_huge( hl, h2 );

if ( hl->sign == tmp.sign )
{
result_sign = ! ( hl->sign );
subtract_magnitude( hl, &tmp );
}
else
{
result_sign = ! ( h2->sign );
add_magnitude( hl, &tmp );

(Continued)
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free_huge( &tmp );

// Use the stored sign to set the result
hl->sign = result_sign;

In fact, you can probably see how you could collapse these two functions
into one single function if you were so inclined.

7. Multiplication and division are even easier. The magnitudes of the results
are the same as they were in the unsigned case, and the sign of the result
is positive if the signs are equal and negative if the signs are unequal. This
is illustrated in Listing 3-34.

Listing 3-34: "huge.c” multiply with negative number support

void multiply( huge *hl, huge *h2 )
{

unsigned char mask;

unsigned int 1i;

int result_sign;

huge temp;

set_huge( &temp, 0 );
copy_huge( &temp, hl );

result_sign = ! ( hl->sign == h2->sign );
}
while ( 1 );

hl->sign = result_sign;

8. To support signed numbers at division time, you don’t even need to
remember a temporary sign because quotients are always initialized
dynamically as shown in Listing 3-35.

Listing 3-35: “huge.c” divide with negative number support

void divide( huge *dividend, huge *divisor, huge *quotient )
{
int i, bit_size, bit_position;

if ( quotient )

{
quotient->sign = ! ( dividend->sign == dividend->sign );
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quotient->size = ( bit_size / 8 ) + 1;
quotient->rep = ( unsigned char * ) malloc( quotient->size );
memset ( quotient->rep, 0, quotient->size );

}

9. Because you're keeping track of your own negative numbers, you don’t
want subtract doing it for you:
if ( compare( divisor, dividend ) <= 0 )

{

subtract_magnitude( dividend, divisor ); // dividend -= divisor

10. Finally, you need to account for negative modulus operations. As it turns
out, although negative number modulus operations come up in computa-
tions, they’re not that well defined. Consider, for example, 17 % 7. This
is equal to 3 because 7 X 2 = 14 and 17 — 14 = 3. Now, you might be
tempted to say that —17 % 7 = —3 because —17 / 7 = round( —2.42 ) =
—2,7X =2=—14,and —17 — (—14) = —3.

Although that’s a perfectly valid definition of the modulus operation, it’s not
the one that’s been standardized on (at least not for cryptographic computa-
tions — it is the standard that the C programming language follows!). Instead,
=17 %7 =4. Why?7 X =3 = =21, and —17 — (—21) = 4.

Supporting Negative Remainders

If you view this on a number line, this starts to make (some) sense, as shown
in Figure 3-8.

-3*7 -2*7 -1*7 0*7 1*7 2*7 3*7 4*7
21 -14 -7 0 7 14 21 28
| | | | | | | |
| | | | | | | |
— ——

17%7=4 17%7=3

Figure 3-8: Positive remainder operations

To figure the remainder, find the first multiple, on the number line, to the left
of your target and then figure the distance between the two points. This means,
first of all, that modulus operations always return positive values and second that

(—x%y)!= =(x%Yy)

(as convenient as that would have been when coding it). This also means that
you can't rely on the dividend being updated to be the modulus when one of the
parameters is negative. However, there’s a simple solution: subtract divisor one
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more time before exiting, if dividend is negative. Consider the earlier example
above of “17 % 7. The division operation proceeds as follows:

1. Left-shift (double) 7 until the result is greater than 17 (28)
2. Right- shift divisor once (14)

3. Subtract 14 from 17 (dividend = 3)

4. Right-shift divisor again (7)

The division is complete because the divisor has shifted back to its initial posi-
tion. Now the dividend contains —3 — seven positions away from the desired
result of 4. Subtracting -divisor yields the correct answer, 4.

Unfortunately, in some contexts, specifically the extended Euclidean algorithm
developed here, the modulus of a negative and a positive must be negative. As a
result, you have to keep track of when and where you need the positive modulus
versus the negative modulus.

With signed-number support, you can now implement the extended Euclidean
algorithm for computing modular inverses for arbitrarily sized integers, as
shown in Listing 3-36.

Listing 3-36: "huge.c” inv routine

void inv( huge *z, huge *a )
{
huge 1, j, v2, vl, y, quotient, remainder, a_temp;

set_huge( &i, 1 ); // initialize for copy
set_huge( &j, 1 ); // initialize for copy
set_huge( &remainder, 1 ); // initialize for copy
set_huge( &y, 1 );

set_huge( &a_temp, 1 );

set_huge( &y2, 0 );
set_huge( &yl, 1 );

copy_huge( &i, a );
copy_huge( &j, z );
if ( z->sign )
{
divide( &3j, a, NULL );
// force positive remainder always
j.sign = 0;
subtract( &j, a );

while ( !( ( j.size ==1 ) && ( !J.xrep[ 0O 1 ) ) )
{

copy_huge ( &remainder, &i );

12/20/2012 12:46:05 PM



Chapter 3 = Secure Key Exchange over an Insecure Medium 149

copy_huge ( &i, &j );
divide( &remainder, &j, &quotient );

multiply( &guotient, &yl ); // quotient = yl * quotient
copy_huge ( &y, &y2 );
subtract( &y, &gquotient ); // vy =vy2 - ( yl * quotient )

copy_huge( &j, &remainder );
copy_huge ( &y2, &yl );
copy_huge ( &yl, &y );

copy_huge( z, &y2 );
copy_huge( &a_temp, a );
divide( z, &a_temp, NULL ); // inv_z = y2 % a

if ( z->sign )
{
z->sign = 0;
subtract( z, &a_temp );
if ( z->sign )
{

z->sign = 0;

Fundamentally, this works the same as the native int algorithm presented
in Listing 3-28; I've added the equivalent operations as comments so that you
can compare the two. The only difference is that I moved the assignment of
i to j up to the top because the subsequent divide overwrites j. This doesn’t
affect functionality because i isn't used again in the body of the loop. The only
reason for coding it this way is to cut down on the number of temporary huges
that need to be allocated and freed.

Finally, notice the last section where inv =z is computed:

divide( inv_z, &a_temp, NULL ); // inv_z = y2 % a

if ( inv_z->sign )
{
inv_z->sign = 0;

subtract( inv_z, &a_temp );

The default divide operation returns the negative modulus. You need the
positive one (if it’s negative), which you can recover by swapping the signs and
subtracting a one more time. The divide call inside the loop, however, must
preserve negative moduli or the routine doesn’t work correctly.
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Making ECC Work with Whole Integers: Elliptic-Curve
Cryptography over F,

Now that modular inversions have been defined, you can return to the subject
of ECC. ECC over a prime finite field (denoted F ) is just like “regular” ECC, but
everything is performed modulo a prime number p. The point-addition and
point-doubling algorithms become:

X3 = (A = x; = X,)%p

Ys = (M= x5) = y))%p

A=(y, = y)*x, — Xl)ilo/ op
and

X, = (A — 2x))%p

Y5 = Mx; = X;) — y,)%p

A= (3x*+a)* y,) %p

Point multiplication (by a scalar) is still defined in terms of “double-and-add.”
There’s just one more definitional issue must be addressed here. Recall that
the general form of double-and-add is the following:
sum = 0
double = multiplicand
while ( bits in multilpier )
{
if ( bit set in multiplier )
{
sum += double;
}
double *= 2;
}

You have sum += double and double *= 2 defined for ECC points, but what
about sum = 07 You need a “point” which is zero. You can't just use the point
(0, 0). Unless b = 0 it’s not on the curve, and if b = 0, (0, 0) is just another point.

ECC sort of sidesteps this by defining a non-existent point at infinity, which
you just have to keep track of. A point is either the point at infinity (for example,
0), or it’s something else, in which case it has a legitimate x and y coordinate.

Reimplementing Diffie-Hellman to Use ECC Primitives

So what does all of this elliptic-curve stuff have to do with public-key cryptogra-
phy? Recall that RSA and classic Diffie-Hellman get their security and feasibility
from the fact that exponentiation modulo a number is solvable. There’s an O(n)
algorithm to raise a number to an n-bit power modulo a given prime, but there’s
no known feasible inverse operation. There’s no (known) algorithm to compute
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a discrete logarithm in polynomial time. Well, for elliptic curves, there’s an O(n)
algorithm to multiply a point by a scalar n, but no feasible inverse operation.
You can’t “divide” a point by a scalar and find the original point. This property
of being able to perform an operation in one direction in a reasonable amount of
time, but not invert it, makes it usable as a public-key cryptosystem.

Diffie-Hellman can be redefined in terms of elliptic-curve operations. The
private key is a scalar, and the public key is that scalar, multiplied by another
shared point G. The two entities, A and B, which want to perform a secure key
exchange, each have a private scalar and a public point, plus another shared point
and, of course, the a, b, and p that define an elliptic-curve and its prime field. If
A multiplies his private key by B’s public-key and B multiplies his private key
by A’s public key, they both arrive at the same point Z because they started at
the same shared point G. Z can’t be computed by anybody else without access
to one of the private keys, so Z can be used as a shared secret. Typically the
x-coordinate of Z is used and the y-coordinate is discarded.

At this point, your head may be spinning. An example might help clarify
things. To keep things semi-readable, just stick to integer arithmetic for now
and use small (less than 32-bit) values as an example.

1. Start off with a few definitions as shown in Listing 3-37.

Listing 3-37: “ecc_int.h" structure definitions

typedef struct
{
int x;
int vy;
}
point;

typedef struct
{
int private_key;
point public_key;
}
key_pair;

/**
* Describe y™2 = (x”3 + ax + b) % p
*/
typedef struct
{
int p;
int a;
int b;
point G; // base point
}

domain_parameters;
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.m If you look at other texts on elliptic curves, notice that they also
define n the order of the curve and h the cofactor of the curve. h is used to
speed things up in advanced ECC implementations and isn’t discussed here.
n is discussed in Chapter 4.

2. You also need a modular inversion routine. You examined one for the huge
implementation earlier, but because you're just doing integer arithmetic
here, you can use the simple ext_euclid routine from Listing 3-25. This
is wrapped up in Listing 3-38.

Listing 3-38: “ecc_int.c" invert routine

/**
* Extended Euclidean algorithm to perform a modular inversion

)

* of x by v (e.g. (x/y) % p).

*/
static int invert( int x, int y, int p )
{

int inverse = ext_euclid( y, p );

return x * inverse;

3. Now, define an add_points operation (modulo a prime p), shown in
Listing 3-39.

Listing 3-39: “ecc_int.c” add_points routine

static void add_points( point *pl, point *p2, int p )
{
point p3;
int lambda = invert( p2->y - pl->y, p2->x - pl->X, p );

p3.x

lambda * lambda ) - pl->x - p2->x ) % p;
p3.y ) %

lambda * ( pl->x - p3.x ) ) - pl->y

pl->x = p3.x;
pl->y = p3.y;

Compare this to the equations defining point addition, in the previous sec-
tion. Notice that the result is returned in p1, just as with the huge routines.

4. You also need a double_point routine, shown in Listing 3-40.

Listing 3-40: “ecc_int.c" double_point routine

static void double_point( point *pl, int p, int a )
{
point p3;
int lambda = invert( 3 * ( pl->x * pl->x ) + a, 2 * pl->y, p );
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pP3.x = (
p3.y = (

lambda *

pl->x = p3.x;
pl->y = p3.y;

lambda * lambda ) - ( 2 * pl->x ) ) % p;
pl->x - p3.x ) ) - pl->y ) % p;

5. Finally, you can implement multiplication in terms of double and add,
shown in Listing 3-41.

Listing 3-41: “ecc_int.c" multiply_point routine

static void multiply_point( point *pl, int k, int a, int p )

{
point dp;
int mask;

int paf = 1;

dp.x = pl->x;
dp.y = pl->y;

for ( mask = 0x00000001; mask; mask <<= 1 )

{
if ( mask & k )
{
if ( paf )
{
paf = 0;
pl->x = dp.x;
pl->y = dp.y;
}
else
{
add_points( pl,

}
double_point ( &dp,

&dp, p );

)

.:Im Notice the paf flag that indicates that p1 is the point at infinity (that
is, the ECC equivalent of “zero”). It’s not particularly pretty, but it works.
Otherwise, this should look fairly familiar. The same routine has effectively
been implemented twice now — once for large integer multiplication and once
for large integer exponentiation.

6. Toimplement Diffie-Hellman, you need a set of domain parameters T and
a private key each for A and B. You can’t just make up random domain
parameters; in this case, just hardcode them:
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domain_parameters T;
key_pair A;

key_pair B;

point Z1, Z2;

= 23;

5;
.y = 19;

4 A
Qoo oo
.I|
n = P

7. Obviously, you want most of these numbers to be much larger — although
the value 1 for a and b is fairly typical in real ECC. A and B each have
private keys — random numbers which are again hardcoded here:

A.private_key = 4;
B.private_key = 2;
The public keys are not random. They’re = private_key * G
A.public_key.x = T.G.x;
A.public_key.y = T.G.y;
multiply point( &A.public_key, A.private_key, T.a, T.p );
B.public_key.x = T.G.X;
B.public_key.y = T.G.y;
multiply point( &B.public_key, B.private_key, T.a, T.p );
This is important for key agreement. At this point, A’s public key is the
point (13, 16) and B’s public key is the point (17, 3). Of course, they would
compute these individually, after having agreed on the domain parameters.

8. Finally, there’s the matter of key agreement. A sends B his public key
(13, 16) and B sends A his public key (17, 3), and each computes the final
point z:

Z1.x = A.public_key.x;
Z1l.y = A.public_key.y;
multiply point( &Z1l, B.private_key, T.a, T.p );

7Z2.x = B.public_key.x;
z2.y = B.public_key.y;
multiply_point( &z2, A.private_key, T.a, T.p );
A and B have both computed ZZ = (5, —4). In this case, by convention, ZZ.x
= 51is the shared secret — although of course, they could have used ZZy = —4,
as long as both sides agreed on this convention beforehand.

Why Elliptic-Curve Cryptography?

As you can see, ECC is quite a bit more complex than “modulus” cryptography
such as RSA or classic Diffie-Hellman. So, why bother with it? Speed. ECC can
provide the same security with an 80-bit private key as RSA can provide with a
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512-bit private key because every single bit (provably) contributes to the security
of the cryptosystem. Remember that the public-key operations are O(n), where
n is the number of bits in the private key. ECC is fast enough, and has a small
enough operating footprint, that it can be used in smartcard implementations.

Although ECC is popular in the banking industry, it’s only just now begin-
ning to find its way into TLS. OpenSSL 1.0, although it includes elliptic-curve
operations, doesn’t support TLS 1.2, and therefore doesn’t support online ECC.
GnuTLS does support TLS 1.2 and ECC, but is disabled by default. 'm not aware
of any commercial (or open source) website or browser that supports TLS 1.2
at the time of this writing. Still, you can expect to see ECC gain in popularity
in the coming years simply because of its speed advantages over RSA and DH.

I'revisit ECC again in Chapter 4 when I examine ECDSA, and it will be added
to the TLS library in Chapter 9 which covers TLS 1.2.
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Authenticating Communications
Using Digital Signatures

In Chapter 3, you examined public key cryptography in detail. Public key cryp-
tography involves generating two mathematically related keys, one of which
can be used to encrypt a value and the other of which can be used to decrypt
a value previously encrypted with the other. One important point to note is
that it technically doesn’t matter which key you use to perform the encryp-
tion, as long as the other one is available to perform the decryption. The RSA
algorithm defines a public key that is used to encrypt, and a private key that is
used to decrypt. However, the algorithm works if you reverse the keys — if you
encrypt something with the private key, it can be decrypted with — and only
with — the public key.

At first glance, this doesn’t sound very useful. The public key, after all, is
public. It’s freely shared with anybody and everybody. Therefore, if a value is
encrypted with the private key, it can be decrypted by anybody and everybody as
well. However, the nature of public/private keypairs is such that it’s also impos-
sible — or, to be technically precise, mathematically infeasible — for anybody
except the holder of the private key to generate something that can be decrypted
using the public key. After all, the encryptor must find a number c such that
c“%n = m for some arbitrary m. By definition, c = m satisfies this condition and
it is believed to be computationally infeasible to find another such number c.

As a result, the private key can also be used to prove identity. The holder of
the private key generates a message m, and sends it to the receiver (unencrypted).
Then the holder of the private key encrypts m using the private key (d,n) and
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sends the resulting c to the receiver. The receiver uses the public key (e,n) to
“decrypt” c. If the decrypted value is exactly equal to m, the message is veri-
tied. The receiver is confident that it was truly sent by somebody with access to
the private key. Note that, in this scenario, anybody can read m — it is sent in
cleartext. In this case, you're just proving identity. Of course, this sort of digital
signature can be easily combined with encryption. The sender could encrypt the
request, sign the encrypted value, and send that on for the receiver to verify.
An eavesdropper could, of course, decrypt the signature, but all he would get
is the encrypted string, which he can’t decrypt without the key.

There’s another benefit to this approach as well. If anything changed in
transit — due to a transmission error or a malicious hacker — the decrypted
value won’t match the signature. This guarantees not only that the holder of the
private key sent it, but that what was received is exactly what was sent.

There’s one problem with this approach to digital signatures, though. You've
essentially doubled, at least, the length of each message. And, as you recall from
the previous chapter, public key cryptography is too slow for large blocks of
information. In general, you use public key operations to encode a symmetric
key for subsequent cryptography operations. Obviously, you can’t do this for
digital signatures; you're trying to prove that somebody with access to the pri-
vate key generated the message. What you need is a shortened representation of
the message that can be computed by both sides. Then the sender can encrypt
that using the private key, and the receiver can compute the same shortened
representation, decrypt it using the public key and verify that they're identical.

Using Message Digests to Create Secure Document
Surrogates

Such a shortened representation of a message is referred to as a message digest. The
simplest form of a message digest is a checksum. Given a byte array of arbitrary
length, add up the integer value of each byte (allowing the sum to overflow),
and return the total, for example, Listing 4-1.

Listing 4-1: checksum

int checksum( char *msg )
{
int sum = 0;

int 1i;

for (i = 0; i < strlen( msg ); i++ )
{
sum += msg[ 1 1;

}
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return sum;

}

Here, the message “abc” sums to 294 because, in ASCII, a = 97,b = 98 and c
= 99; “abd” sums to 295. Because you just ignore overflow, you can compute a
digest of any arbitrarily sized message.

The problem with this approach is that it can be easily reversed. Consider
the following scenario: I want to send a message that says, “Please transfer
$100 to account 123,” to my bank. My bank wants to ensure that this message
came from me, so I digitally sign it. First I compute the checksum of this
message: 2,970. I then use my private key to compute the signature. Using the
mini-key pair e = 79, d = 1019, n = 3337 from Chapter 3, this encodes (without
any padding) to 2970'°" % 3337 = 2552. The bank receives the message, com-
putes the same checksum, decodes 2552 using the public key and computes
25527% % 3337 = 2970. Because the computed checksum matches the encrypted
checksum, the message can be accepted as authentic because nobody else can
solve x” % 3337 = 2970.

However, there’s a problem with this simple checksum digest routine. Although
an attacker who might want to submit, “Please transfer $1,000,000 to account
3789, which sums to 3171, is not able to solve x”° % 3337 = 3171, he can instead
look for ways to change the message itself so that it sums to 2970. Remember that
the signature itself is public, transmitted over a clear channel. If the attacker can
do this, he can reuse my original signature of 2552. As it turns out, it’s not hard
to work backward from 2970 to engineer a collision by changing the message to
“Transfer $1,000,000 to account 3789 now!” (Notice that I dropped the “please”
from the beginning and inserted “now!”) A bank employee might consider this
rude, but the signature matches. You may have to play tricks with null termina-
tors and backspace characters to get the messages to collide this way, but for
$1,000,000, an attacker would consider it well worth the effort. Note that this
would have been a vulnerability even if you had encoded the whole message
rather than the output of the digest algorithm.

Therefore, for cryptographic security, you need a more secure message digest
algorithm. Although it may seem that cryptography would be the hardest cat-
egory of secure algorithms to get right, message digests actually are. The history
of secure message digest algorithms is littered with proposals that were later
found to be insecure — that is, not properly collision resistant.

Implementing the MD5 Digest Algorithm

One of the earliest secure message digest algorithms in the literature is MD2
(MD1 appears never to have been released). It was followed by MD4 (rather than
MD23), which was finally followed by MD5 and is the last of the MD series of
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message digest algorithms. All were created by Dr. Ron Rivest, who was also
one-third of the RSA team.

Understanding MD5

The goal of MD?5, specified in REC 1321, or any secure hashing algorithm, is to
reduce an arbitrarily sized input into an n-bit hash in such a way that it is very
unlikely that two messages, regardless of length or content, produce identi-
cal hashes — that is, collide — and that it is impossible to specifically reverse
engineer such a collision. For MD5, nn = 128 bits. This means that there are 2!
possible MD5 hashes. Although the input space is vastly larger than this, 2!%
makes it highly unlikely that two messages will share the same MD5 hash. More
importantly, it should be impossible, assuming that MD5 hashes are evenly,
randomly distributed, for an attacker to compute a useful message that collides
with another by way of brute force.

MDS5 operates on 512-bit (64-byte) blocks of input. Each block is reduced to a
128-bit (16-byte) hash. Obviously, with such a 4:1 ratio of input blocks to output
blocks, there will be at least a one in four chance of a collision. The challenge
that MD5’s designer faced is making it difficult or impossible to work backward
to find one.

If the message to be hashed is greater than 512 bits, each 512-bit block is hashed
independently and the hashes are added together, being allowed to overflow, and
the result is the final sum. This obviously creates more potential for collisions.

Unlike cryptographic algorithms, though, message digests do not have to be
reversible — in fact, this irreversibility is the whole point. Therefore, algorithm
designers do not have to be nearly as cautious with the number and type of
operations they apply to the input. The more operations, in fact, the better; this
is because operations make it more difficult for an attacker to work backward
from a hash to a message. MD5 applies 64 transformations to each input block.
It first splits the input into 16 32-bit chunks, and the current hash into four
32-bit chunks referred to tersely as A, B, C, and D in the specification. Most of
the operations are done on A, B, C, and D, which are subsequently added to
the input. The 64 operations themselves consist of 16 repetitions of the four bit
flipping functions F, G, H, and I as shown in Listing 4-2.

Listing 4-2: “md5.c” bit manipulation routines

unsigned int F( unsigned int x, unsigned int y, unsigned int z )
{
return ( x &y ) | ( ~x & z );

}

unsigned int G( unsigned int x, unsigned int y, unsigned int z )
{
return ( x &z ) | (y & ~z );

}
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unsigned int H( unsigned int x, unsigned int y, unsigned int z )
{
return ( x

}

~ ~

y z );

unsigned int I( unsigned int x, unsigned int y, unsigned int z )
{
return y

}

~

(x| ~z);

The purpose of these functions is simply to shuffle bits in an unpredictable
way; don’t look for any deep meaning here.

Notice that this is implemented using unsigned integers. As it turns out,
MD?5, unlike any of the other cryptographic algorithms in this book, operates
on little-endian numbers, which makes implementation a tad easier on an Intel-
based machine — although MD5 has an odd concept of “little endian” in places.

The function F is invoked 16 times — once for each input block — and then
G is invoked 16 times, and then H, and then I. So, what are the inputs to F, G,
H, and I? They're actually permutations of A, B, C, and D — remember that the
hash was referred to as A, B, C, and D. The results of F, G, H, and I are added to
A, B, C, and D along with each of the input blocks, as well as a set of constants,
shifted, and added again. In all cases, adds are performed modulo 32 — that is,
they're allowed to silently overflow in a 32-bit register. After all 64 operations,
the final values of A, B, C, and D are concatenated together to become the hash
of a 512-bit input block.

More specifically, each of the 64 transformations on A, B, C, and D involve
applying one of the four functions F, G, H, or I to some permutation of A, B, C,
or D, adding it to the other, adding the value of input block (i % 4), adding the
value of 4294967296 * abs(sin(i)), rotating by a per-round amount, and adding
the whole mess to yet one more of the A, B, C, or D hash blocks.

A Secure Hashing Example

If this is all making your head spin, it’s supposed to. Secure hashing algo-
rithms are necessarily complex. In general, they derive their security from
their complexity:

1. Define a RounD macro that will be expanded 64 times, as shown in
Listing 4-3.

Listing 4-3: "md5.c” ROUND macro

#define BASE_T 4294967296.0

#define ROUND( F, a, b, ¢, d, k, s, 1) \
a=(a+F(b, c, d) +x[k1+\

(Continued)
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( unsigned int ) ( BASE_T * fabs( sin( ( double ) 1 ) ) ) ); \
a=(a<<s) | (a> (32-s5));\
a += b;

This macro takes as input the function to be performed, a, b, c and g; a
value k which is an offset into the input; a value s which is an amount
to rotate; and a value i which is the operation number. Notice that i is
used to compute the value of 4294967296 * abs(sin(i)) on each invocation.
Technically speaking, these values ought to be precomputed because
they’ll never change.

2. Using this macro, the MD5 block operation function is straightforward,
if a bit tedious, to code, as in Listing 4-4:

Listing 4-4: “md5.c” md5_block_operate function

// Size of MD5 hash in ints (128 bits)
#define MD5_RESULT_SIZE 4

void md5_block_operate( const unsigned char *input,
unsigned int hash[ MD5_RESULT_SIZE ] )

unsigned int a, b, c, 4;
int j;

unsigned int x[ 16 ];

a = hash[ 0 ];
b = hash[ 1 ];
c = hash[ 2 ];
d = hash[ 3 1;

for ( j =0; j < 16; j++ )

x[ 3 1 =dnputl (3 *4) + 31 << 24 |
input[ ( j * 4 ) + 2 ] << 16
input[ ( J * 4 ) + 1 1 << 8 |
input[ ( J * 4 ) 1;

}

// Round 1

ROUND( F, a, b, ¢, d, 0, 7, 1 );
ROUND( F, d, a, b, c, 1, 12, 2 );
ROUND( F, ¢, 4, a, b, 2, 17, 3 );
ROUND( F, b, ¢, d, a, 3, 22, 4 );
ROUND( F, a, b, ¢, d, 4, 7, 5 );
ROUND( F, d, a, b, ¢, 5, 12, 6 );
ROUND( F, c, d, a, b, 6, 17, 7 );
ROUND( F, b, ¢, 4, a, 7, 22, 8 );
ROUND( F, a, b, ¢, d, 8, 7, 9 );
ROUND( F, d, a, b, ¢, 9, 12, 10 );
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ROUND( F, c,
ROUND( F, b,
ROUND( F, a,
ROUND( F, d,
ROUND( F, c,
ROUND( F, b,
// Round 2

ROUND( G, a,
ROUND( G, d,
ROUND( G, c,
ROUND( G, b,
ROUND( G, a,
ROUND( G, d,
ROUND( G, c,
ROUND( G, b,
ROUND( G, a,
ROUND( G, d,
ROUND( G, c,
ROUND( G, b,
ROUND( G, a,
ROUND( G, d,
ROUND( G, c,
ROUND( G, b,
// Round 3

ROUND( H, a,
ROUND( H, d,
ROUND( H, c,
ROUND( H, b,
ROUND( H, a,
ROUND( H, d,
ROUND( H, c,
ROUND( H, b,
ROUND( H, a,
ROUND( H, d,
ROUND( H, c,
ROUND( H, b,
ROUND( H, a,
ROUND( H, d,
ROUND( H, c,
ROUND( H, b,
// Round 4

ROUND( I, a,
ROUND( I, d,
ROUND( I, c,
ROUND( I, b,
ROUND( I, a,
ROUND( I, d,

b,
a,
d,
c,
b,

a,

a,
d,
c,
b,
a,
d,

b,
a,
d,
c,
b,

a,

10, 17, 11 );
11, 22, 12 );
12, 7, 13 );
13, 12, 14 );
14, 17, 15 );
15, 22, 16 );
1, 5, 17 );
6, 9, 18 );
11, 14, 19 );
0, 20, 20 );
5, 5, 21 );
10, 9, 22 );
15, 14, 23 );
4, 20, 24 );
9, 5, 25 );
14, 9, 26 );
3, 14, 27 );
8, 20, 28 );
13, 5, 29 );
2, 9, 30 );
7, 14, 31 );
12, 20, 32 );
5, 4, 33 );
8, 11, 34 );
11, 16, 35 );
14, 23, 36 );
1, 4, 37 );
4, 11, 38 );
7, 16, 39 );
10, 23, 40 );
13, 4, 41 );
0, 11, 42 );
3, 16, 43 );
6, 23, 44 );
9, 4, 45 );
12, 11, 46 );
15, 16, 47 );
2, 23, 48 );
0, 6, 49 );

, 10, 50 );
14, 15, 51 );
5, 21, 52 );
12, 6, 53 );
3, 10, 54 );

(Continued)
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ROUND( I, c, , a, b, 10, 15, 55 );
ROUND( I, b, ¢, d, a, 1, 21, 56 );
ROUND( I, a, b, ¢, d, 8, 6, 57 );
ROUND( I, d, a, b, ¢, 15, 10, 58 );
ROUND( I, c, , a, b, 6, 15, 59 );
ROUND( I, b, ¢, d, a, 13, 21, 60 );
ROUND( I, a, b, c, d, 4, 6, 61 );
ROUND( I, d, a, b, ¢, 11, 10, 62 );
ROUND( I, ¢, 4, a, b, 2, 15, 63 );
ROUND( I, b, ¢, d, a, 9, 21, 64 );
hash[ 0 ] += a;

hash[ 1 ] += b;

hash[ 2 ] += c¢;

hash[ 3 1 += d;

3. Create a work area to hold the a, b, ¢, and d values from the current hash.
You see in just a minute how this is initialized — this is important. Then,
split the input, which is required to be exactly 512 bits, into 16 integers.
Notice that you convert to integers using little-endian conventions, rather
than the big-endian conventions you’ve been following thus far:

for ( j = 0; j < 16; j++ )
(

x[ 3 1 = input[ ( j 4 ) + 3] << 24 |
input[ ( j * 4 ) + 2 ] << 16 |
input[ ( j * 4 ) + 1] << 8 |
input[ ( J * 4 ) 1;

}

Technically speaking, because you know youre compiling to a 32-bit
little-endian architecture, you could actually memcpy into x — or even forgo
it completely if you are willing to be fast and loose with your typecasting.
The rest of the function consists of 64 expansions of the RouND macro. You can
probably see how, if you just index hash directly, rather than using the work
area variablesa, b, c, and d, you can change this from a macro expansion
to a loop. In fact, if you want to get a bit tricky, you could follow the pattern
in the k’s and s’s and code the whole thing in a terse loop. You can replace
md5_block_operate with the shorter, but more divergent — in terms of the
specification — function shown in Listing 4-5.

Listing 4-5: Alternate md5_block_operate implementation

static int s[ 4 1[ 4 1 = {
{7, 12, 17, 22 1},
{5, 9, 14, 20 },
(4, 11, 16, 23 3},
{ 6, 10, 15, 21 }
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void md5_block_operate( const unsigned char *input,
unsigned int hash[ MD5_RESULT_SIZE ] )

int a, b, ¢, 4, x i, s_i;

int i, j;

unsigned int x[ 16 1;

unsigned int tmp_hash[ MD5_RESULT_SIZE ];

memcpy ( tmp_hash, hash, MD5_RESULT_SIZE * sizeof( unsigned int ) );

for ( j =0; J < 16; j++ )

{
x[ 31 =dinput[ (3 * 4 ) + 3 ] << 24 |
input[ ( j * 4 ) + 2 ] << 16
input[ ( j * 4 ) + 1 1 << 8
input[ ( J * 4 ) 1;
}
for (i =0; i < 64; i++ )
{
a=3-((1+3) %4);
b=3-((1+2)%4);
c=3-((i+1)%4);
d=3- (1%4);
if (1 < 16 )
{
tmp_hash[ a ] += F( tmp_hash[ b ], tmp_hash[ c ], tmp_hash[ d ] );
x_ i =1i;
}
else if ( i < 32 )
{
tmp_hash[ a ] += G( tmp_hash[ b ], tmp_hash[ c¢ ], tmp_hash[ d ] );
xi=(1+ ((i-16) *5) ) % 16;
}
else if (i < 48 )
{
tmp_hash[ a ] += H( tmp_hash[ b ], tmp_hash[ c¢ ], tmp_hash[ d ] );
xi=(5+((1i-32)*3)) % 16;
}
else
{
tmp_hash[ a ] += I( tmp_hash[ b ], tmp_hash[ c ], tmp_hash[ d ] );
x i=((1-48) * 7 ) % 16;
}

s i=s[1/16101%41;

tmp_hash[ a ] += x[ x_i ] + ( unsigned int )

( BASE_T * fabs( sin( ( double ) i + 1 ) ) );

tmp_hash[ a ] = ( tmp_hash[ a ] << s_i ) | ( tmp_hash[ a ] >> ( 32 - s_1i ) );

(Continued)
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tmp_hash[ a ] += tmp_hash[ b ];
}

hash[ 0 ] += tmp_hash[ 0 ];
hash[ 1 ] += tmp_hash[ 1 ];
hash[ 2 ] += tmp_hash[ 2 ];
hash[ 3 ] += tmp_hash[ 3 ];

The longer implementation in Listing 4-5 follows the specification more closely;
the shorter implementation is a bit difficult to read, but it yields the same results.

.m Actually, the specification includes C code! The implementation there
is a bit different than this one, though. The reason is covered later.

This produces a 128-bit hash on a 512-bit block. If the input is greater than
512 bits, just call the function again, this time passing the output of the previ-
ous call as the initializer. If this is the first call, initialize the hash code to the
cryptographically meaningless initializer in Listing 4-6.

Listing 4-6: "md5.c" md5 initial hash

unsigned int md5_initial_hash[ ] = {
0x67452301,
Oxefcdab89,
0x98badcfe,
0x10325476

Notice that this initializer doesn’t have any quasi-mystical cryptographic
security properties; it’s just the byte sequence 0123456789abcdef (in little-endian
form), followed by the same thing backward. It doesn’t much matter what you
initialize the hash to — although 0’s would be a bad choice — as long as every
implementation agrees on the starting value.

Securely Hashing Multiple Blocks of Data

If you need to encrypt less than 512 bits, or a bit string that’s not an even multiple
of 512 bits, you pad the last block. However, you can’t just pad with 0’s or just
with 1’s. Remember, 512 0’s is a legitimate input to MD5. So is one 0. You need
some way to ensure that 512 0’s hashes to a different value than one 0. Therefore,
MDS5 requires that the last eight bytes of the input be set to the length, in bits
(remember that you may want to hash a value that’s not an even multiple of eight
bits) of the input preceding it. This means that MD?5 is essentially undefined for
lengths greater than 2% bits, and that if the input happens to be between 448
(512 - 64) and 512 bits, you need to add an extra 512-bit block of padding just to
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store the length. A sole “1” bit follows the last bit of input, followed by enough
0’s to pad up to 448 bits, followed by the length of the message itself in bits.

.I[E According to the specification, if the length is greater than 25 bits,
you can throw away the high-order bits of the length. This won’t come up with
any of the values that are hashed in this book.

Now, the MD5 specification has a strange formulation for the length. Rather
than just being a little-endian 64-bit integer, it’s instead stored as “low-order 32
bits” and “high-order 32 bits.”

The code to process an arbitrarily sized input into an MD5 hash, including
padding and iteration over multiple blocks, is shown in Listing 4-7.

Listing 4-7: “md5.c” md5 hash algorithm

#define MD5_BLOCK_SIZE 64
#define MD5_INPUT_BLOCK_SIZE 56
#define MD5_RESULT_SIZE 4

int md5_hash( const unsigned char *input,
int len,
unsigned int hash[ MD5_RESULT_SIZE ] )

unsigned char padded_block[ MD5_BLOCK_SIZE ];
int length_in_bits = len * 8;

// XXX should verify that len < 2764, but since len is only 32 bits, this won't
// be a problem.

hash[ 0 ] = md5_initial_hash[ 0 ];
hash[ 1 ] = md5_initial_hash[ 1 ];
hash[ 2 ] = md5_initial_hash[ 2 ];
hash[ 3 ] = md5_initial_hash[ 3 ];

while ( len >= MD5_INPUT_BLOCK_SIZE )
{
// Special handling for blocks between 56 and 64 bytes
// (not enough room for the 8 bytes of length, but also
// not enough to fill up a block)
if ( len < MD5_BLOCK_SIZE )
{
memset ( padded_block, 0, sizeof( padded_block ) );
memcpy ( padded_block, input, len );
padded_block[ len ] = 0x80;
md5_block_operate( padded_block, hash );

input += len;

len = -1;

(Continued)
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}
else
{
md5_block_operate( input, hash );

input += MD5_BLOCK_SIZE;
len -= MD5_BLOCK_SIZE;

// There's always at least one padded block at the end, which includes
// the length of the message
memset ( padded_block, 0, sizeof( padded_block ) );
if ( len >= 0 )
{
memcpy ( padded_block, input, len );
padded_block[ len ] = 0x80;

// Only append the length for the very last block
// Technically, this allows for 64 bits of length, but since we can only
// process 32 bits worth, we leave the upper four bytes empty

// This is sort of a bizarre concept of "little endian"...

padded_block[ MD5_BLOCK_SIZE - 5 ] = ( length_in bits & OxFF000000 ) >> 24;
padded_block[ MD5_BLOCK_SIZE - 6 ] = ( length_in_bits & 0x00FF0000 ) >> 16;
padded_block|[ MD5_BLOCK_SIZE - 7 ] = ( length_in bits & 0x0000FF00 ) >> 8;
padded_block[ MD5_BLOCK_SIZE - 8 ] = ( length_in_bits & 0x000000FF );

md5_block_operate( padded_block, hash );

return 0;

.m Notice that this code requires that the entire input to be hashed be
available when this function is called. As it turns out, you can’t assume that
this is always be the case. | address this shortcoming later.

Now, follow these steps:

1. Initialize the hash response to the standard starting value defined earlier.

2. Iterate through 512-bit blocks, calling md5_block_operate until you come
to the last, or next-to-last block depending on whether the last block aligns
on less than 448 bits or not.

3. If the last block is between 448 and 512 bits (56 and 64 bytes), pad by add-
ing a “1” bit, which is always hex 0x80 because this implementation never
accepts non-byte-aligned input, and fill the rest of the buffer with 0’s.

4. The length is appended to the next block. Set 1en = -1 as a reminder for
the next section not to append another “1” bit.
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// Special handling for blocks between 56 and 64 bytes
// (not enough room for the 8 bytes of length, but also
// not enough to fill up a block)
if ( len < MD5_BLOCK_SIZE )
{
memset ( padded_block, 0, sizeof( padded_block ) );
memcpy ( padded_block, input, len );
padded_block|[ len ] = 0x80;
md5_block_operate( padded_block, hash );

input += len;
len = -1;

}

5. Append the length, the padding bits and a trailing “1” bit — if it hasn’t
already been added — and operate on the final block. There will be
448 — |. These are I bits of padding, where [ is the length of the input in
bits. Note that this always happens, even if the input is 1 bit long.

// There's always at least one padded block at the end, which includes
// the length of the message
memset ( padded_block, 0, sizeof( padded_block ) );
if ( len >= 0 )
{
memcpy ( padded_block, input, len );
padded_block[ len ] = 0x80;

// Only append the length for the very last block
// Technically, this allows for 64 bits of length, but since we can only
// process 32 bits worth, we leave the upper four bytes empty

// This is sort of a odd concept of "little endian"...

padded_block [MD5_BLOCK_SIZE - 5]=(length_in_bits & O0xFF000000) >>24;
padded_block[MD5_BLOCK_SIZE - 6]=(length_in _bits & 0x00FF0000)>>16;
padded_block[MD5_BLOCK_SIZE - 7]=(length_in_bits & 0x0000FF00) >>8;
padded_block[MD5_BLOCK_SIZE - 8] =(length_in_bits & 0x000000FF) ;

md5_block_operate( padded_block, hash );

6. Because input greater than 232 isn’t allowed in this implementation, leave
the last four bytes empty (0) in all cases.

And you now have a 128-bit output that is essentially unique to the input.

MD5 Vulnerabilities

If you gathered 366 people in a room, there’s a 100 percent chance that two of
them will share the same birthday. There are only 365 birthdays to go around,
so with 366 people at least two must have the same birthday (367 if you want
to count Feb. 29 and Mar. 1 as two distinct birthdays). This is clear. Here’s a
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question for you, though: How many people would you have to gather in a room
to have a 50 percent chance that two of them share the same birthday? You might
hazard a guess that it would take about 183 — half the people, half the chance.

As it turns out, the answer is stunningly lower. If 23 people are gathered
together in a room, there’s a 50 percent chance that two of them share the same
birthday. To resolve this seeming paradox, consider this: If there are 1 people
in a room, there are 365" possible birthdays. The first person can have any of
365 birthdays; the second can have any of 365 birthdays; and so on. However,
there are only 365364 ways that two people can have unique birthdays. The
first person has “used up” one of the available birthdays. Three people can only

have 365*364*363 unique birthday combinations. In general,  people can have

365! . 365!
o5 — ) unigue combinations of birthdays. So, there are 3"~ (365 — ny Ways that

at least two people share a birthday — that is, that the birthday combinations are
not unique. The math is complex, but clear: With n possibilities, you need n + 1
instances to guarantee a repeat, but you need = 1.1772Vn to have a 50% chance
of a repeat. This surprising result is often referred to as the birthday paradox.

This doesn’t bode well for MD5. MD5 produces 128 bits for each input. 21?8 is
a mind-bogglingly large number. In decimal, it works out to approximately 340
million trillion trillion. However, 11772V23=22 x 10°. That’s still a lot, but quite
a few less than 2'%%. Remember that the purpose of using MD5 rather than a
simple checksum digest was that it ought to be impossible for an attacker to
engineer a collision. If I deliberately go looking for a collision with a published
hash, I have to compute for a long time. However, if I go looking for two docu-
ments that share a hash, I need to look for a much shorter time, albeit still
for a long time. And, as you saw with DES, this brute-force birthday attack is
infinitely parallelizable; the more computers I can add to the attack, the faster
I can get an answer.

This vulnerability to a birthday attack is a problem that all digest algo-
rithms have; the only solution is to make the output longer and longer until
a birthday attack is infeasible in terms of computing power. As you saw with
symmetric cryptography, this is a never-ending arms race as computers get
faster and faster and protocol designers struggle to keep up. However, MD5
is even worse off than this. Researchers have found cracks in the protocol’s
fundamental design.

In 2005, security researchers Xiaoyan Wang and Hongbo Yu presented their
paper “How to break MD5 and other hash functions” (http://merlot.usc.
edu/csac-s06/papers/Wang05a.pdf), which detailed an exploit capable of
producing targeted MD5 collisions in 15 minutes to an hour using commodity
hardware. This is not a theoretical exploit; Magnus Daum and Stefaun Lucks
illustrate an actual real-world MD-5 collision in their paper http: //th.informatik

.uni-mannheim.de/people/lucks/HashCollisions/.
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In spite of this, MD5 is fairly popular; TLS mandates its use! Fortunately for
the TLS-using public, it does so in a reasonably secure way — or, at least, a not
terribly insecure way — so that the TLS protocol itself is not weakened by the
inclusion of MD5.

Increasing Collision Resistance with the SHA-1 Digest
Algorithm

Secure Hash Algorithm (SHA-1) is similar to MD5. The only principal difference
is in the block operation itself. The other two superficial differences are that
SHA-1 produces a 160-bit (20-byte) hash rather than a 128-bit (16-byte) hash,
and SHA-1 deals with big-endian rather than little-endian numbers. Like MD5,
SHA-1 operates on 512-bit blocks, and the final output is the sum (modulo 32) of
the results of all of the blocks. The operation itself is slightly simpler; you start
by breaking the 512-bit input into 16 4-byte values x. You then compute 80 four-
byte w values from the original input where the following is rotated left once:
W[O<t<le] = x[t], and W[17<7<80] = W[ t - 3 ] xor W[ t - 8 ] xor
W[ t - 14 ] xor W[ £t - 16 ]

This w array serves the same purpose as the 4294967296 * abs (sin(i)) com-
putation in MD5, but is a bit easier to compute and is also based on the input.

After that, the hash is split up into five four-byte values a, b, ¢, d, and e,
which are operated on in a series of 80 rounds, similar to the operation in
MD5 — although in this case, somewhat easier to implement in a loop. At each
stage, a rotation, an addition of another hash integer, an addition of an indexed
constant, an addition of the w array, and an addition of a function whose opera-
tion depends on the round number is applied to the active hash value, and then
the hash values are cycled so that a new one becomes the active one.

Understanding SHA-1 Block Computation

If you understood the MD5 computation in Listing 4-4, you should have no
trouble making sense of the SHA-1 block computation in Listing 4-8.

Listing 4-8: “sha.c” bit manipulation, initialization and block operation

static const int k[] = {
0x5a827999, // 0 <= t <= 19
Ox6ed9ebal, // 20 <= t <= 39
0x8flbbcdc, // 40 <= t <= 59
Oxcab62cld6 // 60 <= t <= 79
Y

// ch is functions 0 - 19

unsigned int ch( unsigned int x, unsigned int y, unsigned int z )

(Continued)
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return ( x &y ) ~ ( ~x & z

)i

// parity is functions 20 - 39 & 60 - 79

unsigned int parity( unsigned int x, unsigned int y, unsigned int z

{

return x

~ ~

Y z;

// maj is functions 40 - 59

unsigned int maj( unsigned int x,

{

return ( x &y ) "~ ( x & z

#define SHA1l_RESULT_SIZE 5

~

unsigned int y, unsigned int z )

Yy &z );

void shal_block_operate( const unsigned char *block,
unsigned int hash|[ SHA1_RESULT SIZE ] )

{
unsigned int W[ 80 1;
unsigned int t = 0;

unsigned int a, b, c, 4, e,

// First 16 blocks of W are
for (t = 0; t < 80; t++ )
{

if (t < 16

Wl t ] = ( block[ ( t *
( block[ ( t * 4
( block[ ( t * 4
( block[ ( t * 4
}
else

wlit]=wlt-371?"
wlt-81"
wl t-14 1
W[ £t - 16 1;

// Rotate left operation,

W[ t]=(W[t]<<l1

= hash]
= hash][
hash|[
= hash][
= hash|

1;

1;
1;
1;

T &4 Q0 o 9
1
s W N ko
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simulated in C

(W[ £ ] & 0x80000000 ) >> 31 );
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for ( t = 0; t < 80; t++ )
{
T = ( (a<<5) ‘ (a>27) ) +e+ k[ (t /20 ) 1 + W[ t 1;

if (t <= 19)
{
T += ch( b, ¢, 4 );
}
else if ( t <= 39 )
{
T += parity( b, ¢, d );
}
else if ( t <= 59 )
{
T 4= maj( b, c, 4 );
}
else
{
T += parity( b, c, 4d );

e = d;
d = c;
c=((b<<30) | (b>2));
b = a;
a =T;
}
hash[ 0 ] += a;
hash[ 1 1 += b;
hash[ 2 ] += c;
hash[ 3 ] += d;
hash[ 4 ] += e;

Regarding Listing 4-8:
1. The constants k are defined — one for each set of 20 rounds.

2. The functions ch, maj, and parity are defined: ch for rounds 0-19, maj
for rounds 40-59, and parity for the remaining rounds. Like MD5’s
F, G, H, and |, these four functions just shuffle the bits of their input
randomly.

3. The block operation function computes the w array. Notice that you're
using unsigned ints here, rather than four-byte blocks, so you have to
be careful to account for endian-ness as usual. The benefit is that you
only have to keep track of this transformation once, at the beginning of
the computation, and from that point you can use native operations on
a 32-bit architecture.
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4. After w has been computed, the individual five hash integers are copied

into a, b, ¢, d, and e for computation; at each round, a new T value is
computed according to

T=((a<<5) | (a>>27))+e+k[ (t/20)1+wWlt]+

ch/parity/maj(b,c,d);

. a,b,c,d,and e are then rotated through each other, just as in MD5, and, for

good measure, c is rotated left 30 positions as well. Although the mechan-
ics are slightly different, this is very similar to what was done with MD5.

You don't really have to try to make sense of the mechanics of this. It’s sup-

posed to be impossible to do so. As long as the details are correct, you can safely
think of the block operation function as a true black-box function.

Understanding the SHA-1 Input Processing Function

The input processing function of SHA-1 is almost identical to that of MD5. The
length is appended, in bits, at the very end of the last block, each block is 512
bits, the hash must be initialized to a standard value before input begins, and
the hash computations of each block are added to one another, modulo 32, to
produce the final result. The function in Listing 4-9, which computes SHA-1
hashes of a given input block, differs from md5_hash in only a few places, which
are highlighted in bold .

Listing 4-9: “sha.c” SHA-1 hash algorithm

#define SHA1l_ INPUT_ BLOCK_SIZE 56
#define SHA1l_ BLOCK_SIZE 64

unsigned int shal_initial_hash[ ] = {

0x67452301,

Oxefcdab89,

0x98badcfe,

0x10325476,

0xc3d2elf0
}i

int shal hash( unsigned char *input, int len,

{
unsigned char padded_block[ SHAl1l_ BLOCK_SIZE ];
int length_in_bits = len * 8;

hash[ 0 ]
hash[ 1 ] = shal_initial_hash[ 1 1;

unsigned int hash[ SHAl1l RESULT SIZE ] )

shal_initial_hash[ 0 1;
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hash[ 2 ] = shal_initial_hash[ 2 ];
hash[ 3 ] = shal_initial_hash[ 3 ];
hash[ 4 ] = shal_initial hash|[ 4 ];

while ( len >= SHAl1l_INPUT_BLOCK_SIZE )
{
if ( len < SHAl BLOCK_SIZE )
{
memset ( padded_block, 0, sizeof( padded_block ) );
memcpy ( padded_block, input, len );
padded_block[ len ] = 0x80;
shal_block_operate( padded _block, hash );

input += len;
len = -1;
}
else
{
shal_block_operate( input, hash );

input += SHA1l BLOCK_SIZE;
len -= SHAl BLOCK_SIZE;

memset ( padded_block, 0, sizeof( padded_block ) );
if ( len >= 0 )
{
memcpy ( padded_block, input, len );
padded_block[ len ] = 0x80;

padded_block[ SHAl BLOCK_SIZE -
padded_block[ SHAl BLOCK_SIZE -
padded_block[ SHAl BLOCK_SIZE -
padded_block[ SHAl BLOCK_SIZE -

( length_in_bits & O0xFF000000 ) >> 24;
( length in_bits & O0x00FF0000 ) >> 16;
( length_in bits & 0x0000FF00 ) >> 8;
( length in_bits & 0x000000FF );

RN W s
—_ e e
non

shal_block_operate( padded_block, hash );

return 0;

In fact, shal_hash and md5_hash are so similar it’s almost painful not
to just go ahead and consolidate them into a common function. Go ahead
and do so.

Because mds_block_operate and shal_block_operate have identical method
signatures (what a coincidence!), you can just pass the block_operate function
in as a function pointer as in Listing 4-10.
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Listing 4-10: “digest.h” digest_hash function prototype

int digest_hash( unsigned char *input,
int len,
unsigned int *hash,
void (*block_operate) (const unsigned char *input, unsigned int hashl[] ));

Because sua1l_BLOCK_SIZE and MD5_BLOCK_SIZE are actually identical, there’s
not much benefit in using two different constants. You could pass the block
size in as a parameter to increase flexibility, but there are already quite a few
parameters, and you don’t need this flexibility — at least not yet. The initializa-
tion is different because SHA has one extra four-byte integer, but you can just
initialize outside of the function to take care of that.

Understanding SHA-1 Finalization

The only remaining difference is the finalization. Remember that MD5 had
sort of an odd formulation to append the length to the end of the block in little-
endian format. SHA doesn't; it sticks with the standard big endian. You could
probably code your way around this, but a better approach is to just refactor
this into another function in Listing 4-11 and Listing 4-12.

Listing 4-11: “md5.c” md5_finalize

void md5_finalize( unsigned char *padded_block, int length_in_bits )
{

padded_block[ MD5_BLOCK_SIZE - 5 ] = ( length_in_bits & O0xFF000000 ) >> 24;
padded_block[ MD5_BLOCK_SIZE - 6 ] = ( length_in_bits & 0x00FF0000 ) >> 16;
padded_block|[ MD5_BLOCK_SIZE - 7 ] = ( length_in bits & 0x0000FF00 ) >> 8;
padded_block[ MD5_BLOCK_SIZE - 8 ] = ( length_in bits & 0x000000FF );

}

Listing 4-12: “sha.c” shal_finalize

void shal_finalize( unsigned char *padded_block, int length_in_bits )

{
padded_block[ SHA1l_BLOCK_SIZE - 4 ] = ( length_in bits & OxFF000000 ) >> 24;
padded_block[ SHA1l_BLOCK_SIZE - 3 ] = ( length_in_bits & 0x00FF0000 ) >> 16;
padded_block[ SHA1l_BLOCK_SIZE - 2 ] = ( length_in _bits & O0x0000FF00 ) >> 8;
padded_block[ SHA1l_BLOCK_SIZE - 1 ] = ( length_in_bits & 0x000000FF );

So the final “digest” function looks like Listing 4-13, with two function
parameters.

Listing 4-13: “digest.c” digest_hash

#define DIGEST_BLOCK_SIZE 64
#define INPUT_BLOCK_SIZE 56
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/**
* Generic digest hash computation. The hash should be set to its initial
* value *before* calling this function.
*/
int digest_hash( unsigned char *input,
int len,
unsigned int *hash,
void (*block_operate) (const unsigned char *input,
unsigned int hash[] ),

void (*block_finalize) (unsigned char *block, int length ) )

unsigned char padded_block[ DIGEST_BLOCK_SIZE 1];
int length_in_bits = len * 8;

while ( len >= INPUT_BLOCK_SIZE )

{
// Special handling for blocks between 56 and 64 bytes
// (not enough room for the 8 bytes of length, but also
// not enough to fill up a block)
if ( len < DIGEST_BLOCK_SIZE )
{
memset ( padded_block, 0, sizeof( padded_block ) );
memcpy ( padded_block, input, len );
padded_block[ len ] = 0x80;
block_operate( padded_block, hash );

input += len;
len = -1;
}
else
{
block_operate( input, hash );

input += DIGEST_BLOCK_SIZE;
len -= DIGEST_BLOCK_SIZE;

memset ( padded_block, 0, sizeof( padded_block ) );
if ( len >= 0 )
{
memcpy ( padded_block, input, len );
padded_block|[ len ] = 0x80;

block _finalize( padded_block, length_in_bits );
block_operate( padded_block, hash );

return 0;
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This single function is now responsible for computing both MD5 and SHA-1
hashes. To compute an MD5 hash, call

unsigned int hash[ 4 ];

memcpy ( hash, md5_initial_hash, 4 * sizeof( unsigned int ) );
digest_hash( argv[ 2 ], strlen( argv[ 2 ] ), hash, 4, md5_block operate,
md5_finalize );

and to compute an SHA-1 hash, call

unsigned int hash[ 5 1;

memcpy ( hash, shal_initial_hash, 5 * sizeof( unsigned int ) );

digest_hash( argv[ 2 ], strlen( argv[ 2 ] ), hash, 5, shal_block_operate,

shal_finalize );

If you were paying close attention, you may have also noticed that the first
four integers of the shal_initial_hash array are the same as the first four
integers of the md5_initial_hash array. Technically you could even use one
initial_hash array and share it between the two operations.

There’s one final problem you run into when trying to use digest as in Listing 4-13.
The output of md5 is given in big-endian format, whereas the output of SHA-1
is given in little-endian format. In and of itself, this isn’t really a problem, but
you want to be able to treat digest as a black box and not care which algorithm
it encloses. As a result, you need to decide which format you want to follow.
Arbitrarily, pick the MD5 format, and reverse the SHA-1 computations at each
stage. The changes to sha.c are detailed in Listing 4-14.

Listing 4-14: “sha.c” SHA-1 in little-endian format

unsigned int shal_initial_hash[ ] = {
0x01234567,
0x89abcdef,
Oxfedcbad8,
0x76543210,
0xf0eld2c3
}i

void shal_block_operate( const unsigned char *block, unsigned int hash[ 5 ] )
{

W[t 1= (Wlt]<<1l) | ( (W t] & 0x80000000 ) >> 31 );

}

}

hash[ 0 ] = ntohl( hash[ 0 ] );
hash[ 1 ] = ntohl( hash[ 1 ] );
hash[ 2 ] = ntohl( hash[ 2 ] );
hash[ 3 ] = ntohl( hash[ 3 ] );
hash[ 4 ] = ntohl( hash[ 4 1 );

12/10/2010 9:44:39 AM



c04.indd 179

Chapter 4 = Authenticating Communications Using Digital Signatures

179

a = hash[ 0 1;
b = hash[ 1 ];
¢ = hash[ 2 ];
d = hash[ 3 ];

hash[ 3 1 += d;
hash[ 4 1 += e;

hash[ 0 ] = htonl( hash[ 0 ] );
hash[ 1 ] = htonl( hash[ 1 ] );
hash[ 2 ] = htonl( hash[ 2 ] );
hash[ 3 ] = htonl( hash[ 3 ] );
hash[ 4 ] = htonl( hash[ 4 ] );

Notice that all this does is reverse the hash values prior to each shal_block_
operate call so that you can use the native arithmetic operators to work on
the block. It then re-reverses them on the way out. Of course, you also have to
reverse shal_initial_hash.

Now you can call digest and treat the hash results uniformly, whether the
hash algorithm is MD5 or SHA-1. Go ahead and build a test main routine and
see some results as shown in Listing 4-15.

Listing 4-15: “digest.c” main routine

#ifdef TEST DIGEST
int main( int argc, char *argv[ ] )
{

unsigned int *hash;

int hash_len;

int i;

unsigned char *decoded_input;

int decoded_len;

if ( argc < 3 )
{
fprintf( stderr, "Usage: %s [—mdS\—sha] [0x]<input>\n", argv[ 0 ] );

exit( 0 );
}
decoded_len = hex_decode( argv[ 2 ], &decoded_input );
if ( !'( strcmp( argv[ 1 ], "-md5" ) ) )

{
hash = malloc( sizeof( int ) * MD5_RESULT_ SIZE );
memcpy ( hash, md5_initial_hash, sizeof( int ) * MD5_RESULT _SIZE );
hash_len = MD5_RESULT_SIZE;
digest_hash( decoded_input, decoded_len, hash,
md5_block_operate, md5_finalize );

(Continued)
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else if ( !( strcmp( argv[ 1 ], "-shal" ) ) )
{
hash = malloc( sizeof( int ) * SHA1l_RESULT_SIZE );
memcpy ( hash, shal_initial_hash, sizeof( int ) * SHA1l_RESULT SIZE );
hash_len = SHAl RESULT_SIZE;
digest_hash( decoded_input, decoded_len, hash,
shal_block operate, shal_finalize );
}
else
{
fprintf( stderr, "unsupported digest algorithm '%$s'\n", argv[ 1 1 );

exit( 0 );

}

{
unsigned char *display_hash = ( unsigned char * ) hash;
for (1 =0; 1 < ( hash_len * 4 ); i++ )

{

printf( "%$.02x", display_hash([ i ] );
}

printf( "\n" );

free( hash );
free( decoded_input ) ;

return 0;
}
#endif

Compile and run this to see it in action:
jdavies@localhost$ digest -md5 abc

900150983¢cd24£fb0d6963£7d28el17£72

jdavies@localhost$ digest -shal abc
a9993e364706816aba3e25717850c26c9cd0d89d

Notice that the SHA-1 output is a bit longer than the MD5 output; MD5 gives
you 128 bits, and SHA-1 gives you 160.

Even More Collision Resistance with the SHA-256
Digest Algorithm

Even SHA, with its 160 bits of output, is no longer considered sufficient to effec-
tively guard against hash collisions. There have been three new standardized
SHA extensions named SHA-256, SHA-384 and SHA-512. In general, the SHA-n
algorithm produces 1 bits of output. You don’t examine them all here, but go
ahead and add support for SHA-256 because it’s rapidly becoming the minimum
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required standard where secure hashing is concerned (you'll also need it later in
this chapter, to support elliptic-curve cryptography). At the time of this writing,
the NIST is evaluating proposals for a new SHA standard, which will almost
certainly have an even longer output.

Everything about SHA-256 is identical to SHA-1 except for the block process-
ing itself and the output length. The block size, padding, and so on are all the
same. You can reuse the digest_hash function from Listing 4-13 verbatim, if
you just change the block_operate function pointer.

SHA-256s block operation is similar; ch and maj reappear, but the parity func-
tion disappears and four new functions, which are identified in the specification
as 31, 30 ¢! and oare introduced:

30 (x) = rotr( x, 2 ) A rotr( x, 13 ) A rotr( x, 22 )

31 (x) = rotr(x, 6 ) A rotr(x, 11 ) ~ rotr( x, 25)

o (x) = rotr(x, 7 ) " rotr(x, 18 ) A shr(x " 3)

o! (x) = rotr(x, 17 ) ~ rotr( x, 19 ) shr( x, 10)
This choice of nomenclature doesn’t translate very well into code, so call %
sigma_rot (because the last operation is a rotr — “rotate right”) and o sigma_shr

(because the last operation is a shr — “shift right”). In code, this looks like
Listing 4-16.

Listing 4-16: “sha.c” SHA-256 sigma functions

unsigned int rotr( unsigned int x, unsigned int n )
{
return (x>>mn ) | ( (x ) << (32 -n) );

}

unsigned int shr( unsigned int x, unsigned int n )
{

return x >> n;

}

unsigned int sigma_rot( unsigned int x, int 1 )
{
return rotr( x, 1 2 6 : 2 ) ~ rotr( x, 1 ? 11 : 13 ) ”~ rotr( x, i ? 25 : 22 );

}

unsigned int sigma_shr( unsigned int x, int 1 )
{

return rotr( x, 1 ? 17 : 7 ) ~ rotr( x, i 2 19 : 18 ) ~ shr( x, i ? 10 : 3 );

The block operation itself should look familiar; instead of just a, b, ¢, dand e,
you have a-h because there are eight 32-bit integers in the output now. There’s a
64-int (instead of an 80-int) w that is precomputed, and a static k block. There’s
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also a 64-iteration round that’s applied to a-h where they shift positions each
round and whichever input is at the head is subject to a complex computation.
The code should be more or less self-explanatory; even if you can’t see why
this works, you should be more than convinced that the output is a random
permutation of the input, which is what you want from a hash function. This
is shown in Listing 4-17.

Listing 4-17: “sha.c” SHA-256 block operate

void sha256_block_operate( const unsigned char *block,

unsigned int hash[ 8 ] )

unsigned int W[ 64 ];
unsigned int a, b, ¢, d, e, £, g, h;
unsigned int T1, T2;

int t, 1i;

/**

* The first 32 bits of the fractional parts of the cube roots

* of the first sixty-four prime numbers.

*/

static const unsigned int k[] =

{
0x428a2f98, 0x71374491, O0xb5cO0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
0x923£82a4, Oxablc5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72bebd74, 0x80deblfe, 0x9bdc06a7, 0xcl9bfl74, 0xed9b69cl, Oxefbed786,
0x0fc19dc6, 0x240calcc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76£988da,
0x983e5152, 0xaB831lc66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
0x06ca6351, 0x14292967, 0x27b70a85, 0x2elb2138, 0x4d2c6dfc, 0x53380d413,
0x650a7354, 0x766al0abb, 0x8lc2c92e, 0x92722c85, 0Oxa2bfe8al, 0xa8la6t6db,
0xc24b8b70, 0xc76c5la3, 0xdl92e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4cll6, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391cOcb3, 0x4edB8aada,
0x5b9ccadf, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, O0xad506ceb, Oxbef9a3f7, Oxc67178f2

I

// deal with little-endian-ness
for (i =0; 1 < 8; i++ )
{

hash[ 1 ] = ntohl( hash[ i ] );

for ( t = 0; t < 64; t++ )
if (t <= 15)

W[ t ] = ( block[ (t * 4 ) ] <<24) |
( block[ (t * 4 ) + 1] <<16 ) |
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( block[ (t * 4 ) + 2] << 8) |
( block[ (£t *4 ) + 31 );

else

W[ t ] = sigma_shr( W[ t - 2 ], 1 ) +
wl t-71+
sigma_shr( W[ t - 15 1, 0 ) +
W[ t - 16 ];

= hash|[
= hash|[
= hash|[
hash|[
= hash|[
= hash|[
= hash|[
= hash|[

QMmoo a0 o e
I
<N 00Uk W N RO

for ( t = 0; t < 64; t++ )

Tl = h + sigma_rot( e, 1 ) + ch( e, £, g ) + k[ t 1 + W[ t ];

T2 = sigma_rot( a, 0 ) + maj( a, b, c );

h =g;

g = £;

f =e;

e =d + T1l;

d = c¢;

c = b;

b = a;

a="T1 + T2;
}
hash[ 0 ] = a + hash[ 0 1;
hash[ 1 1] = b + hash[ 1 ];
hash[ 2 ] = ¢ + hash[ 2 ];
hash[ 3 ] = d + hash[ 3 ];
hash[ 4 ] = e + hash[ 4 1;
hash[ 5 1 = £ + hash[ 5 1;
hash[ 6 ] = g + hash[ 6 ];
hash[ 7 1 = h + hash[ 7 ];

// deal with little-endian-ness

for (1 =0; i < 8; i++ )

hash[ i ] = htonl( hash[ i ] );
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Notice that there are quite a few more k values for SHA-256 than for SHA-1,
and that o shows up only in the computation of w and %, in the main loop. You
also have to have an initial hash in Listing 4-18.

Listing 4-18: "sha.c” SHA-256 initial hash

static const unsigned int sha256_initial_hash[] =
{

0x67e6096a,

0x85ae67bb,

0x72£f36e3c,

0x3af54fab,

0x7£520e51,

0x8c68059Db,

O0xabd9831f,

0x19cde05b

These are presented here backward (that is, in little-endian format) with
respect to the specification. If you want to invoke this, you need to call the same
digest_hash function developed earlier:

unsigned int hash[ 8 ];
memcpy ( hash, sha256_initial_hash, 8 * sizeof( unsigned int ) );
digest_hash( argv[ 2 ], strlen( argv[ 2 ] ), hash, 8, sha256_block_operate,

shal_finalize );

Notice that the finalize pointer points to shal_finalize — finalization is
exactly the same for SHA-256 as it is for SHA-1, so there’s no reason to define
a new function here.

Preventing Replay Attacks with the HMAC Keyed-Hash
Algorithm

Related to message digests (and particularly relevant to SSL) are HMACs, speci-
fied in RFC 2104. To understand the motivation for HMAC, consider the secure
hash functions (MD5 and SHA) examined in the previous three sections. Secure
hashes are reliable, one-way functions. You give them the input, they give you
the output, and nobody — not even you — can work backward from the output
to uncover the input. Right?

Well, not exactly — or at least, not always. Imagine that a company maintains
a database of purchase orders, and to verify that the customer is in posses-
sion of the credit card number used to place an order, a secure hash of the
credit card number is stored for each order. The customer is happy, because
her credit card number is not being stored in a database for some hacker to
steal; and the company is happy, because it can ask a customer for her credit
card number and then retrieve all orders that were made using that card for
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customer service purposes. The company just asks the customer for the credit
card number again, hashes it, and searches the database on the hash column.

Unfortunately, there’s a problem with this approach. Although there are a lot
of potential hash values — even for a small hash function such as MD5 — there
aren’t that many credit card numbers. About 10,000 trillion. In fact, not every
16-digit number is a valid credit card number, and the LUHN consistency
check that verifies the validity of a credit card number is a public algorithm. In
cryptography terms, this isn't actually a very big number. A motivated attacker
might try to compute the MD5 hash — or whatever hash was used — of all
10,000 trillion possible credit card numbers and store the results, keyed back
to the original credit card number. This might take months to complete on a
powerful cluster of computers, but after it’s computed this database could be
used against any database that stores an MD5 hash of credit card numbers.
Fortunately, this direct attack is infeasible for a different reason. This would
require 320,000 trillion bytes of memory — about 320 petabytes. The cost of
this storage array far outweighs the value of even the largest database of credit
card numbers.

So far, so good. An attacker would have to spend months mounting a targeted
attack against the database or would have to have an astronomical amount
of storage at his disposal. Unfortunately, Martin Hellman, in his paper “A
Cryptanalytic Time — Memory Trade-Off”, came up with a way to trade stor-
age space for speed. His concept has been refined into what are now called
rainbow tables. The idea is to start with an input, hash it, and then arbitrarily
map that hash back to the input space. This arbitrary mapping doesn’t undo
the hash — that’s impossible — it just has to be repeatable. You then take the
resulting input, hash it, map it back, and so on. Do this n times, but only store
the first and the last values. This way, although you have to go through every
possible input value, you can drastically reduce the amount of storage you need.

When you have a hash code you want to map back to its original input, look
for it in your table. If you don't find it, apply your back-mapping function, hash
that, and look in the table again. Eventually, you find a match, and when you do,
you have uncovered the original input. This approach has been successfully used
to crack passwords whose hashes were stored rather than their actual contents;
rainbow tables of common password values are available for download online;
you don't even have to compute them yourself.

The easiest way to guard against this is to include a secret in the hash; with-
out the secret, the attacker doesn’t know what to hash in the first place. This
is, in fact, the idea behind the HMAC. Here, both sides share a secret, which is
combined with the hash in a secure way. Only a legitimate holder of the secret
can figure out H(m,s) where H is the secure hash function, m is the message,
and s is the secret.

A weak, naive, shared-secret MAC operation might be:

h(m) @s
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where /1 refers to a secure digest. The problem with this approach is its vulner-
ability to known plaintext attacks. The attack works like this: The attacker convinces
somebody with the MAC secret to hash and XOR the text “abc” or some other
value that is known to the attacker. This has the MD5 hash 900150983cd24fb0
d6963f7d28e17f72. Remember that the attacker can compute this as well — an
MDS5 hash never changes. The holder of the secret then XORs this value with
the secret and makes the result available.

Unfortunately, the attacker can then XOR the hash with the result and recover
the secret. Remember thata @b @b = a,buta® b ® a = b as well. So hash @
secret @ hash = secret. Since mac = (hash @ secret), mac ® hash = secret, and the
secret has been revealed.

Implementing a Secure HMAC Algorithm

A more secure algorithm is specified in RFC 2104 and is the standard for com-
bining shared secrets with secure hash algorithms. Overall, it’s not radically
different in concept than XORing the shared secret with the result of a secure
hash; it just adds a couple of extra functions.

An HMAC-hash prepends one block of data to the data to be hashed. The
prepended block consists of 64 bytes of 0x36, XORed with the shared secret.
This means that the shared secret can’t be longer than 64 bytes. If it is, it should
be securely hashed itself, and the results of that hash used as the shared secret.
This result (the prepended block, plus the input data itself) is then hashed, using
a secure hash algorithm. Finally, this hash is appended to a new block of data
that consists of one block of the byte 0x5C, XORed again with the shared secret
(or its computed hash as described previously), and hashed again to produce
the final hash value. Figure 4-1 illustrates this process.

This double-hash technique stops the attacker in the known-plaintext attack
described earlier from computing the hash code and XORing it against the secret
to recover it. All of this complexity is carefully designed to create a repeatable
process. Remember, if “abc” hashes to “xyz” for me, it must hash that way for
you no matter when you run it or what type of machine you're on — but in such
a way that cant be reversed or forged. It seems complicated (and it is), but after
it’s implemented, it can be treated as a black box.

Using the digest algorithm above, you can put together an HMAC imple-
mentation that can work with any hash algorithm in Listing 4-19.

Listing 4-19: "hmac.c” HMAC function

/**

* Note: key_length, text_length, hash_block_length are in bytes.
* hash_code_length is in ints.

*/

void hmac( const unsigned char *key,
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int key_length,

const unsigned char *text,

int text_length,

void (*hash_block_operate) (const unsigned char *input, unsigned int hash[] ),
void (*hash_block_finalize) (const unsigned char *block, int length ),

int hash_block_length,

int hash_code_length,

unsigned int *hash_out )

unsigned char *ipad, *opad, *padded_block;
unsigned int *hashl;

int i;

// TODO if key_length > hash_block_length, should hash it using "hash_
// function" first and then use that as the key.

assert ( key_length < hash_block_length );

hashl = ( unsigned int * ) malloc( hash_code_length * sizeof( unsigned int )
)i

ipad = ( unsigned char * ) malloc( hash_block_length );

padded_block = ( unsigned char * ) malloc( text_length + hash_block_length );

memset ( ipad, 0x36, hash_block_length );

memset ( padded_block, '\0', hash _block_length );
memcpy ( padded_block, key, key_length );
for ( 1 = 0; 1 < hash_block_length; i++ )
{
padded_block[ i ] "= ipad[ i 1;

memcpy ( padded_block + hash_block_length, text, text_length );
memcpy ( hashl, hash_out, hash_code_length * sizeof( unsigned int ) );
digest_hash( padded_block, hash_block_length + text_length, hashl,
hash_code_length, hash_block_operate, hash_block_finalize );

opad = ( unsigned char * ) malloc( hash_block_length );
memset ( opad, 0x5C, hash_block_length );

free( padded_block );
padded_block = ( unsigned char * ) malloc(
( hash_code_length * sizeof( int ) ) + hash_block length );
memset ( padded_block, '\0', hash block_ length );
memcpy ( padded_block, key, key_length );

for (i = 0; i < hash_block_length; i++ )
{
padded_block[ 1 ] "= opadl i 1;:

(Continued)
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memcpy ( padded_block + hash_block_length, hashl,
hash_code_length * sizeof( int ) );

digest_hash( padded_block,
hash_block_length + ( hash_code_length * sizeof( int ) ), hash_out,
hash_code_length, hash_block_operate, hash_block_finalize );

free( hashl );
free( ipad );
free( opad );
free( padded_block );
}
Key
A
Y
0x36 0x36 0x36 ... text
I
hash (e.g. MD5 or SHA-1)
Y
0x5¢ 0x5¢ 0x5¢ hash code
I
hash
HMAC

Figure 4-1: HMAC Function

The method signature is a behemoth, repeated in Listing 4-20.

Listing 4-20: "hmac.h” HMAC function prototype

void hmac( const unsigned char *key,
int key_length,
const unsigned char *text,
int text_length,
int (*hash_block_operate) (const unsigned char *input, unsigned int hash[] ),
int (*hash_block_finalize) (unsigned char *block, int length ),
int hash_block_length,
int hash_code_length,

unsigned int *hash_out )
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Here, key and key_1length describe the shared secret; text and text_length
describe the data to be HMAC-ed; hash_block_operate and hash_block_final-
ize describe the hash operation; hash_block_length describes the length of a
block in bytes (which is always 64 for MD5 and SHA-1); hash_code_length is
the length of the resultant hash in ints (4 for MD5, 5 for SHA-1); and hash_out
is a pointer to the hash code to be generated.

Because you don't need to deal with shared secrets that are greater than 64
bytes for SSL, just ignore them:

// TODO if key_length > hash_block_length, should hash it using "hash_

// function" first and then use that as the key.
assert( key_length < hash_block_length );

.m Note that hash out must be initialized properly, according to the
secure hashing algorithm. Alternatively, you could have added an initialization
parameter, but you're already up to nine parameters here.

Remember that HMAC requires that you compute an initial hash based on
the text to be hashed, prepended with a block of 0x36s XORed with the shared
secret, called the key here. This section of the HMAC function builds this block

of data:
hashl = ( unsigned int * ) malloc( hash_code_length * sizeof( unsigned int ) );
ipad = ( unsigned char * ) malloc( hash_block_length );
padded_block = ( unsigned char * ) malloc( text_length + hash_block_length );

memset ( ipad, 0x36, hash_block_length );

memset ( padded_block, '\0', hash block_length );
memcpy ( padded_block, key, key length );
for (1 = 0; i < hash_block_length; i++ )
{
padded_block[ i ] "= ipad[ i ];
}

You allocate a new block of memory as long as the text to be hashed plus one
extra block, fill it with 0x36s, and XOR that with the key. Finally, compute the
hash of this new data block:

memcpy ( padded_block + hash_block_length, text, text_length );

memcpy ( hashl, hash_out, hash_code_length * sizeof( unsigned int ) );

digest_hash( padded_block, hash_block_length + text_length, hashl,
hash_code_length, hash_block_operate, hash_block_ finalize );

Notice that you're hashing into an internal block called hash1, and remember
that HMAC requires you to hash that hash. There’s a minor implementation
problem here, though. The caller of digest_hash must preinitialize the hash
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code to its proper initialization value. You could ask the caller of this function
to pass the correct initialization value in as a parameter, but you can “cheat”
instead to save an input parameter. Because you know that the caller of hmac
had to initialize hash_out, copy that value into hashi to properly initialize it.

Completing the HMAC Operation

Now you have the first hash code computed in hash1, according to the secure
hashing algorithm that was passed in. To complete the HMAC operation, you
need to prepend that with another block of 0x5Cs, XORed with the shared
secret, and hash it:

opad = ( unsigned char * ) malloc( hash_block_length );
memset ( opad, 0x5C, hash_block_ length );

free( padded_block );

padded_block = ( unsigned char * ) malloc( hash_code_length +
( hash_block_length * sizeof( int ) ) );

memset ( padded_block, '\0', hash_block_length );

memcpy ( padded_block, key, key_ length );

for (i = 0; 1 < hash_block_length; i++ )
{

padded_block[ i ] "= opad[ i ];
}

Notice that this frees and reallocates padded_block. You may wonder why
you'd want to reallocate here because you already allocated this temporary space
to compute the first hash value. However, consider the case where text_length
is less than hash_code_length, which sometimes it is. In this case, you'd have
too little space for the prepended hash code. You could make this a bit more
efficient by allocating max ( hash_code_length, text_length ) atthe top of
the function, but this implementation is good enough.

Finally, compute the hash into hash_out, which is the return value of the
function

memcpy ( padded_block + hash_block_length, hashl,

hash_code_length * sizeof( int ) );
digest_hash( padded_block,

hash_block_length + ( hash_code_length * sizeof( int ) ), hash_out,
hash_code_length, hash_block_operate, hash_block_finalize );

Creating Updateable Hash Functions

Notice that, in order to compute an HMAC, you had to build an internal buffer
consisting of a padded, XORed key followed by the text to be hashed. However,
the hash functions presented here don’t ever need to go back in the data stream.
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After block #N has been hashed, subsequent operations won’t change the hash of
block #NN. They are just added to it, modulo 32. Therefore, you can save memory
and time by allowing the hash operation to save its state and pick back up where
it left off later — that is, feed it a block of data, let it update the hash code, and
then feed it another, and so on.

Of course, the padding requirements of MD5 and SHA make this a little
trickier than it sounds at first. You need to keep track of the running bit-length
of the input so that it can be appended later on. This is, incidentally, how a
32-bit architecture can hash an input of more than 2% bits. Plus, for additional
flexibility, you'd want to allow the caller to pass in less than a single block at a
time and accumulate the blocks yourself.

You could store this running state in a static global, but this would cause
thread-safety problems (if you ever wanted to use this routine in a threaded
context, anyway). Instead, you'd do better to pass a context object into the hash-
ing function, with a routine named something like hash_update that would
also take the data to be added to the running hash, and another routine named
hash_finalize that would add the final padding blocks and return the result.
This is, in fact, the only non-superficial difference between the MD5 code included
in RFC 1321 and the MD5 implementation presented here. You need to be able
to compute running hashes for SSL, so implement this extension for MD5 and
SHA. Change your digest function to allow running updates and improve the
HMAC implementation a bit.

Defining a Digest Structure

Because you can no longer call digest in one shot, but must instead keep track
of a long-running operation, define a context structure that stores the state of
an ongoing digest computation as shown in Listing 4-21.

Listing 4-21: “digest.h” digest context structure declaration

typedef struct

{
unsigned int *hash;
int hash_len;

unsigned int input_len;

void (*block_operate) (const unsigned char *input, unsigned int hash[] );

void (*block_finalize) (const unsigned char *block, int length );

// Temporary storage
unsigned char block[ DIGEST_BLOCK_SIZE ];
int block_len;

}

digest_ctx;
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hash and hash_len are fairly straightforward; this is the hash code as it has
been computed with the data that’s been given so far. input_1len is the number
of bytes that have been passed in; remember input_1len needs to be tracked in
order to append the length in bits to the virtual buffer before computing the
final hash code. Go ahead and stick the block_operate and block_finalize
function pointers in here so that you don't have to further pollute your function
call signatures. Finally, there’s a block of temporary storage; if a call to update
is made with less than a full block (or with a non-aligned bit left over), store it
here, along with its length, and pass it on to block_operate when there’s enough
data to make a full block. This is shown in Listing 4-22.

Listing 4-22: “digest.c” update digest function

void update_digest( digest_ctx *context, const unsigned char *input, int input_
len )
{

context->input_len += input_len;

// Process any left over from the last call to "update_digest"
if ( context->block_len > 0 )
{

// How much we need to make a full block

int borrow_amt = DIGEST_BLOCK_SIZE - context->block_len;

if ( input_len < borrow_amt )

{
memcpy ( context->block + context->block_len, input, input_len );
context->block_len += input_len;
input_len = 0;

}

else

{
memcpy ( context->block + context->block_len, input, borrow_amt );
context->block_operate( context->block, context->hash );
context->block_len = 0;
input += borrow_amt;

input_len -= borrow_amt;

while ( input_len >= DIGEST_BLOCK_SIZE )
{

context->block_operate( input, context->hash );
input += DIGEST_ BLOCK_SIZE;

input_len -= DIGEST_BLOCK_SIZE;

// Have some non-aligned data left over; save it for next call, or
// "finalize" call.
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if ( input_len > 0 )
{
memcpy ( context->block, input, input_len );

context->block_len = input_len;

This is probably the most complex function presented so far, so it’s worth
going through carefully:

1. Update the input length. You have to append this to the very last block,
whenever that may come.

context->input_len += input_len;

// Process any left over from the last call to "update_digest"
if ( context->block_len > 0 )

{

}

2. Check to see if you have any data left over from a previous call. If you
don’t, go ahead and process the data, one block at a time, until you run
out of blocks:

while ( input_len >= DIGEST BLOCK_SIZE )
{

context->block_operate( input, context->hash );

input += DIGEST_BLOCK_SIZE;
input_len -= DIGEST_BLOCK_SIZE;
}

This ought to look familiar; it’s the main loop of the original digest func-
tion from Listing 4-13.

3. Process one entire block, update the hash, increment the input pointer
and decrement the length counter. At the end, input_1len is either 0 or
some integer less than the block size, so just store the remaining data in
the context pointer until the next time update_digest is called:

if ( input_len > 0 )
{
memcpy ( context->block, input, input_len );

context->block_len = input_len;

}

At this point, you know that input_1len is less than one block size, so
there’s no danger of overrunning the temporary buffer context->block.

4. Next time update_digest is called, check to see if there’s any data left over
from the previous call. If so, concatenate data from the input buffer onto
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the end of it, process the resulting block, and process whatever remaining
blocks are left.

if ( context->block_len > 0 )
{
// How much we need to make a full block

int borrow_amt = DIGEST_BLOCK_SIZE - context->block_len;

if ( input_len < borrow_amt )

{

5. borrow_amt is the number of bytes needed to make a full block. If you
still don’t have enough, just add it to the end of the temporary block and
allow the function to exit.

memcpy ( context->block + context->block_len, input, input_len );
context->block_len += input_len;

input_len = 0;
}

Otherwise, go ahead and copy borrow_amt bytes into the temporary block,
process that block, and continue:
else
{
memcpy ( context->block + context->block_len, input, borrow_amt ) ;
context->block_operate( context->block, context->hash );
context->block_len = 0;
input += borrow_amt;

input_len -= borrow_amt;

Appending the Length to the Last Block

So, the caller calls update_digest repeatedly, as data becomes available, allow-
ing it to compute a running hash code. However, to complete an MD5 or SHA-1
hash, you still have to append the length, in bits, to the end of the last block. The
function finalize_digest handles what used to be the complex logic in digest_
hash to figure out if the remaining data consists of one or two blocks — that is,

if there’s enough space for the end terminator and the length on the end of the
remaining block as shown in Listing 4-23.

Listing 4-23: “digest.c” finalize digest

/**
* Process whatever's left over in the context buffer, append
* the length in bits, and update the hash one last time.
*/

void finalize_digest( digest_ctx *context )

{
memset ( context->block + context->block len, 0, DIGEST_BLOCK_SIZE -
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context->block_len );
context->block[ context->block_len ] = 0x80;
// special handling if the last block is < 64 but > 56
if ( context->block_len >= INPUT_ BLOCK_SIZE )
{
context->block_operate( context->block, context->hash );
context->block_len = 0;
memset ( context->block + context->block_len, 0, DIGEST_BLOCK_SIZE -
context->block_len );
}
// Only append the length for the very last block
// Technically, this allows for 64 bits of length, but since we can only
// process 32 bits worth, we leave the upper four bytes empty
context->block_finalize( context->block, context->input_len * 8 );

context->block_operate( context->block, context->hash );

This logic was described when it was originally presented in the context
of MD5.
Listing 4-24 shows how you initialize the MD5 digest context.

Listing 4-24: “md5.c” MD5 digest initialization

void new_md5_digest( digest_ctx *context )
{
context->hash_len = 4;
context->input_len = 0;
context->block_len = 0;
context->hash = ( unsigned int * )
malloc( context->hash_len * sizeof( unsigned int ) );
memcpy ( context->hash, md5_initial_hash,
context->hash_len * sizeof( unsigned int ) );
memset ( context->block, '\0', DIGEST BLOCK_SIZE );
context->block_operate = md5_block_ operate;

context->block_finalize = md5_finalize;

Listing 4-25 shows how you initialize the SHA-1 context.

Listing 4-25: “sha.c” SHA-1 digest initialization

void new_shal_digest( digest_ctx *context )
{
context->hash_len = 5;
context->input_len = 0;
context->block_len = 0;
context->hash = ( unsigned int * )
malloc( context->hash_len * sizeof( unsigned int ) );
memcpy ( context->hash, shal_initial_hash,
context->hash_len * sizeof( unsigned int ) );

(Continued)
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memset ( context->block, '\0', DIGEST_BLOCK_SIZE );
context->block_operate = shal_block_operate;

context->block_finalize = shal_finalize;

And finally, Listing 4-26 shows how you initialize the SHA-256 context.

Listing 4-26: “sha.c’ SHA-256 digest initialization

void new_sha256_digest( digest_ctx *context )
{

context->hash_len = 8;

context->input_len = 0;
context->block_len = 0;
context->hash = ( unsigned int * ) malloc( context->hash_len *

sizeof ( unsigned int ) );
memcpy ( context->hash, sha256_initial_hash, context->hash_len *
sizeof ( unsigned int ) );
memset ( context->block, '\0', DIGEST_BLOCK_SIZE );
context->block_operate = sha256_block_ operate;

context->block_finalize = shal_finalize;

Of course if you want to support more hash contexts, just add more of them
here.

After the contexts have been initialized, theyre just passed to update_digest
as new data becomes available, and passed to finalize_digest after all the data
to be hashed has been accumulated.

Computing the MD5 Hash of an Entire File

An example might help to clarify how these updateable digest functions work.
Consider a real-world example — computing the MD5 hash of an entire file:

// hash a file; buffer input

digest_ctx context;

const char *filename = "somefile.tmp";

char buf[ 400 ]; // purposely non-aligned to exercise updating logic
int bytes_read;

int £ = open( filename, O_RDONLY ) ;

if (!'f)

{
fprintf( stderr, "Unable to open '%$s' for reading: ", filename );
perror( "" );
exit( 0 );

new_md5_digest ( &context );
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while ( ( bytes_read = read( f, buf, 400 ) ) > 0
{

update_digest ( &context, buf, bytes_read );
}

finalize_digest( &context );

if ( bytes_read == -1 )

{
fprintf( stderr, "Error reading file '%$s': ", filename );
perror( "" );

}

close( £ );

{
unsigned char *hash = ( unsigned char * ) context.hash;
for (i =0; i < ( context.hash_len * 4 ); i++ )

{
printf( "%.02x", hash[ 1 ] );
}
printf( "\n" );
}

free( context.hash );
Pay special attention to how this works:

1. Anew MD?5 digest structure is initialized by calling new_md5_digest from
Listing 4-24.

2. The file is opened and read, 400 bytes at a time.

3. These 400-byte blocks are passed into update_digest from Listing 4-22,
which is responsible for computing the hash “so far,” on top of the hash
that’s already been computed.

4. Before completing, finalize_digest from Listing 4-23 is called to append
the total length of the file as required by the digest structure and the final
hash is computed.

5. At this point, the context parameter can no longer be reused; if you wanted
to compute another hash, you’d have to initialize another context.

The benefit of this approach is that rather than reading the whole file into
memory and calling md5_hash from Listing 4-7 (which would produce the exact
same result), the whole file doesn’t need to be stored in memory all at once.

The hash is converted to a char array at the end so that it prints out in canonical
order — remember that MD5 is little-endian; however, it’s customary to display
a hash value in big-endian order anyway.
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.m This update_digest/finalize_digest/digest_ctx all but invents C++.
(Don’t worry, | promise it won't happen again.) In fact, if C and C++ weren’t so
difficult to interoperate, I'd just turn digest into a new superclass with three
subclasses, md5digest, shaldigest, and sha256digest.

This new updateable hash operation simplifies HMAC a bit because you
don’t need to do so much copying to get the buffers set up correctly as shown
in Listing 4-27.

Listing 4-27: "hmac.c” modified HMAC function to use updateable digest functions

void hmac( unsigned char *key,
int key_length,
unsigned char *text,
int text_length,
digest_ctx *digest )

unsigned char ipad[ DIGEST_BLOCK_SIZE ];
unsigned char opad|[ DIGEST BLOCK_SIZE ];
digest_ctx hashl;

int i;

// TODO if key_length > hash_block_length, should hash it using
// "hash_function" first and then use that as the key.
assert( key_length < DIGEST_BLOCK_SIZE );

// "cheating"; copy the supplied digest context in here, since we don't
// know which digest algorithm is being used

memcpy ( &hashl, digest, sizeof( digest_ctx ) );

hashl.hash = ( unsigned int * ) malloc(

hashl.hash_len * sizeof( unsigned int ) );

memcpy ( hashl.hash, digest->hash, hashl.hash_len * sizeof( unsigned int ) );
memset ( ipad, 0x36, DIGEST BLOCK_SIZE );
for (i = 0; 1 < key_length; i++ )

{
ipad[ 1 1 "= key[ 1 1;

update_digest ( &hashl, ipad, DIGEST_BLOCK_SIZE );
update_digest ( &hashl, text, text_length );
finalize_digest( &hashl );

memset ( opad, 0x5C, DIGEST_BLOCK_SIZE );

for (i = 0; 1 < key_length; i++ )
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opad[ i ] "= key[ 1 ];

update_digest ( digest, opad, DIGEST_BLOCK_SIZE );
update_digest( digest, ( unsigned char * ) hashl.hash,
hashl.hash_len * sizeof( int ) );

finalize_digest( digest );

free( hashl.hash );

Although update_digest and finalize_digest themselves are practi-
cally impenetrable if you don’t already know what they’re doing, HMAC is
actually much easier to read now that you've shunted memory management
off to update_digest. Now you simply XOR the key with a block of 0x36s,
update the digest, update it again with the text, finalize, XOR the key with
another block of 0x5Cs, update another digest, update it again with the result
of the first digest, and finalize that. The only real “magic” in the function
is at the beginning.

memcpy ( &hashl, digest, sizeof( digest_ctx ) );

hashl.hash = ( unsigned int * ) malloc(

hashl.hash_len * sizeof( unsigned int ) );
memcpy ( hashl.hash, digest->hash, hashl.hash_len * sizeof( unsigned int ) );

Remember that the hmac function can be called with an MD5, SHA-1, or SHA-
256 context. However, the function has no way of knowing which it was called
with. There are multitudes of ways to work around that: You could pass in a
flag or add an initializer function to the digest_ctx structure, but the simplest
way is to just memcpy the whole initialized structure at the start of the function.
You know it was initialized prior to invocation; the only thing to be careful of
is that hash was dynamically allocated, so you need to reallocate and recopy it.
If you were doing this in C++, this would be the sort of thing you'd use a copy
constructor for. OK, really, I promise to stop talking C++ now.

You can develop a main routine in Listing 4-28 to test this out.

Listing 4-28: “hmac.c” main routine

#ifdef TEST HMAC
int main( int argc, char *argv[ ] )
{

int i;

digest_ctx digest;

int key_len;

unsigned char *key;

int text_len;

unsigned char *text;

(Continued)
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if ( argc < 4 )
{

fprintf( stderr, "usage: %s [—shal\mdS] [0x]<key> [Ox]<text>\n", argv[ 0 1 );
exit( 0 );

}

if ( !'( strcmp( argv[ 1 ], "-shal" ) ) )

{
new_shal_digest ( &digest );
}
else if ( !( strcmp( argv[ 1 ], "-md5" ) ) )
{
new_md5_digest ( &digest );
}

else

{
fprintf( stderr, "usage: %s [-shal|md5] <key> <text>\n", argv[ 0 ] );
exit( 1 );

}

key_len = hex_decode( argv[ 2 1, &key );

text_len = hex_decode( argv[ 3 ], &text );

hmac ( key, key len, text, text_len, &digest );

for (1 = 0; i < digest.hash_len * sizeof( int ); i++ )
{
printf( "%$.02x", ( ( unsigned char *) digest.hash )[ 1 ] );
}
printf( "\n" );

free( digest.hash );
free( key );

free( text );

return 0;

#endif

To compute an HMAGC, call it like this:

jdavies@localhost$ hmac -md5 Jefe "what do ya want for nothing?"
750c783e6ab0b503eaa86e310a5db738

Where Does All of This Fit into SSL?

You may still be wondering what all this has to do with SSL. After all, you have
secure key exchange and symmetric cryptography. Where does the HMAC
function fit in?

@ 12/10/2010

9:44:41 AM



c04.indd 201

Chapter 4 = Authenticating Communications Using Digital Signatures

201

SSL requires that every record first be HMAC'ed before being encrypted. This
may seem like overkill — after all, HMAC guarantees the integrity of a record.
But because you're using symmetric cryptography, the odds are infinitesimally
small that an attacker could modify a record in such a way that it decrypts mean-
ingfully, at least without access to the session key. Consider a secure application
that transmits the message, “Withdraw troops from Bunker Hill and move them
to Normandy beach.” If you run this through the AES algorithm with the key
“passwordsecurity” and the initialization vector “initializationvc,” you get:

0xc99a87a32c57b80de43c26£762556a76bfb3040f7fc38e112d3ffdd f4a5cb703
989da2al1d253b6ec32e5c45411715006ffa68b20dbc38babfa03fce44fd581b

So far, so good. An attacker can’t modify the message and move the troops — say,
to Fort Knox — without the key. If he tries to change even one bit of the message,
it decrypts to gibberish and is presumably rejected.

He can, however, cut half of it off. The attacker could modify the encrypted
message to be

0xc99a87a32c57b80de43c26£762556a76bfb3040f7fc38e112d3ffdd f4a5cb703

This message is received and decrypted correctly to “Withdraw troops from
Bunker Hill.” The recipient has no way to detect the modification. For this
reason, some hash function must be used to verify the integrity of the message
after it’s been decrypted. SSL mandates that every record be protected this way
with an HMAC function. You examine this in more detail when the details of
the SSL protocol are discussed.

Also, SSL uses the HMAC function quite a bit as a pseudo-random number
generator. Because the output is not predictably related to the input, the HMAC
function is actually used to generate the keying material from a shared secret.
In fact, the HMAC function is used to generate the final HMAC secret!

Understanding Digital Signature Algorithm (DSA)
Signatures

Now it’s time to return to the primary topic of this chapter — digital signatures.
Recall from the beginning of this chapter that, in order to properly support digital
signatures, you must first compute a secure hash of the document/message that
you want to sign, and then perform a public-key operation on that secure hash
using a private key. By now, you should have a very good understanding of
secure hash algorithms, but not the actual mechanics of what to do with those
secure hashes because this hasn't yet been covered.

RSA support for digital signatures is straightforward — compute a secure hash
over the bytes to be signed and “encrypt” it using a private key. The recipient
then verifies the same signature by computing the secure hash of the same set
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of bytes, “decrypting” using the associated public key, and comparing the two.
The only difference between an RSA digital signature and an RSA encryption
(other than the fact that encryption is done with a public key and signing is done
with a private key) is that the padding type from Listing 3-21 is 0x01, instead of
0x02, and the padding bytes are all 1s instead of random bytes.

However, RSA isn’t the only game in town, at least not when it comes to digi-
tal signatures. A competing standard is the U.S. government’s Digital Signature
Algorithm, specified in FIPS 186-3.

Implementing Sender-Side DSA Signature Generation

If you were pleasantly surprised by the simplicity and elegance of the RSA
algorithm, where encryption, decryption, signatures, and verification were all
essentially the same operation with different parameters, DSA is going to be
a bit of a shock to your system. The signature and verification operations are
both completely different, and both are fairly complex. They also take quite a
few extra parameters.

A DSA signature accepts five input parameters, including the message to be
signed, and returns two output parameters. The input parameters are named
g P, 9, and x (and, of course, the message itself). g, p, and g are part of the public
key, and x is the private key. Like RSA, the signature is performed on a secure
hash of the message to be signed. However, the hash algorithm is somewhat part
of the signature, so you can’t necessarily just pick a random signature algorithm
and try to apply it. DSA is certified for SHA-1 and SHA-256; if you try to use it
with some other hash algorithm, “behavior is undefined.”

So, to generate the two-element DSA signature, whose elements are named
r and s by the standard (apparently nobody ever told the FIPS people the
general rule on using meaningful variable names), you perform the follow-
ing computations:

k=@c%(gq—-1)+1
r=(gk%p)%q
z = hash( message ), truncated to sizeof(q)

s=(k'%q)*(z+xr))%q

where (k! % q) means the inverse mod g, as defined in Chapter 3, of k.

What about this c? c is just a random number — securely generated, of
course — whose length in bits is the same as g. After performing these opera-
tions, you've generated r and s, which make up the signature.

To slightly minimize the method signatures, define a new structure named
dsa_params in Listing 4-29 to hold the general parameters g, p, and 4.
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Listing 4-29: “dsa.h” dsa_params structure

typedef struct
{

huge g;

huge p;

huge qg;
}

dsa_params;

Define the structure in Listing 4-30 to hold the actual signature.

Listing 4-30: "dsa.h” dsa_signature structure

typedef struct
{

huge r;

huge s;
}

dsa_signature;

So now, in code, the signature algorithm can be implemented as shown in
Listing 4-31.

Listing 4-31: "dsa.c’ DSA signature generation algorithm

void dsa_sign( dsa_params *params,
huge *private_key,
unsigned int *hash,
int hash_len,

dsa_signature *signature )

huge k;
huge z;

huge q;

set_huge( &q, 1 );

generate_message_secret ( params, &k );
//r=(g~"k%p) %qg

mod_pow ( &params->g, &k, &params->p, &signature->r );
copy_huge ( &g, &params->q );

divide( &signature->r, &g, NULL );

// z = hash(message), only approved with SHA

load_huge( &z, ( unsigned char * ) hash,
( (hash_len * 4 ) < params->g.size ) ?
(hash_len * 4 ) : params->g.size );

(Continued)
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// s = (inv(k) * (z + xr ) ) % Q

inv( &k, &params->q );

set_huge( &signature->s, 0 );

copy_huge ( &signature->s, private_key );
multiply( &signature->s, &signature->r );
add( &signature->s, &z );

multiply( &signature->s, &k );

copy_huge ( &g, &params->q );

divide( &signature->s, &g, NULL );

free_huge( &z );

Notice that this keeps essentially the same variable names that the specification
suggests, although it does call x private_key to make it a bit clearer what it does.
You should be able to follow the last parts of the code. I've added comments to
indicate what each section is doing with respect to the overall algorithm. Note
that this calls the inv routine defined in Listing 3-36 to compute (k™ % q) as
part of the computation of s. Also, the caller passes in the hash, not the message
itself; this makes the routine a bit more flexible, although DSA is only officially
approved for use with SHA. The signature function doesn’t know or care what
the original message was.

The computation of k is delegated to its own routine in Listing 4-32.

Listing 4-32: “dsa.c’ message secret generation

static void generate_message_secret( dsa_params *params, huge *k )
{

int i;

huge q;

huge one;

set_huge( &g, 0 ); // initialize this so that copy works
set_huge( &one, 1 );

copy_huge( &g, &params->q );
subtract( &g, &one );

// XXX the extra + 8 aren't really necessary since we're not generating
// a random "c"
k->sign = 0;
k->size = params->g.size + 8;
k->rep = malloc( k->size );
// TODO this should be filled with random bytes
for (i =0; 1 < k->size; i++ )
{
k->rep[ 1 ] =1 + 1;
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// k will become k % (g - 1 );
divide( k, &g, NULL );
add( k, &one );

}

The whole dsa_params structure is passed here, although technically only
is required.

So, given a message, a set of DSA parameters, and a private key, you can
compute a DSA signature for the message. Remember that a DSA signature
consists of two separate elements. Because r and s are both computed mod g,
they are of the same length as g, but they have to be separated somehow in the
output. This is in contrast to an RSA signature which is just a single, very long,
number. You'll see in Chapter 5 that this comes up as a bit of an issue in SSL/TLS.

Implementing Receiver-Side DSA Signature Verification

Now you may be saying, “OK, that DSA signature algorithm was a little complex,
but it wasn't that bad.” Get ready to see the signature verification algorithm.

Remember that the purpose of this whole thing is for the holder of the private
key to be able to transmit, in some authenticated way, the public key and the
signature to anybody else and allow that person to verify that only the holder
of the private key could have produced that signature over the given message.
With RSA, verification was a trivial extension of signature generation. You
“encrypt” a hash using the private key, and the recipient “decrypts” using the
public key and compares the hashes. If the two match, the signature is verified.

Because DSA isn’t encrypting or decrypting anything, DSA signature veri-
fication is a bit more complex. The recipient has the DSA parameters g, p, and
g, the public key y and the signature elements r and s — along with, of course,
the message itself. From this, it needs to check to see if r and s were generated
from g, p, g, x, and the message. The DSA way to accomplish this is to perform
the following operations:

w=s5"%q
z = hash( message ), truncated to sizeof( q )
ul =(zw) %q
u2=(rw)%gq
v=((g"y"?)%p)%q
If everything went correctly, v is equal to 7. Otherwise, something went wrong
or the signature is faked.

The signature part, then, is in 7; s is just transmitted to allow the recipient to
invert enough of the original computation to recover r. The security is mostly in
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the secrecy of the parameter k — which, you'll recall, was generated randomly
in the signature stage. Since s depends on k and the private key x — and x and
y are of course mathematically related — v depends on s and y. The whole com-
plicated mess described in this section just repeats the computation

r=(g%p)%q
without having access to k.
In code, this can be implemented as in Listing 4-33.

Listing 4-33: "dsa.c” DSA signature verification algorithm

int dsa_verify( dsa_params *params,
huge *public_key,
unsigned int *hash,
int hash_len,

dsa_signature *signature )

int match;
huge w, z, ul, u2, 4, p;

set_huge( &g, 1
set_huge( &p, 1 );
set_huge( &w, 0

// w = inv(s) % g
copy_huge ( &w, &signature->s );

inv( &w, &params->q );

// z = hash(message), truncated to sizeof (q)
load_huge( &z, ( unsigned char * ) hash,
( (hash_len * 4 ) < params->g.size ) ?

(hash_len * 4 ) : params->g.size );

// ul = (zw) % g

multiply( &z, &w );

copy_huge ( &g, &params->q );

divide( &z, &params->q, NULL ); // ul = z

// u2 = (rw) $ g

multiply( &w, &signature->r );
copy_huge( &g, &params->d );
divide( &w, &g, NULL ); // u2 =w

//vo= ( ( (gtul) $p* (y'u2) sp ) $p ) % g
mod_pow( &params->g, &z, &params->p, &ul );
mod_pow ( public_key, &w, &params->p, &u2 );
multiply( &ul, &u2 );

copy_huge( &p, &params->p );

divide( &ul, &p, NULL );
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copy_huge( &g, &params->q );
divide( &ul, &g, NULL ); // ul is "v" now

// Check to see if v & s match

match = !compare( &ul, &signature->r );
free_huge( &w );
&z ) ;
&ul );
&u2 );

free_huge

free_huge

(
(
(
free_huge(

return match;

As with the signing algorithm, I've added comments so that you can match
what the code is doing with the algorithm. Notice that this doesn’t use u1 and
u2 exactly as they’re shown in the algorithm, instead putting ul and u2 into =z
and w because you don’t need them again, and then using u1 and u2 to hold
the mod_pow values later on.

Also notice how:

v = ((gulyuZ)o/op)o/oq
is put together. You don’t want to compute g"!, then compute y*? and then mul-
tiply them by each other to finally figure out “mod p” of the whole mess. You

want to be able to use your mod_pow algorithm to keep the memory constraints
manageable. So instead, factor the v computation out into

v=(((g"%p)*(y?%p))%p)P%q

by the distributivity of the modulus operator. Now you can use mod_pow to
compute (g"") % p and ( y"? % p), multiply these together, which results in at
most 2p bits, and then apply the modulus operation twice.

You can put together a main routine to test this but, like RSA’s ¢, d, and 7, the
DSA parameters g, p, g, x, and y must be specifically related and you haven't yet
seen how. So just hardcode a sample set in the routine in Listing 4-34 to show
how it can be called.

Listing 4-34: “dsa.c” test main routine

#ifdef TEST DSA

int main( int argc, char *argv[] )

{
unsigned char priv[] = {

0x53, 0x61, Oxae, O0x4f, 0x6f, 0x25, 0x98, Oxde, Oxc4d, Oxbf, 0x0b, Oxbe, 0x09,
0x5f, Oxdf, 0x90, 0x2f, Ox4c, 0x8e, 0x09 };
unsigned char pub[] = {

Ox1b, 0x91, 0Ox4c, 0xa9, 0x73, Oxdc, 0x06, 0x0d, 0x21, Oxc6, Oxff, Oxab, O0xf6,

(Continued)
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Oxad, 0xf4, 0x11, 0x97, Oxaf, 0x23, 0x48, 0x50, Oxa8, O0xf3, Oxdb, 0x2e, 0xeb,
0x27, 0x8c, 0x40, Ox4c, O0xb3, 0xc8, 0xfe, 0x79, 0x7e, 0x89, 0x48, 0x90, 0x27,
0x92, Ox6f, 0x5b, 0xch5, Oxe6, 0x8f, 0x91, Ox4c, 0xe9, 0x4f, Oxed, 0x0d, O0x3c,
0x17, 0x09, Oxeb, 0x97, Oxac, 0x29, 0x77, 0xd5, 0x19, 0xe7, 0x4d, 0x17 };
unsigned char P[] = {
0x00, 0x9c, Ox4c, Oxaa, 0x76, 0x31, Ox2e, 0x71, 0x4d, 0x31, Oxdé6, Oxed4, 0xd7,
0x29, 0x7b, 0x7f, 0x05, Oxee, O0xfd, Oxca, 0x35, 0x1l4, Oxle, 0x9f,
0x12, 0xd9, Oxc4d, O0xc0O, Oxde, Oxcc, 0x66, 0x96, 0x2f,
Oxc2, 0x29, 0x0d, 0x27, 0x07, 0x48, 0xb9,
0x8d, 0x67, 0xl1l4, 0x84, 0x7b

0xe9, 0xa7,
0xe5, 0xc0, Ox2a, 0xe0,
Oxfl, 0x8f, Oxla, Oxel, 0xe8, Oxbf,
0x71, 0x04, Oxec, Oxc7, 0xf4, 0xl6, Ox2e, 0x50,
}i
unsigned char Q[] = {
0x00, Oxac, Ox6f, Oxcl, 0x37, Oxef, 0xl6, 0x74, 0x52, Ox6a, Oxeb, Oxc5, O0xf8,
0xf2, Ox1f, 0x53, 0xf4, 0x0f, OxeO, O0x51, Ox5f };
unsigned char G[] = {
0x7d, Oxcd, 0x66, 0x81, 0x61l, 0x52, 0x21, 0x10, 0xf7, OxalO, 0x83, O0x4c, O0x5f,
0xc8, 0x84, Oxca, 0xe8, 0x8a, 0x9b, 0x9f, 0x19, 0x14, 0x8c, 0x7d, 0xd0, Oxee,
0x33, Oxce, Oxb4, 0x57, O0x2d, Ox5e, 0x78, 0x3f, 0x06, 0xd7, 0xb3, 0xdé6, 0x40,
0x70, 0x2e, 0xb6, 0x12, 0x3f, Ox4a, O0x61, 0x38, Oxae, 0x72, 0x12, Oxfb, 0x77,
0Oxde, 0x53, O0xb3, Oxal, 0x99, 0xd8, 0xa8, 0x19, 0x96, 0xf7, 0x7f, 0x99 };
dsa_params params;
dsa_signature signature;
huge x, v;
unsigned char *msg = "abcl23";

digest_ctx ctx;

// TODO load these from a DSA private key file instead
load_huge( &params.g, G, sizeof( G ) );

load_huge( &params.p, P, sizeof( P ) );
load_huge( &params.q, Q, sizeof( Q ) );
load_huge( &x, priv, sizeof( priv ) );
load_huge( &y, pub, sizeof( pub ) );

new_shal_digest( &ctx );
update_digest ( &ctx, msg, strlen( msg ) );

finalize_digest( &ctx );

dsa_sign( &params, &x, ctx.hash, ctx.hash_len, &signature );

printf( "DSA signature of abcl23 is:" );
printf( "r:" );

show_hex( signature.r.rep, signature.r.size );
printf( "s:" );

show_hex( signature.s.rep, signature.s.size );

if ( dsa_verify( &params, &y, ctx.hash, ctx.hash_len, &signature ) )
{
printf( "Verified\n" );
}
else
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{
printf( "Verificiation failed\n" );

free_huge( &x );
free_huge( &y );

return 0;

}
#endif

The output of this function isn't too interesting.

jdavies@localhosts$ ./dsa

DSA signature of abcl23 is:

r: 14297£2522458d809b6c5752d3975a00bb0d89e0
s: 2f6e24ed330£faf27700470cc6074552e58cbeala
Verifying:

Verified

But it illustrates how DSA signatures are generated. You can see a noticeable
pause when this example runs; public-key cryptography strikes again.

.m DSA keys consist of the parameters p, g, and g, a private key x, and a
public key y. ¢ must be a (random) prime number; p - 1 must be a multiple of
q: and g is a small number (usually 2). x, the private key, is random, and y = g*
% p. In general, rather than compute their own p, g, and g, most implementa-
tions use standardized DSA parameters. As long as x is random, the security of
the algorithm isn't weakened by the sharing of parameters.

How to Make DSA Efficient

As you can imagine, it takes a bit longer to compute or verify a DSA signature
than it does to compute or verify an RSA signature. The parameters p and y
need to be at least 512 bits to be secure (2,048 bits is common). 4 and x can be
a bit shorter; typically these are 160 bits, to match the output from an SHA-1
hash, and can still be secure as long as p and y are long. Still, this requires a lot
of computation and a lot of memory compared to RSA.

However, if you look at the signature algorithm, you notice that the only
part that depends on the message is s — r can actually be precomputed before
the message is known, as long as g is known because the secret parameter
k depends on it. Because p, g, and g are part of the public key, a very speed-
conscious implementation could create a table of ¥ and k values and speed up
the signature process quite a bit.

Also, notice that RSA verification involves a modular exponentiation of an
enormous parameter d, which is 1,024 bits for reasonable security. This takes
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a long time to process. In contrast, DSA signature verification only requires
modular exponentiation of 1 and 12, which are both the same length as g,
which is 160 bits. On the other hand, you have to compute a modular inverse
for every signature verification.

Finally, notice that although mod_pow is aware of, and optimized for, the fact
that it’s operating in a Galois field (that is, the final result is computed modulo
a target p), the DSA implementation here does several multiplication and addi-
tion operations only to throw away all but the “mod p” bits of the results. If you
reworked your add and multiply operations to be aware of their field, you could
cut down quite a bit on the amount of memory you'd need to set aside to compute
interim results. You could even speed up mod_pow this way. This optimization
won't be explored here; see Michael Brown’s paper “Software Implementations
of the NIST Elliptic Curves over Prime Fields” (www.eng.auburn.edu/users/
hamilton/security/pubs/Software_Implementation_of_the NIST_Elliptic
.pdf) for a good discussion on optimal arithmetic operations in a Galois field.
The paper itself is about elliptic-curve cryptography, but a lot of it is applicable
to large-number modular arithmetic in general.

DSA is not particularly common, or popular, in spite of being a U.S. gov-
ernment standard (in fact, I wasn't able to find any U.S. government web sites
using SSL with DSA, including the NIST web site, which published the DSA
standard in the first place!). Still, it’s worth examining both because support
for it is a mandatory part of TLS as well as because supporting it demonstrates
how flexible you need to be on signature algorithms.

Getting More Security per Bit: Elliptic Curve DSA

DSA has been defined using ECC primitives, just like DH was. For the most
part, ECDSA works like DSA, but it uses elliptic-curve keypairs instead of
public/private keypairs. Instead of r being ( ¢® ¢ p ) % g risjust G— the
generator point that is part of an elliptic-curve’s definition — multiplied by k. s
is computed identically; remember that in an elliptic-curve keypair, the private
key is just an integer. Signature verification is also almost identical up until the
computation of v (which is compared to r and, if theyre identical, indicates that
the signature is verified). Even this computation is similar; you just replace the
mod_pow operations with ECC point-multiplication operations.

However, for ECDSA, you can’t “cheat” and just use integer operations
like in the ECDH implementation of the last chapter; remember that there’s
a hash computation that’s used in the signature generation process. The
smallest hash examined so far is MD5, which outputs 128 bits — quite a
few more than you can fit into a 32-bit int. In fact, ECDSA is only defined
for an SHA-256 hash, unlike “regular” DSA, which used a plain-old 160-bit
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SHA-1 hash. Because you're going to be dealing with a 256-bit integer, at
least, go ahead and rewrite the elliptic-curve math functions from Chapter 3
to work with huge integers.

Rewriting the Elliptic-Curve Math Functions to Support Large
Numbers

The implementations are, obviously, not drastically different than with 32-bit
integers; a few things are shuffled around to reduce the number of temporary
huge objects, though, so you might want to compare this code carefully to the
ECC code in Chapter 3.

If you recall, ECC involves two operations: point addition — which works on
two distinct points in a Cartesian plane, whose X-values must be different — and
point multiplication — which works on one point and a scalar value. To imple-
ment, follow these steps:

1. Redefine the point, elliptic_curve, and ecc_key structures in Listing 4-35
to work with huges instead of points.

Listing 4-35: “ecc.h” elliptic curve structure declarations

typedef struct
{

huge x;

huge vy;
}

point;

typedef struct
{

huge p;

huge a;

huge b;

point G;

huge n; // n is prime and is the "order" of G

huge h; // h = #E(F_p)/n (# is the number of points on the curve)
}

elliptic_curve;

typedef struct

{
huge d; // random integer < n; this is the private key
point Q; // Q@ = d * G; this is the public key

}

ecc_key;

2. Youneed an add_points operation in Listing 4-36.
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Listing 4-36: “ecc.c” point addition implementation

void add_points( point *pl, point *p2, huge *p )
{

point p3;

huge denominator;

huge numerator;

huge invdenom;

huge lambda;

set_huge ( &denominator, 0 );

copy_huge ( &denominator, &p2->x ); // denominator = x2
subtract ( &denominator, &pl->x ); // denominator = x2 - x1
set_huge( &numerator, 0 );

copy_huge ( &numerator, &p2->y ); // numerator = y2
subtract ( &numerator, &pl->y ); // numerator = y2 - yl
set_huge( &invdenom, 0 );

copy_huge ( &invdenom, &denominator );

inv( &invdenom, p );

set_huge( &lambda, 0 );

copy_huge( &lambda, &numerator );

multiply( &lambda, &invdenom ) ; // lambda = numerator / denominator

set_huge( &p3.x, 0 );

copy_huge( &p3.x, &lambda ); // x3 = lambda

multiply( &p3.x, &lambda ); // x3 = lambda * lambda

subtract( &p3.x, &pl->x ); // %3 = ( lambda * lambda ) - x1

subtract ( &p3.x, &p2->x ); // x3 = ( lambda * lambda ) - x1 - x2

divide( &p3.x, p, NULL ); // x3 = ( ( lamdba * lambda ) - x1 - x2 ) % p

// positive remainder always
if ( p3.x.sign )
{
p3.x.sign = 0;
subtract( &p3.x, p );
p3.x.sign = 0;

set_huge( &p3.y, 0 );

copy_huge( &p3.y, &pl->x ); // y3 = x1

subtract( &p3.y, &p3.x ); // y3 = x1 - x3

multiply( &p3.y, &lambda ); // yv3 = ( x1 - x3 ) * lambda
subtract ( &p3.y, &pl->y ); // v3 = ( ( x1 - x3 ) * lambda ) - vy

divide( &p3.y, p, NULL );
// positive remainder always
if ( p3.y.sign )
{
p3.y.sign = 0;
subtract( &p3.y, p );
p3.y.sign = 0;
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// pl->x = p3.x

// pl->y = p3.y

copy_huge( &pl->x, &p3.x );
copy_huge( &pl->y, &p3.vy );
free_huge( &p3.x );
free_huge( &p3.y );
free_huge( &denominator );
free_huge( &numerator );
free_huge( &invdenom ) ;
free_huge( &lambda ) ;

I've left comments indicating the int operations that the huge operation
blocks correspond to so you can cross-reference this implementation back
to the easier-to-understand integer-based operation in Listing 3-39.

Recall that multiplication is defined in terms of “double-and-add” — in
this case, not as a performance optimization, but because adding a point
to itself is actually not defined, so you need a double_point operation in
Listing 4-37.

Listing 4-37: “"ecc.c” point-doubling algorithm

static void double_point( point *pl, huge *a, huge *p )
{
huge lambda;
huge 11;
huge x1;
huge v1;
set_huge( &lambda, 0 );
set_huge( &x1, 0 );
set_huge( &yl, 0 );
set_huge( &lambda, 2 ); // lambda = 2;
multiply( &lambda, &pl->y ); // lambda = 2 * yl
inv( &lambda, p ); // lambda = ( 2 * y1 ) ~ -1 (% p)
set_huge( &11, 3 ); // 11 =3
multiply( &11, &pl->x ); // 11 = 3 * x
multiply( &11, &pl->x ); // 11 =3 * x ~ 2
add( &l1, a ); // 11 = (3 *x "~ 2 ) + a
multiply( &lambda, &11 ); // lambda = [ (3 *x ~2 ) +al /[ 2*yl]l) %p
copy_huge ( &yl, &pl->y );
// Note - make two copies of x2; this one is for yl below
copy_huge ( &pl->y, &pl->x );
set_huge( &x1, 2 );
multiply( &x1, &pl->x ); // x1 = 2 * x1
copy_huge( &pl->x, &lambda ); // x1 = lambda
(Continued)
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multiply( &pl->x, &lambda ); // x1 = ( lambda ~ 2 );
subtract ( &pl->x, &x1 ); // x1 = ( lambda ~ 2 ) - ( 2 * x1 )
divide( &pl->x, p, NULL ); // [ x1 = ( lambda ~ 2 ) - (2 *x1 ) ] %p
if ( pl->x.sign )
{
subtract ( &pl->x, p );
pl->x.sign = 0;
subtract( &pl->x, p );
}
subtract ( &pl->y, &pl->x ); // y3 = x3 - x1
multiply( &pl->y, &lambda ); // y3 = lambda * ( x3 - x1 );
subtract( &pl->y, &yl ); // y3 = ( lambda * ( x3 - x1 ) ) - vyl
divide( &pl->y, p, NULL ); // y3 = [ ( lambda * ( x3 - x1 ) ) -yl ] % p

if ( pl->y.sign )

{
pl->y.sign = 0;
subtract ( &pl->y, p );
pl->y.sign = 0;

free_huge( &lambda );
(&x1 );

free_huge( &yl );
(

&11 ) ;

free_huge

free_huge

4. Finally, you can implement multiply_point in Listing 4-38, the really
important function, in terms of double_point and add_points.

Listing 4-38: “ecc.c” point-multiplication algorithm

void multiply point( point *pl, huge *k, huge *a, huge *p )
{

int 1i;

unsigned char mask;

point dp;

int paf = 1;

set_huge( &dp.x, 0 );
set_huge( &dp.y, 0 );
copy_huge( &dp.x, &pl->x );
copy_huge( &dp.y, &pl->vy );
for ( 1 = k->size; i; 1-- )
{
for ( mask = 0x01; mask; mask <<= 1
{
if ( k->rep[ 1 - 1 ] & mask )
{
if ( paf )
{
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paf = 0;

copy_huge ( &pl->x, &dp.x );

copy_huge ( &pl->y, &dp.y );
}

else

{
add_points( pl, &dp, p );

}

// double dp

double_point( &dp, a, p );
}

free_huge( &dp.x );
free_huge( &dp.y );

You might want to compare this implementation to the multiply function
presented in Listing 3-41. There is, of course, no divide equivalent. If there were,
ECC wouldn't be cryptographically secure.

Implementing ECDSA

Now you have enough ammunition to put together an implementation of ECDSA.
Recall that DSA signature generation involved the computation of two numbers
rand s from the parameters g, p, and g. ECDSA signatures are similar. In essence,
the modular multiplications are replaced by point multiplications. The generator
is a point on an elliptic curve; r is that point multiplied by a random integer k;
and s is computed exactly the same way as in DSA. The only elliptic-curve func-
tion involved is in the computation of r. In code, this is shown in Listing 4-39.

Listing 4-39: “ecdsa.c” elliptic-curve DSA signature generation

void ecdsa_sign( elliptic_curve *params,
huge *private_key,
unsigned int *hash,
int hash_len,

dsa_signature *signature )

unsigned char K[] = {
0x9E, 0x56, O0xF5, 0x09, 0x19, 0x67, 0x84, 0xD9, 0x63, 0xDl, 0xCO,
0xA4, 0x01, 0x51, O0xOE, 0xE7, OxAD, O0xA3, 0xDC, 0xC5, OxDE, O0xEO,
0x4B, 0x15, 0x4B, OxF6, 0xlA, OxF1l, 0xD5, 0xA6, OxDE, OxCE

Y

huge k;

point X;

huge z;
(Continued)
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// This should be a random number between 0 and n-1
load_huge( &k, ( unsigned char * ) K, sizeof( K ) );

set_huge( &X.x, 0 );
set_huge( &X.y, 0 );
copy_huge( &X.x, &params->G.x );
copy_huge( &X.y, &params->G.y );

multiply point( &X, &k, &params->a, &params->p );

set_huge( &signature->r, 0 );
copy_huge ( &signature->r, &X.x );

divide( &signature->r, &params->n, NULL ); // r = x1 % n

// z is the L_n leftmost bits of hash - cannot be longer than n
load_huge( &z, ( unsigned char * ) hash,

( ( hash_len * 4 ) < params->n.size ) ? ( hash_len * 4 ) : params->n.size );

// s =k*"~1 (z+rda) %$n

inv( &k, &params->n );

set_huge( &signature->s, 0 );

copy_huge ( &signature->s, private_key );
multiply( &signature->s, &signature->r );
add( &signature->s, &z );

multiply( &signature->s, &k );

divide( &signature->s, &params->n, NULL );

free_huge( &k );
free_huge( &z );
free_huge( &X.x );
free_huge( &X.y );

You can see a lot of parallels between the DSA signature verification routine
and the ECDSA signature verification routine in Listing 4-40.

Listing 4-40: "ecdsa.c” elliptic-curve DSA signature verification

int ecdsa_verify( elliptic_curve *params,
point *public_key,
unsigned int *hash,
int hash_len,

dsa_signature *signature )

huge z;
huge w;
point G;
point Q;
int match;

// w =3s8"-1%n
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set_huge( &w, 0 );
copy_huge( &w, &signature->s );

inv( &w, &params->n );

// z is the L_n leftmost bits of hash - cannot be longer than n

load_huge( &z, ( unsigned char * ) hash,
( ( hash_len * 4 ) < params->n.size ) ? ( hash_len * 4 ) : params->n.size );
// ul = zw $ n

multiply( &z, &w );
divide( &z, &params->n, NULL ); // ul = z

// u2 = (rw) % q
multiply( &w, &signature->r );
divide( &w, &params->n, NULL ); // u2 = w

// (x1,yl) =ul * G + u2 * Q

set_huge( &G.x, )

set_huge( &G.y, )
)
) .

7

set_huge( &Q.x,

o O O o

set_huge( &Q.vy,
copy_huge( &G.x, &params->G.x );
copy_huge( &G.y, &params->G.y );

&Q.x, &public_key->x );

(
(
copy_huge (
(

copy_huge( &Q.y, &public_key->y );

multiply_point( &G, &z, &params->a, &params->p );
multiply_point( &Q, &w, &params->a, &params->p );
add_points( &G, &Q, &params->p );

// r=%x1 % n

divide( &G.x, &params->n, NULL );

match = !compare( &G.x, &signature->r );

free_huge( &z );
free_huge( &w );
free_huge( &G.x );
free_huge( &G.y );
free_huge( &Q.x );
free_huge( &Q.y );

return match;

Here, as in signature generation, modular exponentiation has been replaced
with elliptic-curve addition and multiplication operations.
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Generating ECC Keypairs

One point glossed over thus far is that of the elliptic-curve parameters themselves.
In fact, generating elliptic-curve parameters is so complex, so time consuming,
and so hard to get right that the NIST publishes a list of approved named curves
for use in elliptic curve operations. Of course, the actual keypairs — the secret
integer and the public point — are generated per-user from the parameters.
Generating a keypair is actually pretty simple: Pick a random large integer d
and multiply it by the point G. The result of the multiplication is the public key,
and d is the private key.

To illustrate how to use this, you can borrow an elliptic curve from RFC 4754
that includes some ECDSA examples. The test routine is shown in Listing 4-41.

Listing 4-41: “ecdsa.c” test routine

#ifdef TEST_ECDSA
int main( int argc, char *argv[ ] )
{
// ECC parameters
unsigned char P[] = {
OxFF, OxFF, OxFF, OxFF, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, OxFF, OxFF, OxFF, OxFF, OxFF, OxFF,
O0xFF, OxFF, OxFF, OxFF, OxFF, OxFF
}i
unsigned char b[] = {
0x5A, 0xC6, 0x35, 0xD8, 0xAA, 0x3A, 0x93, O0xE7, 0xB3, OxEB, O0xBD, 0x55, 0x76,
0x98, 0x86, 0xBC, 0x65, 0xl1lD, 0x06, 0xBO, 0xCC, 0x53, 0xB0O, 0xF6, 0x3B, OxCE,
0x3C, 0x3E, 0x27, 0xD2, 0x60, 0x4B
Yi
unsigned char qgl[] = {
O0xFF, OxFF, OxXFF, OxFF, 0x00, 0x00, 0x00, 0x00, OxFF, OxFF, OxFF, OxFF, OxFF,
0xFF, OxFF, OxFF, 0xBC, 0xE6, OxFA, OxAD, 0xA7, 0xl17, Ox9E, 0x84, 0xF3, 0xB9,
0xCA, 0xC2, OxFC, 0x63, 0x25, 0x51
Yi
unsigned char gx[] = {
0x6B, 0x17, 0xD1l, OxF2, OxEl, 0x2C, 0x42, 0x47, 0xF8, 0xBC, OxE6, OxES5,

0x63,

0xA4, 0x40, OxF2, 0x77, 0x03, 0x7D, 0x81, 0x2D, OxEB, 0x33, O0xA0, 0xF4,

0xAl,

0x39, 0x45, 0xD8, 0x98, 0xC2, 0x96
}i
unsigned char gyl[] = {
0x4F, 0xE3, 0x42, 0xE2, OxFE, 0x1A, 0x7F, 0x9B, 0x8E, OxE7, OxEB, 0x4A, 0x7C,
0x0F, 0x9E, 0xl6, 0x2B, 0xCE, 0x33, 0x57, 0x6B, 0x31, Ox5E, OxCE, 0xCB, 0xB6,
0x40, 0x68, 0x37, OxBF, 0x51, OxF5
Yi

// key
unsigned char w[] = { 0xDC, 0x51, 0xD3, 0x86, Ox6A, 0x15, 0xBA, 0xCD, O0xE3,
0x3D, 0x96, O0xF9, 0x92, OxFC, 0xA9, 0x9D, 0xA7, O0xE6, OxEF, 0x09, 0x34, OxE7,
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0x09, 0x75, 0x59, 0xC2, 0x7F, 0x16, O0x14, 0xC8, 0x8A, Ox7F };

elliptic_curve curve;
ecc_key A;

dsa_signature signature;
digest_ctx ctx;

load_huge( &curve.p, ( unsigned char * ) P, sizeof( P ) );
set_huge( &curve.a, 3 );

curve.a.sign = 1;

load_huge( &curve.b, b, sizeof( b ) );

load_huge( &curve.G.x, gx, sizeof( gx ) );

load_huge( &curve.G.y, gy, sizeof( gy ) );

load_huge( &curve.n, g, sizeof( g ) );

// Generate new public key from private key "w" and point "G"
load_huge( &A.d, w, sizeof( w ) );

set_huge( &A.Q.x, 0 );

set_huge( &A.Q.y, 0 );

copy_huge( &A.Q.x, &curve.G.x );

copy_huge( &A.Q.y, &curve.G.y );

multiply point( &A.Q, &A.d, &curve.a, &curve.p );

new_sha256_digest( &ctx );
update_digest( &ctx, "abc", 3 );

finalize_digest( &ctx );
ecdsa_sign( &curve, &A.d, ctx.hash, ctx.hash_len, &signature );

printf( "R:" );
show_hex( signature.r.rep, signature.r.size );
printf( "S:" );

show_hex ( signature.s.rep, signature.r.size );

if ( l!ecdsa_verify( &curve, &A.Q, ctx.hash, ctx.hash_len, &signature ) )
{

printf( "Signatures don't match.\n" );
}

else

{

printf( "Signature verified.\n" );

return 0;
}
#endif

Like the DSA test routine output, this one isn’t particularly interesting, but
it demonstrates the concept:

jdavies@localhost$ ./ecdsa
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R:
cb28e0999b9¢c7715£d0a80d8e47a77079716cbbf917dd72e97566ealc066957¢c
S:
86fa3bbde26cad5bf90b7£81899256ce7594bblealc89212748bff3b3d5b0315
Verifying

Signature verified.

If you ran this on your own computer, you may have noticed that it was
slow. Murderously slow, in fact. Each point-multiplication operation requires
between log,k and 2 * log,k modular inversions, each of which involves many
operations in its own right. Nor can you speed the thing up by precomputing
some inversions and reusing them because A is going to be different for each
call. The whole process, including the generation of the public key, took me
three minutes on a relatively modern computer running Windows Vista, and
this was a 256-bit key — although, for ECC, that’s actually pretty long whereas
for RSA or DSA it would be unusably short.

.]Im Incidentally, on the same computer, the same code, compiled with
GCC even with optimizations off, ran in less than one minute when I booted
over to Linux, so ECC isn’t entirely to blame here.

So, what'’s the point of ECC, then? The idea was that it was supposed to be faster.
Actually, there’s been quite a bit of research in speeding up the somewhat naive
implementation presented here. These techniques generally involve translating
the point to be multiplied from the two-dimensional coordinate system pre-
sented here into a three-dimensional coordinate system, performing equivalent
operations, and then transforming them back to the two-dimensional coordinate
system, all the while taking into account the prime-field youre working in.

The implementation is even more complex than the simple multiplication
routine presented above, and involves orders of magnitude more operations
(but you can trade lots of operations to get rid of just one modular inversion
and still be ahead). The Jacobian projection is one such popular transformation;
I don't cover it here, but it can speed up elliptic-curve operations by an order of
magnitude to bring it to parity with modular exponentiation operations. Because
ECC offers equivalent security with far fewer public-key bits, this makes ECC an
attractive choice for public-key cryptography operations, which will probably
become more and more important in the future.
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Creating a Network of Trust
Using X.509 Certificates

Chapters 3 and 4 discussed public and private keypairs and reviewed their
importance to secure communications over insecure channels. Until now, where
these keys come from and how theyre exchanged has been mostly glossed over.
Where the keys come from is the topic of this chapter. This chapter also includes
some further discussion on authentication.

You're probably familiar with the term certificate, even if you're fuzzy on the
details. You've undoubtedly visited web sites that have reported errors such as
“this website’s certificate is no longer valid” or “this website’s host name does not
match its certificate’s host name” or “this certificate was not signed by a trusted
CA.” If you're like most Internet users, you generally ignore these warnings,
although in some cases they can indicate something important.

Fundamentally, the certificate is a holder for a public key. Although it contains
a lot more information about the subject of the public key — in the case of web
sites, that would be the DNS name of the site which has the corresponding pri-
vate key — the primary purpose of the certificate is to present the user agent
with a public key that should then be used to encrypt a symmetric key that is
subsequently used to protect the remainder of the connection’s traffic.

At this point, you may have at least a hazy idea of how most of the concepts
of the past three chapters can be put together to establish a secure communica-
tions link: First, a symmetric algorithm and key is chosen, and then the key is
exchanged using public-key techniques. Finally, everything is encrypted using
the secret symmetric key and authenticated using an HMAC with another secret

221
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key. However, the digital signatures examined in Chapter 4 haven’t come into
play yet. How are these used and why are they important? Digital signatures are
how certificates are authenticated and how you can determine whether or not to
trust a certificate. This is examined in much greater detail later in this chapter.

Putting It Together: The Secure Channel Protocol

Armed with symmetric encryption and some method of secure key exchange,
such as public key encryption of the symmetric encryption key, you have enough
to implement a secure channel against passive eavesdroppers. Assuming that an
attacker can see, but not modify, your data, you could adopt the simple secure
channel protocol shown in Figure 5-1.

client server
| request public key
D
—

«——— send public key

encrypt a symmetric

session key using the
public key

send encrypted session key

decrypt session key

using private key
I—

- ———— acknowledge
normal conversation
begins, everything is
encrypted using the

negotiated symmetric key

Figure 5.1: Naive secure channel protocol

Even if an attacker can view all packets exchanged, all he sees is that the
public key was requested and what the public key was — which, by definition,
is not a secret. From that point forward, everything is encrypted and, assuming
the encryption method is unbreakable, the remainder of the session is secure.

However, a more dangerous form of attack is called a man-in-the middle attack
and is carried out by an adversary who can not only view traffic, but also can
intercept and modify it. Consider the scenario shown in Figure 5-2.

The problem here is that the client implicitly trusts that the public key belongs
to the server. Solving this trust issue surrounds most of the complexity associ-
ated with SSL/TLS. The remainder of this book is spent looking at how to get
around this problem.

The solution adopted by SSL requires the use of a trusted intermediary. This
trusted intermediary digitally signs the public key of the server — using the
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algorithms discussed in Chapter 4 — and the client must verify this signature.
Such a signed public key is called a certificate, and a trusted intermediary respon-
sible for signing certificates is called a certificate authority (CA). The client must
have access to the public key of the CA so that it can authenticate the signature
before accepting the key as genuine. Web browsers have a list of trusted CAs
with their public keys built in for just this purpose.

client attacker server
ignore request, issue own
. .
request public key request
ey - S

request public key
replace with own public >

ey . —
«——————— send public key
. I—
|« send public key decrypt session key using
private key; re-encrypt using
server’s public key and re-send

encrypt a symmetric

session key using the
public key

send encrypted session key _

send encrypted sessionkey — |

I

«————— acknowledge
acknowledge — |
le—

normal conversation

begins, everything is

intercepted and first
decrypted and then re-
encrypted by attacker

Figure 5.2: Man-in-the-middle attack

This buys a bit of security against a man-in-the-middle attack, but not much.
After all, if the server can get a certificate signed by the trusted CA, you must
assume that the attacker, if sufficiently motivated, could do so too. He could
present himself to the CA as a legitimate business, for example. This makes his
job a bit more difficult, but hardly insurmountable.

What you really need is some way to associate the public key with the server
you're connecting to. Thus, a properly formatted certificate needs to have not
only the public key of the server included, but also the domain name of the
server that the public key belongs to, all signed by the trusted intermediary.

This foils the man-in-the-middle attack. The client requests a certificate from
the server, and the man in the middle replaces it with his own. The client
then validates the attacker’s certificate as legitimate — it’s signed by a trusted
CA — but observes that the domain doesn’t match that of www.server.com, as
expected. Nor can the attacker forge a certificate with the domain name www
.server.com— this is protected by the digital signature. If he obtains a digitally
signed certificate from the CA, with the domain name www.attacker.com, and
then changes his own domain in the certificate to www.server.com, the hash
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code in the signature won’t match the hash code of the contents of the certificate,
and the client rejects it on this basis.

So, at a bare minimum, in order to protect yourself against man-in-the-middle
attacks, you need a trusted CA and a certificate format that includes the domain
name, the public key and a digital signature issued by the CA. Now, imagine
that a few years go by, and the administrator of the server figures that it’s time
to reissue the certificate. After all, technology changes, and certificate security
holes are found from time to time. And who knows? Some hacker could have
broken into the system and stolen the private key without the administrator’s
knowledge.

Unfortunately, the administrator can'’t reissue the certificate. Assuming that
there’s a problem with the certificate — the private key has been compromised
or the certificate technology is outdated and includes a security flaw — and the
server installs a new certificate, the man in the middle strikes again. When the
client tries to connect, the attacker substitutes the old, and presumably weaker,
certificate for the new one. The client has no way to authenticate this certificate;
the domain is correct, and so is the issuer’s digital signature.

To partially guard against this, certificates also include a validity period: a not
before date and a not after date. It’s the responsibility of the client to check that
the certificate’s not after date does not fall in the past. If the date is in the past,
the client should not connect to the server.

As you can imagine, this is really only half a solution. Imagine that the pri-
vate key has been compromised and the server administrator knows that the
private key been compromised. He should immediately stop allowing use of
the compromised certificate. The validity period guarantees that clients stop
using the certificate at some point in the future, but you really want a way to
accelerate that date. Again, that can’t be forced, because a man in the middle
can just replace any new certificate with an old one, right up until the end of
the validity period.

To fight against this, CAs are responsible for keeping a list of revoked certificates
that is called a certificate revocation list (CRL). The client periodically checks this
list. But wait — checks it for what? How can you uniquely identify a certificate?
As they’ve been specified so far, you can’t; you need one more field in the cer-
tificate format, the serial ID. This is a number, unique within a CA, assigned to
each certificate. When a certificate is known or believed to be compromised,
its serial number is added to the CRL. If the man in the middle tries to replace
a new certificate with an old one, the client recognizes that the serial number
has been revoked and rejects the connection.

Finally, it’s unlikely that everybody on the Internet will use a single CA. That
means that the client, when presented with a certificate, needs some way to know
whose public key to use to verify the signature. As such, each certificate also
includes an issuer that uniquely identifies the CA. The client decides whether
or not to trust the issuer dynamically.
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Encoding with ASN.1

Certificates need to be precisely defined. Although this sort of structured data
is now usually represented and defined in XML, certificates have been around
for quite a while, longer than XML. Theyre specified instead using a syntax
referred to as Abstract Syntax Notation (ASN), or ASN.1 (the .1 being the version
of Abstract Syntax Notation). ASN serves the same purpose as a DTD or an XSD
might serve in an XML context; it describes how elements are nested within
one another, what order they must occur in, and what type each is. Official
ASN.1 looks quite a bit like a C struct definition, although the differences are
significant enough that you can’t map directly from one to another.

The certificate format that SSL/TLS uses is defined and maintained by the
International Telecommunication Union (ITU) in a series of documents they just
refer to as the X series. The documents themselves can be found at http: / /www
.itu.int/rec/T-REC-X/en. Each one has a number, and the corresponding docu-
ment/standard is referred to as X.nnn where nnn is a number. So, for instance,
if you want to see the official standard for X.509, you look under http: //www
.itu.int/rec/T-REC-X.509/en. I'll refer to several of these specifications by
number throughout this chapter.

You may notice that the specifications presented here aren’t always specific to
SSL/TLS. They were developed independently and adopted later by the Internet
consortium. As such, the specifications contain quite a few elements that aren’t
necessarily relevant to the subject matter of this book itself; I'll mention some of
these elements here but refer the interested reader to other sources for details.

Understanding Signed Certificate Structure

ASNL.1 is used to describe the structure of an X.509 certificate, which is the
official standard for public-key certificates and the format on which TLS 1.0
relies. X.509 has been through three revisions; the current, at the time of this
writing, revision of X.509 is 3. The top-level structure of an X.509v3 certificate
is shown in Listing 5-1.

Listing 5-1: X.509 Certificate structure declaration

SEQUENCE {
version [0] EXPLICIT Version DEFAULT vl,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,

subjectPublicKeyInfo SubjectPublicKeyInfo,
issuerUniqueID [1] IMPLICIT Uniqueldentifier OPTIONAL,
-- If present, version shall be v2 or v3

(Continued)
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subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,
-- If present, version shall be v2 or v3
extensions [3] EXPLICIT Extensions OPTIONAL

-- If present, version shall be v3

Excerpted fromhttp: //www.ietf.org/rfc/rfc2459.txt

The syntax is given in ASN.1. ASN.1 syntax isn’t covered completely here;
however, you have to understand a fair bit of it to analyze X.509 because X.509
makes use of most of ASN.1. See http://luca.ntop.org/Teaching/Appunti/
asnl.html for a complete overview of ASN.1 syntax.

The first line here in the top-level structure of the X.509v3 certificate is SEQUENCE.
An ASN.1 SEQUENCE is analogous to a C struct, which may be confusing to a
C programmer because sequence sounds more like an array. An ASN.1 sequence
groups other elements. As you can see, this sequence contains 10 subelements.
The most important of these, of course, is the seventh, subjectPublicKkeyInfo,
because the primary purpose of a certificate is to transmit a public key.

Each subelement is presented with a name followed by a type — just like
a C struct, but inverted. Each of these is examined in detail in the following
sections. I'll go over the meaning of each at a high-level, and then come back
and show you how to parse a real certificate; if some of this seems a bit abstract,
the code samples at the end of this chapter should clear up the intent behind
all of these elements.

Version

version [0] EXPLICIT Version DEFAULT vl

The version is an integer between 0 and 2, with 0 representing version 1, 1 rep-
resenting version 2, 2 representing version 3, and so on. The version number
indicates how to parse the remaining structures. For example, the comments
at the bottom that indicate issuerUniqueId, subjectUniqueld, and extensions
cannot be present if the version is less than 2. However, the original X.509
specification didn’t include a version number, so it’s necessary for the parser to
first check to see if a version number is present. If no version number is present,
the parser should assume that the version number is 0 (that is, v1). That’s the
meaning of the EXpLICIT DEFAULT vl in the declaration.
The type version itself is defined in the specification as

Version ::= INTEGER { v1(0), v2(1), v3(2) }

This tells you that the version field is an integer and that it can take on three
discrete values.
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serialNumber
serialNumber CertificateSerialNumber

As discussed in the section “Putting It Together: The Secure Channel Protocol”
earlier in this chapter, certificates are signed by CAs. The process of signing a
certificate is often referred to as issuing a certificate, and the signer is referred to
as the issuer, although this terminology is a bit misleading. Each signer is required
to assign a unique serial number to each certificate issued. The serial number
is not necessarily globally unique, but it can safely be assumed that VeriSign
(a popular CA), for example, never reuses a serial number. Two different CAs
may issue two certificates with identical serial numbers, but the same CA never
will. The certificateSerialNumber is defined as an INTEGER.

signature
signature AlgorithmIdentifier,

An X.509 certificate must have been signed by a CA. Whether that CA is
trusted or not is a matter for the client to decide. In fact, for testing purposes,
it’s often useful to create self-signed certificates, in which case the certificate
is digitally signed by the private key corresponding to the public key that it
contains.

Whoever signed the certificate, the signature algorithm used must be identi-
fied by this field. The declaration for an algorithm identifier is

AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL }

Here you see a new type you haven't come across before: the object identifier
(OID). OIDs are used quite a bit in the X.509 standard and anything else that’s
based on ASN.1. OIDs are actually murderously complex and describe a hierar-
chy of just about anything you can think of. Fortunately, you don’t really need
to fully understand OIDs. You can treat them simply as byte arrays and keep
track of the mappings of these byte arrays and their meanings.

Recall from the Chapter 4 that digitally signing a sequence of bytes involves
first securely hashing those bytes using a secure hash algorithm such as MD5
or SHA and then encrypting the bytes using a private key. Thus, a digital sig-
nature algorithm identifier must identify both the secure hashing algorithm
applied as well as the encrypting algorithm. Given MD5 and SHA for secure
hashing algorithms and RSA and DSS for private-key encryption algorithms,
you end up with four separate algorithm identifiers. However, because MD5 is
not specified for use with DSS, there are only three algorithm identifiers, which
are shown in Table 5-1.
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Table 5-1: Signing Algorithm OIDs

HASH ALGORITHM ENCRYPTION ALGORITHM  OBJECT IDENTIFIER

IDENTIFIER

MD5 RSA 2A 86 48 86 F7 0D 01 01 04
SHA-1 RSA 2A 86 48 86 F7 OD 01 01 05
SHA-1 DSS 2A 86 52 CE 38 04 03

See X.690 and RFC 2313 for more details on how these values are determined.
All you particularly care about is that the third field of the certificate (or the sec-
ond, if the version number was not supplied) is equal to one of these three-byte
sequences. You use this value as a switch to validate the signature of the certificate.

.m You may be wondering: “What about ECDSA?” Well, that’s sort of
complicated. The topic of elliptic-curve cryptography (ECC) in X.509 is revis-
ited in Chapter 9. In general, ECC is not explicitly supported by any version of
TLS < 1.2, and supporting it in any version can get a bit hairy.

If you read any of the ITU X series specification documents, you'll notice that
the OIDs are not given in hexadecimal form as they are in Table 5-1. Instead,
they're given in a dotted-decimal form such as 1.2.840.113549.1.1.4. However,
in order to be used, they must be converted to the hexadecimal forms shown in
this book. The X.690 specification details this conversion authoritatively. You
don’t actually need to know how to convert from these dotted-decimal num-
bers to the normalized hexadecimal forms in order to use them. I've converted
all of the ones you need to know but if you're curious, read on.

An OID in X.509 is a leaf in a very, very large tree structure. For example,
the OID for the MD5withRSA signature algorithm is 1.2.840.113549.1.1.4. Each
number in this very long digit string identifies an element in a large hierarchy.
1 represents iso; 1.2 represents iso/memberBody; 1.2.840 represents iso/
member-body/usa and so on. All in all, the OID in this example represents
iso/memberBody/usa/rsadsi/pkcs/pkcs1/MD5. Each number only has meaning
relative to what came before it. The RSA corporation controls the 1.2.840.113549
namespace and they use 1.1.4 to identify rsa with pkcs #1 padding md5.

So how do you get from 1.2.840.113549.1.1.4 to 2A 86 48 86 F7 0D 01 01 04?
Well, the 01 01 04 part is pretty obvious: This is the byte representation of the
digits 1.1.4. But as you can see, even the third numeral, 840, is too large to fit
into a single byte. Rather than include separators, they adopted a variable-
length encoding scheme (The X.500 family of specifications, which includes
X.509, is big on variable-length encoding schemes). The 86 48 represents 840,
and the 86 F7 0D represents 113549. The encoding scheme used here is this: If
the high-order bit is 1 then the other seven bits in this byte should be concat-
enated with the next byte. If the high-order bit is 0 then this is the last byte in
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the identifier. So 840, in binary, is 1101001000. This is longer than seven bits,
so break it up into chunks of seven or less:

110 1001000
Now, add the high-order bits (and pad the first one):
10000110 01001000

Or hexadecimal 86 48.

The decoder then sees the first byte, recognizes that the high-order bit
is 1, continues on to the next byte, sees that the high-order bit is zero, and
concatenates the seven lower-order bits of the two constituent bytes back
into the value 1101001000, or decimal 840. Likewise, 113549 encodes to
11011101110001101 in binary. This requires 20 bits to encode, so you use three

bytes (%ﬂ =3 ), with the high-order bits of the first two being set to 1, which

tells the decoder that this should be concatenated with the next byte:
10000110 11110111 00001101

Or 86 F7 0D in hexadecimal.

Is your head spinning yet? Actually, it gets worse. Notice that the hex encoding
of the “1.2” on the very beginning of the OID is a single byte: 2A. To save space,
X.690 dictates that the first byte encodes two numeric elements according to the
algebraic equation Z = 40X + Y. So, 1.2 is 40 * 1 + 2 = 42 (0x2A). On the unpack-
ing side, it’s safe to assume that if the byte is in the range 0-40, the decoded
value should be 0.(byte); if it's in the range of 41-80, it should be 1.(byte - 40); if
it is in the range of 81-120, it should be 2.(byte - 80); and so on. Obviously, this
limits the range of values that can be encoded by the first byte.

Fortunately, I've done all of the conversion for you, so you don’t have to
understand any of this to code around it. All you need to know is that the
unique byte sequence 2A 86 48 86 F7 0D 01 01 04 represents the MD5withRSA
signature algorithm.

There is also an optional section for parameters. DSS includes a few parameters,
so you re-examine this when DSA is covered. Notice that the ANY DEFINED BY
algorithmindicates that if the object identifier is one of the two RSA algorithms,
the parameters field is not present.

issuer

issuer Name

If you found the subject of OIDs slightly complicated, hold on to your hat as
you examine X.509 distinguished names. You've likely seen a distinguished name
written out at some point in long form, such as
CN=Joshua Davies, OU=Architecture,O=Travelocity, L=Southlake, ST=Texas, C=USA

You may even be familiar with the meanings of the terse one- and two-letter
codes shown in the example, but in case you aren’t, they expand to the long
names shown in Table 5-2.
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Table 5-2: An Expanded X.509 Distinguished Name

TWO-LETTER CODE LONG NAME VALUE

CN Common Name Joshua Davies
ou Organizational Unit Architecture
0] Organization Travelocity

L Locality, usually a city name  Southlake

ST State Texas

C Country USA

As you can see, this identifies, fairly uniquely, an individual person. In the
case of an X.509 certificate, a distinguished name is used to identify the issuer.
Here’s an example issuer name:

CN = VeriSign Class 3 Extended Validation SSL SGC CA,

OU = Terms of use at https://www.verisign.com/rpa (c)06,
OU = VeriSign Trust Network, O = VeriSign, Inc., C = US

This is the issuer string on the certificate that identifies the Travelocity
.com web site at the time of this writing. As you can see, the cN (common name)
doesn’t actually identify a person; it identifies an entity. The ou field appears
twice and is used to transmit data not actually related to the organizational
unit. However, it identifies an issuer well enough for the receiver to decide if it
wants to trust it or not. However, see the discussion later in this chapter about
the issuertUniqueId field for more on this topic.

You can see this yourself. As way of example, follow these steps:

In FireFox:

1. Navigate to a secure page.

2. Double-click the lock icon, and click the View button. The Issued By sec-
tion details the contents of the “issuer” field in the X.509 certificate that
the server presented to negotiate the secure connection in the first place.

Using Microsoft’s Internet Explorer 8:
1. Navigate to a secure page.

2. Click the lock icon on the URL bar, select View Certificates. The Certificate
dialog appears as shown in Figure 5-3.

3. Click the Details tab, and click Issuer.

One thing you may notice about the two distinguished name examples I've
given is that not every field appears in each distinguished name because at
least some of them are optional. In fact, technically speaking, all of them are
optional. If you look at the declaration of the Name type, which issuer is, you
see that it’s defined generically:
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Name ::= CHOICE {

RDNSequence }
RDNSequence ::= SEQUENCE OF RelativeDistinguishedName
RelativeDistinguishedName ::=

SET OF AttributeTypeAndvValue
AttributeTypeAndValue ::= SEQUENCE ({

type AttributeType,

value AttributeValue }

AttributeType ::= OBJECT IDENTIFIER
AttributeValue ::= ANY DEFINED BY AttributeType
Certificate
| General | Details | Certification Path
Show: [<AJI> V]
Field Value =
B\n‘ersion V3 £
BSEriaI number 53b4a764c5f5c8 59 fcec...
Signature algorithm shalRSA
Issuer VeriSign Class 3 Extended Vali...
D\falid from Thursday, January 28, 2010 7...
B\falid to Sunday, January 29, 2012 6:5...
DSubject travel. travelodty.com, Intern...
[Pk e REA (9148 Rite)

CN = VeriSign Class 3 Extended Validation S5L SGC CA

0l = Terms of use at https:/fwww. verisign.com/rpa (c)06
OU = VeriSign Trust Network

0 = VeriSign, Inc.

C=U5

Edit Properties. .. Copy to File...

Learn more about certificate details

Figure 5.3: Example of an Issuer field

A name is an RDNSequence, which is a SEQUENCE OF another type, the
RelativeDistinguishedName. Remember earlier when SEQUENCE was com-
pared to a C struct, which may be confusing because sEQUENCE sounds like a
repeating field? Well, seT oF, which RelativeDistinguishedName is defined
as, is a repeating field.

What this all means is that a name is a variable-length array of
AttributeTypeAndvalue structures. The attribute type is an 01D, and the attri-
bute value can be any type, depending on its OID. Again, you don’t need to
care much about the encoding structure of OIDs; you just need to care about
their values and what they map to. As you can probably guess, cN, o, ou, L, ST,
and c each have their own OID values. Theyre not represented as string values
anywhere in the certificate. These OIDs are shown in Table 5-3.
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Table 5-3: DistinguishedName OIDs

LONG NAME oID

CommonName 0x55, 0x04, 0x03
CountryName 0x55, 0x04, 0x06
LocalityName 0x55, 0x04, 0x07
StateOrProvinceName 0x55, 0x04, 0x08
OrganizationName 0x55, 0x04, 0x0A
OrganizationalUnitName 0x55, 0x04, 0x0B

Although the actual type of the attribute value of each depends on the OID,
all of the OIDs you typically see (within the distinguished name, at least) have
attribute values whose types are strings. Notice also that these OIDs are only
three bytes long, whereas the OIDs of the algorithm identifiers shown earlier
are each nine bytes long. See X.520 for more detail on the attribute type OIDs (as
well as many, many more attribute types — distinguished names are permitted
to be very detailed, although theyre usually relatively simple).

For now, you just have to identify an issuer well enough to make a trust decision,
or provide this same information to the user and let the user make this decision.
If you've ever come across the error message “The certificate is signed by an
unrecognized CA or one you have chosen not to trust” while browsing the web,
your browser is telling you that you should take a look at the “issued by” field.

validity
validity Validity

Recall the purpose and concept of validity period — the validity period represents
a time window outside of which the certificate should be considered suspect.
You've likely come across the error message “The web site’s certificate has
expired” while browsing. This is actually a much less serious condition than an
untrusted issuer. You know that the certificate was valid at some point in the
past; it’s just due to be resissued. If it’s not terribly old, you can probably trust it.

TRACKING CERTIFICATE VALIDITY PERIODS

Keeping track of validity periods and expiration dates, and ensuring that certifi-
cates get reissued before their expiration date, can be an onerous responsibility
for a website administrator. Expired certificates are a user annoyance when a
web server presents one — the user is presented with an ominous error
message and given the option to continue or abort. However, in automated
communications, such as secured web services, where a program is making a
secure connection to another program, certificate expiration can be fatal.
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One day your web services are connecting to one another as they should be; the
next day they're failing for no apparent reason with a “certificate expired” error
message buried in a log file somewhere. No certificate-based library I'm aware
of gives you any warning that a certificate is about to expire (as nice as that
would be).

One way to get around this is to have all certificates that protect program-
to-program services expire on the same day — for instance, you can have
all the test environment certificates expire on Feb. 1, and all the production
environment certificates expire on Mar. 1. This way, you’ll get some warning
and when your test environment certificates start expiring and you’ll know it’s
time to start reissuing your production environment certificates.

How is validity represented in X.509, then?

Validity ::= SEQUENCE {
notBefore Time,
notAfter Time }
Time ::= CHOICE ({
utcTime UTCTime,
generalTime GeneralizedTime }

There are two Time values, each of which can either be a UTcTime or a
GeneralizedTime. Each is a year, followed by a month, a day, an hour, a minute,
a second, and the letter Z. The only difference between the two is that general-
ized time uses a four-digit year and uTcTime a two-digit year. A uTCTime is 13
bytes long; a GeneralizedTime is 15. Lengths are discussed later in the chapter,
when representations are covered.

So, with a two-digit year, the client has to do a bit of detective work to figure out
if 35 expired a very, very long time ago, or if it will expire in 25 years. Because no
X.509 certificates were issued in 1935, it’s safe to assume that a year of 35 means
2035. In fact, the specification mandates that all certificates issued before 2050
must use UTCTime, so if the year is less than 50, it’s in the 21st century. After the
year 2050, CA’s are supposed to begin using GeneralizedTime, with a four-digit
year. However, having lived through the Y2K “crisis,” I have faith that computer
programmers will not actually fix this two-digit year problem until a few years
before it actually does become a problem — sometime around the year 2080.

subject

subject Name

The subject, like the issuer, is a relative distinguished name. It includes an
optional number of identifying fields, hopefully enough to identify the subject
of the certificate. But, now that you mention it, who is the subject? If I have a
certificate that identifies me, personally, the subject name (the cn field) should
be my name, but if I'm connecting to a web site named www.whizbang. com, the
subject field should identify that web site somehow.
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As it turns out, this is actually poorly specified. The compromise here has
been to insert the domain name into the cx field of the subject name and allow
the client to compare the domain name it thinks it’s connecting to against the
domain name listed in the cn field of the certificate’s subject. However, this is
imperfect. Consider an e-commerce site that controls three different domains:
shop.whizbang.com, purchase.whizbang.com and orders.whi zbang . com. SSL
certificates are expensive to obtain — at least, those issued by reputable CAs — and
something of a hassle to maintain. The site administrator has to keep track of
expiration dates and ensure that the certificates get reissued within a reason-
able timeframe. As the administrator of whizbang.com, you'd really want one
certificate that authenticates all of the site’s servers. After all, www.whizbang
.com almost certainly identifies multiple physical IP addresses.

As a result, it’s acceptable for the certificate’s subject’s cn field to include a
wildcard, such as * .whizbang. com. This actually creates other problems. If you
can convince a CA to register you a certificate with a subject name including
CN=*.com, you can masquerade as any site on the Internet, and the browser has
no way of differentiating your certificate from the legitimate owner of the site.
Although authorities are smart enough to check for this, security researcher Moxie
Marlinspike, in his paper “Null Prefix Attacks Against SSL Certificates,” detailed
an interesting vulnerability not in the protocol itself but in most implementations
of it. An attacker requests a certificate whose common name was *\0.badguy
.com. Note the insertion of the null-terminator \0 in the domain name. Because
he owns the top-level domain name badguy . com, the CA issues the certificate.
However, a C-based client implementation almost certainly loads the common
name into a string field and does a strcmp to determine equality — reading the
common name as * or “any website”. This is something that implementers of the
TLS protocol need to be aware of; the length of the string needs to be checked,
and null terminators before the actual end of the string should be removed. If
you're lucky, the CA checks for this as well. You shouldn't rely on luck, though;
as the implementer, make sure you protect your users against lazy CA's.

RFC 2247 extends the X.509 subject name to explicitly include domain-name
components, split out according to the DNS hierarchy, so that www.whizbang. com
becomes DC=www, DC=whizbang, DC=com. This new pc (domain-name component)
attribute has OID 0.9.2342.19200300.100.1.25 and is not particularly common;
most sites still instead use the cn field to identify their domain names. This is
part of a chicken-and-egg problem; some older clients don’t recognize the pc
component, so to interoperate with them, sites identify themselves using the
cN field. Because so few sites advertise bc components, there’s little incentive
for clients to recognize it. At the time of this writing, neither Firefox 3.6.3 nor
Internet Explorer 8 properly recognize the pc field in the subject name, although
RFC 3280 states that recognizing it is mandatory. If the pc field correctly identi-
fies the domain name, but the cn does not (or is missing), a security exception is
still reported. The pc field is more common in LDAP-based certificates; perhaps
someday in the future, web browsers will make use of it.
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A recent Internet-wide security analysis by Qualys Research found “22
million SSL servers with certificates that are completely invalid because
they do not match the domain name on which they reside” (see http: //www
.esecurityplanet.com/features/article.php/3890171/SSL-Certificates-
In-Use-Today-Arent-All-Valid.htm), although some of this is likely caused
by virtual hosting rather than truly invalid SSL certificates.

subjectPublicKeyInfo

subjectPublicKeyInfo SubjectPublicKeyInfo

Here is the heart of the certificate — the public key that it presents. On the client
side, when the certificate is received, you use the issuer, validity period, and
the subject field to decide whether you trust the public key well enough to use
it to perform a key exchange. If the subject matches the host you think you're
connecting to, the certificate hasn’t expired, and the issuer is one you trust, you
have reasonable assurance that there’s no man in the middle and you can go
forward with the key exchange and, presumably, trade sensitive information
over the now-secured channel.
The definition for SubjectPublicKeyInfo is
SubjectPublicKeyInfo ::= SEQUENCE {

algorithm AlgorithmIdentifier,
subjectPublicKey BIT STRING }

The algorithmIdentifier, it should come as no surprise, includes an OID.
Two possible values of interest are shown in Table 5-4.

Table 5-4: Public-Key Algorithm OIDs

ALGORITHM IDENTIFIER oiD
RSA 2A 86 48 86 F7 0D 01 01 01
Diffie-Hellman 2A 86 48 CE 3E 02 01

.m Elliptic-curve Diffie-Hellman support in X.509 certificates is examined
in Chapter 9.

The public key itself is defined here as a simple bit string. Recall from Chapter 4,
though, that you need some pretty specific information in a pretty specific for-
mat to do key exchanges, For RSA, for example, you need the modulus n and
the public exponent e. So, as it turns out, the BIT STRING here actually encodes
another ASN.1 formatted value, whose contents vary depending on the value
of the algorithm identifier. For RSA, this is

RSAPublicKey ::= SEQUENCE {
modulus INTEGER, -- n
publicExponent INTEGER -- e -- }
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So, after decoding the OID, you then need to ASN.1 decode the bit string as
yet another ASN.1 value to extract the actual public key.

If you recall, regular (e.g. non-elliptic-curve) Diffie-Hellman key exchange
doesn’t involve a public key the way RSA does. There were two parameters
needed, though: the generator ¢ and the field parameter p. The contents of the
public key field, in this case, is simply:

DHPublicKey ::= INTEGER -- public key, y = g"x mod p

Of course, the public y value is useless to the client without g and p. You
might expect to see them in the public key structure, as you see with # in
the RsaPublicKey, but instead the Diffie-Hellman generator and group are
passed as algorithm parameters. Notice in the declaration of algorithm in
SubjectPublicKeyInfo that the type is actually AlgorithmIdentifier. This
includes an OID identifying the algorithm, but allows optional parameters to
be included:

AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL }

The parameters field is empty for RSA, but for DH, it’s defined as

DomainParameters ::= SEQUENCE {
p INTEGER, -- odd prime, p=jqg +1
g INTEGER, -- generator, g
a INTEGER, -- factor of p-1
3j INTEGER OPTIONAL, -- subgroup factor

validationParms ValidationParms OPTIONAL }

ValidationParms ::= SEQUENCE {
seed BIT STRING,
pgenCounter INTEGER }

HOW TO AVOID A SMALL SUBGROUP ATTACK USING THE
DIFFIE-HELLMAN KEY

If you recall the discussion of Diffie-Hellman key exchange in Chapter 3, you
may remember that p and g are the only two parameters that you need in
order to perform a key exchange. Each side chooses a random secret number
a or b, sends the other side y = g?%p, and the receiving side computes y*%p to
complete the key agreement (refer back to Chapter 3 if this is still a bit fuzzy).
So — you may wonder — what are those extra parameters, g, j, and validation-
Parms for? Well, when p and g are fixed parameters — used over and over for
multiple key exchanges — a poorly chosen p value can open the user to an
attack called the small subgroup attack, described by Chae Hoon Lim and Pil
Joon Lee in their paper, “A Key Recovery Attack on Discrete Log-based Schemes
Using a Prime Order Subgroup.” The attack itself is mathematically complex,
and | won't go into the details here. As it turns out, SSL/TLS ordinarily uses
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Diffie-Hellman key exchange in such a way that guarding against the small sub-
group attack is unnecessary; this will be examined in more detail in Chapter 8. If
you're curious, and would like to see more detail on how these parameters may
be used to guard against small subgroup attacks, you may refer to RFC 2631.

extensions

extensions [3] EXPLICIT Extensions OPTIONAL

-- If present, version shall be v3

Finally, there is the generic extensions field introduced in X.509v3 — in fact,
this was the only addition to X.509v3. Certificate extensions, if present — which
they almost always are these days — are appended here. extensions is a nested
SEQUENCE of object identifiers, optionally followed by data (depending on the
object identifier).

This book doesn’t go through all the available certificate extensions. RFC
5280, section 4.2 lists all of the standard ones, but be aware that two entities
can agree on non-standard extensions as well. There are, however, a handful
of particularly important ones.

The extensions type is defined as

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

and the extension type itself is defined as
Extension ::= SEQUENCE {
extnID OBJECT IDENTIFIER,
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING }

Each extension has a unique object identifier; this object identifier determines
how the extnvalue is parsed, or if it’s even present. Additionally, there’sa criti-
cal field. If an extension is marked critical, and the reader doesn’t recognize it,
it must reject the entire certificate; otherwise, unrecognized extensions can be
ignored. Most extensions are not marked critical.

The Subject Alternative Name extension (OID 55 1D 11) is a useful, but not
widely used, extension. This extension offers a place to specifically identify a
server’s domain name; it also supports e-mail addresses, IP addresses, other direc-
tory names, and so on. Because the domain name is explicit, the common-name
field no longer needs to be assumed to be the domain name. Unfortunately, this
extension has failed to catch on, chiefly for the same reason the bc component
in the subject name failed to catch on; to support older clients, servers must
continue to set the common name to be the same as domain name. (In fact,
it’s unclear what, if anything, ought to be in the cx component of a certificate’s
subject when the certificate identifies a web site, if not the domain name.)

There are additional certificate extensions throughout the remainder of this
chapter. Each one is encoded according to the Extension structure defined
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above, and is identified uniquely by an OID. Incidentally, all of the extension
OIDs start with 55 1D.

Signed Certificates

Now, as you browse over the list of fields described in the certificate structure
from Listing 5-1, you may have noticed that although a signing algorithm is
included, a signature isn’t. As you recall from Chapter 4, a signature is generated
when a byte sequence is hashed and the hash is encrypted using a private key.
So, one thing that must be agreed upon before a signature can be generated is
exactly which bytes are hashed. In this case, it’s the bytes of the certificate struc-
ture — technically, the certificate’s DER encoding (described later). So, there’s
another outer structure defined, which includes the certificate, the signature
algorithm (again), and the signature value itself, as shown in Listing 5-2.

Listing 5-2: X.509 signed certificate declaration

Certificate ::= SEQUENCE ({
tbsCertificate TBSCertificate,
signatureAlgorithm AlgorithmIdentifier,
signatureValue BIT STRING }

The certificate structure defined here is properly referred to as the TBSCertificate.
TBS stands for To Be Signed, although the ones examined here have already been
signed. If you think about the overall lifecycle of a certificate, this nomenclature
makes sense. First, the certificate requester (e.g. the website owner) generates a
public/private keypair and wraps up that information in a To-be-signed certificate
structure. This is sent off to the CA, which signs it (after verifying it) and returns
the whole certificate back, complete with its digital signature.

The signature algorithm is — in fact, must be — the exact same as the OID
given in the TBsCertificate itself. The signature, of course, is a bit string.
The use of a bit string — the ASN.1 equivalent of a void pointer — runs into the
same definitional problem with subjectPublicKeyInfo; the precise contents vary
depending on the signature algorithm itself. Therefore, again, the BIT STRING
itself is another ASN.1-defined structure, depending on the algorithm identifier.

.m A certificate can legally be signed by the private key corresponding
to the public key contained within it. This sort of certificate is called a self-
signed certificate. After all, my certificate is signed by a CA, but who signs
their certificates? As a result, all top-level certificates are self-signed this way.
How the client decides which self-signed top-level certificates to trust is not
defined by the SSL specification. In the context of a web browser, for example,
there’s always a list of trusted CAs that can be updated by the user.

You can see which CAs your browser trusts. If you're using Internet Explorer 8,
for instance, go to Tools > Internet Options > Publishers, and click the Trusted
Root Certification Authorities tab, as shown in Figure 5-4:
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Certificates @
Intended purpose: <All= V]
{Trusted Root Certification Authorities | Trusted Publishers I Untrusted Publishers | da]ek
Issued To Issued By Expiratio...  Friendly Name =
[ZladdTrust External ...  AddTrust External CA...  5/30/2020  USERTrust |E |
J.-'-\merica Online Roo... America Online Root ... 11/19/2037  America Online R... —
JCIass 3 Public Prima... Class 3 Public Primary ... 8/1/2028 VeriSign Class 3 ...
JCIass 3 Public Prima... Class 3 Public Primary ... 1f7/2004 Verisign
'_PJCOMODO Certificat... COMODO Certificatio... 12312028 C-O-M-OD-0
ié]Copyright {c) 1997 ... Copyright (c) 1997 Mi... 12/30/1999 Microsoft Timest...
‘—PJ DigiCert Assured ID... DigiCert Assured IDR... 11/9/2031  DigiCert
[=IDigiCert Global Roo... DigiCert Global Root CA 11/9/2031  DigiCert
[SIDigiCert High Assur... DigiCert High Assuran...  11/9/2031  DigiCert -
Certificate intended purposes
View
Learn more about certificates

root

delegate

server certificate

Figure 5.4: Sample of trusted root authorities in IE 8

X.509 is designed to allow delegation of signing authority. A top-level CA can
issue and sign a certificate to, for instance, a “west coast” authority and an “east
coast” authority. These authorities can sign certificates on behalf of the top-level
CA. The receiver first verifies that the lowest-level certificate is valid according to
the delegated authority’s certificate. Then it checks the signature of the delegated
authority against that of the root-level authority as illustrated in Figure 5-5.

Figure 5.5: Certificate authority delegation

This way, the verifier — for example, the web client — only needs to keep
track of a small number of root CAs. A handful of trusted root authorities can
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certify other authorities, and the client only has to be aware of a dozen or so
root authorities. You can extend this scheme to any level of sub-delegates; the
client just goes on checking signatures until it finds a signature issued by an
authority it already trusts.

Unfortunately, this system was put in place and used for a while before
somebody identified a fatal flaw. The problem is that every certificate includes
a public key, and any public key can sign another certificate. Therefore, there’s
nothing stopping an unscrupulous site administrator from using a regular
server certificate to sign another certificate, as shown in Figure 5-6, for example.

root

delegate

legitimately
obtained server
certificate

A

certificate
identifying any
website

Figure 5.6: lllegitimate delegation

As a result, almost all clients are designed to require that each certificate be
signed by a trusted authority and to reject delegated signatures.

The key Usage certificate extension — OID 55 1D OF — was introduced to
allow this sort of delegated signature scheme in a safe way; this (critical) exten-
sion encodes a bit string, each of whose eight bits is either set or unset to iden-
tify that the public-key contained in this certificate may or may not be used
for a particular purpose. Of course, there’s nothing stopping an unscrupulous
user from using the key for a nonspecified purpose anyway, but the receiver
can check the key usage bit and determine whether to allow the sender to do
so. The most important bit is bit 5, which, if set, identifies this certificate as a
legitimate signing authority. Presumably, the issuing CA only allows this bit
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to be set if it trusts the requester to be responsible and sign other certificates
on behalf of the CA itself.

Summary of X.509 Certificates

I've covered a lot of ground in this section, and it’s easy to get lost in all of the
details. To summarize: when your browser warns you about certificate errors,
it’s referring to an X.509 certificate that was presented by the target web site to
identify itself. Such a certificate must be presented in order to guard against
man-in-the-middle attacks. An X.509 certificate itself is a mapping of an entity
name (e.g. a person or a website) to a public key. This mapping has a validity
period and is vouched for by a trusted entity called a certificate authority. As
long as all of these elements are present, you have a legitimate certificate. The
X.509 specification takes it a step further and tells you what order they should
be stored in and what form they should take.

Transmitting Certificates with ASN.1 Distinguished
Encoding Rules (DER)

Quite a bit has been said so far about the abstract structure of a certificate without
discussing how one is actually represented in byte form. The translation of primi-
tive (ASN.]) types to byte representation is described according to a set of rules.
Technically, these rules are independent of ASN.1 itself. I mentioned earlier that
a certificate is the sort of thing that would probably be represented in XML these
days — there is, in fact, a set of rules to encode ASN.1 in XML format! However,
by far the most common encoding, and the one that SSL relies on, is called the
Distinguished Encoding Rules (DER). The distinguished differentiates the rules from
another set called the basic encoding rules. Fundamentally, the distinguished
rules are more restrictive than the basic rules. For example, the basic rules allow
the encoder to use more bytes than necessary to specify lengths (if the encoder
wants all lengths to be encoded in a fixed set of bytes, for example). For the most
part, the differences are superficial, and the basic encoding rules (BER) won't be
specifically covered here.

The DER describes how to format integers, strings, dates, object identifiers, bit
strings, sequences and sets — as well as several others, but these are the ones
that are pertinent to the present discussion about X.509 certificates. See X.690
for a complete listing of DER encoding rules.

Encoded Values

Every encoded value is represented as a type, followed by the value’s length,
followed by the actual contents of the value itself; the representation of the value
depends on the type. So, for example, the type integer is byte 02. DER allows
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for multi-byte types as well — and has complex rules on how to encode and
recognize them — but X.509 doesn’t need to make use of them and sticks with
single-byte types. Therefore, the integer value 5 is encoded, according to DER, as

02 01 05

That’s type 2 (integer), one byte in length, value 5. The integer value 65535
is encoded as

02 02 FF FF

That’s type 2, two bytes, value OxFFFF equals 65535. The length byte tells you
when to stop reading the value and start looking for another tag.

So far, so good. It’s pretty simple. OID’s are just as simple to encode. They're
stored just like integers, but they have a type of 6 instead of 2. Otherwise, they're
encoded the same way: type, length, value. The OID common name (in the subject
and issuer distinguished name fields) of 55 04 03 is represented as

06 03 55 04 03

The length byte tells you that there are three bytes of OID.

Strings and Dates

Strings and dates are both encoded similarly. The type code for a date is either
23 or 24; 23 is a generalized — four-digit year — time. 24 is a UTC — two-digit
year — time. Although the type actually includes enough information to infer
the length — you know that generalized times are 15 digits, and UTC times
are 13 — for consistency’s sake the lengths are included as well. After that, the
year, month, day, hour, minute, second and Z are included in ASCII format. So
the date Feb. 23, 2010, 6:50:13 is encoded in UTC time as

17 od 31 30 30 32 32 33 30 36 35 30 31 33 5A
tag length 1 o o 2 2 3 O 6 5 o0 1 3 Z

and is encoded in generalized time as

16 of 32 30 31 30 30 32 32 33 30 36 35 30 31 33 5A
tag length 2 0 1 0 0 2 2 3 0 6 5 0 1 3 Z

Strings are also coded this way. However, there are quite a few different string
types to account for different byte encodings (among other things). The official
specification is actually not proscriptive about which type of string should be used,
and you actually see different kinds. However, the most common are 1a55trings
(type 22) and printable strings (type 19), which you can treat interchangeably.
Given, for example, the country code “US” in a name field, the encoding would be

13 02 55 53

which is the ASCII representation of the string “US.”
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Bit Strings

So far, DER is pretty straightforward, and everything except bit strings, sequences
and sets has been covered. Bit strings are just like strings, with one minor
difference. Their type is 3 to distinguish them from printable strings, but the
encoding is exactly the same: tag, length, contents. The only difference between
bit strings and character strings is that bit strings don’t necessarily have to end
on an eight-bit boundary, so they have an extra byte to indicate how much pad-
ding was included. In practice, this is always 0 because all useful bit patterns
are eight-bit aligned anyway.

However, as you recall from the discussion of public key algorithms and
signature values, bit strings contain nested ASN.1 structures. All the examples
of DER-encoded values examined so far have been able to get away with repre-
senting their length with a single byte, but a nested ASN.1 structure is bound
to be larger than this. So how are lengths greater than 255 represented?

Actually, a single-length byte can only represent 127 byte values. The high-
order bit is reserved. If it’s 1, then the low order seven bits represent not the
length of the value, but the length of the length — that is, how many of the
bytes following encode the length of the subsequently following value. So, if a
bit string is 512 bytes long, the DER-encoded representation looks like Table 5-5:

Table 5-5: ASN.1 Encoding of Long Values

TAG NUMBER OF ACTUAL BITS OF VALUE

NUMBER LENGTH BYTES LENGTH VALUE PADDING

03 83 02 00 00 00 (512 bytes of
value)

Technically, a value doesn’t have to be a bit string to have a length greater
than 127; integers, strings, and OIDs could, at least in theory. In practice, though,
this never happens.

Sequences and Sets: Grouping and Nesting ASN.1 Values

So, you're almost ready to start encoding an entire X.509 certificate. There are two
missing pieces, though. Notice that there are several sequences nested inside other
sequences, and sets nested inside sequences (and sequences nested inside sets...).
Sets and sequences are what ASN.1 calls a constructed type — that is, a type contain-
ing other types. Technically, theyre encoded the same way other values are. They
start with a tag, are followed by a variable number of length bytes, and are then
followed by their contents. However, for constructed types, the contents themselves
are further ASN.1-encoded tags. Sequences are identified by tag 0x30, and sets are
identified by tag 0x31. Any tag value whose sixth bit is 1 is a constructed tag and
the parser must recognize that it contains additional ASN.1-encoded data.
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ASN.1 Explicit Tags

Finally, turn back and look at the definition of the tbsCertificate. Notice that
the first field is an optional version number, and the second field is a required
serialNumber, and theyre both numeric. When parsing a certificate, then, you
know for certain that the first value you come across is a number, but you have
to check the value of the first value to determine how to interpret the first value!
Clearly this is not an optimal way to go about parsing certificates.

To get around this, ASN.1 also allows for explicit tags. Notice in the definition
of the tbsCertificate that version is listed as [0] EXPLICIT.

SEQUENCE {
version [0] EXPLICIT Version DEFAULT vl,
serialNumber CertificateSerialNumber,

So far, tags have been presented as randomly distributed identifiers. Actually,
the first two bits of a tag identify its tag class. In X.509 you come across two types
of tag classes: universal (00) and context-specific (10). (The other two are applica-
tion and private and are not used in X.509 certificates.) Context-specific tags are
explicit tags. So, to create an explicit tag 0, OR 0 with 1000 0000 (0x80). This is
also a constructed tag — its contents are the actual version number — so the
sixth bit is set to 1 (OR 0x20).

A Real-World Certificate Example

An example might help clear up any remaining confusion here. To see an actual
certificate, you can download one from any SSL-enabled site, or create a new one.
The latest version of IE makes it a bit difficult to directly download a certificate,
but it’s still fairly straightforward with Firefox:

1. Navigate to a secure site.

2. Click the lock icon.

3. Select Security > View Certificate.

4. Click the Details tab, shown in figure 5-7, and then click the Export button.

Using OpenSSL to Generate an RSA KeyPair and Certificate

To keep the first example simple, go ahead and just create a new certificate.
OpenSSL has a reg option that enables you to generate a self-signed certificate.
Do so and then examine its contents.

jdavies@home:ssl$ openssl req -x509 -newkey rsa:512 -keyout key.der -keyform der \
-out cert.der -outform der

Generating a 512 bit RSA private key

..... R

........ +Htttb bt
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writing new private key to 'key.der'

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:TX

Locality Name (eg, city) []:Southlake

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Travelocity
Organizational Unit Name (eg, section) []:Architecture

Common Name (eg, YOUR name) []:Joshua Davies

Email Address []:joshua.davies@travelocity.com

General | Details

Certificate Hierarchy

= VeriSign Class 3 Public Primary Certification Authority - G5

=~ \VeriSign Class 3 Extended Validation SSL CA
customer.wiley.com

Certificate Fields

Subject =
“Subject Public Key Info
| Subject Public Key Algorithm
Subject's Public Key
~Extensions
Certificate Basic Constraints
Certificate Key Usage
Logotype =
Certificate Subject Key ID
Certificate Signature Algorithm
Certificate Signature Value
Field Value

lose

Figure 5.7: Downloading/exporting a certificate in Firefox

Notice that it created two output files: a key file, containing the encrypted
private key, and a cert file, containing the certificate. It doesn’t make much sense

@ 12/10/2010 9:45:06 AM



246

Chapter 5 = Creating a Network of Trust Using X.509 Certificates

c05.indd 246

to generate a new public key without a private key to go with it. The structure
of this key file is revisited later.

Also, notice the parameters: -keyform and -out form. There are two options
here, der and pem. der is, unsurprisingly, the ASN.1 DER-encoded representa-
tion of the certificate or key file. pem, which stands for Privacy Enhanced Mail, is
a Base-64 encoded representation of the DER-encoded certificate with a header
and a footer. A pem-encoded certificate file looks like this:

MIIDUJjCCAVygAwWIBAgIJAMdcnerewad QMAOGCSgGSIb3DQEBBQUAMIGKMQOswCQYD
VQOGEwWJVUzEOMAWGA1UECBMFVGV4YXMXEjAQBgNVBACTCVNVAXRObLGFrZTEUMBIG

AwWEB/zANBgkghkiG9w0BAQUFAANBAKf3QiQgbre9DSgdaeEDIvOnonEHXPRsU797j
13g/IUM1hmtuz4ST1INAPVRAZ6DUIVINGQVVIbt15Bm7MKo7KCMarc=

Proc-Type: 4,ENCRYPTED
DEK-Info: DES-EDE3-CBC,DF6F51939AF51B22

+cvob7sZ16Ew8/1BgNUF1Q40B14mYzwd3cS08/xpzbgtkeczYfiQeYNSN4d18h3tp
VzoeCoRKsBKt189NtpzTJocv33vgcaTFHt1BXBnOPxrQALhyV1x4ADIoWS5e7rvsW

RmygjA8BHIJeCPzvJIlmir550YB9aCQBTR3 +mAlvVrnx5englf0YCw/tneXJor3jT
IgYBcTpEvug5geGV127UA2¢cI/1lcCuNQOCjdfztlhhmo=

These structures are more amenable to being transmitted in e-mail than
DER-encoded files. SSL always deals in DER-encoded files, though.

.m You'll encounter the term PEM every once in a while as you read
through the official Internet documentation on certificates. Privacy-Enhanced
Mail was the first attempt to apply X.509 certificates in an Internet context, so
some of the terminology stuck.

The cert . der file is 845 bytes long. If you did this yourself and used your own
name, location, and e-mail information, it might be slightly longer or shorter,
but should be in this same neighborhood. The contents of this file are

jdavies@home:ssl$ od -t x1 cert.der

0000000 30 82 03 49 30 82 02 f3 a0 03 02 01 02 02 09 00
0000020 ca 30 el 8f 77 8d a2 81 30 0d 06 09 2a 86 48 86
0000040 £7 0d 01 01 05 05 00 30 81 al 31 0Ob 30 09 06 03
0000060 55 04 06 13 02 55 53 31 0b 30 09 06 03 55 04 08
0000100 13 02 54 58 31 12 30 10 06 03 55 04 07 13 09 53
0000120 6f 75 74 68 6¢ 61 6b 65 31 14 30 12 06 03 55 04
0000140 0Oa 13 0b 54 72 61 76 65 6¢c 6f 63 69 74 79 31 15
0000160 30 13 06 03 55 04 0Ob 13 Oc 41 72 63 68 69 74 65
0000200 63 74 75 72 65 31 16 30 14 06 03 55 04 03 13 0d
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0000220 4a 6f 73 68 75 61 20 44 61 76 69 65 73 31 2c 30
0000240 2a 06 09 2a 86 48 86 f£7 04 01 09 01 16 1d 6a 6f
0000260 73 68 75 61 2e 64 61 76 69 65 73 40 74 72 61 76
0000300 65 6¢c 6f 63 69 74 79 2e 63 6f 6d 30 le 17 0d 31
0000320 30 30 33 30 32 32 32 34 36 32 33 5a 17 0d 31 30
0000340 30 34 30 31 32 32 34 36 32 33 5a 30 81 al 31 0b
0000360 30 09 06 03 55 04 06 13 02 55 53 31 0b 30 09 06
0000400 03 55 04 08 13 02 54 58 31 12 30 10 06 03 55 04
0000420 07 13 09 53 6f 75 74 68 6¢c 61 6b 65 31 14 30 12
0000440 06 03 55 04 Oa 13 0b 54 72 61 76 65 6¢c 6f 63 69
0000460 74 79 31 15 30 13 06 03 55 04 Ob 13 0Oc 41 72 63
0000500 68 69 74 65 63 74 75 72 65 31 16 30 14 06 03 55
0000520 04 03 13 0d 4a 6f 73 68 75 61 20 44 61 76 69 65
0000540 73 31 2c 30 2a 06 09 2a 86 48 86 f£7 04 01 09 01
0000560 16 1d 6a 6f 73 68 75 61 2e 64 61 76 69 65 73 40
0000600 74 72 61 76 65 6¢c 6f 63 69 74 79 2e 63 6f 6d 30
0000620 5c 30 0d 06 09 2a 86 48 86 £7 0d 01 01 01 05 00
0000640 03 4b 00 30 48 02 41 00 e0 13 38 0f 83 b6 ef 06
0000660 70 f5 5b aa 3a 2b cf 8e 95 f£ff 91 bl 90 03 52 51
0000700 69 73 de a7 fa 97 fb 56 0d b9 e9 0f e8 30 22 8c
0000720 5e f£0 1f 07 £0 dc cc 61 b8 01 Oe bl b0 58 ef b5
0000740 b4 54 16 70 eb 59 b4 bf 02 03 01 00 01 a3 82 01
0000760 Oa 30 82 01 06 30 1d 06 03 55 1d Oe 04 16 04 14
0001000 2d f1 04 e4 46 1d 72 ef bb a7 ce 05 58 4c 31 f1l
0001020 ff 8e 4e 2e 30 81 dé6 06 03 55 1d 23 04 81 ce 30
0001040 81 cb 80 14 2d f1 04 e4 46 1d 72 ef bb a7 ce 05
0001060 58 4c 31 f1 ff 8e 4e 2e al 81 a7 a4 81 a4 30 81
0001100 al 31 0b 30 09 06 03 55 04 06 13 02 55 53 31 0b
0001120 30 09 06 03 55 04 08 13 02 54 58 31 12 30 10 06
0001140 03 55 04 07 13 09 53 6f 75 74 68 6¢c 61 6b 65 31
0001160 14 30 12 06 03 55 04 Oa 13 Ob 54 72 61 76 65 6¢
0001200 6f 63 69 74 79 31 15 30 13 06 03 55 04 0b 13 Oc
0001220 41 72 63 68 69 74 65 63 74 75 72 65 31 16 30 14
0001240 06 03 55 04 03 13 0d 4a 6f 73 68 75 61 20 44 61
0001260 76 69 65 73 31 2c 30 2a 06 09 2a 86 48 86 f£7 0d
0001300 01 09 01 16 1d 6a 6f 73 68 75 61 2e 64 61 76 69
0001320 65 73 40 74 72 61 76 65 6¢c 6f 63 69 74 79 2e 63
0001340 6f 6d 82 09 00 ca 30 el 8f 77 8d a2 81 30 Oc 06
0001360 03 55 1d 13 04 05 30 03 01 01 f£f 30 0d 06 09 2a
0001400 86 48 86 f£7 0d 01 01 05 05 00 03 41 00 1b 63 7b
0001420 £5 13 ef 2e 3d 56 22 3d a2 4c d5 Oe 31 8d Oc 25
0001440 bb 24 30 fd a3 20 f5 a3 b5 7d 1b cb le a8 bd b0
0001460 ce 78 8b e7 5e 7a ac 66 2c 6d 06 06 e8 e3 06 24
0001500 ca d5 ce 0d 99 la 7c 37 53 4d d3 be 83

It’s worth taking the time to break this file down into its constituent parts.
As discussed above, the first byte is a tag. 0x30 is a sequence, as you would
expect — this should be a signed certificate sequence. This tag is followed
by its length. Because the high-order bit of the length byte (0x82) is 1, this
indicates that the next two bytes are the length of the sequence. These bytes
are 0x0349, or decimal 841. This looks right — four bytes of the 845-byte file
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are the sequence and length tag, the remaining 841 are its content. The next
byte is another sequence (0x30). Remember that the first element of a signed
certificate is a tbsCertificate, which is itself a sequence. Again, the length
takes up two bytes of the input stream, and is 0x02F3, or decimal 755. That
leaves 86 bytes, toward the end, to contain the signature. Recall from Chapter 4
that this is about the right length for a 512-bit RSA signature value.

Table 5-6 presents an annotated breakdown of this certificate.

Table 5-6: Disassembled Certificate

BYTE CONTENTS

ASN.1 MEANING

X.509 CERTIFICATE

MEANING
308203 49 841 byte sequence Certificate
30820213 755 byte sequence TBSCertificate
a0 03 3 byte explicit tag 0
02 01 02 1 byte integer version number 3
02 09 00 ca 30 el 8f 77 9 byte integer Serial Number
8d a2 81
30 0d 13 byte sequence Algorithm Identifier
06 09 2a 86 48 f7 0d 01 9 byte OID SHA-1 with RSA Encryption
01 01 05
05 00 Empty space filler
30 81 al 161 byte sequence Issuer Name
31 0b 11 byte set AttributeTypeAndValue
3009 9 byte sequence AttributeTypeAndValue

06 03 55 04 06

3 byte OID

id-at-countryName

13 02 55 53 2 byte string us
310b 11 byte set AttributeTypeAndValue
3009 9 byte sequence AttributeTypeAndValue
06 03 44 04 08 3 byte OID id-at-stateOrProvinceName
130254 58 2 byte string X
3112 18 byte set AttributeTypeAndValue
3010 16 byte sequence AttributeTypeAndValue

06 03 55 04 07 3 byte OID id-at-localityName
130953 6f757468 9 byte string Southlake
6c 61 6b 65
3114 20 byte set AttributeTypeAndValue
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3012

18 byte sequence

AttributeTypeAndValue

06 03 55 04 Oa

3 byte OID

id-at-organizationName

13 0b 54 72 61 76 65
6c 6f 63 69 74 79

11 byte string

Travelocity

3115

21 byte set

AttributeTypeAndValue

3013

19 byte sequence

AttributeTypeAndValue

06 03 55 04 0b

3 byte OID

id-at-organizationalUnit-
Name

13 0c 41 72 63 68 69
74 65 637475 72 65

12 byte string

Architecture

3116

22 byte set

AttributeTypeAndValue

30 14

20 byte sequence

AttributeTypeAndValue

06 03 55 04 03

3 byte OID

id-at-commonName

13 0d 4a 6f 73 68 75
612044 6176696573

13 byte string

Joshua Davies

30 1e

31 byte sequence

Validity

17 0d 31 30 30 33 30 32
32 32 34 36 32 33 5a

13 byte UTC time

notBefore=1003022246237

17 0d 31 30 30 34 30 31
32 32 34 36 32 33 5a

13 byte UTC time

notAfter =100401224623Z

3081 al 161 byte sequence subject name
310b 11 byte set AttributeTypeAndValue
30 09 9 byte sequence AttributeTypeAndValue
06 03 55 04 06 3 byte OID id-at-countryName
1302 5553 2 byte string us
310b 11 byte set AttributeTypeAndValue
3009 9 byte sequence AttributeTypeAndValue

06 03 44 04 08

3 byte OID

id-at-stateOrProvinceName

13025458 2 byte string X
3112 18 byte set AttributeTypeAndValue
3010 16 byte sequence AttributeTypeAndValue

06 03 55 04 07 3 byte OID id-at-localityName
13 09 53 6f 75 74 68 9 byte string Southlake
6c 61 6b 65
3114 20 byte set AttributeTypeAndValue

Continued
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Table 5-6 (continued)

BYTE CONTENTS ASN.1 MEANING X.509 CERTIFICATE
MEANING
3012 18 byte sequence AttributeTypeAndValue
06 03 55 04 Oa 3 byte OID id-at-organizationName
130b 5472617665 11 byte string Travelocity
6¢c 6f 63 69 74 79
3115 21 byte set AttributeTypeAndValue
30 13 19 byte sequence AttributeTypeAndValue
06 03 55 04 Ob 3 byte OID id-at-organizationalUnit-
Name
13 0c 41 72 63 68 69 12 byte string Architecture
74 6563747572 65
3116 22 byte set AttributeTypeAndValue
30 14 20 byte sequence AttributeTypeAndValue
06 03 55 04 03 3 byte OID id-at-commonName
13 0d 4a 6f 73 68 75 13 byte string Joshua Davies
61 20 44 61 76 69 65 73
30 5¢ 92 byte sequence SubjectPublicKeyInfo
30 0d 13 byte sequence Algorithmldentifier
06 09 2a 86 48 f7 0d 01 9 byte OID RSA
01 01
05 00 0 byte filler
03 4b 75 byte bit string subjectPublicKey
00 30 48 02 41 00 ... ASN.1 encoded public key
bit string
a3 8201 0a 266 byte explicit extensions
tag 3
3082 01 06 262 byte sequence Extension
30 1d 29 byte sequence Extension
06 03 55 1d Oe 3 byte OID Subject Key Identifier

0416 04 142d f1 04 22 byte octet string
e4 46 1d 72 ef bb a7 ce 05
58 4c 31 f1 ff 8e 4e 2e

3081d6 214 byte sequence Extension

06 03 55 1d 23 3 byte OID Authority key identifier
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04 81 ce 206 byte octet
string

3081 cb80142d ...

300d 13 byte sequence Signature Algorithm
06 09 2a 86 48 86 f7 0d 9 byte OID RSA with SHA-1
01 01 05
05 00 0 byte filler
0341001b637b ... 65 byte string signatureValue

Note that the interpretation of the second column is automatic and requires
no context. However, the interpretation of the third column — the actual certifi-
cate contents — requires that you keep close track of the sequences, sets, and so
on and match them against the definition. One frustrating thing about ASN.1
DER-encoded strings is that they don't carry any identifying information with
them. You can often recognize a DER-encoded file by the 30 byte that (usually)
starts it, but if you don’t have some external information indicating what type
of file it is, you'll never be able to figure out what sort of file you're looking at.

Using OpenSSL to Generate a DSA KeyPair and Certificate

The example certificate in the previous section included an RSA public key.
Although this is by far the most common certificate form, OpenSSL allows you
to generate certificates that include DSA keys as well. (It does not, at the time of
this writing, allow the creation of a certificate with Diffie-Hellman parameters
as discussed earlier). The process is slightly more involved, though. First, you
must create a set of DSA parameters (p, g, and g):

[jdavies@localhost ssl]$ openssl dsaparam 512

-out dsaparam.cer

Generating DSA parameters, 512 bit long prime

This could take some time

et e +o.... B e o o e o o o o o ol
....... e 2 T Tt S SN
........ B T T T T T e R
T S LT T T S L S R S
Fo e ot o e e e e F o Fo e
oo R N R R s o o o T o o o i b e
+++

++++*
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You pass this in to your certificate request:

[jdavies@localhost ssl]$ openssl reqg -x509 -newkey dsa:dsaparam.cer -keyout \
dsakey.der -keyform der -out dsacert.der -outform der

Generating a 512 bit DSA private key

writing new private key to 'dsakey.der'

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [GB]:US

State or Province Name (full name) [Berkshire]:Texas

Locality Name (eg, city) [Newbury]:Southlake

Organization Name (eg, company) [My Company Ltd]:Travelocity

Organizational Unit Name (eg, section) []:Architecture
Common Name (eg, your name or your server's hostname) []:Joshua Davies
Email Address []:joshua.davies@travelocity.com

Developing an ASN.1 Parser

By now, you're probably itching to see some code. You develop code to parse
an X.509 certificate in two parts; first, deconstruct the DER-encoded ASN.1
structure into its constituent parts and then interpret these parts as an X.509
certificate. ASN.1-encoded values can be represented naturally as nodes of the
form shown in Listing 5-3.

Listing 5-3: “asn1.h” asnistruct definition

struct asnlstruct
{
int constructed; // bit 6 of the identifier byte

int tag_class; // bits 7-8 of the identifier byte
int tag; // bits 1-5 of the identifier byte
int length;

const unsigned char *data;
struct asnlstruct *children;
struct asnlstruct *next;

}i

Converting a Byte Stream into an ASN.1 Structure

The first five elements ought to be relatively straightforward if you understood
the description of ASN.1 DER in the previous section. The last two are used to
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navigate the hierarchy. Each asnistruct is part of a linked list of other asn-
1struct structures, and each one optionally points to the head of another linked
list that is its child. So, after parsing, the first part of the certificate is represented

in memory as shown in Figure 5-8.

constructed: true
tag_class:

tag: 0x16

length: 841

data: null

children |

children

children

constructed: false
tag_class:

tag: 0x02

length: 1

data: 2

constructed: true
tag_class:
tag: 0x16
length: 755 children
data: null > constructed: true
| tag_class:
next tag: 0x03
v length: 3
data: null
constructed: true I
tag_class: next
tag: 0x03
lde;tgmr;u}ls constructed: false
: tag_class:
tag: 0x02
length: 9
data: 00 ca 30 e
8f 77 8d a2 81
I
next
\
constructed: true
tag_class:
tag: 0x03
length: 13
data: null
I
next
v
constructed: true
tag_class:
tag: 0x16
length: 161
data: null

Figure 5.8: Partial illustration of a certificate structure

constructed: false
tag_class:

tag: 0x06

length: 9

data: 2a 86 48 86
f70d 01 01 05

I
next

constructed: false
tag_class:

tag: 0x05

length: 0

data: null

As you can see, locating a node is a matter of starting at the root, and travers-
ing any number of children or nexts until you reach the one you're looking
for. The tree structure is preserved by the use of the children pointers. Define
a handful of constants to clarify the code as shown in Listing 5-4.
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Listing 5-4: “asnl.h” constants

#define ASN1_CLASS_UNIVERSAL 0
#define ASN1_CLASS_APPLICATION 1
#define ASN1_CONTEXT_SPECIFIC 2
#define ASN1_PRIVATE 3

#define ASNI1_BER 0

#define ASN1_BOOLEAN 1

#define ASN1_INTEGER 2

#define ASN1_BIT STRING 3
#define ASN1_OCTET_ STRING 4
#define ASNI1_NULL 5

#define ASN1_OBJECT_IDENTIFIER 6
#define ASN1_OBJECT_DESCRIPTOR 7
#define ASN1_INSTANCE_OF_EXTERNAL 8
#define ASN1_REAL 9

#define ASNI1_ENUMERATED 10
#define ASN1_EMBEDDED_PPV 11
#define ASN1_UTF8_STRING 12
#define ASN1_RELATIVE_OID 13

// 14 & 15 undefined

#define ASN1_SEQUENCE 16

#define ASN1_SET 17

#define ASN1_NUMERIC_STRING 18
#define ASN1_PRINTABLE_STRING 19
#define ASN1_TELETEX_ STRING 20
#define ASN1_T61_STRING 20
#define ASN1_VIDEOTEX_STRING 21
#define ASNI1_IAS5_STRING 22
#define ASN1_UTC_TIME 23

#define ASN1_GENERALIZED_TIME 24
#define ASN1_GRAPHIC_STRING 25
#define ASN1_VISIBLE_STRING 26
#define ASN1_ISO064_STRING 26
#define ASN1_GENERAL_STRING 27
#define ASN1_UNIVERSAL_STRING 28
#define ASN1_CHARACTER_STRING 29
#define ASN1_BMP_STRING 30

The recursive ASN.1 parser routine itself is surprisingly simple (see Listing 5-5).

Listing 5-5: "asnl.c” asniparse

int asnlparse( const unsigned char *buffer,
int length,

struct asnlstruct *top_level_ token )

unsigned int tag;
unsigned char tag_length_byte;
unsigned long tag_length;

const unsigned char *ptr;
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const unsigned char *ptr_begin;
struct asnlstruct *token;

ptr = buffer;

token = top_level_ token;

while ( length )
{

ptr_begin = ptr;
tag = *ptr;

ptr++;
length--;
// High tag # form (bits 5-1 all == "1"), to encode tags > 31.
// in X.509
if ( ( tag & O0x1F ) == Ox1F )
{
tag = 0;
while ( *ptr & 0x80 )
{
tag <<= 8;
tag |= *ptr & Ox7F;

tag_length_byte = *ptr;
ptr++;

length--;

// TODO this doesn't handle indefinite-length encodings

Not used

(according to

// ITU-T X.690, this never occurs in DER, only in BER, which X.509 doesn't

// use)
if ( tag_length_byte & 0x80 )
{
const unsigned char *len_ptr = ptr;
tag_length = 0;
while ( ( len_ptr - ptr ) < ( tag_length_byte & 0x7F
{
tag_length <<= 8;
tag_length |= *(len_ptr++);
length--;
}
ptr = len_ptr;
}
else
{
tag_length = tag_length_byte;

// TODO deal with "high tag numbers"

token->constructed = tag & 0x20;

(Continued)
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token->tag_class = ( tag & 0xCO ) >> 6;
token->tag = tag & O0x1F;

token->length = tag_length;

token->data = ptr;

token->children = NULL;

token->next = NULL;

if ( tag & 0x20 )
{
token->length = tag_length + ( ptr - ptr_begin );

token->data = ptr_begin;

// Append a child to this tag and recurse into it
token->children = ( struct asnlstruct * )
malloc( sizeof( struct asnlstruct ) );

asnlparse( ptr, tag_length, token->children );

ptr += tag_length;
length -= tag_length;

// At this point, we're pointed at the tag for the next token in the buffer.
if ( length )
{

token->next = ( struct asnlstruct * ) malloc( sizeof( struct asnlstruct ) );

token = token->next;

return 0;

This routine is passed a complete certificate structure, so the whole thing

must be resident in memory before this routine is called; this approach might
need to be revisited in, say, a handheld device where memory is constrained. It
reads through the whole buffer, recognizing ASN.1 structures, and allocating
asnlstruct instances to represent them.

1. Check to see if this is a multi-byte tag:
if ( ( tag & Ox1F ) == Ox1F )
{
tag = 0;
while (
{
tag <<= 8;

*ptr & 0x80 )
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tag |= *ptr & O0x7F;

}

X.509 doesn’t define any of these, but you ought to recognize them for
completeness — if for no other reason than to be able to safely ignore them
if you happen to come across one.

2. Parse out the length of the structure itself; this is always present. If the
tirst byte is a multi-length byte, the processing is a bit complex in part

because of the endian-ness issue.
if ( tag_length byte & 0x80 )
{
const unsigned char *len_ptr = ptr;
tag_length = 0;
while ( ( len_ptr - ptr ) < ( tag_length_byte & 0x7F ) )
{
tag_length <<= 8;
tag_length |= *(len_ptr++);
length--;
}
ptr = len_ptr;
}
else
{
tag_length = tag_length_byte;
}

3. Now that you know the type of tag and the length of its contents — whether
they are data or other ASN.1 structures — you can start filling out the
asnlstruct instance:

token->constructed = tag & 0x20;
token->tag_class = ( tag & 0xCO ) >> 6;
token->tag = tag & O0x1F;

token->length = tag_length;

token->data = ptr;

token->children = NULL;

token->next = NULL;

4. Now the tricky part — if this is a constructed tag, its contents are more
ASN.1 structures, which must be appended to the children list. If it is
then allocate a new structure to store the children and recursively call this
routine:

if ( tag & 0x20 )
{
token->length = tag_length + ( ptr - ptr_begin );
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token->data = ptr_begin;

token->children = ( struct asnlstruct * )
malloc( sizeof( struct asnlstruct ) );
asnlparse( ptr, tag_length, token->children );
}

5. When it returns, or if it wasn’t called because the tag was a non-constructed
tag, you're either at the end of the data or you're pointing at the next ele-

ment relative to the one that was just parsed.
if ( length )
{
token->next = ( struct asnlstruct * )
malloc( sizeof( struct asnlstruct ) );
token = token->next;
}

6. If there is another element to parse, allocate space for it, update the target
token pointer, and loop back around to process this element. When you're
finished the supplied top_level_token structure points to the root of a
fully parsed ASN.1 tree.

7. Finally, because a lot of memory is allocated by the ASN.1 parsing process,
define a function to recursively go through and clean it all up as shown
in Listing 5-6.

Listing 5-6: “asn1.c” asnifree

/**
* Recurse through the given node and free all of the memory that was allocated
* by asnlparse. Don't free the "data" pointers, since that points to memory
* that was not allocated by asnlparse.
*/
void asnlfree( struct asnlstruct *node )
{
if ( !'node )
{

return;

asnlfree( node->children );
free( node->children );
asnlfree( node->next );

free( node->next );
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As you can see, the recursive definition of the asnistruct structure makes

cleanup and traversal very straightforward.

The asnlparse Code in Action

To see this code in action, put together a sample main routine as in Listing 5-7
that takes as input a certificate file (or any other ASN.1 DER-encoded file) and

output the ASN.1 structure elements.

Listing 5-7: “asnl.c” test routine

#ifdef TEST ASN1
int main( int argc, char *argv[ ] )
{
int certificate_file;
struct stat certificate_file_stat;
unsigned char *buffer, *bufptr;
int buffer_size;

int bytes_read;

struct asnlstruct certificate;

if ( argc < 2 )

{
fprintf( stderr, "Usage: %s <certificate file>\n", argv([ 0
exit( 0 );

if ( ( certificate_file = open( argv[ 1 ], O_RDONLY ) ) == -1
{
perror ( "Unable to open certificate file" );

return 1;

// Slurp the whole thing into memory
if ( fstat( certificate_file, &certificate_file_stat ) )
{

perror ( "Unable to stat certificate file" );

return 2;

buffer_size = certificate_file_stat.st_size;
buffer = ( char * ) malloc( buffer_size );

(Continued)
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if ( !'buffer )
{

perror ( "Not enough memory"

return 3;

bufptr = buffer;

while ( bytes_read = read(

)

certificate_file,

certificate_file_stat.st_size )

bufptr += bytes_read;
}

asnlparse( buffer, buffer_size,

asnlshow( 0, &certificate

asnlfree( &certificate );

return 0;

}
#endif

)

&certificate

(
)

)

void *

This invokes the asn1show routine in Listing 5-8.

Listing 5-8: “asnl.c” asnishow

)

buffer,

static char *tag_names[] = {
"BER",
"BOOLEAN",
"INTEGER",
"BIT STRING",
"OCTET STRING",
"NULL",
"OBJECT IDENTIFIER",
"ObjectDescriptor",
"INSTANCE OF, EXTERNAL",
"REAL",
"ENUMERATED",
"EMBEDDED PPV",
"UTF8String",
"RELATIVE-OID",
"undefined(14)"
"undefined(15)",
"SEQUENCE, SEQUENCE OF",
"SET, SET OF",
"NumericString",
"PrintableString",
"TeletexString, T6lString",

//
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
//
//
//
/7
//
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"VideotexString", // 21
"IA5String", // 22
"UTCTime", // 23
"GeneralizedTime", // 24
"GraphicString", // 25
"VisibleString, IS064String", // 26
"GeneralString", /727
"UniversalString", // 28
"CHARACTER STRING", // 29
"BMPString" // 30

}i

void asnlshow( int depth, struct asnlstruct *certificate )

{

struct asnlstruct *token;

int 1i;

token = certificate;

while ( token )

{

for (i = 0; 1 < depth; i++ )
{
printf( " " );
}
switch ( token->tag_class )
{
case ASN1_CLASS_UNIVERSAL:
printf( "%$s", tag_names[ token->tag ] );
break;
case ASN1_CLASS_APPLICATION:
printf( "application" );
break;
case ASN1_CONTEXT_ SPECIFIC:
printf( "context" );
break;
case ASN1_PRIVATE:
printf( "private" );

break;
}
printf( " (%d:%d) ", token->tag, token->length );
if ( token->tag_class == ASN1_CLASS_UNIVERSAL )

{
switch ( token->tag )
{
case ASN1_INTEGER:
break;

(Continued)
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}
}

(e}
c
(e}
C
C
(e]
(]
(e]
(e}
C
C
C
c
c

d

print
if (
{

asn
}

token

If you run this on a DER-encoded certificate file, you get an output similar
to Table 5-6 (this was, in fact, how that table was generated). However, when
most software saves certificate files, it doesn’t do it in DER form; it uses PEM

case ASN1_BIT_ STRING:

case ASN1_OCTET_STRING:

case ASN1_OBJECT_IDENTIFIER:

{

int 1i;

for (1 = 0; i < token->length;

{
printf( "%$.02x

}

break;

ase ASN1_NUMERIC_STRING:

token->datal

ase ASN1_PRINTABLE_STRING:

ase ASN1_TELETEX_ STRING:
ase ASN1_VIDEOTEX_STRING:

ase ASN1_IA5_STRING:
ase ASN1_UTC_TIME:

ase ASN1_GENERALIZED_TIME:

ase ASN1_GRAPHIC_STRING:
ase ASN1_VISIBLE_STRING:
ase ASN1_GENERAL_STRING:

ase ASN1_UNIVERSAL_STRING:
ase ASN1_CHARACTER_STRING:

ase ASN1_BMP_STRING:
ase ASN1_UTF8_STRING:

) malloc( token->length + 1

i++

i

]

)

char *str_val = ( char *

strncpy ( str_val, ( char * ) token->data,
str_val[ token->length ] = 0;

printf( " %$s", str_val );

free( str_val );

break;
efault:
break;

£( "\n" );

token->children )

1show( depth + 1, token->children );

= token->next;

)

token->length );
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form instead. To use this parsing routine to see the contents of a PEM-encoded
file, you can call the base64decode routine from Chapter 1 to convert PEM to
DER as in Listing 5-9.

Listing 5-9: “asnl.c” pem_decode

int pem_decode( unsigned char *pem_buffer, unsigned char *der_buffer )
{

unsigned char *pem_buffer_end, *pem buffer_begin;

unsigned char *bufptr = der_buffer;

int buffer_size;

// Skip first line, which is always "----- BEGIN CERTIFICATE----- ",

if ( strncmp( pem_buffer, "----- BEGIN", 10 ) )
{
fprintf( stderr,
"This does not appear to be a PEM-encoded certificate file\n" );
exit( 0 );

pem_buffer_begin = pem_buffer;

pem_buffer= pem_buffer_end = strchr( pem_buffer, '\n' ) + 1;

while ( strncmp( pem_buffer, "----- END", 8 ) )
{
// Find end of line
pem_buffer_end = strchr( pem_buffer, '\n' );
// Decode one line out of pem_buffer into buffer
bufptr += base64_decode( pem_buffer,
( pem_buffer_end - pem_buffer ) -
( ( *( pem_buffer_ end - 1 ) == '\r' ) 2 1 : 0 ),
bufptr );

pem_buffer = pem buffer_end + 1;

buffer_size = bufptr - der_buffer;

return buffer_size;

Change the test main routine to accept either PEM or DER form:

if ( argc < 3 )

{
fprintf( stderr, "Usage: %s [-der|-pem] <certificate file>\n", argv[ 0 1 );
exit( 0 );

}

if ( ( certificate_file = open( argv[ 2 ], O_RDONLY ) ) == -1 )

{

(Continued)
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if ( !( strcmp( argv[ 1 ], "-pem" ) ) )
{
// XXX this overallocates a bit, since it sets aside space for markers, etc.
unsigned char *pem buffer = buffer;
buffer = (unsigned char * ) malloc( buffer size );
buffer size = pem decode( pem buffer, buffer );
free( pem buffer );

asnlparse( buffer, buffer_size, &certificate );

You now have a working ASN.1 parser that can be used to read and interpret
X.509 certificates. You could stop here, and write code like this:

root->next->next->children->next->children->next->data
to look up the values of specific elements in the tree, but to make your code have

any semblance of readability, you should really continue to parse this ASN.1
tree into a proper X.509 structure.

Turning a Parsed ASN.1 Structure into X.509 Certificate
Components

The X.509 structure is decidedly more complex than the ASN.1 structure; define
it to mirror the ASN.1 definition. To keep the implementation easy to digest, the
code is presented for RSA certificates — by far the most common case — and
then extended to support DSA and Diffie-Hellman. The structure definitions
are shown in Listing 5-10.

Listing 5-10: "x509.h" structure definitions

typedef enum
{

rsa,

dh
}

algorithmIdentifier;

typedef enum
{
md5WithRSAEncryption,
shaWithRSAEncryption
}
signatureAlgorithmIdentifier;

/**

* A name (or "distinguishedName") is a list of attribute-value pairs.
* Instead of keeping track of all of them, just keep track of

* the most interesting ones.

*/
typedef struct
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char *idAtCountryName;
char *idAtStateOrProvinceName;
char *idAtLocalityName;
char *idAtOrganizationName;
char *idAtOrganizationalUnitName;
char *idAtCommonName;

}

name;

typedef struct

{
// TODO deal with the "utcTime" or "GeneralizedTime" choice.
time_t notBefore;
time_t notAfter;

}

validity_period;

typedef huge uniquelIdentifier;

typedef struct

{
algorithmIdentifier algorithm;
rsa_key rsa_public_key;

}

public_key info;

typedef huge objectIdentifier;

typedef struct
{
int version;
huge serialNumber; // This can be much longer than a 4-byte long allows
signatureAlgorithmIdentifier signature;
name issuer;
validity_period validity;
name subject;
public_key info subjectPublicKeyInfo;
uniqueIdentifier issuerUniquelId;
uniquelIdentifier subjectUniqueld;
int certificate_authority; // 1 if this is a CA, 0 if not
}
x509_certificate;

typedef struct

{
x509_certificate tbsCertificate;
signatureAlgorithmIdentifier algorithm;
huge signature_value;

}

signed_x509_certificate;
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Compare the x509_certificate structure in Listing 5-10 with the official ITU
definition shown in Listing 5-1 and signed_x509_certificate with Listing 5-2.
The goal of the certificate parsing process is to take a “blob” of unstructured
bytes and turn it into a signed_x509_certificate instance. As you can see
above, there’s quite a bit of unallocated memory in this structure definition,
so the first thing you need is an initializer function, as shown in Listing 5-11.

Listing 5-11: “x509.c” init_x509_certificate

void init_x509_certificate( signed_x509_certificate *certificate )
{
set_huge( &certificate->tbsCertificate.serialNumber, 1 );
memset ( &certificate->tbsCertificate.issuer, 0, sizeof( name ) );
memset ( &certificate->tbsCertificate.subject, 0, sizeof( name ) );
certificate->tbsCertificate.subjectPublicKeyInfo.rsa_public_key.modulus =
malloc( sizeof( huge ) );
certificate->tbsCertificate.subjectPublicKeyInfo.rsa_public_key.exponent =
malloc( sizeof( huge ) );
set_huge (
certificate->tbsCertificate.subjectPublicKeyInfo.rsa public_key.modulus,
0 );
set_huge (
certificate->tbsCertificate.subjectPublicKeyInfo.rsa_public_key.exponent,
0 );
set_huge( &certificate->signature_value, 0 );
certificate->tbsCertificate.certificate_authority = 0;

You also need, of course, a companion “free” function as shown in Listing 5-12.

Listing 5-12: "x509.c" free_x509_certificate

static void free_x500_name( name *x500_name )

{

if ( x500_name->idAtCountryName ) { free( x500_name->idAtCountryName ); }

if ( x500_name->idAtStateOrProvinceName ) { free( x500_name-
>idAtStateOrProvinceName ); }

if ( x500_name->idAtLocalityName ) { free( x500_name->idAtLocalityName ); }

if ( x500_name->idAtOrganizationName ) { free( x500_name->idAtOrganizationName
)i}

if ( x500_name->idAtOrganizationalUnitName ) { free( x500_name-
>idAtOrganizationalUnitName ); }
if ( x500_name->idAtCommonName ) { free( x500_name->idAtCommonName ); }

void free_x509_certificate( signed_x509_certificate *certificate )

free_huge( &certificate->tbsCertificate.serialNumber ) ;

free_x500_name( &certificate->tbsCertificate.issuer );
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free_x500_name( &certificate->tbsCertificate.subject );

free_huge (
certificate->tbsCertificate.subjectPublicKeyInfo.rsa_public_key.modulus );
free_huge (
certificate->tbsCertificate.subjectPublicKeyInfo.rsa_public_key.exponent ) ;
free(
certificate->tbsCertificate.subjectPublicKeyInfo.rsa_public_key.modulus ) ;
free(
certificate->tbsCertificate.subjectPublicKeyInfo.rsa_public_key.exponent ) ;

free_huge( &certificate->signature_value );

After the signed_x509_certificate structure has been properly initialized,
parsing it involves invoking the parse_asnl_certificate function shown previ-
ously and then selectively copying data values from the asnlstruct nodes into
the appropriate locations in the signed_x509_certificate target. The top-level
function that controls this whole process is in Listing 5-13.

Listing 5-13: “x509.c” parse_x509_certificate

int parse_x509_certificate( const unsigned char *buffer,
const unsigned int certificate_length,
signed_x509_certificate *parsed_certificate )

struct asnlstruct certificate;
struct asnlstruct *tbsCertificate;
struct asnlstruct *algorithmIdentifier;

struct asnlstruct *signatureValue;

// First, read the whole thing into a traversable ASN.1l structure

asnlparse( buffer, certificate_length, &certificate );

tbsCertificate = ( struct asnlstruct * ) certificate.children;
algorithmIdentifier = ( struct asnlstruct * ) tbsCertificate->next;
signatureValue = ( struct asnlstruct * ) algorithmIdentifier->next;

if ( parse_tbs_certificate( &parsed_certificate->tbsCertificate,
tbsCertificate ) )

fprintf ( stderr, "Error trying to parse TBS certificate\n" );
return 42;
}
if ( parse_algorithm_identifier( &parsed_certificate->algorithm,
algorithmIdentifier ) )

return 42;

if ( parse_signature_value( parsed_certificate, signaturevalue ) )
{

return 42;
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asnlfree( &certificate );

return 0;

Joining the X.509 Components into a Completed X.509
Certificate Structure

According to the ITU specification, the top level node should be a structure con-
taining three child nodes — the TBS certificate, the signature algorithm identifier,
and the signature value itself. First, parse the tbscertificate in Listing 5-14,
which is where the most interesting information is anyway. Afterward, the algo-
rithm identifier and signature values are parsed, as was shown in Listing 5-13.

Listing 5-14: "x509.c" parse_tbs_certificate

static int parse_tbs_certificate( x509_certificate *target,

struct asnlstruct *source )

struct asnlstruct *version;

struct asnlstruct *serialNumber;

struct asnlstruct *signatureAlgorithmIdentifier;
struct asnlstruct *issuer;

struct asnlstruct *validity;

struct asnlstruct *subject;

struct asnlstruct *publicKeyInfo;

struct asnlstruct *extensions;

// Figure out if there's an explicit version or not; if there is, then
// everything else "shifts down" one spot.

version = ( struct asnlstruct * ) source->children;

if ( version->tag == 0 && version->tag _class == ASN1_CONTEXT_SPECIFIC )
{
struct asnlstruct *versionNumber =

( struct asnlstruct * ) version->children;

// This will only ever be one byte; safe

target->version = ( *versionNumber->data ) + 1;
serialNumber = ( struct asnlstruct * ) version->next;
}
else

{
target->version = 1; // default if not provided

serialNumber = ( struct asnlstruct * ) version;

signatureAlgorithmIdentifier = ( struct asnlstruct * ) serialNumber->next;
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issuer = ( struct asnlstruct * ) signatureAlgorithmIdentifier->next;
validity = ( struct asnlstruct * ) issuer->next;

subject = ( struct asnlstruct * ) validity->next;

publicKeyInfo = ( struct asnlstruct * ) subject->next;

extensions = ( struct asnlstruct * ) publicKeyInfo->next;

if ( parse_huge( &target->serialNumber, serialNumber ) ) { return 2; }
if ( parse_algorithm_identifier( &target->signature,
signatureAlgorithmIdentifier ) )

{ return 3; }

if ( parse_name( &target->issuer, issuer ) ) { return 4; }

if ( parse_validity( &target->validity, validity ) ) { return 5; }

if ( parse_name( &target->subject, subject ) ) { return 6; }

if ( parse_public_key info( &target->subjectPublicKeyInfo, publicKeyInfo ) )
{ return 7; }

if ( extensions )

{
if ( parse_extensions( target, extensions ) ) { return 8; }

}

return 0;

The only thing that makes the tbscertificate structure tricky to parse is
the version number. The original designers of the X.509 structure didn't see fit
to include a version number in it, so the version was added later on, necessitat-
ing an explicit tag as discussed previously. So, if the tag class of the first node
is context-specific and the tag is explicit tag 0, it must be the version number
and the serial number follows as the next element. Otherwise, the version of the
certificate is 1 and the serial number is the first element. To mix things up just
a bit more, the version number, if present, is contained within the explicit tag,
so you need to look for the first child of the explicit tag. Almost all certificates
you find on the public Internet these days include a version tag, but you must
be prepared to deal with a very, very old one.

Also, version 1 is identified by the number 0, version 2 by the number 1, and
version 3 by the number 2. I think they’re just messing with your head.

Whether a version number was supplied or not, the next element is the serial
number. Go ahead and parse this into a huge structure as shown in Listing 5-15,
although it is just treated as a byte array; you won't be performing any huge
math on it.

Listing 5-15: “x509.c” parse_huge

static int parse_huge( huge *target, struct asnlstruct *source )
{

target->sign = 0;
target->size = source->length;
target->rep = ( char * ) malloc( target->size );

(Continued)
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memcpy ( target->rep, source->data, target->size );
return 0;
}
Parsing Object Identifiers (OIDs)
Following the serial number is the algorithm identifier of the signature. This
is an OID and can take on several possible values; each value is unique and
identifies a digest algorithm/digital signature algorithm pair. For now, only
support two: MD5 with RSA and SHA-1 with RSA, as shown in Listing 5-16.
Listing 5-16: "x509.c” parse_algorithm_identifier
static const unsigned char OID_md5WithRSA[] =
{ 0x2A, 0x86, 0x48, 0x86, OxF7, 0x0D, 0x01, 0x01, 0x04 };
static const unsigned char OID_shalWithRSA[] =
{ 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x05 };
static int parse_algorithm_identifier( signatureAlgorithmIdentifier *target,
struct asnlstruct *source )
{
struct asnlstruct *oid = ( struct asnlstruct * ) source->children;
if ( !memcmp( oid->data, OID_md5WithRSA, oid->length ) )
{
*target = md5WithRSAEncryption;
}
else if ( !memcmp( oid->data, OID_shalWithRSA, oid->length ) )
{
*target = shaWithRSAEncryption;
}
else
{
int 1i;
fprintf( stderr, "Unsupported or unrecognized algorithm identifier OID " );
for (i = 0; i < oid->length; i++ )
{
fprintf( stderr, "%.02x ", oid->datal 1 ] );
}
fprintf ( stderr, "\n" );
return 2;
}
return 0;
}
Remember that OIDs are being hardcoded in expanded form so that you can
just do a memcmp to identify them.
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Parsing Distinguished Names

Following the signature algorithm identifier is the issuer name. Name parsing
is by far the most involved part of X.509 certificate management. Recall that an
X.509 distinguished name is a list of components such as cn, o, ou, each of which
is identified by its own OID and may or may not be present. None of them is
required, and any of them can appear more than once. However, for all practi-
cal purposes, the names you'll be looking at have exactly one each of a country
name, a state/province name, a city/locality name, an organization name, an
organizational unit name and, most importantly, a common name. As such the
structure for the name only contains pointers for this data and throws away any
additional information; a more robust implementation than the one shown in
Listing 5-17 would be much more complex.

Listing 5-17: “x509.c" parse_name

static unsigned char OID_idAtCommonName[] = { 0x55, 0x04, 0x03 };

static unsigned char OID_idAtCountryName[] = { 0x55, 0x04, 0x06 };

static unsigned char OID_idAtLocalityName[] = { 0x55, 0x04, 0x07 };

static unsigned char OID_idAtStateOrProvinceName[] = { 0x55, 0x04, 0x08 };
static unsigned char OID_idAtOrganizationName[] = { 0x55, 0x04, 0x0A };
static unsigned char OID_idAtOrganizationalUnitName[] = { 0x55, 0x04, 0xOB };
/‘k‘k

* Name parsing is a bit different. Loop through all of the
* children of the source, each of which is going to be a struct containing
* an OID and a value. If the OID is recognized, copy its contents
* to the correct spot in "target". Otherwise, ignore it.
*/
static int parse_name( name *target, struct asnlstruct *source )
{
struct asnlstruct *typeValuePair;
struct asnlstruct *typeValuePairSequence;
struct asnlstruct *type;

struct asnlstruct *value;

target->idAtCountryName = NULL;
target->idAtStateOrProvinceName = NULL;
target->idAtLocalityName = NULL;
target->idAtOrganizationName = NULL;
target->idAtOrganizationalUnitName = NULL;
target->idAtCommonName = NULL;

typeValuePair = source->children;
while ( typeValuePair )
{
typeValuePairSequence = ( struct asnlstruct * ) typeValuePair->children;

type = ( struct asnlstruct * ) typeValuePairSequence->children;

(Continued)
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value = ( struct asnlstruct * ) type->next;
if ( !memcmp( type->data, OID_idAtCountryName, type->length ) )
{
target->idAtCountryName = ( char * ) malloc( value->length + 1 );

memcpy ( target->idAtCountryName, value->data, value->length );

target->idAtCountryName[ value->length ] = 0;
}
else if ( !memcmp( type->data, OID_idAtStateOrProvinceName, type->length ) )
{

target->idAtStateOrProvinceName = ( char * ) malloc( value->length + 1 );

memcpy ( target->idAtStateOrProvinceName, value->data, value->length );

target->idAtStateOrProvinceName|[ value->length ] = 0;
}
else if ( !memcmp( type->data, OID_idAtLocalityName, type->length ) )
{

target->idAtLocalityName = ( char * ) malloc( value->length + 1 );

memcpy ( target->idAtLocalityName, value->data, value->length );

target->idAtLocalityName[ value->length ] = 0;
}
else if ( !memcmp( type->data, OID_idAtOrganizationName, type->length ) )
{

target->idAtOrganizationName = ( char * ) malloc( value->length + 1 );

memcpy ( target->idAtOrganizationName, value->data, value->length );
target->idAtOrganizationName[ value->length ] = 0;
}
else if ( !memcmp( type->data, OID_idAtOrganizationalUnitName,
type->length ) )

target->idAtOrganizationalUnitName = ( char * )
malloc( value->length + 1 );
memcpy ( target->idAtOrganizationalUnitName, value->data, value->length );

target->idAtOrganizationalUnitName[ value->length ] = 0;
}
else if ( !memcmp( type->data, OID_idAtCommonName, type->length ) )
{

target->idAtCommonName = ( char * ) malloc( value->length + 1 );

memcpy ( target->idAtCommonName, value->data, value->length );
target->idAtCommonName [ value->length ] = 0;

}

else

{

int 1i;

// This is just advisory - NOT a problem
printf ( "Skipping unrecognized or unsupported name token OID of " );
for (i = 0; 1 < type->length; i++ )
{
printf( "%.02x ", type->datal i ] );
}
printf( "\n" );
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typeValuePair = typeValuePair->next;
}

return 0;
As you can see, after you've decided how to represent a distinguished name,
parsing it isn't complex, although it is a bit tedious.

Following the issuer name is the validity structure that tells the user between
which dates the certificate is valid. It is parsed in Listing 5-18.

Listing 5-18: “parse_validity”

static int parse_validity( validity_period *target, struct asnlstruct *source )
{

struct asnlstruct *not_before;

struct asnlstruct *not_after;

struct tm not_before_tm;

struct tm not_after_tm;

not_before = source->children;

not_after = not_before->next;

// Convert time instances into time_t

if ( sscanf( ( char * ) not_before->data, "%$2d%2d%2d%2d%2d%2d4d",
&not_before_tm.tm_year, &not_before_tm.tm _mon, &not_before_tm.tm_mday,

&not_before_tm. tm_hour, &not_before_ tm.tm min, &not_before_tm.tm_sec ) < 6 )

fprintf ( stderr, "Error parsing not before; malformed date." );
return 6;
}
if ( sscanf( ( char * ) not_after->data, "%2d%2d%2d%2d%2d%24",
&not_after_tm.tm_year, &not_after_ tm.tm mon, &not_after_ tm.tm mday,

&not_after_tm.tm _hour, &not_after_ tm.tm min, &not_after_tm.tm _sec ) < 6

fprintf( stderr, "Error parsing not after; malformed date." );

return 7;

not_before_tm.tm_year += 100;
not_after_tm.tm year += 100;
not_before_tm.tm_mon -= 1;

not_after_tm.tm mon -= 1;
// TODO account for TZ information on end
target->notBefore = mktime( &not_before_tm );

target->notAfter = mktime( &not_after_tm );

return 0;
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Following the validity period is the subject name; this is parsed using the
same routine as the issuer name.

Finally, it’s time to parse the element you've been waiting this whole time
to see — the public key itself, which is the one piece of information that you
can’t complete a secure key exchange without. Because the designers of the
X.509 structure wanted to leave room for arbitrary public encryption algo-
rithms, the structure is a bit more complex than you might expect; the public
key node starts with an OID that indicates what to do with the rest. For now,
to keep things relatively simple, just look at the RSA specification.

The element following the algorithm identifier OID is a bit string. This bit
string is itself an ASN.1 DER-encoded value and must be parsed. Its contents
vary depending on the algorithm. For RSA, the contents are a single sequence
containing two integers — the first is the public exponent and the second is the
modulus (of course, the private exponent is not included).

RSA public key info parsing is shown in Listing 5-19.

Listing 5-19: "x509.c" parse_public_key_info

static const unsigned char OID_RSA[] =
{ 0x2A, 0x86, 0x48, 0x86, 0OxF7, 0x0D, 0x01, O0x01, O0x01 };

static int parse_public_key_info( public_key_ info *target,

struct asnlstruct *source )

struct asnlstruct *oid;
struct asnlstruct *public_key;

struct asnlstruct public_key_value;

oid = source->children->children;

public_key = source->children->next;

// The public key is a bit string encoding yet another ASN.l1 DER-encoded
// value - need to parse *that* here
// Skip over the "0" byte in the public key.
if ( asnlparse( public_key->data + 1,
public_key->length - 1,
&public_key_value ) )

fprintf ( stderr,
"Error; public key node is malformed (not ASN.l DER-encoded)\n" );
return 5;

if ( !'memcmp( oid->data, &OID_RSA, sizeof( OID_RSA ) ) )
{

target->algorithm = rsa;

parse_huge( target->rsa_public_key.modulus, public_key value.children );
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parse_huge( target->rsa_public_key.exponent, public_key value.children->next );
// This i1s important. Most times, the response includes a trailing 0 byte
// to stop implementations from interpreting it as a twos-complement
// negative number. However, in this implementation, this causes the
// results to be the wrong size, so they need to be contracted.
contract ( target->rsa_public_key.modulus ) ;
contract ( target->rsa_public_key.exponent );
}
else
{
fprintf( stderr, "Error; unsupported OID in public key info.\n" );
return 7;

}
asnlfree( &public_key_value );

return 0;

The only potential surprise in this routine is the “skip over the 0 byte” part.
What'’s the 0 byte? Well, the subject public key is declared as an ASN.1 bit string.
The DER encoding of a bit string starts with a length — just like any other
ASN.1 value — but a bit string can be any length; it doesn’t necessarily need
to be a multiple of eight bits. Because DER encoding requires that the result
be normalized to eight-bit octets, the first byte of any bit string following the
length is the amount of padding bits that were added to the bit string to pad it
up to a multiple of eight. In the case of an RSA public key, the result is always
a multiple of eight, so this byte is always 0.

.m Technically, you really ought to verify that this is the case, but, practi-
cally speaking, you never see a public key value that’s not a multiple of eight
bits. If you actually find an example “in the wild” that contradicts this code, I'd
like to know about it.

Parsing Certificate Extensions

Optionally, and only if the version of the certificate is greater than or equal to
three, the public key information can be followed by a sequence of extensions.
Practically speaking, all certificates that you come across on today’s Internet
include extensions; RFC 2459 dedicates 19 pages to describing a subset of the
available X.509 certificate extensions. Although many of them are important,
I'm just showing you how to deal with extensions in general and focus on
one — perhaps the most important one: the key usage extension that enables the
receiver to determine if the certificate is allowed to sign other certificates or not.
First, if extensions are present, loop through them as in Listing 5-20.
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Listing 5-20: "x509.c" parse_extensions

static int parse_extensions( x509_certificate *certificate,

struct asnlstruct *source )

// Parse each extension; if one is recognized, update the certificate
// in some way
source = source->children->children;
while ( source )
{

if ( parse_extension( certificate, source ) )

{

return 1;
}

source = source->next;

return 0;

An extension consists of an OID, an optional critical marker, and another
optional data section whose interpretation varies depending on the OID. Parsing
of the actual extension is shown in Listing 5-21.

Listing 5-21: "x509.c" parse_extension

static int parse_extension( x509_certificate *certificate,

struct asnlstruct *source )

struct asnlstruct *oid;
struct asnlstruct *critical;

struct asnlstruct *data;

oid = ( struct asnlstruct * ) source->children;
critical = ( struct asnlstruct * ) oid->next;
if ( critical->tag == ASN1_BOOLEAN )
{

data = ( struct asnlstruct * ) critical->next;
}
else
{

// critical defaults to false

data = critical;

critical = NULL;
}

// TODO recognize and parse extensions - there are several

return 0;

The first tag is always an OID; the second can be a boolean value, in which

case it indicates whether the extension should be considered critical or not.
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Because the default of this optional value is false, for all intents and purposes
if it’s present then the extension is critical.

What differentiates a critical from a non-critical extension? According to
the specification, if an implementation does not recognize an extension that
is marked critical, it should reject the whole certificate. Otherwise, the exten-
sion can be safely ignored. Note that the implementation presented here is not
compliant, for this reason.

How the data field is interpreted depends on the OID. It’s always declared
as an oCTET STRING; for all defined extensions, this is an string of bytes whose
contents must in turn be parsed as an ASN.1 DER-encoded structure (the X.509
people clearly weren't really aiming for optimal efficiency).

This book doesn’t have enough space to cover all, or even most, X.509 exten-
sions. One worth examining is the key usage extension, though. If the OID
is 2.5.29.15 then the extension describes key usage, and the final field is a bit
field. The bits are interpreted in big-endian order, and the most important
is bit 5. If bit 5 is set then the certificate is a CA and can legitimately sign
other certificates. Presumably, the signing CA checked that this was truly
the case before signing the certificate. Processing the key usage bit is shown
in Listing 5-22.

Listing 5-22: "x509.c" parse_extension with key usage recognition

static const unsigned char OID_keyUsage[] = { 0x55, 0x1D, OxOF };
#define BIT_CERT_SIGNER 5

}
if ( !memcmp( oid->data, OID_keyUsage, oid->length ) )
{
struct asnlstruct key_ usage_bit_string;
asnlparse( data->data, data->length, &key_usage_bit_string );
if ( asnl_get_bit( key usage_bit_string.length,
key usage_bit_string.data,
BIT_CERT_SIGNER ) )

certificate->certificate_authority = 1;
}
asnlfree( &key usage_bit_string );
}
// TODO recognize and parse other extensions - there are several

Asyou can see, the data node is itself another ASN.1-encoded structure, which
must be parsed when the key usage OID is encountered. In the case of key usage,
the contents of this ASN.1 structure are a single-bit string. Bit strings can be a
tad complex because theyre permitted by ASN.1 to be of arbitrary length. The
first byte of the data field is the number of padding bits that were added to pad
up to an eight-bit boundary. Implement a handling function as shown in Listing
5-23 to retrieve the value of a single bit from an ASN.1 bit string.
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Listing 5-23: “asnl.c” asn1_get_bit

int asnl_get_bit( const int length,
const unsigned char *bit_string,

const int bit )

if ( bit > ( ( length - 1) * 8 ) )
{
return 0;
}
else
{
return bit_string[ 1 + ( bit / 8 ) ] & ( 0x80 >> ( bit % 8 ) );

}

Another potentially useful extension is the subjectaltName extension 2.5.29.17.
Look over the definition of the subjectName. It specifies a country, a state, a city,
an organizational unit. This is a pretty good qualifier for a person, but fairly
irrelevant for a web site. Or an e-mail address. Or an IP address. Or any of a dozen
other entities that you might want to identify with a certificate. Therefore, the
subjectAltName extension allows the certificate to simply identify, for instance,
a domain name. If the subjectaAltName extension is present, the subjectName
can actually be empty. However, the subjectaltName extension is pretty rare, so
in general the subjectName’s CN field identifies the domain name of the bearer
site. Of course, there’s also an IssueraltName (OID 2.5.29.18), which serves the
same purpose and is equally rare.

The last extension examined here has to do with certificate validation. The
entire trust model outlined in this chapter hinges on how accurately CAs vet
certificate requests. The certificatepolicies extension 2.5.29.32 provides a
way for the CA to indicate how it goes about verifying that the requester of a
certificate is, in fact, the entity it purports to be. Recently, the CA/Browser forum
began compiling a list of CAs that perform what is called extended validation.
Extended validation just indicates that a CA has made extraordinary efforts to
ensure that it is signing a certificate on behalf of the true owner of the identity
in question. Recent browsers have begun displaying a green bar in addition to
the traditional padlock icon to tell the user that the certificate is not only valid,
but that it has been signed by an extended validation CA.

A complete X.509 implementation should recognize all of the extensions
listed in RFC 5280.

The extensions mark the end of the TBscertificate. There are two fields
left in the signed certificate structure: the signature algorithm and the signa-
ture itself. The signature algorithm is an OID, and must match the signature
algorithm listed in the tbscertificate. The signature, of course, is a bit string
whose interpretation varies depending on the signature algorithm. For RSA,
it’s simply a large integer, parsed in Listing 5-24.
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Listing 5-24: "x509.c" parse_signature_value

static int parse_signature_value( signed_x509_certificate *target,

struct asnlstruct *source )

parse_huge( &target->signature_value, source );

contract( &target->signature_value );

return 0;

Signature Verification

You're not quite done yet. Remember that you also have to be able to verify this
signature; just ensuring that it’s there isn’t enough. You must also check that
it is a proper digital signature of the hash of the tbscertificate bytes. So,
after parsing the entire certificate, you must hash it and store the hash for later
inspection. Extend parse_x509_certificate to do so as shown in Listing 5-25.

Listing 5-25: "x509.c" parse_x509_certificate with stored hash

typedef struct
{
x509_certificate tbsCertificate;
unsigned int *hash; // hash code of tbsCertificate
int hash_len;
signatureAlgorithmIdentifier algorithm;
huge signature_value;
}

signed_x509_certificate;

int parse_x509_certificate( const unsigned char *buffer,
const unsigned int certificate_length,

signed_x509_certificate *parsed_certificate )

struct asnlstruct certificate;

struct asnlstruct *tbsCertificate;
struct asnlstruct *algorithmIdentifier;
struct asnlstruct *signaturevValue;

digest_ctx digest;

switch ( parsed_certificate->algorithm )
{
case md5WithRSAEncryption:
new md5_ digest( &digest );
break;
case shaWithRSAEncryption:
new _shal digest( &digest );
break;
default:
(Continued)
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break;

update_digest( &digest, tbsCertificate->data, tbsCertificate->length );
finalize digest( &digest );

parsed_certificate->hash = digest.hash;
parsed_certificate->hash_len = digest.hash _len;

asnlfree( &certificate );

Notice that, although tbscertificate is a structure type, the data itself is
still made available by the ASN.1 parsing routine (Listing 5-5), which means
that you can easily write code to securely hash the DER-encoded representation
of the tbscertificate.

Validating PKCS #7-Formatted RSA Signatures

Validating a certificate involves finding the public key of the issuer, using it to run
the digital signature algorithm on the computed hash, and then verifying that it
matches the signature included in the certificate itself. When the RSA algorithm
is used for signing a certificate, the hash value itself is concatenated onto the
OID representing the signing algorithm and stored in an ASN.1 sequence. This
is then DER encoded, and the whole thing is encrypted with the private key.
This is called PKCS #7, which is officially documented by RSA labs at http://
www . rsa.com/rsalabs/node.asp?id=2129. The code to unwrap the signed hash
code and compare it to the previously computed one is shown in Listing 5-26.

Listing 5-26: “x509.c” validate_certificate_rsa

/**

* An RSA signature is an ASN.1 DER-encoded PKCS-7 structure including

* the OID of the signature algorithm (again), and the signature value.

*/
static int validate_certificate_rsa( signed_x509_certificate *certificate,

rsa_key *public_key )

unsigned char *pkcs7_signature_decrypted;
int pkcs7_signature_len;

struct asnlstruct pkcs7_signature;

struct asnlstruct *hash_value;

int valid = 0;
pkcs7_signature_len = rsa_decrypt( certificate->signature_value.rep,
certificate->signature_value.size, &pkcs7_signature_decrypted,

public_key );

if ( pkcs7_signature_len == -1 )
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fprintf ( stderr, "Unable to decode signature value.\n" );
return valid;

}
if ( asnlparse( pkcs7_signature_decrypted, pkcs7_signature_len,

&pkcs7_signature ) )

fprintf( stderr, "Unable to parse signature\n" );

return valid;

hash_value = pkcs7_signature.children->next;

if ( memcmp( hash_value->data, certificate->hash, certificate->hash_len ) )
{

valid = 0;
}
else
{

valid = 1;

asnlfree( &pkcs7_signature );

return valid;

Verifying a Self-Signed Certificate

How to map issuers to public keys is outside the scope of the implementation;
browsers ship with a (long) list of trusted root CAs and their known public
keys, which are compared to the issuer each time a certificate is received. To
illustrate the concept, though, you can go ahead and write code to verify a self-
signed certificate in Listing 5-27, such as those that are distributed by the CAs
to the browsers to begin with. Like the ASN.1 test routine, this routine expects
a DER- or PEM-encoded certificate file and outputs the contents of the file. This
time, though, it does a lot more interpretation and actually produces useful,
meaningful content.

Listing 5-27: "x509.c" main routine

#ifdef TEST_ X509
int main( int argc, char *argv[ ] )
{
int certificate_file;
struct stat certificate_file_stat;
char *buffer, *bufptr;
int buffer_size;
int bytes_read;

(Continued)
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int error_code;
signed_x509_certificate certificate;

if ( argc < 3 )

{
fprintf ( stderr, "Usage: x509 [-pem|-der] [certificate file]\n" );
exit( 0 );

if ( ( certificate_file = open( argv[ 2 ], O_RDONLY ) ) == -1
{
perror ( "Unable to open certificate file" );

return 1;

// Slurp the whole thing into memory
if ( fstat( certificate_file, &certificate_file_stat ) )
{

perror ( "Unable to stat certificate file" );

return 2;

buffer_size = certificate_file_stat.st_size;
buffer = ( char * ) malloc( buffer_size );
if ( !'buffer )
{

perror ( "Not enough memory" );

return 3;

bufptr = buffer;

while ( ( bytes_read = read( certificate_file, ( void * ) buffer,

buffer_size ) ) )

bufptr += bytes_read;

if ( !strcmp( argv[ 1 1, "-pem" ) )
{

// XXX this overallocates a bit, since it sets aside space for markers,

unsigned char *pem_buffer = buffer;
buffer = (unsigned char * ) malloc( buffer_size );
buffer_size = pem_decode( pem_buffer, buffer );

free( pem_buffer );

// now parse it
init_x509_certificate( &certificate );
if ( !( error_code = parse_x509_certificate( buffer, buffer_size,

&certificate ) ) )
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printf( "X509 Certificate:\n" );

display_x509_certificate( &certificate );

// Assume it's a self-signed certificate and try to validate it that
switch ( certificate.algorithm )
{
case md5WithRSAEncryption:
case shaWithRSAEncryption:
if ( validate_certificate_rsa( &certificate,
&certificate.tbsCertificate.subjectPublicKeyInfo.rsa_public_key ) )
{
printf( "Certificate is a valid self-signed certificate.\n" );
}
else
{
printf( "Certificate is corrupt or not self-signed.\n" );
}
break;

}

else
{

printf( "error parsing certificate: %d\n", error_code );

free_x509_certificate( &certificate );
free( buffer );
return 0;

}

#endif

This invokes the companion display_x509_certificate function in
Listing 5-28.

Listing 5-28: "x509.c” display_x509_certificate

static void output_x500_name( name *x500_name )
{

printf( "C=%s/ST=%s/L=%s/0=%s/0U=%s/CN=%s\n",
x500_name->idAtCountryName ? x500_name->idAtCountryName : "?" ),

x500_name->idAtStateOrProvinceName ? x500_name->idAtStateOrProvinceName

(

(
"),

( x500_name->idAtLocalityName ? x500_name->idAtLocalityName : "?" ),

( x500_name->idAtOrganizationName ? x500_name->idAtOrganizationName : "?" ),

( x500_name->idAtOrganizationalUnitName ? x500_name-
>idAtOrganizationalUnitName : "?" ),

( x500_name->idAtCommonName ? x500_name->idAtCommonName : "?" ) );

static void print_huge( huge *h )
{
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show_hex( h->rep, h->size );

static void display_x509_certificate( signed_x509_certificate *certificate )
{
printf( "Certificate details:\n" );
printf( "Version: %d\n", certificate->tbsCertificate.version );
printf( "Serial number: " );
print_huge( &certificate->tbsCertificate.serialNumber ) ;
printf( "issuer: " );
output_x500_name( &certificate->tbsCertificate.issuer );
printf( "subject: " );
output_x500_name( &certificate->tbsCertificate.subject );
printf( "not before: %s", asctime( gmtime (
&certificate->tbsCertificate.validity.notBefore ) ) );
printf( "not after: %s", asctime( gmtime (

&certificate->tbsCertificate.validity.notAfter ) ) );

printf( "Public key algorithm: " );
switch ( certificate->tbsCertificate.subjectPublicKeyInfo.algorithm )
{
case rsa:
printf( "RSA\n" );
printf( "modulus: " );
print_huge (
certificate->tbsCertificate.subjectPublicKeyInfo.rsa_public_key.modulus ) ;
printf( "exponent: " );
print_huge (
certificate->tbsCertificate.subjectPublicKeyInfo.rsa_public_key.exponent );
break;
case dh:
printf( "DH\n" );
break;
default:
printf( "?2\n" );
break;
}

printf( "Signature algorithm: " );

switch ( certificate->algorithm )

{
case md5WithRSAEncryption:
printf( "MD5 with RSA Encryption\n" );
break;
case shaWithRSAEncryption:
printf( "SHA-1 with RSA Encryption\n" );
break;
}

c05.ndd 284 @ 12/10/2010 9:45:11 AM



Chapter 5 = Creating a Network of Trust Using X.509 Certificates 285

printf( "Signature value: " );

switch ( certificate->algorithm )
{
case md5WithRSAEncryption:
case shaWithRSAEncryption:
print_huge( &certificate->signature_value );
break;
}
printf( "\n" );

if ( certificate->tbsCertificate.certificate_authority )
{
printf( "is a CA\n" );
}
else
{
printf( "is not a CA\n" );

Now, you can parse the test certificate you generated.

[jdavies@localhost ssl]$ ./x509 -der cert.der

Skipping unrecognized or unsupported name token OID of 2a 86 48 86 f£7 04 01 09 01
Skipping unrecognized or unsupported name token OID of 2a 86 48 86 £7 04 01 09 01
X509 Certificate:

Certificate details:

Version: 3

Serial number: 0ca30el8f778da281

issuer: C=US/ST=TX/L=Southlake/O=Travelocity/OU=Architecture/CN=Joshua Davies
subject: C=US/ST=TX/L=Southlake/O=Travelocity/OU=Architecture/CN=Joshua Davies
not before: Wed Mar 3 04:46:23 2010

not after: Fri Apr 2 03:46:23 2010

Public key algorithm: RSA

modulus: e013380£83b6ef0670f55baa3a2bcf8e95££f91b1900352516973dea7£a97fb560db9e90f
e830228c5ef01£07£f0dccc61b8010eblb058efb5b4541670eb59bdbE

exponent: 10001

Signature algorithm: SHA-1 with RSA Encryption

Signature value: 1b637bf513ef2e3d56223da24cd50e318d0c25bb2430fda320£f5a3b57d1lbcble
a8bdb0ce788be75e7aac662c6d0606e8e30624cad5ce0d991a7c37534dd3be83

Certificate hash (fingerprint): ac7d5752 30586fb4 3cl06b90 60af5eb5 939147f1
certificate is not a CA.

01 £ff f£f £f ff £f £f f£ff £f f£f £f ff £f £f f£ff £f £f £f ff ff f£f £f ff ff £f ff ff
00 30 21 30 09 06 05 2b Oe 03 02 la 05 00 04 14 52 57 7d ac b4 6f 58 30 90 6b 10
3c b5 5e af 60 £1 47 91 93 00

Certificate is a valid self-signed certificate.
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Adding DSA Support to the Certificate Parser

Go ahead and add support for DSA as well. This is mostly academic because
DSA-signed certificates are extremely rare “in the wild,” at least for SSL.
Because servers present certificates primarily to prepare for key exchange,
and DSA can’t be used for this purpose, there’s not much point in presenting
a certificate with a DSA public key to an SSL client. A CA, on the other hand,
could use DSA; the purpose of a root certificate is to sign other certificates,
and this is the one thing DSA can do. However, at the time of this writing no
CA does — at least none of those implicitly trusted by major browser vendors.

However, it's worthwhile to see how it’s done so that you can see how differ-
ent signature algorithms change the parsing semantics. In addition, common
or not, support for DSA certificates is required by TLS. First of all, the structure
definitions change slightly as shown in Listing 5-29.

Listing 5-29: "x509.h" with DSA support

typedef enum
{
rsa,
dsa,
dh
}
algorithmIdentifier;

typedef enum

{
md5WithRSAEncryption,
shaWithRSAEncryption,
shawithDSA

}

signatureAlgorithmIdentifier;

typedef struct

{
algorithmIdentifier algorithm;
// RSA parameters, only if algorithm == rsa
rsa_key rsa_public_key;

// DSA or DH parameters, only if algorithm == dsa

dsa_params dsa_parameters;

// DSA parameters, only if algorithm == dsa
huge dsa_public_key;

}

public_key_info;

typedef struct
{
x509_certificate tbsCertificate;
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unsigned int *hash; // hash code of tbsCertificate
int hash_len;
signatureAlgorithmIdentifier algorithm;
huge rsa_signature_value;
dsa_signature dsa_signature_value;
}
signed_x509_certificate;

Notice that no attempt was made to have the DSA and RSA public keys or
signatures share the same memory space. An RSA public key is two distinct
numbers e and 7, whereas a DSA public key is a single number y. DSA also
defines parameters whereas RSA does not. Conversely, a DSA signature is two
distinct numbers r and s, whereas an RSA signature is a single number. There’s
just no commonality there. If you want to be a stickler for space optimization,
you could force the declarations of these structures to include a single signature
and public key element, but the code that interpreted them would be such a
mess it would hardly be worth it. Here, one or the other is left empty, and it is
up to the invoker to check the algorithm value to determine which to ignore.

Of course, you need to modify the parse_algorithm_identifier routine to
recognize DSA; there’s no MD5 with DSA, so there’s only one new algorithm
to identify in Listing 5-30.

Listing 5-30: "x509.c” parse_algorithm_identifier with DSA support

static const unsigned char OID_shalWithRSA[] =

{ 0x2A, 0x86, 0x48, 0x86, OxF7, 0x0D, 0x01, 0x01, 0x05 };
static const unsigned char OID_shalWithDSA[] =

{ 0x2A, 0x86, 0x48, OxCE, 0x38, 0x04, 0x03 };

static int parse_algorithm_identifier( signatureAlgorithmIdentifier *target,

struct asnlstruct *source )

}
else if ( !memcmp( oid->data, OID_shalWithDSA, oid->length ) )
{
*target = shaWithDSA;
}
else
{

The top-level parse_x509_certificate function must likewise invoke a dif-
ferent routine to parse the signature value depending on the signature algorithm
as shown in Listing 5-31.

Listing 5-31: "x509.c” parse_x509_certificate with DSA support

int parse_x509_certificate( const unsigned char *buffer,

const unsigned int certificate_length,

(Continued)
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signed_x509_certificate *parsed_certificate )

switch ( parsed_certificate->algorithm )
{
case md5WithRSAEncryption:
case shaWithRSAEncryption:
if ( parse_rsa_signature_value( parsed_certificate, signatureValue ) )
{
return 42;
}
break;
case shawithDSA:
if ( parse_dsa_signature_value( parsed_certificate, signatureValue ) )
{

return 42;

switch ( parsed_certificate->algorithm )
{
case md5WithRSAEncryption:

new_md5_digest ( &digest
break;

case shaWithRSAEncryption:

case shaWwithDSA:
new_shal_digest( &digest );
break;

default:

break;

Note that the parse_signature_value routine is now named parse_rsa_sig-
nature_value. The new parse_dsa_signature_value shown in Listing 5-321is
pretty much like the parse_rsa_signature_value routine except that it expects
two values.

Listing 5-32: "x509.c" parse_dsa_signature_value

static int parse_dsa_signature_value( signed_x509_certificate *target,
struct asnlstruct *source )
{

struct asnlstruct dsa_signature;

if ( asnlparse( source->data + 1, source->length - 1, &dsa_signature ) )
{

fprintf( stderr, "Unable to parse ASN.1l DER-encoded signature.\n" );
return 1;

}

parse_huge( &target->dsa_signature_value.r, dsa_signature.children );
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parse_huge( &target->dsa_signature_value.s, dsa_signature.children->next );
asnlfree( &dsa_signature );

return 0;

}

Most of the complexity in dealing with DSA certificates is in parsing the pub-
lic key information. An RSA public key is simply two numbers. A DSA public
key is a single number, but the algorithm also requires parameters. For no clear
reason, the X.509 designers split the parameters and the public key into two
separate ASN.1 sequences, with different parent elements, so the parsing code
gets a bit involved in Listing 5-33.

Listing 5-33: “x509.c” public key info parsing with DSA support

static const unsigned char OID_RSA[] =

{ 0x2A, 0x86, 0x48, 0x86, OxF7, 0x0D, O0x01, 0x01, O0x01 };
static const unsigned char OID_DSA[] =

{ 0x2A, 0x86, 0x48, O0xCE, 0x38, 0x04, 0x01 };

static int parse_public_key_info( public_key_info *target,

struct asnlstruct *source )

if ( !memcmp( oid->data, &OID_RSA, sizeof( OID_RSA ) ) )
{

}

else if ( !memcmp( oid->data, &OID DSA, sizeof( OID DSA ) ) )
{

struct asnlstruct *params;

target->algorithm = dsa;

parse_huge( &target->dsa_public_key, &public_key value );
params = oid->next;

parse_dsa_params( target, params );

}

Finally, parsing the DSA params themselves in Listing 5-34 is simple after
you've identified the node.

Listing 5-34: “tls.c” parse_dsa_params

static int parse_dsa_params( public_key_info *target, struct asnlstruct *source )
{

struct asnlstruct *p;

struct asnlstruct *qg;

struct asnlstruct *g;

(Continued)
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source->children;

ko]
I

q = p->next;

g = g->next;

parse_huge ( &target->dsa_parameters.p, p );
parse_huge( &target->dsa_parameters.q, q );

parse_huge( &target->dsa_parameters.g, g );

return 0;

}

To test this, you have to generate your own DSA certificate; this was shown
in the section “Using OpenSSL to Generate a DSA KeyPair and Certificate”
earlier. Extend the certificate display routine just a bit as shown in Listing 5-35,
and you can output the details of this certificate:

Listing 5-35: "x509.c” display_x509_certificate

static void display_x509_certificate( signed_x509_certificate *certificate )

{

printf( "Public key algorithm: " );
switch ( certificate->tbsCertificate.subjectPublicKeyInfo.algorithm )
{

case dsa:

printf( "DSA\n" );

printf( "y: " );

print_huge (
&certificate->tbsCertificate.subjectPublicKeyInfo.dsa_public_key );

printf( "p: " );

print_huge (
&certificate->tbsCertificate.subjectPublicKeyInfo.dsa parameters.p );
printf( "g: " );

print_huge (
&certificate->tbsCertificate.subjectPublicKeyInfo.dsa_parameters.q );
printf( "g: " );

print_huge (
&certificate->tbsCertificate.subjectPublicKeyInfo.dsa parameters.g );
break;

switch ( certificate->algorithm )
{

case shaWithDSA:

printf( "SHA-1 with DSA\n" );
break;

printf( "Signature value: " );
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switch ( certificate->algorithm )
{

case shaWithDSA:

printf( "\n\tr:" );

print_huge( &certificate->dsa_signature_value.r );
printf( "\ts:" );

print_huge( &certificate->dsa_signature_value.s );
break;

Finally, extend the test main routine in Listing 5-36 to attempt a self-signature
validation if the signature algorithm is DSA.

Listing 5-36: “x509.c" main routine

int main( int argc, char *argv[ ] )

{

switch ( certificate.algorithm )
{

case shaWithDSA:
if ( validate_certificate_dsa( &certificate ) )
{
printf( "Certificate is a valid self-signed certificate.\n" );
}
else
{
printf( "Certificate is corrupt or not self-signed.\n" );
}

DSA certificate validation is actually simpler than RSA certificate validation

because the signature value is not an encrypted ASN.1 DER-encoded structure
like RSA’s; the DSA signature algorithm doesn’t allow this. It also doesn’t allow
the algorithm OID to be embedded in the signature value the way RSA does,
though. The validation is shown in Listing 5-37.

Listing 5-37: "x509.c" validate_certificate_dsa

static int validate_certificate_dsa( signed_x509_certificate *certificate )

{

return dsa_verify(
&certificate->tbsCertificate.subjectPublicKeyInfo.dsa_parameters,
&certificate->tbsCertificate.subjectPublicKeyInfo.dsa_public_key,
certificate->hash,

certificate->hash_len * 4,

&certificate->dsa_signature_value );
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This covers RSA and DSA signature validation and RSA key exchange. What
about Diffie-Hellman? X.509 does define a certificate structure that includes
the Diffie-Hellman parameters; however, this is even rarer in practice than the
nonexistent DSA certificate. You can’t even use OpenSSL to generate such a
certificate. I won't cover it here; if you're so inclined, though, it wouldn’t be hard
to add support for it.

There’s one big, big problem with all of the X.509 parsing code presented in
this chapter. You probably noticed it while you were reading it: There’s no error
checking. At each step, the code assumes that there is, for instance, a children
.next.next.children.next structure as required by the X.509 definition. The
code should include a lot more error checking to validate that the parsed ASN.1
structure correctly conforms to the expected X.509 structure. As is the technical
book author’s prerogative, though, I'll leave that as an exercise for the reader (or
you could just download the code from the companion website at www.wiley.com/
go/ImplementingssL, which does include the aforementioned error checking).

Managing Certificates

The primary purpose of a certificate is to communicate a public key. The addi-
tional data — the subject name, the issuer name, the signature, the extensions,
and so on — are present to allow the receiver of the certificate to verify that the
bearer is legitimately in possession of the private key that corresponds with the
included public key. Overall, this is referred to as a public key infrastructure (PKI).
Public-key cryptography itself was originally developed to permit a secure key
exchange to occur over an insecure medium with no prior off-line communica-
tion; however, PKI requires that the identities — that is, the public keys — of
the trusted CAs be set up before secure communications can be established.
How this is done is outside the scope of SSL/TLS. Browsers come preconfig-
ured with a list of trusted CAs, for instance, with an option to allow the user to
import new ones. It’s up to the user to verify that new public keys are correct
and trustworthy, and to keep track of the trustworthiness of the top-level CAs.
Although this is not part of the SSL/TLS flow, there is a set of best practices that
has grown around PKI and certificate management.

How Authorities Handle Certificate Signing Requests
(CSRs)

The CA is vouching for the legitimacy of a certificate. In the context of the
world-wide web, CAs are typically for-profit businesses; their reputation, and
business viability, depends on how accurately they vet certificates prior to
signing them and thus providing their seal of approval. However, it’s perfectly
acceptable, in a corporate intranet environment, to establish a local CA and
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let it sign certificates that are only trusted within the local network. An entity
wishing to act as a CA must simply create a new key pair, generate a certificate
that contains the public key, sign the certificate with the private key, and publish
the self-signed certificate.

How the receivers decide which authorities to trust is not part of the PKI
specification, but how a would-be certificate holder gets a signature is. First,
of course, the hopeful certificate holder must generate his own keypair. The
public key and the subject’s name are wrapped up into a PKCS #10 certificate
signing request (CSR). The whole certificate signing request itself is signed with
the private key, but the private key isn’t shared with the CA. Signing the request
with the private key prevents a malicious man in the middle from intercepting
the CSR, substituting his own public key in the request itself, and obtaining a
signed certificate in somebody else’s name. In essence, the signature proves that
whoever generated the request has access to the private key that corresponds
with the public key, without ever revealing the actual private key.

The CA should, of course, verify the signature with the public key, but should
also verify, in some unspecified offline manner, that the requester is actually
the correct holder of the name in the cx field of the subject name. If the certifi-
cate identifies an individual, perhaps the CA would request that the individual
appear in person and present a driver’s license with a name that matches the
cn field and a state that matches the st field. If the certificate identifies a web
site, the CA might perform a WHOIS query against the ARIN database for the
domain in question to determine who the registered owner is and demand a
driver’s license in that name.

After the identity of the requester has been verified, the CA creates an X.509
certificate that includes the public key and subject name, as well as the serial
number, validity period, issuer’s name as well as any extra attributes that may
be appropriate, such as key usage, and, of course, the signature using the CA’s
private key. The final certificate can safely be returned over a cleartext channel
with no further authentication. This certificate is now public data and by design
contains no sensitive information.

The PKCS #10 format won’t be examined in detail here. The official specifica-
tion can be downloaded from http: //www.rsa.com/rsalabs/node.asp?id=2132,
and the OpenSSL req command can be used to generate a new CSR.

Correlating Public and Private Keys Using PKCS #12
Formatting

Notice that the private key itself doesn’t appear anywhere in the certificate
format, nor the CSR format. (This a good thing!) As you can imagine, when
dealing with several certificates, it can become difficult to keep track of which
private keys correspond to which public keys; some certificates expire, some
need to be revoked due to a key compromise, some domains have their own
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certificates for security purposes, and so on. If you lose track of which private
key goes with which certificate, you're pretty much out of luck; it would be nice
to store them together so you can always go back to the source.

Storing the keys, of course, must be done in a secure way. The private key
may be the most sensitive bit of information in the entire system. The PKCS
#12 format was designed as a standardized way to transmit any arbitrary bit of
data securely — by encrypting it in a standardized way — but in practice it is
generally used to store certificates and their corresponding private keys. The
PKCS #12 format was standardized from an older, de facto standard named PFX.
As such, many applications that generate PKCS #12 files give them the exten-
sion .pfx. If you export a certificate and private key from Internet Explorer, for
instance, you get a .pfx file.

The PKCS #12 format is actually extremely general — a bit too general, in fact.
The top-level structure consists of a version number, a sequence of bit strings,
and a MAC over the whole thing. It’s up to the reader of the file to interpret the
bit strings to figure out if theyre encrypted and what they contain.

Blacklisting Compromised Certificates Using Certificate
Revocation Lists (CRLs)

After a CA has applied its signature to a certificate, that signature can never be
revoked, ever. The signature is a mathematical operation performed over the
certificate data; if it’s valid today, it will be valid a million years from now. So
what can the holder of a certificate do if, for whatever reason, its private key is
compromised?

Depending on the usage pattern of the certificate, this could be very bad
news for the rightful owner of the certificate. Of course, if the certificate holder
knows about the compromise, the certificate can be taken out of use and a new
one generated. However, the key thief can use the old certificate and private key
to sign any document he likes, masquerading as the rightful certificate holder.

Every certificate has an expiration date to guard against this. Even if the right-
ful holder is unaware of the breach, the certificate eventually expires and a new
certificate, with a new public key (one would hope) is generated. However, if the
certificate holder is aware of a breach, it is irresponsible not to notify the users
of the certificate that it should be revoked prior to its expiration date.

CAs came up with half a solution with certificate revocation lists (CRLs). The CA
maintains a list of the serial numbers of certificates that have been identified by
their owners as no longer applicable. The users of the certificates are responsible
for checking this list on a periodic basis and comparing the serial number of
each received certificate against the list of revoked serial numbers. The format
for a CRL is, of course, an ASN.1 syntax; it starts with a header identifying the
CA, the date it was published, and a list of serial numbers and revocation dates.
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VeriSign’s current CRL, as an example, is 125K and includes more than 3600
certificates, some of which were revoked more than two years ago. The idea
behind CRLs is that a user downloads each trusted CA’s CRL on a periodic
basis. However, there’s no real upper bound on how large a CRL may grow. It
might be reasonable to try to keep a handle on the size of the file by removing
a certificate from the CRL after its validity period had passed, but an actual
compromised certificate is a far greater security risk than one that is simply
expired. A compromised certificate should never be used, under any circum-
stances; an expired certificate may be used, if the receiver trusts the certificate
holder. As a result, it’s necessary for the CA to keep a certificate on its CRL list
for a fairly long period of time. To keep the size of the download somewhat
manageable, the specification allows the CA to distribute “delta” CRLs that only
include newly revoked certificates. This is still problematic, as the user of the
CRL has no way of knowing when it’s safe to stop keeping track of an expired
certificate, whereas the CA knows, for instance, that a certificate expired six years
ago and can probably be safely removed from the list. The downloader only
knows the serial number of the certificate; he has no way of knowing whether
it was revoked 10 years ago or last Tuesday.

You may be wondering where to go to find the CRL associated with a CA.
It would seem reasonable that the location of the CRL would be set up when
the CA itself was listed as trusted, but this doesn’t allow a CA to move its CRL
location, ever. The X.509 certificate form has an extension that allows the CA to
indicate where the CRL ought to be downloaded from. This does introduce one
potential confusion, though: The extension doesn’t permit the CA to indicate
the date that the CRL distribution point changed. Remember that the CRL is
associated with the CA that signed the certificate. If the client downloads two
certificates signed by the same CA, but with two different CRL URLs, which one
should be used? There are no clear guidelines in the specifications. This isn't a
problem if you don’t mind downloading the entire CRL each time you want to
validate a certificate, but it can be a problem if you're trying to use deltas or if
the CRL distribution point is temporarily unreachable.

How does the legitimate holder of a certificate inform a CA that a certificate
is compromised and should be revoked? The CSR format described earlier
includes an optional attributes section in which the requester can provide a
challenge password that must be supplied at any later time in order to perform
subsequent certificate management, including revocation.

Keeping Certificate Blacklists Up-to-Date with the
Online Certificate Status Protocol (OCSP)

As detailed in the previous section, there are quite a few problems with using
CRLs as a means of notifying consumers of the revocation of certificates. In
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addition to some of the management/ambiguity problems, there’s also the prob-
lem of freshness. If a private key has been compromised, the potential users of
that certificate probably want to know about it right away. To accomplish this,
the client has to download the entire CRL, or at least a delta (if the CA supports
them) every time a new certificate is encountered. The Online Certificate Status
Protocol (OCSP) was developed to enable the client to look up the status of a
certificate by serial ID.

The details can be found in RFC 2560 and aren’t covered in depth here. The
user supplies the serial number of the certificate along with a hash of the issuer’s
distinguished name as well as its public key. The issuer name and public key
are included so that a single OCSP can report on multiple CAs. The OCSP server
returns, at a minimum, a status of “good” or “revoked.”

Of course, this all works only if the OCSP server itself is online. If the server is
not available, the user has a decision to make: abandon the connection attempt,
or go ahead with a potentially revoked certificate? Ideally, the client should have
a CRL handy to verify in case the OCSP server is unavailable.

Other Problems with Certificates

Whenever a flaw is found in SSL, it’s almost always related to certificates.

Even when certificates are implemented “perfectly” human behavior often
renders them moot. All browsers, at the time of this writing, allow a user to
ignore a mismatched domain name or a certificate past its validity period. Users
are presented with cryptic warning messages and allowed to continue, which
most of them do — even the ones who ought to know better. Still, PKI is what
we have to guard against man-in-the-middle attacks. At a bare minimum, an
implementation of TLS must be prepared to parse certificates to extract the
server’s public key.
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A Usable, Secure
Communications Protocol:
Client-Side TLS

Armed with symmetric encryption to protect sensitive data from eavesdroppers,
public-key encryption to exchange keys securely over an insecure medium,
message authentication to ensure message integrity, and certificates and their
digital signatures to establish trust, it’s possible to create a secure protocol that
operates over an insecure line without any prior interaction between parties.
This is actually pretty amazing when you think about it. You can assume that
anybody who’s interested in snooping on your traffic has full and complete
access to it. Nevertheless, it’s possible to securely send data such that only the
intended recipient can read it, and be assured, within reason, that youre com-
municating with the intended recipient and not an impostor.

Even with all the pieces in place, though, it’s possible to get this subtly wrong.
This is why the TLS protocol was developed — even if you use the strongest
cryptography, key exchange, MAC and signature algorithms available, you can
still leave yourself vulnerable by improper use of random numbers, improper
seeding of random number generation, improper verification of parameters, and
a lot of other, subtle, easy-to-overlook flaws. TLS was designed as a standard for
secure communications. You must, of course, use strong, secure cryptographic
algorithms; the best way to ensure this is to use standard algorithms that were
designed and have been thoroughly reviewed by security professionals for
years. To ensure that you're using them correctly, your best bet is to also follow
a standard protocol that was also designed and has been thoroughly reviewed
by security professionals for years.

297
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FROM SSLV2 TO TLS 1.2: THE HISTORY OF THE SSL PROTOCOL

SSL is currently on its fifth revision over its fifteen-year history, and has
undergone one name change and one ownership change in that time period.
This book focuses mainly on TLS 1.0, which is the version in most widespread
use. This section looks over the history of the protocol at a high level. This
overview is a helpful segue into the details of TLS 1.0 — some elements of TLS
1.0 make the most sense if you understand the problems with its predecessors
that it means to solve.

SSLv2: The First Widespread Attempt at a Secure Browser Protocol

In 1995, most people had never heard of a “web browser.” The Internet itself
had been a reality for quite a while, but it was clear to a handful of visionar-
ies that the World Wide Web is what would bring networked computing to the
masses. Marc Andreessen had written Mosaic, the first graphical web browser,
while at the University of lllinois. At the time, Mosaic was incredibly popular,
so Andreessen started a company named Netscape which was going to create
the computing platform of the future — the Netscape browser (and its com-
panion server).

The World Wide Web was to become the central platform for the fledgling
“e-commerce” industry. There was one problem, though — its users didn’t
trust it with their sensitive data. In 1995, Kipp Hickman, then an employee of
Netscape Communications, drafted the first public revision of SSLv2, which
was at the time viewed as an extension to HTTP that would allow the user to
establish a secure link on a nonsecure channel using the concepts and tech-
niques examined in previous chapters.

Although SSLv2 mostly got it right, it overlooked a couple of important
details that rendered it, while not useless, not as secure as it ought to have
been. The details of SSLv2 aren’t examined in detail here, but if you're curious,
Appendix C includes a complete examination of the SSLv2 protocol.

The cracks in SSLv2 were identified after it was submitted for peer review,
and Netscape withdrew it, following up with SSLv3 in 1996. However, by this
time, in spite of the fact that it was never standardized or ratified by the IETF,
SSLv2 had found its way into several commercial browser and server imple-
mentations. Although its use has been deprecated for a decade, you may still
run across it from time to time. However, it’s considered to be too unsafe to
the extent that the Payment Card Industry, which regulates the use of credit
cards on the Internet, no longer permits websites that support SSLv2 to even
accept credit cards.

SSL 3.0, TLS 1.0, and TLS 1.1: Successors to SSLv2

The IETF was much happier with the SSLv3 proposal; however, it made a few
superficial changes before formally accepting it. The most significant superfi-
cial change was that, for whatever reason, they decided to change the name
from the widespread, recognizable household name “SSL” to the somewhat
awkward “TLS.” SSLv3.1 became TLS v1.0. To this day, the version numbers
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transmitted and published in a TLS connection are actually SSL versions, not
TLS versions. TLS 1.0 was formally specified by RFC 2246 in 1999.

Although SSLv3 was also never officially ratified by the IETF, SSLv3 and TLS
1.0 are both widespread. Most current commercial implementations of SSL/
TLS support both SSLv3 and TLS 1.0; TLS also includes a mechanism to negoti-
ate the highest version supported. SSLv3 and TLS 1.0, although similar except
for some cosmetic differences, are not interoperable — a client that only sup-
ports SSLv3 cannot establish a secure connection with a server that only
supports TLS 1.0. However, a client that supports both can ask for TLS 1.0 and
be gracefully downgraded to SSLv3.

At the time of this writing, SSLv3 and TLS 1.0 are by far the most wide-
spread implementations of the protocol. In 2006, a new version, 1.1, was
released in RFC 4346; it's not radically different than TLS 1.0, and the few dif-
ferences are examined at the end of this chapter. Two years later, TLS 1.2 was
released, and it was a major revision; TLS 1.2 is covered in depth in Chapter 9.

This chapter focuses on TLS 1.0. A complete implementation of the client-
side of TLS 1.0 is presented here in some detail.

Implementing the TLS 1.0 Handshake
(Client Perspective)

As much as possible, TLS aims to be completely transparent to the upper-layer
protocol. Effectively, this means that it tries to be completely transparent to the
application programmer; the application programmer implements the protocol
in question as if TLS was not being used. As long as nothing goes wrong, TLS
succeeds admirably in this goal; although, as you'll see, if something does go
wrong, everything fails miserably and the developer is left scratching his head,
trying to figure out what he missed.

Of course, TLS can’t be completely transparent. The application must indicate
in some way that it wants to negotiate a secure channel. Perhaps surprisingly,
TLS doesn’t specify how the application should do this nor does it even provide
any guidance. Remembering that SSL was initially developed as an add-on to
HTTP, this makes some sense. The protocol designers weren't thinking about
applicability to other protocols at the time. In fact, they didn't even specify how
to use HTTP with SSL, assuming that there was only way to do so. It actually
wasn't until 2000 that Eric Rescorla finally drafted RFC 2818 that describes how
it should be done.

TLS requires that the handshake — a secure key exchange — takes place
before it can protect anything. Effectively the question is when the handshake
should take place; anything that’s transmitted before the handshake is complete
is transmitted in plaintext and is theoretically interceptable. HTTPS takes an
extreme position on this. The very first thing that must take place on the channel is
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the TLS handshake; no HTTP data can be transmitted until the handshake
is complete.

You can probably spot a problem with this approach. HTTP expects the very
tirst byte(s) on the connection to be an HTTP command such as GET, PUT, POST,
and so on. The client has to have some way of warning the server that it’s going
to start with a TLS negotiation rather than a plaintext HTTP command. The
solution adopted by HTTPS is to require secure connections to be established
on a separate port. If the client connects on port 80, the next expected commu-
nication is a valid HTTP command. If the client connects on port 443, the next
expected communication is a TLS handshake after which, if the handshake
is successful, an encrypted, authenticated valid HTTP command is expected.

Adding TLS Support to the HTTP Client

To add TLS support to the HTTP client developed in Chapter 1, you define four
new top-level functions as shown in Listing 6-1.

Listing 6-1: “tls.h” top-level function prototypes

/**

* Negotiate an TLS channel on an already-established connection
* (or die trying).

* @return 1 if successful, 0 if not.

*/
int tls_connect( int connection,

TLSParameters *parameters ) ;

/**
* Send data over an established TLS channel. tls_connect must already
* have been called with this socket as a parameter.
*/
int tls_send( int connection,
const char *application_data,
int length,
int options,
TLSParameters *parameters );
/**
* Received data from an established TLS channel.
*/
int tls_recv( int connection,
char *target_buffer,
int buffer_size,
int options,

TLSParameters *parameters ) ;

VAR

* Orderly shutdown of the TLS channel (note that the socket itself will
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* still be open after this is called).
*/

int tls_shutdown( int connection, TLSParameters *parameters );

The primary “goal” of t1s_connect is to fill in the TLSParameters structure
that is passed in. It contains, among other things, the negotiated encryption and
authentication algorithms, along with the negotiated keys. Because this struc-
ture is large and complex, it is built up incrementally throughout the course of
this chapter; the bulk of this chapter is dedicated to filling out the t1s_connect
function and the TLsParamaters structure.

To apply these to an HTTP connection, open it as usual but immediately call
t1s_connect, which performs a TLS handshake. Afterward, assuming it suc-
ceeds, replace all calls to send and recv with t1s_send and t1s_recv. Finally,
just before closing the socket, call t1s_shutdown. Note that SSLv2 didn’t have a
dedicated shutdown function — this opened the connection to subtle attacks.

In order to support HTTPS, the first thing you'll need to do is to modify the
main routine in http.c to start with a TLS handshake as shown in Listing 6-2.

Listing 6-2: "https.c” main routine

#define HTTPS_PORT 443

int main( int argc, char *argv|[ 1 )
{
int client_connection;
char *host, *path;
struct hostent *host_name;
struct sockaddr_in host_address;
int port = HTTPS_PORT;

TLSParameters tls_context;

printf( "Connection complete; negotiating TLS parameters\n" );

if ( tls_connect( client_connection, &tls_context ) )

{

fprintf( stderr, "Error: unable to negotiate TLS connection.\n" );

return 3;

printf( "Retrieving document: '%$s'\n", path );

http_get( client_connection, path, host, &tls_context );

display_result( client_connection, &tls_context );

tls_shutdown( client_connection, &tls_context );
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Here, http_get and display_result change only slightly, as shown in Listing
6-3; they take an extra parameter indicating the new t1s_context, and they call
tls_sendand tls_recv to send and receive data; otherwise, theyre identical to
the functions presented in Chapter 1:

Listing 6-3: “https.c” http_get and display_result

int http_get( int connection, const char *path, const char *host,

TLSParameters *tls_context )

static char get_command[ MAX_GET_COMMAND ] ;

sprintf ( get_command, "GET /%s HTTP/1.1\r\n", path );
if ( tls_send( connection, get_command,

strlen( get_command ), 0, tls_context ) == -1 )

return -1;

sprintf ( get_command, "Host: %s\r\n", host );
if ( tls_send( connection, get_command,
strlen( get_command ), 0, tls_context ) =

]
1
=
~

return -1;

strcpy ( get_command, "Connection: Close\r\n\r\n" );
if ( tls_send( connection, get_command,

strlen( get_command ), 0, tls_context ) == -1 )

return -1;

return 0;
}
void display_result( int connection, TLSParameters *tls_context )
{

while ( ( received = tls_recv( connection, recv_buf,
BUFFER_SIZE, 0, tls_context ) ) >= 0 )

recv_buf[ received ] = '\0';

printf( "data: %s", recv_buf );

Notice that the proxy negotiation part of http_get is missing from
Listing 6-3. Negotiating proxies is a major complication for SSL; by now you can
probably see why. The proxy performs the HTTP connection on behalf of the
client and then returns the results back to it. Unfortunately this is by definition a
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man-in-the-middle attack. HTTPS can, of course, be extended to work correctly
behind a proxy. This topic is revisited in Chapter 10.

Otherwise, thisis it. After the t1s_connect, t1s_send, tls_recv,and tls_shutdown
routines are complete, this client is HTTPS-compliant. If you are inclined to extend
display_result to parse the HTML response and build a renderable web page,
you can do so without giving a single thought to whether or not the connection
is secure. If you add support for POST, HEAD, PUT, DELETE, and so on into the
client-side implementation, you do so just as if the connection was plaintext; just
be sure to call t1s_send instead of send. Of course, you should probably extend
this to actually pay attention to the protocol and perform a TLS connection only if
the user requested “https” instead of “http.” I'll leave that as an exercise for you
if you're interested.

Understanding the TLS Handshake Procedure

Most of the complexity is in the handshake; after the handshake has been
completed, sending and receiving is just a matter of encrypting/decrypting,
MAC’ing/verifying data before/after it’s received. At a high-level, the handshake
procedure is as shown in Figure 6-1.

client server

\

client hello

)

P serverhello ——— |

—_—
key exchange
change cipher spec
—_—
- finished _____________________________)

) I
change cipher spec

finished ———M |

N
.

Y Y

Figure 6-1: TLS handshake

12/10/2010 9:45:29 AM



304

Chapter 6 = A Usable, Secure Communications Protocol: Client-Side TLS

c06.indd 304

The client is responsible for sending the client hello that gets the ball rolling and
informs the server, at a minimum, what version of the protocol it understands
and what cipher suites (cryptography, key exchange, and authentication triples)
it is capable of working with. It also transmits a unique random number, which
is important to guard against replay attacks and is examined in depth later.

The server selects a cipher suite, generates its own random number, and assigns
a session ID to the TLS connection; each connection gets a unique session ID.
The server also sends enough information to complete a key exchange. Most
often, this means sending a certificate including an RSA public key.

The client is then responsible for completing the key exchange using the
information the server provided. At this point, the connection is secured, both
sides have agreed on an encryption algorithm, a MAC algorithm, and respec-
tive keys. Of course, the whole process is quite a bit more complex than this,
but you may want to keep this high-level overview in mind as you read the
remainder of this chapter.

TLS Client Hello

Every step in the TLS handshake is responsible for updating some aspect of
the TLsParameters structure. As you can probably guess, the most important
values are the MAC secret, the symmetric encryption key, and, if applicable, the
initialization vector. These are defined in the ProtectionParameters structure
shown in Listing 6-4.

Listing 6-4: “tls.n” ProtectionParameters

typedef struct

{
unsigned char *MAC_secret;
unsigned char *key;

unsigned char *IV;

}
ProtectionParameters;
Tracking the Handshake State in the TLSParameters Structure

TLS actually allows a different MAC secret, key, and IV to be established for the
sender and the receiver. Therefore, the TLsParameters structure keeps track of
two sets of ProtectionParameters as shown in Listing 6-5.

Listing 6-5: “tls.h” TLSParameters

#define TLS_VERSION_MAJOR 3
#define TLS_VERSION_MINOR 1
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#define MASTER_SECRET_LENGTH 48
typedef unsigned char master_secret_type[ MASTER_SECRET_ LENGTH ];

#define RANDOM_LENGTH 32
typedef unsigned char random_type[ RANDOM_LENGTH ] ;

typedef struct
{

master_secret_type master_secret;
random_type client_random;
random_type server_random;

ProtectionParameters pending_send parameters;
ProtectionParameters pending_recv_parameters;
ProtectionParameters active_send_parameters;

ProtectionParameters active_recv_parameters;

// RSA public key, if supplied
public_key_info server_public_key;

// DH public key, if supplied (either in a certificate or ephemerally)
// Note that a server can legitimately have an RSA key for signing and
// a DH key for key exchange (e.g. DHE_RSA)

dh_key server_dh_key;

}

TLSParameters;

TLS 1.0is SSL version 3.1, as described previously. The pending_send_parameter
and pending_recv_parameters are the keys currently being exchanged; the TLS
handshake fills these out along the way, based on the computed master secret.
The master secret, server random, and client random values are likewise pro-
vided by various hello and key exchange messages; the public keys’ purpose
ought to be clear to you by now.

What about this active_send _parameters and active_recv_parameters?
After the TLS handshake is complete, the pending parameters become the
active parameters, and when the active parameters are non-null, the param-
eters are used to protect the channel. Separating them this way simplifies
the code; you could get away with a single set of send and recv parameters in the
TLSParameters structure, but you'd have to keep track of a lot more state in
the handshake code.

Both the TLSParameters and ProtectionParameters structures are shown
partially filled out in Listings 6-4 and 6-5; you add to them along the way as
you develop the client-side handshake routine.

As always, you need a couple of initialization routines, shown in
Listing 6-6.
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Listing 6-6: “t|s.c” init_parameters

static void init_protection_parameters( ProtectionParameters *parameters )
{

parameters->MAC_secret = NULL;

parameters->key = NULL;

parameters->IV = NULL;

}

static void init_parameters( TLSParameters *parameters )

{
init_protection_parameters( &parameters->pending_send_parameters );
init_protection_parameters( &parameters->pending_recv_parameters );
init_protection_parameters( &parameters->active_send_parameters ) ;

init_protection_parameters( &parameters->active_recv_parameters );
memset ( parameters->master_secret, '\0', MASTER_SECRET_LENGTH ) ;

memset ( parameters->client_random, '\0', RANDOM_LENGTH ) ;

memset ( parameters->server_random, '\0', RANDOM_LENGTH ) ;

So, t1s_connect, shown partially in Listing 6-7, starts off by calling

init_parameters.

Listing 6-7: “tIs.c” tls_connect

/**

* Negotiate TLS parameters on an already-established socket.
*/

int tls_connect( int connection,

TLSParameters *parameters )

init_parameters( parameters );
// Step 1. Send the TLS handshake "client hello" message
if ( send_client_hello( connection, parameters ) < 0 )

{
perror ( "Unable to send client hello" );

return 1;

Recall from the overview that the first thing the client should do is send a
client hello message. The structure of this message is defined in Listing 6-8.

Listing 6-8: “t/s.h” client hello structure

typedef struct
{

unsigned char major, minor;
}

ProtocolVersion;
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typedef struct
{
unsigned int gmt_unix_time;
unsigned char random_bytes[ 28 1;
}
Random;

/**
* Section 7.4.1.2
*/
typedef struct
{
ProtocolVersion client_version;
Random random;
unsigned char session_id_length;
unsigned char *session_id;
unsigned short cipher_suites_length;
unsigned short *cipher_suites;
unsigned char compression_methods_length;
unsigned char *compression_methods;
}
ClientHello;

Listing 6-9 shows the first part of the send_client_hello function, which is
responsible for filling out a c1ientHello structure and sending it on to the server.

Listing 6-9: “tls.c” send_client_hello

/**
* Build and submit a TLS client hello handshake on the active
* connection. It is up to the caller of this function to wait
* for the server reply.
*/
static int send_client_hello( int connection, TLSParameters *parameters )

{

ClientHello package;

unsigned short supported_suites[ 1 1;

unsigned char supported_compression_methods[ 1 ];
int send_buffer_size;

char *send_buffer;

void *write_buffer;

time_t local_time;

int status = 1;

package.client_version.major = TLS_VERSION_MAJOR;
package.client_version.minor = TLS_VERSION_MINOR;

time( &local_time );

package.random.gmt_unix_time = htonl( local_time );

// TODO - actually make this random.

// This is 28 bytes, but client random is 32 - the first four bytes of

(Continued)
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// "client random" are the GMT unix time computed above.

memcpy ( parameters->client_random, &package.random.gmt_unix_time, 4 );
memcpy ( package.random.random_bytes, parameters->client_random + 4, 28 );
package.session_id_length = 0;

package.session_id = NULL;

// note that this is bytes, not count.

package.cipher_suites_length = htons( 2 );

supported_suites[ 0 ] = htons( TLS_RSA_WITH_3DES_EDE_CBC_SHA );
package.cipher_suites = supported_suites;
package.compression_methods_length = 1;

supported_compression_methods[ 0 ] = 0;

package.compression_methods = supported_compression_methods;

.m Notice that the client random isn’t entirely random — the specification
actually mandates that the first four bytes be the number of seconds since
January 1, 1970. Fortunately, C has a built-in time function to compute this.
The remaining 28 bytes are supposed to be random. The most important thing
here is that they be different for each connection.

The session ID is left empty, indicating that a new session is being requested
(session reuse is examined in Chapter 8). To complete the c1ientHello structure,
the supported cipher suites and compression methods are indicated. Only one of
each is given here: For the cipher suite, it’s RSA key exchange; 3DES (EDE) with
CBC for encryption; and SHA-1 for MAC. The compression method selected is
“no compression.” TLS allows the client and sender to agree to compress the
stream before encrypting.

You may be wondering, legitimately, what compression has to do with security.
Nothing, actually — however, it was added to TLS and, at the very least, both
sides have to agree not to compress. If the stream is going to be compressed,
however, it is important that compression be applied before encryption. One
property of secure ciphers is that they specifically not be compressible, so if you
try to compress after encrypting, it will be too late.

Describing Cipher Suites

So, what about this TLS_RSA_WITH_3DES_EDE_CBC_sHA value? Strictly speaking,
it’s not always safe to “mix and match” encryption functions with key exchange
and MAC functions, so TLS defines them in triples rather than allowing the
two sides to select them a la carte. As a result, each allowed triple has a unique
identifier: TLS_RSA_WITH_3DES_EDE_CBC_SHA is 10 or 0x0A hex. Go ahead and
define a cipherSuiteIdentifier enumeration as shown in Listing 6-10.

Listing 6-10: "t/s.h” CipherSuiteldentifier list

typedef enum
{
TLS_NULL_WITH_NULL_NULL = 0x0000,
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TLS_RSA_WITH_NULL_MD5 = 0x0001,
TLS_RSA_WITH_NULL_SHA = 0x0002,
TLS_RSA_EXPORT_WITH_RC4_40_MD5 = 0x0003,
TLS_RSA_WITH_RC4_128_MD5 = 0x0004,
TLS_RSA_WITH_RC4_128_SHA = 0x0005,
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 = 0x0006,
TLS_RSA_WITH_IDEA_CBC_SHA = 0x0007,
TLS_RSA_EXPORT_WITH_DES40_CBC_SHA = 0x0008,
TLS_RSA_WITH_DES_CBC_SHA = 0x0009,
TLS_RSA_WITH_3DES_EDE_CBC_SHA = 0x000A,

} CipherSuiteIdentifier;

Notice the NULL cipher suites 0, 1 and 2. TLS_NULL_WITH_NULL_NULL indicates
that there’s no encryption, no MAC and no key exchange. This is the default
state for a TLS handshake — the state it starts out in. Cipher suites 1 and 2 allow
a non-encrypted, but MAC’ed, cipher suite to be negotiated. This can actually
be pretty handy when you're trying to debug something and you don’t want to
have to decrypt what you're trying to debug. Unfortunately for the would-be
debugger, for obvious security reasons, most servers won't allow you to negoti-
ate this cipher suite by default.

There’s no particular rhyme or reason to the identifiers assigned to the vari-
ous cipher suites. They're just a sequential list of every combination that the
writers of the specification could think of. Theyre not even grouped together
meaningfully; the RSA key exchange cipher suites aren’t all in the same place
because after the specification was drafted, new cipher suites that used the RSA
key exchange method were identified. It would certainly have been nicer, from
an implementer’s perspective, if they had allocated, say, three bits to identify
the key exchange, five bits to identify the symmetric cipher, two for the MAC,
and so on.

Additional cipher suites are examined later on. For now, you're just writing
a client that understands only 3DES, RSA, and SHA-1.

Flattening and Sending the Client Hello Structure

Now that the ClientHello message has been built, it needs to be sent on. If you
look at RFC 2246, which describes TLS, you see that the formal description of
the client hello message looks an awful lot like the C structure defined here.
You may be tempted to try to just do something like this:

send( connection, ( void * ) &package, sizeof( package ), 0 );

This is tempting, but your compiler thwarts you at every turn, expanding
some elements, memory-aligning others, and generally performing unexpected
optimizations that cause your code to run faster and work better (the nerve!).
Although it is possible to include enough compiler directives to force this struc-
ture to appear in memory just as it needs to appear on the wire, you'd be, at the
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very least, locking yourself into a specific platform. As a result, you're better
off manually flattening the structure to match the expected wire-level interface
as shown in Listing 6-11:

Listing 6-11: “tIs.c” send_client_hello (continued in Listing 6-13)

// Compute the size of the ClientHello message after flattening.
send_buffer_size = sizeof( ProtocolVersion ) +
sizeof ( Random ) +

sizeof ( unsigned char ) +

( sizeof( unsigned char ) * package.session_id_length ) +
sizeof ( unsigned short ) +
( sizeof( unsigned short ) * 1 ) +

sizeof ( unsigned char ) +

sizeof ( unsigned char );
write_buffer = send buffer = ( char * ) malloc( send_buffer_size );

write_buffer = append_buffer( write_buffer, ( void * )
&package.client_version.major, 1 );
write_buffer = append buffer( write_buffer, ( void * )
&package.client_version.minor, 1 );
write_buffer = append_buffer( write_buffer, ( void * )
&package.random.gmt_unix_time, 4 );
write_buffer = append_buffer( write_buffer, ( void * )
&package.random.random_bytes, 28 );
write_buffer = append buffer( write_buffer, ( void * )
&package.session_id_length, 1 );
if ( package.session_id_length > 0
{
write_buffer = append_buffer( write_buffer,
( void * )package.session_id,
package.session_id_length );
}
write_buffer = append _buffer( write_buffer,
( void * ) &package.cipher_suites_length, 2 );
write_buffer = append_buffer( write_buffer,
( void * ) package.cipher_suites, 2 );
write_buffer = append buffer( write_buffer,
( void * ) &package.compression_methods_length, 1 );
if ( package.compression_methods_length > 0 )
{
write_buffer = append_buffer( write_buffer,
( void * ) package.compression_methods, 1 );

The append_buffer function, in Listing 6-12, is a convenience routine designed
to be called incrementally as in Listing 6-11.
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Listing 6-12: “tls.c” append buffer

/**
* This is just like memcpy, except it returns a pointer to dest + n instead
* of dest, to simplify the process of repeated appends to a buffer.
*/
static char *append_buffer( char *dest, char *src, size_t n )
{
memcpy ( dest, src, n );

return dest + n;

This flattened structure is illustrated in Figure 6-2.

} UOISIaA

major [ minor current time random bytes

client
random

random bytes

ancomys| 0 | SN £l spereutes || s
len length len | (variable)

Figure 6-2: Client hello structure

Finally, the client hello is sent off in Listing 6-13:

Listing 6-13: “tls.c” send_client_hello (continued from Listing 6-11)

assert( ( ( char * ) write_buffer - send_buffer ) == send_buffer_size );

status = send_handshake_message( connection, client_hello, send_buffer,

send_buffer_size );
free( send_buffer );

return status;

Notice that send still isn’t called. Instead, you invoke send_handshake_
message. Like TCP and IP, and network programming in general, TLS is an
onion-like nesting of headers. Each handshake message must be prepended
with a header indicating its type and length. The definition of the handshake
header is shown in Listing 6-14.
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Listing 6-14: "t|s.h” handshake structure

/**

* Handshake message types

*/
typedef enum
{

hello_request =

client_hello = 1,
server_hello = 2,
=11,

certificate

server_key_exchange
certificate_request
server_hello_done

certificate_verify

client_key_ exchange

finished = 20

}
HandshakeType;

/**

12,
13,

14,

15,

16,

(section 7.4)

* Handshake record definition (section 7.4)

*/

typedef struct

{

unsigned char

unsigned int

}
Handshake;

msg_type;

length; // 24 bits(!)

This structure is illustrated in Figure 6-3.

msg
type

length

handshake message
body (variable)

Figure 6-3: TLS handshake header

The send_handshake_message function that prepends this header to a hand-

shake message is shown in Listing 6-15.

Listing 6-15: “tls.c" send_handshake_message

static int send_handshake_message( int connection,

Handshake

short

record;

int msg_type,
const unsigned char *message,

int message_len )

send_buffer_size;

unsigned char *send_buffer;
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int response;

record.msg_type = msg_type;
record.length = htons( message_len ) << 8; // To deal with 24-bits...

send_buffer_size = message_len + 4; // space for the handshake header

send_buffer = ( unsigned char * ) malloc( send buffer_size );
send_buffer[ 0 ] = record.msg_type;
memcpy ( send_buffer + 1, &record.length, 3 );

memcpy ( send_buffer + 4, message, message_len );

response = send_message( connection, content_handshake,

send_buffer, send buffer_size );
free( send_buffer );

return response;

This would be a bit simpler except that, for some strange reason, the TLS
designers mandated that the length of the handshake message must be given
in a 24-bit field, which no compiler that I'm aware of can generate. Of course,
on a big-endian machine, this wouldn't be a problem; just truncate the high-
order byte of a 32-bit integer and you'd have a 24-bit integer. Unfortunately,
most general purpose computers these days are little-endian, so it’s necessary
to convert it and then truncate it.

But send_handshake_message still doesn’t call send! TLS mandates not only
that every handshake message be prepended with a header indicating its type
and length, but that every message, including the already-prepended handshake
messages, be prepended with yet another header indicating its type and length!

So, finally, define yet another header structure and some supporting enu-
merations in Listing 6-16.

Listing 6-16: “t|s.h” TLSPlaintext header

/** This lists the type of higher-level TLS protocols that are defined */
typedef enum {
content_change_cipher_spec = 20,
content_alert = 21,
content_handshake = 22,
content_application_data = 23
}
ContentType;

typedef enum { warning = 1, fatal = 2 } AlertLevel;
/**

* Enumerate all of the error conditions specified by TLS.

(Continued)
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*/
typedef enum
{
close_notify = 0,
unexpected_message = 10,
bad_record_mac = 20,
decryption_failed = 21,
record_overflow = 22,
decompression_failure = 30,
handshake_failure = 40,
bad_certificate = 42,
unsupported_certificate = 43,
certificate_revoked = 44,
certificate_expired = 45,
certificate_unknown = 46,
illegal_parameter = 47,
unknown_ca = 48,
access_denied = 49,
decode_error = 50,
decrypt_error = 51,
export_restriction = 60,
protocol_version = 70,
insufficient_security = 71,
internal_error = 80,
user_canceled = 90,
no_renegotiation = 100
}

AlertDescription;

typedef struct
{
unsigned char level;
unsigned char description;
}
Alert;

/**
* Each packet to be encrypted is first inserted into one of these structures.
*/
typedef struct
{
unsigned char type;
ProtocolVersion version;
unsigned short length;
}
TLSPlaintext;

There are four types of TLS messages defined: handshake messages, alerts,
data, and “change cipher spec,” which is technically a handshake message, but
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is broken out for specific implementation types that are examined later. Also,
the protocol version is included on every packet.
The TLS Message header is illustrated in Figure 6-4.

} UoISIaA

TLS Message

minor (variable)

type | major length

Figure 6-4: TLS Message header

Notice that this header is added to every packet that is sent over a TLS con-
nection, not just the handshake messages. If, after handshake negotiation, either
side receives a packet whose first byte is not greater than or equal to 20 and less
than or equal to 23 then something has gone wrong, and the whole connection
should be terminated.

Finally, you need one last send function that prepends this header on top of
the handshake message as shown in Listing 6-17.

Listing 6-17: “tls.c" send_message

static int send_message( int connection,
int content_type,
const unsigned char *content,

short content_len )

TLSPlaintext header;
unsigned char *send_buffer;
int send_buffer_size;

send_buffer_size content_len;

send_buffer_size +=5;

send_buffer ( unsigned char * ) malloc( send buffer_size

header. content_type;
TLS_VERSION_MAJOR;
TLS_VERSION_MINOR;

content_len );

type
version.major

header.

version.minor
length htons (
send_buffer|
send_buffer|[
send_buffer]|

header.

header. =
01
1]
2]

send_buffer + 3,

header. type;

header.version.major;

header.version.minor;
&header.length,

sizeof ( short )

)

memcpy ( )

memcpy ( send_buffer + 5, content, content_len

(Continued)
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if ( send( connection, ( void * ) send_buffer,
send_buffer_size, 0 ) < send buffer_size )

return -1;

free( send buffer );

return 0;

At this point, the actual socket-level send function is called. Now the client
hello message, with its handshake message header, with its TLS header, are sent
to the server for processing. After all of this prepending, the final wire-level
structure is as shown in Figure 6-5.

-
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Z z =
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g g <
(=% Qo o
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r Y Y N\
s s
@, @,
o o
=] =
— —
type | major | minor length msg length handshake IIERERS major [ minor | current time
type body (variable)
client
random
current time random bytes
sess
random bytes id
len
session id Zﬁ?eesr cipher suites ?ﬁé?ﬁ com&rﬁ;g;on
(arable) length (it len | (variable)

Figure 6-5: TLS Client Hello with all headers

TLS Server Hello

The server should now select one of the supported cipher suites and respond
with a server hello response. The client is required to block, waiting for an
answer; nothing else can happen on this socket until the server responds.
Expand tls_connect:

// Step 2. Receive the server hello response
if ( receive_tls_msg( connection, parameters ) < 0 )
{

perror ( "Unable to receive server hello" );

return 2;
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The function receive_t1ls_msg, as you can probably imagine, is responsible
for reading a packet off the socket, stripping off the TLS header, stripping
off the handshake header if the message is a handshake message, and process-
ing the message itself. This is shown in Listing 6-18.

Listing 6-18: “tIs.c" receive_tls_msg

/‘k‘k
* Read a TLS packet off of the connection (assuming there's one waiting)
* and try to update the security parameters based on the type of message
* received. If the read times out, or if an alert is received, return an error
* code; return 0 on success.
* TODO - assert that the message received is of the type expected (for example,
* 1f a server hello is expected but not received, this is a fatal error per
* section 7.3).
* returns -1 if an error occurred (this routine will have sent an
* appropriate alert). Otherwise, return the number of bytes read if the packet
* includes application data; 0 if the packet was a handshake. -1 also
* indicates that an alert was received.
*/
static int receive_tls_msg( int connection,

TLSParameters *parameters )

TLSPlaintext message;
unsigned char *read_pos, *msg_buf;
unsigned char header[ 5 ]; // size of TLSPlaintext

int bytes_read, accum_bytes;

// STEP 1 - read off the TLS Record layer
if ( recv( connection, header, 5, 0 ) <= 0 )
{
// No data available; it's up to the caller whether this is an error or not.

return -1;

message.type = header|[ 0 ];
message.version.major = header|[ 1 ];
message.version.minor = header[ 2 ];
memcpy ( &message.length, header + 3, 2 );

message.length = htons( message.length );

Adding a Receive Loop

First, the TLsPlaintext header is read from the connection and validated.
The error handling here leaves a bit to be desired, but ignore that for the
time being. If everything goes correctly, message.length holds the number
of bytes remaining in the current message. Because TCP doesn’t guarantee
that all bytes are available right away, it’s necessary to enter a receive loop
in Listing 6-19:
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Listing 6-19: “tls.c” receive_tls_msg (continued in Listing 6-21)

msg_buf = ( char * ) malloc( message.length );

// keep looping & appending until all bytes are accounted for
accum_bytes = 0;
while ( accum_bytes < message.length )
{
if ( ( bytes_read = recv( connection, ( void * ) msg_buf,

message.length - accum _bytes, 0 ) ) <= 0 )

int status;

perror( "While reading a TLS packet" );

if ( ( status = send_alert_message( connection,

illegal_parameter ) ) )

free( msg_buf );
return status;
}
return -1;
}
accum_bytes += bytes_read;
msg_buf += bytes_read;
}

This loop, as presented here, is vulnerable to a denial of service attack. If the
server announces that 100 bytes are available but never sends them, the client
hangs forever waiting for these bytes. There’s not much you can do about this,
though. You can (and should) set a socket-level timeout, but if it expires, there’s
not much point in continuing the connection.

Sending Alerts

Notice that if recv returns an error, a function send_alert_message is invoked.
Remember the four types of TLS messages? Alert was one of them. This is how
clients and servers notify each other of unexpected conditions. In theory, an alert
can be recoverable — expired certificate is defined as an alert, for example — but
this poses a problem for the writer of a general-purpose TLS implementation.
If the client tells the server that its certificate has expired then in theory the
server could present a new certificate that hadn’t expired. But why did it send
an expired certificate in the first place, if it had one that was current? In general,
all alerts are treated as fatal errors.

Alerts are also frustratingly terse. As you can see, if the client wasn't able to
receive the entire message, it just returns an illegal parameter with no further
context. Although it logs a more detailed reason, the server developer probably
doesn’t have access to those logs and has no clue what he did wrong. It would
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certainly be nice if the TLS alert protocol allowed space for a descriptive error
message.
send_alert_message is shown in Listil’lg 6-20.

Listing 6-20: “tls.c" send_alert_message

static int send_alert_message( int connection,
int alert_code )

char buffer[ 2 ];
// TODO support warnings
buffer[ 0 ] = fatal;

buffer[ 1 ] = alert_code;

return send_message( connection, content_alert, buffer, 2 );

By reusing the send_message routine from above, sending an alert message
is extremely simple.

Parsing the Server Hello Structure

Assuming nothing went wrong, the message has now been completely read
from the connection and is contained in msg_buf. For the moment, the only
type of message you're interested in is content_handshake, whose parsing is
shown in Listing 6-21:

Listing 6-21: "tIs.c” receive_tls_msg (continued from Listing 6-19)

read_pos = msg_buf;

if ( message.type == content_handshake )
{
Handshake handshake;

// Now, read the handshake type and length of the next packet
// TODO - this fails if the read, above, only got part of the message
read_pos = read_buffer( ( void * ) &handshake.msg_type,
( void * ) read_pos, 1 );
handshake.length = read_pos[ 0 ] << 16 | read_pos[ 1 ] << 8 | read_pos[ 2 ];

read_pos += 3;

// TODO check for negative or unreasonably long length
// Now, depending on the type, read in and process the packet itself.
switch ( handshake.msg_type )
{
// Client-side messages

case server_hello:

(Continued)

12/10/2010 9:45:31 AM



320 Chapter 6 = A Usable, Secure Communications Protocol: Client-Side TLS

read_pos = parse_server_hello( read_pos, handshake.length,
parameters ) ;

if ( read_pos == NULL ) /* error occurred */

{
free( msg_buf );
send_alert_message( connection, illegal_parameter ) ;
return -1;

}

break;

default:
printf( "Ignoring unrecognized handshake message %d\n",

handshake.msg_type ) ;
// Silently ignore any unrecognized types per section 6
// TODO However, out-of-order messages should result in a fatal alert
// per section 7.4
read_pos += handshake.length;
break;

}
else

{
// Ignore content types not understood, per section 6 of the RFC.

printf ( "Ignoring non-recognized content type %d\n", message.type );
free( msg_buf );

return message.length;

As I'm sure you can imagine, you fill this out quite a bit more throughout
this chapter. For now, though, just focus on the parse_server_hello function.
The Server Hello message is illustrated in Figure 6-6.

} UoISIan

major | minor current time random bytes

server
random

random bytes

sess
random bytes | id
len

Comp
meth

session id

(variable) cipher suites

Figure 6-6: Server Hello structure

As with the client hello, go ahead and define a structure to hold its value in
Listing 6-22.
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Listing 6-22: “tls.h” ServerHello structure

typedef struct
{

ProtocolVersion server_version;

Random random;
unsigned char session_id_length;
unsigned char session_id[ 32 1; // technically, this len should be dynamic.
unsigned short cipher_suite;
unsigned char compression_method;
}
ServerHello;

Because the TLSParameters were passed into the receive_t1s_message func-
tion, the parse_server_hello can go ahead and update the ongoing state as it’s
parsed, as in Listing 6-23.

Listing 6-23: “tIs.c" parse_server_hello

static char *parse_server_hello( char *read_pos,
int pdu_length,

TLSParameters *parameters )

ServerHello hello;

read_pos = read_buffer( ( void * ) &hello.server_version.major,
( void * ) read_pos, 1 );

read_pos = read_buffer( ( void * ) &hello.server_version.minor,
( void * ) read_pos, 1 );

read_pos = read_buffer( ( void * ) &hello.random.gmt_unix_time,

( void * ) read_pos, 4 );
// *DON'T* put this in host order, since it's not used as a time! Just
// accept it as is
read_pos = read_buffer( ( void * ) hello.random.random_bytes,
( void * ) read_pos, 28 );
read_pos = read_buffer( ( void * ) &hello.session_id_length,
( void * ) read_pos, 1 );

read_pos = read_buffer( ( void * ) hello.session_id,
( void * ) read_pos, hello.session_id_length );
read_pos = read_buffer( ( void * ) &hello.cipher_suite,
( void * ) read_pos, 2 );

hello.cipher_suite = ntohs( hello.cipher_suite );

// TODO check that these values were actually in the client hello
// list.
parameters->pending_recv_parameters.suite = hello.cipher_suite;

parameters->pending_send_parameters.suite = hello.cipher_suite;

read_pos = read_buffer( ( void * ) &hello.compression_method,
( void * ) read_pos, 1 );
if ( hello.compression_method != 0 )

(Continued)
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fprintf( stderr, "Error, server wants compression.\n" );
return NULL;

// TODO - abort if there's more data here than in the spec (per section
// 7.4.1.2, forward compatibility note)
// TODO - abort if version < 3.1 with "protocol_version" alert error

// 28 random bytes, but the preceding four bytes are the reported GMT unix
// time

memcpy ( ( void * ) parameters->server_random, &hello.random.gmt_unix_time, 4
)i
memcpy ( ( void * ) ( parameters->server_random + 4 ),
( void * ) hello.random.random_bytes, 28 );

return read_pos;

Note that if the server asked for compression, this function returns null
because this implementation doesn’t support compression. This is recognized
by the calling routine and is used to generate an alert. Here the terseness of the
TLS alert protocol shows. If the server asked for compression, it just gets back a
nondescript illegal parameter but receives no indication of which parameter was
illegal. It certainly would be more robust if you were allowed to tell it which
parameter you were complaining about. This is generally not a problem for users
of TLS software — if you get an illegal parameter while using, say, a browser,
that means that the programmer of the browser did something wrong — butis a
hassle when developing/testing TLS software like the library developed in this
book. When developing, therefore, it’s best to test against a client or server with
its debug levels set to maximum so that if you do get back an illegal parameter
(or any other nondescript alert message), you can go look at the server logs to
see what you actually did wrong.

This routine stores the server random, of course, because it is needed later on
in the master secret computation. Primarily, though, it sets the values pending_
send_parametersarKipending_recv_parametersVvﬂhthesekxiedsuﬂﬁ.EXpaHd
the definition of Protectionparameters to keep track of this in Listing 6-24.

Listing 6-24: “tIs.h” ProtectionParameters with cipher suite

typedef struct

{
unsigned char *MAC_secret;
unsigned char *key;
unsigned char *IV;
CipherSuiteIdentifier suite;

}

ProtectionParameters;
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Recall that ciphersuiteIdentifier was defined as part of the client hello.

parse_server_hello is something of the OppOSite of send_client_hello
and it even makes use of a function complementary to append_buffer, shown
in Listing 6-25.

Listing 6-25: “tls.c” read_buffer

static char *read_buffer( char *dest, char *src, size_t n )
{
memcpy ( dest, src, n );

return src + n;

Reporting Server Alerts

What if the server doesn’t happen to support TLS_RSA_WITH_3DES_EDE_CBC_
sHa (or any of the cipher suites on the list the client sends)? It doesn’t return a
server_hello at all; instead it responds with an alert message. You need to be
prepared to deal with alerts at any time, so extend receive_tls_message to
handle alerts as shown in Listing 6-26.

Listing 6-26: "receive_tls_message” with alert support

static int receive_tls_msg( int connection,

TLSParameters *parameters )

if ( message.type == content_handshake )
{

}
else if ( message.type == content_alert )
{
while ( ( read_pos - decrypted_message ) < decrypted_length )
{
Alert alert;

read _pos = read buffer( ( void * ) &alert.level,
( void * ) read pos, 1 );

read pos = read buffer( ( void * ) &alert.description,
( void * ) read pos, 1 );

report_alert( &alert );
if ( alert.level == fatal )

{

return -1;
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Notice that alert level is checked. If the server specifically marks an alert as
a fatal, the handshake is aborted; otherwise, the handshake process continues.
Effectively this means that this implementation is ignoring warnings, which is
technically a Bad Thing. However, as noted previously, there’s really not much
that can be done about the few alerts defined as warnings anyway. In any case, the
alert itself is written to stdout via the helper function report_alert in Listing 6-27.

Listing 6-27: “t|s.c" report_alert

static void report_alert( Alert *alert )
{
printf( "Alert - " );

switch ( alert->level )
{
case warning:
printf( "Warning: " );
break;
case fatal:
printf( "Fatal: " );
break;
default:
printf ( "UNKNOWN ALERT TYPE %4 (!!!): ", alert->level );

break;

switch ( alert->description )
{
case close_notify:
printf( "Close notify\n" );
break;
case unexpected_message:
printf ( "Unexpected message\n" );
break;
case bad_record_mac:
printf( "Bad Record Mac\n" );
break;

default:
printf ( "UNKNOWN ALERT DESCRIPTION %d (!!!)\n", alert->description );

break;

TLS Certificate

According to the handshake protocol, the next message after the server hello
ought to be the certificate that both identifies the server and provides a public
key for key exchange. The client, then, should accept the server hello and imme-
diately start waiting for the certificate message that follows.
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The designers of TLS recognized that it is somewhat wasteful to rigidly
separate messages this way, so the TLS format actually allows either side to
concatenate multiple handshake messages within a single TLS message. This
capability was one of the big benefits of TLS over SSLv2. Remember the TLS
header that included a message length which was then followed by the seemingly
superfluous handshake header that included essentially the same length? This is
why it was done this way; a single TLS header can identify multiple handshake
messages, each with its own independent length. Most TLS implementations
do take advantage of this optimization, so you must be prepared to handle it.

This slightly complicates the design of receive_tls_msg, though. The cli-
ent must now be prepared to process multiple handshake messages within a
single TLS message. Modify the content_handshake handler to keep process-
ing the TLS message until there are no more handshake messages remaining
as in Listing 6-28.

Listing 6-28: "tIs.c” receive_tls_msg with multiple handshake support

if ( message.type == content_handshake )
{
while ( ( read_pos - decrypted_message ) < decrypted_length )
{
Handshake handshake;
read_pos = read_buffer( ( void * ) &handshake.msg_type,
( void * ) read_pos, 1 );

switch ( handshake.msg_type )
{

case certificate:

read_pos = parse_x509_chain( read pos, handshake.length,
&parameters->server_public_key );

if ( read_pos == NULL )

{
printf( "Rejected, bad certificate\n" );
send_alert_message( connection, bad_certificate );
return -1;

}

break;

Notice that the call is made, not directly to the parse_x509_certificate
function developed in Chapter 5, but to a new function parse_x509_chain.
TLS actually allows the server to pass in not just its own certificate, but the
signing certificate of its certificate, and the signing certificate of that certificate,
and so on, until a top-level, self-signed certificate is reached. It’s up to the client
to determine whether or not it trusts the top-level certificate. Of course, each
certificate after the first should be checked to ensure that it includes the “is a
certificate authority” extension described in Chapter 5 as well.
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Therefore, the TLS certificate handshake message starts off with the length of
the certificate chain so that the receiver knows how many bytes of certificate fol-
low. If you are so inclined, you can infer this from the length of the handshake
message and the ASN.1 structure declaration that begins each certificate, but
explicitness can never hurt.

Certificate chain parsing, then, consists of reading the length of the certifi-
cate chain from the message, and then reading each certificate in turn, using
each to verify the last. Of course, the first must also be verified for freshness
and domain name validity. At a bare minimum, though, in order to complete
a TLS handshake, you need to read and store the public key contained within
the certificate because it’s required to perform the key exchange. Listing 6-29
shows a bare-bones certificate chain parsing routine that doesn’t actually verify
the certificate signatures or check validity parameters.

Listing 6-29: “x509.c” parse_x509_chain

/**
* This is called by "receive_server_hello" when the "certificate" PDU
* is encountered. The input to this function should be a certificate chain.
* The most important certificate is the first one, since this contains the
* public key of the subject as well as the DNS name information (which
* has to be verified against).
* Each subsequent certificate acts as a signer for the previous certificate.
* Each signature is verified by this function.
* The public key of the first certificate in the chain will be returned in
* "gserver_public_key" (subsequent certificates are just needed for signature
* verification).
* TODO verify signatures.
*/
char *parse_x509_chain( unsigned char *buffer,
int pdu_length,
public_key_info *server_public_key )

int pos;

signed_x509_certificate certificate;

unsigned int chain_length, certificate_length;
unsigned char *ptr;

ptr = buffer;

pos = 0;

// TODO this won't work on a big-endian machine
chain_length = ( *ptr << 16 ) | ( *( ptr + 1 ) << 8 ) | ( *( ptr + 2 ) );
ptr += 3;

// The chain length is actually redundant since the length of the PDU has
// already been input.
assert ( chain_length == ( pdu_length - 3 ) );
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while ( ( ptr - buffer ) < pdu_length )
{
// TODO this won't work on a big-endian machine
certificate_length = ( *ptr << 16 ) | ( *( ptr + 1 ) << 8 ) |
(*(ptr + 2 ) );
ptr += 3;

init_x509_certificate( &certificate );

parse_x509_certificate( ( void * ) ptr, certificate_length, &certificate );
if ( !pos++ )
{
server_public_key->algorithm =
certificate.tbsCertificate.subjectPublicKeyInfo.algorithm;

switch ( server_public_key->algorithm )

{
case rsa:
server_public_key->rsa_public_key.modulus = ( huge * ) malloc( sizeof (
huge ) );
server_public_key->rsa_public_key.exponent = ( huge * ) malloc(
sizeof ( huge ) );
set_huge( server_public_key->rsa_public_key.modulus, 0 );
set_huge( server_public_key->rsa_public_key.exponent, 0 );
copy_huge ( server_public_key-> rsa_public_key.modulus,
certificate.tbsCertificate.subjectPublicKeyInfo.
rsa_public_key.modulus ) ;
copy_huge ( server_public_key-> rsa_public_key.exponent,
certificate.tbsCertificate.subjectPublicKeyInfo.
rsa_public_key.exponent ) ;
break;
default:
break;

ptr += certificate_length;

// TODO compute the hash of the certificate so that it can be validated by

// the next one

free_x509_certificate( &certificate );

return ptr;

This blindly accepts whatever certificate is presented by the server. It doesn’t
check the domain name parameter of the subject name, doesn’t check to see
that it’s signed by a trusted certificate authority, and doesn’t even verify that the
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validity period of the certificate contains the current date. Clearly, an industrial-
strength TLS implementation needs to do at least all of these things.

TLS Server Hello Done

After the certificate the server should send a hello done message — at least that’s
what happens in the most common type of TLS handshake being examined here.
This indicates that the server will not send any more unencrypted handshake
messages on this connection.

This may seem surprising, but if you think about it, there’s nothing more
for the server to do. It has chosen a cipher suite acceptable to the client and
provided enough information — the public key — to complete a key exchange
in that cipher suite. It’s incumbent on the client to now come up with a key and
exchange it. Parsing the server hello done message is trivial, as in Listing 6-30.

Listing 6-30: “tls.c" receive_tls_message with server hello done support

switch ( handshake.msg_type )
{

case server_hello_done:
parameters->server_hello done = 1;

break;

As you can see, there’s really nothing there; the server hello done message
is just a marker and contains no data. Note that this will almost definitely be
piggy-backed onto a longer message that contains the server hello and the
server certificate.

This routine just sets a flag indicating that the server hello done message has
been received. Add this flag to TLsParameters as shown in Listing 6-31; it’s used
internally to track the state of the handshake.

Listing 6-31: “tls.h” TLSParameters with state tracking included

typedef struct
{

int server_hello_done;
}

TLSParameters;

Finally, recall that this whole process was being controlled by t1s_connect.
It sent a client hello message and then received the server hello. Due to piggy-
backing of handshake messages, though, that call to receive probably picked up
all three expected messages and processed them, culminating in the setting of
server_hello_done. Thisisn't guaranteed, though; the server could legitimately
split these up into three separate messages (the server you develop in the next
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chapter does this, in fact). To handle either case, modify t1s_connect to keep
receiving TLS messages until server_hello_done is set, as in Listing 6-32.

Listing 6-32: “tIs.c” tls_connect multiple handshake messages

// Step 2. Receive the server hello response (will also have gotten
// the server certificate along the way)
parameters->server_hello_done = 0;
while ( !parameters->server_hello_done )
{
if ( receive_tls_msg( connection, parameters ) < 0 )
{
perror ( "Unable to receive server hello" );
return 2;
}
}

TLS Client Key Exchange

Now it’s time for the client to do a key exchange, which is the most critical part
of the whole TLS handshake. You might reasonably expect that if RSA is used
as a key exchange method then the client selects a set of keys, encrypts them,
and sends them on. If DH was used as a key exchange method, both sides would
agree on Z and that would be used as the key. As it turns out, however, TLS
mandates a bit more complexity here; the key exchange is used to exchange
a premaster secret, which is expanded using a pseudo-random function into a
master secret which is used for keying material. This procedure guards against
weaknesses in the client’s key generation routines.

Sharing Secrets Using TLS PRF (Pseudo-Random Function)

In several places during the TLS negotiation, the algorithm calls for a lot of data
to be generated deterministically so that both sides agree on the same result,
based on a seed. This process is referred to as pseudo-random, just like the soft-
ware pseudo-random generator that’s built into every C implementation. TLS
has a fairly complex pseudo-random function called the PRF that generates data
from a seed in such a way that two compliant implementations, given the same
seed data, generate the same data, but that the output is randomly distributed
and follows no observable pattern.

It should come as no surprise at this point that this pseudo-random function
is based on secure hash algorithms, which deterministically generate output
from input in a non-predictable way. TLS’s PRF is actually based on the HMAC
algorithm. It takes as input three values: the seed, a label, and a secret. The seed
and the label are both used as input to the HMAC algorithm.

The PRF for TLS v1.0 involves both MD5 and SHA-1 (and the use of these
specific hash algorithms is hard-coded into the specification). MD5 and SHA-1
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are each used, along with the HMAC algorithm specified in Chapter 4, to gen-
erate an arbitrary quantity of output independently. Then the results of both
the MD5 HMAC and the SHA HMAC are XORed together to produce the final
result. The secret is split up so that the MD5 routine gets the first half and the
SHA routine gets the second half:

Consider using the triple (“abed”, “efgh”, “ijkl” ) to generate 40 bytes of output
through the PRF as shown in Figure 6-7.

secret label seed
“abcd” “efgh” “ijkI”
| |
4
PRF

Y2 secret, label + seed Y2 secret, label + seed
“ab”, “efghijkl”, 40 —I— “cd”, “efghijkl”, 40

l l

P_MD5 P_SHA1

VA Ry

> <

final result

Figure 6-7: TLS's pseudo-random function

So what are these p_mp5 and p_sHa1 blocks that are XORed together to pro-
duce the final result? Well, if you recall from Chapter 4, MD5 produces 16 bytes
of output, regardless of input length, and SHA-1 produces 20. If you want to
produce an arbitrary amount of data based on the secret, the label, and the
seed using these hashing algorithms, you have to call them more than once. Of
course, you have to call them with different data each time, otherwise you get
the same 16 bytes back each time. p_[MD5 | sHA1] actually use the HMAC algo-
rithm, again, to produce the input to the final HMAC algorithm. So what goes
into the HMAC algorithms that go into the HMAC algorithms? More HMAC
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output, of course! The seed is HMAC’ed once to produce the HMAC input for
the first n bytes (where 1 is 16 or 20 depending on the algorithm), and then that
is HMAC'ed again to produce the input for the next n bytes.

All of this sounds almost self-referential, but it actually does work. Figure
6-8 shows the p_mp5 algorithm, illustrated out to three iterations (to produce 48
=16 * 3 bytes of output).

secret( “ab”)

Y Y Y

seed( “efghijki” ) —>{ HMAG_MD5 —>

T

HMAC_MD5 —> A(2) —>|HMAC_MD5 —> A(3)

l

> - seed(“efgni”) —> = seed( “efgnij) —> -

! ! !

HMAC_MD5 | secret( “ab”) —> HMAC_MD5 | secret( “ab” ) —> HMAC_MD5

Y

output

Figure 6-8: P_MD5

So, given a secret of "ab" and a seed of "efghijkl", A(1) is HMAC_MD5 ("ab",
"efghijkl"), or Oxefe3a7027ddbdb424cabd0935bfb3898. A(2), then, is HMAC_
MD5( "ab", Oxefe3a7027ddbdb424cabd0935bfb3898), Or 0xda55£448c81b
93cel231cb7668bee2a2. Because you need 40 bytes of output, and MD5 only
produces 16 per iteration, you need to iterate three times to produce 48 bytes
and throw away the last 8. This means that you need 2 (3) as well, which
iS HMAC_MD5 ( "ab", A(2) = 0xda55f448c81b93cel231cb7668bee2a?2), Or
Oxbfa8ec7edalb6ec26478851358c7alfa.

With all the as computed, you now have enough information to feed into the
“real” HMAC operations that generate the requisite 48 bytes of output. The final
48 bytes of output (remembering that you discard the last 8) are

HMAC( "ab", A(1) . "efghijkl" )
HMAC( "ab", A(2) . "efghijkl" )
HMAC( "ab", A(3), "efghijkl" )
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Notice that the secret and the seed are constant throughout each HMAC
operation; the only difference in each are the 2 values. These operations produce
the 48 output bytes:

0x1lb6call0dl8faddfbeb92b2d95£f55ce2607d6c8lebedbo6d
1bec81813b9a0275725564781leda73ac521548d7d1£982c17

p_sHA1 is identical. It just replaces the SHA-1 hash algorithm with the MD5
hash algorithm. Because SHA-1 produces 20 bytes of output per iteration, though,
it’s only necessary to iterate twice and none of the output is discarded. p_sua
is fed the exact same seed, but only the last half of the secret, as diagrammed
in Figure 6-9.

secret( “cd”)

Y Y

seed( “efghijkl” ) —>{ HMAC_SHA —> A(1) —>{ HVMAC_SHA —> A(2)

|

> - seed(“efgnii’) —> =+

! l

HMAC_SHA | secret( “cd” ) —>{ HMAC_SHA

Y

x+4
> <

|

output

Figure 6-9: P_SHA1

This produces the 40 bytes:

0xcbb3de5db9295cdb68eblabl8£88939¢cb3146849fel67cf8f9ec5£131790005d7£27b
2515db6c590

Finally, these two results are XORed together to produce the 40-byte pseudo-
random combination:

0xd0df7£50a1d381208379a868d0dd5dbab4c2a057405dea2947244700ae30270
a5a71£5d0b011££55

Notice that there’s no predictable repetition here, and no obvious correlation
with the input data. This procedure can be performed to produce any arbitrarily
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large amount of random data that two compliant implementations, both of which
share the secret, can reproduce consistently.
In code, this is shown in Listing 6-33.

Listing 6-33: “prf.c’ PRF function

/‘k*

* P_MD5 or P_SHA, depending on the value of the "new_digest" function

* pointer.

* HMAC_hash( secret, A(l) + seed ) + HMAC_hash( secret, A(2) + seed ) +

* where + indicates concatenation and A(0) = seed, A(i) =
* HMAC_hash( secret, A(i - 1) )
*/

static void P_hash( const unsigned char *secret,
int secret_len,
const unsigned char *seed,
int seed_len,
unsigned char *output,
int out_len,

void (*new_digest) ( digest_ctx *context ) )

unsigned char *A;

int hash_len; // length of the hash code in bytes
digest_ctx A_ctx, h;

int adv;

int 1i;

new_digest ( &A_ctx );

hmac( secret, secret_len, seed, seed_len, &A_ctx );

hash_len = A_ctx.hash_len * sizeof( int );
A = malloc( hash_len + seed_len );
memcpy ( A, A_ctx.hash, hash_len );

memcpy ( A + hash_len, seed, seed_len );
i=2;

while ( out_len > 0 )
{
new_digest( &h );
// HMAC_Hash( secret, A(i) + seed )
hmac( secret, secret_len, A, hash_len + seed_len, &h );
adv = ( h.hash_len * sizeof( int ) ) < out_len ?
h.hash_len * sizeof( int ) : out_len;
memcpy ( output, h.hash, adv );
out_len -= adv;
output += adv;
// Set A for next iteration
// A(i) = HMAC_hash( secret, A(i-1) )
new_digest( &A_ctx );
hmac ( secret, secret_len, A, hash_len, &A_ctx );
memcpy ( A, A_ctx.hash, hash_len );
(Continued)
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free( A );

/**
* P_MD5( S1, label + seed ) XOR P_SHALl(S2, label + seed );
* where S1 & S2 are the first & last half of secret
* and label is an ASCII string. Ignore the null terminator.
*
* output must already be allocated.
*/
void PRF( const unsigned char *secret,
int secret_len,
const unsigned char *label,
int label_len,
const unsigned char *seed,
int seed_len,
unsigned char *output,

int out_len )

int 1i;

int half_secret_len;

unsigned char *shal_out = ( unsigned char * ) malloc( out_len

unsigned char *concat = ( unsigned char * ) malloc( label_len + seed_len

memcpy ( concat, label, label_len );

memcpy ( concat + label_len, seed, seed_len );

half secret_len = ( secret_len / 2 ) + ( secret_len % 2 );

P_hash( secret, half_secret_len, concat, ( label_len + seed_len

output, out_len, new_md5_digest );

P_hash( secret + ( secret_len / 2 ), half secret_len, concat,
( label_len + seed_len ), shal_out, out_len, new_shal_digest );
for (i = 0; 1 < out_len; i++ )

{
output[ 1 ] *= shal_out[ 1 1;

free( shal_out );

free( concat );

To see the PRF in action, put together a short test main routine in Listing 6-34.

Listing 6-34: “prf.c’ main routine

#ifdef TEST_PRF

int main( int argc, char *argv[ ] )
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unsigned char *output;
int out_len, 1i;

int secret_len;

int label_len;

int seed_len;
unsigned char *secret;
unsigned char *label;

unsigned char *seed;

if ( argc < 5 )
{
fprintf ( stderr,

"usage: %s [0Ox]<secret> [0Ox]<label> [0x]<seed> <output len>\n",

argv[ 0 1 );
exit( 0 );
}
secret_len = hex_decode( argv|[ 1 ], &secret );
label_len = hex_decode( argv[ 2 1, &label );
seed_len = hex_decode( argv[ 3 ], &seed );

out_len = atoi( argvl 4 1 );

output = ( unsigned char * ) malloc( out_len );

PRF ( secret, secret_len,
label, label_len,
seed, seed_len,

output, out_len );

for (1 =0; 1 < out_len; i++ )
{
printf( "%.02x", output[ i ] );
}
printf( "\n" );

free( secret );
free( label );
free( seed );

free( output );
return 0;

}
#endif

You can try out the PRF, although it’s not earth-shatteringly interesting:

[jdavies@localhost ssl]$ ./prf secret label seed 20
b5bafd722b91851a8816d22ebd8cld8cc2e94d55
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Creating Reproducible, Unpredictable Symmetric Keys with
Master Secret Computation

The client selects the premaster secret and sends it to the server (or agrees onit,
in the case of DH key exchange). The premaster secret is, as the name implies,
secret — in fact, it’s really the only important bit of handshake material that’s
hidden from eavesdroppers. However, the premaster secret itself isn't used as
a session key; this would open the door to replay attacks. The premaster secret
is combined with the server random and client random values exchanged earlier
in the handshake and then run through the PRF to generate the master secret,
which is used, indirectly, as the keying material for the symmetric encryption
algorithms and MACs that actually protect the data in transit.
Given, for example, a premaster secret

030102030405060708090a0b0c0d0e0£101112131415161718191alblcldle
1£202122232425262728292a2b2c2d2e2f

a client random
4a£0a38100000000000000000000000000000000000000000000000000000000
and a server random

4af0a3818f£72033b852b9b9c09e7d8045ab270eabc74elld565ece01l8c9a5ec

you would compute the final master secret from which the actual keys are
derived using — you guessed it — the PRE.

Remember that the PRF takes three parameters: a secret, a label, and a seed.
The premaster secret is the secret, the label is just the unimaginative text string
"master secret", and the seed is the client random and the server random
concatenated one after the other, client random first.

The PRF is the XOR of the SHA-1 and the MD5 HMAC s of the secret and
the label concatenated with the seed, expanded out iteratively. With the PRF
function defined above, master secret expansion is actually simple to code, as
in Listing 6-35.

Listing 6-35: “tls.c” master secret computation

/**

* Turn the premaster secret into an actual master secret (the

* gserver side will do this concurrently) as specified in section 8.1:

* master_secret = PRF( pre_master_secret, "master secret",

* ClientHello.random + ServerHello.random ) ;

* ( premaster_secret, parameters );

* Note that, with DH, the master secret len is determined by the generator (p)
* value.

*/
static void compute_master_secret( const unsigned char *premaster_secret,

int premaster_secret_len,

TLSParameters *parameters )
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const char *label = "master secret";

PRF ( premaster_secret, premaster_secret_len,
label, strlen( label ),
// Note - cheating, since client_random & server_random are defined
// sequentially in the structure
parameters->client_random, RANDOM_ LENGTH * 2,
parameters->master_secret, MASTER_SECRET_LENGTH ) ;

RSA Key Exchange

After the server hello done has been received, the server believes that the client
has enough information to complete the key exchange specified in the selected
cipher suite. If the key exchange is RSA, this means that the client now has the
server’s public key. It’s the client’s problem whether to trust that key or not,
based on the certificate chain.

The client should thus send a key exchange as shown in Listing 6-36, in

tls_connect.

Listing 6-36: “tls.c" tls_connect with key exchange

// Step 3. Send client key exchange, change cipher spec (7.1) and encrypted
// handshake message
if ( ! ( send_client_key_ exchange( connection, parameters ) ) )
{
perror( "Unable to send client key exchange" );
return 3;
}
send_client_key_exchange is slightly complex because RSA and DH key

exchanges are so different. For now, just focus on RSA in Listing 6-37.

Listing 6-37: "tls.c” send_client_key_exchange

/**
* Send the client key exchange message, as detailed in section 7.4.7
* Use the server's public key (if it has one) to encrypt a key. (or DH?)
* Return true if this succeeded, false otherwise.
*/
static int send_client_key_exchange( int connection, TLSParameters *parameters )
{
unsigned char *key_exchange_message;
int key_exchange_message_len;
unsigned char *premaster_secret;

int premaster_secret_len;

switch ( parameters->pending_send_parameters.suite ) {
case TLS_NULL_WITH_NULL_NULL:
// XXX this is an error, exit here
break;
(Continued)
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case TLS_RSA_WITH NULL_MD5:
case TLS_RSA_WITH_NULL_SHA:

case TLS_RSA_WITH_DES_CBC_SHA:

case TLS_RSA_WITH 3DES_EDE_CBC_SHA:

case TLS_RSA_WITH_AES_128_CBC_SHA:

case TLS_RSA_WITH _AES_256_CBC_SHA:
premaster_secret_len = MASTER_SECRET_LENGTH;
premaster_secret = malloc( premaster_secret_len );
key_exchange_message_len = rsa_key exchange (

&parameters->server_public_key.rsa_public_key,

premaster_secret, &key_ exchange_message ) ;

break;
default:
return 0;
}
if ( send_handshake_message( connection, client_key exchange,

key_exchange_message, key_ exchange_message_len ) )

free( key_exchange_message ) ;

return 0;

free( key_exchange_message ) ;

// Now, turn the premaster secret into an actual master secret (the
// server side will do this concurrently).

compute_master_secret( premaster_secret, premaster_secret_len, parameters );

// XXX - for security, should also "purge" the premaster secret from
// memory.
calculate_keys( parameters );

free( premaster_secret );

return 1;

The goal of the key exchange is to exchange a premaster secret, turn it into a
master secret, and use that to calculate the keys that are used for the remainder
of the connection. As you can see, send_client_key_exchange starts by check-
ing if the key exchange method is RSA. If the key exchange method is RSA,
send_client_key_exchange calls rsa_key_exchange to build the appropriate
handshake message. compute_master_secret has already been examined in
Listing 6-35, and calculate_keys is examined later in Listing 6-41.

This routine goes ahead and lets the rsa_key_exchange function select the
premaster secret. There’s no reason why send_client_key_exchange couldn’t
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do this, and pass the premaster secret into rsa_key_exchange. However, this
configuration makes DH key exchange easier to support because the upcom-
ing dh_key_exchange necessarily has to select the premaster secret, due to the
nature of the Diffie-Hellman algorithm.

The rsa_key_exchange message is built in Listing 6-38.

Listing 6-38: “tls.c" rsa_key_exchange

int rsa_key exchange( rsa_key *public_key,
unsigned char *premaster_secret,

unsigned char **key_ exchange_message )

int 1i;
unsigned char *encrypted_premaster_secret = NULL;

int encrypted_length;

// first two bytes are protocol version
premaster_secret[ 0 ] = TLS_VERSION_MAJOR;
premaster_secret[ 1 ] = TLS_VERSION_MINOR;
for (i = 2; i < MASTER_SECRET_LENGTH; i++ )
{

// XXX SHOULD BE RANDOM!

premaster_secret[ 1 ] = i;

encrypted_length = rsa_encrypt( premaster_secret, MASTER_SECRET_LENGTH,

&encrypted_premaster_secret, public_key );

*key_exchange_message = ( unsigned char * ) malloc( encrypted_length + 2 );
(*key_exchange_message)[ 0 ] = 0;

(*key_exchange_message) [ 1 ] = encrypted_length;

memcpy ( (*key_exchange_message) + 2, encrypted_premaster_secret,

encrypted_length );
free( encrypted_premaster_secret );

return encrypted_length + 2;

This function takes as input the RSA public key, generates a “random” pre-
master secret, encrypts it, and returns both the premaster secret and the key
exchange message. The format of the key exchange message is straightforward;
it’s just a two-byte length followed by the PKCS #1 padded, RSA encrypted
premaster secret. Notice that the specification mandates that the first two bytes
of the premaster secret must be the TLS version — in this case, 3.1. In theory,
the server is supposed to verify this. In practice, few servers do the verification
because there are a few buggy TLS implementations floating around that they
want to remain compatible with.
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Now the only thing left to do is to turn the master secret into a set of keys.
The amount, and even the type, of keying material needed depends on the
cipher suite. If the cipher suite uses SHA-1 HMAC, the MAC requires a 20-byte
key; if MD5, it requires a 16-byte key. If the cipher suite uses DES, it requires an
8-byte key; if AES-256, it requires a 32-byte key. If the encryption algorithm uses
CBC, initialization vectors are needed; if the algorithm is a stream algorithm,
no initialization vector is involved.

Rather than build an enormous switch/case statement for each possibility,
define a ciphersuite structure as in Listing 6-39.

Listing 6-39: “tls.h” CipherSuite structure

typedef struct
{
CipherSuiteIdentifier id;

int block_size;
int IV_size;
int key_size;
int hash_size;

void (*bulk_encrypt) ( const unsigned char *plaintext,
const int plaintext_len,
unsigned char ciphertext[],
void *iv,
const unsigned char *key );
void (*bulk_decrypt) ( const unsigned char *ciphertext,
const int ciphertext_len,
unsigned char plaintext[],
void *iv,
const unsigned char *key );
void (*new_digest) ( digest_ctx *context );
}
CipherSuite;

This includes everything you need to know about a cipher suite; by now,
the utility of declaring the encrypt, decrypt, and hash functions with identical
signatures in the previous chapters should be clear. Now, for each supported
cipher suite, you need to generate a ciphersuite instance and index it as shown
in Listing 6-40.

Listing 6-40: "tls.c" cipher suites list

static CipherSuite suites[] =

{

TLS_NULL_WITH_NULL_NULL, O, O, O, 0, NULL, NULL, NULL },
TLS_RSA_WITH_NULL_MD5, 0, 0, 0, MD5_BYTE_SIZE, NULL, NULL, new_md5_digest 1},
TLS_RSA_WITH_NULL_SHA, 0, 0, 0, SHA1_BYTE_SIZE, NULL, NULL, new_shal_digest },
TLS_RSA_EXPORT_WITH_RC4_40_MD5, 0, 0, 5, MD5_BYTE_SIZE, rc4_40_encrypt,

P
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rcd_40_decrypt, new_md5_digest }

{ TLS_RSA_WITH_RC4_128_MD5, 0, 0, 16, MD5_BYTE_SIZE, rc4_128_encrypt,
rcd4_128_decrypt, new_md5_digest 1},

{ TLS_RSA_WITH_RC4_128_SHA, 0, 0, 16, SHAl BYTE SIZE, rc4_128_encrypt,
rcd_128_decrypt, new_shal_digest },

{ TLS_RSA_EXPORT_WITH RC2_CBC_40_MD5, 0, 0, 0, MD5_BYTE_SIZE, NULL, NULL,
new_md5_digest 1},

{ TLS_RSA_WITH_IDEA_CBC_SHA, 0, 0, 0, SHAl_BYTE_SIZE, NULL, NULL,
new_shal_digest },

{ TLS_RSA_EXPORT_WITH DES40_CBC_SHA, 0, 0, 0, SHAl BYTE_SIZE, NULL, NULL,
new_shal_digest },

{ TLS_RSA_WITH_DES_CBC_SHA, 8, 8, 8, SHAl BYTE_SIZE, des_encrypt, des_decrypt,
new_shal_digest 1},

{ TLS_RSA_WITH_3DES_EDE_CBC_SHA, 8, 8, 24, SHAl BYTE_SIZE, des3_encrypt,
des3_decrypt, new_shal_digest }

Because these instances are referred to by position, you have to list each one,
even if it’s not supported. Notice, for example, that TLS_RSA_WITH_IDEA_CBC_
sHa is declared, but left empty. It is never used by this implementation, but by
allocating space for it, the rest of the code is allowed to refer to elements in the
Ciphersuite structure by just referencing the suites array.

If you wanted to create a key for a 3DES cipher suite, for example, you could
invoke

suites[ TLS_RSA_WITH _3DES_EDE_CBC_SHA ].key_size

In fact, because the ciphersuiteIdentifier was added to ProtectionParameters,
the key computation code can just invoke

suites[ parameters->suite ].key_size

when it needs to know how much keying material to retrieve from the master
secret.

Now, recall that MASTER_SECRET_LENGTH is 48 bytes, regardless of cipher suite.
If the selected cipher suite is AES 256, CBC, with SHA-1, you need 136 bytes of
keying material — 32 bytes each for the client and server keys, 16 bytes each for
the initialization vectors, and 20 bytes each for the MAC secrets. Therefore, the
master secret itself must be expanded. As you can probably guess, this is done
via the PRF; the only difference between the use of the PRF in key calculation
and the use of the PRF in master secret expansion is that the label passed in is
"key expansion" rather than "master secret".

The key calculation routine is shown in Listing 6-41.

Listing 6-41: "tls.c” calculate_keys

/**

6.3: Compute a key block, including MAC secrets, keys, and IVs for client & server.
Notice that the seed is server random followed by client random (whereas for master
secret computation, it's client random followed by server random). Sheesh!

(Continued)
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*/
static void calculate_keys( TLSParameters *parameters )
{
// XXX assuming send suite & recv suite will always be the same
CipherSuite *suite = &( suites[ parameters->pending_send_parameters.suite ] );
const char *label = "key expansion';
int key_block_length =
suite->hash_size * 2 +
suite->key_size * 2 +
suite->IV_size * 2;
char seed|[ RANDOM_LENGTH * 2 ];
unsigned char *key_block = ( unsigned char * ) malloc( key block length );
unsigned char *key_block_ptr;
ProtectionParameters *send_parameters = &parameters->pending_ send_parameters;

ProtectionParameters *recv_parameters = &parameters->pending_recv_parameters;

memcpy ( seed, parameters->server_random, RANDOM_LENGTH ) ;
memcpy ( seed + RANDOM_LENGTH, parameters->client_random, RANDOM_LENGTH ) ;

PRF ( parameters->master_secret, MASTER_SECRET_LENGTH,
label, strlen( label ),
seed, RANDOM_LENGTH * 2,
key block, key block_ length );

send_parameters->MAC_secret = ( unsigned char * ) malloc( suite->hash_size );
recv_parameters->MAC_secret = ( unsigned char * ) malloc( suite->hash_size );
send_parameters->key = ( unsigned char * ) malloc( suite->key_size );
recv_parameters->key = ( unsigned char * ) malloc( suite->key_size );
send_parameters->IV = ( unsigned char * ) malloc( suite->IV_size );
recv_parameters->IV = ( unsigned char * ) malloc( suite->IV_size );

key_block_ptr = read_buffer( send_parameters->MAC_secret, key_block,
suite->hash_size );

key_block_ptr = read_buffer( recv_parameters->MAC_secret, key block_ptr,
suite->hash_size );

key_block_ptr = read buffer( send_parameters->key, key block_ptr,
suite->key_size );

key_block_ptr = read_buffer( recv_parameters->key, key_block_ptr,
suite->key_size );

key_block_ptr = read_buffer( send_parameters->IV, key_block_ptr,
suite->IV_size );

key_block_ptr = read buffer( recv_parameters->IV, key block_ptr,

suite->IV_size );

free( key _block );

.m One interesting point to note about this key generation routine: It
assumes that all keys are equally valid. If you recall from Chapter 2, strictly
speaking, DES requires that each byte of its keys be parity adjusted. If you
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were implementing TLS with a strictly correct DES implementation, you'd need
to recognize this fact and parity adjust the generated key (e.g. ensure an even
number of 1 bits), or you'd get an inexplicable error when you tried to use it.

Diffie-Hellman Key Exchange

TLS 1.0 supports Diffie-Hellman key exchange in addition to RSA key exchange.
Remember that, in Diffie-Hellman key exchange, neither side gets to pick the
negotiated secret, but both sides end up computing the same value. This works
out in the context of TLS key exchange; both sides can agree on the premaster
secret, which is expanded to the master secret, which is expanded to the key-
ing material.

Add support for DH key exchange in send_client_key_exchange as shown
in Listing 6-42.

Listing 6-42: “tIs.c” send_client_key_exchange with Diffie-Hellman key exchange

switch ( parameters->pending send_parameters.suite ) {
case TLS_NULL_WITH_NULL_NULL:
// XXX this is an error, exit here
break;

case TLS_DH DSS_EXPORT WITH DES40_CBC_SHA:
case TLS_DH DSS _WITH DES CBC_SHA:
case TLS_DH DSS_WITH 3DES_EDE_CBC_SHA:

premaster_secret_len = parameters->server_dh key.p.size;

premaster_ secret = malloc( premaster secret_len );

key exchange message len = dh_key exchange( &parameters->server_dh_key,
premaster_secret, &key exchange message );

break;

The Diffie-Hellman key exchange procedure continues as described in Chapter 3.
Recall that you didn’t code a specific Diffie-Hellman routine because it was
essentially just a couple of calls to mod_pow. These calls can be integrated into
a premaster secret exchange as shown in Listing 6-43.

Listing 6-43: “tls.c’ dh_key exchange

/‘k*
* Just compute Yc = g®a % p and return it in "key_exchange_message". The
* premaster secret is Ys * a % p.
*/
int dh_key exchange( dh_key *server_dh_key,
unsigned char *premaster_secret,

unsigned char **key_exchange_message )

huge Yc;
huge 7;

(Continued)
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huge a;
int message_size;

short transmit_len;

// TODO obviously, make this random, and much longer
set_huge( &a, 6 );

mod_pow ( &server_dh_key->g, &a, &server_dh_key->p, &Yc );
mod_pow ( &server_dh_key->Y, &a, &server_dh_key->p, &Z );

// Now copy Z into premaster secret and Yc into key_exchange_message
memcpy ( premaster_secret, Z.rep, Z.size );

message_size = Yc.size + 2;

transmit_len = htons( Yc.size );

*key_exchange_message = malloc( message_size );

memcpy ( *key_exchange_message, &transmit_len, 2 );

memcpy ( *key_exchange_message + 2, Yc.rep, Yc.size );

free_huge( &Yc );
free_huge( &Z );
free_huge( &a );

return message_size;

If you've been following closely, you may be wondering where the server’s
dh_key value — the p, g and Y values that this key exchange relies on — come
from? Although it’s possible to get one from a certificate (it’s officially defined,
anyway), practically speaking this never happens. Instead, there’s a specific
server key exchange handshake type where the server can provide these values
as well as authenticate them. This is examined in Chapter 8.

TLS Change Cipher Spec

After the key exchange has been successfully completed, the client should send
a change cipher spec message. Although change cipher spec can never be legally
sent outside of the context of a handshake, it’s not declared as a handshake
message. Why? According to the specification,

“To help avoid pipeline stalls, ChangeCipherSpec is an independent TLS Protocol
content type, and is not actually a TLS handshake message.”

This isn’t made particularly clear, but it appears that theyre concerned with
the possibility of an implementation that automatically piggy-backs handshake
messages into one large TLS message doing so with change cipher spec mes-
sages and having the other side lose this.

The change cipher spec message is a marker message, just like server hello
done was, that doesn’t include any data. It is a major milestone in the handshake
process, though, because the reception of a change cipher spec message tells the

12/10/2010 9:45:34 AM



Chapter 6 = A Usable, Secure Communications Protocol: Client-Side TLS 345

other side that the key exchange has completed, and every subsequent message
sent by this peer is encrypted and authenticated using it. Note that neither side
should assume that the negotiated parameters are in place before receiving a
change cipher spec message — it’s entirely possible that, although a change
cipher spec message is expected, an alert could appear in plaintext instead.

So, at this point in the key exchange, the client should send a change cipher
spec and make its pending send parameters active, but not touch the pending
receive parameters. This is shown in Listing 6-44.

Listing 6-44: “tIs.c’ send_change_cipher_spec

static int send_change_cipher_spec( int connection, TLSParameters *parameters )
{

char send_buffer[ 1 ];

send_buffer[ 0 ] = 1;

send_message ( connection, content_change_cipher_spec, send_buffer, 1 );
memcpy ( &parameters->active_send_parameters,
&parameters->pending_send_parameters,
sizeof ( ProtectionParameters ) );

init_protection_parameters( &parameters->pending send_parameters ) ;

return 1;

As promised, this is pretty simple. The server then sends a change cipher
spec of its own, and this should be accounted for as in Listing 6-45.

Listing 6-45: “tls.c” receive_tls_msg with support for change cipher spec

if ( message.type == content_handshake )
{
}
else if ( message.type == content_change cipher spec )
{
while ( ( read_pos - decrypted_message ) < decrypted_length )

{
unsigned char change_cipher spec_type;

read _pos = read buffer( ( void * ) &change_cipher_ spec_type,
( void * ) read pos, 1 );

if ( change_cipher spec_type != 1 )

{
printf( "Error - received message ChangeCipherSpec, but type != 1\n" );
exit( 0 );

(Continued)
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else
{
memcpy ( &parameters->active_recv_parameters,
&parameters->pending recv_parameters,
sizeof ( ProtectionParameters ) );
init_protection_parameters( &parameters->pending recv_parameters );
}

}

Now, when the server sends its change_cipher_spec message, the pend-
ing receive parameters are updated and made the active receive parameters.
Technically, the change cipher spec messages can “cross” on the wire. The
server may legally send its change cipher spec message as soon as it receives
a proper key exchange from the client; it doesn't strictly have to wait until the
client sends a change cipher spec.

TLS Finished

So, the key exchange has been completed, both sides have agreed that the pend-
ing parameters are now the active parameters. It’s time to start using the con-
nection, right?

Well, that’s what the designers of SSLv2 thought, too. As it turns out, this was
the fatal flaw in SSLv2. After the key exchange had completed, the connection
was used immediately to transfer data. The problem with this is that it doesn’t
take into account man-in-the-middle attacks that occur before the key exchange.
Although the key exchange protocol designed around X.509 certificates does
an admirable job of protecting against man-in-the-middle attacks against the
public key, the malicious man in the middle can intercept and modify all the
exchanges prior to this.

How can an attacker use this to his advantage? Well, he could, for instance,
change the client hello message to list only one possibility for a cipher suite — DES
with MD5 MAC. If he has a DES-cracking machine, the key exchange can pro-
ceed, and he can decode the communications at his leisure.

In general, both sides need a way to strongly authenticate that what they
sent was what was received. The way TLS accomplishes this is to require
both sides to send a finished message before the handshake can be considered
complete. Both of these finished messages must be sent before the negoti-
ated parameters can be used for application data, and the finished messages
themselves are sent using the negotiated encryption and authentication
parameters. The contents of this finished message are a 12-byte verify array
whose contents are based on the hash of the contents of all of the handshake
messages to this point.
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Computing the Verify Message

To compute this verify message, then, it’s necessary to keep a running hash
of every byte that’s sent or received with a message type of handshake. This is,
incidentally, why I spent so much time in Chapter 4 on creating an “updateable”
HMAC function; without the updateable HMAC function, it would have been
necessary here to buffer all this data and pass it as a gigantic memory array
into the HMAC function.

Instead, following these steps:

1. Add a pair of digest_ctx objects to the TLsParameters as shown in Listing 6-46;
the verify data is actually based on a combination of both MD5 and SHA
(similar to the PRF).

Listing 6-46: “tls.h” TLSParameters with digest contexts

typedef struct
{

int server_hello_done;
digest_ctx md5_handshake_digest;
digest_ctx shal handshake_digest;
}
TLSParameters;

2. Atthe top of t1s_connect, initialize them both, in Listing 6-47.

Listing 6-47: "tIs.c” tls_connect with handshake digests

int tls_connect( int connection,

TLSParameters *parameters )
init_parameters( parameters ) ;

new_md5_digest( &parameters->md5_handshake_digest );

new_shal_digest( &parameters->shal_handshake_digest );

3. Modify send_handshake_message, as shown in Listing 6-48, to update the
running digest every time a handshake message is sent.

Listing 6-48: "tls.c” send_handshake_message with handshake digest update

static int send_handshake_message( int connection,
int msg_type,
const unsigned char *message,
int message_len,

TLSParameters *parameters )

update_digest( &parameters->md5_handshake_digest, send buffer,
send_buffer size );
(Continued)
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update_digest( &parameters->shal_ handshake_digest, send buffer,
send_buffer_ size );

response = send_message( connection, content_handshake, send_buffer,

send_buffer_size );

4. Because send_handshake_message now takes a new parameter — the
TLSParameters — update the invocations to it to include this, as shown
in Listing 6-49.

Listing 6-49: "tls.c” send_handshake_message updates

static int send_client_hello( int connection, TLSParameters *parameters )

status = send_handshake_message( connection, client_hello, send_buffer,

send_buffer_size, parameters );

static int send_client_key exchange( int connection, TLSParameters *parameters )

if ( send_handshake_message( connection, client_key exchange,
key_exchange_message, key_ exchange_message_len, parameters ) )

{

5. Update the running digest within receive_t1ls_message, if the type of the
message is content_handshake, as in Listing 6-50.

Listing 6-50: “tls.c” receive_tls_message with handshake digest update

static int receive_tls_msg( int connection,

TLSParameters *parameters )

if ( message.type == content_handshake )
{
while ( ( read_pos - decrypted_message ) < decrypted_length )
{
Handshake handshake;
// Keep track of beginning of message for handshake digest update below
const unsigned char *handshake_msg start = read_pos;

update_digest( &parameters->md5_handshake_digest, handshake msg start,
handshake.length + 4 );

update_digest( &parameters->shal_handshake_digest, handshake msg_ start,
handshake.length + 4 );
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6. With the handshake digest defined and updated, the client can send its
finished message, in Listing 6-51.

Listing 6-51: "tIs.c" tls_connect with client finished message

if ( ! ( send_change_cipher_spec( connection, parameters ) ) )
{
perror ( "Unable to send client change cipher spec" );

return 4;

// This message will be encrypted using the newly negotiated keys
if ( !( send_finished( connection, parameters ) ) )
{

perror( "Unable to send client finished" );

return 5;

}

7. send_finished itself is straightforward, as shown in Listing 6-52.

Listing 6-52: “tls.c” send_finished

static int send_finished( int connection,

TLSParameters *parameters )
unsigned char verify datal VERIFY_DATA_LEN ];
compute_verify data( "client finished", parameters, verify_data );
send_handshake_message( connection, finished, verify data, VERIFY_DATA_LEN,
parameters ) ;
return 1;
8. Of course, as you can likely guess, the challenge is in the computation of

verify data. This is shown in Listing 6-53.

Listing 6-53: “tls.c" compute_verify_data

/**

* 7.4.9:

* verify data = PRF( master_secret, "client finished", MD5 (handshake_messages)
* + SHA-1(handshake_messages)) [0..11]

*

* master_secret = PRF( pre_master_secret, "master secret", ClientHello.random +

* ServerHello.random ) ;
* always 48 bytes in length.
*/

#define VERIFY_DATA_LEN 12

static void compute_verify_data( const char *finished_label,

TLSParameters *parameters,

(Continued)
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char *verify data )

unsigned char handshake_hash[ ( MD5_RESULT_SIZE * sizeof( int ) ) +
( SHA1_RESULT SIZE * sizeof( int ) ) 1;

finalize_digest( &parameters->md5_handshake_digest );

finalize_digest( &parameters->shal_handshake_digest );

memcpy ( handshake_hash, parameters->md5_handshake_digest.hash, MD5_BYTE_SIZE
)
memcpy ( handshake_hash + MD5_BYTE_SIZE, parameters->shal_handshake_digest.hash,
SHA1_BYTE_SIZE );

PRF ( parameters->master_secret, MASTER_SECRET_LENGTH,
finished_label, strlen( finished_label ),
handshake_hash,
MD5_RESULT_SIZE * sizeof( int ) + SHA1l_RESULT_SIZE * sizeof( int ),
verify_data, VERIFY_DATA_LEN );

The verify data is a PRF expansion of “client finished” with both hashes
concatenated next to one another. The result is 12 bytes, and both sides
end up computing the same value.

9. Of course, the client must wait for the server to send its finished message
as well. Update t1s_connect to wait for the server_finished as shown
in Listing 6-54.

Listing 6-54: “tls.c” tls_connect with server finished support

parameters->server finished = 0;
while ( !parameters->server_finished )
{
if ( receive_tls_msg( connection, parameters ) < 0 )
{
perror( "Unable to receive server finished" );
return 6;

.m This call will also be the first time the client receives the change
cipher spec message.

10. This requires that you also add a server_finished flag, similar to the
server_hello done ﬂag, in TLSParameters, in LiSting 6-55:

Listing 6-55: “tls.c” TLSParameters

typedef struct
{
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int server_hello_done;
int server_finished;

}

TLSParameters;

11. Update t1s_receive_message to process the server_finished message
in Listing 6-56.

Listing 6-56: "tls.c” tls_receive_message with server finished support

switch ( handshake.msg_type )
{

case finished:
{
read_pos = parse_finished( read pos, handshake.length, parameters );
if ( read pos == NULL )
{
send_alert_message( connection, illegal parameter );

return -1;

}
break;

12. Now you can parse the finished message, in Listing 6-57.

Listing 6-57: "tls.c" parse_finished

static unsigned char *parse_finished( unsigned char *read_pos,

int pdu_length,

TLSParameters *parameters )
unsigned char verify datal VERIFY_DATA_LEN ];
parameters->server_finished = 1;
compute_verify data( "server finished", parameters, verify_data );
if ( memcmp( read_pos, verify_data, VERIFY_DATA_LEN ) )

{
return NULL;

return read_pos + pdu_length;

Here, compute_verify_datais called again to recompute the verification data,
and the received data is compared with the computed data.
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Correctly Receiving the Finished Message

Unfortunately, parse_finished, in Listing 6-57, doesn’t work. The handshake
digests were finalized when verify_data was called the first time around, but
they need to be finalized again when the server sends its finished message.
And because the server’s finished message is based on a hash including the cli-
ent’s finished message you can't just reuse the original hashes; the server sends
verification of a different hash code.

Therefore, it’s necessary to modify compute_verify_data so that it doesn’t
operate on the running hash. The easiest way to do this is to make a temporary
copy and operate on that temporary copy, as in Listing 6-58.

Listing 6-58: “tls.c" compute_verify_data with temporary copy

void compute_handshake_hash( TLSParameters *parameters, unsigned char
*handshake_hash )
{

digest_ctx tmp_md5_handshake_digest;

digest_ctx tmp_shal_handshake_digest;

// "cheating". Copy the handshake digests into local memory (and change

// the hash pointer) so that we can finalize twice (again in "recv")

memcpy ( &tmp_md5_handshake_digest, &parameters->md5_handshake_digest,
sizeof ( digest_ctx ) );

memcpy ( &tmp_shal_handshake_digest, &parameters->shal_handshake_digest,
sizeof ( digest_ctx ) );

tmp_md5_handshake_digest.hash = ( unsigned int * ) malloc( MD5_BYTE_SIZE );

tmp_shal_handshake_digest.hash = ( unsigned int * ) malloc( SHAl_BYTE_SIZE );

memcpy ( tmp_md5_handshake_digest.hash, parameters->md5_handshake_digest.hash,
MD5_BYTE_SIZE ) ;

memcpy ( tmp_shal_handshake_digest.hash, parameters->shal_handshake_digest.hash,
SHA1_BYTE_SIZE ) ;

finalize_digest( &tmp_md5_handshake_digest );
finalize_digest( &tmp_shal_handshake_digest );

memcpy ( handshake_hash, tmp_md5_handshake_digest.hash, MD5_BYTE_SIZE );

memcpy ( handshake_hash + MD5_BYTE_SIZE, tmp_shal_handshake_digest.hash,
SHA1_BYTE_SIZE );

free( tmp_md5_handshake_digest.hash );

free( tmp_shal_handshake_digest.hash );

static void compute_verify data( const char *finished_label,
TLSParameters *parameters,

char *verify_data )

// Per 6.2.3.1 - encrypted data should always be followed by a MAC
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unsigned char handshake_hash[ ( MD5_RESULT_SIZE * sizeof( int ) ) +
( SHA1_RESULT_SIZE * sizeof( int ) ) 1;

compute_handshake hash( parameters, handshake hash );

// First, compute the verify data
PRF ( parameters->master_secret, MASTER_SECRET_LENGTH,
finished_label, strlen( finished_label ),
handshake_hash,
MD5_RESULT_SIZE * sizeof( int ) + SHAl_RESULT_SIZE * sizeof( int ),
verify_data, VERIFY_DATA_LEN );

Now, the same compute_verify_ data function can be used both when send-
ing and receiving finished messages.

That'’s it, right? The key exchange is complete, and the finished messages have
been exchanged and verified. Everything is in place except for the small matter
of actually encrypting and MAC'ing the data.

Secure Data Transfer with TLS

Conceptually, applying TLS is simple after the keys have been agreed upon.
First, the whole block of data to be sent, including the TLS message header, is
run through the MAC algorithm and the result is appended to the message.
There’s a chicken-and-the-egg problem here, though. The MAC includes the
TLS header, which includes the length of the following buffer, which includes
the MAC in its length. So when MAC'ing, what length is used? The transmit-
ted length is the length of the content, plus the MAC; what’s MAC’ed is just the
length of the content.

If the bulk encryption algorithm requires padding, the length also indicates
padding. Again, the MAC buffer does not reflect the padding length. And, of
course, the whole thing — header, padding, MAC and all — are encrypted using
the bulk encryption algorithm in force before being sent.

Assigning Sequence Numbers

As a protection against replay attacks, each packet is also assigned a sequence
number. The sequence numbers start at 0 whenever a change_cipher_spec is
received and is incremented each time a new TLSMessage is sent or received.
Each side maintains a separate counter, and this counter is prepended to each
message before MAC'ing it.

Declare the sequence number as shown in Listing 6-59 and initialize it as
shown in Listing 6-60.
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Listing 6-59: “tls.h” ProtectionParameters with seq_num

typedef struct
{

unsigned long seq_num;
}

ProtectionParameters;

Listing 6-60: “tls.c” init_protection_parameters with seq_num

void init_protection_parameters( ProtectionParameters *parameters )
{

parameters->MAC_secret = NULL;

parameters->key = NULL;

parameters->IV = NULL;

parameters->seq num = 0;
parameters->suite = TLS_NULL_WITH_ NULL_NULL;

static int send_change_cipher_spec( int connection, TLSParameters *parameters )
{
send_message ( connection, content_change_cipher_spec, send_buffer, 1,
&parameters->active_send_parameters ) ;

// Per 6.1: The sequence number must be set to zero whenever a connection
// state is made the active state... the first record which is transmitted
// under a particular connection state should use sequence number 0.
parameters->pending send_parameters.seq num = 0;

memcpy ( &parameters->active_send_parameters,
&parameters->pending_send_parameters,

sizeof ( ProtectionParameters ) );

static int receive_tls_msg( int connection,

TLSParameters *parameters )

else if ( message.type == content_change_cipher_spec )

{

if ( change_cipher_spec_type != 1
{
printf( "Error - received message of type ChangeCipherSpec, but type !=

exit( 0 );
}
else
{
parameters->pending recv_parameters.seq num = 0;
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memcpy ( &parameters->active_recv_parameters,
&parameters->pending_recv_parameters,

sizeof ( ProtectionParameters ) );

Note that the sequence number is never transmitted, encrypted or otherwise;
it’s just prepended to the MAC buffer before the packet is MAC’ed. Therefore,
given a content buffer of “content”, the buffer that is MAC’ed looks like this:

SEQUENCE NUM  MESSAGE VERSION CONTENT LENGTH CONTENT
TYPE
4 bytes 1 byte 2 bytes 2 bytes variable

A digest is produced over this data.
What's actually transmitted, on the other hand, is

MESSAGE VERSION CONTENT LEN + CONTENT

MAC LEN +

TYPE PADDING LEN

1 byte 2 bytes 2 bytes variable variable

But this is, of course, encrypted before sending. Notice that the buffer is
MAC’ed first and then encrypted. The order is clearly important so that the
other side can correctly receive it.

Supporting Outgoing Encryption

To support encryption — outgoing — the only function that needs to be updated
is the send_message function. In order to apply the active cipher suite, it needs to
be sent the active Protectionparameters so that it can check to see what cipher
suite is active, and apply that cipher suite. Remember that TLS_NULL_WITH_NULL_
NULL is a valid cipher suite, and it’s the one that’s active when the handshake first
starts. It just tells send_message to do no MAC nor encrypt. In this way, there’s
always a cipher suite active, even if it’s a “do nothing” cipher suite.

The first thing send_message must do is to create the MAC buffer and compute
the MAC. To do this, follow these steps:

1. Check for an active digest and apply it to the contents as shown in
Listing 6-61.

Listing 6-61: “t|s.c" send_message with MAC support

static int send_message( int connection,
int content_type,
const unsigned char *content,

